WorldWideScience

Sample records for extraordinary terahertz transmission

  1. Quasioptical devices based on extraordinary transmission at THz

    Science.gov (United States)

    Beruete, Miguel

    2016-04-01

    In this work I will present our latest advances in components developed from extraordinary transmission concepts operating at terahertz (THz) frequencies. First, a structure exhibiting two different extraordinary transmission resonances depending on the polarization of the incident wave will be shown. The peaks of transmission appear at approximately 2 and 2.5 THz for vertical and horizontal polarization, respectively, with a transmittance above 60% in both cases. Later on, a meandering line structure able to tune the extraordinary transmission resonance will be discussed. The operation frequency in this case is between 9 and 17 THz. A self-complementary polarizer will be then presented, with a high polarization purity. The fundamentals of this device based on the Babinet's principle will be discussed in depth. Finally, all these structures will be combined together to produce a dual-band Quarter Wave Plate able to convert a linear polarization at the input in a circular polarization at the output at two different bands, 1 and 2.2. THz. Some final words regarding the potential of extraordinary transmission for sensing applications will close the contribution.

  2. Extraordinary acoustic transmission mediated by Helmholtz resonators

    Directory of Open Access Journals (Sweden)

    Vijay Koju

    2014-07-01

    Full Text Available We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of π radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  3. Experimental realization of extraordinary acoustic transmission using Helmholtz resonators

    Directory of Open Access Journals (Sweden)

    Brian C. Crow

    2015-02-01

    Full Text Available The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted sound as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.

  4. Some Advances in the Circuit Modeling of Extraordinary Optical Transmission

    Directory of Open Access Journals (Sweden)

    F. Medina

    2009-06-01

    Full Text Available The phenomenon of extraordinary optical transmission (EOT through electrically small holes perforated on opaque metal screens has been a hot topic in the optics community for more than one decade. This experimentally observed frequency-selective enhanced transmission of electromagnetic power through holes, for which classical Bethe's theory predicts very poor transmission, later attracted the attention of engineers working on microwave engineering or applied electromagnetics. Extraordinary transmission was first linked to the plasma-like behavior of metals at optical frequencies. However, the primary role played by the periodicity of the distribution of holes was soon made evident, in such a way that extraordinary transmission was disconnected from the particular behavior of metals at optical frequencies. Indeed, the same phenomenon has been observed in the microwave and millimeter wave regime, for instance. Nowadays, the most commonly accepted theory explains EOT in terms of the interaction of the impinging plane wave with the surface plasmon-polariton-Bloch waves (SPP-Bloch supported by the periodically perforated plate. The authors of this paper have recently proposed an alternative model whose details will be briefly summarized here. A parametric study of the predictions of the model and some new potential extensions will be reported to provide additional insight.

  5. Extraordinary optical transmission through nonlocal holey metal films

    DEFF Research Database (Denmark)

    David, Christin; Christensen, Johan

    2017-01-01

    We investigate nonlocal electrodynamics based on the generalized hydrodynamic approach including electron diffusion in holey gold films, showing extraordinary optical transmission (EOT). Dramatic changes with respect to the local approximation for rather large film thicknesses t less than...... or similar to 100 nm impact both reflectance and absorbance at normal incidence. Beyond the familiar resonance blueshift with the decreasing film thickness, the interference of longitudinal pressure waves in the holey structure generates an unexpected oscillatory response with geometrical parameters...

  6. Millimeter wave and terahertz wave transmission characteristics in plasma

    International Nuclear Information System (INIS)

    Ma Ping; Qin Long; Chen Weijun; Zhao Qing; Shi Anhua; Huang Jie

    2013-01-01

    An experiment was conducted on the shock tube to explore the transmission characteristics of millimeter wave and terahertz wave in high density plasmas, in order to meet the communication requirement of hypersonic vehicles during blackout. The transmission attenuation curves of millimeter wave and terahertz wave in different electron density and collision frequency were obtained. The experiment was also simulated by auxiliary differential equation finite-difference time-domain (ADE-FDTD) methods. The experimental and numerical results show that the transmission attenuation of terahertz wave in the plasma is smaller than that of millimeter wave under the same conditions. The transmission attenuation of terahertz wave in the plasma is enhanced with the increase of electron density. The terahertz wave is a promising alternative to the electromagnetic wave propagation in high density plasmas. (authors)

  7. Voltage adjusting characteristics in terahertz transmission through Fabry-Pérot-based metamaterials

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2015-10-01

    Full Text Available Metallic electric split-ring resonators (SRRs with featured size in micrometer scale, which are connected by thin metal wires, are patterned to form a periodically distributed planar array. The arrayed metallic SRRs are fabricated on an n-doped gallium arsenide (n-GaAs layer grown directly over a semi-insulating gallium arsenide (SI-GaAs wafer. The patterned metal microstructures and n-GaAs layer construct a Schottky diode, which can support an external voltage applied to modify the device properties. The developed architectures present typical functional metamaterial characters, and thus is proposed to reveal voltage adjusting characteristics in the transmission of terahertz waves at normal incidence. We also demonstrate the terahertz transmission characteristics of the voltage controlled Fabry-Pérot-based metamaterial device, which is composed of arrayed metallic SRRs. To date, many metamaterials developed in earlier works have been used to regulate the transmission amplitude or phase at specific frequencies in terahertz wavelength range, which are mainly dominated by the inductance-capacitance (LC resonance mechanism. However, in our work, the external voltage controlled metamaterial device is developed, and the extraordinary transmission regulation characteristics based on both the Fabry-Pérot (FP resonance and relatively weak surface plasmon polariton (SPP resonance in 0.025-1.5 THz range, are presented. Our research therefore shows a potential application of the dual-mode-resonance-based metamaterial for improving terahertz transmission regulation.

  8. An extraordinary transmission analogue for enhancing microwave antenna performance

    Directory of Open Access Journals (Sweden)

    Sarin V. Pushpakaran

    2015-10-01

    Full Text Available The theory of diffraction limit proposed by H.A Bethe limits the total power transfer through a subwavelength hole. Researchers all over the world have gone through different techniques for boosting the transmission through subwavelength holes resulting in the Extraordinary Transmission (EOT behavior. We examine computationally and experimentally the concept of EOT nature in the microwave range for enhancing radiation performance of a stacked dipole antenna working in the S band. It is shown that the front to back ratio of the antenna is considerably enhanced without affecting the impedance matching performance of the design. The computational analysis based on Finite Difference Time Domain (FDTD method reveals that the excitation of Fabry-Perot resonant modes on the slots is responsible for performance enhancement.

  9. Terahertz transmission of NbN superconductor thin film

    Czech Academy of Sciences Publication Activity Database

    Tesař, Roman; Koláček, Jan; Šimša, Zdeněk; Šindler, Michal; Skrbek, L.; Il'in, K.; Sieger, M.

    2010-01-01

    Roč. 470, č. 19 (2010), s. 932-934 ISSN 0921-4534 R&D Projects: GA ČR GA202/08/0326 Institutional research plan: CEZ:AV0Z10100521 Keywords : far- infrared transmission * NbN * superconducting film * magnetic vortices * terahertz waves Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.407, year: 2010

  10. Terahertz time-domain transmission and reflection spectroscopy of niobium

    International Nuclear Information System (INIS)

    Hong, Tae Yoon; Choi, Kyu Jin; Park, Byoung Cheol; Ha, Tae Woo; Sim, Kyung Ik; Kim, Jea Hoon; Ha, Dong Gwang; Chang, Yonuk

    2013-01-01

    We have developed a terahertz time-domain spectroscopy (THz-TDS) system for transmission and reflection measurements of metallic thin films. Using our THz-TDS system, we studied the conventional superconductor niobium (Nb) in the normal state in the spectral range from 5 to 50 cm -1 . Both the real and imaginary parts of the conductivity are acquired without Kramers-Kronig analysis. Nb exhibits a nearly frequency independent real conductivity spectrum in the terahertz range, with a very small imaginary part.

  11. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications

    KAUST Repository

    Yue, Weisheng; Wang, Zhihong; Yang, Yang; Li, Jingqi; Wu, Ying; Chen, Longqing; Ooi, Boon S.; Wang, Xianbin; Zhang, Xixiang

    2014-01-01

    Extraordinary optical transmission (EOT) through arrays of gold nanoholes was studied with light across the visible to the near-infrared spectrum. The EOT effect was found to be improved by bridging pairs of nanoholes due to the concentration

  12. Invited Review Terahertz Transmission, Scattering, Reflection, and Absorption—the Interaction of THz Radiation with Soils

    Science.gov (United States)

    Lewis, R. A.

    2017-07-01

    Terahertz radiation has been proposed as a useful tool in the study of soils and related materials from such diverse perspectives as detection of non-metallic landmines to improving soil fertility by agricultural charcoals produced by pyrolysis of organic material. The main barrier to such applications is that soils are rather opaque at terahertz frequencies. In this article, the main findings to date on the interaction of terahertz radiation with soils are reviewed, organized around the four phenomena of terahertz: transmission, scattering, reflection, and absorption. Terahertz transmission through soils is generally low and decreases with frequency. Terahertz scattering is evident in many THz-soil interactions, as the wavelength of the radiation is of the order of the particle size. Terahertz reflection is important to communications as these develop from the GHz into the THz band. Terahertz absorption on diluted soil samples has been demonstrated to be effective in identifying soil constituents, such as aromatic compounds, and soil contaminants, such as pesticides.

  13. Extraordinary acoustic transmission through annuluses in air and its applications in acoustic beam splitter and concentrator

    International Nuclear Information System (INIS)

    Ge, Yong; Liu, Shu-sen; Yuan, Shou-qi; Xia, Jian-ping; Guan, Yi-jun; Sun, Hong-xiang; Zhang, Shu-yi

    2016-01-01

    We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications.

  14. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    Science.gov (United States)

    Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng

    2016-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314

  15. Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics

    International Nuclear Information System (INIS)

    Guo Shi-Bei; Zhong Kai; Wang Mao-Rong; Liu Chu; Xu De-Gang; Yao Jian-Quan; Xiao Yong; Wang Wen-Peng

    2017-01-01

    Broadband terahertz (THz) atmospheric transmission characteristics from 0 to 8 THz are theoretically simulated based on a standard Van Vleck–Weisskopf line shape, considering 1696 water absorption lines and 298 oxygen absorption lines. The influences of humidity, temperature, and pressure on the THz atmospheric absorption are analyzed and experimentally verified with a Fourier transform infrared spectrometer (FTIR) system, showing good consistency. The investigation and evaluation on high-frequency atmospheric windows are good supplements to existing data in the low-frequency range and lay the foundation for aircraft-based high-altitude applications of THz communication and radar. (paper)

  16. Reconfigurable terahertz grating with enhanced transmission of TE polarized light

    Directory of Open Access Journals (Sweden)

    J. W. He

    2017-07-01

    Full Text Available We demonstrate an optically reconfigurable grating with enhanced transmission of TE-polarized waves in the terahertz (THz waveband. This kind of grating is realized by projecting a grating image onto a thin Si wafer with a digital micromirror device (DMD. The enhanced transmission is caused by a resonance of the electromagnetic fields between the photoexcited strips. The position of the transmission peak shifts with the variation of the period and duty cycle of the photoinduced grating, which can be readily controlled by the DMD. Furthermore, a flattened Gaussian model was applied to describe the distribution of the photoexcited free carriers in the Si wafer, and the simulated transmittance spectra are shown to be in good agreement with the experimental results. In future, the photoexcited carriers could also be used to produce THz diffractive elements with reconfigurable functionality.

  17. Electromagnetic response of extraordinary transmission plates inspired on Babinet’s principle

    OpenAIRE

    Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario

    2011-01-01

    This chapter is devoted to polarization effects arisen from perforated metallic plates exhibiting extraordinary transmission (ET). Setting aside the state-of-the-art of perforated metallic plates, we show that by applying Babinet’s principle, subwavelength hole arrays (SHAs) arranged in rectangular lattice can further enhance its potential polarization response. Different perspectives are brought about to describe and understand the particular behaviour of self-complementarines...

  18. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  19. Extraordinary mid-infrared transmission of subwavelength holes in gold films

    KAUST Repository

    Yue, Weisheng; Wang, Zhihong; Yang, Yang; Chen, Longqing; Syed, Ahad A.; Wang, Xianbin

    2014-01-01

    Gold (Au) nanoholes are fabricated with electron-beam lithography and used for the investigation of extraordinary transmission in mid-infrared regime. Transmission properties of the nanoholes are studied as the dependence on hole-size. Transmittance spectra are characterized by Fourier transform infrared spectroscopy (FTIR) and enhanced transmittance through the subwavelength holes is observed. The transmission spectra exhibit well-defined maximum and minimum of which the position are determined by the lattice of the hole array. The hole-size primarily influence the transmission intensity and bandwidth of the resonance peak. With an increase of hole-size, while keep lattice constant fixed, the intensity of the resonance peak and the bandwidth increases, which are due to the localized surface plasmons. Numerical simulation for the transmission through the subwavelength holes is performed and the simulated results agree with the experimental observations. Copyright © 2014 American Scientific Publishers.

  20. Extraordinary mid-infrared transmission of subwavelength holes in gold films

    KAUST Repository

    Yue, Weisheng

    2014-04-01

    Gold (Au) nanoholes are fabricated with electron-beam lithography and used for the investigation of extraordinary transmission in mid-infrared regime. Transmission properties of the nanoholes are studied as the dependence on hole-size. Transmittance spectra are characterized by Fourier transform infrared spectroscopy (FTIR) and enhanced transmittance through the subwavelength holes is observed. The transmission spectra exhibit well-defined maximum and minimum of which the position are determined by the lattice of the hole array. The hole-size primarily influence the transmission intensity and bandwidth of the resonance peak. With an increase of hole-size, while keep lattice constant fixed, the intensity of the resonance peak and the bandwidth increases, which are due to the localized surface plasmons. Numerical simulation for the transmission through the subwavelength holes is performed and the simulated results agree with the experimental observations. Copyright © 2014 American Scientific Publishers.

  1. Manipulation of extraordinary acoustic transmission by a tunable bull's eye structure

    International Nuclear Information System (INIS)

    Wang Ji-Wei; Cheng Ying; Liu Xiao-Jun

    2014-01-01

    Extraordinary acoustic transmission (EAT) has been investigated in a tunable bull's eye structure. We demonstrate that the transmission coefficient of acoustic waves can be modulated by a grating structure. When the grating is located at a distance of 0.5 mm from the base plate, the acoustic transmission shows an 8.77-fold enhancement compared to that by using a traditional bull's eye structure. When the distance increases to 1.5 mm, the transmission approaches zero, indicating a total reflection. Thus, we can make an efficient modulation of acoustic transmission from 0 to 877%. The EAT effects have been ascribed to the coupling of structure-induced resonance with the diffractive wave and the waveguide modes, as well as the Fabry-Perot resonances. As a potential application, the modulation of far-field collimation is illustrated in the proposed bull's eye structure. (rapid communication)

  2. Ultrastrong extraordinary transmission and reflection in PT-symmetric Thue-Morse optical waveguide networks.

    Science.gov (United States)

    Wu, Jiaye; Yang, Xiangbo

    2017-10-30

    In this paper, we construct a 1D PT-symmetric Thue-Morse aperiodic optical waveguide network (PTSTMAOWN) and mainly investigate the ultrastrong extraordinary transmission and reflection. We propose an approach to study the photonic modes and solve the problem of calculating photonic modes distributions in aperiodic networks due to the lack of dispersion functions and find that in a PTSTMAOWN there exist more photonic modes and more spontaneous PT-symmetric breaking points, which are quite different from other reported PT-symmetric optical systems. Additionally, we develop a method to sort spontaneous PT-symmetric breaking point zones to seek the strongest extraordinary point and obtain that at this point the strongest extraordinary transmission and reflection arrive at 2.96316 × 10 5 and 1.32761 × 10 5 , respectively, due to the PT-symmetric coupling resonance and the special symmetry pattern of TM networks. These enormous gains are several orders of magnitude larger than the previous results. This optical system may possess potential in designing optical amplifier, optical logic elements in photon computers and ultrasensitive optical switches with ultrahigh monochromatity.

  3. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications

    KAUST Repository

    Yue, Weisheng

    2014-01-01

    Extraordinary optical transmission (EOT) through arrays of gold nanoholes was studied with light across the visible to the near-infrared spectrum. The EOT effect was found to be improved by bridging pairs of nanoholes due to the concentration of the electromagnetic field in the slit between the holes. The geometrical shape and separation of the holes in these pairs of nanoholes affected the intensity of the transmission and the wavelength of resonance. Changing the geometrical shapes of these nanohole pairs from triangles to circles to squares leads to increased transmission intensity as well as red-shifting resonance wavelengths. The performance of bridged nanohole pairs as a plasmonic sensor was investigated. The bridged nanohole pairs were able to distinguish methanol, olive oil and microscope immersion oil for the different surface plasmon resonance in transmission spectra. Numerical simulation results were in agreement with experimental observations. © 2014 the Partner Organisations.

  4. New approach for extraordinary transmission through an array of subwavelength apertures using thin ENNZ metamaterial liners.

    Science.gov (United States)

    Baladi, Elham; Pollock, Justin G; Iyer, Ashwin K

    2015-08-10

    Extraordinary transmission (ET) through a periodic array of subwavelength apertures on a perfect metallic screen has been studied extensively in recent years, and has largely been attributed to diffraction effects, for which the periodicity of the apertures, rather than their dimensions, dominates the response. The transmission properties of the apertures at resonance, on the other hand, are not typically considered 'extraordinary' because they may be explained using more conventional aperture-theoretical mechanisms. This work describes a novel approach for achieving ET in which subwavelength apertures are made to resonate by lining them using thin, epsilon-negative and near-zero (ENNZ) metamaterials. The use of ENNZ metamaterials has recently proven successful in miniaturizing circular waveguides by strongly reducing their natural cutoff frequencies, and the theory is adapted here for the design of subwavelength apertures in a metallic screen. We present simulations and proof-of-concept measurements at microwave frequencies that demonstrate ET for apertures measuring one-quarter of a wavelength in diameter and suggest the potential for even more dramatic miniaturization simply by engineering the ENNZ metamaterial dispersion. The results exhibit a fano-like profile whose frequency varies with the properties of the metamaterial liner, but is independent of period. It is suggested that similar behaviour can be obtained at optical frequencies, where ENNZ metamaterials may be realized using appropriately arranged chains of plasmonic nanoparticles.

  5. Photonic techniques for sub-Terahertz wireless data transmission

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2015-01-01

    Wireless data communication links with capacities beyond 100 Gbit/s will require operating at sub-Terahertz frequencies using a large bandpass bandwidth facing new engineering challenges. We review several implementation aspects by using photonic technologies. © 2015 OSA.......Wireless data communication links with capacities beyond 100 Gbit/s will require operating at sub-Terahertz frequencies using a large bandpass bandwidth facing new engineering challenges. We review several implementation aspects by using photonic technologies. © 2015 OSA....

  6. Superiority of terahertz over infrared transmission through bandages and burn wound ointments

    International Nuclear Information System (INIS)

    Suen, Jonathan Y.; Padilla, Willie J.

    2016-01-01

    Terahertz electromagnetic waves have long been proposed to be ideal for spectroscopy and imaging through non-polar dielectric materials that contain no water. Terahertz radiation may thus be useful for monitoring burn and wound injury recovery, as common care treatments involve application of both a clinical dressing and topical ointment. Here, we investigate the optical properties of typical care treatments in the millimeter wave (150–300 GHz), terahertz (0.3–3 THz), and infrared (14.5–0.67 μm) ranges of the electromagnetic spectrum. We find that THz radiation realizes low absorption coefficients and high levels of transmission compared to infrared wavelengths, which were strongly attenuated. Terahertz imaging can enable safe, non-ionizing, noninvasive monitoring of the healing process directly through clinical dressings and recovery ointments, minimizing the frequency of dressing changes and thus increasing the rate of the healing process.

  7. Superiority of terahertz over infrared transmission through bandages and burn wound ointments

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Jonathan Y., E-mail: j.suen@duke.edu; Padilla, Willie J. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2016-06-06

    Terahertz electromagnetic waves have long been proposed to be ideal for spectroscopy and imaging through non-polar dielectric materials that contain no water. Terahertz radiation may thus be useful for monitoring burn and wound injury recovery, as common care treatments involve application of both a clinical dressing and topical ointment. Here, we investigate the optical properties of typical care treatments in the millimeter wave (150–300 GHz), terahertz (0.3–3 THz), and infrared (14.5–0.67 μm) ranges of the electromagnetic spectrum. We find that THz radiation realizes low absorption coefficients and high levels of transmission compared to infrared wavelengths, which were strongly attenuated. Terahertz imaging can enable safe, non-ionizing, noninvasive monitoring of the healing process directly through clinical dressings and recovery ointments, minimizing the frequency of dressing changes and thus increasing the rate of the healing process.

  8. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission.

    Science.gov (United States)

    van Beijnum, Frerik; Rétif, Chris; Smiet, Chris B; Liu, Haitao; Lalanne, Philippe; van Exter, Martin P

    2012-12-20

    A metal film perforated by a regular array of subwavelength holes shows unexpectedly large transmission at particular wavelengths, a phenomenon known as the extraordinary optical transmission (EOT) of metal hole arrays. EOT was first attributed to surface plasmon polaritons, stimulating a renewed interest in plasmonics and metallic surfaces with subwavelength features. Experiments soon revealed that the field diffracted at a hole or slit is not a surface plasmon polariton mode alone. Further theoretical analysis predicted that the extra contribution, from quasi-cylindrical waves, also affects EOT. Here we report the experimental demonstration of the relative importance of surface plasmon polaritons and quasi-cylindrical waves in EOT by considering hole arrays of different hole densities. From the measured transmission spectra, we determine microscopic scattering parameters which allow us to show that quasi-cylindrical waves affect EOT only for high densities, when the hole spacing is roughly one wavelength. Apart from providing a deeper understanding of EOT, the determination of microscopic scattering parameters from the measurement of macroscopic optical properties paves the way to novel design strategies.

  9. Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes.

    Science.gov (United States)

    Dhama, Rakesh; Caligiuri, Vincenzo; Petti, Lucia; Rashed, Alireza R; Rippa, Massimo; Lento, Raffaella; Termine, Roberto; Caglayan, Humeyra; De Luca, Antonio

    2018-01-23

    Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue-Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities via propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics.

  10. Transmission properties of terahertz waves through asymmetric rectangular aperture arrays on carbon nanotube films

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-04-01

    Full Text Available Transmission spectra of terahertz waves through a two-dimensional array of asymmetric rectangular apertures on super-aligned multi-walled carbon nanotube films were obtained experimentally. In this way, the anisotropic transmission phenomena of carbon nanotube films were observed. For a terahertz wave polarization parallel to the orientation of the carbon nanotubes and along the aperture short axis, sharp resonances were observed and the resonance frequencies coincided well with the surface plasmon polariton theory. In addition, the minima of the transmission spectra were in agreement with the location predicted by the theory of Wood’s anomalies. Furthermore, it was found that the resonance profiles through the carbon nanotube films could be well described by the Fano model.

  11. Gold Nanohole Array with Sub-1 nm Roughness by Annealing for Sensitivity Enhancement of Extraordinary Optical Transmission Biosensor

    Science.gov (United States)

    Zhang, Jian; Irannejad, Mehrdad; Yavuz, Mustafa; Cui, Bo

    2015-05-01

    Nanofabrication technology plays an important role in the performance of surface plasmonic devices such as extraordinary optical transmission (EOT) sensor. In this work, a double liftoff process was developed to fabricate a series of nanohole arrays of a hole diameter between 150 and 235 nm and a period of 500 nm in a 100-nm-thick gold film on a silica substrate. To improve the surface quality of the gold film, thermal annealing was conducted, by which an ultra-smooth gold film with root-mean-square (RMS) roughness of sub-1 nm was achieved, accompanied with a hole diameter shrinkage. The surface sensitivity of the nanohole arrays was measured using a monolayer of 16-mercaptohexadecanoic acid (16-MHA) molecule, and the surface sensitivity was increased by 2.5 to 3 times upon annealing the extraordinary optical transmission (EOT) sensor.

  12. Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy

    Science.gov (United States)

    Kim, Chihoon; Ahn, Jae Sung; Ji, Taeksoo; Eom, Joo Beom

    2017-04-01

    We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz-800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis.

  13. Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy

    International Nuclear Information System (INIS)

    Kim, Chihoon; Ahn, Jae Sung; Eom, Joo Beom; Ji, Taeksoo

    2017-01-01

    We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz–800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis. (paper)

  14. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    International Nuclear Information System (INIS)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2016-01-01

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  15. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd [Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205 (Bangladesh)

    2016-05-21

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  16. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping

    DEFF Research Database (Denmark)

    Mackenzie, David M.A.; Whelan, Patrick Rebsdorf; Bøggild, Peter

    2018-01-01

    We present a comparative study of electrical measurements of graphene using terahertz time-domain spectroscopy in transmission and reflection mode, and compare the measured sheet conductivity values to electrical van der Pauw measurements made independently in three different laboratories. Overall......, while offering the additional advantages associated with contactless mapping, such as high throughput, no lithography requirement, and with the spatial mapping directly revealing the presence of any inhomogeneities or isolating defects. The confirmation of the accuracy of reflection-mode removes...

  17. Terahertz and infrared transmission of an organic/inorganic hybrid thermoelectric material

    International Nuclear Information System (INIS)

    Heyman, J. N.; Alebachew, B. A.; Kaminski, Z. S.; Nguyen, M. D.; Coates, N. E.; Urban, J. J.

    2014-01-01

    We report terahertz and infrared transmission measurements of a high-performance thermoelectric material containing tellurium nanowires in a conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix. The DC electrical conductivity of the hybrid material (41 S/cm) is approximately one hundred times that of pure PEDOT:PSS and more than 400 times that of a film of pure tellurium nanowires, while the terahertz-frequency (THz) conductivity of PEDOT:PSS and the hybrid material are comparable at f ∼ 2THz. A frequency-dependent conductivity model indicates that the increased DC conductivity of the hybrid material results from an increase in the DC charge mobility rather than in the free charge density. We suggest that the increased DC conductivity of the hybrid material results from an increase in linkage between PEDOT domains by the tellurium nanowires

  18. Terahertz and infrared transmission of an organic/inorganic hybrid thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Heyman, J. N., E-mail: heyman@macalester.edu; Alebachew, B. A.; Kaminski, Z. S.; Nguyen, M. D. [Physics Department, Macalester College, St. Paul, Minnesota 55105 (United States); Coates, N. E.; Urban, J. J. [The Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-04-07

    We report terahertz and infrared transmission measurements of a high-performance thermoelectric material containing tellurium nanowires in a conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix. The DC electrical conductivity of the hybrid material (41 S/cm) is approximately one hundred times that of pure PEDOT:PSS and more than 400 times that of a film of pure tellurium nanowires, while the terahertz-frequency (THz) conductivity of PEDOT:PSS and the hybrid material are comparable at f ∼ 2THz. A frequency-dependent conductivity model indicates that the increased DC conductivity of the hybrid material results from an increase in the DC charge mobility rather than in the free charge density. We suggest that the increased DC conductivity of the hybrid material results from an increase in linkage between PEDOT domains by the tellurium nanowires.

  19. Transmission and reflection properties of terahertz fractal metamaterials

    DEFF Research Database (Denmark)

    Malureanu, Radu; Lavrinenko, Andrei; Cooke, David

    2010-01-01

    We use THz time-domain spectroscopy to investigate transmission and reflection properties of metallic fractal metamaterial structures. We observe loss of free-space energy at certain resonance frequencies, indicating excitation of surface modes of the metamaterial.......We use THz time-domain spectroscopy to investigate transmission and reflection properties of metallic fractal metamaterial structures. We observe loss of free-space energy at certain resonance frequencies, indicating excitation of surface modes of the metamaterial....

  20. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  1. Extraordinary electromagnetic transmission by antenna arrays and frequency selective surfaces having compound unit cells with dissimilar elements

    Energy Technology Data Exchange (ETDEWEB)

    Loui, Hung; Strassner, II, Bernd H.

    2018-03-20

    The various embodiments presented herein relate to extraordinary electromagnetic transmission (EEMT) to enable multiple inefficient (un-matched) but coupled radiators and/or apertures to radiate and/or pass electromagnetic waves efficiently. EEMT can be utilized such that signal transmission from a plurality of antennas and/or apertures occurs at a transmission frequency different to transmission frequencies of the individual antennas and/or aperture elements. The plurality of antennas/apertures can comprise first antenna/aperture having a first radiating area and material(s) and second antenna/aperture having a second radiating area and material(s), whereby the first radiating/aperture area and second radiating/aperture area can be co-located in a periodic compound unit cell. Owing to mutual coupling between the respective antennas/apertures in their arrayed configuration, the transmission frequency of the array can be shifted from the transmission frequencies of the individual elements. EEMT can be utilized for an array of evanescent of inefficient radiators connected to a transmission line(s).

  2. Enhanced transmission of terahertz radiation through a periodically modulated slab of layered superconductor

    International Nuclear Information System (INIS)

    Kadygrob, D V; Slipchenko, T M; Yampol'skii, V A; Makarov, N M; Pérez-Rodríguez, F

    2013-01-01

    We predict the enhanced transparency of a modulated slab of layered superconductor for terahertz radiation due to the diffraction of an incident wave and the resonance excitation of eigenmodes. The electromagnetic field is transferred from the irradiated side of the slab to the other by excited waveguide modes (WGMs) which do not decay in layered superconductors, in contrast to metals, where the enhanced light transmission is caused by the excitation of evanescent surface waves. We show that a series of resonance peaks can be observed in the dependence of transmittance on the incidence angle when the dispersion curve of the diffracted wave crosses successive dispersion curves for the WGMs. (paper)

  3. Terahertz Near-Field Imaging Using Enhanced Transmission through a Single Subwavelength Aperture

    Science.gov (United States)

    Ishihara, Kunihiko; Ikari, Tomofumi; Minamide, Hiroaki; Shikata, Jun-ichi; Ohashi, Keishi; Yokoyama, Hiroyuki; Ito, Hiromasa

    2005-07-01

    We demonstrate terahertz (THz) near-field imaging using resonantly enhanced transmission of THz-wave radiation (λ˜ 200 μm) through a bull’s eye structure (a single subwavelength aperture surrounded by concentric periodic grooves in a metal plate). The bull’s eye structure shows extremely large enhanced transmission, which has the advantage for a single subwavelength aperture. The spatial resolution for the bull’s eye structure (with an aperture diameter d=100 μm) is evaluated in the near-field region, and a resolution of 50 μm (corresponding to λ/4) is achieved. We obtain the THz near-field images of the subwavelength metal pattern with a spatial resolution below the diffraction limit.

  4. Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders

    DEFF Research Database (Denmark)

    Sondergaard, T.; Bozhevolnyi, S. I.; Beermann, J.

    2012-01-01

    Transmission through thin metal films with a periodic arrangement of tapered slits is considered. Transmission maps covering a wide range of periods, film thicknesses, and taper angles are presented. The maps show resonant transmission when fundamental and higher-order slit resonances are excited...... to be in the range of 6 degrees-10 degrees. Both theory and experiments show split-peak spectra and shifted-peak spectra due to interference between a slit resonance and Rayleigh-Wood anomalies. (C) 2011 Optical Society of America...

  5. Transmission of terahertz radiation by anisotropic MWCNT/polystyrene composite films

    Energy Technology Data Exchange (ETDEWEB)

    Okotrub, A.V.; Bulusheva, L.G. [Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630092 Novosibirsk (Russian Federation); Kubarev, V.V. [Budker Institute of Nuclear Physics, SB RAS, 11 Acad. Lavrentiev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation); Kanygin, M.A.; Sedelnikova, O.V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk (Russian Federation)

    2011-11-15

    Anisotropic composite materials have been prepared by repeated forge rolling of polystyrene and carbon nanotubes (CNTs) with length of {proportional_to}65 {mu}m. Transmission spectra of the composites were recorded for two different polarizations of the electric field. Obtained data indicated that the forge rolling resulted in a predominant orientation of CNTs in polymer matrix. Anisotropic response of the composites was measured at 130 {mu}m wavelength on the Novosibirsk terahertz free electron laser and angular dependence of the transmitted light was determined. Absorption spectrum showed no strong resonance features and it was interpreted by CNTs breaking and agglomeration of CNT fragments during the composite fabrication procedure. Based on classical theory of scattering, considered the scatters as electromagnetic antennas, the size distribution of CNTs in composites was found. Anisotropy of terahertz radiation transmitted from MWCNT/polystyrene composite film on the Novosibirsk free electron laser at 130 {mu}m wavelength. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks.

    Science.gov (United States)

    Li, Wen-Di; Hu, Jonathan; Chou, Stephen Y

    2011-10-10

    We observed that when subwavelength-sized holes in an optically opaque metal film are completely covered by opaque metal disks larger than the holes, the light transmission through the holes is not reduced, but rather enhanced. Particularly we report (i) the observation of light transmission through the holes blocked by the metal disks up to 70% larger than the unblocked holes; (ii) the observation of tuning the light transmission by varying the coupling strength between the blocking disks and the hole array, or by changing the size of the disks and holes; (iii) the observation and simulation that the metal disk blocker can improve light coupling from free space to a subwavelength hole; and (iv) the simulation that shows the light transmission through subwavelength holes can be enhanced, even though the gap between the disk and the metal film is partially connected with a metal. We believe these finding should have broad and significant impacts and applications to optical systems in many fields.

  7. Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single-molecule magnets

    Science.gov (United States)

    Liu, RuiYuan; Zuo, JunWei; Li, YanRong; Zhou, YuRong; Wang, YunPing

    2012-07-01

    Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single molecule magnets (SMMs) have been measured at different temperatures, and hence the anisotropic parameters D 2 and D 4 of the spin Hamiltonian hat H = D_2 hat S_z^2 + D_4 hat S_z^4 have been calculated. For Mn12 SMM, D 2=-10.9 GHz and D 4=-2.59×10-2 GHz, while for Mn3 SMM, D 2=-22.0 GHz and D 4 can be considered negligible. This suggests Mn3 SMM can be considered as a simpler and more suitable candidate for magnetic quantum tunneling research.

  8. A terahertz transmission imaging based approach for liquid alcohol wettability investigation

    Science.gov (United States)

    Huang, Hui; Zhao, Hongwei; Zhang, Bo; Su, Yunyun; Jiang, Weixiang; Cai, Bin; You, Guanjun; Ma, Yan

    2018-03-01

    By using terahertz time-domain spectroscopy (THz-TDS), the transmission spectral images of a series of aliphatic monohydric liquid alcohols were investigated in this work. The image gray value indicated the non-uniform distribution of the liquid. After noise reduction, the depth distribution was computed from the image content, which depended on the wettability of the container surface by the liquid. Then the volume of the liquid crept up to the container surface was compared quantitatively. Our result showed that the surface wettability of the PS container surface by the liquids increased with the alcohol alkyl chain increasing, which was verified by the contact angle of the liquid and the surface. The study indicated that the THz image might offer a potential technique for detecting the wettability of liquid directly without an additional contact angle experiment.

  9. Transmission line model and fields analysis of metamaterial absorber in the terahertz band.

    Science.gov (United States)

    Wen, Qi-Ye; Xie, Yun-Song; Zhang, Huai-Wu; Yang, Qing-Hui; Li, Yuan-Xun; Liu, Ying-Li

    2009-10-26

    Metamaterial (MM) absorber is a novel device to provide near-unity absorption to electromagnetic wave, which is especially important in the terahertz (THz) band. However, the principal physics of MM absorber is still far from being understood. In this work, a transmission line (TL) model for MM absorber was proposed, and with this model the S-parameters, energy consumption, and the power loss density of the absorber were calculated. By this TL model, the asymmetric phenomenon of THz absorption in MM absorber is unambiguously demonstrated, and it clarifies that strong absorption of this absorber under studied is mainly related to the LC resonance of the split-ring-resonator structure. The distribution of power loss density in the absorber indicates that the electromagnetic wave is firstly concentrated into some specific locations of the absorber and then be strongly consumed. This feature as electromagnetic wave trapper renders MM absorber a potential energy converter. Based on TL model, some design strategies to widen the absorption band were also proposed for the purposes to extend its application areas.

  10. Extraordinary Tales

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 10. Extraordinary Tales: Parasites Hijacking the Minds of Hosts. Felix Bast. General Article Volume 20 Issue 10 October 2015 pp 893-902. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G. K. M.

    2016-01-01

    We report on the numerical design optimization of a new kind of relatively simple porous-core photonic crystal fiber (PCF) for terahertz (THz) waveguiding. A novel twist is introduced in the regular hexagonal PCF by including a diamond-shaped porous-core inside the hexagonal cladding. The numeric...

  12. Non-destructive Determination of Disintegration Time and Dissolution in Immediate Release Tablets by Terahertz Transmission Measurements.

    Science.gov (United States)

    Markl, Daniel; Sauerwein, Johanna; Goodwin, Daniel J; van den Ban, Sander; Zeitler, J Axel

    2017-05-01

    The aim of this study was to establish the suitability of terahertz (THz) transmission measurements to accurately measure and predict the critical quality attributes of disintegration time and the amount of active pharmaceutical ingredient (API) dissolved after 15, 20 and 25 min for commercial tablets processed at production scale. Samples of 18 batches of biconvex tablets from a production-scale design of experiments study into exploring the design space of a commercial tablet manufacturing process were used. The tablet production involved the process steps of high-shear wet granulation, fluid-bed drying and subsequent compaction. The 18 batches were produced using a 4 factor split plot design to study the effects of process changes on the disintegration time. Non-destructive and contactless terahertz transmission measurements of the whole tablets without prior sample preparation were performed to measure the effective refractive index and absorption coefficient of 6 tablets per batch. The disintegration time (R 2  = 0.86) and API dissolved after 15 min (R 2  = 0.96) linearly correlates with the effective refractive index, n eff , measured at terahertz frequencies. In contrast, no such correlation could be established from conventional hardness measurements. The magnitude of n eff represents the optical density of the sample and thus it reflects both changes in tablet porosity as well as granule density. For the absorption coefficient, α eff , we observed a better correlation with dissolution after 20 min (R 2  = 0.96) and a weaker correlation with disintegration (R 2  = 0.83) compared to n eff . The measurements of n eff and α eff provide promising predictors for the disintegration and dissolution time of tablets. The high penetration power of terahertz radiation makes it possible to sample a significant volume proportion of a tablet without any prior sample preparation. Together with the short measurement time (seconds), the potential to

  13. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Chen, Hou - Tong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John [Los Alamos National Laboratory

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  14. Resonating Terahertz Response of Periodic Arrays of Subwavelength Apertures

    KAUST Repository

    D’ Apuzzo, Fausto; Candeloro, Patrizio; Domenici, Fabio; Autore, M.; Di Pietro, Paola; Perucchi, Andrea; Roy, P.; Sennato, Simona; Bordi, Federico; Di Fabrizio, Enzo M.; Lupi, Stefano

    2014-01-01

    Extraordinary optical transmission (EOT) peaks mediated by plasmonic excitations can be observed in a variety of subwavelength patterned metallic surfaces. In this paper, we have fabricated and spectroscopically characterized plasmon devices exhibiting EOT peaks at terahertz (THz) frequencies. These devices, which resonate with intermediate and collective modes of macromolecules, can be used for detection of materials of biological interest and their performances have been experimentally determined by measuring the variation of the EOT frequencies for thin sub-micrometric organic layers deposited onto the device surface.

  15. Resonating Terahertz Response of Periodic Arrays of Subwavelength Apertures

    KAUST Repository

    D’Apuzzo, Fausto

    2014-10-11

    Extraordinary optical transmission (EOT) peaks mediated by plasmonic excitations can be observed in a variety of subwavelength patterned metallic surfaces. In this paper, we have fabricated and spectroscopically characterized plasmon devices exhibiting EOT peaks at terahertz (THz) frequencies. These devices, which resonate with intermediate and collective modes of macromolecules, can be used for detection of materials of biological interest and their performances have been experimentally determined by measuring the variation of the EOT frequencies for thin sub-micrometric organic layers deposited onto the device surface.

  16. Generation, transmission, and detection of terahertz photons on an electrically driven single chip

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Kenji; Ito, Atsushi; Okano, Shun [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan)

    2014-02-03

    We demonstrate single photon counting of terahertz (THz) waves transmitted from a local THz point source through a coplanar two-wire waveguide on a GaAs/AlGaAs single heterostructure crystal. In the electrically driven all-in-one chip, quantum Hall edge transport is used to achieve a noiseless injection current for a monochromatic point source of THz fields. The local THz fields are coupled to a coplanar two-wire metal waveguide and transmitted over a macroscopic scale greater than the wavelength (38 μm in GaAs). THz waves propagating on the waveguide are counted as individual photons by a quantum-dot single-electron transistor on the same chip. Photon counting on integrated high-frequency circuits will open the possibilities for on-chip quantum optical experiments.

  17. Enhancement of magneto-optical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays.

    Science.gov (United States)

    Lei, Chengxin; Chen, Leyi; Tang, Zhixiong; Li, Daoyong; Cheng, Zhenzhi; Tang, Shaolong; Du, Youwei

    2016-02-15

    The properties of optics and magneto-optical Faraday effects in a metal-dielectric tri-layer structure with subwavelength rectangular annular arrays are investigated. It is noteworthy that we obtained the strongly enhanced Faraday rotation of the desired sign along with high transmittance by optimizing the parameters of the nanostructure in the visible spectral ranges. In this system, we obtained two extraordinary optical transmission (EOT) resonant peaks with enhanced Faraday rotations, whose signs are opposite, which may provide the possibility of designing multi-channel magneto-optical devices. Study results show that the maximum of the figure of merit (FOM) of the structure can be obtained between two EOT resonant peaks accompanied by an enhanced Faraday rotation. The positions of the maximum value of the FOM and resonant peaks of transmission along with a large Faraday rotation can be tailored by simply adjusting the geometric parameters of our models. These research findings are of great importance for future applications of magneto-optical devices.

  18. Wireless Data Transmission at Terahertz Carrier Waves Generated from a Hybrid InP-Polymer Dual Tunable DBR Laser Photonic Integrated Circuit.

    Science.gov (United States)

    Carpintero, Guillermo; Hisatake, Shintaro; de Felipe, David; Guzman, Robinson; Nagatsuma, Tadao; Keil, Norbert

    2018-02-14

    We report for the first time the successful wavelength stabilization of two hybrid integrated InP/Polymer DBR lasers through optical injection. The two InP/Polymer DBR lasers are integrated into a photonic integrated circuit, providing an ideal source for millimeter and Terahertz wave generation by optical heterodyne technique. These lasers offer the widest tuning range of the carrier wave demonstrated to date up into the Terahertz range, about 20 nm (2.5 THz) on a single photonic integrated circuit. We demonstrate the application of this source to generate a carrier wave at 330 GHz to establish a wireless data transmission link at a data rate up to 18 Gbit/s. Using a coherent detection scheme we increase the sensitivity by more than 10 dB over direct detection.

  19. Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań (Poland); Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara (Turkey); Nojima, S. [Yokohama City University, Department of Nanosystem Science, Graduate School of Nanobioscience, Kanazawa Ku, 22-2 Seto, Yokohama, Kanagawa 2360027 (Japan); Alici, K. B. [TUBITAK Marmara Research Center, Materials Institute, 41470 Gebze, Kocaeli (Turkey); Ozbay, Ekmel [Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara (Turkey)

    2015-10-07

    The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables the efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a

  20. Excitation of terahertz modes localized on a layered superconductor: Anomalous dispersion and resonant transmission

    Science.gov (United States)

    Apostolov, S. S.; Makarov, N. M.; Yampol'skii, V. A.

    2018-01-01

    We study theoretically the optic transmission through a slab of layered superconductor separated from two dielectric leads by spatial gaps. Based on the transfer matrix formalism along with the Josephson plasma electrodynamic approach, we derive analytic expressions for the transmittance and identify the conditions for the perfect transmission. The special interest of the study is focused on the resonant transmission, which occurs when the wave does not propagate in the spatial gaps. Far from the resonance, the transmittance is exponentially small due to the total internal reflection from the lead-gap interface. However, the excitation of electromagnetic modes localized on the layered superconductor gives rise to a remarkable resonant enhancement of the transmission. Moreover, this phenomenon is significantly modified for the layered superconductors in comparison with usual dielectrics or conductors. The dispersion curves for the modes localized on the layered superconductor are proved to be nonmonotonic, thus resulting in the specific dependence of the transmittance T on the incidence angle θ . In particular, we predict the onset of two resonant peaks in the T (θ ) dependence and their subsequent merge into the broadened single peak with increasing of the wave frequency. Our analytical results are demonstrated by numerical data.

  1. Terahertz transmission resonances in complementary multilayered metamaterial with deep subwavelength interlayer spacing

    Science.gov (United States)

    Choi, Muhan; Kang, Byungsoo; Yi, Yoonsik; Lee, Seung Hoon; Kim, Inbo; Han, Jae-Hyung; Yi, Minwoo; Ahn, Jaewook; Choi, Choon-Gi

    2016-05-01

    We introduce a flexible multilayered THz metamaterial designed by using the Babinet's principle with the functionality of narrow band-pass filter. The metamaterial gives us systematic way to design frequency selective surfaces working on intended frequencies and bandwidths. It shows highly enhanced transmission of 80% for the normal incident THz waves due to the strong coupling of the two layers of metamaterial complementary to each other.

  2. Terahertz metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-tong [Los Alamos National Laboratory; Taylor, Antoineete J [Los Alamos National Laboratory; Azad, Abul K [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory

    2009-01-01

    In this paper we present our recent developments in terahertz (THz) metamaterials and devices. Planar THz metamaterials and their complementary structures fabricated on suitable substrates have shown electric resonant response, which causes the band-pass or band-stop property in THz transmission and reflection. The operational frequency can be further tuned up to 20% upon photoexcitation of an integrated semiconductor region in the splitring resonators as the metamaterial elements. On the other hand, the use of semiconductors as metamaterial substrates enables dynamical control of metamaterial resonances through photoexcitation, and reducing the substrate carrier lifetime further enables an ultrafast switching recovery. The metamaterial resonances can also be actively controlled by application of a voltage bias when they are fabricated on semiconductor substrates with appropriate doping concentration and thickness. Using this electrically driven approach, THz modulation depth up to 80% and modulation speed of 2 MHz at room temperature have been demonstrated, which suggests practical THz applications.

  3. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture

    Science.gov (United States)

    Ishihara, Kunihiko; Ohashi, Keishi; Ikari, Tomofumi; Minamide, Hiroaki; Yokoyama, Hiroyuki; Shikata, Jun-ichi; Ito, Hiromasa

    2006-11-01

    We demonstrate the terahertz-wave near-field imaging with subwavelength resolution using a bow-tie shaped aperture surrounded by concentric periodic structures in a metal film. A subwavelength aperture with concentric periodic grooves, which are known as a bull's eye structure, shows extremely large enhanced transmission beyond the diffraction limit caused by the resonant excitation of surface waves. Additionally, a bow-tie aperture exhibits extraordinary field enhancement at the sharp tips of the metal, which enhances the transmission and the subwavelength spatial resolution. We introduced a bow-tie aperture to the bull's eye structure and achieved high spatial resolution (˜λ/17) in the near-field region. The terahertz-wave near-field image of the subwavelength metal pattern (pattern width=20μm) was obtained for the wavelength of 207μm.

  4. Terahertz modulation based on surface plasmon resonance by self-gated graphene

    Science.gov (United States)

    Qian, Zhenhai; Yang, Dongxiao; Wang, Wei

    2018-05-01

    We theoretically and numerically investigate the extraordinary optical transmission through a terahertz metamaterial composed of metallic ring aperture arrays. The physical mechanism of different transmission peaks is elucidated to be magnetic polaritons or propagation surface plasmons with the help of surface current and electromagnetic field distributions at respective resonance frequencies. Then, we propose a high performance terahertz modulator based on the unique PSP resonance and combined with the metallic ring aperture arrays and a self-gated parallel-plate graphene capacitor. Because, to date, few researches have exhibited gate-controlled graphene modulation in terahertz region with low insertion losses, high modulation depth and low control voltage at room temperature. Here, we propose a 96% amplitude modulation with 0.7 dB insertion losses and ∼5.5 V gate voltage. Besides, we further study the absorption spectra of the modulator. When the transmission of modulator is very low, a 91% absorption can be achieved for avoiding damaging the source devices.

  5. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials

    Science.gov (United States)

    G. Rodrigo, Sergio; Martín-Moreno, L.

    2016-10-01

    A system for the detection of spectral signatures of chemical compounds at the Terahertz regime is presented. The system consists on a holey metal film whereby the presence of a given substance provokes the appearance of spectral features in transmission and reflection induced by the molecular specimen. These induced effects can be regarded as an extraordinary optical transmission phenomenon called absorption-induced transparency (AIT). The phenomenon consist precisely in the appearance of peaks in transmission and dips in reflection after sputtering of a chemical compound onto an initially opaque holey metal film. The spectral signatures due to AIT occur unexpectedly close to the absorption energies of the molecules. The presence of a target, a chemical compound, would be thus revealed as a strong drop in reflectivity measurements. We theoretically predict the AIT based system would serve to detect amounts of hydrocyanic acid (HCN) at low rate concentrations.

  6. Terahertz optoelectronics in graphene

    International Nuclear Information System (INIS)

    Otsuji, Taiichi

    2016-01-01

    Graphene has attracted considerable attention due to its extraordinary carrier transport, optoelectronic, and plasmonic properties originated from its gapless and linear energy spectra enabling various functionalities with extremely high quantum efficiencies that could never be obtained in any existing materials. This paper reviews recent advances in graphene optoelectronics particularly focused on the physics and device functionalities in the terahertz (THz) electromagnetic spectral range. Optical response of graphene is characterized by its optical conductivity and nonequilibrium carrier energy relaxation dynamics, enabling amplification of THz radiation when it is optically or electrically pumped. Current-injection THz lasing has been realized very recently. Graphene plasmon polaritons can greatly enhance the THz light and graphene matter interaction, enabling giant enhancement in detector responsivity as well as amplifier/laser gain. Graphene-based van der Waals heterostructures could give more interesting and energy-efficient functionalities. (author)

  7. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    Science.gov (United States)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    A useful synergy is being established between terahertz research and nanotechnology. High power sources [1-3] and detectors [4] in what was once considered the terahertz 'frequency gap' [5] in the electromagnetic spectrum have stimulated research with huge potential benefits in a range of industries including food, medicine and security, as well as fundamental physics and astrophysics. This special section, with guest editors Masayoshi Tonouchi and John Reno, gives a glimpse of the new horizons nanotechnology is broaching in terahertz research. While the wavelengths relevant to the terahertz domain range from hundreds of micrometres to millimetres, structures at the nanoscale reveal interesting low energy dynamics in this region. As a result terahertz spectroscopy techniques are becoming increasingly important in nanomaterial characterization, as demonstrated in this special section by colleagues at the University of Oxford in the UK and the Australian National University. They use terahertz spectroscopy to identify the best nanostructure parameters for specific applications [6]. The low energy dynamics in nanostructures also makes them valuable tools for terahertz detection [7]. In addition the much sought after terahertz detection over broadband frequency ranges has been demonstrated, providing versatility that has been greatly in demand, particularly in spectroscopy applications [8, 9]. Also in this special section, researchers in Germany and China tackle some of the coupling issues in terahertz time domain spectroscopy with an emitter specifically well suited for systems operated with an amplified fibre [3]. 'In medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules, in contrast to hazardous x-ray radiation,' explains Joo-Hiuk Son from the University of Seoul in Korea in his review [10]. As he also points out, the rotational and vibrational energies of water molecules are

  8. Ordinary and extraordinary means.

    Science.gov (United States)

    Gillon, R

    1986-01-25

    The Roman Catholic doctrine of ordinary and extraordinary means in patient care decisions is the subject of this essay in Gillon's series on medical ethics. He briefly traces the Church history of this doctrine, which holds that saving life is not obligatory if doing so would be excessively burdensome or disproportionate in relation to the expected benefits. The burdens and benefits are to be weighed in the context of "circumstances of persons, places, times, and cultures," and factors such as the costs and risks of undergoing a proposed treatment may be considered. Gillon also notes the disagreement among Roman Catholic commentators over whether it is ever permissible to discontinue feeding as a burdensome, extraordinary treatment. He concludes that, despite different weightings of harms and benefits, Roman Catholic and non-Catholic thinkers are in accord over the appropriate moral approach to deciding when treatment is not obligatory.

  9. Scanning Terahertz Heterodyne Imaging Systems

    Science.gov (United States)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  10. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.

    Science.gov (United States)

    Degirmenci, Elif; Landais, Pascal

    2013-10-20

    Photonic band gap and transmission characteristics of 2D metallic photonic crystals at THz frequencies have been investigated using finite element method (FEM). Photonic crystals composed of metallic rods in air, in square and triangular lattice arrangements, are considered for transverse electric and transverse magnetic polarizations. The modes and band gap characteristics of metallic photonic crystal structure are investigated by solving the eigenvalue problem over a unit cell of the lattice using periodic boundary conditions. A photonic band gap diagram of dielectric photonic crystal in square lattice array is also considered and compared with well-known plane wave expansion results verifying our FEM approach. The photonic band gap designs for both dielectric and metallic photonic crystals are consistent with previous studies obtained by different methods. Perfect match is obtained between photonic band gap diagrams and transmission spectra of corresponding lattice structure.

  11. Detection of Terahertz Radiation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation.......The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation....

  12. [Terahertz Spectroscopic Identification with Deep Belief Network].

    Science.gov (United States)

    Ma, Shuai; Shen, Tao; Wang, Rui-qi; Lai, Hua; Yu, Zheng-tao

    2015-12-01

    Feature extraction and classification are the key issues of terahertz spectroscopy identification. Because many materials have no apparent absorption peaks in the terahertz band, it is difficult to extract theirs terahertz spectroscopy feature and identify. To this end, a novel of identify terahertz spectroscopy approach with Deep Belief Network (DBN) was studied in this paper, which combines the advantages of DBN and K-Nearest Neighbors (KNN) classifier. Firstly, cubic spline interpolation and S-G filter were used to normalize the eight kinds of substances (ATP, Acetylcholine Bromide, Bifenthrin, Buprofezin, Carbazole, Bleomycin, Buckminster and Cylotriphosphazene) terahertz transmission spectra in the range of 0.9-6 THz. Secondly, the DBN model was built by two restricted Boltzmann machine (RBM) and then trained layer by layer using unsupervised approach. Instead of using handmade features, the DBN was employed to learn suitable features automatically with raw input data. Finally, a KNN classifier was applied to identify the terahertz spectrum. Experimental results show that using the feature learned by DBN can identify the terahertz spectrum of different substances with the recognition rate of over 90%, which demonstrates that the proposed method can automatically extract the effective features of terahertz spectrum. Furthermore, this KNN classifier was compared with others (BP neural network, SOM neural network and RBF neural network). Comparisons showed that the recognition rate of KNN classifier is better than the other three classifiers. Using the approach that automatic extract terahertz spectrum features by DBN can greatly reduce the workload of feature extraction. This proposed method shows a promising future in the application of identifying the mass terahertz spectroscopy.

  13. Terahertz ptychography.

    Science.gov (United States)

    Valzania, Lorenzo; Feurer, Thomas; Zolliker, Peter; Hack, Erwin

    2018-02-01

    We realized a phase retrieval technique using terahertz (THz) radiation as an alternative to THz digital holography, named THz ptychography. Ptychography has been used in x-ray imaging as a groundbreaking improvement of conventional coherent diffraction imaging. Here we show that ptychography can be performed at THz frequencies too. We reconstructed an amplitude and a phase object with both simulated and real data. Lateral resolution accounts to <2λ, while depth variations as low as λ/30 can be assessed.

  14. Investigation of Terra Cotta artefacts with terahertz

    Science.gov (United States)

    Labaune, Julien; Jackson, J. Bianca; Fukunaga, Kaori; White, Jeffrey; D'Alessandro, Laura; Whyte, Alison; Menu, Michel; Mourou, Gerard

    2011-10-01

    Terahertz Time Domain Imaging has been used in the last few years for the investigation of cultural heritage. In this article, the authors demonstrate the possibility to apply it for the investigation of clay artifacts. Tomographic images were obtained of a model in reflection, and an Egyptian vessel in transmission.

  15. Active graphene-silicon hybrid diode for terahertz waves.

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  16. Integrated heterodyne terahertz transceiver

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM; Cich, Michael J [Albuquerque, NM

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  17. Integrated heterodyne terahertz transceiver

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mark [Albuquerque, NM; Wanke, Michael C [Albuquerque, NM

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  18. Graphene hyperlens for terahertz radiation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Chigrin, D.; Novitsky, Andrey

    2012-01-01

    We propose the structured graphene terahertz hyperlens that allows overcoming natural diffraction limit and resolving subwavelength features. The proposed hyperlens can have applications in terahertz spectroscopy and imaging.......We propose the structured graphene terahertz hyperlens that allows overcoming natural diffraction limit and resolving subwavelength features. The proposed hyperlens can have applications in terahertz spectroscopy and imaging....

  19. Terahertz Spectroscopy and Imaging

    CERN Document Server

    Zeitler, Axel; Kuwata-Gonokami, Makoto

    2013-01-01

    "This book presents the current state of knowledge in the field of terahertz spectroscopy, providing a comprehensive source of information for beginners and experienced researchers alike whose interests lie in this area. The book aims to explain the fundamental physics that underpins terahertz  technology and to describe its key applications. Highlights of scientific research in the field of terahertz science are also outlined in some chapters, providing an overview as well as giving an insight into future directions for research.  Over the past decade terahertz spectroscopy has developed into one of the most rapidly growing areas of its kind, gaining an important impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements at this frequency range. In solids and liquids THz radiation is in reso...

  20. 47 CFR 32.7600 - Extraordinary items.

    Science.gov (United States)

    2010-10-01

    ... FOR TELECOMMUNICATIONS COMPANIES Instructions For Other Income Accounts § 32.7600 Extraordinary items... extraordinary. Extraordinary events and transactions are distinguished by both their unusual nature and by the infrequency of their occurrence, taking into account the environment in which the company operates. This...

  1. Spatial Terahertz Modulator

    Science.gov (United States)

    Xie, Zhenwei; Wang, Xinke; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Akalin, Tahsin; Zhang, Yan

    2013-11-01

    Terahertz (THz) technology is a developing and promising candidate for biological imaging, security inspection and communications, due to the low photon energy, the high transparency and the broad band properties of the THz radiation. However, a major encountered bottleneck is lack of efficient devices to manipulate the THz wave, especially to modulate the THz wave front. A wave front modulator should allow the optical or electrical control of the spatial transmission (or reflection) of an input THz wave and hence the ability to encode the information in a wave front. Here we propose a spatial THz modulator (STM) to dynamically control the THz wave front with photo-generated carriers. A computer generated THz hologram is projected onto a silicon wafer by a conventional spatial light modulator (SLM). The corresponding photo-generated carrier spatial distribution will be induced, which forms an amplitude hologram to modulate the wave front of the input THz beam. Some special intensity patterns and vortex beams are generated by using this method. This all-optical controllable STM is structure free, high resolution and broadband. It is expected to be widely used in future THz imaging and communication systems.

  2. Imaging with terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chan, W L; Deibel, Jason; Mittleman, Daniel M [Department of Electrical and Computer Engineering, MS-366, Rice University, 6100 Main St., Houston, TX 77005 (United States)

    2007-08-15

    Within the last several years, the field of terahertz science and technology has changed dramatically. Many new advances in the technology for generation, manipulation, and detection of terahertz radiation have revolutionized the field. Much of this interest has been inspired by the promise of valuable new applications for terahertz imaging and sensing. Among a long list of proposed uses, one finds compelling needs such as security screening and quality control, as well as whimsical notions such as counting the almonds in a bar of chocolate. This list has grown in parallel with the development of new technologies and new paradigms for imaging and sensing. Many of these proposed applications exploit the unique capabilities of terahertz radiation to penetrate common packaging materials and provide spectroscopic information about the materials within. Several of the techniques used for terahertz imaging have been borrowed from other, more well established fields such as x-ray computed tomography and synthetic aperture radar. Others have been developed exclusively for the terahertz field, and have no analogies in other portions of the spectrum. This review provides a comprehensive description of the various techniques which have been employed for terahertz image formation, as well as discussing numerous examples which illustrate the many exciting potential uses for these emerging technologies.

  3. Imaging with terahertz radiation

    International Nuclear Information System (INIS)

    Chan, W L; Deibel, Jason; Mittleman, Daniel M

    2007-01-01

    Within the last several years, the field of terahertz science and technology has changed dramatically. Many new advances in the technology for generation, manipulation, and detection of terahertz radiation have revolutionized the field. Much of this interest has been inspired by the promise of valuable new applications for terahertz imaging and sensing. Among a long list of proposed uses, one finds compelling needs such as security screening and quality control, as well as whimsical notions such as counting the almonds in a bar of chocolate. This list has grown in parallel with the development of new technologies and new paradigms for imaging and sensing. Many of these proposed applications exploit the unique capabilities of terahertz radiation to penetrate common packaging materials and provide spectroscopic information about the materials within. Several of the techniques used for terahertz imaging have been borrowed from other, more well established fields such as x-ray computed tomography and synthetic aperture radar. Others have been developed exclusively for the terahertz field, and have no analogies in other portions of the spectrum. This review provides a comprehensive description of the various techniques which have been employed for terahertz image formation, as well as discussing numerous examples which illustrate the many exciting potential uses for these emerging technologies

  4. Development of terahertz laser diagnostics for electron density measurements.

    Science.gov (United States)

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2008-10-01

    A two color laser interferometer using terahertz laser sources is under development for high performance operation on the large helical device and for future burning plasma experiments such as ITER. Through investigation of terahertz laser sources, we have achieved high power simultaneous oscillations at 57.2 and 47.6 microm of a CH(3)OD laser pumped by a cw 9R(8) CO(2) laser line. The laser wavelength around 50 microm is the optimum value for future fusion devices from the consideration of the beam refraction effect and signal-to-noise ratio for an expected phase shift due to plasma. In this article, recent progress of the terahertz laser diagnostics, especially in mechanical vibration compensation by using a two color laser operation and terahertz laser beam transmission through a dielectric waveguide, will be presented.

  5. New Ideas: Ordinary is Extraordinary

    Directory of Open Access Journals (Sweden)

    Antonio Jose

    2004-06-01

    Full Text Available Abstract With the initial issue of this journal, a new challenge has been offered tothe world of sports nutrition: initiate "team oriented" research and clinical trials in order to make dynamic progress in terms of understandingand applying nutrition principals to the field of competitive sports. It is our further challenge that these teams think "outside the box" in terms of their approach to elucidating new concepts through which nutritional interventions might play a role in the regulation of muscle growth and repair, athletic performance and endurance, and mental acuity. What was once thought of as extraordinary might now be approached as ordinary, if the correct composition of "teams" were formed.

  6. Terahertz plasmonic Bessel beamformer

    International Nuclear Information System (INIS)

    Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David; Koch, Martin; Withayachumnankul, Withawat

    2015-01-01

    We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integrated with solid-state terahertz sources

  7. Nanoscale Terahertz Emission Spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Kim, Hyewon; Colvin, Vicki L.

    By utilizing plasmonic coupling to an AFM probe, we demonstrate Laser Terahertz Emission Nanoscopy (LTEN) with sub-20 nm resolution. We demonstrate the resolution by imaging a single gold nanorod on an InAs substrate....

  8. Quasioptische Terahertz-Bauelemente

    OpenAIRE

    Busch, Stefan Frederik (M. Sc.)

    2016-01-01

    Die Dissertation „Quasioptische Terahertz-Bauelemente“ beschäftigt sich mit der Frage, in wieweit sich das 3D-Druck-Verfahren Fused Deposition Modeling (FDM) für die Herstellung von quasioptischen Komponenten für Terahertz-Strahlung eignet. Neben der grundlegenden Validierung des Verfahrens werden verschiedenste 3D-gedruckte Bauelemente vorgestellt. Der Fokus liegt hierbei auf innovativen und neuartigen Quasioptiken, wie Alvarez-Optiken, Axicons, variablen Beugungsgittern und Diffractive Opti...

  9. An effective way to reduce water absorption to terahertz

    Science.gov (United States)

    Wu, Yaxiong; Su, Bo; He, Jingsuo; Zhang, Cong; Zhang, Hongfei; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    Since many vibrations and rotational levels of biomolecules fall within the THz band, THz spectroscopy can be used to identify biological samples. In addition, most biomolecules need to maintain their biological activity in a liquid environment, but water as polar substance has strong absorption to the THz wave. Thus, it is difficult to detect the sample information in aqueous solution using THz wave. In order to prevent the information of biological samples were masked in the solution, many research methods were used to explore how to reduce the water absorption of terahertz. In this paper, we have developed a real-time chemical methodology through transmission Terahertz time-domain spectroscopy (THz-TDS) system. The material of Zeonor 1020r is used as substrate and cover plate, and PDMS as channel interlayer. The transmission of the empty microfluidic chip is more than 80% in the range of 0.2-2.6 THz by THz-TDS system. Then, experiments were carried out using chips, which were filled with different volumes of 1, 2- propanediol, and it has been proved that the microfluidic chip could reduce the water absorption of terahertz. Finally, in order to further explore the reduction of terahertz to water absorption, we inject different concentrations of electrolyte to the chip. The results show that with the addition of different electrolytes, terahertz transmission line has evident changes. It can be taken into account that the electrolyte has different effects about the hydrogen bonds in the aqueous solution. Some of them can promote water molecules clusters, while others destroy them. Based on the basis of microfluidic chip, the discovery of this phenomenon can provide a way that reduces water absorption of terahertz. This work has laid a solid foundation for the subsequent study in reducing water absorption of terahertz.

  10. Broadband and high-efficient terahertz wave deflection based on C-shaped complex metamaterials with phase discontinuities

    KAUST Repository

    Tian, Zhen

    2013-09-01

    A terahertz metamaterial comprised of C-shaped SRRs was experimentally devised and demonstrated to exhibit high-efficient and broadband anomalous refraction with strong phase discontinuities. The generalized refraction properties of the proposed metamaterial, including the effect of various incident angles and polarizations were investigated at broad terahertz frequencies. By employing such metasurface, we demonstrated a simple method to tailor transmission and phase of terahertz wave. © 2013 IEEE.

  11. Broadband and high-efficient terahertz wave deflection based on C-shaped complex metamaterials with phase discontinuities

    KAUST Repository

    Tian, Zhen; Zhang, Xueqian; Yue, Weisheng; Gu, Jianqiang; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2013-01-01

    A terahertz metamaterial comprised of C-shaped SRRs was experimentally devised and demonstrated to exhibit high-efficient and broadband anomalous refraction with strong phase discontinuities. The generalized refraction properties of the proposed metamaterial, including the effect of various incident angles and polarizations were investigated at broad terahertz frequencies. By employing such metasurface, we demonstrated a simple method to tailor transmission and phase of terahertz wave. © 2013 IEEE.

  12. Extraordinary mode absorption at the electron cyclotron harmonic frequencies as a Tokamak plasma diagnostic

    International Nuclear Information System (INIS)

    Pachtman, A.

    1986-09-01

    Measurements of Extraordinary mode absorption at the electron cyclotron harmonic frequencies are of unique value in high temperature, high density Tokamak plasma diagnostic applications. An experimental study of Extraordinary mode absorption at the semi-opaque second and third harmonics has been performed on the ALCATOR C Tokamak. A narrow beam of submillimeter laser radiation was used to illuminate the plasma in a horizontal plane, providing a continuous measurement of the one-pass, quasi-perpendicular transmission

  13. Tailoring the slow light behavior in terahertz metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Manjappa, Manukumara; Cong, Longqing; Singh, Ranjan, E-mail: ranjans@ntu.edu.sg [Center for Disruptive Photonic Technologies, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Chiam, Sher-Yi [NUS High School of Math and Science, 20 Clementi Avenue 1, Singapore, Singapore 129957 (Singapore); Bettiol, Andrew A. [Department of Physics, National University of Singapore, Science Drive 3, Singapore, Singapore 117542 (Singapore); Zhang, Weili [School of Electrical and Computer Engineering, Oklahoma State University, 202 Engineering South, Stillwater, Oklahoma 74078 (United States)

    2015-05-04

    We experimentally study the effect of near field coupling on the transmission of light in terahertz metasurfaces. Our results show that tailoring the coupling between the resonators modulates the amplitude of resulting electromagnetically induced transmission, probed under different types of asymmetries in the coupled system. Observed change in the transmission amplitude is attributed to the change in the amount of destructive interference between the resonators in the vicinity of strong near field coupling. We employ a two-particle model to theoretically study the influence of the coupling between bright and quasi-dark modes on the transmission properties of the system and we find an excellent agreement with our observed results. Adding to the enhanced transmission characteristics, our results provide a deeper insight into the metamaterial analogues of atomic electromagnetically induced transparency and offer an approach to engineer slow light devices, broadband filters, and attenuators at terahertz frequencies.

  14. Terahertz Absorption by Cellulose: Application to Ancient Paper Artifacts

    Science.gov (United States)

    Peccianti, M.; Fastampa, R.; Mosca Conte, A.; Pulci, O.; Violante, C.; Łojewska, J.; Clerici, M.; Morandotti, R.; Missori, M.

    2017-06-01

    Artifacts made of cellulose, such as ancient documents, pose a significant experimental challenge in the terahertz transmission spectra interpretation due to their small optical thickness. In this paper, we describe a method to recover the complex refractive index of cellulose fibers from the terahertz transmission data obtained on single freely standing paper sheets in the (0.2-3.5)-THz range. By using our technique, we eliminate Fabry-Perot effects and recover the absorption coefficient of the cellulose fibers. The obtained terahertz absorption spectra are explained in terms of absorption peaks of the cellulose crystalline phase superimposed to a background contribution due to a disordered hydrogen-bond network. The comparison between the experimental spectra with terahertz vibrational properties simulated by density-functional-theory calculations confirms this interpretation. In addition, evident changes in the terahertz absorption spectra are produced by natural and artificial aging on paper samples, whose final stage is characterized by a spectral profile with only two peaks at about 2.1 and 3.1 THz. These results can be used to provide a quantitative assessment of the state of preservation of cellulose artifacts.

  15. Terahertz radiation mixer

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Allen, S James [Santa Barbara, CA; Lee, Mark [Albuquerque, NM

    2008-05-20

    A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

  16. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials.

    Science.gov (United States)

    Chen, Min; Singh, Leena; Xu, Ningning; Singh, Ranjan; Zhang, Weili; Xie, Lijuan

    2017-06-26

    Terahertz sensing of highly absorptive aqueous solutions remains challenging due to strong absorption of water in the terahertz regime. Here, we experimentally demonstrate a cost-effective metamaterial-based sensor integrated with terahertz time-domain spectroscopy for highly absorptive water-methanol mixture sensing. This metamaterial has simple asymmetric wire structures that support multiple resonances including a fundamental Fano resonance and higher order dipolar resonance in the terahertz regime. Both the resonance modes have strong intensity in the transmission spectra which we exploit for detection of the highly absorptive water-methanol mixtures. The experimentally characterized sensitivities of the Fano and dipole resonances for the water-methanol mixtures are found to be 160 and 305 GHz/RIU, respectively. This method provides a robust route for metamaterial-assisted terahertz sensing of highly absorptive chemical and biochemical materials with multiple resonances and high accuracy.

  17. Asymmetric planar terahertz metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ramjan [Los Alamos National Laboratory; Al - Naib, Ibraheem A. I. [PHILIPPS UNIV; Koch, Martin [PHILIPPS UNIV; Zhang, Weili [OKLAHOMA STATE UNIV

    2010-01-01

    Using terahertz time-domain spectroscopy, we report an experimental observation of three distinct resonances in split ring resonators (SRRs) for both vertical and horizontal electric field polarizations at normal incidence. Breaking the symmetry in SRRs by gradually displacing the capacitive gap from the centre towards the comer of the ring allows for an 85% modulation of the fundamental inductive-capacitive (LC) resonance. Increasing asymmetry leads to the evolution of an otherwise inaccessible high quality factor electric quadrupole resonance that can be exploited for bio-sensing applications in the terahertz region.

  18. Terahertz Radome Inspection

    Directory of Open Access Journals (Sweden)

    Fabian Friederich

    2018-01-01

    Full Text Available Radomes protecting sensitive radar, navigational, and communications equipment of, e.g., aircraft, are strongly exposed to the environment and have to withstand harsh weather conditions and potential impacts. Besides their significance to the structural integrity of the radomes, it is often crucial to optimize the composite structures for best possible radio performance. Hence, there exists a significant interest in non-destructive testing techniques, which can be used for defect inspection of radomes in field use as well as for quality inspection during the manufacturing process. Contactless millimeter-wave and terahertz imaging techniques provide millimeter resolution and have the potential to address both application scenarios. We report on our development of a three-dimensional (3D terahertz imaging system for radome inspection during industrial manufacturing processes. The system was designed for operation within a machining center for radome manufacturing. It simultaneously gathers terahertz depth information in adjacent frequency ranges, from 70 to 110 GHz and from 110 to 170 GHz by combining two frequency modulated continuous-wave terahertz sensing units into a single measurement device. Results from spiraliform image acquisition of a radome test sample demonstrate the successful integration of the measurement system.

  19. Yelavarthy Nayudamma: Scientist, Leader, and Mentor Extraordinary

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Yelavarthy Nayudamma: Scientist, Leader, and Mentor Extraordinary. J Raghava Rao T Ramasami. General Article Volume 19 Issue 10 October 2014 pp 887-899 ...

  20. Bridging the terahertz gap

    International Nuclear Information System (INIS)

    Davies, Giles; Linfield, Edmund

    2004-01-01

    Over the last century or so, physicists and engineers have progressively explored and conquered the electromagnetic spectrum. Starting with visible light, we have encroached outwards, developing techniques for generating and detecting radiation at both higher and lower frequencies. And as each successive region of the spectrum has been colonized, we have developed technology to exploit the radiation found there. X-rays, for example, are routinely used to image hidden objects. Near-infrared radiation is used in fibre-optic communications and in compact-disc players, while microwaves are used to transmit signals from your mobile phone. But there is one part of the electromagnetic spectrum that has steadfastly resisted our advances. This is the terahertz region, which ranges from frequencies of about 300 GHz to 10 THz (10 x 10 sup 1 sup 2 Hz). This corresponds to wavelengths of between about 1 and 0.03 mm, and lies between the microwave and infrared regions of the spectrum. However, the difficulties involved in making suitably compact terahertz sources and detectors has meant that this region of the spectrum has only begun to be explored thoroughly over the last decade. A particularly intriguing feature of terahertz radiation is that the semiconductor devices that generate radiation at frequencies above and below this range operate in completely different ways. At lower frequencies, microwaves and millimetre- waves can be generated by 'electronic' devices such as those found in mobile phones. At higher frequencies, near-infrared and visible light are generated by 'optical' devices such as semiconductor laser diodes, in which electrons emit light when they jump across the semiconductor band gap. Unfortunately, neither electronic nor optical devices can conveniently be made to work in the terahertz region because the terahertz frequency range sits between the electronic and optical regions of the electromagnetic spectrum. Developing a terahertz source is therefore a

  1. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse and by me......This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... and by measuring the transmission of a terahertz probe pulse, the photoconductivity of the excited sample can be obtained. By changing the relative arrival time at the sample between the pump and the probe pulse, the photoconductivity dynamics can be studied on a picosecond timescale. The rst studied semiconductor...

  2. Frequency-division multiplexer and demultiplexer for terahertz wireless links.

    Science.gov (United States)

    Ma, Jianjun; Karl, Nicholas J; Bretin, Sara; Ducournau, Guillaume; Mittleman, Daniel M

    2017-09-28

    The development of components for terahertz wireless communications networks has become an active and growing research field. However, in most cases these components have been studied using a continuous or broadband-pulsed terahertz source, not using a modulated data stream. This limitation may mask important aspects of the performance of the device in a realistic system configuration. We report the characterization of one such device, a frequency multiplexer, using modulated data at rates up to 10 gigabits per second. We also demonstrate simultaneous error-free transmission of two signals at different carrier frequencies, with an aggregate data rate of 50 gigabits per second. We observe that the far-field spatial variation of the bit error rate is different from that of the emitted power, due to a small nonuniformity in the angular detection sensitivity. This is likely to be a common feature of any terahertz communication system in which signals propagate as diffracting beams not omnidirectional broadcasts.There is growing interest in the development of components to facilitate wireless communications in the terahertz but the characterization of these systems involve an unmodulated input. Here the authors demonstrate multiplexing and demultiplexing of data streams in the terahertz range using a real data link.

  3. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  4. Terahertz Wave Approach and Application on FRP Composites

    Directory of Open Access Journals (Sweden)

    Kwang-Hee Im

    2013-01-01

    Full Text Available Terahertz (THz applications have emerged as one of the most new powerful nondestructive evaluation (NDE techniques. A new T-ray time-domain spectroscopy system was utilized for detecting and evaluating orientation influence in carbon fiber-reinforced plastics (CFRPs composite laminates. Investigation of terahertz time-domain spectroscopy (THz-TDS was made, and reflection and transmission configurations were studied as a nondestructive evaluation technique. Here, the CFRP composites derived their excellent mechanical strength, stiffness, and electrical conductivity from carbon fibers. Especially, the electrical conductivity of the CFRP composites depends on the direction of unidirectional fibers since carbon fibers are electrically conducting while the epoxy matrix is not. In order to solve various material properties, the index of refraction (n and the absorption coefficient (α are derived in reflective and transmission configurations using the terahertz time-domain spectroscopy. Also, for a 48-ply thermoplastic polyphenylene-sulfide-(PPS- based CFRP solid laminate and nonconducting materials, the terahertz scanning images were made at the angles ranged from 0° to 180° with respect to the nominal fiber axis. So, the images were mapped out based on the electrical field (E-field direction in the CFRP solid laminates. It is found that the conductivity (σ depends on the angles of the nominal axis in the unidirectional fiber.

  5. An RGB approach to extraordinary spectra

    Science.gov (United States)

    Grusche, Sascha; Theilmann, Florian

    2015-09-01

    After Newton had explained a series of ordinary spectra and Goethe had pointed out its complementary counterpart, Nussbaumer discovered a series of extraordinary spectra which are geometrically identical and colourwise analogous to Newton’s and Goethe’s spectra. To understand the geometry and colours of extraordinary spectra, the wavelength composition is explored with filters and spectroscopic setups. Visualized in a dispersion diagram, the wavelength composition is interpreted in terms of additive colour mixing. Finally, all spectra are simulated as the superposition of red, green, and blue images that are shifted apart. This RGB approach makes it easy to understand the complex relationship between wavelengths and colours.

  6. Carbon nanotube fiber terahertz polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Ahmed [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Tsentalovich, Dmitri E.; Young, Colin C. [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Heimbeck, Martin S. [Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Pasquali, Matteo [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

    2016-04-04

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ∼−30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2–1.1 THz. In addition, we used a THz ellipsometer to measure the Müller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  7. Extraordinary Readers: The Story of a Documentary

    Directory of Open Access Journals (Sweden)

    İsmail Arayıcı

    2013-11-01

    Full Text Available This article discusses the story behind the making of a documentary about the extraordinary patrons of public libraries located throughout Turkey. The documentary explored in this article was the result of collaboration between the Libraries of the Ministry of Culture and Tourism, the General Directorate of Libraries and Publications, and the Turkish Librarians' Association.

  8. Developing Concepts of Ordinary and Extraordinary Communication

    Science.gov (United States)

    Lane, Jonathan D.; Evans, E. Margaret; Brink, Kimberly A.; Wellman, Henry M.

    2016-01-01

    We examine how understandings of ordinary and extraordinary communication develop. Three- to 10-year-old children and adults (N = 183) were given scenarios in which a protagonist wanted help from a human (their parent) or from God. Scenarios varied in whether protagonists expressed their desires aloud (by asking) or silently (by hoping), whether…

  9. Nakula's Extraordinary Talent Mathematics From the Mahabharatha

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 1. Nakula's Extraordinary Talent Mathematics From the Mahabharatha. C Musili. General Article Volume 2 Issue 1 January 1997 pp 44-52. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. A Tunable Eight-Wavelength Terahertz Modulator Based on Photonic Crystals

    Science.gov (United States)

    Ji, K.; Chen, H.; Zhou, W.; Zhuang, Y.; Wang, J.

    2017-11-01

    We propose a tunable eight-wavelength terahertz modulator based on a structure of triple triangular lattice photonic crystals by using photonic crystals in the terahertz regime. The triple triangular lattice was formed by nesting circular, square, and triangular dielectric cylinders. Three square point defects were introduced into the perfect photonic crystal to produce eight defect modes. GaAs was used as the point defects to realize tunability. We used a structure with a reflecting barrier to achieve modulation at high transmission rate. The insertion loss and extinction ratio were 0.122 and 38.54 dB, respectively. The modulation rate was 0.788 dB. The performance of the eightwavelength terahertz modulator showed great potential for use in future terahertz communication systems.

  11. Fingerprint extraction from interference destruction terahertz spectrum.

    Science.gov (United States)

    Xiong, Wei; Shen, Jingling

    2010-10-11

    In this paper, periodic peaks in a terahertz absorption spectrum are confirmed to be induced from interference effects. Theoretically, we explained the periodic peaks and calculated the locations of them. Accordingly, a technique was suggested, with which the interference peaks in a terahertz spectrum can be eliminated and therefore a real terahertz absorption spectrum can be obtained. Experimentally, a sample, Methamphetamine, was investigated and its terahertz fingerprint was successfully extracted from its interference destruction spectrum. This technique is useful in getting samples' terahertz fingerprint spectra, and furthermore provides a fast nondestructive testing method using a large size terahertz beam to identify materials.

  12. Active terahertz metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-tong [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory

    2009-01-01

    In this paper we present an overview of research in our group in terahertz (THz) metamaterials and their applications. We have developed a series of planar metamaterials operating at THz frequencies, all of which exhibit a strong resonant response. By incorporating natural materials, e.g. semiconductors, as the substrates or as critical regions of metamaterial elements, we are able to effectively control the metamaterial resonance by the application of external stimuli, e.g., photoexcitation and electrical bias. Such actively controllable metamaterials provide novel functionalities for solid-state device applications with unprecedented performance, such as THz spectroscopy, imaging, and many others.

  13. Terahertz magnonics: Feasibility of using terahertz magnons for information processing

    Science.gov (United States)

    Zakeri, Khalil

    2018-06-01

    An immediate need of information technology is designing fast, small and low-loss devices. One of the ways to design such devices is using the bosonic quasiparticles, such as magnons, for information transfer/processing. This is the main idea behind the field of magnonics. When a magnon propagates through a magnetic medium, no electrical charge transport is involved and therefore no energy losses, creating Joule heating, occur. This is the most important advantage of using magnons for information transfer. Moreover the mutual conversion between magnons and the other carriers e.g. electrons, photons and plasmons shall open new opportunities to realize tunable multifunctional devices. Magnons cover a very wide range of frequency, from sub-gigahertz up to a few hundreds of terahertz. The magnon frequency has an important impact on the performance of magnon-based devices (the larger the excitation frequency, the faster the magnons). This means that the use of high-frequency (terahertz) magnons would provide a great opportunity for the design of ultrafast devices. However, up to now the focus in magnonics has been on the low-frequency gigahertz magnons. Here we discuss the feasibility of using terahertz magnons for application in magnonic devices. We shall bring the concept of terahertz magnonics into discussion. We discuss how the recently discovered phenomena in the field of terahertz magnons may inspire ideas for designing new magnonic devices. We further introduce methods to tune the fundamental properties of terahertz magnons, e.g. their eigenfrequency and lifetime.

  14. Plasma Wave Electronic Terahertz Technology

    National Research Council Canada - National Science Library

    Shur, Michael

    2003-01-01

    Plasma waves are oscillations of electron density in time and space. In deep submicron field effect transistors plasma wave frequencies lie in the terahertz range and can be tuned by applied gate bias...

  15. Terahertz composite imaging method

    Institute of Scientific and Technical Information of China (English)

    QIAO Xiaoli; REN Jiaojiao; ZHANG Dandan; CAO Guohua; LI Lijuan; ZHANG Xinming

    2017-01-01

    In order to improve the imaging quality of terahertz(THz) spectroscopy, Terahertz Composite Imaging Method(TCIM) is proposed. The traditional methods of improving THz spectroscopy image quality are mainly from the aspects of de-noising and image enhancement. TCIM breaks through this limitation. A set of images, reconstructed in a single data collection, can be utilized to construct two kinds of composite images. One algorithm, called Function Superposition Imaging Algorithm(FSIA), is to construct a new gray image utilizing multiple gray images through a certain function. The features of the Region Of Interest (ROI) are more obvious after operating, and it has capability of merging ROIs in multiple images. The other, called Multi-characteristics Pseudo-color Imaging Algorithm(McPcIA), is to construct a pseudo-color image by combining multiple reconstructed gray images in a single data collection. The features of ROI are enhanced by color differences. Two algorithms can not only improve the contrast of ROIs, but also increase the amount of information resulting in analysis convenience. The experimental results show that TCIM is a simple and effective tool for THz spectroscopy image analysis.

  16. Resonant metallic nanostructures for enhanced terahertz spectroscopy

    KAUST Repository

    Toma, A.

    2015-11-12

    We present our recent studies on terahertz resonant dipole nanoantennas. Exploiting the localization and enhancement capabilities of these devices, we introduce an effective method to perform terahertz spectroscopy on an extremely small number of nano-objects.

  17. Resonant metallic nanostructures for enhanced terahertz spectroscopy

    KAUST Repository

    Toma, A.; Tuccio, S.; Prato, M.; De Donato, F.; Perucchi, A.; Di Pietro, P.; Marras, S.; Liberale, Carlo; Zaccaria, R. Proietti; De Angelis, F.; Manna, L.; Lupi, S.; Di Fabrizio, Enzo M.; Razzari, L.

    2015-01-01

    We present our recent studies on terahertz resonant dipole nanoantennas. Exploiting the localization and enhancement capabilities of these devices, we introduce an effective method to perform terahertz spectroscopy on an extremely small number

  18. Developing concepts of ordinary and extraordinary communication.

    Science.gov (United States)

    Lane, Jonathan D; Evans, E Margaret; Brink, Kimberly A; Wellman, Henry M

    2016-01-01

    We examine how understandings of ordinary and extraordinary communication develop. Three- to 10-year-old children and adults (N = 183) were given scenarios in which a protagonist wanted help from a human (their parent) or from God. Scenarios varied in whether protagonists expressed their desires aloud (by asking) or silently (by hoping), whether (for human scenarios) parents were nearby or far away, and whether (for God scenarios) protagonists expressed desires through ordinary means (asking or hoping) or more extraordinary means (praying). Following each scenario, participants were asked whether the recipient (either the parent or God) was aware of the protagonist's desire. Children as young as 3 to 4 years old understood that both loudness and distance limit the effectiveness of human communication, reporting that humans would most likely be aware of desires when they were expressed both aloud and nearby. As well, by this age children reported that God would more often be aware of desires than would humans, but children of all ages often reported that God (like humans) would be more aware of desires expressed aloud (rather than silently). These concepts of ordinary and extraordinary communication continued to be refined through middle childhood. Children's performance on standard theory-of-mind tasks and participants' religious background predicted whether they attributed awareness to God. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  19. Multilayer Graphene for Waveguide Terahertz Modulator

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We study terahertz to infrared electromagnetic properties of multilayer graphene/dielectric artificial medium and present a novel concept of terahertz modulation at midinfrared wavelengths. This approach allows the realization of high-speed electrically controllable terahertz modulators based...... on hollow waveguide sections filled with multilayer graphene....

  20. Devices Based on Parallel-Plate Waveguides for Terahertz Applications

    Science.gov (United States)

    Reichel, Kimberly S.

    The promise of terahertz (THz) frequencies for technological applications is wide, spanning from wireless communications for faster downloads to non-destructive imaging for security screening. Although the potential is high, there is a lack of the basic devices necessary to make these prospects a reality. One essential component for any electromagnetic wave technology is a waveguide, which as the name implies can guide light waves, like a hose would direct water from the source to the desired target location. Several waveguide types have been introduced for THz frequencies, one of the most promising of which is the parallel-plate waveguide (PPWG). The PPWG is attractive based on its superior waveguiding performance of efficient input coupling and low losses, but additionally it serves as an excellent platform for other purposes. The projects presented in this dissertation highlight a few new functionalities incorporated into, and enabled by, a PPWG for sensing, filtering, and splitting. First, we characterize a high quality factor resonator integrated into a PPWG used for microfluidic sensing. Typically, the characterization of the frequency-dependent electric field profile inside a narrowband resonator is challenging, either due to limited optical access or to the perturbative effects of invasive probes. In our situation however, the geometry of the PPWG allows for direct access to the resonant cavity via the open sides of the waveguide and a novel implementation of the air-biased coherent detection (ABCD) method permits non-invasive probing. Through both experiment and simulation, we see the narrowband frequencies trapped in the resonator and also discover an unexpected broadband asymmetric field distribution due to the resonator inside the waveguide, yielding new information that is not available in the far field. Second, we investigate a narrowband tunable filter based on extraordinary optical transmission (EOT) through a 1D array of subwavelength holes inside

  1. Detection of Ionic liquid using terahertz time-domain spectroscopy

    Science.gov (United States)

    Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin

    2018-01-01

    Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.

  2. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.

    Science.gov (United States)

    Wan, W J; Li, H; Zhou, T; Cao, J C

    2017-03-08

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  3. Metamaterial-Enhanced Nonlinear Terahertz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhang X.

    2013-03-01

    Full Text Available We demonstrate large nonlinear terahertz responses in the gaps of metamaterial split ring resonators in several materials and use nonlinear THz transmission and THz-pump/THz-probe spectroscopy to study the nonlinear responses and dynamics. We use the field enhancement in the SRR gaps to initiate high-field phenomena at lower incident fields. In vanadium dioxide, we drive the insulator-to-metal phase transition with high-field THz radiation. The film conductivity increases by over two orders of magnitude and the phase transition occurs on a several picosecond timescale. In gallium arsenide, we observe high-field transport phenomena, including mobility saturation and impact ionization. The carrier density increases by up to ten orders of magnitude at high fields. At the highest fields, we demonstrate THz-induced damage in both vanadium dioxide and gallium arsenide.

  4. Extraordinary lateral beaming of sound from a square-lattice phononic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaoxue; Qiu, Chunyin; He, Hailong; Peng, Shasha; Ke, Manzhu [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Liu, Zhengyou, E-mail: zyliu@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Institute for Advanced Studies, Wuhan University, Wuhan 430072 (China)

    2017-03-03

    Highlights: • An extraordinary lateral beaming phenomenon is observed in a finite phononic crystal made of square lattice. • The phenomenon can be explained by the equivalence of the states located around the four corners of the first Brillouin zone. • The lateral beaming behavior enables a simple design of acoustic beam splitters. • In some sense, the phenomenon can be described by a near zero refractive index. - Abstract: This work revisits the sound transmission through a finite phononic crystal of square lattice. In addition to a direct, ordinary transmission through the sample, an extraordinary lateral beaming effect is also observed. The phenomenon stems from the equivalence of the states located around the four corners of the first Brillouin zone. The experimental result agrees well with the theoretical prediction. The lateral beaming behavior enables a simple design for realizing acoustic beam splitters.

  5. A modified hexagonal photonic crystal fiber for terahertz applications

    Science.gov (United States)

    Islam, Md. Saiful; Sultana, Jakeya; Faisal, Mohammad; Islam, Mohammad Rakibul; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek

    2018-05-01

    We present a Zeonex based highly birefringent and dispersion flattened porous core photonic crystal fiber (PC-PCF) for polarization preserving applications in the terahertz region. In order to facilitate birefringence, an array of elliptical shaped air holes surrounded by porous cladding is introduced. The porous cladding comprises circular air-holes in a modified hexagonal arrangement. The transmission characteristics of the proposed PCF are investigated using a full-vector finite element method with perfectly matched layer (PML) absorbing boundary conditions. Simulation results show a high birefringence of 0.086 and an ultra-flattened dispersion variation of ± 0.03 ps/THz/cm at optimal design parameters. Besides, a number of other important wave-guiding properties including frequency dependence of the effective material loss (EML), confinement loss, and effective area are also investigated to assess the fiber's effectiveness as a terahertz waveguide.

  6. Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept

    Science.gov (United States)

    Hernandez-Cardoso, G. G.; Rojas-Landeros, S. C.; Alfaro-Gomez, M.; Hernandez-Serrano, A. I.; Salas-Gutierrez, I.; Lemus-Bedolla, E.; Castillo-Guzman, A. R.; Lopez-Lemus, H. L.; Castro-Camus, E.

    2017-02-01

    Most people with diabetes suffer some deterioration of the feet. Diabetic foot syndrome causes ulceration in about 15% of cases and such deterioration leads to amputation in about 2.5% of diabetic patients, diminishing their quality of life and generating extraordinary costs for patients and public health systems. Currently, there is no objective method for the detection of diabetic foot syndrome in its early stages. We propose terahertz imaging as a method for the evaluation of such deterioration. This screening method could aid the prevention and medical treatment of this condition in the future.

  7. Graphene based terahertz phase modulators

    Science.gov (United States)

    Kakenov, N.; Ergoktas, M. S.; Balci, O.; Kocabas, C.

    2018-07-01

    Electrical control of amplitude and phase of terahertz radiation (THz) is the key technological challenge for high resolution and noninvasive THz imaging. The lack of active materials and devices hinders the realization of these imaging systems. Here, we demonstrate an efficient terahertz phase and amplitude modulation using electrically tunable graphene devices. Our device structure consists of electrolyte-gated graphene placed at quarter wavelength distance from a reflecting metallic surface. In this geometry, graphene operates as a tunable impedance surface which yields electrically controlled reflection phase. Terahertz time domain reflection spectroscopy reveals the voltage controlled phase modulation of π and the reflection modulation of 50 dB. To show the promises of our approach, we demonstrate a multipixel phase modulator array which operates as a gradient impedance surface.

  8. Terahertz radar cross section measurements.

    Science.gov (United States)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  9. Terahertz Science, Technology, and Communication

    Science.gov (United States)

    Chattopadhyay, Goutam

    2013-01-01

    The term "terahertz" has been ubiquitous in the arena of technology over the past couple of years. New applications are emerging every day which are exploiting the promises of terahertz - its small wavelength; capability of penetrating dust, clouds, and fog; and possibility of having large instantaneous bandwidth for high-speed communication channels. Until very recently, space-based instruments for astrophysics, planetary science, and Earth science missions have been the primary motivator for the development of terahertz sensors, sources, and systems. However, in recent years the emerging areas such as imaging from space platforms, surveillance of person-borne hidden weapons or contraband from a safe stand-off distance and reconnaissance, medical imaging and DNA sequencing, and in the world high speed communications have been the driving force for this area of research.

  10. Fabrication and characterization of terahertz anisotropic anti-rod dimer planar metamaterials

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Malureanu, Radu; Novitsky, Andrey

    2012-01-01

    In this work we describe the fabrication and characterization of free-standing membranes with thick anti-rod dimers metamaterials for terahertz waves. Two different designs with parallel and V-shape anti-rods were analysed. Even though both structures consists of simple elements, namely anti......-rod dimers, they reveal interesting birefringent and dichroic transmission properties....

  11. Nanoscale Laser Terahertz Emission Microscopy

    DEFF Research Database (Denmark)

    Klarskov, Pernille; Kim, Hyewon; Colvin, Vicki L.

    2017-01-01

    Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight into the phys......Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight...

  12. Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots

    KAUST Repository

    Toma, Andrea; Tuccio, Salvatore; Prato, Mirko; De Donato, Francesco; Perucchi, Andrea; Di Pietro, Paola; Marras, Sergio; Liberale, Carlo; Proietti Zaccaria, Remo; De Angelis, Francesco De; Manna, Liberato; Lupi, Stefano; Di Fabrizio, Enzo M.; Razzari, Luca

    2015-01-01

    Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 μm

  13. High Reliability Oscillators for Terahertz Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Terahertz sources based on lower frequency oscillators and amplifiers plus a chain of frequency multipliers are the workhorse technology for NASA's terahertz...

  14. Optically pumped terahertz sources

    Institute of Scientific and Technical Information of China (English)

    ZHONG Kai; SHI Wei; XU DeGang; LIU PengXiang; WANG YuYe; MEI JiaLin; YAN Chao; FU ShiJie; YAO JianQuan

    2017-01-01

    High-power terahertz (THz) generation in the frequency range of0.1-10 THz has been a fast-developing research area ever since the beginning of the THz boom two decades ago,enabling new technological breakthroughs in spectroscopy,communication,imaging,etc.By using optical (laser) pumping methods with near-or mid-infrared (IR) lasers,flexible and practical THz sources covering the whole THz range can be realized to overcome the shortage of electronic THz sources and now they are playing important roles in THz science and technology.This paper overviews various optically pumped THz sources,including femtosecond laser based ultrafast broadband THz generation,monochromatic widely tunable THz generation,single-mode on-chip THz source from photomixing,and the traditional powerful THz gas lasers.Full descriptions from basic principles to the latest progress are presented and their advantages and disadvantages are discussed as well.It is expected that this review gives a comprehensive reference to researchers in this area and additionally helps newcomers to quickly gain understanding of optically pumped THz sources.

  15. Strontium titanate/silicon-based terahertz photonic crystal multilayer stack

    International Nuclear Information System (INIS)

    Xin, J.Z.; Jim, K.L.; Tsang, Y.H.; Chan, H.L.W.; Leung, C.W.; Yang, J.; Gong, X.J.; Chen, L.Q.; Gao, F.

    2012-01-01

    A one-dimensional photonic crystal working in the terahertz (THz) range was designed and implemented. To facilitate the design, the transmission properties of strontium titanate crystals were characterized by THz-time-domain spectroscopy. Relatively high refractive index (∝18.5) and transmission ratio (0.08) were observed between 0.2 to 1 THz. A stacked structure of (Si d Si /STO d STO ) N /Si d Si was then designed, with transmission spectra calculated by the transfer matrix method. The effects of the filling ratio (d STO /(d Si +d STO )), periodicity (d Si +d STO ) and the number of repeats N on the transmission of PC were investigated. The effect of introducing a defect layer was also studied. Based on these, Si/STO multilayers with STO defect thickness of 125 μm and 200 μm were measured. The shift of the defect mode was observed and compared with the calculations. (orig.)

  16. Taking the Extra out of the Extraordinary

    DEFF Research Database (Denmark)

    Jerslev, Anne; Mortensen, Mette

    2014-01-01

    people engaged in insignificant everyday activities hold by far the largest share of today’s insatiable digital, globalized and commercialized market for news pictures of celebrities off-duty. Re-examining the well-known theorization of the tension between the ordinary and extraordinary in celebrity......Paparazzi photography presently constitutes the largest genre of visual celebrity news on the internet along with red carpet photography. With the emergence of digital media, this genre has moved towards the centre of mainstream news and entertainment culture, and the content has undergone...... culture studies, this article thus investigates the following research question: How is the ordinary represented in paparazzi photographs as a genre of visual celebrity news in the current, digital media landscape?...

  17. Nonlinear extraordinary wave in dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Russian University of Peoples’ Friendship (Russian Federation)

    2013-10-15

    Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.

  18. Modeling the planar configuration of extraordinary magnetoresistance

    International Nuclear Information System (INIS)

    El-Ahmar, S; Pozniak, A A

    2015-01-01

    Recently the planar version of the extraordinary magnetoresistance (EMR) magnetic field sensor has been constructed and verified in practice. Planar configuration of the EMR device gives many technological advantages, it is simpler than the classic and allows one to build the sensor using electric materials of the new type (such as graphene or topological insulators) much easier. In this work the planar configuration of the EMR sensor is investigated by performing computational simulations using the finite element method (FEM). The computational comparison of the planar and classic configurations of EMR is presented using three-dimensional models. Various variants of the geometry of EMR sensor components are pondered and compared in the planar and classic version. Size of the metal overlap is considered for sensor optimization as well as various semiconductor-metal contact resistance dependences of the EMR signal. Based on computational simulations, a method for optimal placement of electric terminals in a planar EMR device is proposed. (paper)

  19. The making of extraordinary psychological phenomena.

    Science.gov (United States)

    Lamont, Peter

    2012-01-01

    This article considers the extraordinary phenomena that have been central to unorthodox areas of psychological knowledge. It shows how even the agreed facts relating to mesmerism, spiritualism, psychical research, and parapsychology have been framed as evidence both for and against the reality of the phenomena. It argues that these disputes can be seen as a means through which beliefs have been formulated and maintained in the face of potentially challenging evidence. It also shows how these disputes appealed to different forms of expertise, and that both sides appealed to belief in various ways as part of the ongoing dispute about both the facts and expertise. Finally, it shows how, when a formal Psychology of paranormal belief emerged in the twentieth century, it took two different forms, each reflecting one side of the ongoing dispute about the reality of the phenomena. © 2012 Wiley Periodicals, Inc.

  20. Picosecond Transient Photoconductivity in Functionalized Pentacene Molecular Crystals Probed by Terahertz Pulse Spectroscopy

    Science.gov (United States)

    Hegmann, F. A.; Tykwinski, R. R.; Lui, K. P.; Bullock, J. E.; Anthony, J. E.

    2002-11-01

    We have measured transient photoconductivity in functionalized pentacene molecular crystals using ultrafast optical pump-terahertz probe techniques. The single crystal samples were excited using 800nm, 100fs pulses, and the change in transmission of time-delayed, subpicosecond terahertz pulses was used to probe the photoconducting state over a temperature range from 10 to 300K. A subpicosecond rise in photoconductivity is observed, suggesting that mobile carriers are a primary photoexcitation. At times longer than 4ps, a power-law decay is observed consistent with dispersive transport.

  1. Real-time terahertz imaging through self-mixing in a quantum-cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Wienold, M., E-mail: martin.wienold@dlr.de; Rothbart, N.; Hübers, H.-W. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin (Germany); Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin (Germany); Hagelschuer, T. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin (Germany); Schrottke, L.; Biermann, K.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2016-07-04

    We report on a fast self-mixing approach for real-time, coherent terahertz imaging based on a quantum-cascade laser and a scanning mirror. Due to a fast deflection of the terahertz beam, images with frame rates up to several Hz are obtained, eventually limited by the mechanical inertia of the employed scanning mirror. A phase modulation technique allows for the separation of the amplitude and phase information without the necessity of parameter fitting routines. We further demonstrate the potential for transmission imaging.

  2. Strong Broadband Terahertz Optical Activity through Control of the Blaschke Phase with Chiral Metasurfaces

    Science.gov (United States)

    Cole, Michael A.; Chen, Wen-chen; Liu, Mingkai; Kruk, Sergey S.; Padilla, Willie J.; Shadrivov, Ilya V.; Powell, David A.

    2017-07-01

    We demonstrate terahertz chiral metamaterials that achieve resonant transmission and strong optical activity. This response is realized in a metasurface coupled to its Babinet complement, with additional twist. Uniquely, the optical activity achieved in this type of metamaterial is weakly dispersive around the resonant transmission maxima, but it can be highly dispersive around the transmission minima. It has recently been shown that this unique optical activity response is closely related to zeros in the transmission spectra of circular polarizations through the Kramers-Kronig relations and strong resonant features in the optical activity spectrum corresponding to the Blaschke phase terms. Here we demonstrate how modifying the meta-atom geometry greatly affects the location and magnitude of these Blaschke phase terms. We study three different meta-atoms, which are variations on the simple cross structure. Their responses are measured using terahertz time-domain spectroscopy and analyzed via numerical simulations.

  3. Stability of heterodyne terahertz receivers

    NARCIS (Netherlands)

    Kooi, J.W.; Baselmans, J.J.A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J.R.; Klapwijk, T.M.; Voronov, B.; Gol'tsman, G.

    2006-01-01

    In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO)

  4. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  5. All-dielectric rod antenna array for terahertz communications

    Science.gov (United States)

    Withayachumnankul, Withawat; Yamada, Ryoumei; Fujita, Masayuki; Nagatsuma, Tadao

    2018-05-01

    The terahertz band holds a potential for point-to-point short-range wireless communications at sub-terabit speed. To realize this potential, supporting antennas must have a wide bandwidth to sustain high data rate and must have high gain and low dissipation to compensate for the free space path loss that scales quadratically with frequency. Here we propose an all-dielectric rod antenna array with high radiation efficiency, high gain, and wide bandwidth. The proposed array is integral to a low-loss photonic crystal waveguide platform, and intrinsic silicon is the only constituent material for both the antenna and the feed to maintain the simplicity, compactness, and efficiency. Effective medium theory plays a key role in the antenna performance and integrability. An experimental validation with continuous-wave terahertz electronic systems confirms the minimum gain of 20 dBi across 315-390 GHz. A demonstration shows that a pair of such identical rod array antennas can handle bit-error-free transmission at the speed up to 10 Gbit/s. Further development of this antenna will build critical components for future terahertz communication systems.

  6. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  7. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band

    Science.gov (United States)

    Wang, Yue; Leng, Yanbing; Wang, Li; Dong, Lianhe; Liu, Shunrui; Wang, Jun; Sun, Yanjun

    2018-06-01

    Most of the actively controlled electromagnetically induced transparency analogue (EIT-like) metamaterials were implemented with narrowband modulations. In this paper, a broadband tunable EIT-like metamaterial based on graphene in the terahertz band is presented. It consists of a cut wire as the bright resonator and two couples of H-shaped resonators in mirror symmetry as the dark resonators. A broadband tunable property of transmission amplitude is realized by changing the Fermi level of graphene. Furthermore, the geometries of the metamaterial structure are optimized to achieve the ideal curve through the simulation. Such EIT-like metamaterials proposed here are promising candidates for designing active wide-band slow-light devices, wide-band terahertz active filters, and wide-band terahertz modulators.

  8. Surface plasmons based terahertz modulator consisting of silicon-air-metal-dielectric-metal layers

    Science.gov (United States)

    Wang, Wei; Yang, Dongxiao; Qian, Zhenhai

    2018-05-01

    An optically controlled modulator of the terahertz wave, which is composed of a metal-dielectric-metal structure etched with circular loop arrays on both the metal layers and a photoexcited silicon wafer separated by an air layer, is proposed. Simulation results based on experimentally measured complex permittivities predict that modification of complex permittivity of the silicon wafer through excitation laser leads to a significant tuning of transmission characteristics of the modulator, forming the modulation depths of 59.62% and 96.64% based on localized surface plasmon peak and propagating surface plasmon peak, respectively. The influences of the complex permittivity of the silicon wafer and the thicknesses of both the air layer and the silicon wafer are numerically studied for better understanding the modulation mechanism. This study proposes a feasible methodology to design an optically controlled terahertz modulator with large modulation depth, high speed and suitable insertion loss, which is useful for terahertz applications in the future.

  9. Toward practical terahertz time-domain spectroscopy

    Science.gov (United States)

    Brigada, David J.

    Terahertz time-domain spectroscopy is a promising technology for the identification of explosive and pharmaceutical substances in adverse conditions. It interacts strongly with intermolecular vibrational and rotational modes. Terahertz also passes through many common dielectric covering materials, allowing for the identification of substances in envelopes, wrapped in opaque plastic, or otherwise hidden. However, there are several challenges preventing the adoption of terahertz spectroscopy outside the laboratory. This dissertation examines the problems preventing widespread adoption of terahertz technology and attempts to resolve them. In order to use terahertz spectroscopy to identify substances, a spectrum measured of the target sample must be compared to the spectra of various known standard samples. This dissertation examines various methods that can be employed throughout the entire process of acquiring and transforming terahertz waveforms to improve the accuracy of these comparisons. The concepts developed in this dissertation directly apply to terahertz spectroscopy, but also carry implications for other spectroscopy methods, from Raman to mass spectrometry. For example, these techniques could help to lower the rate of false positives at airport security checkpoints. This dissertation also examines the implementation of several of these methods as a way to realize a fully self-contained, handheld, battery-operated terahertz spectrometer. This device also employs techniques to allow minimally-trained operators use terahertz to detect different substances of interest. It functions as a proof-of-concept of the true benefits of the improvements that have been developed in this dissertation.

  10. 22 CFR 41.55 - Aliens with extraordinary ability.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Aliens with extraordinary ability. 41.55... IMMIGRATION AND NATIONALITY ACT, AS AMENDED Business and Media Visas § 41.55 Aliens with extraordinary ability. (a) Requirements for O classification. An alien shall be classifiable under the provisions of INA 101...

  11. Nonlinear propagation of the extraordinary mode in a hot magnetoplasma

    International Nuclear Information System (INIS)

    Khiet, Tu; Furutani, Y.; Ichikawa, Y.H.

    1978-07-01

    Kinetic theory for a nonlinear propagation of quasi-monochromatic extraordinary waves is presented. It reveals that propagation of an envelope of the extraordinary carriers is described by the nonlinear Schroedinger equation. In a cold plasma limit, a detailed analysis is carried out on a behaviour of the envelope of the upper- and the lower-hybrid waves at respective resonant frequency ranges. (author)

  12. 7 CFR 1773.41 - Extraordinary retirement losses.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Extraordinary retirement losses. 1773.41 Section 1773... Documentation § 1773.41 Extraordinary retirement losses. The CPA's workpapers must contain an analysis of retirement losses, including any required approval by a regulatory commission with jurisdiction in the matter...

  13. Extraordinary Rendition and U.S. Counterterrorism Policy

    Directory of Open Access Journals (Sweden)

    Mark J. Murray

    2011-01-01

    Full Text Available This article examines the United States Government policy of extraordinary rendition as a response to terrorism. The paper provides a working definition of the term, outlines why it has become controversial, and uses case studies to examine success and failures of extraordinary rendition in practice. The paper concludes with lessons learned—more specifically, policy amendments—that are necessary to keep extraordinary rendition as a viable tool for the Obama Administration and mitigate political fallout against the United States from both its allies and enemies. This paper argues that extraordinary rendition provides flexibility to policymakers to detain terrorists in cases where an attack may be forthcoming and when other approved legal processes are slow to react. Therefore, instead of ending extraordinary renditions altogether, the United States should reevaluate how it implements the policy on a tactical, operational, and strategic level and amend it based on the recommendations put forward in this article.

  14. Structure-terahertz property relationship in yttrium aluminum garnet ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Steere, D.W.; Clark, B.M.; Sundaram, S.K. [Alfred University, Terahertz and Millimeter Waves Laboratory (T-Lab), Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred, NY (United States); Gaume, R. [Townes Laser Institute and the NanoScience Technology Center, CREOL, The College of Optics and Photonics, Orlando, FL (United States)

    2017-08-15

    Terahertz (THz) transmission measurements on chemically variant yttrium aluminum garnet (YAG) ceramics are described. Chemical compositions and processing parameters were varied to determine the effect of stoichiometry, density, and pore volume distribution on the optical and dielectric properties in the THz frequency regime. Density has the largest effect on properties out of the parameters that were investigated. In addition, a linear correlation between cubic root of real permittivity at 1 THz and average density of these samples is observed. Our results show promise for design and fabrication of advanced optical materials and devices with desired THz properties via controlling density and porosity of the materials. (orig.)

  15. Performance analysis of LDPC codes on OOK terahertz wireless channels

    International Nuclear Information System (INIS)

    Liu Chun; Wang Chang; Cao Jun-Cheng

    2016-01-01

    Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz (THz) wireless communications. An error control coding scheme based on low density parity check (LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate (BER) performance of an on-off keying (OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications. (paper)

  16. Photonic-crystal diplexers for terahertz-wave applications.

    Science.gov (United States)

    Yata, Masahiro; Fujita, Masayuki; Nagatsuma, Tadao

    2016-04-04

    A compact diplexer is designed using a silicon photonic-crystal directional coupler of length comparable to the incident wavelength. The diplexer theoretically and experimentally exhibits a cross state bandwidth as broad as 2% of the operation frequency, with over 40-dB isolation between the cross and bar ports. We also demonstrate 1.5-Gbit/s frequency-division communication in the 0.32- and 0.33-THz bands using a single-wavelength-sized diplexer, and discuss the transmission bandwidth. Our study demonstrates the potential for application of photonic crystals as terahertz-wave integration platforms.

  17. Extraordinary Matter: Visualizing Space Plasmas and Particles

    Science.gov (United States)

    Barbier, S. B.; Bartolone, L.; Christian, E.; Thieman, J.; Eastman, T.; Lewis, E.

    2011-09-01

    Atoms and sub-atomic particles play a crucial role in the dynamics of our universe, but these particles and the space plasmas comprised of them are often overlooked in popular scientific and educational resources. Although the concepts are pertinent to a wide range of topics, even the most basic particle and plasma physics principles are generally unfamiliar to non-scientists. Educators and public communicators need assistance in explaining these concepts that cannot be easily demonstrated in the everyday world. Active visuals are a highly effective aid to understanding, but resources of this type are currently few in number and difficult to find, and most do not provide suitable context for audience comprehension. To address this need, our team is developing an online multimedia reference library of animations, visualizations, interactivities, and videos resources - Extraordinary Matter: Visualizing Space Plasmas and Particles. The site targets grades 9-14 and the equivalent in informal education and public outreach. Each ready-to-use product will be accompanied by a supporting explanation at a reading level matching the educational level of the concept. It will also have information on relevant science, technology, engineering, and mathematics (STEM) educational standards, activities, lesson plans, related products, links, and suggested uses. These products are intended to stand alone, making them adaptable to the widest range of uses, including scientist presentations, museum displays, educational websites and CDs, teacher professional development, and classroom use. This project is funded by a NASA Education and Public Outreach in Earth and Space Science (EPOESS) grant.

  18. High efficiency optoelectronic terahertz sources

    Science.gov (United States)

    Lampin, Jean-François; Peytavit, Emilien; Akalin, Tahsin; Ducournau, G.; Hindle, Francis; Mouret, Gael

    2010-08-01

    We have developed a new generation of optoelectronic large bandwidth terahertz sources based on TEM horn antennas monolithically integrated with several types of photodetectors: low-temperature grown GaAs (LTG-GaAs) planar photoconductors, vertically integrated LTG-GaAs photoconductors on silicon substrate and uni-travelling-carrier photodiodes. Results of pulsed (time-domain) and photomixing (CW, frequency domain) experiments are presented.

  19. Strain Imaging Using Terahertz Waves and Metamaterials

    Science.gov (United States)

    2016-11-01

    predictions. 14. SUBJECT TERMS Birefringence, Terahertz Waves, Metamaterials 15. NUMBER OF PAGES 16 16. PRICE CODE 17. SECURITY...opaque objects by using the principles of strain-induced birefringence. 4 III. CONCEPT To overcome the inability of visual light to penetrate ...opaque objects, terahertz radiation was investigated. Longer wavelength EM waves, such as radio waves, have excellent penetration ability but low image

  20. Ultrabroadband terahertz conductivity of Si nanocrystal films

    DEFF Research Database (Denmark)

    Cooke, D. G.; Meldrum, A.; Jepsen, P. Uhd

    2012-01-01

    The terahertz conductivity of silicon nanoparticles embedded in glass with varying density is studied with ultra-broadband terahertz spectroscopy on picosecond time scales following fs optical excitation. The transition from relatively isolated charge carriers to densities which allow inter...... the applicability of this simple model to the conductivity of nanoparticle ensembles over the entire THz spectral window....

  1. All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures

    NARCIS (Netherlands)

    Janke, C.; Gómez Rivas, J.; Haring Bolivar, P.; Kurz, H.

    2005-01-01

    Unprecedented optical control of the surface plasmon polariton assisted transmission of terahertz radiation through subwavelength apertures is rendered possible by carrier-induced changes to the dielectric properties of a semiconductor grating. Although the study presented is static, the extension

  2. The properties of electromagnetic responses and optical modulation in terahertz metamaterials

    Science.gov (United States)

    Chen, Wei; Shi, Yulei; Wang, Wei; Zhou, Qingli; Zhang, Cunlin

    2016-11-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recently, the research on these artificial materials has been pushed forward to the terahertz (THz) region because of potential applications in biological fingerprinting, security imaging, and high frequency magnetic and electric resonant devices. Furthermore, active control of their properties could further facilitate and open up new applications in terms of modulation and switching. In our work, we will first present our studies of dipole arrays at terahertz frequencies. Then in experimental and theoretical studies of terahertz subwavelength L-shaped structure, we proposed an unusual-mode current resonance responsible for low-frequency characteristic dip in transmission spectra. Comparing spectral properties of our designed simplified structures with that of split-ring resonators, we attribute this unusual mode to the resonance coupling and splitting under the broken symmetry of the structure. Finally, we use optical pump-terahertz probe method to investigate the spectral and dynamic behaviour of optical modulation in the split-ring resonators. We have observed the blue-shift and band broadening in the spectral changes of transmission under optical excitation at different delay times. The calculated surface currents using finite difference time domain simulation are presented to characterize these resonances, and the blue-shift can be explained by the changed refractive index and conductivity in the photoexcited semiconductor substrate.

  3. Biological Applications of Extraordinary Electroconductance and Photovoltaic Effects in Inverse Extraordinary Optoconductance

    Science.gov (United States)

    Tran, Lauren Christine

    The Extraordinary Electroconductance (EEC) sensor has been previously demonstrated to have an electric field sensitivity of 3.05V/cm in a mesoscopic-scale structure fabricated at the center of a parallel plate capacitor. In this thesis, we demonstrate the first successful application of EEC sensors as electrochemical detectors of protein binding and biological molecule concentration. Using the avidin derivative, captavidin, in complex with the vitamin biotin, the change in four-point measured resistance with fluid protein concentration of bare EEC sensors was shown to increase by a factor of four in the presence of biomolecular binding as compared to baseline. Calculations for approximate field strengths introduced by a bound captavidin molecule are also presented. The development of Inverse-Extraordinary Optoconductance (I-EOC), an effect which occurs in nanoscale sensors, is also discussed. In the I-EOC effect, electron transport transitions from ballistic to diffusive with increasing light intensity. In these novel, room temperature optical detectors, the resistance is low at low light intensity and resistance increases by 9462% in a 250nm device mesa upon full illumination with a 5 mW HeNe laser. This is the inverse of bulk and mesoscopic device behavior, in which resistance decreases with increasing photon density.

  4. Generation of high-field terahertz pulses in an HMQ-TMS organic crystal pumped by an ytterbium laser at 1030 nm.

    Science.gov (United States)

    Rovere, Andrea; Jeong, Young-Gyun; Piccoli, Riccardo; Lee, Seung-Heon; Lee, Seung-Chul; Kwon, O-Pil; Jazbinsek, Mojca; Morandotti, Roberto; Razzari, Luca

    2018-02-05

    We present the generation of high-peak-electric-field terahertz pulses via collinear optical rectification in a 2-(4-hydroxy-3-methoxystyryl)-1-methilquinolinium-2,4,6-trimethylbenzenesulfonate (HMQ-TMS) organic crystal. The crystal is pumped by an amplified ytterbium laser system, emitting 170-fs-long pulses centered at 1030 nm. A terahertz peak electric field greater than 200 kV/cm is obtained for 420 µJ of optical pump energy, with an energy conversion efficiency of 0.26% - about two orders of magnitude higher than in common inorganic crystals collinearly pumped by amplified femtosecond lasers. An open-aperture Z-scan measurement performed on an n-doped InGaAs thin film using such terahertz source shows a nonlinear increase in the terahertz transmission of about 2.2 times. Our findings demonstrate the potential of this terahertz generation scheme, based on ytterbium laser technology, as a simple and efficient alternative to the existing intense table-top terahertz sources. In particular, we show that it can be readily used to explore nonlinear effects at terahertz frequencies.

  5. Extraordinary magnetoresistance in semiconductor/metal hybrids: A review

    KAUST Repository

    Sun, J.; Kosel, Jü rgen

    2013-01-01

    The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a

  6. Visualizing Space Plasmas and Particles: Extraordinary Matter

    Science.gov (United States)

    Barbier, B.; Bartolone, L. M.; Christian, E. R.; Eastman, T. E.; Lewis, E.; Thieman, J. R.

    2010-12-01

    A recent survey of museum visitors documented some startling misconceptions at a very basic level. Even in this "science attentive" group, one quarter of the respondents believed that an atom would explode if it lost an electron, one sixth said it would become a new atom or element, and one fifth said they had no idea what would happen. Only one fourth of the respondents indicated they were familiar with plasma as a state of matter. Current resources on these topics are few in number and/or are difficult to locate, and they rarely provide suitable context at a level understandable to high school students and educators or to the interested public. In response to this and other evidence of common misunderstandings of simple particle and plasma science, our team of space scientists and education specialists has embarked upon the development of "Extraordinary Matter: Visualizing Space Plasmas and Particles", an online NASA multimedia library. It is designed to assist formal and informal educators and scientists with explaining concepts that cannot be easily demonstrated in the everyday world. The newly released site, with a target audience equivalent to grades 9-14, includes both existing products, reviewed by our team for quality, and new products we have developed. Addition of products to our site is in large part determined by the results of our front-end evaluation to determine the specific needs, gaps, and priorities of potential audiences. Each ready-to-use product is accompanied by a supporting explanation at a reading level matching the educational level of the concept, along with educational standards addressed, and links to other associated resources. Some will include related educational activities. Products are intended to stand alone, making them adaptable to the widest range of uses, either individually or as a custom-selected group. Uses may include, for example, scientist presentations, museum displays, teacher professional development, and classroom

  7. High energy multi-cycle terahertz generation

    International Nuclear Information System (INIS)

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  8. High energy multi-cycle terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  9. Anomalous Faraday effect of a system with extraordinary optical transmittance.

    Science.gov (United States)

    Khanikaev, Alexander B; Baryshev, Alexander V; Fedyanin, Andrey A; Granovsky, Alexander B; Inoue, Mitsuteru

    2007-05-28

    It is shown theoretically that the Faraday rotation becomes anomalously large and exhibits extraordinary behavior near the frequencies of the extraordinary optical transmittance through optically thick perforated metal film with holes filled with a magneto-optically active material. This phenomenon is explained as result of strong confinement of the evanescent electromagnetic field within magnetic material, which occurs due to excitation of the coupled plasmon-polaritons on the opposite surfaces of the film.

  10. Ultrafast terahertz Faraday rotation in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Heyman, J. N.; Foo Kune, R. F.; Alebachew, B. A.; Nguyen, M. D. [Macalester College, Saint Paul, Minnesota 55105 (United States); Robinson, J. T. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-12-07

    Terahertz (THz) Faraday rotation measurements were performed to investigate carrier dynamics in p-type Chemical vapor deposition (CVD) graphene. We used static and time-resolved polarization-sensitive THz transmission measurements in a magnetic field to probe free carriers in GaAs, InP, and Graphene. Static measurements probe the equilibrium carrier density and momentum scattering rate. Time-resolved (optical pump/THz probe) measurements probe the change in these quantities following photoexcitation. In a typical CVD graphene sample, we found that 0.5 ps following photoexcitation with 1 × 10{sup 13} photons/cm{sup 2} pulses at 800 nm the effective hole scattering time decreased from 37 fs to 34.5 fs, while the carrier concentration increased from 2.0 × 10{sup 12} cm{sup −2} to 2.04 × 10{sup 12} cm{sup −2}, leading to a transient decrease in the conductivity of the film.

  11. New Light on the Metal-Insulator Transition in VO2: A Terahertz Perspective

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Fischer, Bernd M.; Thoman, Andreas

    2005-01-01

    We investigate the metal-insulator (MI) transition in vanadium dioxide (VO2), thin films with Terahertz Time-Domains Spectroscopy (THz-TDS). The capability of detecting both amplitude and phase of the transmission characteristics as the phase of the transmitted THz signal switches at a markedly...

  12. Terahertz pulse generation from metal nanoparticle ink

    Science.gov (United States)

    Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Phan, Thanh Nhat Khoa; Nakajima, Makoto

    2016-11-01

    Terahertz pulse generation from metallic nanostructures irradiated by femtosecond laser pulses is of interest because the conversion efficiency from laser pulses to terahertz waves is increased by the local field enhancement resulting from the plasmon oscillation. In this talk we present our recent study on terahertz generation from metal nanoparticle ink. We baked a silver nanoparticle ink spin-coated onto a glass coverslip in various temperatures. On the surface of the baked ink, bumpy nanostructures are spontaneously formed, and the average size of bumps depends on the baking temperature. These structures are expected to lead to local field enhancement and then large nonlinear polarizations on the surface. The baked ink was irradiated by the output of regeneratively amplified Ti:sapphire femtosecond laser at an incidence angle of 45°. Waveforms of generated terahertz pulses are detected by electro-optical sampling. The generation efficiency was high when the average diameter of bumps was around 100 nm, which is realized when the ink is baked in 205 to 235°C in our setup. One of our next research targets is terahertz wave generation from micro-patterned metallic nanoparticle ink. It is an advantage of the metal nanoparticle ink that by using inkjet printers one can fabricate various patterns with micrometer scales, in which terahertz waves have a resonance. Combination of microstructures made by a printer and nanostructure spontaneously formed in the baking process will provide us terahertz emitters with unique frequency characteristics.

  13. Terahertz Technology: A Boon to Tablet Analysis

    Science.gov (United States)

    Wagh, M. P.; Sonawane, Y. H.; Joshi, O. U.

    2009-01-01

    The terahertz gap has a frequency ranges from ∼0.3 THz to ∼10 THz in the electromagnetic spectrum which is in between microwave and infrared. The terahertz radiations are invisible to naked eye. In comparison with x-ray they are intrinsically safe, non-destructive and non-invasive. Terahertz spectroscopy enables 3D imaging of structures and materials, and the measurement of the unique spectral fingerprints of chemical and physical forms. Terahertz radiations are produced by a dendrimer based high power terahertz source and spectroscopy technologies. It resolves many of the questions left unanswered by complementary techniques, such as optical imaging, Raman and infrared spectra. In the pharmaceutical industries it enables nondestructive, internal, chemical analysis of tablets, capsules, and other dosage forms. Tablet coatings are a major factor in drug bioavailability. Therefore tablet coatings integrity and uniformity are of crucial importance to quality. Terahertz imaging gives an unparalleled certainty about the integrity of tablet coatings and the matrix performance of tablet cores. This article demonstrates the potential of terahertz pulse imaging for the analysis of tablet coating thickness by illustrating the technique on tablets. PMID:20490288

  14. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  15. Tutorial: Terahertz beamforming, from concepts to realizations

    Science.gov (United States)

    Headland, Daniel; Monnai, Yasuaki; Abbott, Derek; Fumeaux, Christophe; Withayachumnankul, Withawat

    2018-05-01

    The terahertz range possesses significant untapped potential for applications including high-volume wireless communications, noninvasive medical imaging, sensing, and safe security screening. However, due to the unique characteristics and constraints of terahertz waves, the vast majority of these applications are entirely dependent upon the availability of beam control techniques. Thus, the development of advanced terahertz-range beam control techniques yields a range of useful and unparalleled applications. This article provides an overview and tutorial on terahertz beam control. The underlying principles of wavefront engineering include array antenna theory and diffraction optics, which are drawn from the neighboring microwave and optical regimes, respectively. As both principles are applicable across the electromagnetic spectrum, they are reconciled in this overview. This provides a useful foundation for investigations into beam control in the terahertz range, which lies between microwaves and infrared light. Thereafter, noteworthy experimental demonstrations of beam control in the terahertz range are discussed, and these include geometric optics, phased array devices, leaky-wave antennas, reflectarrays, and transmitarrays. These techniques are compared and contrasted for their suitability in applications of terahertz waves.

  16. The Multi-Functional Foot in Athletic Movement: Extraordinary Feats by Our Extraordinary Feet

    Directory of Open Access Journals (Sweden)

    Wilson Jennifer

    2016-03-01

    Full Text Available The unique architecture of the foot system provides a sensitive, multi-tensional method of communicating with the surrounding environment. Within the premise of the paper, we discuss three themes: complexity, degeneracy and bio-tensegrity. Complex structures within the foot allow the human movement system to negotiate strategies for dynamic movement during athletic endeavours. We discuss such complex structures with particular attention to properties of a bio-tensegrity system. Degeneracy within the foot structure offers a distinctive solution to the problems posed by differing terrains and uneven surfaces allowing lower extremity structures to overcome perturbation as and when it occurs. This extraordinary structure offers a significant contribution to bipedalism through presenting a robust base of support and as such, should be given more consideration when designing athletic development programmes.

  17. Terahertz gas sensor based on absorption-induced transparency

    Directory of Open Access Journals (Sweden)

    Rodrigo Sergio G.

    2016-01-01

    Full Text Available A system for the detection of spectral signatures of gases at the Terahertz regime is presented. The system consists in an initially opaque holey metal film whereby the introduction of a gas provokes the appearance of spectral features in transmission and reflection, due to the phenomenom of absorption-induced transparency (AIT. The peaks in transmission and dips in reflection observed in AIT occur close to the absorption energies of the molecules, hence its name. The presence of the gas would be thus revealed as a strong drop in reflectivity measurements at one (or several of the gas absorption resonances. As a proof of principle, we theoretically demonstrate how the AIT-based sensor would serve to detect tiny amounts of hydrocyanic acid.

  18. Terahertz spectroscopic polarimetry of generalized anisotropic media composed of Archimedean spiral arrays: Experiments and simulations.

    Science.gov (United States)

    Aschaffenburg, Daniel J; Williams, Michael R C; Schmuttenmaer, Charles A

    2016-05-07

    Terahertz time-domain spectroscopic polarimetry has been used to measure the polarization state of all spectral components in a broadband THz pulse upon transmission through generalized anisotropic media consisting of two-dimensional arrays of lithographically defined Archimedean spirals. The technique allows a full determination of the frequency-dependent, complex-valued transmission matrix and eigenpolarizations of the spiral arrays. Measurements were made on a series of spiral array orientations. The frequency-dependent transmission matrix elements as well as the eigenpolarizations were determined, and the eigenpolarizations were found be to elliptically corotating, as expected from their symmetry. Numerical simulations are in quantitative agreement with measured spectra.

  19. EDITORIAL: Photonic terahertz technology

    Science.gov (United States)

    Lisauskas, Alvydas; Löffler, Torsten; Roskos, Hartmut G.

    2005-07-01

    In recent years, when reading newspapers and journals or watching TV, one has been able to find feature presentations dealing with the prospects of terahertz (THz) technology and its potential impact on market applications. THz technology aims to fill the THz gap in the electro-magnetic spectrum in order to make the THz frequency regime, which spans the two orders of magnitude from 100 GHz to 10 THz, accessible for applications. From the lower-frequency side, electronics keeps pushing upwards, while photonic approaches gradually improve our technological options at higher frequencies. The popular interest reflects the considerable advances in research in the THz field, and it is mainly advances in the photonic branch, with the highlight being the development of the THz quantum cascade laser, which in recent years have caught the imagination of the public, and of potential users and investors. This special issue of Semiconductor Science and Technology provides an overview of key scientific developments which currently represent the cutting edge of THz photonic technology. In order to be clear about the implications, we should define exactly what we mean by 'THz photonic technology', or synonymously 'THz photonics'. It is characterized by the way in which THz radiation (or a guided THz wave) is generated, namely by the use of lasers. This may be done in one of two fundamentally different schemes: (i) by laser action in the terahertz frequency range itself (THz lasers), or (ii) by down-conversion processes (photomixing) involving the radiation of lasers which operate in the visible, near-infrared or infrared spectral ranges, either in pulsed or continuous-wave mode. The field of THz photonics has grown so considerably that it is out of the question to cover all its aspects in a single special issue of a journal. We have elected, instead, to focus our attention on two types of development with a potentially strong impact on the THz field: first, on significant advances

  20. Handbook of terahertz technologies devices and applications

    CERN Document Server

    Song, Ho-Jin

    2015-01-01

    Terahertz waves, which lie in the frequency range of 0.1-10 THz, have long been investigated in a few limited fields, such as astronomy, because of a lack of devices for their generation and detection. Several technical breakthroughs made over the last couple of decades now allow us to radiate and detect terahertz waves more easily, which has triggered the search for new uses of terahertz waves in many fields, such as bioscience, security, and information and communications technology. The book covers some of the technical breakthroughs in terms of device technologies. It discusses not only th

  1. Stability of heterodyne terahertz receivers

    OpenAIRE

    Kooi, J. W.; Baselmans, J. J. A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.

    2006-01-01

    In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO) signal injection scheme. Measurements show that the HEB mixer stability is limited by gain fluctuations with a 1/f spectral distribution. In a 60 MHz noise bandwidth this results in an Allan varian...

  2. Aspheric lenses for terahertz imaging.

    Science.gov (United States)

    Lo, Yat Hei; Leonhardt, Rainer

    2008-09-29

    We present novel designs for aspheric lenses used in terahertz (THz) imaging. As different surfaces result in different beam shaping properties and in different losses from reflection and absorption, the resultant imaging resolution (i.e. the focal spot size) depends critically on the design approach. We evaluate the different lens designs using Kirchhoff's scalar diffraction theory, and test the predictions experimentally. We also show that our lenses can achieve sub-wavelength resolution. While our lens designs are tested with THz radiation, the design considerations are applicable also to other regions of the electro-magnetic spectrum.

  3. Graphene hyperlens for terahertz radiation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei; Chigrin, Dmitry N.

    2012-01-01

    We propose a graphene hyperlens for the terahertz (THz) range. We employ and numerically examine a structured graphene-dielectric multilayered stack that is an analog of a metallic wire medium. As an example of the graphene hyperlens in action, we demonstrate an imaging of two point sources...... separated by a distance λ0/5. An advantage of such a hyperlens as compared to a metallic one is the tunability of its properties by changing the chemical potential of graphene. We also propose a method to retrieve the hyperbolic dispersion, check the effective medium approximation, and retrieve...

  4. Terahertz spectroscopy of three-dimensional photonic band-gap crystals

    International Nuclear Information System (INIS)

    Oezbay, E.; Michel, E.; Tuttle, G.; Biswas, R.; Ho, K.M.; Bostak, J.; Bloom, D.M.

    1994-01-01

    We have fabricated and built three-dimensional photonic band-gap crystals with band-gap frequencies larger than 500 GHz. We built the crystals by stacking micromachined (110) silicon wafers. The transmission and dispersion characteristics of the structures were measured by an all-electronic terahertz spectroscopy setup. The experimental results were in good agreement with theoretical calculations. To our knowledge, our new crystal has the highest reported photonic band-gap frequency

  5. Broadband modulation of terahertz waves through electrically driven hybrid bowtie antenna-VO2 devices.

    Science.gov (United States)

    Han, Chunrui; Parrott, Edward P J; Humbert, Georges; Crunteanu, Aurelian; Pickwell-MacPherson, Emma

    2017-10-05

    Broadband modulation of terahertz (THz) light is experimentally realized through the electrically driven metal-insulator phase transition of vanadium dioxide (VO 2 ) in hybrid metal antenna-VO 2 devices. The devices consist of VO 2 active layers and bowtie antenna arrays, such that the electrically driven phase transition can be realized by applying an external voltage between adjacent metal wires extended to a large area array. The modulation depth of the terahertz light can be initially enhanced by the metal wires on top of VO 2 and then improved through the addition of specific bowties in between the wires. As a result, a terahertz wave with a large beam size (~10 mm) can be modulated within the measurable spectral range (0.3-2.5 THz) with a frequency independent modulation depth as high as 0.9, and the minimum amplitude transmission down to 0.06. Moreover, the electrical switch on/off phase transition depends very much on the size of the VO 2 area, indicating that smaller VO 2 regions lead to higher modulation speeds and lower phase transition voltages. With the capabilities in actively tuning the beam size, modulation depth, modulation bandwidth as well as the modulation speed of THz waves, our study paves the way in implementing multifunctional components for terahertz applications.

  6. Terahertz wave generation in coupled quantum dots

    International Nuclear Information System (INIS)

    Ma Yu-Rong; Guo Shi-Fang; Duan Su-Qing

    2012-01-01

    Based on coupled quantum dots, we present an interesting optical effect in a four-level loop coupled system. Both the two upper levels and the two lower levels are designed to be almost degenerate, which induces a considerable dipole moment. The terahertz wave is obtained from the low-frequency component of the photon emission spectrum. The frequency of the terahertz wave can be controlled by tuning the energy levels via designing the nanostructure appropriately or tuning the driving laser field. A terahertz wave with adjustable frequency and considerable intensity (100 times higher than that of the Rayleigh line) can be obtained. It provides an effective scheme for a terahertz source. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Investigating murals with terahertz reflective tomography

    Science.gov (United States)

    Yuan, Minjie; Sun, Wenfeng; Wang, Xinke; Wang, Sen; Zhang, Qunxi; Ye, Jiasheng; Zhang, Yan

    2015-08-01

    Terahertz time-domain spectroscopy (THz-TDS) imaging technology has been proposed to be used in the non-invasive detection of murals. THz-TDS images provide structural data of the sample that cannot be obtained with other complementary techniques. In this paper, two types of defects hidden in the plaster used to simulate the cases of defects in the murals, have been investigated by the terahertz reflected time domain spectroscopy imaging system. These preset defects include a leaf slice and a slit built in the plaster. With the terahertz reflective tomography, information about defects has been determined involving the thickness from the surface of sample to the built-in defect, the profile and distribution of the defect. With this THz tomography, different defects with the changes of optical thickness and their relative refractive index have been identified. The application of reflective pulsed terahertz imaging has been extended to the defect detection of the murals.

  8. Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires

    Science.gov (United States)

    Yan, Jie-Yun

    2018-06-01

    Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires is studied. Based on the excitonic theory, the numerical method to calculate the photoconductivity spectrum in the nanowires is developed, which can simulate optical pump terahertz-probe spectroscopy measurements on real nanowires and thereby calculate the typical photoconductivity spectrum. With the help of the energetic structure deduced from the calculated linear absorption spectrum, the numerically observed shift of the resonant peak in the photoconductivity spectrum is found to result from the dominant exciton transition between excited or continuum states to the ground state, and the quantitative analysis is in good agreement with the quantum plasmon model. Besides, the dependence of the photoconductivity on the polarization of the terahertz field is also discussed. The numerical method and supporting theoretical analysis provide a new tool for experimentalists to understand the terahertz photoconductivity in intrinsic semiconductor nanowires at low temperatures or for nanowires subjected to below bandgap photoexcitation, where excitonic effects dominate.

  9. Slot-dimer babinet metamaterials as polarization shapers for terahertz waves

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Chigrin, D. N.; Lavrinenko, Andrei

    2013-01-01

    We theoretically study optical properties of free-standing metallic membranes patterned with an array of two-slot elements (dimers) comprising two rectangular slots of different dimensions and orientation. It is shown that these structures feature extraordinary optical transmission with strong...

  10. Origin of strain-induced resonances in flexible terahertz metamaterials

    International Nuclear Information System (INIS)

    Sun Xiu-Yun; Li Xiao-Ning; Xu Hua; Liang Xian-Ting; Zheng Li-Ren; Zhang Xian-Peng; Lu Yue-Hui; Song Wei-Jie; Lee, Young-Pak; Rhee, Joo-Yull

    2016-01-01

    Two types of flexible terahertz metamaterials were fabricated on polyethylene naphthalate (PEN) substrates. The unit cell of one type consists of two identical split-ring resonators (SRRs) that are arranged face-to-face (i.e., FlexMetaF); the unit cell of the other type has nothing different but is arranged back-to-back (i.e., FlexMetaB). FlexMetaF and FlexMetaB illustrate the similar transmission dips under zero strain because the excitation of fundamental inductive–capacitive (LC) resonance is mainly dependent on the geometric structure of individual SRR. However, if a gradually variant strain is applied to bend FlexMetaF and FlexMetaB, the new resonant peaks appear: in the case of FlexMetaF, the peaks are located at the lower frequencies; in the case of FlexMetaB, the peaks appear at the frequencies adjacent to the LC resonance. The origin and evolution of strain-induced resonances are studied. The origin is ascribed to the detuning effect and the different responses to strain from FlexMetaF and FlexMetaB are associated with the coupling effect. These findings may improve the understanding on flexible terahertz metamaterials and benefit their applications in flexible or curved devices. (paper)

  11. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    International Nuclear Information System (INIS)

    Gayduchenko, I.; Kardakova, A.; Voronov, B.; Finkel, M.; Fedorov, G.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G.

    2015-01-01

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors

  12. Extending applicability of terahertz spectroscopy for biosensing

    Science.gov (United States)

    Parthasarathy, Ramakrishnan

    Terahertz (THz) vibrational resonance spectroscopy has recently emerged as a promising technique for fingerprinting biological molecules. Absorption spectra in this frequency range (0.1-10 THz) reflect molecular internal vibrations involving the weakest hydrogen bonds and/or non-bonded interactions, which are species specific. Of prime importance is improving detection sensitivity of molecules with low absorption characteristics in the THz gap. Also of importance is the characterization of biological molecules in the THz gap (10-25 cm-1) by physical parameters (refractive index and absorption coefficient) rather than sample dependent parameters (transmission, reflection) and extending spectroscopy to the low THz range where remote sensing is most viable. To address the sensitivity issue, it is shown that periodic arrays of rectangular slots with subwavelength width provide for local electromagnetic field enhancements due to edge effects in the low frequency range of interest, 10-25 cm-1 (300-750 GHz). Periodic structures of Au, doped Si and InSb were studied. InSb is confirmed to offer the highest results with the local power enhancements on the order of 1100 at frequency 14 cm -1. InSb and Si have large skin depths in the frequency range of interest and so the analysis of their structures was done through the Fourier expansion method of field diffracted from gratings. Au however has small skin depths at these frequencies compared to the thickness. Surface impedance boundary conditions were employed to model the Au structure, for which the Fourier expansion method was unsuitable owing to the huge magnitude of Au permittivity. The applications possibly include development of novel bio-sensors, with the strongly enhanced local electromagnetic fields leading to increased detection sensitivity, and monitoring biophysical processes such as DNA denaturation. Transmission and reflection data from parallel, independent experiments are utilized in the Interference

  13. A Broadband Metasurface-Based Terahertz Flat-Lens Array

    KAUST Repository

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Tian, Zhen; Gu, Jianqiang; Yue, Weisheng; Zhang, Shuang; Han, Jiaguang; Zhang, Weili; Zhang, Weili

    2015-01-01

    A metasurface-based terahertz flat-lens array is proposed, comprising C-shaped split-ring resonators exhibiting locally engineerable phase discontinuities. Possessing a high numerical aperture, the planar lens array is flexible, robust, and shows excellent focusing characteristics in a broadband terahertz frequency. It could be an important step towards the development of planar terahertz focusing devices for practical applications.

  14. A Broadband Metasurface-Based Terahertz Flat-Lens Array

    KAUST Repository

    Wang, Qiu

    2015-02-12

    A metasurface-based terahertz flat-lens array is proposed, comprising C-shaped split-ring resonators exhibiting locally engineerable phase discontinuities. Possessing a high numerical aperture, the planar lens array is flexible, robust, and shows excellent focusing characteristics in a broadband terahertz frequency. It could be an important step towards the development of planar terahertz focusing devices for practical applications.

  15. Overview of terahertz radiation sources

    International Nuclear Information System (INIS)

    Gallerano, G.P.; Biedron, S.G.

    2004-01-01

    Although terahertz (THz) radiation was first observed about hundred years ago, the corresponding portion of the electromagnetic spectrum has been for long time considered a rather poorly explored region at the boundary between the microwaves and the infrared. This situation has changed during the past ten years with the rapid development of coherent THz sources, such as solid state oscillators, quantum cascade lasers, optically pumped solid state devices and novel free electron devices, which have in turn stimulated a wide variety of applications from material science to telecommunications, from biology to biomedicine. For a comprehensive review of THz technology the reader is addressed to a recent paper by P. Siegel. In this paper we focus on the development and perspectives of THz radiation sources.

  16. Terahertz Sensing, Imaging and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Otani, C.; Hoshing, H.; Sasaki, Y.; Maki, K.; Hayashi, A. [RIKEN Advanced Science Institute, Sendai (Japan)

    2008-11-15

    Diagnosis using terahertz (THz) wave holds a great potential for various applications in various fields because of its transmittance to many soft materials with the good spatial resolution. In addition, the presence of specific spectral absorption features of crystalline materials is also important for many applications. Such features are different from material to material to material and is applicable for identifying materials inside packages that are opaque to visible light. One of the most impressive examples of such applications is the detection of illicit drugs inside envelopes. In this talk, we will present our recent topics of THz sensing, imaging and applications including this example. We will also present the cancer diagnosis, an application of the photonic crystal to high sensitivity detection, and gas spectroscopy if we have enough time. We also would like to briefly review the recent topics related to THz applications.

  17. Terahertz Sensing, Imaging and Applications

    International Nuclear Information System (INIS)

    Otani, C.; Hoshing, H.; Sasaki, Y.; Maki, K.; Hayashi, A.

    2008-01-01

    Diagnosis using terahertz (THz) wave holds a great potential for various applications in various fields because of its transmittance to many soft materials with the good spatial resolution. In addition, the presence of specific spectral absorption features of crystalline materials is also important for many applications. Such features are different from material to material to material and is applicable for identifying materials inside packages that are opaque to visible light. One of the most impressive examples of such applications is the detection of illicit drugs inside envelopes. In this talk, we will present our recent topics of THz sensing, imaging and applications including this example. We will also present the cancer diagnosis, an application of the photonic crystal to high sensitivity detection, and gas spectroscopy if we have enough time. We also would like to briefly review the recent topics related to THz applications

  18. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  19. 18 CFR 367.4340 - Account 434, Extraordinary income.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 434, Extraordinary income. 367.4340 Section 367.4340 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT UNIFOR...

  20. 18 CFR 367.4350 - Account 435, Extraordinary deductions.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 435, Extraordinary deductions. 367.4350 Section 367.4350 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY HOLDING COMPANY ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT...

  1. 5 CFR 2635.503 - Extraordinary payments from former employers.

    Science.gov (United States)

    2010-01-01

    ... employers. 2635.503 Section 2635.503 Administrative Personnel OFFICE OF GOVERNMENT ETHICS GOVERNMENT ETHICS STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE EXECUTIVE BRANCH Impartiality in Performing Official Duties § 2635.503 Extraordinary payments from former employers. (a) Disqualification requirement. Except...

  2. A Practical and Portable Solids-State Electronic Terahertz Imaging System

    Directory of Open Access Journals (Sweden)

    Ken Smart

    2016-04-01

    Full Text Available A practical compact solid-state terahertz imaging system is presented. Various beam guiding architectures were explored and hardware performance assessed to improve its compactness, robustness, multi-functionality and simplicity of operation. The system performance in terms of image resolution, signal-to-noise ratio, the electronic signal modulation versus optical chopper, is evaluated and discussed. The system can be conveniently switched between transmission and reflection mode according to the application. A range of imaging application scenarios was explored and images of high visual quality were obtained in both transmission and reflection mode.

  3. Strontium titanate/silicon-based terahertz photonic crystal multilayer stack

    Energy Technology Data Exchange (ETDEWEB)

    Xin, J.Z.; Jim, K.L.; Tsang, Y.H.; Chan, H.L.W.; Leung, C.W. [Hong Kong Polytechnic University, Department of Applied Physics and Materials Research Centre, Kowloon, Hong Kong (China); Yang, J.; Gong, X.J.; Chen, L.Q.; Gao, F. [Chinese Academy of Sciences, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Shenzhen (China)

    2012-04-15

    A one-dimensional photonic crystal working in the terahertz (THz) range was designed and implemented. To facilitate the design, the transmission properties of strontium titanate crystals were characterized by THz-time-domain spectroscopy. Relatively high refractive index ({proportional_to}18.5) and transmission ratio (0.08) were observed between 0.2 to 1 THz. A stacked structure of (Si d{sub Si}/STO d{sub STO}){sub N} /Si d{sub Si} was then designed, with transmission spectra calculated by the transfer matrix method. The effects of the filling ratio (d{sub STO}/(d{sub Si}+d{sub STO})), periodicity (d{sub Si}+d{sub STO}) and the number of repeats N on the transmission of PC were investigated. The effect of introducing a defect layer was also studied. Based on these, Si/STO multilayers with STO defect thickness of 125 {mu}m and 200 {mu}m were measured. The shift of the defect mode was observed and compared with the calculations. (orig.)

  4. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure

    Science.gov (United States)

    Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan

    2018-05-01

    We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.

  5. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    Science.gov (United States)

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-06-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  6. Terahertz Magnon-Polaritons in TmFeO3.

    Science.gov (United States)

    Grishunin, Kirill; Huisman, Thomas; Li, Guanqiao; Mishina, Elena; Rasing, Theo; Kimel, Alexey V; Zhang, Kailing; Jin, Zuanming; Cao, Shixun; Ren, Wei; Ma, Guo-Hong; Mikhaylovskiy, Rostislav V

    2018-04-18

    Magnon-polaritons are shown to play a dominant role in the propagation of terahertz (THz) waves through TmFeO 3 orthoferrite, if the frequencies of the waves are in the vicinity of the quasi-antiferromagnetic spin resonance mode. Both time-domain THz transmission and emission spectroscopies reveal clear beatings between two modes with frequencies slightly above and slightly below this resonance, respectively. Rigorous modeling of the interaction between the spins of TmFeO 3 and the THz light shows that the frequencies correspond to the upper and lower magnon-polariton branches. Our findings reveal the previously ignored importance of propagation effects and polaritons in such heavily debated areas as THz magnonics and THz spectroscopy of electromagnons. It also shows that future progress in these areas calls for an interdisciplinary approach at the interface between magnetism and photonics.

  7. Performance of terahertz metamaterials as high-sensitivity sensor

    Science.gov (United States)

    He, Yanan; Zhang, Bo; Shen, Jingling

    2017-09-01

    A high-sensitivity sensor based on the resonant transmission characteristics of terahertz (THz) metamaterials was investigated, with the proposal and fabrication of rectangular bar arrays of THz metamaterials exhibiting a period of 180 μm on a 25 μm thick flexible polyimide. Varying the size of the metamaterial structure revealed that the length of the rectangular unit modulated the resonant frequency, which was verified by both experiment and simulation. The sensing characteristics upon varying the surrounding media in the sample were tested by simulation and experiment. Changing the surrounding medium from that of air to that of alcohol or oil produced resonant frequency redshifts of 80 GHz or 150 GHz, respectively, which indicates that the sensor possessed a high sensitivity of 667 GHz per unit of refractive index. Finally, the influence of the sample substrate thickness on the sensor sensitivity was investigated by simulation. It may be a reference for future sensor design.

  8. Optimal methodologies for terahertz time-domain spectroscopic analysis of traditional pigments in powder form

    Science.gov (United States)

    Ha, Taewoo; Lee, Howon; Sim, Kyung Ik; Kim, Jonghyeon; Jo, Young Chan; Kim, Jae Hoon; Baek, Na Yeon; Kang, Dai-ill; Lee, Han Hyoung

    2017-05-01

    We have established optimal methods for terahertz time-domain spectroscopic analysis of highly absorbing pigments in powder form based on our investigation of representative traditional Chinese pigments, such as azurite [blue-based color pigment], Chinese vermilion [red-based color pigment], and arsenic yellow [yellow-based color pigment]. To accurately extract the optical constants in the terahertz region of 0.1 - 3 THz, we carried out transmission measurements in such a way that intense absorption peaks did not completely suppress the transmission level. This required preparation of pellet samples with optimized thicknesses and material densities. In some cases, mixing the pigments with polyethylene powder was required to minimize absorption due to certain peak features. The resulting distortion-free terahertz spectra of the investigated set of pigment species exhibited well-defined unique spectral fingerprints. Our study will be useful to future efforts to establish non-destructive analysis methods of traditional pigments, to construct their spectral databases, and to apply these tools to restoration of cultural heritage materials.

  9. Ultrafast terahertz-induced response of GeSbTe phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Michael J. [Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Zalden, Peter [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chen, Frank [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Weems, Ben [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Chatzakis, Ioannis [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Xiong, Feng; Jeyasingh, Rakesh; Pop, Eric; Philip Wong, H.-S. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Hoffmann, Matthias C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut, RWTH Aachen University, 52056 Aachen (Germany); JARA–Fundamentals of Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M., E-mail: aaronl@stanford.edu [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-06-23

    The time-resolved ultrafast electric field-driven response of crystalline and amorphous GeSbTe films has been measured all-optically, pumping with single-cycle terahertz pulses as a means of biasing phase-change materials on a sub-picosecond time-scale. Utilizing the near-band-gap transmission as a probe of the electronic and structural response below the switching threshold, we observe a field-induced heating of the carrier system and resolve the picosecond-time-scale energy relaxation processes and their dependence on the sample annealing condition in the crystalline phase. In the amorphous phase, an instantaneous electroabsorption response is observed, quadratic in the terahertz field, followed by field-driven lattice heating, with Ohmic behavior up to 200 kV/cm.

  10. High-efficiency terahertz polarization devices based on the dielectric metasurface

    Science.gov (United States)

    Zhou, Jian; Wang, JingJing; Guo, Kai; Shen, Fei; Zhou, Qingfeng; Zhiping yin; Guo, Zhongyi

    2018-02-01

    Metasurfaces are composed of the subwavelength structures, which can be used to manipulate the amplitude, phase, and polarization of incident electromagnetic waves efficiently. Here, we propose a novel type of dielectric metasurface based on crystal Si for realizing to manipulate the terahertz wave, in which by varying the geometric sizes of the Si micro-bricks, the transmitting phase of the terahertz wave can almost span over the entire 2π range for both of the x-polarization and y-polarization simultaneously, while keeping the similarly high-transmission amplitudes (over 90%). At the frequency of 1.0 THz, we have successfully designed a series of controllable THz devices, such as the polarization-dependent beam splitter, polarization-independent beam deflector and the focusing lenses based on the designed metasurfaces. Our designs are easy to fabricate and can be promising in developing high-efficiency THz functional devices.

  11. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.

    Science.gov (United States)

    Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa

    2009-12-01

    We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.

  12. Terahertz polarizing beam splitter based on copper grating on polyimide substrate

    Science.gov (United States)

    Zhang, Mengen; Li, Xiangjun; Wang, Wentao; Liu, Jianjun; Hong, Zhi

    2012-12-01

    A terahertz polarizing beam splitter, based on a copper grating on polyimide (PI) substrate, was fabricated by the way of laser induced and non-electrolytic plating. The good polarization characteristics of the splitter in the range of 0°-180°polarization are verified experimentally using backward wave oscillator at fixed frequency of 300GHz, and the insertion losses of 0.13dB and 0.32dB are measured for the transmitted and reflected beams, respectively. The broadband transmission of TM wave of the splitter was also measured by terahertz time-domain spectroscopy, and the extinction ratio larger than 22dB is obtained in the frequency range of 0.2-1.5THz. The experiment results are in good agreement with finite element simulation results.

  13. Optically and thermally controlled terahertz metamaterial via transition between direct and indirect electromagnetically induced transparency

    Directory of Open Access Journals (Sweden)

    Jiawei Sui

    2014-12-01

    Full Text Available This passage presents a design of tunable terahertz metamaterials via transition between indirect and direct electromagnetically induced transparency (EIT effects by changing semiconductor InSb’s properties to terahertz wave under optical and thermal stimuli. Mechanical model and its electrical circuit model are utilized in analytically calculating maximum transmission of transparency window. Simulated results show consistency with the analytical expressions. The results show that the metamaterials hold 98.4% modulation depth at 189 GHz between 300 K, σInSb =256000 S/m, and 80 K, σInSb =0.0162 S/m conditions , 1360 ps recovery time of the excited electrons in InSb under optical stimulus at 300 K mainly considering the direct EIT effect, and minimum bandwidth 1 GHz.

  14. Manipulating the strength and broadband of the resonators in the terahertz metamaterials

    Science.gov (United States)

    Liu, Changxiang; Zhou, Qingli; Li, Chenyu; Zhang, Cunlin

    2018-01-01

    We investigate two dipoles which are attached or separated with the orthogonal arrangement in the terahertz frequency. These results show that the metasurface could achieve the resonance coupling and polarization conversion effect. There are two resonance dips in the transmission spectra, when these two dipoles are attached to form the L-shaped structure. With the spacing between vertical and horizontal dipoles separated, the broadband of the resonator becomes narrower and resonance dips merge into one deeper dip due to the superposition of the interaction of two dipoles. The loss of the energy is not only coupled to the free space but also converted to the cross-polarization. The broadband and the strength of the crosspolarization are modulated by changing the distance between the vertical and horizontal dipoles. Tuning the spacing, we control the co- and cross polarization of the broadband and the strength at the same time. This modulation provides the functionally potential applications in the terahertz modulators and filters.

  15. Terahertz transport dynamics of graphene charge carriers

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due

    The electronic transport dynamics of graphene charge carriers at femtosecond (10-15 s) to picosecond (10-12 s) time scales are investigated using terahertz (1012 Hz) time-domain spectroscopy (THz-TDS). The technique uses sub-picosecond pulses of electromagnetic radiation to gauge the electrodynamic...... response of thin conducting films at up to multi-terahertz frequencies. In this thesis THz-TDS is applied towards two main goals; (1) investigation of the fundamental carrier transport dynamics in graphene at femtosecond to picosecond timescales and (2) application of terahertz time-domain spectroscopy...... to rapid and non-contact electrical characterization of large-area graphene, relevant for industrial integration. We show that THz-TDS is an accurate and reliable probe of graphene sheet conductance, and that the technique provides insight into fundamental aspects of the nanoscopic nature of conduction...

  16. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  17. Convergence of Terahertz Sciences in Biomedical Systems

    CERN Document Server

    Kim, Yong; Han, Haewook; Han, Joon; Ahn, Jaewook; Son, Joo-Hiuk; Park, Woong-Yang; Jeong, Young

    2012-01-01

    Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contr...

  18. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision......-induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric...... function of liquids at terahertz frequencies. We will review the current understanding of the high-frequency dielectric spectrum of water, and discuss the relation between the dielectric spectrum and the thermodynamic properties of certain aqueous solutions....

  19. Reconfigurable metamaterials for terahertz wave manipulation

    Science.gov (United States)

    Hashemi, Mohammed R.; Cakmakyapan, Semih; Jarrahi, Mona

    2017-09-01

    Reconfigurable metamaterials have emerged as promising platforms for manipulating the spectral and spatial properties of terahertz waves without being limited by the characteristics of naturally existing materials. Here, we present a comprehensive overview of various types of reconfigurable metamaterials that are utilized to manipulate the intensity, phase, polarization, and propagation direction of terahertz waves. We discuss various reconfiguration mechanisms based on optical, electrical, thermal, and mechanical stimuli while using semiconductors, superconductors, phase-change materials, graphene, and electromechanical structures. The advantages and disadvantages of different reconfigurable metamaterial designs in terms of modulation efficiency, modulation bandwidth, modulation speed, and system complexity are discussed in detail.

  20. Parametric decay of an extraordinary electromagnetic wave in relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dorofeenko, V. G. [Institute for Advanced Studies (Austria); Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Peoples’ Friendship University of Russia (Russian Federation)

    2015-03-15

    Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.

  1. Extraordinary Hall-effect in colloidal magnetic nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Gur, Leah; Tirosh, Einat [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Segal, Amir [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Markovich, Gil, E-mail: gilmar@post.tau.ac.il [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Gerber, Alexander, E-mail: gerber@post.tau.ac.il [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel)

    2017-03-15

    Colloidal nickel nanoparticles (NPs) coated with polyvinylpyrrolidone (PVP) were synthesized. The nanoparticle dispersions were deposited on substrates and dried under mild heating to form conductive films. The films exhibited very small coercivity, nearly metallic conductivity, and a significant extraordinary Hall effect signal. This method could be useful for preparing simple, printed magnetic field sensors with the advantage of relatively high sensitivity around zero magnetic field, in contrast to magnetoresistive sensors, which have maximal field sensitivity away from zero magnetic field. - Highlights: • Ni nanoparticle ink capable of forming conductive films on drying. • The Ni nanoparticle films exhibit significant extraordinary Hall effect. • This system could be used for preparing printed magnetic field sensors integrated in 3D printed structures.

  2. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    Science.gov (United States)

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-08-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators.

  3. The League of Extraordinary Gentlemen as (Literary) History

    DEFF Research Database (Denmark)

    Backe, Hans-Joachim

    2017-01-01

    Alan Moore and Kevin O’Neill’s series The League of Extraordinary Gentlemen, published since 1999, depicts a world which is populated by characters of fiction, from Allan Quatermain and Captain Nemo to James Bond and Harry Potter. The result is not only a meta-fictional bricolage of cornerstones ...... about the feedback between history and literary history through the lens of comics and the medium’s own development....

  4. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    Science.gov (United States)

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  5. Anomalous extinction in index-matched terahertz nanogaps

    Science.gov (United States)

    Jeong, Jeeyoon; Kim, Dasom; Park, Hyeong-Ryeol; Kang, Taehee; Lee, Dukhyung; Kim, Sunghwan; Bahk, Young-Mi; Kim, Dai-Sik

    2018-01-01

    Slot-type nanogaps have been widely utilized in transmission geometry because of their advantages of exclusive light funneling and exact quantification of near-field enhancement at the gap. For further application of the nanogaps in electromagnetic interactions with various target materials, complementary studies on both transmission and reflection properties of the nanogaps are necessary. Here, we observe an anomalous extinction of terahertz waves interacting with rectangular ring-shaped sub-30 nm wide gaps. Substrate works as an index matching layer for the nanogaps, leading to a stronger field enhancement and increased nonlinearity at the gap under substrate-side illumination. This effect is expressed in reflection as a larger dip at the resonance, caused by destructive interference of the diffracted field from the gap with the reflected beam from the metal. The resulting extinction at the resonance is larger than 60% of the incident power, even without any absorbing material in the whole nanogap structure. The extinction even decreases in the presence of an absorbing medium on top of the nanogaps, suggesting that transmission and reflection from nanogaps might not necessarily represent the absorption of the whole structure.

  6. Methodological Approach Into Researching Traffic Under Extraordinary Security Circumstances

    Directory of Open Access Journals (Sweden)

    Peter-Anthony Ercegovac

    2008-09-01

    Full Text Available The complexity of researching traffic under extraordinaryconditions in order to implement a more efficient and functionaltraffic management strategy under both normal and irregularconditions- as well as the grey zone of when the changefrom normal into extraordinary traffic conditions actually occur-provides the researcher with numerous methodologicalproblems.Starting from the viewpoint that the field of traffic scienceneeds an increase into the capacity of research into traffic underextraordinary conditions we have chosen to define withinthis article a specific methodological approach that undertakesa study into the exposure, menace, threat and risk faced by trafficsystems under extraordinary conditions through utilisingmethods utilised by the military that allow for the possible resolutionof such problems through compatible testing of both simulatedand real life conditions that such systems may face.In searching for possible applicable solutions to such demandingparametres we believe that the use of concrete informationin real time and real space in order to bring about amore efficient functioning of traffic under extraordinary conditionscan be achieved through the use of the analytical capacityof traffic systems information gathering attained through theusage of Uninhabited Flying Vehicles (UFVs in monitoringroad, rail and maritime traffic and transport.

  7. Tunable plasmonic toroidal terahertz metamodulator

    Science.gov (United States)

    Gerislioglu, Burak; Ahmadivand, Arash; Pala, Nezih

    2018-04-01

    Optical modulators are essential and strategic parts of micro- and nanophotonic circuits to encode electro-optical signals in the optical domain. Here, by using arrays of multipixel toroidal plasmonic terahertz (THz) metamolecules, we developed a functional plasmonic metamodulator with high efficiency and tunability. Technically, the dynamic toroidal dipole induces nonradiating charge-current arrangements leading to have an exquisite role in defining the inherent spectral features of various materials. By categorizing in a different family of multipoles far from the traditional electromagnetic multipoles, the toroidal dipole corresponds to poloidal currents flowing on the surface of a closed-loop torus. Utilizing the sensitivity of the optically driven toroidal momentum to the incident THz beam power and by employing both numerical tools and experimental analysis, we systematically studied the spectral response of the proposed THz plasmonic metadevice. In this Rapid Communication, we uncover a correlation between the existence and the excitation of the toroidal response and the incident beam power. This mechanism is employed to develop THz toroidal metamodulators with a strong potential to be employed for practical advanced and next-generation communication, filtering, and routing applications.

  8. Terahertz wave reflective sensing and imaging

    Science.gov (United States)

    Zhong, Hua

    Sensing and imaging technologies using terahertz (THz) radiation have found diverse applications as they approach maturity. Since the burgeoning of this technique in the 1990's, many THz sensing and imaging investigations have been designed and conducted in transmission geometry, which provides sufficient phase and amplitude contrast for the study of the spectral properties of targets in the THz domain. Driven by rising expectations that THz technology will be a potential candidate in the next generation of security screening, remote sensing, biomedical imaging and non-destructive testing (NDT), most THz sensing and imaging modalities are being extended to reflection geometry, which offers unique and adaptive solutions, and multi-dimensional information in many real scenarios. This thesis takes an application-focused approach to the advancement of THz wave reflective sensing and imaging systems: The absorption signature of the explosive material hexahydro-1,3,5-trinitro-1,3,5triazine (RDX) is measured at 30 m---the longest standoff distance so far attained by THz time-domain spectroscopy (THz-TDS). The standoff distance sensing ability of THz-TDS is investigated along with discussions specifying the influences of a variety of factors such as propagation distance, water vapor absorption and collection efficiency. Highly directional THz radiation from four-wave mixing in laser-induced air plasmas is first observed and measured, which provides a potential solution for the atmospheric absorption effect in standoff THz sensing. The simulations of the beam profiles also illuminate the underlying physics behind the interaction of the optical beam with the plasma. THz wave reflective spectroscopic focal-plane imaging is realized the first time. Absorption features of some explosives and related compounds (ERCs) and biochemical materials are identified by using adaptive feature extraction method. Good classification results using multiple pattern recognition methods are

  9. Terahertz plasmonics with semiconductor surfaces and antennas

    NARCIS (Netherlands)

    Gómez Rivas, J.; Berrier, A.

    2009-01-01

    Semiconductors have a Drude-like behavior at terahertz (THz) frequencies similar to metals at optical frequencies. Narrow band gap semiconductors have a dielectric constant with a negative real component and a relatively small imaginary component. This permittivity is characteristic of noble metals

  10. Terahertz radiation in alkali vapor plasmas

    International Nuclear Information System (INIS)

    Sun, Xuan; Zhang, X.-C.

    2014-01-01

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization

  11. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation.

    Science.gov (United States)

    Wan, W J; Li, H; Cao, J C

    2018-01-22

    The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.

  12. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying; Xu, Yuehong; Tian, Chunxiu; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  13. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying

    2017-12-11

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  14. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  15. Semiconductor terahertz technology devices and systems at room temperature operation

    CERN Document Server

    Carpintero, G; Hartnagel, H; Preu, S; Raisanen, A

    2015-01-01

    Key advances in Semiconductor Terahertz (THz) Technology now promises important new applications enabling scientists and engineers to overcome the challenges of accessing the so-called "terahertz gap".  This pioneering reference explains the fundamental methods and surveys innovative techniques in the generation, detection and processing of THz waves with solid-state devices, as well as illustrating their potential applications in security and telecommunications, among other fields. With contributions from leading experts, Semiconductor Terahertz Technology: Devices and Systems at Room Tempe

  16. Millimeter-Wave/Terahertz Circuits and Systems for Wireless Communication

    OpenAIRE

    Thyagarajan, Siva Viswanathan

    2014-01-01

    The ubiquitous use of electronic devices has led to an explosive increase in the amount of data transfer across the globe. Several applications such as media sharing, cloud computing, Internet of things (IoT), big-data applications demand high performance interconnects to achieve high data rate communication. The mm-wave/terahertz band offers several gigahertz of spectrum for high data rate communication applications. This thesis explores millimeter-wave/terahertz circuits and terahertz syste...

  17. Freeform Fabrication of Magnetophotonic Crystals with Diamond Lattices of Oxide and Metallic Glasses for Terahertz Wave Control by Micro Patterning Stereolithography and Low Temperature Sintering

    Directory of Open Access Journals (Sweden)

    Maasa Nakano

    2013-04-01

    Full Text Available Micrometer order magnetophotonic crystals with periodic arranged metallic glass and oxide glass composite materials were fabricated by stereolithographic method to reflect electromagnetic waves in terahertz frequency ranges through Bragg diffraction. In the fabrication process, the photo sensitive acrylic resin paste mixed with micrometer sized metallic glass of Fe72B14.4Si9.6Nb4 and oxide glass of B2O3·Bi2O3 particles was spread on a metal substrate, and cross sectional images of ultra violet ray were exposed. Through the layer by layer stacking, micro lattice structures with a diamond type periodic arrangement were successfully formed. The composite structures could be obtained through the dewaxing and sintering process with the lower temperature under the transition point of metallic glass. Transmission spectra of the terahertz waves through the magnetophotonic crystals were measured by using a terahertz time domain spectroscopy.

  18. Systematic study of terahertz time-domain spectra of historically informed black inks.

    Science.gov (United States)

    Bardon, Tiphaine; May, Robert K; Taday, Philip F; Strlič, Matija

    2013-09-07

    The potential of terahertz-time domain spectroscopy (THz-TDS) as a diagnostic tool for studies of inks in historical documents is investigated in this paper. Transmission mode THz-TDS was performed on historically informed model writing and drawing inks. Carbon black, bistre and sepia inks show featureless spectra between 5 and 75 cm(-1) (0.15-2.25 THz); however, their analysis still provided useful information on the interaction of terahertz radiation with amorphous materials. On the other hand, THz-TDS can be used to distinguish different iron gall inks with respect to the amount of iron(II) sulfate contained, as sharp spectral features are observed for inks containing different ratios of iron(II) sulfate to tannic or gallic acid. Additionally, copper sulfate was found to modify the structure of iron(II) precipitate. Furthermore, Principal Component Analysis (PCA) applied to THz-TDS spectra, highlights changes in iron gall inks during thermal degradation, during which a decrease in the sharp spectral bands associated with iron(II) sulfate is observed. ATR-FTIR spectroscopy combined with THz-TDS of dynamically heated ink samples indicate that this phenomenon is due to dehydration of iron(II) sulfate heptahydrate. While this research demonstrates the potential of THz-TDS to improve monitoring of the chemical state of historical documents, the outcomes go beyond the heritage field, as it also helps to develop the theoretical knowledge on interactions between terahertz radiation and matter, particularly in studies of long-range symmetry (polymorphism) in complex molecular structures and the role played by the surrounding matrix, and also indicates the potential of THz-TDS for the optimization of contrast in terahertz imaging.

  19. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying

    2017-06-15

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  20. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying; Li, Shaoxian; Xu, Quan; Tian, Chunxiu; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Ouyang, Chunmei; Han, Jiaguang; Zhang, Weili

    2017-01-01

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  1. Understanding Extraordinary Architectural Experiences through Content Analysis of Written Narratives

    Directory of Open Access Journals (Sweden)

    Brandon Richard Ro

    2015-12-01

    Full Text Available This study a identifies how people describe, characterize, and communicate in written form Extraordinary Architectural Experiences (EAE, and b expands the traditional qualitative approach to architectural phenomenology by demonstrating a quantitative method to analyze written narratives. Specifically, this study reports on the content analysis of 718 personal accounts of EAEs. Using a deductive, ‘theory-driven’ approach, these narratives were read, coded, and statistically analyzed to identify storyline structure, convincing power, and the relationship between subjective and objective experiential qualities used in the story-telling process. Statistical intercoder agreement tests were conducted to verify the reliability of the interpretations to approach the hard problem of “extraordinary aesthetics” in architecture empirically. The results of this study confirm the aesthetic nature of EAE narratives (and of told experiences by showing their higher dependence on external objective content (e.g., a building’s features and location rather than its internal subjective counterpart (e.g., emotions and sensations, which makes them more outwardly focused. The strong interrelationships and intercoder agreement between the thematic realms provide a unique aesthetic construct revealing EAE narratives as memorable, embodied, emotional events mapped by the externally focused content of place, social setting, time, and building features. A majority of EAE narratives were found to possess plot-structure along with significant relationships to objective-subjective content that further grounded their storylines. This study concludes that content analysis provides not only a valid method to understand written narratives about extraordinary architectural experiences quantitatively, but also a view as to how to map the unique nature of aesthetic phenomenology empirically.

  2. Stresses on nuclear power plant buildings by extraordinary events

    International Nuclear Information System (INIS)

    Woelfel, E.

    1977-01-01

    Nuclear power plant buildings must be functional to such an extend that even after the occurence of extraordinary events (earthquake, airoplane crash, gas cloud explosion), the reactor can be safety shut off, in order to avoid danger from the nuclear power plant. Evidence for this can only be given by calculations which shall meet the following requirements: The calculation results shall be safe and reliable. The calculation effort shall match the realizable accuracy. The calculation shall lead to an economical determination. An example of ascertainment of nuclear power plants in regard to earthquakes, shows the difficulties standing against a fulfillment of these requirements. (orig.) [de

  3. All-dielectric band stop filter at terahertz frequencies

    Science.gov (United States)

    Yin, Shan; Chen, Lin

    2018-01-01

    We design all-dielectric band stop filters with silicon subwavelength rod and block arrays at terahertz frequencies. Supporting magnetic dipole resonances originated from the Mia resonance, the all-dielectric filters can modulate the working band by simply varying the structural geometry, while eliminating the ohmic loss induced by the traditional metallic metamaterials and uninvolved with the complicated mechanism. The nature of the resonance in the silicon arrays is clarified, which is attributed to the destructive interference between the directly transmitted waves and the waves emitted from the magnetic dipole resonances, and the resonance frequency is determined by the dielectric structure. By particularly designing the geometrical parameters, the profile of the transmission spectrum can be tailored, and the step-like band edge can be obtained. The all-dielectric filters can realize 93% modulation of the transmission within 0.04 THz, and maintain the bandwidth of 0.05 THz. This work provides a method to develop THz functional devices, such as filters, switches and sensors.

  4. Nanoplasmonic-gold-cylinder-array-enhanced terahertz source

    Science.gov (United States)

    Zhiguang, Ao; Jinhai, Sun; He, Cai; Guofeng, Song; Jiakun, Song; Yuzhi, Song; Yun, Xu

    2016-12-01

    Photoconductive antennas (PCAs) based on nanoplasmonic gratings contact electrodes have been proposed to satisfy the demand for high power, efficiency and responsivity terahertz (THz) sources. Reducing the average photo-generated carrier transport path to the photoconductor contact electrodes was previously considered the dominant mechanism to improve PCAs' power. However, considering the bias in a real device, the electric field between gratings is limited and the role of surface plasmonic resonance (SPR) field enhancement is more important in improving THz radiation. This paper, based on SPR, analyzes the interaction between incident light and substrate in nano cylinder array PCAs and clearly shows that the SPR can enhance the light absorption in the substrate. After the optimization of the structure size, the proposed structure can offer 87% optical transmission into GaAs substrate. Compared with conventional PCAs, the optical transmission into the substrate will increase 5.8 times and the enhancement factor of substrate absorption will reach 13.7 respectively. Project supported by the National Basic Research Program of China (Nos. 2015CB351902, 2015CB932402), the National Key Research Program of China (No. 2011ZX01015-001), and the National Natural Science Foundation of China (No. U143231).

  5. Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots

    KAUST Repository

    Toma, Andrea

    2015-01-14

    Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 μm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies.

  6. Electromagnetic Saturation of Angstrom-Sized Quantum Barriers at Terahertz Frequencies

    Science.gov (United States)

    Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Jiyeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2015-09-01

    Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ /10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V. Electron tunneling facilitated by the transient electric field strongly modifies the gap index, starting a self-limiting process related to the barrier height. Our work enables greater interplay between classical optics and quantum tunneling, and provides optical indices to the van der Waals gaps.

  7. Electromagnetic Saturation of Angstrom-Sized Quantum Barriers at Terahertz Frequencies.

    Science.gov (United States)

    Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Jiyeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2015-09-18

    Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ/10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V. Electron tunneling facilitated by the transient electric field strongly modifies the gap index, starting a self-limiting process related to the barrier height. Our work enables greater interplay between classical optics and quantum tunneling, and provides optical indices to the van der Waals gaps.

  8. Quantification of a cardiac biomarker in human serum using extraordinary optical transmission (EOT.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Nanoimprinting lithography (NIL is a manufacturing process that can produce macroscale surface areas with nanoscale features. In this paper, this technique is used to solve three fundamental issues for the application of localized surface plasmonic resonance (LSPR in practical clinical measurements: assay sensitivity, chip-to-chip variance, and the ability to perform assays in human serum. Using NIL, arrays of 140 nm square features were fabricated on a sensing area of 1.5 mm x 1.5 mm with low cost. The high reproducibility of NIL allowed for the use of a one-chip, one-measurement approach with 12 individually manufactured surfaces with minimal chip-to-chip variations. To better approximate a real world setting, all chips were modified with a biocompatible, multi-component monolayer and inter-chip variability was assessed by measuring a bioanalyte standard (2.5-75 ng/ml in the presence of a complex biofluid, human serum. In this setting, nanoimprinted LSPR chips were able to provide sufficient characteristics for a 'low-tech' approach to laboratory-based bioanalyte measurement, including: 1 sufficient size to interface with a common laboratory light source and detector without the need for a microscope, 2 high sensitivity in serum with a cardiac troponin limit of detection of 0.55 ng/ml, and 3 very low variability in chip manufacturing to produce a figure of merit (FOM of 10.5. These findings drive LSPR closer to technical comparability with ELISA-based assays while preserving the unique particularities of a LSPR based sensor, suitability for multiplexing and miniaturization, and point-of-care detections.

  9. Measurements of Effective Schottky Barrier in Inverse Extraordinary Optoconductance Structures

    Science.gov (United States)

    Tran, L. C.; Werner, F. M.; Solin, S. A.; Gilbertson, Adam; Cohen, L. F.

    2013-03-01

    Individually addressable optical sensors with dimensions as low as 250nm, fabricated from metal semiconductor hybrid structures (MSH) of AuTi-GaAs Schottky interfaces, display a transition from resistance decreasing with intensity in micron-scale sensors (Extraordinary Optoconductance, EOC) to resistance increasing with intensity in nano-scale sensors (Inverse Extraordinary Optoconductance I-EOC). I-EOC is attributed to a ballistic to diffusive crossover with the introduction of photo-induced carriers and gives rise to resistance changes of up to 9462% in 250nm devices. We characterize the photo-dependence of the effective Schottky barrier in EOC/I-EOC structures by the open circuit voltage and reverse bias resistance. Under illumination by a 5 mW, 632.8 nm HeNe laser, the barrier is negligible and the Ti-GaAs interface becomes Ohmic. Comparing the behavior of two devices, one with leads exposed, another with leads covered by an opaque epoxy, the variation in Voc with the position of the laser can be attributed to a photovoltaic effect of the lead metal and bulk GaAs. The resistance is unaffected by the photovoltaic offset of the leads, as indicated by the radial symmetry of 2-D resistance maps obtained by rastering a laser across EOC/IEOC devices. SAS has a financial interest in PixelEXX, a start-up company whose mission is to market imaging arrays.

  10. Age structure changes and extraordinary lifespan in wild medfly populations.

    Science.gov (United States)

    Carey, James R; Papadopoulos, Nikos T; Müller, Hans-Georg; Katsoyannos, Byron I; Kouloussis, Nikos A; Wang, Jane-Ling; Wachter, Kenneth; Yu, Wei; Liedo, Pablo

    2008-06-01

    The main purpose of this study was to test the hypotheses that major changes in age structure occur in wild populations of the Mediterranean fruit fly (medfly) and that a substantial fraction of individuals survive to middle age and beyond (> 3-4 weeks). We thus brought reference life tables and deconvolution models to bear on medfly mortality data gathered from a 3-year study of field-captured individuals that were monitored in the laboratory. The average time-to-death of captured females differed between sampling dates by 23.9, 22.7, and 37.0 days in the 2003, 2004, and 2005 field seasons, respectively. These shifts in average times-to-death provided evidence of changes in population age structure. Estimates indicated that middle-aged medflies (> 30 days) were common in the population. A surprise in the study was the extraordinary longevity observed in field-captured medflies. For example, 19 captured females but no reference females survived in the laboratory for 140 days or more, and 6 captured but no reference males survived in the laboratory for 170 days or more. This paper advances the study of aging in the wild by introducing a new method for estimating age structure in insect populations, demonstrating that major changes in age structure occur in field populations of insects, showing that middle-aged individuals are common in the wild, and revealing the extraordinary lifespans of wild-caught individuals due to their early life experience in the field.

  11. Miniature field deployable terahertz source

    Science.gov (United States)

    Mayes, Mark G.

    2006-05-01

    Developments in terahertz sources include compacted electron beam systems, optical mixing techniques, and multiplication of microwave frequencies. Although significant advances in THz science have been achieved, efforts continue to obtain source technologies that are more mobile and suitable for field deployment. Strategies in source development have approached generation from either end of the THz spectrum, from up-conversion of high-frequency microwave to down-conversion of optical frequencies. In this paper, we present the design of a THz source which employs an up-conversion method in an assembly that integrates power supply, electronics, and radiative component into a man-portable unit for situations in which a lab system is not feasible. This unit will ultimately evolve into a ruggedized package suitable for use in extreme conditions, e.g. temporary security check points or emergency response teams, in conditions where THz diagnostics are needed with minimal planning or logistical support. In order to meet design goals of reduced size and complexity, the inner workings of the unit ideally would be condensed into a monolithic active element, with ancillary systems, e.g. user interface and power, coupled to the element. To attain these goals, the fundamental component of our design is a THz source and lens array that may be fabricated with either printed circuit board or wafer substrate. To reduce the volume occupied by the source array, the design employs a metamaterial composed of a periodic lattice of resonant elements. Each resonant element is an LC oscillator, or tank circuit, with inductance, capacitance, and center frequency determined by dimensioning and material parameters. The source array and supporting electronics are designed so that the radiative elements are driven in-phase to yield THz radiation with a high degree of partial coherence. Simulation indicates that the spectral width of operation may be controlled by detuning of critical dimensions

  12. Terahertz Dynamics in Carbon Nanomaterials

    Science.gov (United States)

    Kono, Junichiro

    2012-02-01

    This NSF Partnerships for International Research and Education (PIRE) project supports a unique interdisciplinary and international partnership investigating terahertz (THz) dynamics in nanostructures. The 0.1 to 10 THz frequency range of the electromagnetic spectrum is where electrical transport and optical transitions merge, offering exciting opportunities to study a variety of novel physical phenomena in condensed matter. By combining THz technology and nanotechnology, we can advance our understanding of THz physics while improving and developing THz devices. Specifically, this PIRE research explores THz dynamics of electrons in carbon nanomaterials, namely, nanotubes and graphene --- low-dimensional, sp^2-bonded carbon systems with unique finite-frequency properties. Japan and the U.S. are global leaders in both THz research and carbon research, and stimulating cooperation is critical to further advance THz science and to commercialize products developed in the lab. However, obstacles exist for international collaboration --- primarily linguistic and cultural barriers --- and this PIRE project aims to address these barriers through the integration of our research and education programs. Our strong educational portfolio endeavours to cultivate interest in nanotechnology amongst young U.S. undergraduate students and encourage them to pursue graduate study and academic research in the physical sciences, especially those from underrepresented groups. Our award-winning International Research Experience for Undergraduates Program, NanoJapan, provides structured research internships in Japanese university laboratories with Japanese mentors --- recognized as a model international education program for science and engineering students. The project builds the skill sets of nanoscience researchers and students by cultivating international and inter-cultural awareness, research expertise, and specific academic interests in nanotechnology. U.S. project partners include Rice

  13. Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures

    Science.gov (United States)

    Chang, Chun-Chieh; Huang, Li; Nogan, John; Chen, Hou-Tong

    2018-05-01

    We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importance for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.

  14. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class...... in the silicon nanocrystal films is dominated by trapping at the Si/SiO2 interface states, occurring on a 1–100 ps time scale depending on particle size and hydrogen passivation......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...

  15. Terahertz broadband polarization converter based on metamaterials

    Science.gov (United States)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  16. Guided Terahertz Waves for Characterizing Explosives

    Science.gov (United States)

    2009-01-01

    Spectroscopy of Nanometer Water Layers,” Optics Letters 29, 1617–1619 (2004). 4 J. S. Melinger, N. Laman , S. Sree Harsha, and D. Grischkowsky, “Line...2006). 5 N. Laman , S. Sree Harsha, D. Grischkowsky, and J.S. Melinger, “7 GHz Resolution Waveguide THz Spectroscopy of Explosives Related Solids...Showing New Features,” Optics Express 16, 4094–4105 (2008). 6 J.S. Melinger, N. Laman , and D. Grischkowsky, “The Underlying Terahertz Vibrational

  17. Challenging Aspects of Terahertz Terabit Wireless Communications

    DEFF Research Database (Denmark)

    Yu, Xianbin; Galili, Michael; Jepsen, Peter Uhd

    The increasing demand on fast wireless communications, e.g. huge data file transferring and mobile broadband access, has driven wireless communication systems into a path towards Terabit era. Terahertz (THz) technology is promising due to its unique features, such as unlimited bandwidth available......, in terms of THz generation and link power budget. The THz atmospheric absorption is another critical issue to limit wireless communication range....

  18. Design of Integrated Circuits Approaching Terahertz Frequencies

    OpenAIRE

    Yan, Lei; Johansen, Tom Keinicke

    2013-01-01

    In this thesis, monolithic microwave integrated circuits(MMICs) are presented for millimeter-wave and submillimeter-wave or terahertz(THz) applications. Millimeter-wave power generation from solid state devices is not only crucial for the emerging high data rate wireless communications but also important for driving THz signal sources. To meet the requirement of high output power, amplifiers based on InP double heterojunction bipolar transistor (DHBT) devices from the III-V Lab in Marcoussic,...

  19. Terahertz spectroscopic investigation of Chinese herbal medicine

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xiaoli; Li Jiusheng, E-mail: forever-li@126.com [Centre for THz Research, China Jiliang University, Hangzhou 310018 (China)

    2011-02-01

    The absorption spectra of panax notoginseng and glycyrrhiza in the frequency range of 0.2{approx}1.6THz has been measured with terahertz time-domin spectroscopy at room temperature. Simultaneously, the corresponding theoretical spectra were given by using density functional theory methods. It was found that the absorption peaks of the two molecules obtained by theoretical were in good agreement with the experimental results.

  20. Ultrabroadband terahertz spectroscopy of a liquid crystal

    DEFF Research Database (Denmark)

    Vieweg, N.; Fischer, B. M.; Reuter, M.

    2012-01-01

    Liquid crystals (LCs) are becoming increasingly important for applications in the terahertz frequency range. A detailed understanding of the spectroscopic parameters of these materials over a broad frequency range is crucial in order to design customized LC mixtures for improved performance. We p...... show that the spectra are dominated by multiple strong spectral features mainly at frequencies above 4 THz, originating from intramolecular vibrational modes of the weakly LC molecules....

  1. Terahertz spectroscopic investigation of Chinese herbal medicine

    Science.gov (United States)

    Xiao-li, Zhao; Jiu-sheng, Li

    2011-02-01

    The absorption spectra of panax notoginseng and glycyrrhiza in the frequency range of 0.2~1.6THz has been measured with terahertz time-domin spectroscopy at room temperature. Simultaneously, the corresponding theoretical spectra were given by using density functional theory methods. It was found that the absorption peaks of the two molecules obtained by theoretical were in good agreement with the experimental results.

  2. Nanometer size field effect transistors for terahertz detectors

    International Nuclear Information System (INIS)

    Knap, W; Rumyantsev, S; Coquillat, D; Dyakonova, N; Teppe, F; Vitiello, M S; Tredicucci, A; Blin, S; Shur, M; Nagatsuma, T

    2013-01-01

    Nanometer size field effect transistors can operate as efficient resonant or broadband terahertz detectors, mixers, phase shifters and frequency multipliers at frequencies far beyond their fundamental cut-off frequency. This work is an overview of some recent results concerning the application of nanometer scale field effect transistors for the detection of terahertz radiation. (paper)

  3. Resonant Dipole Nanoantenna Arrays for Enhanced Terahertz Spectroscopy

    KAUST Repository

    Toma, A.

    2015-08-04

    Our recent studies on dipole nanoantenna arrays resonating in the terahertz frequency range (0.1 – 10 THz) will be presented. The main near- and far-field properties of these nanostructures will be shown and their application in enhanced terahertz spectroscopy of tiny quantities of nanomaterials will be discussed.

  4. Convergence of Photonics and Electronics for Terahertz Wireless Communications

    DEFF Research Database (Denmark)

    Salazar, Adrian Ruiz; Rommel, Simon; Anufriyev, E.

    2016-01-01

    Terahertz wireless communications are expected to offer the required high capacity and low latency performance necessary for short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: Convergence o...... of Electronics and Photonics Technologies Enabling Terahertz Applications....

  5. Characterization of European Lacquers by Terahertz (THz) Reflectometric Imaging

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Jepsen, Peter Uhd; Christensen, Mads C.

    2013-01-01

    In this study a European lacquerware replica has been investigated by terahertz (THz) reflectometric imaging. The inspected lacquerware is a wooden panel covered by multiple complex layers of lacquers and plaster. Utilizing pulsed Terahertz Time-Domain Imaging (THz-TDI) in reflection mode, we obs...

  6. Electro-optic measurement of terahertz pulse energy distribution

    NARCIS (Netherlands)

    Sun, J.H.; Gallacher, J.G.; Brussaard, G.J.H.; Lemos, N.; Issac, R.; Huang, Z.X.; Dias, J.M.; Jaroszynski, D.A.

    2009-01-01

    An accurate and direct measurement of the energy distribution of a low repetition rate terahertz electromagnetic pulse is challenging because of the lack of sensitive detectors in this spectral range. In this paper, we show how the total energy and energy density distribution of a terahertz

  7. TeraHertz imaging of hidden paint layers on canvas

    NARCIS (Netherlands)

    Adam, A.J.L.; Planken, P.C.M.; Meloni, S.; Dik, J.

    2009-01-01

    We show terahertz reflection images of hidden paint layers in a painting on canvas and compare the results with X-ray Radiography and Infrared Reflectography. Our terahertz measurements show strong reflections from both the canvas/paint interface and from the raw umber/lead white interface,

  8. Graphene geometric diodes for terahertz rectennas

    International Nuclear Information System (INIS)

    Zhu Zixu; Joshi, Saumil; Grover, Sachit; Moddel, Garret

    2013-01-01

    We demonstrate a new thin-film graphene diode called a geometric diode that relies on geometric asymmetry to provide rectification at 28 THz. The geometric diode is coupled to an optical antenna to form a rectenna that rectifies incoming radiation. This is the first reported graphene-based antenna-coupled diode working at 28 THz, and potentially at optical frequencies. The planar structure of the geometric diode provides a low RC time constant, on the order of 10 −15 s, required for operation at optical frequencies, and a low impedance for efficient power transfer from the antenna. Fabricated geometric diodes show asymmetric current–voltage characteristics consistent with Monte Carlo simulations for the devices. Rectennas employing the geometric diode coupled to metal and graphene antennas rectify 10.6 µm radiation, corresponding to an operating frequency of 28 THz. The graphene bowtie antenna is the first demonstrated functional antenna made using graphene. Its response indicates that graphene is a suitable terahertz resonator material. Applications for this terahertz diode include terahertz-wave and optical detection, ultra-high-speed electronics and optical power conversion. (paper)

  9. Graphene-based devices in terahertz science and technology

    International Nuclear Information System (INIS)

    Otsuji, T; Boubanga Tombet, S A; Satou, A; Fukidome, H; Suemitsu, M; Ryzhii, V; Sano, E; Popov, V; Ryzhii, M

    2012-01-01

    Graphene is a one-atom-thick planar sheet of a honeycomb carbon crystal. Its gapless and linear energy spectra of electrons and holes lead to nontrivial features such as giant carrier mobility and broadband flat optical response. In this paper, recent advances in graphene-based devices in terahertz science and technology are reviewed. First, the fundamental basis of the optoelectronic properties of graphene is introduced. Second, synthesis and crystallographic characterization of graphene material are described, particularly focused on the authors' original heteroepitaxial graphene-on-silicon technology. Third, nonequilibrium carrier relaxation and recombination dynamics in optically or electrically pumped graphene are described to introduce a possibility of negative-dynamic conductivity in a wide terahertz range. Fourth, recent theoretical advances towards the creation of current-injection graphene terahertz lasers are described. Fifth, the unique terahertz dynamics of the two-dimensional plasmons in graphene are described. Finally, the advantages of graphene devices for terahertz applications are summarized. (topical review)

  10. High mobility ZnO nanowires for terahertz detection applications

    International Nuclear Information System (INIS)

    Liu, Huiqiang; Peng, Rufang; Chu, Shijin; Chu, Sheng

    2014-01-01

    An oxide nanowire material was utilized for terahertz detection purpose. High quality ZnO nanowires were synthesized and field-effect transistors were fabricated. Electrical transport measurements demonstrated the nanowire with good transfer characteristics and fairly high electron mobility. It is shown that ZnO nanowires can be used as building blocks for the realization of terahertz detectors based on a one-dimensional plasmon detection configuration. Clear terahertz wave (∼0.3 THz) induced photovoltages were obtained at room temperature with varying incidence intensities. Further analysis showed that the terahertz photoresponse is closely related to the high electron mobility of the ZnO nanowire sample, which suggests that oxide nanoelectronics may find useful terahertz applications.

  11. Optimization of extraordinary optical absorption in plasmonic and dielectric structures

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole

    2013-01-01

    Extraordinary optical absorption (EOA) can be obtained by plasmonic surface structuring. However, studies that compare the performance of these plasmonic devices with similar structured dielectric devices are rarely found in the literature. In this work we show different methods to enhance the EOA...... by optimizing the geometry of the surface structuring for both plasmonic and dielectric devices, and the optimized performances are compared. Two different problem types with periodic structures are considered. The first case shows that strips of silicon on a surface can increase the absorption in an underlying...... it is important to compare the absorption performance of plasmonic devices with similarly structured dielectric devices in order to find the best possible solution....

  12. Heating tokamaks by parametric decay of intense extraordinary mode radiation

    International Nuclear Information System (INIS)

    Elder, G.B.; Perkins, F.W.

    1979-08-01

    Intense electron beam technology has developed coherent, very high power (350 megawatts) microwave sources at frequencies which are a modest fraction of the electron cyclotron frequency in tokamaks. Propagation into a plasma occurs via the extraordinary mode which is subject to parametric decay instabilities in the density range ω/sub o/ 2 2 < ω/sub o/(ω/sub o/ + Ω/sub e/). For an incident wave focused onto a hot spot by a dish antenna of radius rho, the effective threshold power P/sub o/ required to induced effective parametric heating is P/sub o/ approx. = 10 MW x/rho Ω/sub e//ω/sub o/ (T/sub e//1 keV)/sup 3/2/ where x denotes the distance to the hot spot

  13. U.S./China Bilateral Symposium on Extraordinary Floods

    Science.gov (United States)

    Kirby, W.

    Accurate appraisal of the risk of extreme floods has long been of concern to hydrologists and water resources managers in both the United States and China. In order to exchange information, assess current developments, and discuss further needs in extreme flood analysis, the U.S. Geological Survey (USGS) and the Bureau of Hydrology of the Ministry of Water Resources and Electric Power of the People's Republic of China (PRC) held the Bilateral Symposium on the Analysis of Extraordinary Flood Events, October 14-18, 1985, in Nanjing, China. Co-convenors of the symposium were Marshall E. Moss (USGS) and Hua Shiqian (Nanjing Research Institute of Hydrology). Liang Ruiju (East China Technical University of Water Resources) was executive secretary of the organizing committee. Participants included 23 U.S. delegates, 36 Chinese delegates, and five guests from other countries. Of the U.S. delegates, 13 were from federal agencies, seven were from universities, and three were private consultants. The U.S. National Science Foundation gave financial support to the nonfederal U.S. delegates. Major topics covered in the 52 papers presented included detection of historical floods and evaluation of the uncertainties in their peak discharges and times of occurrence,frequency analysis and design flood determination in the presence of extraordinary floods and historic floods, anduse of storm data in determining design storms and design floods, The symposium was followed by a 6-day study tour in central China, during which laboratories, field activities, and offices of various water resources agencies were visited and sites of documented historic floods on the Yangtze River and its tributaries were examined.

  14. A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study.

    Science.gov (United States)

    Moldosanov, Kamil; Postnikov, Andrei

    2016-01-01

    The need for practical and adaptable terahertz sources is apparent in the areas of application such as early cancer diagnostics, nondestructive inspection of pharmaceutical tablets, visualization of concealed objects. We outline the operation principle and suggest the design of a simple appliance for generating terahertz radiation by a system of nanoobjects - gold nanobars (GNBs) or nanorings (GNRs) - irradiated by microwaves. Our estimations confirm a feasibility of the idea that GNBs and GNRs irradiated by microwaves could become terahertz emitters with photon energies within the full width at half maximum of the longitudinal acoustic phononic DOS of gold (ca. 16-19 meV, i.e., 3.9-4.6 THz). A scheme of the terahertz radiation source is suggested based on the domestic microwave oven irradiating a substrate with multiple deposited GNBs or GNRs. The size of a nanoobject for optimal conversion is estimated to be approx. 3 nm (thickness) by approx. 100 nm (length of GNB, or along the GNR). This detailed prediction is open to experimental verification. An impact is expected onto further studies of interplay between atomic vibrations and electromagnetic waves in nanoobjects.

  15. A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study

    Directory of Open Access Journals (Sweden)

    Kamil Moldosanov

    2016-07-01

    Full Text Available Background: The need for practical and adaptable terahertz sources is apparent in the areas of application such as early cancer diagnostics, nondestructive inspection of pharmaceutical tablets, visualization of concealed objects. We outline the operation principle and suggest the design of a simple appliance for generating terahertz radiation by a system of nanoobjects – gold nanobars (GNBs or nanorings (GNRs – irradiated by microwaves.Results: Our estimations confirm a feasibility of the idea that GNBs and GNRs irradiated by microwaves could become terahertz emitters with photon energies within the full width at half maximum of the longitudinal acoustic phononic DOS of gold (ca. 16–19 meV, i.e., 3.9–4.6 THz. A scheme of the terahertz radiation source is suggested based on the domestic microwave oven irradiating a substrate with multiple deposited GNBs or GNRs.Conclusion: The size of a nanoobject for optimal conversion is estimated to be approx. 3 nm (thickness by approx. 100 nm (length of GNB, or along the GNR. This detailed prediction is open to experimental verification. An impact is expected onto further studies of interplay between atomic vibrations and electromagnetic waves in nanoobjects.

  16. Gradient metasurface for four-direction anomalous reflection in terahertz

    Science.gov (United States)

    Wang, Jiao; Jiang, Yannan

    2018-06-01

    In this paper, a four-direction anomalous reflection metasurface is proposed. The basic cells comprise of squares and circles, which are designed at various sizes and arranged in a super cell at regular spacing. Then, properly combining super cells molds a square phase gradient metasurface (PGM). It is mounted on an optical thickness gold mirror, which inhibits all light transmission. Markedly different from previously reported metasurfaces, the square PGM is characterized by four-direction reflection beams. It takes into consideration the normal incidence and the oblique incidence. For the normal incidence, that the degrees of the four reflection angles are identical is due to the x, - x, y and - y directional discontinuous phase gradients, and lies on the symmetric structure in the xoy plane, which is then revealed by the surface current distribution. Incident angles varying from -20° to 20°, the reflection angles are demonstrated in the oblique incidence. Moreover, the PGM is polarization-independent. The performance is attributed to the symmetry of structure, which is verified by Radar cross section. Simulated results prove that our method offers a simple and effective strategy for metasurface design in terahertz. The proposed PGM can aid in focused beams, steering beams, and shaped beams.

  17. Performance analysis of LDPC codes on OOK terahertz wireless channels

    Science.gov (United States)

    Chun, Liu; Chang, Wang; Jun-Cheng, Cao

    2016-02-01

    Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz (THz) wireless communications. An error control coding scheme based on low density parity check (LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate (BER) performance of an on-off keying (OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications. Project supported by the National Key Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61204135), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the National Science and Technology Major Project (Grant No. 2011ZX02707), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant No. 14530711300).

  18. Application of Terahertz Radiation to Soil Measurements: Initial Results

    Science.gov (United States)

    Dworak, Volker; Augustin, Sven; Gebbers, Robin

    2011-01-01

    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future. PMID:22163737

  19. Research on terahertz properties of rat brain tissue sections during dehydration

    Science.gov (United States)

    Cui, Gangqiang; Liang, Jianfeng; Zhao, Hongwei; Zhao, Xianghui; Chang, Chao

    2018-01-01

    Biological tissue sections are always kept in a system purged with dry nitrogen for the measurement of terahertz spectrum. However, the injected nitrogen will cause dehydration of tissue sections, which will affect the accuracy of spectrum measurement. In this paper, terahertz time-domain spectrometer is used to measure the terahertz spectra of rat brain tissue sections during dehydration. The changes of terahertz properties, including terahertz transmittance, refractive index and extinction coefficient during dehydration are also analyzed. The amplitudes of terahertz time-domain spectra increase gradually during the dehydration process. Besides, the terahertz properties show obvious changes during the dehydration process. All the results indicate that the injected dry nitrogen has a significant effect on the terahertz spectra and properties of tissue sections. This study contributes to further research and application of terahertz technology in biomedical field.

  20. Analysis of Experimentation Results on University Graduates' Readiness Formation to Act in Extraordinary Situations

    Science.gov (United States)

    Moloshavenko, Vera L.; Prozorova, Galina V.; Sienkiewicz, Lyudmila B.

    2016-01-01

    The article presents the experimentation on graduates' readiness formation to act in extraordinary situations conducted in the Tyumen Industrial University in training bachelors in "Oil and Gas Business". The criteria of graduates' readiness formation to act in extraordinary situations are the following: practicability, validity,…

  1. 78 FR 40665 - Cost Accounting Standards: CAS 413 Pension Adjustments for Extraordinary Events

    Science.gov (United States)

    2013-07-08

    ... Accounting Standards: CAS 413 Pension Adjustments for Extraordinary Events AGENCY: Cost Accounting Standards...: The Office of Federal Procurement Policy (OFPP), Cost Accounting Standards (CAS) Board, is conducting... Extraordinary Events. This is the first step in a four- step process that may result in a final rule. As part of...

  2. 40 CFR 80.73 - Inability to produce conforming gasoline in extraordinary circumstances.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Inability to produce conforming gasoline in extraordinary circumstances. 80.73 Section 80.73 Protection of Environment ENVIRONMENTAL... Gasoline § 80.73 Inability to produce conforming gasoline in extraordinary circumstances. In appropriate...

  3. A metamaterial terahertz modulator based on complementary planar double-split-ring resonator

    Science.gov (United States)

    Wang, Chang-hui; Kuang, Deng-feng; Chang, Sheng-jiang; Lin, Lie

    2013-07-01

    A metamaterial based on complementary planar double-split-ring resonator (DSRR) structure is presented and demonstrated, which can optically tune the transmission of the terahertz (THz) wave. Unlike the traditional DSRR metamaterials, the DSRR discussed in this paper consists of two split rings connected by two bridges. Numerical simulations with the finite-difference time-domain (FDTD) method reveal that the transmission spectra of the original and the complementary metamaterials are both in good agreement with Babinet's principle. Then by increasing the carrier density of the intrinsic GaAs substrate, the magnetic response of the complementary special DSRR metamaterial can be weakened or even turned off. This metamaterial structure is promised to be a narrow-band THz modulator with response time of several nanoseconds.

  4. Sexual conflict explains the extraordinary diversity of mechanisms regulating mitochondrial inheritance.

    Science.gov (United States)

    Radzvilavicius, Arunas L; Lane, Nick; Pomiankowski, Andrew

    2017-10-26

    Mitochondria are predominantly inherited from the maternal gamete, even in unicellular organisms. Yet an extraordinary array of mechanisms enforce uniparental inheritance, which implies shifting selection pressures and multiple origins. We consider how this high turnover in mechanisms controlling uniparental inheritance arises using a novel evolutionary model in which control of mitochondrial transmission occurs either during spermatogenesis (by paternal nuclear genes) or at/after fertilization (by maternal nuclear genes). The model treats paternal leakage as an evolvable trait. Our evolutionary analysis shows that maternal control consistently favours strict uniparental inheritance with complete exclusion of sperm mitochondria, whereas some degree of paternal leakage of mitochondria is an expected outcome under paternal control. This difference arises because mito-nuclear linkage builds up with maternal control, allowing the greater variance created by asymmetric inheritance to boost the efficiency of purifying selection and bring benefits in the long term. In contrast, under paternal control, mito-nuclear linkage tends to be much weaker, giving greater advantage to the mixing of cytotypes, which improves mean fitness in the short term, even though it imposes a fitness cost to both mating types in the long term. Sexual conflict is an inevitable outcome when there is competition between maternal and paternal control of mitochondrial inheritance. If evolution has led to complete uniparental inheritance through maternal control, it creates selective pressure on the paternal nucleus in favour of subversion through paternal leakage, and vice versa. This selective divergence provides a reason for the repeated evolution of novel mechanisms that regulate the transmission of paternal mitochondria, both in the fertilized egg and spermatogenesis. Our analysis suggests that the widespread occurrence of paternal leakage and prevalence of heteroplasmy are natural outcomes of

  5. Sensing of phase transition in medium with terahertz pulsed spectroscopy

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Fokina, Irina N; Fedorov, Aleksey K; Yurchenko, Stanislav O

    2014-01-01

    Phase state identification and phase transition registration in condensed matter are significant applications of terahertz spectroscopy. A set of fundamental and applied problems are associated with the phase state problem. Our report is devoted to the experimental analysis of the spectral characteristics of water and water solution during the phase transition from the solid state to the liquid state via the method of terahertz pulsed spectroscopy. In this work transformation of the sample spectral characteristics during the phase transition were observed and discussed. Possible application of terahertz pulsed spectroscopy as an effective instrument for phase transition sensing was considered

  6. Terahertz spectral unmixing based method for identifying gastric cancer

    Science.gov (United States)

    Cao, Yuqi; Huang, Pingjie; Li, Xian; Ge, Weiting; Hou, Dibo; Zhang, Guangxin

    2018-02-01

    At present, many researchers are exploring biological tissue inspection using terahertz time-domain spectroscopy (THz-TDS) techniques. In this study, based on a modified hard modeling factor analysis method, terahertz spectral unmixing was applied to investigate the relationships between the absorption spectra in THz-TDS and certain biomarkers of gastric cancer in order to systematically identify gastric cancer. A probability distribution and box plot were used to extract the distinctive peaks that indicate carcinogenesis, and the corresponding weight distributions were used to discriminate the tissue types. The results of this work indicate that terahertz techniques have the potential to detect different levels of cancer, including benign tumors and polyps.

  7. Terahertz wave manipulation based on multi-bit coding artificial electromagnetic surfaces

    Science.gov (United States)

    Li, Jiu-Sheng; Zhao, Ze-Jiang; Yao, Jian-Quan

    2018-05-01

    A polarization insensitive multi-bit coding artificial electromagnetic surface is proposed for terahertz wave manipulation. The coding artificial electromagnetic surfaces composed of four-arrow-shaped particles with certain coding sequences can generate multi-bit coding in the terahertz frequencies and manipulate the reflected terahertz waves to the numerous directions by using of different coding distributions. Furthermore, we demonstrate that our coding artificial electromagnetic surfaces have strong abilities to reduce the radar cross section with polarization insensitive for TE and TM incident terahertz waves as well as linear-polarized and circular-polarized terahertz waves. This work offers an effectively strategy to realize more powerful manipulation of terahertz wave.

  8. Terahertz identification and quantification of penicillamine enantiomers

    International Nuclear Information System (INIS)

    Ji Te; Zhao Hongwei; Chen Min; Xiao Tiqiao; Han Pengyu

    2013-01-01

    Identification and characterization of L-, D- and DL- penicillamine were demonstrated by Terahertz time-domain spectroscopy (THz-TDS). To understand the physical origins of the low frequency resonant modes, the density functional theory (DFT) was adopted for theoretical calculation. It was found that the collective THz frequency motions were decided by the intramolecular and intermolecular hydrogen bond interactions. Moreover, the quantification of penicillamine enantiomers mixture was demonstrated by a THz spectra fitting method with a relative error of less than 3.5%. This technique can be a valuable tool for the discrimination and quantification of chiral drugs in pharmaceutical industry. (authors)

  9. Terahertz Mapping of Microstructure and Thickness Variations

    Science.gov (United States)

    Roth, Donald J.; Seebo, Jeffrey P.; Winfree, William P.

    2010-01-01

    A noncontact method has been devised for mapping or imaging spatial variations in the thickness and microstructure of a layer of a dielectric material. The method involves (1) placement of the dielectric material on a metal substrate, (2) through-the-thickness pulse-echo measurements by use of electromagnetic waves in the terahertz frequency range with a raster scan in a plane parallel to the substrate surface that do not require coupling of any kind, and (3) appropriate processing of the digitized measurement data.

  10. Equivalent circuit analysis of terahertz metamaterial filters

    KAUST Repository

    Zhang, Xueqian

    2011-01-01

    An equivalent circuit model for the analysis and design of terahertz (THz) metamaterial filters is presented. The proposed model, derived based on LMC equivalent circuits, takes into account the detailed geometrical parameters and the presence of a dielectric substrate with the existing analytic expressions for self-inductance, mutual inductance, and capacitance. The model is in good agreement with the experimental measurements and full-wave simulations. Exploiting the circuit model has made it possible to predict accurately the resonance frequency of the proposed structures and thus, quick and accurate process of designing THz device from artificial metamaterials is offered. ©2011 Chinese Optics Letters.

  11. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented....... Utilizing photo-excited free carriers in silicon padsplaced in the capacitive gaps of split ring resonators, a dynamically modu-lated perfect absorber is designed and fabricated to operate in reflection.Large modulation depth (38% and 91%) in two absorption bands (with 97%and 92% peak absorption...

  12. Pulsed excitation terahertz tomography - multiparametric approach

    Science.gov (United States)

    Lopato, Przemyslaw

    2018-04-01

    This article deals with pulsed excitation terahertz computed tomography (THz CT). Opposite to x-ray CT, where just a single value (pixel) is obtained, in case of pulsed THz CT the time signal is acquired for each position. Recorded waveform can be parametrized - many features carrying various information about examined structure can be calculated. Based on this, multiparametric reconstruction algorithm was proposed: inverse Radon transform based reconstruction is applied for each parameter and then fusion of results is utilized. Performance of the proposed imaging scheme was experimentally verified using dielectric phantoms.

  13. Design of Integrated Circuits Approaching Terahertz Frequencies

    DEFF Research Database (Denmark)

    Yan, Lei

    In this thesis, monolithic microwave integrated circuits(MMICs) are presented for millimeter-wave and submillimeter-wave or terahertz(THz) applications. Millimeter-wave power generation from solid state devices is not only crucial for the emerging high data rate wireless communications but also...... heterodyne receivers with requirements of room temperature operation, low system complexity, and high sensitivity, monolithic integrated Schottky diode technology is chosen for the implementation of submillimeterwave components. The corresponding subharmonic mixer and multiplier for a THz radiometer system...

  14. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  15. Terahertz spectroscopy applied to food model systems

    DEFF Research Database (Denmark)

    Møller, Uffe

    Water plays a crucial role in the quality of food. Apart from the natural water content of a food product, the state of that water is very important. Water can be found integrated into the biological material or it can be added during production of the product. Currently it is difficult...... to differentiate between these types of water in subsequent quality controls. This thesis describes terahertz time-domain spectroscopy applied on aqueous food model systems, with particular focus on ethanol-water mixtures and confined water pools in inverse micelles....

  16. Extraordinary magnetoresistance in semiconductor/metal hybrids: A review

    KAUST Repository

    Sun, J.

    2013-02-13

    The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device\\'s performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed. 2013 by the authors.

  17. UFOs and nukes. Extraordinary encounters at nuclear weapons sites

    International Nuclear Information System (INIS)

    Hastings, Robert L.

    2015-01-01

    Everyone knows about the reported recovery of a crashed alien spaceship near Roswell, New Mexico in July 1947. However, most people are unaware that, at the time of the incident, Roswell Army Airfield was home to the world's only atomic bomber squadron, the 509th Bomb Group. Was this merely a coincidence? During the Cold War, the United States and the Soviet Union built thousands of the far more destructive hydrogen bombs, some of them a thousand times as destructive as the first atomic bombs dropped on Japan. If the nuclear standoff between the superpowers had erupted into World War III, human civilization - and perhaps the very survival of our species - would have been at risk. Did this ominous state of affairs come to the attention of outside observers? Was there a connection between the atomic bomber squadron based at Roswell and the reported crash of a UFO nearby? Did those who pilot the UFOs monitor the superpowers' nuclear arms race during the dangerous Cold War era? Do they scrutinize American and Russian weapons sites even now? UFOs and Nukes provides the startling and sometimes shocking answers to these questions. Veteran researcher Robert Hastings has investigated nuclear weapons-related UFO incidents for more than three decades and has interviewed more than 120 ex-US Air Force personnel, from former Airmen to retired Colonels, who witnessed extraordinary UFO encounters at nuclear weapons sites. Their amazing stories are presented here.

  18. Extraordinary experiences in its cultural and theoretical context.

    Science.gov (United States)

    von Lucadou, Walter; Wald, Franziska

    2014-06-01

    The growing complexity, opaqueness and specialization of many areas of life and - above all - a booming psychological and esoteric market create the necessity for counselling and advice for individuals who encounter so-called 'paranormal' experiences. These experiences are often interpreted as 'transpersonal' or 'spiritual', depending on the cultural background and religious traditions. The term 'spiritual crisis' has become a fashionable diagnosis with some transpersonal psychotherapists. Paranormal experiences, regardless of their acceptance of academic psychology and psychiatry, are still a taboo subject in society. The Parapsychological Counselling Office in Freiburg is a professional unit with governmental support, which helps individuals to cope with such experiences adequately. The work and responsibilities of the counselling centre are presented. A large collection of cases in the form of letters, which were sent in by individuals wanting to communicate their unusual or extraordinary experiences have been analysed. Some of the results are reported here. Finally, we discuss a special form of 'inexplicable experiences' based on a theoretical model. Its recommendations seem counter-intuitive but are ultimately successful. The model starts from a system-theoretical viewpoint and uses concepts such as complementarity and entanglement of generalized quantum theory (GQT) and the model of pragmatic information (MPI). Since it turned out that individuals who contact the counselling centre also offer their own interpretations and 'explanation', the question arises, how these resources can be used to help clients.

  19. Extraordinary Magnetoresistance in Semiconductor/Metal Hybrids: A Review

    Directory of Open Access Journals (Sweden)

    Jürgen Kosel

    2013-02-01

    Full Text Available The Extraordinary Magnetoresistance (EMR effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device’s performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed.

  20. Extraordinary Magnetoresistance in Semiconductor/Metal Hybrids: A Review

    Science.gov (United States)

    Sun, Jian; Kosel, Jürgen

    2013-01-01

    The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device’s performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed. PMID:28809321

  1. Studies on the resonant properties in the asymmetric dipole-array terahertz metamaterials

    Science.gov (United States)

    Chen, Wei; Zhou, Qingli; Li, Chenyu; Shi, Lan; Liu, Changxiang; Zhang, Cunlin

    2018-01-01

    Artificial metamaterials with appropriate design can exhibit unique electromagnetic phenomena which do not exist in natural materials. Some studies have shown that the method of breaking the geometric symmetry is capable to modify the electromagnetic response, such as the metamaterial induced transparency in the Fano resonators. In this work, by using the finite-difference time-domain method, we firstly simulate the process that terahertz wave interacts with double-bar structures, in which one bar length is fixed at 36 μm and the other bar length is set to be 12, 24, 36, 48, and 56 μm, respectively. The incident terahertz polarization is along the bar direction. Simulated results show when the variable bar length is less than 36 μm, there is only one obvious resonant dip in transmission spectrum. Meanwhile, with the decreased bar length, this dip frequency presents a slight blueshift. Additionally, by tuning the spacing vertical to bar direction between these two bars, it still exhibits one dip. This result indicates the short bar less than 36 μm does not play important role and the coupling between vertical bars is weak. However, when the variable bar length is larger than 36 μm there are two obvious Fano-shaped resonant dips. With the increased bar length, the low-frequency dip shows a remarkable redshift, while the high-frequency one is almost unchanged. By further tuning the bar spacing vertical to the bar direction, two dips always exist. This phenomenon implies that the coupling between horizontal bars is dominated in this process. Moreover, the metamaterial induced transparency window is found between two resonant dips. The appearance of the resonances is attributed to the excitation of trapped mode. Our obtained results indicate that such metamaterials with very simple configuration could also provide the potential application in the field of terahertz slow-light devices, amplitude and phase modulators.

  2. Tunable ultra-wideband terahertz filter based on three-dimensional arrays of H-shaped plasmonic crystals

    International Nuclear Information System (INIS)

    Yuan Cai; Xu Shi-Lin; Yao Jian-Quan; Zhao Xiao-Lei; Cao Xiao-Long; Wu Liang

    2014-01-01

    A face-to-face system of double-layer three-dimensional arrays of H-shaped plasmonic crystals is proposed, and its transmission and filtering properties are investigated in the terahertz regime. Simulation results show that our design has excellent filtering properties. It has an ultra-wide bandgap and passband with steep band-edges, and the transmittance of the passband and the forbidden band are very close to 1 and 0, respectively. As the distance between the two face-to-face plates increases, the resonance frequency exhibits a gradual blueshift from 0.88 THz to 1.30 THz. Therefore, we can dynamically control the bandwidths of bandgap and passband by adding a piezoelectric ceramic plate between the two crystal plates. Furthermore, the dispersion relations of modes and electric field distributions are presented to analyze the generation mechanisms of bandgaps and to explain the location of bandgaps and the frequency shift phenomenon. Due to the fact that our design can provide many resonant modes, the bandwidth of the bandgaps can be greatly broadened. This paper can serve as a valuable reference for the design of terahertz functional devices and three-dimensional terahertz metamaterials. (interdisciplinary physics and related areas of science and technology)

  3. High Power Room Temperature Terahertz Local Oscillator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  4. Drug detection by terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Duan Ruixin; Zhu Yiming; Zhao Hongwei

    2013-01-01

    Due to unique spectral region, functional imaging ability, excellent penetration and safety characteristics of terahertz radiation, the terahertz technology rapidly becomes a vital method to detect and analyze drugs. In this paper, firstly, we identify the functional groups of anti-diabetic drugs by density functional theory (DFT), HIPHOP models and experimental results from terahertz time-domain spectroscopy measurements. Secondly, we identify four kinds of herbs of radix curcumae by using the support vector machine (SVM) analysis. Besides, we analyze the absorption of anhydrous and hydrous glucose, and determine the state of water in the crystalized D-glucose·H 2 O through the results of differential scanning calorimetry measurement. Finally, we summarize the advantages and disadvantages of terahertz time-domain spectroscopy method in drug detection and analyzing. (authors)

  5. Metal Mesh Filters for Terahertz Receivers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objective of this SBIR program is to develop and demonstrate metal mesh filters for use in NASA's low noise receivers for terahertz astronomy and...

  6. Fabrication of photonic amorphous diamonds for terahertz-wave applications

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, Yuichiro; Abe, Hiroyuki; Kamimura, Yasushi; Edagawa, Keiichi, E-mail: edagawa@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2016-05-09

    A recently proposed photonic bandgap material, named “photonic amorphous diamond” (PAD), was fabricated in a terahertz regime, and its terahertz-wave propagation properties were investigated. The PAD structure was fabricated from acrylic resin mixed with alumina powder, using laser lithographic, micro-additive manufacturing technique. After fabrication, the resulting structure was dewaxed and sintered. The formation of a photonic bandgap at around 0.45 THz was demonstrated by terahertz time-domain spectroscopy. Reflecting the disordered nature of the random network structure, diffusive terahertz-wave propagation was observed in the passbands; the scattering mean-free path decreased as the frequency approached the band edge. The mean-free paths evaluated at the band edges were close to the Ioffe-Regel threshold value for wave localization.

  7. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    Science.gov (United States)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  8. Compact terahertz spectrometer based on disordered rough surfaces

    Science.gov (United States)

    Yang, Tao; Jiang, Bing; Ge, Jia-cheng; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei

    2018-01-01

    In this paper, a compact spectrometer based on disordered rough surfaces for operation in the terahertz band is presented. The proposed spectrometer consists of three components, which are used for dispersion, modulation and detection respectively. The disordered rough surfaces, which are acted as the dispersion component, are modulated by the modulation component. Different scattering intensities are captured by the detection component with different extent of modulation. With a calibration measurement process, one can reconstruct the spectra of the probe terahertz beam by solving a system of simultaneous linear equations. A Tikhonov regularization approach has been implemented to improve the accuracy of the spectral reconstruction. The reported broadband, compact, high-resolution terahertz spectrometer is well suited for portable terahertz spectroscopy applications.

  9. Nano-Antenna For Terahertz (THz) Medical Imaging Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — As a result of technological breakthroughs, research and applications in the Terahertz (THz) radiation system are experiencing explosive growth. The non-ionizing and...

  10. Terahertz Generation & Vortex Motion Control in Superconductors

    Science.gov (United States)

    Nori, Franco

    2005-03-01

    A grand challenge is to controllably generate electromagnetic waves in layered superconducting compounds because of its Terahertz frequency range. We propose [1] four experimentally realizable devices for generating continuous and pulsed THz radiation in a controllable frequency range. We also describe [2-4] several novel devices for controlling the motion of vortices in superconductors, including a reversible rectifier made of a magnetic-superconducting hybrid structure [4]. Finally, we summarize a study [5] of the friction force felt by moving vortices. 1) S. Savel'ev, V. Yampol'skii, A. Rakhmanov, F. Nori, Tunable Terahertz radiation from Josephson vortices, preprint 2) S. Savel'ev and F. Nori, Experimentally realizable devices for controlling the motion of magnetic flux quanta, Nature Mat. 1, 179 (2002) 3) S. Savel'ev, F. Marchesoni, F. Nori, Manipulating small particles, PRL 92, 160602 (2004); B. Zhu, F. Marchesoni, F. Nori, Controlling the motion of magnetic flux quanta, PRL 92, 180602 (2004) 4) J.E. Villegas, et al., Reversible Rectifier that Controls the Motion of Magnetic Flux Quanta, Science 302, 1188 (2003) 5) A. Maeda, et al., Nano-scale friction: kinetic friction of magnetic flux quanta and charge density waves, preprint

  11. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers.

    Science.gov (United States)

    Consolino, L; Taschin, A; Bartolini, P; Bartalini, S; Cancio, P; Tredicucci, A; Beere, H E; Ritchie, D A; Torre, R; Vitiello, M S; De Natale, P

    2012-01-01

    Optical frequency comb synthesizers have represented a revolutionary approach to frequency metrology, providing a grid of frequency references for any laser emitting within their spectral coverage. Extending the metrological features of optical frequency comb synthesizers to the terahertz domain would be a major breakthrough, due to the widespread range of accessible strategic applications and the availability of stable, high-power and widely tunable sources such as quantum cascade lasers. Here we demonstrate phase-locking of a 2.5 THz quantum cascade laser to a free-space comb, generated in a LiNbO(3) waveguide and covering the 0.1-6 THz frequency range. We show that even a small fraction (quantum cascade laser is sufficient to generate a beat note suitable for phase-locking to the comb, paving the way to novel metrological-grade terahertz applications, including high-resolution spectroscopy, manipulation of cold molecules, astronomy and telecommunications.

  12. Freely tunable broadband polarization rotator for terahertz waves.

    Science.gov (United States)

    Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping; Peng, Ru-Wen; Jiang, Shang-Chi; Xu, Di-Hu; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    2015-02-18

    A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Invisible Security Printing on Photoresist Polymer Readable by Terahertz Spectroscopy

    OpenAIRE

    Hee Jun Shin; Min-Cheol Lim; Kisang Park; Sae-Hyung Kim; Sung-Wook Choi; Gyeongsik Ok

    2017-01-01

    We experimentally modulate the refractive index and the absorption coefficient of an SU-8 dry film in the terahertz region by UV light (362 nm) exposure with time dependency. Consequently, the refractive index of SU-8 film is increased by approximately 6% after UV light exposure. Moreover, the absorption coefficient also changes significantly. Using the reflective terahertz imaging technique, in addition, we can read security information printed by UV treatment on an SU-8 film that is transpa...

  14. Graphene-based magnetless converter of terahertz wave polarization

    Science.gov (United States)

    Melnikova, Veronica S.; Polischuk, Olga V.; Popov, Vyacheslav V.

    2016-04-01

    The polarization conversion of terahertz radiation by the periodic array of graphene nanoribbons located at the surface of a high-refractive-index dielectric substrate (terahertz prism) is studied theoretically. Giant polarization conversion at the plasmon resonance frequencies takes place without applying external DC magnetic field. It is shown that the total polarization conversion can be reached at the total internal reflection of THz wave from the periodic array of graphene nanoribbons even at room temperature.

  15. Skirting terahertz waves in a photo-excited nanoslit structure

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, Mostafa, E-mail: mostafa.shalaby@psi.ch, E-mail: thomas.feurer@iap.unibe.ch [INRS-EMT, Varennes, Quebec J3X 1S2 (Canada); SwissFEL, Paul Scherrer Institut, Villigen 5232 (Switzerland); Fabiańska, Justyna; Feurer, Thomas, E-mail: mostafa.shalaby@psi.ch, E-mail: thomas.feurer@iap.unibe.ch [Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Peccianti, Marco [INRS-EMT, Varennes, Quebec J3X 1S2 (Canada); Department of Physics and Astronomy, University of Sussex, Pevensey Building II, 3A8, Falmer, Brighton BN1 9QH (United Kingdom); Ozturk, Yavuz; Vidal, Francois; Morandotti, Roberto [INRS-EMT, Varennes, Quebec J3X 1S2 (Canada); Sigg, Hans [LMN, Paul Scherrer Institut, Villigen 5232 (Switzerland)

    2014-04-28

    Terahertz fields can be dramatically enhanced as they propagate through nanometer-sized slits. The enhancement is mediated by a significant accumulation of the induced surface charges on the surrounding metal. This enhancement is shown here to be dynamically modulated while the nanoslits are gradually shunted using a copropagating optical beam. The terahertz fields are found to skirt the nanoscale photo-excited region underneath the slits, scattering to the far field and rigorously mapping the near field.

  16. Extraordinary proliferation of microorganisms in aposymbiotic pea aphids, Acyrthosiphon pisum.

    Science.gov (United States)

    Nakabachi, Atsushi; Ishikawa, Hajime; Kudo, Toshiaki

    2003-03-01

    Aposymbiotic pea aphids, which were deprived of their intracellular symbiotic bacterium, Buchnera, exhibit growth retardation and no fecundity. High performance liquid chromatographic (HPLC) analysis revealed that these aposymbiotic aphids, when reared on broad bean plants, accumulated a large amount of histamine. To assess the possibility of extraordinary proliferation of microorganisms other than Buchnera, we enumerated eubacteria and fungi in aphids using the real-time quantitative PCR method that targets genes encoding small-subunit rRNAs. The result showed that these microorganisms were extremely abundant in the aposymbiotic aphids reared on plants. Microbial communities in aposymbiotic aphids were further profiled by phylogenetic analysis of small-subunit rDNAs. Of 172 nonchimeric sequences of fungal 18S rDNAs, 138 (80.2%) belonged to the phylum Ascomycota. Among them, 21 clustered within a monophyletic group consisting of insect-pathogenic fungi and yeast-like symbionts of homopteran insects. Thirty-one (18.0%), two (1.2%), and one (0.6%) clones were clustered within the Basidiomycota, Zygomycota, and Oomycota, respectively. Of 167 nonchimeric sequences of eubacterial 16S rDNAs, 84 (50.3%) belonged to the gamma-subdivision of Proteobacteria to which most primary endosymbionts of insects and prolific histamine producers belong. Forty (24.0%), 25 (15.0%), 10 (6.0%), and five (3.0%) clones were clustered within alpha-Proteobacteria, Cytophaga-Flavobacterium-Bacteroides (CFB) group, Actinobacteria, and beta-Proteobacteria, respectively. Three had no phylogenetic association with known taxonomic divisions. None of the sequences studied in this study coincided exactly with those deposited in GenBank.

  17. Nanoantenna enhanced terahertz spectroscopy of a monolayer of cadmium selenide quantum dots

    KAUST Repository

    Razzari, Luca; Toma, Andrea; Tuccio, Salvatore; Prato, Mirko; De Donato, Francesco; Perucchi, Andrea; Di Pietro, Paola; Marras, Sergio; Liberale, Carlo; Proietti Zaccaria, Remo; De Angelis, Francesco De; Manna, Liberato; Lupi, Stefano; Di Fabrizio, Enzo M.

    2014-01-01

    Exploiting the localization and enhancement capabilities of terahertz resonant dipole nanoantennas coupled through nanogaps, we present an effective method to perform terahertz spectroscopy on an extremely small number of nano-objects.

  18. Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal

    Science.gov (United States)

    Jiu-Sheng, Li; Han, Liu; Le, Zhang

    2015-09-01

    Electromagnetic polarization conveys valuable information for signal processing. Manipulation of terahertz wavelength demultiplexer exhibits tremendous potential in developing application of terahertz science and technology. We propose an approach to separate efficiently four frequencies terahertz waves based on three cascaded directional coupling two-dimensional photonic crystal waveguides. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The simulation results show that the designed terahertz wavelength demultiplexer can split four different wavelengths of terahertz wave into different propagation directions with high transmittance and low crosstalk. The present device is very compact and the total size is 6.8×10.6 mm2. This enables the terahertz wavelength demultiplexer to be used in terahertz wave system and terahertz wave integrated circuit fields.

  19. Terahertz pulsed imaging for the monitoring of dental caries: a comparison with x-ray imaging

    Science.gov (United States)

    Karagoz, Burcu; Kamburoglu, Kıvanc; Altan, Hakan

    2017-07-01

    Dental caries in sliced samples are investigated using terahertz pulsed imaging. Frequency domain terahertz response of these structures consistent with X-ray imaging results show the potential of this technique in the detection of early caries.

  20. DMPD: Gram-negative endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1916089 Gram-negative endotoxin: an extraordinary lipid with profound effects oneuk...ep;5(12):2652-60. (.png) (.svg) (.html) (.csml) Show Gram-negative endotoxin: an extraordinary lipid with profound effects...tive endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. Authors Raetz

  1. A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier

    International Nuclear Information System (INIS)

    Li, Ke; Cao, Miaomiao; Liu, Wenxin; Wang, Yong

    2015-01-01

    A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effect is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics

  2. Exploiting total internal reflection geometry for efficient optical modulation of terahertz light

    Directory of Open Access Journals (Sweden)

    Xudong Liu

    2016-10-01

    Full Text Available Efficient methods to modulate terahertz (THz light are essential for realizing rapid THz imaging and communication applications. Here we report a novel THz modulator which utilizes the evanescent wave in a total internal reflection setup coupled with a conductive interface to enhance the attenuation efficiency of THz light. This approach makes it possible to achieve close to 100% modulation with a small interface conductivity of 12 mS. The frequency dependence of this technique is linked to the optical properties of the materials: a material with close to frequency independent conductivity that is also controllable will result in an achromatic modulation response, and the device performance can be optimized further by tuning the internal reflection angle. In this work, we focus on applying the technique in the terahertz frequency range. Using an LED array with a pump intensity of 475 mW/cm2 to produce carriers in a silicon wafer, we have achieved a modulation depth of up to 99.9% in a broad frequency range of 0.1 THz–0.8 THz. The required pumping power for the generation of the required free carriers is low because the sheet conductivity needed is far less than required for traditional transmission techniques. Consequently, the device can be modulated by an LED making it a very practical, low cost, and scalable solution for THz modulation.

  3. Carrier dynamics in silicon nanowires studied using optical-pump terahertz-probe spectroscopy

    Science.gov (United States)

    Beaudoin, Alexandre; Salem, Bassem; Baron, Thierry; Gentile, Pascal; Morris, Denis

    2014-03-01

    The advance of non-contact measurements involving pulsed terahertz radiation presents great interests for characterizing electrical properties of a large ensemble of nanowires. In this work, N-doped and undoped silicon nanowires (SiNWs) grown by chemical vapour deposition (CVD) on quartz substrate were characterized using optical-pump terahertz probe (OPTP) transmission experiments. Our results show that defects and ionized impurities introduced by N-doping the CVD-grown SiNWs tend to reduce the photoexcited carrier lifetime and degrade their conductivity properties. Capture mechanisms by the surface trap states play a key role on the photocarrier dynamics in theses small diameters' (~100 nm) SiNWs and the doping level is found to alter this dynamics. We propose convincing capture and recombination scenarios that explain our OPTP measurements. Fits of our photoconductivity data curves, from 0.5 to 2 THz, using a Drude-plasmon conductivity model allow determining photocarrier mobility values of 190 and 70 cm2/V .s, for the undoped and N-doped NWs samples, respectively.

  4. Wireless Underground Sensor Networks: Channel Modeling and Operation Analysis in the Terahertz Band

    Directory of Open Access Journals (Sweden)

    Mustafa Alper Akkaş

    2015-01-01

    Full Text Available Wireless underground sensor networks (WUSNs are networks of sensor nodes operating below the ground surface, which are envisioned to provide real-time monitoring capabilities in the complex underground environments consisting of soil, water, oil, and other components. In this paper, we investigate the possibilities and limitations of using WUSNs for increasing the efficiency of oil recovery processes. To realize this, millimeter scale sensor nodes with antennas at the same scale should be deployed in the confined oil reservoir fractures. This necessitates the sensor nodes to be operating in the terahertz (THz range and the main challenge is establishing reliable underground communication despite the hostile environment which does not allow the direct use of most existing wireless solutions. The major problems are extremely high path loss, small communication range, and high dynamics of the electromagnetic (EM waves when penetrating through soil, sand, and water and through the very specific crude oil medium. The objective of the paper is to address these issues in order to propose a novel communication channel model considering the propagation properties of terahertz EM waves in the complex underground environment of the oil reservoirs and to investigate the feasible transmission distances between nodes for different water-crude-oil-soil-CO2 compositions.

  5. Simultaneous determination of ordinary and extraordinary refractive index dispersions of nematic liquid crystals in the visible and near-infrared regions from an interference spectrum

    Science.gov (United States)

    Ozaki, Ryotaro; Nishi, Koji; Kan, Takayuki; Kadowaki, Kazunori

    2016-10-01

    An improved interference method is proposed to determine ordinary and extraordinary refractive index dispersions of nematic liquid crystals (LCs). In this method, an LC cell coated with a thin metal layer is used as a Fabry-Perot interferometer, which shows us a sharp transmission fringe. To ensure high reliability, the wavelength dispersion of the refractive index of the metal is taken into account in fitting calculation. In spite of measuring ordinary and extraordinary components, the LC cell, polarizers, and other equipment are not rotated during the experiment. The index evaluation from a single spectrum avoids errors depending on the measurement position owing to non-uniformities of molecular orientation and cell thickness because we can obtain the two indices at exactly the same position. This system can adapt to a wide frequency range and does not require any specific wavelength light source or laser. We demonstrate the determination of ordinary and extraordinary refractive index dispersions of a nematic liquid crystal in the visible and near-infrared regions. Furthermore, we quantitatively reproduce the measured spectrum by calculation using the measured refractive indices.

  6. Non-destructive evaluation of the hidden voids in integrated circuit packages using terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Jin-Wook

    2015-01-01

    In this work, a terahertz time-domain spectroscopy (THz-TDS) imaging technique was used as a non-destructive inspection method for detecting voids in integrated circuit (IC) packages. Transmission and reflection modes, with an angle of incidence of 30°, were used to detect voids in IC packages. The locations of the detected voids in the IC packages could be calculated by analyzing THz waveforms. Finally, voids that are positioned at the different interfaces in the IC package samples could be successfully detected and imaged. Therefore, this THz-TDS imaging technique is expected to be a promising technique for non-destructive evaluation of IC packages. (paper)

  7. Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals.

    Science.gov (United States)

    Bakunov, M I; Maslov, A V; Bodrov, S B

    2007-11-16

    We show that the usual Fresnel formulas for a free-propagating pulse are not applicable for a forced terahertz electromagnetic pulse supported by an optical pulse at the end of a nonlinear crystal. The correct linear reflection and transmission coefficients that we derive show that such pulses can experience a gain or loss at the boundary. This energy change depends on linear dielectric constants only. We also predict a regime where a complete disappearance of the forced pulse under oblique incidence occurs, an effect that has no counterpart for free-propagating pulses.

  8. Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser

    International Nuclear Information System (INIS)

    Dem'yanenko, M. A.; Esaev, D. G.; Knyazev, B. A.; Vinokurov, N. A.; Kulipanov, G. N.

    2008-01-01

    An uncooled microbolometer focal plane array (FPA) has been developed and used for imaging of objects illuminated by monochromatic coherent radiation of a free electron laser tunable in the range of 1.25-2.5 THz. A sensitivity threshold of 1.3x10 -3 W/cm 2 was obtained for the FPA with a homemade absolute interferometric power meter. Videos up to 90 frames/s were recorded in both transmission and reflection/scattering modes. When objects were illuminated by laser radiation scattered by a rough metal surface, speckled images were observed. Good quality terahertz images were achieved through the fast rotation of the scatterer

  9. Active Metamaterials for Terahertz Communication and Imaging

    Science.gov (United States)

    Rout, Saroj

    In recent years there has been significant interest in terahertz (THz) systems mostly due to their unique applications in communication and imaging. One of the primary reason for this resurgence is the use of metamaterials to design THz devices due to lack of natural materials that can respond to this electromagnetic spectrum, the so-called ''THz gap''. Even after years of intense research, THz systems are complex and expensive, unsuitable for mainstream applications. This work focuses on bridging this gap by building all solid-state THz devices for imaging and communication applications in a commercial integrated circuit (IC) technology. One such canonical device is a THz wave modulator that can be used in THz wireless communication devices and as spatial light modulator (SLM) for THz imaging systems. The key contribution of this thesis is a metamaterial based THz wave modulator fabricated in a commercial gallium arsenide (GaAs) process resonant at 0.46 THz using a novel approach of embedding pseudomorphic high electron mobility transistors (pHEMTs) in metamaterial and demonstrate modulation values over 30%, and THz modulation at frequencies up to 10 MHz. Using the THz wave modulator, we fabricated and experimentally demonstrated an all solid-state metamaterial based THz spatial light modulator (SLM) as a 2x2 pixel array operating around 0.46 THz, by raster scanning an occluded metal object in polystyrene using a single-pixel imaging setup. This was an important step towards building an low-voltage (1V), low power, on-chip integrable THz imaging device. Using the characterization result from the THz SLM, we computationally demonstrated a multi-level amplitude shift keying (ASK) terahertz wireless communication system using spatial light modulation instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. We show two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in

  10. A top-contacted extraordinary magnetoresistance sensor fabricated with an unpatterned semiconductor epilayer

    KAUST Repository

    Sun, Jian; Kosel, Jü rgen

    2013-01-01

    An extraordinary magnetoresistance device is developed from an unpatterned semiconductor epilayer onto which the metal contacts are fabricated. Compared with conventionally fabricated devices, for which semiconductor patterning and precise alignment

  11. Optimization of an extraordinary magnetoresistance sensor in the semiconductor-metal hybrid structure

    KAUST Repository

    Sun, Jian; Kosel, Jü rgen; Gooneratne, Chinthaka Pasan; Soh, Yeongah

    2010-01-01

    The purpose of this paper is to show by numerical computation how geometric parameters influence the Extraordinary Magnetoresistance (EMR) effect in an InAs-Au hybrid device. Symmetric IVVI and VIIV configurations were considered. The results show

  12. Extraordinary Magnetoresistance Effect in Semiconductor/Metal Hybrid Structure

    KAUST Repository

    Sun, Jian

    2013-06-27

    In this dissertation, the extraordinary magnetoresistance (EMR) effect in semiconductor/metal hybrid structures is studied to improve the performance in sensing applications. Using two-dimensional finite element simulations, the geometric dependence of the output sensitivity, which is a more relevant parameter for EMR sensors than the magnetoresistance (MR), is studied. The results show that the optimal geometry in this case is different from the geometry reported before, where the MR ratio was optimized. A device consisting of a semiconductor bar with length/width ratio of 5~10 and having only 2 contacts is found to exhibit the highest sensitivity. A newly developed three-dimensional finite element model is employed to investigate parameters that have been neglected with the two dimensional simulations utilized so far, i.e., thickness of metal shunt and arbitrary semiconductor/metal interface. The simulations show the influence of those parameters on the sensitivity is up to 10 %. The model also enables exploring the EMR effect in planar magnetic fields. In case of a bar device, the sensitivity to planar fields is about 15 % to 20 % of the one to perpendicular fields. 5 A “top-contacted” structure is proposed to reduce the complexity of fabrication, where neither patterning of the semiconductor nor precise alignment is required. A comparison of the new structure with a conventionally fabricated device shows that a similar magnetic field resolution of 24 nT/√Hz is obtained. A new 3-contact device is developed improving the poor low-field sensitivity observed in conventional EMR devices, resulting from its parabolic magnetoresistance response. The 3-contact device provides a considerable boost of the low field response by combining the Hall effect with the EMR effect, resulting in an increase of the output sensitivity by 5 times at 0.01 T compared to a 2-contact device. The results of this dissertation provide new insights into the optimization of EMR devices

  13. [Experimental Study of PMI Foam Composite Properties in Terahertz].

    Science.gov (United States)

    Xing, Li-yun; Cui, Hong-liang; Shi, Chang-cheng; Han, Xiao-hui; Zhang, Zi-yin; Li, Wei; Ma, Yu-ting; Zheng, Yan; Zhang, Song-nian

    2015-12-01

    Polymethacrylimide (PMI) foam composite has many excellent properties. Currently, PMI is heat-resistant foam, with the highest strength and stiffness. It is suitable as a high-performance sandwich structure core material. It can replace the honeycomb structure. It is widely used in aerospace, aviation, military, marine, automotive and high-speed trains, etc. But as new sandwich materials, PMI performance testing in the THz band is not yet visible. Based on the Terahertz (THz) time-domain spectroscopy technique, we conducted the transmission and reflection experiments, got the time domain waveforms and power density spectrum. And then we analyzed and compared the signals. The MATALB and Origin 8. 0 was used to calculate and obtain the transmittance (transfer function), absorptivity Coefficient, reflectance and the refractive index of the different thickness Degussa PMI (Model: Rohacell WF71), which were based on the application of the time-domain and frequency-domain analysis methods. We used the data to compared with the THz refractive index and absorption spectra of a domestic PMI, Baoding Meiwo Technology Development Co. , Ltd. (Model: SP1D80-P-30). The result shows that the impact of humidity on the measurement results is obvious. The refractive index of PMI is about 1. 05. The attenuation of power spectrum is due to the signal of the test platform is weak, the sample is thick and the internal scattering of PMI foam microstructure. This conclusion provides a theoretical basis for the THz band applications in the composite PMI. It also made a good groundwork for THz NDT (Non-Destructive Testing, NDT) technology in terms of PMI foam composites.

  14. The Concept of Extraordinary Crime in Indonesia Legal System: is The Concept An Effective Criminal Policy?

    Directory of Open Access Journals (Sweden)

    Vidya Prahassacitta

    2016-10-01

    Full Text Available The concept of extraordinary crime was a common concept in Indonesia. Adopts from the concept of the most serious crime in Rome Statute and adjusted with the Indonesian legal system. Then it developed wider and introduced into terrorism, corruption, drug abuse offenses, and child sexual abuse in legislations and Constitutional Court verdicts. The implementation of this concept generated some consequences in drafting and formulating the legislation as part of penal policy. This leads to two legal problems; first, what was the categorization of the concept of extraordinary crime? and second, what were the consequences of the concept extraordinary crime in accordance with penal policy?. Normative law research with literature study method, This was a conducted as the response of both legal problems. Using secondary data from legislation, Constitutional Court verdicts, book and journal, this research concludes that; the concept of extraordinary crime parts of criminal policy does not have any standard for the categorization. Then, as consequences of the implementation of the concept of extraordinary crime in several penal efforts are formulating in legislations. The penalty effort is not limited to criminalization and sentencing aspects but wider and shall be in line with the strategy of crime eradication and welfare protection purposes. To reach the effectiveness of the criminal policy of the concept of extraordinary crime, the penalty effort shall be in line with criminal law principles and human right basic principles.

  15. Terahertz imaging applied to cancer diagnosis

    Science.gov (United States)

    Brun, M.-A.; Formanek, F.; Yasuda, A.; Sekine, M.; Ando, N.; Eishii, Y.

    2010-08-01

    We report on terahertz (THz) time-domain spectroscopy imaging of 10 µm thick histological sections. The sections are prepared according to standard pathological procedures and deposited on a quartz window for measurements in reflection geometry. Simultaneous acquisition of visible images enables registration of THz images and thus the use of digital pathology tools to investigate the links between the underlying cellular structure and specific THz information. An analytic model taking into account the polarization of the THz beam, its incidence angle, the beam shift between the reference and sample pulses as well as multiple reflections within the sample is employed to determine the frequency-dependent complex refractive index. Spectral images are produced through segmentation of the extracted refractive index data using clustering methods. Comparisons of visible and THz images demonstrate spectral differences not only between tumor and healthy tissues but also within tumors. Further visualization using principal component analysis suggests different mechanisms as to the origin of image contrast.

  16. Terahertz imaging applied to cancer diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Brun, M-A; Formanek, F; Yasuda, A [Life Science Laboratory, Advanced Materials Laboratories, Sony Corporation, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 (Japan); Sekine, M; Ando, N; Eishii, Y, E-mail: florian.formanek@jp.sony.co [Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 (Japan)

    2010-08-21

    We report on terahertz (THz) time-domain spectroscopy imaging of 10 {mu}m thick histological sections. The sections are prepared according to standard pathological procedures and deposited on a quartz window for measurements in reflection geometry. Simultaneous acquisition of visible images enables registration of THz images and thus the use of digital pathology tools to investigate the links between the underlying cellular structure and specific THz information. An analytic model taking into account the polarization of the THz beam, its incidence angle, the beam shift between the reference and sample pulses as well as multiple reflections within the sample is employed to determine the frequency-dependent complex refractive index. Spectral images are produced through segmentation of the extracted refractive index data using clustering methods. Comparisons of visible and THz images demonstrate spectral differences not only between tumor and healthy tissues but also within tumors. Further visualization using principal component analysis suggests different mechanisms as to the origin of image contrast.

  17. A flexible and wearable terahertz scanner

    Science.gov (United States)

    Suzuki, D.; Oda, S.; Kawano, Y.

    2016-12-01

    Imaging technologies based on terahertz (THz) waves have great potential for use in powerful non-invasive inspection methods. However, most real objects have various three-dimensional curvatures and existing THz technologies often encounter difficulties in imaging such configurations, which limits the useful range of THz imaging applications. Here, we report the development of a flexible and wearable THz scanner based on carbon nanotubes. We achieved room-temperature THz detection over a broad frequency band ranging from 0.14 to 39 THz and developed a portable THz scanner. Using this scanner, we performed THz imaging of samples concealed behind opaque objects, breakages and metal impurities of a bent film and multi-view scans of a syringe. We demonstrated a passive biometric THz scan of a human hand. Our results are expected to have considerable implications for non-destructive and non-contact inspections, such as medical examinations for the continuous monitoring of health conditions.

  18. Simulation of photoconductive antennas for terahertz radiation

    Directory of Open Access Journals (Sweden)

    Carlos Criollo

    2015-01-01

    Full Text Available Simulation of terahertz (THz emission based on PC antennas imposes a challenge to couple the semiconductor carrier phenomena, optical transport and the THz energy transport. In this paper a Multi-physics simulation for coupling these phenomena using COMSOL Multi-physics 4.3b is introduced. The main parameters of THz photoconductive (PC antenna as THz emitter have been reviewed and discussed. The results indicate the role of each parameter in the resulting photocurrent waveform and THz frequency: The radiated THz photocurrent waveform is determined by the photoconductive gap (the separation between the metallic electrodes, the incident laser illumination and the DC excitation voltage; while the THz frequency depends on the dipole length. The optimization of these parameters could enhance the emission. The simulations extend the advance of compact and cost-effective THz emitters.

  19. Broadband plasmon induced transparency in terahertz metamaterials

    KAUST Repository

    Zhu, Zhihua

    2013-04-25

    Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena and an enhanced nonlinear effect. However, the transparency mode is normally localized in a narrow frequency band, which thus restricts many of its applications. Here we present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning in the terahertz regime. By integrating four U-shape resonators around a central bar resonator, a broad transparency window across a frequency range greater than 0.40 THz is obtained, with a central resonance frequency located at 1.01 THz. Such PIT metamaterials are promising candidates for designing slow light devices, highly sensitive sensors, and nonlinear elements operating over a broad frequency range. © 2013 IOP Publishing Ltd.

  20. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-22

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  1. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-15

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  2. Radar cross section measurements using terahertz waves

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...... in order to measure realistic radar cross sections. RCS polar and azimuthal angle plots of F-16 and F-35 are presented....... in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...

  3. Terahertz lens made out of natural stone.

    Science.gov (United States)

    Han, Daehoon; Lee, Kanghee; Lim, Jongseok; Hong, Sei Sun; Kim, Young Kie; Ahn, Jaewook

    2013-12-20

    Terahertz (THz) time-domain spectroscopy probes the optical properties of naturally occurring solid aggregates of minerals, or stones, in the THz frequency range. Refractive index and extinction coefficient measurement reveals that most natural stones, including mudstone, sandstone, granite, tuff, gneiss, diorite, slate, marble, and dolomite, are fairly transparent for THz frequency waves. Dolomite in particular exhibits a nearly uniform refractive index of 2.7 over the broad frequency range from 0.1 to 1 THz. The high index of refraction allows flexibility in lens designing with a shorter accessible focal length or a thinner lens with a given focal length. Good agreement between the experiment and calculation for the THz beam profile confirms that dolomite has high homogeneity as a lens material, suggesting the possibility of using natural stones for THz optical elements.

  4. Broadband plasmon induced transparency in terahertz metamaterials

    International Nuclear Information System (INIS)

    Zhu Zhihua; Yang Xu; Gu Jianqiang; Jiang Jun; Tian Zhen; Han Jiaguang; Zhang Weili; Yue Weisheng; Tonouchi, Masayoshi

    2013-01-01

    Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena and an enhanced nonlinear effect. However, the transparency mode is normally localized in a narrow frequency band, which thus restricts many of its applications. Here we present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning in the terahertz regime. By integrating four U-shape resonators around a central bar resonator, a broad transparency window across a frequency range greater than 0.40 THz is obtained, with a central resonance frequency located at 1.01 THz. Such PIT metamaterials are promising candidates for designing slow light devices, highly sensitive sensors, and nonlinear elements operating over a broad frequency range. (paper)

  5. Progress of Terahertz Devices Based on Graphene

    Institute of Scientific and Technical Information of China (English)

    Mai-Xia Fu; Yan Zhang

    2013-01-01

    Graphene is a one-atom-thick planar sheet of sp2-hybridized orbital bonded honeycomb carbon crystal. Its gapless and linear energy spectra of electrons and holes lead to the unique carrier transport and optical properties, such as giant carrier mobility and broadband flat optical response. As a novel material, graphene has been regarded to be extremely suitable and competent for the development of terahertz (THz) optical devices. In this paper, the fundamental electronic and optic properties of graphene are described. Based on the energy band structure and light transmittance properties of graphene, many novel graphene based THz devices have been proposed, including modulator, generator, detector, and imaging device. This progress has been reviewed. Future research directions of the graphene devices for THz applications are also proposed.

  6. Terahertz applications in cultural heritage: case studies

    Science.gov (United States)

    Giovannacci, D.; Martos-Levif, D.; Walker, G. C.; Menu, M.; Detalle, V.

    2013-11-01

    Terahertz (THz) spectroscopy and imaging is a non-destructive, non-contact, non-invasive technology emerging as a tool for the analysis of cultural heritage. THz Time Domain Spectroscopy (TDS) techniques have the ability to retrieve information from different layers within a stratified sample, that enable the identification of hidden sub-layers in the case of paints and mural paintings. In this paper, we present the THz TDS2 system developed in the European Commission's 7th Framework Program project CHARISMA [grant agreement no. 228330]. Bespoke single processing algorithms; including a deconvolution algorithm can be deployed to increase the resolution and the global performance of the system. The potential and impact of this work is demonstrated through two case studies of mural paintings, where the capability to reveal the stratigraphy of the artworks is demonstrated.

  7. Terahertz adaptive optics with a deformable mirror.

    Science.gov (United States)

    Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel

    2018-04-01

    We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.

  8. Neuroglial Transmission

    DEFF Research Database (Denmark)

    Gundersen, Vidar; Storm-Mathisen, Jon; Bergersen, Linda Hildegard

    2015-01-01

    as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates...... synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies....

  9. A simple system for 160GHz optical terahertz wave generation and data modulation

    Science.gov (United States)

    Li, Yihan; He, Jingsuo; Sun, Xueming; Shi, Zexia; Wang, Ruike; Cui, Hailin; Su, Bo; Zhang, Cunlin

    2018-01-01

    A simple system based on two cascaded Mach-Zehnder modulators, which can generate 160GHz optical terahertz waves from 40GHz microwave sources, is simulated and tested in this paper. Fiber grating filter is used in the system to filter out optical carrier. By properly adjusting the modulator DC bias voltages and the signal voltages and phases, 4-tupling optical terahertz wave can be generated with fiber grating. This notch fiber grating filter is greatly suitable for terahertz over fiber (TOF) communication system. This scheme greatly reduces the cost of long-distance terahertz communication. Furthermore, 10Gbps digital signal is modulated in the 160GHz optical terahertz wave.

  10. Terahertz imaging using quantum cascade lasers—a review of systems and applications

    International Nuclear Information System (INIS)

    Dean, P; Valavanis, A; Keeley, J; Alhathlool, R; Burnett, A D; Li, L H; Khanna, S P; Indjin, D; Linfield, E H; Davies, A G; Bertling, K; Lim, Y L; Rakić, A D; Taimre, T

    2014-01-01

    The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of THz radiation offering high power, high spectral purity and moderate tunability. As such, these sources are particularly suited to the application of THz frequency imaging across a range of disciplines, and have motivated significant research interest in this area over the past decade. In this paper we review the technological approaches to THz QCL-based imaging and the key advancements within this field. We discuss in detail a number of imaging approaches targeted to application areas including multiple-frequency transmission and diffuse reflection imaging for the spectral mapping of targets; as well as coherent approaches based on the self-mixing phenomenon in THz QCLs for long-range imaging, three-dimensional imaging, materials analysis, and high-resolution inverse synthetic aperture radar imaging. (paper)

  11. Hybrid FDTD Analysis for Periodic On-Chip Terahertz (THZ) Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Yasser A.; Spencer, James E.; /SLAC

    2005-06-07

    We present electromagnetic analysis and radiation efficiency calculations for on-chip terahertz (THz) structures based on a hybrid, finite-difference, time-domain (HFDTD) technique. The method employs the FDTD technique to calculate S-parameters for one cell of a periodic structure. The transmission ABCD matrix is then estimated and multiplied by itself n times to obtain the n-cell periodic structure ABCD parameters that are then converted back to S-parameters. Validation of the method is carried out by comparing the results of the hybrid technique with FDTD calculations of the entire periodic structure as well as with HFSS which all agree quite well. This procedure reduces the CPU-time and allows efficient design and optimization of periodic THz radiation sources. Future research will involve coupling of Maxwell's equations with a more detailed, physics-based transport model for higher-order effects.

  12. Terahertz spectroscopy for the study of paraffin-embedded gastric cancer samples

    Science.gov (United States)

    Wahaia, Faustino; Kasalynas, Irmantas; Seliuta, Dalius; Molis, Gediminas; Urbanowicz, Andrzej; Carvalho Silva, Catia D.; Carneiro, Fatima; Valusis, Gintaras; Granja, Pedro L.

    2015-01-01

    Terahertz (THz) spectroscopy constitute promising technique for biomedical applications as a complementary and powerful tool for diseases screening specially for early cancer diagnostic. The THz radiation is not harmful to biological tissues. As increased blood supply in cancer-affected tissues and consequent local increase in tissue water content makes THz technology a potentially attractive. In the present work, samples of healthy and adenocarcinoma-affected gastric tissue were analyzed using transmission time-domain THz spectroscopy (THz-TDS). The work shows the capability of the technique to distinguish between normal and cancerous regions in dried and paraffin-embedded samples. Plots of absorption coefficient α and refractive index n of normal and cancer affected tissues, are presented and the conditions for discrimination between normal and affected tissues are discussed.

  13. Terahertz polarization converter based on all-dielectric high birefringence metamaterial with elliptical air holes

    KAUST Repository

    Zi, Jianchen

    2018-02-15

    Metamaterials have been widely applied in the polarization conversion of terahertz (THz) waves. However, common plasmonic metamaterials usually work as reflective devices and have low transmissions. All-dielectric metamaterials can overcome these shortcomings. An all-dielectric metamaterial based on silicon with elliptical air holes is reported to achieve high artificial birefringence at THz frequencies. Simulations show that with appropriate structural parameters the birefringence of the dielectric metamaterial can remain flat and is above 0.7 within a broad band. Moreover, the metamaterial can be designed as a broadband quarter wave plate. A sample metamaterial was fabricated and tested to prove the validity of the simulations, and the sample could work as a quarter wave plate at 1.76 THz. The all-dielectric metamaterial that we proposed is of great significance for high performance THz polarization converters.

  14. [Discrimination of varieties of borneol using terahertz spectra based on principal component analysis and support vector machine].

    Science.gov (United States)

    Li, Wu; Hu, Bing; Wang, Ming-wei

    2014-12-01

    In the present paper, the terahertz time-domain spectroscopy (THz-TDS) identification model of borneol based on principal component analysis (PCA) and support vector machine (SVM) was established. As one Chinese common agent, borneol needs a rapid, simple and accurate detection and identification method for its different source and being easily confused in the pharmaceutical and trade links. In order to assure the quality of borneol product and guard the consumer's right, quickly, efficiently and correctly identifying borneol has significant meaning to the production and transaction of borneol. Terahertz time-domain spectroscopy is a new spectroscopy approach to characterize material using terahertz pulse. The absorption terahertz spectra of blumea camphor, borneol camphor and synthetic borneol were measured in the range of 0.2 to 2 THz with the transmission THz-TDS. The PCA scores of 2D plots (PC1 X PC2) and 3D plots (PC1 X PC2 X PC3) of three kinds of borneol samples were obtained through PCA analysis, and both of them have good clustering effect on the 3 different kinds of borneol. The value matrix of the first 10 principal components (PCs) was used to replace the original spectrum data, and the 60 samples of the three kinds of borneol were trained and then the unknown 60 samples were identified. Four kinds of support vector machine model of different kernel functions were set up in this way. Results show that the accuracy of identification and classification of SVM RBF kernel function for three kinds of borneol is 100%, and we selected the SVM with the radial basis kernel function to establish the borneol identification model, in addition, in the noisy case, the classification accuracy rates of four SVM kernel function are above 85%, and this indicates that SVM has strong generalization ability. This study shows that PCA with SVM method of borneol terahertz spectroscopy has good classification and identification effects, and provides a new method for species

  15. Spatial-temporal dynamics of broadband terahertz Bessel beam propagation

    International Nuclear Information System (INIS)

    Semenova, V A; Kulya, M S; Bespalov, V G

    2016-01-01

    The unique properties of narrowband and broadband terahertz Bessel beams have led to a number of their applications in different fields, for example, for the depth of focusing and resolution enhancement in terahertz imaging. However, broadband terahertz Bessel beams can probably be also used for the diffraction minimization in the short-range broadband terahertz communications. For this purpose, the study of spatial-temporal dynamics of the broadband terahertz Bessel beams is needed. Here we present a simulation-based study of the propagating in non-dispersive medium broadband Bessel beams generated by a conical axicon lens. The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the Bessel beam in the frequency range from 0.1 to 3 THz at the distances 10-200 mm from the axicon. Bessel beam field is studied for the different spectral components of the initial pulse. The simulation results show that for the given parameters of the axicon lens one can obtain the Gauss-Bessel beam generation in the spectral range from 0.1 to 3 THz. The length of non-diffraction propagation for a different spectral components was measured, and it was shown that for all spectral components of the initial pulse this length is about 130 mm. (paper)

  16. Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors

    Science.gov (United States)

    Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda

    2017-06-01

    This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.

  17. Continuous-wave terahertz light from optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Rosita

    2010-12-15

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  18. Continuous-wave terahertz light from optical parametric oscillators

    International Nuclear Information System (INIS)

    Sowade, Rosita

    2010-12-01

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  19. TERAHERTZ REFLECTANCE SPECTRA OF SKIN DERMATITIS AND MORPHOLOGICAL CHANGES

    Directory of Open Access Journals (Sweden)

    E. A. Strepitov

    2013-05-01

    Full Text Available The article deals withthe diagnostics possibility of dermatitis and morphological changes of human skin using terahertz frequency range equal to 2,0¸0,05 THz. Features of different types of human skin diseases occur in vivo over the entire frequency range, especially in the field of vibration: 2,0¸1,5 THz. They were caused by the backscattering on skin new formations in its upper layers. In terahertz reflection spectra spectral lines of different dermatitis, age spots, haematoma are well distinguishable. Terahertz radiation penetrates well through the medical bandages. At the same time in a single scan, lasting about one minute, the spectrum is processed not only of the bandages, but of different skin layers.

  20. Terahertz detection of alcohol using a photonic crystal fiber sensor.

    Science.gov (United States)

    Sultana, Jakeya; Islam, Md Saiful; Ahmed, Kawsar; Dinovitser, Alex; Ng, Brian W-H; Abbott, Derek

    2018-04-01

    Ethanol is widely used in chemical industrial processes as well as in the food and beverage industry. Therefore, methods of detecting alcohol must be accurate, precise, and reliable. In this content, a novel Zeonex-based photonic crystal fiber (PCF) has been modeled and analyzed for ethanol detection in terahertz frequency range. A finite-element-method-based simulation of the PCF sensor shows a high relative sensitivity of 68.87% with negligible confinement loss of 7.79×10 -12    cm -1 at 1 THz frequency and x -polarization mode. Moreover, the core power fraction, birefringence, effective material loss, dispersion, and numerical aperture are also determined in the terahertz frequency range. Owing to the simple fiber structure, existing fabrication methods are feasible. With the outstanding waveguiding properties, the proposed sensor can potentially be used in ethanol detection, as well as polarization-preserving applications of terahertz waves.

  1. A polarization-insensitive plasmonic photoconductive terahertz emitter

    KAUST Repository

    Li, Xurong

    2017-11-16

    We present a polarization-insensitive plasmonic photoconductive terahertz emitter that uses a two-dimensional array of nanoscale cross-shaped apertures as the plasmonic contact electrodes. The geometry of the cross-shaped apertures is set to maximize optical pump absorption in close proximity to the contact electrodes. The two-dimensional symmetry of the cross-shaped apertures offers a polarization-insensitive interaction between the plasmonic contact electrodes and optical pump beam. We experimentally demonstrate a polarization-insensitive terahertz radiation from the presented emitter in response to a femtosecond optical pump beam and similar terahertz radiation powers compared to previously demonstrated polarization-sensitive photoconductive emitters with plasmonic contact electrode gratings at the optimum optical pump polarization.

  2. Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile

    Science.gov (United States)

    Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin

    2012-01-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.

  3. Invisible Security Printing on Photoresist Polymer Readable by Terahertz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hee Jun Shin

    2017-12-01

    Full Text Available We experimentally modulate the refractive index and the absorption coefficient of an SU-8 dry film in the terahertz region by UV light (362 nm exposure with time dependency. Consequently, the refractive index of SU-8 film is increased by approximately 6% after UV light exposure. Moreover, the absorption coefficient also changes significantly. Using the reflective terahertz imaging technique, in addition, we can read security information printed by UV treatment on an SU-8 film that is transparent in the visible spectrum. From these results, we successfully demonstrate security printing and reading by using photoresist materials and the terahertz technique. This investigation would provide a new insight into anti-counterfeiting applications in fields that need security.

  4. Terahertz time-domain spectroscopy of edible oils

    Science.gov (United States)

    Dinovitser, Alex; Valchev, Dimitar G.; Abbott, Derek

    2017-06-01

    Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05-2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min.

  5. Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal

    Science.gov (United States)

    Yang, Jun; Xia, Tianyu; Jing, Shuaicheng; Deng, Guangsheng; Lu, Hongbo; Fang, Yong; Yin, Zhiping

    2018-02-01

    We present a reflective spatial phase shifter which operates at terahertz regime above 325 GHz. The controllable permittivity of the nematic liquid crystals was utilized to realize a tunable terahertz (THz) reflective phase shifter. The reflective characteristics of the terahertz electromagnetic waves and the liquid crystal parameters were calculated and analyzed. We provide the simulation results for the effect of the incident angle of the plane wave on the reflection. The experiment was carried out considering an array consisting of 30 × 30 patch elements, printed on a 20 × 20 mm quartz substrate with 1-mm thickness. The phase shifter provides a tunable phase range of 300° over the frequency range of 325 to 337.6 GHz. The maximum phase shift of 331° is achieved at 330 GHz. The proposed phase shifter is a potential candidate for THz applications, particularly for reconfigurable reflectarrays.

  6. Terahertz thickness determination with interferometric vibration correction for industrial applications.

    Science.gov (United States)

    Pfeiffer, Tobias; Weber, Stefan; Klier, Jens; Bachtler, Sebastian; Molter, Daniel; Jonuscheit, Joachim; Von Freymann, Georg

    2018-05-14

    In many industrial fields, like automotive and painting industry, the thickness of thin layers is a crucial parameter for quality control. Hence, the demand for thickness measurement techniques continuously grows. In particular, non-destructive and contact-free terahertz techniques access a wide range of thickness determination applications. However, terahertz time-domain spectroscopy based systems perform the measurement in a sampling manner, requiring fixed distances between measurement head and sample. In harsh industrial environments vibrations of sample and measurement head distort the time-base and decrease measurement accuracy. We present an interferometer-based vibration correction for terahertz time-domain measurements, able to reduce thickness distortion by one order of magnitude for vibrations with frequencies up to 100 Hz and amplitudes up to 100 µm. We further verify the experimental results by numerical calculations and find very good agreement.

  7. Graphene Based Terahertz Absorber Designed With Effective Surface Conductivity Approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    Young field of terahertz (THz) science and technology demands new materials and devices, such as filters, modulators, polarization converters and absorbers. Graphene, a recently discovered single-atom-thick material, provides exciting properties for functional terahertz applications. Graphene...... conductivity and how to use it in optical design. We demonstrate a tunable THz perfect absorber, which consists of continuous graphene various structured graphene metamaterials above a metal mirror. Changing the Fermi level from 0 eV to 0.5 eV allows for drastic changes in absorbance from less than 0.1 to 1...

  8. Terahertz-field-induced photoluminescence of nanostructured gold films

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Malureanu, Radu; Zalkovskij, Maksim

    2013-01-01

    We experimentally demonstrate photoluminescence from nanostructured ultrathin gold films subjected to strong single-cycle terahertz transients with peak electric field over 300 kV/cm. We show that UV-Vis-NIR light is being generated and the efficiency of the process is strongly enhanced at the pe......We experimentally demonstrate photoluminescence from nanostructured ultrathin gold films subjected to strong single-cycle terahertz transients with peak electric field over 300 kV/cm. We show that UV-Vis-NIR light is being generated and the efficiency of the process is strongly enhanced...

  9. Evaluation of skin moisturizer effects using terahertz time domain imaging

    Science.gov (United States)

    Martinez-Meza, L. H.; Rojas-Landeros, S. C.; Castro-Camus, E.; Alfaro-Gomez, M.

    2018-02-01

    We use terahertz time domain imaging for the evaluation of the effects of skin-moisturizers in vivo. We evaluate three principal substances used in commercial moisturizers: glycerin, hyaluronic acid and lanolin. We image the interaction of the forearm with each of the substances taking terahertz spectra at sequential times. With this, we are able to measure the effect of the substances on the hydration level of the skin in time, determining the feasibility of using THz imaging for the evaluation of the products and their effects on the hydration levels of the skin.

  10. Transmission issues

    International Nuclear Information System (INIS)

    Bradford, J.; Wilson, L.; Thon, S.; Millar, N.

    2005-01-01

    This session on transmission issues focused on the role that transmission plays in electricity markets and the importance of getting the market structure right in terms of generation divestiture with buy back contracts, demand side responsive programs, transmission upgrades and long term contracts. The difficulties of distinguishing between market power and scarcity were examined along with some of the complications that ensue if transmission experiences congestion, as exemplified by the August 2003 blackout in eastern North America. The presentations described the best ways to handle transmission issues, and debated whether transmission should be deregulated or follow market forces. Issues of interconnections and reliability of connections were also debated along with the attempt to integrate renewables into the grid. Some presentations identified what new transmission must be built and what must be done to ensure that transmission gets built. The challenges and business opportunities for transmission in Alberta were discussed with reference to plans to invest in new infrastructure, where it is going outside of the province and how it works with other jurisdictions. Manitoba's Conawapa Hydro Project and its 2000 MW tie line to Ontario was also discussed. Some examples of non-optimal use of interconnections in Europe were also discussed in an effort to learn from these mistakes and avoid them in Canada. tabs., figs

  11. Spoof surface plasmon modes on doubly corrugated metal surfaces at terahertz frequencies

    International Nuclear Information System (INIS)

    Liu, Yong-Qiang; Kong, Ling-Bao; Du, Chao-Hai; Liu, Pu-Kun

    2016-01-01

    Spoof surface plasmons (SSPs) have many potential applications such as imaging and sensing, communications, innovative leaky wave antenna and many other passive devices in the microwave and terahertz (THz) spectrum. The extraordinary properties of SSPs (e.g. extremely strong near field, enhanced beam–wave interaction) make them especially attractive for developing novel THz electronic sources. SSP modes on doubly corrugated metal surfaces are investigated and analyzed both theoretically and numerically in this paper. The analytical SSP dispersion expressions of symmetric and anti-symmetric modes are obtained with a simplified modal field expansion method; the results are also verified by the finite integration method. Additionally, the propagation losses are also considered for real copper surfaces with a limited constant conductivity in a THz regime. It is shown that the asymptotical frequency of the symmetric mode at the Brillouin boundary decreases along with the decreased gap size between these two corrugated metal surfaces while the asymptotical frequency increases for the anti-symmetric mode. The anti-symmetric mode demonstrates larger propagation losses than the symmetric mode. Further, the losses for both symmetric and anti-symmetric modes decrease when this gap size enlarges. By decreasing groove depth, the asymptotical frequency increases for both the symmetric and the anti-symmetric mode, but the variation of propagation losses is more complicated. Propagation losses increase along with the increased period. Our studies on the dispersion characteristics and propagation losses of SSP modes on this doubly corrugated metallic structure with various parameters is instructive for numerous applications such as waveguides, circuitry systems with high integration, filters and powerful electronic sources in the THz regime. (paper)

  12. The Legal Framework Of Human Rights Crime As An Extraordinary Crime

    Directory of Open Access Journals (Sweden)

    Dedy Siswadi

    2015-08-01

    Full Text Available Abstract This research reviews the legal framework of human rights crime as an extraordinary crime as an approach in the settlement of criminal cases. The outcomes of the research indicate that modern human rights law developed out of customs and theories that established the rights of the individual in relation to the state. Disagreements regarding human rights violations which can only be done by the state and its agents or can also be done by non-government units still exist at the moment. As it turns out in practice however it has certain weaknesses particularly in legislation concerning serious crimes of human rights both as ius constituendum and ius constitutum still needs to be improved especially in the implementation of human rights on judiciary system. Therefore serious crimes against human rights are included as an extraordinary crime. The handling of the cases was incredible and special has become a logical consequence to be included as an extraordinary crime.

  13. Investigation on broadband propagation characteristic of terahertz electromagnetic wave in anisotropic magnetized plasma in frequency and time domain

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yuan; Han, Yiping, E-mail: yphan@xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China); Ai, Xia [National Key Laboratory of Science and Technology on Test physics and Numerical Mathematical, Beijing 100076 (China); Liu, Xiuxiang [Science and Technology on Space Physics Laboratory, Beijing 100076 (China)

    2014-12-15

    In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.

  14. Terahertz pulsed imaging study of dental caries

    Science.gov (United States)

    Karagoz, Burcu; Altan, Hakan; Kamburoglu, Kıvanç

    2015-07-01

    Current diagnostic techniques in dentistry rely predominantly on X-rays to monitor dental caries. Terahertz Pulsed Imaging (TPI) has great potential for medical applications since it is a nondestructive imaging method. It does not cause any ionization hazard on biological samples due to low energy of THz radiation. Even though it is strongly absorbed by water which exhibits very unique chemical and physical properties that contribute to strong interaction with THz radiation, teeth can still be investigated in three dimensions. Recent investigations suggest that this method can be used in the early identification of dental diseases and imperfections in the tooth structure without the hazards of using techniques which rely on x-rays. We constructed a continuous wave (CW) and time-domain reflection mode raster scan THz imaging system that enables us to investigate various teeth samples in two or three dimensions. The samples comprised of either slices of individual tooth samples or rows of teeth embedded in wax, and the imaging was done by scanning the sample across the focus of the THz beam. 2D images were generated by acquiring the intensity of the THz radiation at each pixel, while 3D images were generated by collecting the amplitude of the reflected signal at each pixel. After analyzing the measurements in both the spatial and frequency domains, the results suggest that the THz pulse is sensitive to variations in the structure of the samples that suggest that this method can be useful in detecting the presence of caries.

  15. Terahertz Josephson spectral analysis and its applications

    Science.gov (United States)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  16. Photonic quasi-crystal terahertz lasers

    Science.gov (United States)

    Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles

    2014-12-01

    Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.

  17. Extraordinary Appeal´S General Repercussion and Third Parties in the Constitutional Jurisdiction

    Directory of Open Access Journals (Sweden)

    Edilene Lôbo

    2016-06-01

    Full Text Available General repercussion, aiming to fight excess of extraordinary appeals and unifying jurisprudence through serial rulings, reveals an essential technique to make collective rights feasible. However, recent procedural legislation gave powers to decide on the matter (exercising the admissibility appraisal of the extraordinary appeal to the lower courts, taking it from the Brazilian Supreme Court, at the same time only accepting organizations as thirdparties. This situation goes against the Democratic Constitutional Procedure paradigm, signaling this work´s goal: to redesign the situation starting from the Open Society of Interpreters theory and from the legal procedure as a theory of the democratic ruling.

  18. Sixteen-state magnetic memory based on the extraordinary Hall effect

    International Nuclear Information System (INIS)

    Segal, A.; Karpovski, M.; Gerber, A.

    2012-01-01

    We report on a proof-of-concept study of split-cell magnetic storage in which multi-bit magnetic memory cells are composed of several multilevel ferromagnetic dots with perpendicular magnetic anisotropy. Extraordinary Hall effect is used for reading the data. Feasibility of the approach is supported by realization of four-, eight- and sixteen- state cells. - Highlights: ► We propose a novel structure of multi-bit magnetic random access memory. ► Each cell contains several interconnected storage dots. ► Extraordinary Hall effect is used for reading the data. ► Four-, eight- and sixteen-state cells have been realized.

  19. Transient photoconductivity in InGaN/GaN multiple quantum wells, measured by time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Porte, Henrik; Turchinovich, Dmitry; Cooke, David

    2009-01-01

    Terahertz conductivity of InGaN/GaN MQWs was studied by time-resolved terahertz spectroscopy. Restoration of the built-in piezoelectric field leads to a nonexponential carrier density decay. Terahertz conductivity spectrum is described by the Drude-Smith......Terahertz conductivity of InGaN/GaN MQWs was studied by time-resolved terahertz spectroscopy. Restoration of the built-in piezoelectric field leads to a nonexponential carrier density decay. Terahertz conductivity spectrum is described by the Drude-Smith...

  20. Transmission eigenvalues

    Science.gov (United States)

    Cakoni, Fioralba; Haddar, Houssem

    2013-10-01

    In inverse scattering theory, transmission eigenvalues can be seen as the extension of the notion of resonant frequencies for impenetrable objects to the case of penetrable dielectrics. The transmission eigenvalue problem is a relatively late arrival to the spectral theory of partial differential equations. Its first appearance was in 1986 in a paper by Kirsch who was investigating the denseness of far-field patterns for scattering solutions of the Helmholtz equation or, in more modern terminology, the injectivity of the far-field operator [1]. The paper of Kirsch was soon followed by a more systematic study by Colton and Monk in the context of developing the dual space method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium [2]. In this paper they showed that for a spherically stratified media transmission eigenvalues existed and formed a discrete set. Numerical examples were also given showing that in principle transmission eigenvalues could be determined from the far-field data. This first period of interest in transmission eigenvalues was concluded with papers by Colton et al in 1989 [3] and Rynne and Sleeman in 1991 [4] showing that for an inhomogeneous medium (not necessarily spherically stratified) transmission eigenvalues, if they existed, formed a discrete set. For the next seventeen years transmission eigenvalues were ignored. This was mainly due to the fact that, with the introduction of various sampling methods to determine the shape of an inhomogeneous medium from far-field data, transmission eigenvalues were something to be avoided and hence the fact that transmission eigenvalues formed at most a discrete set was deemed to be sufficient. In addition, questions related to the existence of transmission eigenvalues or the structure of associated eigenvectors were recognized as being particularly difficult due to the nonlinearity of the eigenvalue problem and the special structure of the associated transmission

  1. Extraordinary sex ratios: cultural effects on ecological consequences.

    Directory of Open Access Journals (Sweden)

    Ferenc Molnár

    Full Text Available We model sex-structured population dynamics to analyze pairwise competition between groups differing both genetically and culturally. A sex-ratio allele is expressed in the heterogametic sex only, so that assumptions of Fisher's analysis do not apply. Sex-ratio evolution drives cultural evolution of a group-associated trait governing mortality in the homogametic sex. The two-sex dynamics under resource limitation induces a strong Allee effect that depends on both sex ratio and cultural trait values. We describe the resulting threshold, separating extinction from positive growth, as a function of female and male densities. When initial conditions avoid extinction due to the Allee effect, different sex ratios cannot coexist; in our model, greater female allocation always invades and excludes a lesser allocation. But the culturally transmitted trait interacts with the sex ratio to determine the ecological consequences of successful invasion. The invading female allocation may permit population persistence at self-regulated equilibrium. For this case, the resident culture may be excluded, or may coexist with the invader culture. That is, a single sex-ratio allele in females and a cultural dimorphism in male mortality can persist; a low-mortality resident trait is maintained by father-to-son cultural transmission. Otherwise, the successfully invading female allocation excludes the resident allele and culture and then drives the population to extinction via a shortage of males. Finally, we show that the results obtained under homogeneous mixing hold, with caveats, in a spatially explicit model with local mating and diffusive dispersal in both sexes.

  2. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties

    Science.gov (United States)

    Prinz, Victor Ya.; Naumova, Elena V.; Golod, Sergey V.; Seleznev, Vladimir A.; Bocharov, Andrey A.; Kubarev, Vitaliy V.

    2017-01-01

    Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis. PMID:28256587

  3. Charge transport in silicon nanocrystal superlattices in the terahertz regime

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Zajac, Vít; Kužel, Petr; Malý, P.; Gutsch, S.; Hiller, D.; Zacharias, M.

    2015-01-01

    Roč. 91, č. 19 (2015), "195443-1"-"195443-10" ISSN 1098-0121 R&D Projects: GA ČR GA13-12386S Institutional support: RVO:68378271 Keywords : silicon nanocrystals * charge transport * terahertz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  4. A wavefront analyzer for terahertz time-domain spectrometers

    DEFF Research Database (Denmark)

    Abraham, E.; Brossard, M.; Fauche, P.

    2017-01-01

    the terahertz wavefront and calculate its Zernike coefficients. In particular, we especially show that the focus spot of the spectrometer suffers from optical aberrations such as remaining defocus, first and second order astigmatisms, as well as spherical aberration. This opens a route to wavefront correction...

  5. Optical bistability of graphene in the terahertz range

    DEFF Research Database (Denmark)

    Peres, N. M. R.; Bludov, Yu V.; Santos, Jaime E.

    2014-01-01

    We use an exact solution of the relaxation-time Boltzmann equation in a uniform ac electric field to describe the nonlinear optical response of graphene in the terahertz (THz) range. The cases of monolayer, bilayer, and ABA-stacked trilayer graphene are considered, and the monolayer species...

  6. Terahertz detectors using hot-electrons in superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, A. [DLR, Inst. of Planetary Research, Berlin (Germany)

    2007-07-01

    Recently the terahertz gap has been recognized as a prospective spectral range for radioastronomy as well as for material and security studies. Implementation of terahertz technology in these fields requires further improvement of instruments and their major subcomponents. Physical phenomena associated with the local and homogeneous non-equilibrium electron sates in thin superconducting films offer numerous possibilities for the development of terahertz and infrared detectors. Depending on the nature of the resistive state and the operation regime, a variety of detector can be realized. They are e.g. direct bolometric or kinetic inductance detectors, heterodyne mixers or photon counters. Operation principles and physical limitations of these devices will be discussed. Two examples of the detector development made in cooperation between the German Aerospace Center, the University of Karlsruhe and PTB, Berlin will be presented. The energy resolving single-photon detector with an almost fundamentally limited energy resolution of 0.6 eV at 6.5 K for photons with wavelengths from 400 nm to 2500 nm and the heterodyne mixer quasioptically coupled to radiation in the frequency range from 0.8 THz to 5 THz and providing a noise temperature of less then ten times the quantum limit. The mixers will be implemented in the terahertz radar for security screening (TERASEC) and in the heterodyne receiver of the stratospheric observatory SOFIA. (orig.)

  7. The Third International Symposium on Space Terahertz Technology: Symposium proceedings

    Science.gov (United States)

    1992-01-01

    Papers from the symposium are presented that are relevant to the generation, detection, and use of the terahertz spectral region for space astronomy and remote sensing of the Earth's upper atmosphere. The program included thirteen sessions covering a wide variety of topics including solid-state oscillators, power-combining techniques, mixers, harmonic multipliers, antennas and antenna arrays, submillimeter receivers, and measurement techniques.

  8. Fundamental aspects of surface plasmon polaritons at terahertz frequencies

    NARCIS (Netherlands)

    Gómez Rivas, J.; Zhang, Y.; Berrier, A.; Saeedkia, D.

    2013-01-01

    We present in this chapter an introduction to the field of terahertz (THz) plasmonics. The characteristics of surface plasmon polaritons (SPPs) are determined by the complex permittivity of conductors. Therefore, we introduce the Drude model to describe the permittivity of conductors at THz

  9. Ultrafast terahertz scanning tunneling microscopy with atomic resolution

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2016-01-01

    We demonstrate that ultrafast terahertz scanning tunneling microscopy (THz-STM) can probe single atoms on a silicon surface with simultaneous sub-nanometer and sub-picosecond spatio-temporal resolution. THz-STM is established as a new technique for exploring high-field non-equilibrium tunneling...

  10. Terahertz reflection spectroscopy of Debye relaxation in polar liquids

    DEFF Research Database (Denmark)

    Møller, Uffe; Cooke, David; Tanaka, Koichiro

    2009-01-01

    Terahertz (THz) radiation interacts strongly with the intermolecular hydrogen-bond network in aqueous liquids. The dielectric properties of liquid water and aqueous solutions in the THz spectral region are closely linked to the microscopic dynamics of the liquid solution, and hence THz spectrosco...

  11. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...

  12. Terahertz wave tomographic imaging with a Fresnel lens

    Institute of Scientific and Technical Information of China (English)

    S. Wang; X.-C. Zhang

    2003-01-01

    We demonstrate three-dimensional tomographic imaging using a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.

  13. Terahertz heterodyne technology for astronomy and planetary science

    NARCIS (Netherlands)

    Wild, Wolfgang

    2007-01-01

    Heterodyne detection techniques play an important role in high-resolution spectroscopy in astronomy and planetary science. In particular, heterodyne technology in the Terahertz range has rapidly evolved in recent years. Cryogenically cooled receivers approaching quantum-limited sensitivity have been

  14. In situ spectroscopic characterization of a terahertz resonant cavity

    DEFF Research Database (Denmark)

    Reichel, Kimberly S.; Iwaszczuk, Krzysztof; Jepsen, Peter Uhd

    2014-01-01

    In many cases, the characterization of the frequency- dependent electric field profile inside a narrowband res- onator is challenging, either due to limited optical access or to the perturbative effects of invasive probes. An isolated groove inside a terahertz parallel-plate wave- guide provides ...

  15. Uncovering the Terahertz Spectrum of Copper Sulfate Pentahydrate.

    Science.gov (United States)

    Ruggiero, Michael T; Korter, Timothy M

    2016-01-21

    Terahertz vibrational spectroscopy has evolved into a powerful tool for the detection and characterization of transition metal sulfate compounds, specifically for its ability to differentiate between various hydrated forms with high specificity. Copper(II) sulfate is one such system where multiple crystalline hydrates have had their terahertz spectra fully assigned, and the unique spectral fingerprints of the forms allows for characterization of multicomponent systems with relative ease. Yet the most commonly occurring form, copper(II) sulfate pentahydrate (CuSO4·5H2O), has proven elusive due to the presence of a broad absorption across much of the terahertz region, making the unambiguous identification of its spectral signature difficult. Here, it is shown that the sub-100 cm(-1) spectrum of CuSO4·5H2O is obscured by absorption from adsorbed water and that controlled drying reveals sharp underlying features. The crystalline composition of the samples was monitored in parallel by X-ray diffraction as a function of drying time, supporting the spectroscopic results. Finally, the terahertz spectrum of CuSO4·5H2O was fully assigned using solid-state density functional theory simulations, helping attribute the additional absorptions that appear after excessive drying to formation of CuSO4·3H2O.

  16. Terahertz Fibres and Functional FibreI-Based Devices

    DEFF Research Database (Denmark)

    Bao, Hualong

    The area of Terahertz (THz) radiation has been proved to be a very promising utility for a wide range of applications. However, since current THz systems predominantly utilize freespace propagation, the large size and requirement of careful alignment thus increasing the complexity are the drawbacks...

  17. Wideband Integrated Lens Antennas for Terahertz Deep Space Investigation

    NARCIS (Netherlands)

    Yurduseven, O.

    2016-01-01

    The Terahertz (THz) band is the portion of the spectrum that covers a frequency range from 300 GHz to 3 THz. The potential of this band has been proven for numerous type of applications including medical imaging, non-destructive testing, space observation, spectroscopy and security screening, thanks

  18. Ultrasensitive Terahertz Waveguide Modulators Using Multilayer Graphene Metamaterials

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We study terahertz-infrared electromagnetic properties of multilayer graphene- dielectric metamaterial and present novel waveguide-based devices: modulators with high mod- ulation depth ( > 38 dB at 0 : 07 eV graphene’s Fermi energy change) or extreme sensitivity (mod- ulation depth of > 13 : 2 d...

  19. Terahertz-induced Kerr effect in amorphous chalcogenide glasses

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Strikwerda, Andrew; Iwaszczuk, Krzysztof

    2013-01-01

    We have investigated the terahertz-induced third-order (Kerr) nonlinear optical properties of the amorphous chalcogenide glasses As2S3 and As2Se3. Chalcogenide glasses are known for their high optical Kerr nonlinearities which can be several hundred times greater than those of fused silica. We use...

  20. Quantitative measurement of mixtures by terahertz time–domain ...

    Indian Academy of Sciences (India)

    Administrator

    earth and space science, quality control of food and agricultural products and global environmental monitoring. In quantitative applications, terahertz technology has been widely used for studying dif- ferent kinds of mixtures, such as amino acids,. 8 ter- nary chemical mixtures,. 9 pharmaceuticals,. 10 racemic compounds. 11.

  1. Quantitative detection of melamine based on terahertz time-domain spectroscopy

    Science.gov (United States)

    Zhao, Xiaojing; Wang, Cuicui; Liu, Shangjian; Zuo, Jian; Zhou, Zihan; Zhang, Cunlin

    2018-01-01

    Melamine is an organic base and a trimer of cyanamide, with a 1, 3, 5-triazine skeleton. It is usually used for the production of plastics, glue and flame retardants. Melamine combines with acid and related compounds to form melamine cyanurate and related crystal structures, which have been implicated as contaminants or biomarkers in protein adulterations by lawbreakers, especially in milk powder. This paper is focused on developing an available method for quantitative detection of melamine in the fields of security inspection and nondestructive testing based on THz-TDS. Terahertz (THz) technology has promising applications for the detection and identification of materials because it exhibits the properties of spectroscopy, good penetration and safety. Terahertz time-domain spectroscopy (THz-TDS) is a key technique that is applied to spectroscopic measurement of materials based on ultrafast femtosecond laser. In this study, the melamine and its mixture with polyethylene powder in different consistence are measured using the transmission THz-TDS. And we obtained the refractive index spectra and the absorption spectrum of different concentrations of melamine on 0.2-2.8THz. In the refractive index spectra, it is obvious to see that decline trend with the decrease of concentration; and in the absorption spectrum, two peaks of melamine at 1.98THz and 2.28THz can be obtained. Based on the experimental result, the absorption coefficient and the consistence of the melamine in the mixture are determined. Finally, methods for quantitative detection of materials in the fields of nondestructive testing and quality control based on THz-TDS have been studied.

  2. Quantifying Transmission.

    Science.gov (United States)

    Woolhouse, Mark

    2017-07-01

    Transmissibility is the defining characteristic of infectious diseases. Quantifying transmission matters for understanding infectious disease epidemiology and designing evidence-based disease control programs. Tracing individual transmission events can be achieved by epidemiological investigation coupled with pathogen typing or genome sequencing. Individual infectiousness can be estimated by measuring pathogen loads, but few studies have directly estimated the ability of infected hosts to transmit to uninfected hosts. Individuals' opportunities to transmit infection are dependent on behavioral and other risk factors relevant given the transmission route of the pathogen concerned. Transmission at the population level can be quantified through knowledge of risk factors in the population or phylogeographic analysis of pathogen sequence data. Mathematical model-based approaches require estimation of the per capita transmission rate and basic reproduction number, obtained by fitting models to case data and/or analysis of pathogen sequence data. Heterogeneities in infectiousness, contact behavior, and susceptibility can have substantial effects on the epidemiology of an infectious disease, so estimates of only mean values may be insufficient. For some pathogens, super-shedders (infected individuals who are highly infectious) and super-spreaders (individuals with more opportunities to transmit infection) may be important. Future work on quantifying transmission should involve integrated analyses of multiple data sources.

  3. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue

    International Nuclear Information System (INIS)

    Woodward, Ruth M; Cole, Bryan E; Wallace, Vincent P; Pye, Richard J; Arnone, Donald D; Linfield, Edmund H; Pepper, Michael

    2002-01-01

    We demonstrate the application of terahertz pulse imaging (TPI) in reflection geometry for the study of skin tissue and related cancers both in vitro and in vivo. The sensitivity of terahertz radiation to polar molecules, such as water, makes TPI suitable for studying the hydration levels in the skin and the determination of the lateral spread of skin cancer pre-operatively. By studying the terahertz pulse shape in the time domain we have been able to differentiate between diseased and normal tissue for the study of basal cell carcinoma (BCC). Basal cell carcinoma has shown a positive terahertz contrast, and inflammation and scar tissue a negative terahertz contrast compared to normal tissue. In vivo measurements on the stratum corneum have enabled visualization of the stratum corneum-epidermis interface and the study of skin hydration levels. These results demonstrate the potential of terahertz pulse imaging for the study of skin tissue and its related disorders, both in vitro and in vivo

  4. Study on spectral features of terahertz wave propagating in the air

    Science.gov (United States)

    Kang, Shengwu

    2018-03-01

    Now, Terahertz technology has been widely used in many fields, which is mainly related to imaging detection. While the frequency range of the terahertz-wave is located between microwave and visible light, whether the existing visible light principle is applicable to terahertz-wave should be studied again. Through experiment, we measure the terahertz-wave field amplitude distribution on the receiving plane perpendicular to the direction of propagation in the air and picture out the energy distribution curve; derive an energy decay formula of terahertz wave based on the results; design a terahertz wavelength apparatus using the F-P interferometer theory; test the wavelength between 1 and 3 THz from the SIFIR-50THz laser of American Corehent company; finally analyze the related factors affecting the measurement precision including the beam incident angle, mechanical vibration, temperature fluctuation and the refractive index fluctuation.

  5. Extraordinary Hall effect in Co implanted GaAs hybrid magnetic semiconductors

    International Nuclear Information System (INIS)

    Honda, S.; Tateishi, K.; Nawate, M.; Sakamoto, I.

    2004-01-01

    Hybrid Co/GaAs ferromagnetic semiconductors have been prepared by implantation method. In these samples, sheet resistance shows weak temperature dependence, and the extraordinary Hall effect with positive coefficient is observed. In small Co content samples, Hall resistance increases with decreasing temperature and maximum value of 3.6x10 -2 Ω is obtained at 150 K

  6. The right to appeal a judgment of the Extraordinary Chambers in the courts of Cambodia

    NARCIS (Netherlands)

    O'Neill, L.; Sluiter, G.

    2009-01-01

    In early 2007, we submitted a report to the Extraordinary Chambers in the Courts of Cambodia commenting on several aspects of its then-draft Internal Rules, including whether the ECCC’s envisaged appeal system adhered to international standards. The Internal Rules were adopted in June 2007, and then

  7. The psychologist, the psychoanalyst and the 'extraordinary child' in postwar British science fiction.

    Science.gov (United States)

    Tisdall, Laura

    2016-12-01

    A sudden influx of portrayals of 'extraordinary children' emerged in British science fiction after the Second World War. Such children both violated and confirmed the new set of expectations about ordinary childhood that emerged from the findings of developmental psychologists around the same time. Previous work on extraordinary children in both science fiction and horror has tended to confine the phenomenon to an 'evil child boom' within the American filmmaking industry in the 1970s. This article suggests that a much earlier trend is visible in British postwar science fiction texts, analysing a cluster of novels that emerged in the 1950s: Arthur C. Clarke's Childhood's End (1953), William Golding's Lord of the Flies (1954) and John Wyndham's The Midwich Cuckoos (1957). It will be argued that the groups of extraordinary children in these novels both tap into newer child-centred assertions about the threats posed by abnormal childhood, underwritten by psychology and psychoanalysis, and represent a reaction to an older progressive tradition in which children were envisaged as the single hope for a utopian future. This article will ultimately assert that the sudden appearance of extraordinary children in science fiction reflects a profound shift in assessment criteria for healthy childhood in Britain from the 1950s onwards, an issue that had become vitally important in a fledgling social democracy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. 18 CFR 367.4093 - Account 409.3, Income taxes, extraordinary items.

    Science.gov (United States)

    2010-04-01

    ... NATURAL GAS ACT Income Statement Chart of Accounts Service Company Operating Income § 367.4093 Account 409.3, Income taxes, extraordinary items. This account must include the amount of those local, state and... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 409.3, Income...

  9. Extraordinary Measures: Drone Warfare, Securitization, and the “War on Terror”

    Directory of Open Access Journals (Sweden)

    Romaniuk Scott Nicholas

    2015-07-01

    Full Text Available The use of unmanned aerial vehicles or “drones,” as part of the United States’ (US targeted killing (TK program dramatically increased after the War on Terror (WoT was declared. With the ambiguous nature and parameters of the WoT, and stemming from the postulation of numerous low-level, niche-, and other securitizations producing a monolithic threat, US drone operations now constitute a vital stitch in the extensive fabric of US counterterrorism policy. This article employs the theories of securitization and macrosecuritization as discussed by Buzan (1991, 2006, and Buzan and Wæver (2009 to understand targeted killing, by means of weaponized drones, as an extraordinary measure according to the Copenhagen School’s interpretation. An overarching securitization and the use of the “security” label warrants the emergency action of targeted killing through the use of drones as an extraordinary measure. We argue that the WoT serves as a means of securitizing global terrorism as a threat significant enough to warrant the use of drone warfare as an extraordinary use of force. By accepting the WoT as a securitization process we can reasonably accept that the US’ response(s against that threat are also securitized and therefore become extraordinary measures.

  10. Online terahertz thickness measurement in films and coatings

    Science.gov (United States)

    Duling, Irl N.; White, Jeffrey S.

    2017-02-01

    Pulsed terahertz systems are currently being deployed for online process control and quality control of multi-layered products for use in the building products and aerospace industries. While many laboratory applications of terahertz can allow waveforms to be acquired at rates of 1 - 40 Hz, online applications require measurement rates of in excess of 100Hz. The existing technologies of thickness measurement (nuclear, x-ray, or laser gauges) have rates between 100 and 1000 Hz. At these rates, the single waveform bandwidth must still remain at 2THz or above to allow thinner layers to be measured. In the applications where terahertz can provide unique capability (e.g. multi-layer thickness, delamination, density) long-term stability must be guaranteed within the tolerance required by the measurement. This can mean multi-day stability of less than a micron. The software that runs on these systems must be flexible enough to allow multiple product configurations, while maintaining the simplicity required by plant operators. The final requirement is to have systems that can withstand the environmental conditions of the measurement. This might mean qualification in explosive environments, or operation in hot, wet or dusty environments. All of these requirements can put restrictions on not only the voltage of electronic circuitry used, but also the wavelength and optical power used for the transmitter and receiver. The application of terahertz systems to online process control presents unique challenges that not only effect the physical design of the system, but can also effect the choices made on the terahertz technology itself.

  11. TERAHERTZ – YESTERDAY, TODAY, AND TOMORROW

    Directory of Open Access Journals (Sweden)

    Carlos A. Duque

    2016-03-01

      El término terahertz (THz se convirtió en una de las palabras más populares de la ciencia hoy en día. ¿Por qué? ¿Y qué es esto? ¿Por qué cada vez más libros, artículos y conferencias científicas se están dedicando a este tema en todo el mundo? ¿Por qué centros THz se están estableciendo en muchas universidades y laboratorios? ¿Por qué han aparecido programas académicos sobre THz en diferentes países? El artículo presenta respuestas breves a estas preguntas. En él se explica lo que es la radiación THz y que es la llamada brecha THz. Presentamos las peculiaridades de la radiación THz y mencionamos sus aplicaciones más importantes. Más adelante, describimos el estado del arte en la ciencia THz. En un artículo corto es imposible cubrir todos los aspectos científicos y técnicos de la ciencia THz, por lo tanto, restringiremos la discusión a los dispositivos y las tecnologías basadas en nanoestructuras semiconductoras en dos campos muy importantes a saber, las fuentes y detectores de THz; prestando especial atención a sus diferencias con respecto a los dispositivos ópticos convencionales. Esperamos que los lectores adquieran una familiaridad suficiente con la ciencia de THz y que traten de encontrar sus caminos propios para implementar la radiación THz en sus actividades científicas.

  12. Quantum-mechanical designed terahertz laser

    International Nuclear Information System (INIS)

    Benz, A.; Fasching, G.; Unterrainer, K.; Zobl, R.; Andrews, M.A.; Roch, T.; Schrenk, W.; Strasser, G.

    2005-01-01

    Full text: The terahertz-frequency region (1 THz=10 12 Hz) lies between RF-electronics and the photonics. Due to the large demand of coherent sources in this spectral range for applications liKEX medical imaging, chemical sensing and security applications large effort is put into the development of the THz-technology to close the THz-gap. The RF-electronics is able to generate frequencies up to around 0.1 THz, limited by the RC-time-constant of the system. The photonics on the other hand generates frequencies down to around 100 THz, defined by the bandgap of the used semiconducting material. Changing the wavelength requires the selection of a new material or of a new material composition. A new concept for coherent light sources is the quantum cascade laser (QCL), which was developed for the mid-infrared spectral region. The major advantage of the QCL-structure is the possibility to design the emission wavelength by band structure engineering. The wavelength is defined by the energy difference of quantized states in the conduction band. Here, we present a QCL working in the THz spectral region at 3 THz. The design is based on optical transitions between subbands of an AlGaAs/GaAs heterostructure. The thickness of the GaAs and AlGaAs layers were calculated to obtain quantized transitions at the desired THz-frequency. The wavefunctions were optimized to achieve the largest possible matrix element. 271 cascades were grown by molecular beam epitaxy to increase the optical gain and to achieve a waveguide thickness comparable to the THz-wavelength. We report lasing from conventional ridge waveguide and microcavity devices. (author)

  13. Metrology for terahertz time-domain spectrometers

    Science.gov (United States)

    Molloy, John F.; Naftaly, Mira

    2015-12-01

    In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.

  14. Plasma wave instability and amplification of terahertz radiation in field-effect-transistor arrays

    International Nuclear Information System (INIS)

    Popov, V V; Tsymbalov, G M; Shur, M S

    2008-01-01

    We show that the strong amplification of terahertz radiation takes place in an array of field-effect transistors at small DC drain currents due to hydrodynamic plasmon instability of the collective plasmon mode. Planar designs compatible with standard integrated circuit fabrication processes and strong coupling of terahertz radiation to plasmon modes in FET arrays make such arrays very attractive for potential applications in solid-state terahertz amplifiers and emitters

  15. Optical generation,detection and non-destructive testing applications of terahertz waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Weili; LIANG; Dachuan; TIAN; Zhen; HAN; Jiaguang; GU; Jianqiang; HE; Mingxia; OUYANG; Chunmei

    2016-01-01

    Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.

  16. Force transmissibility versus displacement transmissibility

    Science.gov (United States)

    Lage, Y. E.; Neves, M. M.; Maia, N. M. M.; Tcherniak, D.

    2014-10-01

    It is well-known that when a single-degree-of-freedom (sdof) system is excited by a continuous motion of the foundation, the force transmissibility, relating the force transmitted to the foundation to the applied force, equals the displacement transmissibility. Recent developments in the generalization of the transmissibility to multiple-degree-of-freedom (mdof) systems have shown that similar simple and direct relations between both types of transmissibility do not appear naturally from the definitions, as happens in the sdof case. In this paper, the authors present their studies on the conditions under which it is possible to establish a relation between force transmissibility and displacement transmissibility for mdof systems. As far as the authors are aware, such a relation is not currently found in the literature, which is justified by being based on recent developments in the transmissibility concept for mdof systems. Indeed, it does not appear naturally, but the authors observed that the needed link is present when the displacement transmissibility is obtained between the same coordinates where the applied and reaction forces are considered in the force transmissibility case; this implies that the boundary conditions are not exactly the same and instead follow some rules. This work presents a formal derivation of the explicit relation between the force and displacement transmissibilities for mdof systems, and discusses its potential and limitations. The authors show that it is possible to obtain the displacement transmissibility from measured forces, and the force transmissibility from measured displacements, opening new perspectives, for example, in the identification of applied or transmitted forces. With this novel relation, it becomes possible, for example, to estimate the force transmissibility matrix with the structure off its supports, in free boundary conditions, and without measuring the forces. As far as force identification is concerned, this

  17. Data transmission

    National Research Council Canada - National Science Library

    Tugal, Dogan A; Tugal, Osman

    1989-01-01

    This updated second edition provides working answers to today's critical questions about designing and managing all types of data transmission systems and features a new chapter on local area networks (LANs...

  18. Anisotropic behaviour of transmission through thin superconducting NbN film in parallel magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Šindler, M., E-mail: sindler@fzu.cz [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Tesař, R. [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Praha (Czech Republic); Koláček, J. [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Skrbek, L. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Praha (Czech Republic)

    2017-02-15

    Highlights: • Transmission through thin NbN film in parallel magnetic field exhibits strong anisotropic behaviour in the terahertz range. • Response for a polarisation parallel with the applied field is given as weighted sum of superconducting and normal state contributions. • Effective medium approach fails to describe response for linear polarisation perpendicular to the applied magnetic field. - Abstract: Transmission of terahertz waves through a thin layer of the superconductor NbN deposited on an anisotropic R-cut sapphire substrate is studied as a function of temperature in a magnetic field oriented parallel with the sample. A significant difference is found between transmitted intensities of beams linearly polarised parallel with and perpendicular to the direction of applied magnetic field.

  19. Nondestructive evaluation of crystallized-particle size in lactose-powder by terahertz time-domain spectroscopy

    Science.gov (United States)

    Yamauchi, Satoshi; Hatakeyama, Sakura; Imai, Yoh; Tonouchi, Masayoshi

    2014-03-01

    Transmission-type terahertz time-domain spectroscopy is applied to evaluate crystallized lactose particle of size below 30 μm, which is far too small compared to the wavelength of incident terahertz (THz)-wave. The THz-absorption spectrum of lactose is successfully deconvoluted by Lorentzian to two spectra with peaks at 17.1 cm-1 (0.53 THz) and 45.6 cm-1 (1.37 THz) derived from α-lactose monohydrate, and a spectrum at 39.7 cm-1 (1.19 THz) from anhydrous β-lactose after removal of the broad-band spectrum by polynomial cubic function. Lactose is mainly crystallized into α-lactose monohydrate from the supersaturated solution at room temperature with a small amount of anhydrous β-lactose below 4%. The absorption feature is dependent on the crystallized particle size and the integrated intensity ratio of the two absorptions due to α-lactose monohydrate is correlated in linear for the size.

  20. Anisotropic behaviour of transmission through thin superconducting NbN film in parallel magnetic field

    Czech Academy of Sciences Publication Activity Database

    Šindler, Michal; Tesař, Karel; Koláček, Jan; Skrbek, L.

    2017-01-01

    Roč. 533, Feb (2017), s. 154-157 ISSN 0921-4534 R&D Projects: GA MŠk(CZ) LD14060 Institutional support: RVO:68378271 Keywords : far-infrared transmission * NbN * ssuperconducting film * vortices * terahertz waves * parallel magnetic field Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.404, year: 2016

  1. Electrical transmission

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, D P

    1960-05-01

    After briefly tracing the history of electricity transmission, trends in high voltage transmission and experiments being conducted on 650 kV are discussed. 5000 miles of the U.K. grid are operated at 132 kV and 1000 at 275 kV, ultimately to provide a super grid at 380 kV. Problems are insulation, radio interference and the cost of underground lines (16 times that of overhead lines). Also considered are the economics of the grid as a means of transporting energy and as a means of spreading the peak load over the power stations in the most efficient manner. Finally, the question of amenities is discussed.

  2. Low frequency terahertz-induced demagnetization in ferromagnetic nickel

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, Mostafa, E-mail: most.shalaby@gmail.com; Vicario, Carlo, E-mail: carlo.vicario@psi.ch [SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Hauri, Christoph P., E-mail: christoph.hauri@psi.ch [SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

    2016-05-02

    A laser stimulus at terahertz (THz) frequency is expected to offer superior control over magnetization dynamics compared to an optical pulse, where ultrafast demagnetization is mediated by heat deposition. As a THz field cycle occurs on a timescale similar to the natural speed of spin motions, this can open a path for triggering precessional magnetization motion and ultimately ultrafast magnetic switching by the THz magnetic field component, without quenching. Here, we explore the ultrafast magnetic response of a ferromagnetic nickel thin film excited by a strong (33 MV/cm) terahertz transient in non-resonant conditions. While the magnetic laser pulse component induces ultrafast magnetic precessions, we experimentally found that at high pump fluence, the THz pulse leads to large quenching which dominates the precessional motion by far. Furthermore, degradation of magnetic properties sets in and leads to permanent modifications of the Ni thin film and damage.

  3. The application of terahertz spectroscopy and imaging in biomedicine

    International Nuclear Information System (INIS)

    Liu Shangjian; Yu Fei; Li Kai; Zhou Jing

    2013-01-01

    Terahertz (THz) science and technology is gaining increasing attention in the biomedical field. Compared with traditional medical diagnosis methods using infrared radiation, nuclear magnetic resonance, X-rays or ultrasound, THz radiation has low energy, high spatial resolution, a broad spectral range, and is a reliable means of imaging for the human body. Terahertz waves have strong penetration and high fingerprint specificity, so they can play an important role in drug detection and identification. This paper reviews the special techniques based on conventional THz time-domain setups in disease detection and drug identification. With regard to the biomedical fields, we focus on the application of THz radiation in studies of skin tissue, gene expression, cells, cancer imaging, the quantitative analysis of drugs, and so on. We also present an overview of the future challenges and prospects of THz research in medicine. (authors)

  4. Anisotropic effects of terahertz emission from laser sparks in air

    International Nuclear Information System (INIS)

    Zharova, N. A.; Mironov, V. A.; Fadeev, D. A.

    2010-01-01

    Strong terahertz (THz) radiation can be generated by intense femtosecond laser pulses propagating in air. The excitation of transient current induced in the wake just behind the laser pulse is studied in detail using numerical simulations on the basis of Maxwell's equations for THz-band fields and hydrodynamic model for the plasma motion. It is shown that the thermal effects, anisotropic in character in the case of linear polarized laser field, can explain observed quadrupole-type THz radiation pattern in the experiment performed by Akhmedzhanov et al. [Radiophys. Quantum Electron. 52, 482 (2009)]. Taking into account the transverse structure of the plasma filament, our numerical code enables us to calculate the spatial distribution and temporal evolution of terahertz electron current, its spectrum, and angular emission pattern. It is shown that an expansion of full fields in terms of azimuthal modes is a useful tool for research of THz generation in many situations of practical interest.

  5. NATO Advanced Research Workshop on Terahertz and Mid Infrared Radiation

    CERN Document Server

    Pereira, Mauro F; Terahertz and Mid Infrared Radiation

    2011-01-01

    Terahertz (THz) and Mid-Infrared (MIR) radiation  (TERA-MIR) can be transmitted through nearly any material without causing biological harm. Novel and rapid methods of detection can be created with devices operation in these spectral ranges allowing scanning for weapons, detecting hidden explosives (including plastic landmines), controlling the quality of food and a host of other exciting applications.  This book focuses on mathematical and physical aspects of the field, on unifying these two spectral domains (THz and MIR) with regard to common sources, detectors, materials and applications, and on key interdisciplinary topics. The main THz and MIR source is the quantum cascade laser (QCL). Thus significant attention is paid to the challenge of turning this advanced technology into affordable commercial devices so as to exploit its enormous potential. However other alternatives to THz QCLs are also presented, e.g.  sub-terahertz imaging from avalanching GaAs bipolar transistors, Josephson junctions as THz ...

  6. Terahertz pulsed imaging of freshly excised human colonic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Caroline B; Gibson, Adam P [Department of Medical Physics and Bioengineering, University College London, London, WC1E 6BT (United Kingdom); Fitzgerald, Anthony; Wallace, Vincent P [School of Physics, University of Western Australia, Crawley 6009 (Australia); Reese, George; Tekkis, Paris [Division of Surgery, Chelsea and Westminster Campus, Imperial College London, London (United Kingdom); Goldin, Robert [Centre for Pathology, Imperial College London, St Mary' s Campus, London (United Kingdom); O' Kelly, P S [TeraView Ltd, Platinum Building, St John' s Innovation Park, Cowley Road, Cambridge, CB4 0WS (United Kingdom); Pickwell-MacPherson, Emma, E-mail: c.reid@medphys.ucl.ac.uk [Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, NT (Hong Kong)

    2011-07-21

    We present the results from a feasibility study which measures properties in the terahertz frequency range of excised cancerous, dysplastic and healthy colonic tissues from 30 patients. We compare their absorption and refractive index spectra to identify trends which may enable different tissue types to be distinguished. In addition, we present statistical models based on variations between up to 17 parameters calculated from the reflected time and frequency domain signals of all the measured tissues. These models produce a sensitivity of 82% and a specificity of 77% in distinguishing between healthy and all diseased tissues and a sensitivity of 89% and a specificity of 71% in distinguishing between dysplastic and healthy tissues. The contrast between the tissue types was supported by histological staining studies which showed an increased vascularity in regions of increased terahertz absorption.

  7. Discrimination of genetically modified sugar beets based on terahertz spectroscopy

    Science.gov (United States)

    Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong

    2016-01-01

    The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets.

  8. Terahertz pulsed imaging of freshly excised human colonic tissues

    International Nuclear Information System (INIS)

    Reid, Caroline B; Gibson, Adam P; Fitzgerald, Anthony; Wallace, Vincent P; Reese, George; Tekkis, Paris; Goldin, Robert; O'Kelly, P S; Pickwell-MacPherson, Emma

    2011-01-01

    We present the results from a feasibility study which measures properties in the terahertz frequency range of excised cancerous, dysplastic and healthy colonic tissues from 30 patients. We compare their absorption and refractive index spectra to identify trends which may enable different tissue types to be distinguished. In addition, we present statistical models based on variations between up to 17 parameters calculated from the reflected time and frequency domain signals of all the measured tissues. These models produce a sensitivity of 82% and a specificity of 77% in distinguishing between healthy and all diseased tissues and a sensitivity of 89% and a specificity of 71% in distinguishing between dysplastic and healthy tissues. The contrast between the tissue types was supported by histological staining studies which showed an increased vascularity in regions of increased terahertz absorption.

  9. Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources

    International Nuclear Information System (INIS)

    Li Yuelin; Kim, Kwang-Je

    2008-01-01

    We propose to generate a train of prebunched electron beams for producing coherently enhanced Smith-Purcell radiation [S. J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953)] in the terahertz wavelength range. In this scheme, a train of picosecond laser pulses is produced to drive a photoemission gun to generate a train of 50 keV electron pulses. The parameters are chosen so that the space-charge effect does not destroy the pulse time structure. Smith-Purcell radiation from the electron pulse train is enhanced due both to the short length of the individual electron bunch and to the repetitive structure of the beam. Example systems producing coherent terahertz power at about 1 mW are described

  10. Harmonics radiation of graphene surface plasmon polaritons in terahertz regime

    Energy Technology Data Exchange (ETDEWEB)

    Li, D., E-mail: dazhi_li@hotmail.com [Institute for Laser Technology, Suita, Osaka 565-0871 (Japan); Wang, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Nakajima, M. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Hashida, M. [Advanced Research Center for Beam Science, ICR, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Wei, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205 (Japan)

    2016-06-03

    This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation. - Highlights: • An approach to extract terahertz radiation from graphene surface plasmon polaritons is presented. • A sidewall configuration is proposed to lift the surface plasmon mode. • Harmonics of surface plasmon polaritons are possible to radiate.

  11. Fabrication of a Terahertz Imaging System

    National Research Council Canada - National Science Library

    Kolodzey, James; Goossen, Keith

    2005-01-01

    .... This FTIR system operates over a frequency range from 0.6 THz to 300 THz (20 to 10,000 cm-1). Spectral transmission measurements for lens materials such as ZnSe, and for architectural materials such as dry-wall...

  12. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    International Nuclear Information System (INIS)

    Granovsky, Alexander B.; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-01-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed

  13. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-03-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed.

  14. The Concept of Extraordinary Crime in Indonesia Legal System: is the Concept an Effective Criminal Policy?

    OpenAIRE

    Prahassacitta, Vidya

    2016-01-01

    The concept of extraordinary crime was a common concept in Indonesia. Adopts from the concept of the most serious crime in Rome Statute and adjusted with the Indonesian legal system. Then it developed wider and introduced into terrorism, corruption, drug abuse offenses, and child sexual abuse in legislations and Constitutional Court verdicts. The implementation of this concept generated some consequences in drafting and formulating the legislation as part of penal policy. This leads to two le...

  15. The savant syndrome: an extraordinary condition. A synopsis: past, present, future

    OpenAIRE

    Treffert, Darold A.

    2009-01-01

    Savant syndrome is a rare, but extraordinary, condition in which persons with serious mental disabilities, including autistic disorder, have some ‘island of genius’ which stands in marked, incongruous contrast to overall handicap. As many as one in 10 persons with autistic disorder have such remarkable abilities in varying degrees, although savant syndrome occurs in other developmental disabilities or in other types of central nervous system injury or disease as well. Whatever the particular ...

  16. Terahertz hot electron bolometer waveguide mixers for GREAT

    OpenAIRE

    Pütz, P.; Honingh, C. E.; Jacobs, K.; Justen, M.; Schultz, M.; Stutzki, J.

    2012-01-01

    Supplementing the publications based on the first-light observations with the German Receiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on the...

  17. Linewidth and tuning characteristics of terahertz quantum cascade lasers.

    Science.gov (United States)

    Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A

    2004-03-15

    We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.

  18. Quantum theory of terahertz conductivity of semiconductor nanostructures

    Czech Academy of Sciences Publication Activity Database

    Ostatnický, T.; Pushkarev, Vladimir; Němec, Hynek; Kužel, Petr

    2018-01-01

    Roč. 97, č. 8 (2018), s. 1-8, č. článku 085426. ISSN 2469-9950 R&D Projects: GA ČR GA17-03662S EU Projects: European Commission(XE) 607521 - NOTEDEV Institutional support: RVO:68378271 Keywords : nanostructures * nanoparticles * terahertz conductivity * quantum theory * linear response Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  19. Terahertz Technology for Defense and Security-Related Applications

    OpenAIRE

    Iwaszczuk, Krzysztof; Jepsen, Peter Uhd; Heiselberg, Henning

    2012-01-01

    Denne afhandling omhandler udvalgte aspekter af terahertz (THz) teknologi med potentiale i forsvars- og sikkerheds-relaterede applikationer. En ny metode til samtidig dataopsamling i tidsopløst THz spektroskopi eksperimenter er blevet udviklet. Denne teknik demonstreres ved bestemmelse af fladekonduktiviteten af fotogenererede ladningsbrere i semiisolerende gallium arsenid. En sammenligning med resultater opnået ved hjælp af en standard dataopsamlingsprocedure viser at den nye metode minimere...

  20. Nondestructive Evaluation of Aircraft Composites Using Terahertz Time Domain Spectroscopy

    Science.gov (United States)

    2008-12-10

    silicon or silicon dioxide in polypropylene . 50 THz NDE is also being proposed as a method of inspecting the adhesive bond- line of space...weave the overlapping pattern used in the composite. The polyimide resin is added and permeates throughout the individual glass fiber strands. The...dx.doi.org/10.1117/12.590301 65. Rutz, F., Hasek, T., Koch, M., Richter, H., Ewert, U. (2006). Terahertz birefringence of liquid crystal polymers

  1. Terahertz time-domain spectroscopy of edible oils

    OpenAIRE

    Dinovitser, Alex; Valchev, Dimitar G.; Abbott, Derek

    2017-01-01

    Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and p...

  2. Quantum behavior of terahertz photoconductivity in silicon nanocrystals networks

    Czech Academy of Sciences Publication Activity Database

    Pushkarev, Vladimir; Ostatnický, T.; Němec, Hynek; Chlouba, T.; Trojánek, F.; Malý, P.; Zacharias, M.; Gutsch, S.; Hiller, D.; Kužel, Petr

    2017-01-01

    Roč. 95, č. 12 (2017), s. 1-9, č. článku 125424. ISSN 2469-9950 R&D Projects: GA ČR GA17-03662S EU Projects: European Commission(XE) 607521 - NOTEDEV Institutional support: RVO:68378271 Keywords : terahertz spectroscopy * charge transport * silicon nanocrystals * linear response theory Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  3. Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma

    International Nuclear Information System (INIS)

    Liu Jingle; Zhang, X.-C.

    2009-01-01

    We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.

  4. Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films

    NARCIS (Netherlands)

    Ramakrishnan, G.; Planken, P.C.M.

    2011-01-01

    Emission of pulses of electromagnetic radiation in the terahertz range is observed when ultrathin gold films on glass are illuminated with femtosecond near-IR laser pulses. A distinct maximum is observed in the emitted terahertz amplitude from films of average thickness just above the percolation

  5. Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells

    Science.gov (United States)

    2016-07-01

    HIGHLY RESOLVED SUB-TERAHERTZ VIBRATIONAL SPECTROSCOPY OF BIOLOGICAL MACROMOLECULES AND BACTERIA CELLS ECBC...SUBTITLE Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells 5a. CONTRACT NUMBER W911SR-14-P...22 4.3 Bacteria THz Study

  6. Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays

    DEFF Research Database (Denmark)

    Xiao, Binggang; Gu, Mingyue; Xiao, Sanshui

    2017-01-01

    Tunable terahertz absorbers composed of periodically cross-shaped graphene arrays with the ability to achieve nearunity absorbance are proposed and studied. Our results demonstrate that the bandwidth of absorption rate above 90% can reach up to 1.13 terahertz by use of a single layer of cross-sha...

  7. Relaxation and crystallization of amorphous carbamazepine studied by terahertz pulsed spectroscopy

    DEFF Research Database (Denmark)

    Zeitler, J Axel; Taday, Philip F; Pepper, Michael

    2007-01-01

    At the example of carbamazepine the crystallization of a small organic molecule from its amorphous phase was studied using in situ variable temperature terahertz pulsed spectroscopy (TPS). Even though terahertz spectra of disordered materials in the glassy state exhibit no distinct spectral featu...

  8. Terahertz imaging and spectroscopy based on hot electron bolometer (HEB) heterodyne detection

    Science.gov (United States)

    Gerecht, Eyal; You, Lixing

    2008-02-01

    Imaging and spectroscopy at terahertz frequencies have great potential for healthcare, plasma diagnostics, and homeland security applications. Terahertz frequencies correspond to energy level transitions of important molecules in biology and astrophysics. Terahertz radiation (T-rays) can penetrate clothing and, to some extent, can also penetrate biological materials. Because of their shorter wavelengths, they offer higher spatial resolution than do microwaves or millimeter waves. We are developing hot electron bolometer (HEB) mixer receivers for heterodyne detection at terahertz frequencies. HEB detectors provide unprecedented sensitivity and spectral resolution at terahertz frequencies. We describe the development of a two-pixel focal plane array (FPA) based on HEB technology. Furthermore, we have demonstrated a fully automated, two-dimensional scanning, passive imaging system based on our HEB technology operating at 0.85 THz. Our high spectral resolution terahertz imager has a total system noise equivalent temperature difference (NEΔT) value of better than 0.5 K and a spatial resolution of a few millimeters. HEB technology is becoming the basis for advanced terahertz imaging and spectroscopic technologies for the study of biological and chemical agents over the entire terahertz spectrum.

  9. Convergence of photonics and electronics for Terahertz wireless communications – the ITN CELTA project

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2016-01-01

    Terahertz wireless communications is expected to offer the required high capacity and low latency performance required from short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: convergence of...... of electronics and photonics technologies enabling Terahertz applications...

  10. 77 FR 59941 - Prospective Grant of Exclusive License: Terahertz Scanning Systems for Cancer Pathology

    Science.gov (United States)

    2012-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Prospective Grant of Exclusive License: Terahertz Scanning Systems for Cancer Pathology AGENCY: National Institutes of Health... field of use limited to terahertz scanning systems for cancer pathology. Upon the expiration or...

  11. Excitation of a double corrugation slow-wave structure in terahertz range

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Krozer, Viktor; Kotiranta, Mikko

    2011-01-01

    In spite of the fact that the technology is constantly advancing, the realization of terahertz components is still heavily constrained by problems arising from technological limitations. As a result, the design of terahertz components still remains a challenging problem. In this work, an excitati...

  12. Extraordinary results

    International Nuclear Information System (INIS)

    Cicova, V.

    2012-01-01

    For the first time in the history, Slovenske elektrarne became the first winner in a new category Business and Biodiversity in the competition of European companies aimed at the environment protection. Excellent results were achieved by a long-term co-operation with the Tatras National Park, in particular in saving the endangered animals.

  13. Extraordinary Sportswomen

    DEFF Research Database (Denmark)

    As in many other fields, in sports too, women were latecomers and considered as the ‘other sex’ – at least until the twenty-first century. When sport developed in its modern forms towards the second half of the nineteenth century, women were (and to a certain degree still are) considered too weak......, which strategies did they apply and how did they fight and win their battles against the gender order of their time? The chapters were originally published as a special issue of Sport in Society.......As in many other fields, in sports too, women were latecomers and considered as the ‘other sex’ – at least until the twenty-first century. When sport developed in its modern forms towards the second half of the nineteenth century, women were (and to a certain degree still are) considered too weak...... to participate in strenuous physical activities, and were thus excluded from various sports, competitions and events. Although they gradually gained access to all sports, competitive sport was – and is still today – one of the few areas in modern societies with strict gender segregation: in most sports, men do...

  14. Extraordinary Tales

    Indian Academy of Sciences (India)

    IAS Admin

    are protozoa, plants, fungi and animals. Parasitology refers to the study of ... this parasite infect us if we are optional in its lifecycle? Of course, this aids in the ... unclean fruits and vegetables that might have been contaminated with cat faeces.

  15. On Not Understanding Extraordinary Language in the Buddhist Tantra of Japan

    Directory of Open Access Journals (Sweden)

    Richard K. Payne

    2017-10-01

    Full Text Available The question motivating this essay is how tantric Buddhist practitioners in Japan understood language such as to believe that mantra, dhāraṇī, and related forms are efficacious. “Extraordinary language” is introduced as a cover term for these several similar language uses found in tantric Buddhist practices in Japan. The essay proceeds to a critical examination of Anglo-American philosophy of language to determine whether the concepts, categories, and concerns of that field can contribute to the analysis and understanding of extraordinary language. However, that philosophy of language does not contribute to this analysis, as it is constrained by its continuing focus on its founding concepts, dating particularly from the work of Frege. Comparing it to Indic thought regarding language reveals a distinct mismatch, further indicating the limiting character of the philosophy of language. The analysis then turns to examine two other explanations of tantric language use found in religious studies literature: magical language and performative language. These also, however, prove to be unhelpful. While the essay is primarily critical, one candidate for future constructive study is historical pragmatics, as suggested by Ronald Davidson. The central place of extraordinary language indicates that Indic reflections on the nature of language informed tantric Buddhist practice in Japan and are not simply cultural baggage.

  16. Characteristics of terahertz wave modulation using wavelength-selective photoexcitation in pentacene/Si and TIPS pentacene/Si bilayers

    Directory of Open Access Journals (Sweden)

    Hyung Keun Yoo

    2016-11-01

    Full Text Available We demonstrate the characteristics of the optical control of terahertz (THz wave transmission in photoexcited bilayers of pentacene/Si and 6,13-bis(triisopropylsilylethynyl pentacene (TIPS pentacene/Si. The modulation efficiency is influenced significantly by the photoexcitation wavelength of the optical beams. Lower optical absorption of organic materials leads to higher modulation efficiency because the photocarriers excited on Si with a higher diffusion rate and mobility are far more instrumental in increasing the modulation than the excitons generated on the organic layers. Securing a sufficient depth for carrier diffusion on organic layers is also important for increasing the THz modulation efficiency. These findings may be useful for designing highly efficient and spectrally controllable THz wave modulators.

  17. FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma

    Science.gov (United States)

    Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun

    2016-08-01

    The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)

  18. The Terahertz Scattering Analysis of Rough Metallic and Dielectric Targets

    Directory of Open Access Journals (Sweden)

    Mou Yuan

    2018-02-01

    Full Text Available The terahertz scattering characteristics of metallic and dielectric rough targets is important for the investigation of the terahertz radar targets properties. According to the stationary phase theory and scalar approximation, if the radius of curvature at any point of the surface is much larger than the incident wavelength, and the wavelength is also much longer than the surface height function and Root-Mean-Square (RMS surface slope, the coherent and incoherent scattering Radar Cross Section (RCS of rough metallic and dielectric targets can be obtained. Based on the stationary phase approximation, the coherent RCS of rough conductors, smooth dielectric targets and rough dielectric targets can be easily deputed. The scattering characteristics of electrically large smooth Al and painted spheres are investigated in this paper, and the calculated RCS are verified by Mie scattering theory, the error is less than 0.1 dBm2. Based on lambert theory, it is demonstrated that the incoherent RCS is analyzed with better precision if the rough surfaces are divided into much more facets. In this paper, the coherent and incoherent scattering of rough Al and painted spheres are numerically observed, and the effects of surface roughness and materials are analyzed. The conclusions provide theoretical foundation for the terahertz scattering characteristics of electrically large rough targets.

  19. Numerical simulation of terahertz generation and detection based on ultrafast photoconductive antennas

    Science.gov (United States)

    Chen, Long-chao; Fan, Wen-hui

    2011-08-01

    The numerical simulation of terahertz generation and detection in the interaction between femtosecond laser pulse and photoconductive material has been reported in this paper. The simulation model based on the Drude-Lorentz theory is used, and takes into account the phenomena that photo-generated electrons and holes are separated by the external bias field, which is screened by the space-charge field simultaneously. According to the numerical calculation, the terahertz time-domain waveforms and their Fourier-transformed spectra are presented under different conditions. The simulation results indicate that terahertz generation and detection properties of photoconductive antennas are largely influenced by three major factors, including photo-carriers' lifetime, laser pulse width and pump laser power. Finally, a simple model has been applied to simulate the detected terahertz pulses by photoconductive antennas with various photo-carriers' lifetimes, and the results show that the detected terahertz spectra are very different from the spectra radiated from the emitter.

  20. Characteristic responses of biological and nanoscale systems in the terahertz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Angeluts, A A; Balakin, A V; Evdokimov, M G; Ozheredov, I A; Sapozhnikov, D A; Solyankin, P M; Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Esaulkov, M N; Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-07-31

    This paper briefly examines methods for the generation of pulsed terahertz radiation and principles of pulsed terahertz spectroscopy, an advanced informative method for studies of complex biological and nanostructured systems. Some of its practical applications are described. Using a number of steroid hormones as examples, we demonstrate that terahertz spectroscopy in combination with molecular dynamics methods and computer simulation allows one to gain information about the structure of molecules in crystals. A 'terahertz colour vision' method is proposed for analysis of pulsed terahertz signals reflected from biological tissues and it is shown that this method can be effectively used to analyse the properties of biological tissues and for early skin cancer diagnosis. (laser biophotonics)

  1. Terahertz spectroscopy and imaging for cultural heritage management: state of art and perspectives

    Science.gov (United States)

    Catapano, Ilaria; Soldovieri, Francesco

    2014-05-01

    molecular stability of the exposed objects and humans. Recently, the interest on THz technology is also growing up thanks to the development of flexible and compact commercial systems having source and detector probes coupled by means of optical fiber cables and that do not require complex optical alignments. These features allow us to reconfigure the measurement configuration easily; thus transmission, normal reflection and oblique reflection data can be collected according to the constrains and objective of the survey to be performed. Moreover, they open the way to on field applications. An example of last generation THz systems is the Fiber-Coupled Terahertz Time Domain System (FICO) marketed by Z-Omega and available at the Institute of Electromagnetic Sensing of the Environment. Such a system is designed to perform both transmission and reflection spectroscopy and imaging measurements in the range from 60GHz to 3THz; with a waveform acquisition speed up to 500Hz. A review of the literature assessing potentialities and open challenges of THz spectroscopy and imaging in the frame of cultural heritage preservation will be provided at the conferences, with a specific focus on the diagnostic capabilities of last generation systems. REFERENCES [1] K. Fukunaga, I. Hosako, Innovative non-invasive analysis techniques for cultural heritage using terahertz technology, C. R. Physique, vol. 11, pp.519-526, 2010. [2] G.Fillippidis, M. Massaouti, A. Selimis, E.J. Gualda, J.M. Manceau, S. Tzortzakis, Nonlinear imaging and THz diagnostic tools in the service of Cultural Heritage, Appl. Phys. A, vol.106, pp.257-263, 2012.

  2. Terahertz Spectroscopic Identification with Diffusion Maps%基于扩散映射的太赫兹光谱识别

    Institute of Scientific and Technical Information of China (English)

    倪家鹏; 沈韬; 朱艳; 李灵杰; 毛存礼; 余正涛

    2017-01-01

    methods.Linear method is easy to cause greater error due to the nonlinear nature of terahertz spectroscopy data,especially when different materials of spectrum curves are very similar.To address this issue,a novel terahertz spectroscopy identification approach with Diffusion Maps(DM)was studied in this paper.Diffusion Maps can realize nonlinear dimensionality reduction while maintaining the internal geometry of the data.In addition,the manifold features extracted by the method have good discrimination and clustering performance.Firstly,S-G filter and cubic spline interpolation were used to smooth and uniform the resolution of terahertz transmission spectra of ten kinds of substances in the same frequency band.Secondly,high-dimensional data of terahertz spectra is mapped to the low-dimensional feature space by using DM so that we can extract the manifold features of terahertz spectroscopy.Finally,a Multi-class Support Vector Machine(M-SVM)classifier is applied to classify these terahertz spectra.Experimental results show that,compared with Principal Component Analysis(PCA)and Isometric Mapping(ISOMAP),manifold features of terahertz spectroscopy extracted by DM have higher degree of differentiation.Besides,DM can get the estimation of intrinsic dimension of terahertz spectra directly.So this proposed method provides a novel approach to identify similar terahertz spectrum quickly and accurately.

  3. Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films

    Science.gov (United States)

    Matsui, Tatsunosuke; Vardeny, Z. Valy; Agrawal, Amit; Nahata, Ajay; Menon, Reghu

    2006-02-01

    We observed resonantly-enhanced terahertz transmission through two-dimensional (2D) periodic arrays of subwavelength apertures with various periodicities fabricated on metallic organic conducting polymer films of polypyrrole heavily doped with PF6 molecules [PPy(PF6)]. The "anomalous transmission" spectra are in good agreement with a model involving surface plasmon polariton excitations on the film surfaces. We also found that the `anomalous transmission' peaks are broader in the exotic metallic PPy (PF6) films compared to those formed in 2D aperture array in regular metallic films such as silver, showing that the surface plasmon polaritons on the PPy (PF6) film surfaces have higher attenuation.

  4. Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms

    Science.gov (United States)

    Serita, Kazunori; Matsuda, Eiki; Okada, Kosuke; Murakami, Hironaru; Kawayama, Iwao; Tonouchi, Masayoshi

    2018-05-01

    We present a nonlinear optical crystal (NLOC)-based terahertz (THz) microfluidic chip with a few arrays of split ring resonators (SRRs) for ultra-trace and quantitative measurements of liquid solutions. The proposed chip operates on the basis of near-field coupling between the SRRs and a local emission of point like THz source that is generated in the process of optical rectification in NLOCs on a sub-wavelength scale. The liquid solutions flowing inside the microchannel modify the resonance frequency and peak attenuation in the THz transmission spectra. In contrast to conventional bio-sensing with far/near-field THz waves, our technique can be expected to compactify the chip design as well as realize high sensitive near-field measurement of liquid solutions without any high-power optical/THz source, near-field probes, and prisms. Using this chip, we have succeeded in observing the 31.8 fmol of ion concentration in actual amount of 318 pl water solutions from the shift of the resonance frequency. The technique opens the door to microanalysis of biological samples with THz waves and accelerates development of THz lab-on-chip devices.

  5. Invited Article: Channel performance for indoor and outdoor terahertz wireless links

    Science.gov (United States)

    Ma, Jianjun; Shrestha, Rabi; Moeller, Lothar; Mittleman, Daniel M.

    2018-05-01

    One of the most exciting future applications of terahertz technology is in the area of wireless communications. As 5G systems incorporating a standard for millimeter-wave wireless links approach commercial roll-out, it is becoming clear that even this new infrastructure will not be sufficient to keep pace with the rapidly increasing global demand for bandwidth. One favorable solution that is attracting increasing attention for subsequent generations of wireless technology is to use higher frequencies, above 100 GHz. The implementation of such links will require significant advances in hardware, algorithms, and architecture. Although numerous research groups are exploring aspects of this challenging problem, many basic questions remain unaddressed. Here, we present an experimental effort to characterize THz wireless links in both indoor and outdoor environments. We report measurements at 100, 200, 300, and 400 GHz, using a link with a data rate of 1 Gbit/s. We demonstrate both line-of-sight and non-line-of-sight (specular reflection) links off of interior building walls. This work represents a first step to establish the feasibility of using THz carrier waves for data transmission in diverse situations and environments.

  6. Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms

    Directory of Open Access Journals (Sweden)

    Kazunori Serita

    2018-05-01

    Full Text Available We present a nonlinear optical crystal (NLOC-based terahertz (THz microfluidic chip with a few arrays of split ring resonators (SRRs for ultra-trace and quantitative measurements of liquid solutions. The proposed chip operates on the basis of near-field coupling between the SRRs and a local emission of point like THz source that is generated in the process of optical rectification in NLOCs on a sub-wavelength scale. The liquid solutions flowing inside the microchannel modify the resonance frequency and peak attenuation in the THz transmission spectra. In contrast to conventional bio-sensing with far/near-field THz waves, our technique can be expected to compactify the chip design as well as realize high sensitive near-field measurement of liquid solutions without any high-power optical/THz source, near-field probes, and prisms. Using this chip, we have succeeded in observing the 31.8 fmol of ion concentration in actual amount of 318 pl water solutions from the shift of the resonance frequency. The technique opens the door to microanalysis of biological samples with THz waves and accelerates development of THz lab-on-chip devices.

  7. Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides

    Directory of Open Access Journals (Sweden)

    Zhijie Ma

    2017-11-01

    Full Text Available We present a highly sensitive microfluidic sensing technique for the terahertz (THz region of the electromagnetic spectrum based on spoof surface plasmon polaritons (SPPs. By integrating a microfluidic channel in a spoof SPP waveguide, we take advantage of these highly confined electromagnetic modes to create a platform for dielectric sensing of liquids. Our design consists of a domino waveguide, that is, a series of periodically arranged rectangular metal blocks on top of a metal surface that supports the propagation of spoof SPPs. Through numerical simulations, we demonstrate that the transmission of spoof SPPs along the waveguide is extremely sensitive to the refractive index of a liquid flowing through a microfluidic channel crossing the waveguide to give an interaction volume on the nanoliter scale. Furthermore, by taking advantage of the insensitivity of the domino waveguide’s fundamental spoof SPP mode to the lateral width of the metal blocks, we design a tapered waveguide able to achieve further confinement of the electromagnetic field. Using this approach, we demonstrate the highly sensitive detection of individual subwavelength micro-particles flowing in the liquid. These results are promising for the creation of spoof SPP based THz lab-on-a-chip microfluidic devices that are suitable for the analysis of biological liquids such as proteins and circulating tumour cells in buffer solution.

  8. Terahertz-wave differential detection based on simultaneous dual-wavelength up-conversion

    Directory of Open Access Journals (Sweden)

    Yuma Takida

    2017-03-01

    Full Text Available We report a terahertz (THz-wave differential detection based on simultaneous dual-wavelength up-conversion in a nonlinear optical MgO:LiNbO3 crystal with optical and electronic THz-wave sources. The broadband parametric gain and noncollinear phase-matching of MgO:LiNbO3 provide efficient conversion from superposed THz waves to spatially distributed near-infrared (NIR beams to function as a dispersive THz-wave spectrometer without any additional dispersive element. We show that the μW-level THz waves from two independent sources, a 0.78-THz injection-seeded THz-wave parametric generator (is-TPG and a 1.14-THz resonant tunneling diode (RTD, are simultaneously up-converted to two NIR waves and then detected with two NIR photodetectors. By applying a balanced detection scheme to this dual-frequency detection, we demonstrate THz-wave differential imaging of maltose and polyethylene pellets in the transmission geometry. This dual-wavelength detection is applicable to more than three frequencies and broadband THz-wave radiation for real-time THz-wave spectroscopic detection and imaging.

  9. Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies

    Science.gov (United States)

    Pacheco-Peña, Victor; Engheta, Nader; Kuznetsov, Sergei; Gentselev, Alexandr; Beruete, Miguel

    2017-09-01

    The terahertz band has been historically hindered by the lack of efficient generators and detectors, but a series of recent breakthroughs have helped to effectively close the "terahertz gap." A rapid development of terahertz technology has been possible thanks to the translation of revolutionary concepts from other regions of the electromagnetic spectrum. Among them, metamaterials stand out for their unprecedented ability to control wave propagation and manipulate electromagnetic response of matter. They have become a workhorse in the development of terahertz devices such as lenses, polarizers, etc., with fascinating features. In particular, epsilon-near-zero (ENZ) metamaterials have attracted much attention in the past several years due to their unusual properties such as squeezing, tunneling, and supercoupling where a wave traveling inside an electrically small channel filled with an ENZ medium can be tunneled through it, reducing reflections and coupling most of its energy. Here, we design and experimentally demonstrate an ENZ graded-index (GRIN) metamaterial lens operating at terahertz with a power enhancement of 16.2 dB, using an array of narrow hollow rectangular waveguides working near their cutoff frequencies. This is a demonstration of an ENZ GRIN device at terahertz and can open the path towards other realizations of similar devices enabling full quasioptical processing of terahertz signals.

  10. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    Science.gov (United States)

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.

  11. Interpretation of transmission through type II superconducting thin film on dielectric substrate as observed by laser thermal spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Šindler, Michal; Tesař, Roman; Koláček, Jan; Skrbek, L.

    2012-01-01

    Roč. 483, DEC (2012), s. 127-135 ISSN 0921-4534 R&D Projects: GA ČR(CZ) GAP204/11/0015 Grant - others:European Science Foundation(XE) NES, 2007 - 2012 Institutional research plan: CEZ:AV0Z10100521 Keywords : far- infrared transmission * NbN * superconducting film * vortices * terahertz waves Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.718, year: 2012

  12. Development of aluminum gallium nitride based optoelectronic devices operating in deep UV and terahertz spectrum ranges

    Science.gov (United States)

    Zhang, Wei

    In this research project I have investigated AlGaN alloys and their quantum structures for applications in deep UV and terahertz optoelectronic devices. For the deep UV emitter applications the materials and devices were grown by rf plasma-assisted molecular beam epitaxy on 4H-SiC, 6H-SiC and c-plane sapphire substrates. In the growth of AlGaN/AlN multiple quantum wells on SiC substrates, the AlGaN wells were grown under excess Ga, far beyond than what is required for the growth of stoichiometric AlGaN films, which resulted in liquid phase epitaxy growth mode. Due to the statistical variations of the excess Ga on the growth front we found that this growth mode leads to films with lateral variations in the composition and thus, band structure potential fluctuations. Transmission electron microscopy shows that the wells in such structures are not homogeneous but have the appearance of quantum dots. We find by temperature dependent photoluminescence measurements that the multiple quantum wells with band structure potential fluctuations emit at 240 nm and have room temperature internal quantum efficiency as high as 68%. Furthermore, they were found to have a maximum net modal optical gain of 118 cm-1 at a transparency threshold corresponding to 1.4 x 1017 cm-3 excited carriers. We attribute this low transparency threshold to population inversion of only the regions of the potential fluctuations rather than of the entire matrix. Some prototype deep UV emitting LED structures were also grown by the same method on sapphire substrates. Optoelectronic devices for terahertz light emission and detection, based on intersubband transitions in III-nitride semiconductor quantum wells, were grown on single crystal c-plane GaN substrates. Growth conditions such the ratio of group III to active nitrogen fluxes, which determines the appropriate Ga-coverage for atomically smooth growth without requiring growth interruptions were employed. Emitters designed in the quantum cascade

  13. Multi-frequency acoustic metasurface for extraordinary reflection and sound focusing

    Directory of Open Access Journals (Sweden)

    Yi-Fan Zhu

    2016-12-01

    Full Text Available We theoretically and numerically present the design of multi-frequency acoustic metasurfaces (MFAMs with simple structure that can work not only at fundamental frequency, but also at their harmonic frequencies, which breaks the single frequency limitation in conventional resonance-based acoustic metasurfaces. The phase matched condition for achromatic manipulation is discussed. We demonstrate achromatic extraordinary reflection and sound focusing at 1700Hz, 3400Hz, and 5100Hz, that is, they have the same reflection direction and the same focusing position. This significant feature may pave the way to new type of acoustic metasurface, and will also extend acoustic metasurface applications to strongly nonlinear source cases.

  14. The savant syndrome: an extraordinary condition. A synopsis: past, present, future.

    Science.gov (United States)

    Treffert, Darold A

    2009-05-27

    Savant syndrome is a rare, but extraordinary, condition in which persons with serious mental disabilities, including autistic disorder, have some 'island of genius' which stands in marked, incongruous contrast to overall handicap. As many as one in 10 persons with autistic disorder have such remarkable abilities in varying degrees, although savant syndrome occurs in other developmental disabilities or in other types of central nervous system injury or disease as well. Whatever the particular savant skill, it is always linked to massive memory. This paper presents a brief review of the phenomenology of savant skills, the history of the concept and implications for education and future research.

  15. A top-contacted extraordinary magnetoresistance sensor fabricated with an unpatterned semiconductor epilayer

    KAUST Repository

    Sun, Jian

    2013-04-01

    An extraordinary magnetoresistance device is developed from an unpatterned semiconductor epilayer onto which the metal contacts are fabricated. Compared with conventionally fabricated devices, for which semiconductor patterning and precise alignment are required, this design is not only easier from a technological point of view, but it also has the potential to reduce damage introduced to the semiconductor during fabrication. The device shows a similar magnetoresistance ratio as a conventional one but it has a lower sensitivity. Because of the reduced resistance, and hence less noise, high magnetic field resolution is maintained. © 1980-2012 IEEE.

  16. On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma

    Science.gov (United States)

    Noureen, S.; Abbas, G.; Sarfraz, M.

    2018-01-01

    The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.

  17. Strong temperature dependence of extraordinary magnetoresistance correlated to mobility in a two-contact device

    KAUST Repository

    Sun, Jian

    2012-02-21

    A two-contact extraordinary magnetoresistance (EMR) device has been fabricated and characterized at various temperatures under magnetic fields applied in different directions. Large performance variations across the temperature range have been found, which are due to the strong dependence of the EMR effect on the mobility. The device shows the highest sensitivity of 562ω/T at 75 K with the field applied perpendicularly. Due to the overlap between the semiconductor and the metal shunt, the device is also sensitive to planar fields but with a lower sensitivity of about 20 to 25% of the one to perpendicular fields. © 2012 The Japan Society of Applied Physics.

  18. Mode-locking of a terahertz laser by direct phase synchronization.

    Science.gov (United States)

    Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J

    2012-09-10

    A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.

  19. Flexible manipulation of terahertz wave reflection using polarization insensitive coding metasurfaces.

    Science.gov (United States)

    Jiu-Sheng, Li; Ze-Jiang, Zhao; Jian-Quan, Yao

    2017-11-27

    In order to extend to 3-bit encoding, we propose notched-wheel structures as polarization insensitive coding metasurfaces to control terahertz wave reflection and suppress backward scattering. By using a coding sequence of "00110011…" along x-axis direction and 16 × 16 random coding sequence, we investigate the polarization insensitive properties of the coding metasurfaces. By designing the coding sequences of the basic coding elements, the terahertz wave reflection can be flexibly manipulated. Additionally, radar cross section (RCS) reduction in the backward direction is less than -10dB in a wide band. The present approach can offer application for novel terahertz manipulation devices.

  20. Generation of high-power terahertz radiation by femtosecond-terawatt lasers

    International Nuclear Information System (INIS)

    Nashima, Shigeki; Hosoda, Makoto; Daido, Hiroyuki

    2007-01-01

    We observed electromagnetic waves in the terahertz (THz) frequency range from a Ti foil excited by tabletop terawatt (T-cube) laser pulses. The radiation power was increased drastically with increasing its laser power. We also investigated the polarization characteristics of the sub-terahertz wave. It is found that the polarization of the radiated sub-terahertz waves was parallel to the incident beam plane, which is independent on the pump laser polarization. These results indicate transient electric field to the incident plane is generated by laser-plasma interaction, i.e., laser wake field and coherent plasma wave. (author)

  1. In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnikov, A S; Kolesnikova, E A; Popov, A P; Tuchin, V V [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation); Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-07-31

    Dehydration of muscle tissue in vitro under the action of biologically compatible hyperosmotic agents is studied using a laser terahertz spectrometer in the frequency range from 0.25 to 2.5 THz. Broadband terahertz absorption and reflection spectra of the bovine skeletal muscle tissue were obtained under the action of glycerol, polyethylene glycol with the molecular weight 600 (PEG-600), and propylene glycol. The presented results are proposed for application in developing the methods of image contrast enhancement and increasing the depth of biological tissue probing with terahertz radiation. (laser biophotonics)

  2. Transmission properties and band structure of a segmented dielectric waveguide for the terahertz range

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kužel, Petr; Coutaz, J.-L.; Čtyroký, Jiří

    2007-01-01

    Roč. 273, č. 1 (2007), s. 99-104 ISSN 0030-4018 R&D Projects: GA AV ČR 1ET300100401; GA MŠk OC 288.001 Institutional research plan: CEZ:AV0Z20670512; CEZ:AV0Z10100520 Keywords : photonic crystals * wave propagation * harmonic generation * optical waveguides * optical waveguide theory Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.314, year: 2007

  3. Transcending Transmission

    DEFF Research Database (Denmark)

    Schoeneborn, Dennis; Trittin, Hannah

    2013-01-01

    Purpose – Extant research on corporate social responsibility (CSR) communication primarily relies on a transmission model of communication that treats organizations and communication as distinct phenomena. This approach has been criticized for neglecting the formative role of communication...... in the emergence of organizations. This paper seeks to propose to reconceptualize CSR communication by drawing on the “communication constitutes organizations” (CCO) perspective. Design/methodology/approach – This is a conceptual paper that explores the implications of switching from an instrumental...... to a constitutive notion of communication. Findings – The study brings forth four main findings: from the CCO view, organizations are constituted by several, partly dissonant, and potentially contradictory communicative practices. From that viewpoint, the potential impact of CSR communication becomes a matter...

  4. Terahertz optoelectronics with surface plasmon polariton diode.

    Science.gov (United States)

    Vinnakota, Raj K; Genov, Dentcho A

    2014-05-09

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.

  5. Low-index discontinuity terahertz waveguides

    Science.gov (United States)

    Nagel, Michael; Marchewka, Astrid; Kurz, Heinrich

    2006-10-01

    A new type of dielectric THz waveguide based on recent approaches in the field of integrated optics is presented with theoretical and experimental results. Although the guiding mechanism of the low-index discontinuity (LID) THz waveguide is total internal reflection, the THz wave is predominantly confined in the virtually lossless low-index air gap within a high-index dielectric waveguide due to the continuity of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions. The new approach provides an outstanding combination of high mode confinement and low transmission losses currently not realizable with any other metal-based or photonic crystal approach. These exceptional properties might enable the breakthrough of novel integrated THz systems or endoscopy applications with sub-wavelength resolution.

  6. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  7. Widely tunable quantum cascade laser-based terahertz source.

    Science.gov (United States)

    Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal; Qian, Xifeng

    2014-07-10

    A compact, tunable, ultranarrowband terahertz source, Δν∼1  MHz, is demonstrated by upconversion of a 2.324 THz, free-running quantum cascade laser with a THz Schottky-diode-balanced mixer using a swept, synthesized microwave source to drive the nonlinearity. Continuously tunable radiation of 1 μW power is demonstrated in two frequency regions: ν(Laser) ± 0 to 50 GHz and ν(Laser) ± 70 to 115 GHz. The sideband spectra were characterized with a Fourier-transform spectrometer, and the radiation was tuned through CO, HDO, and D2O rotational transitions.

  8. Terahertz time-domain spectroscopy and imaging of artificial RNA

    DEFF Research Database (Denmark)

    Fischer, Bernd M.; Hoffmann, Matthias; Helm, Hanspeter

    2005-01-01

    We use terahertz time-domain spectroscopy (THz-TDS) to measure the far-infrared dielectric function of two artificial RNA single strands, composed of polyadenylic acid (poly-A) and polycytidylic acid (poly-C). We find a significant difference in the absorption between the two types of RNA strands......, and we show that we can use this difference to record images of spot arrays of the RNA strands. Under controlled conditions it is possible to use the THz image to distinguish between the two RNA strands. We discuss the requirements to sample preparation imposed by the lack of sharp spectral features...

  9. Visualization and classification in biomedical terahertz pulsed imaging

    International Nuclear Information System (INIS)

    Loeffler, Torsten; Siebert, Karsten; Czasch, Stephanie; Bauer, Tobias; Roskos, Hartmut G

    2002-01-01

    'Visualization' in imaging is the process of extracting useful information from raw data in such a way that meaningful physical contrasts are developed. 'Classification' is the subsequent process of defining parameter ranges which allow us to identify elements of images such as different tissues or different objects. In this paper, we explore techniques for visualization and classification in terahertz pulsed imaging (TPI) for biomedical applications. For archived (formalin-fixed, alcohol-dehydrated and paraffin-mounted) test samples, we investigate both time- and frequency-domain methods based on bright- and dark-field TPI. Successful tissue classification is demonstrated

  10. Terahertz spectroscopic analysis of crystal orientation in polymers

    Science.gov (United States)

    Azeyanagi, Chisato; Kaneko, Takuya; Ohki, Yoshimichi

    2018-05-01

    Terahertz time-domain spectroscopy (THz-TDS) is attracting keen attention as a new spectroscopic tool for characterizing various materials. In this research, the possibility of analyzing the crystal orientation in a crystalline polymer by THz-TDS is investigated by measuring angle-resolved THz absorption spectra for sheets of poly(ethylene terephthalate), poly(ethylene naphthalate), and poly(phenylene sulfide). The resultant angle dependence of the absorption intensity of each polymer is similar to that of the crystal orientation examined using pole figures of X-ray diffraction. More specifically, THz-TDS can indicate the alignment of molecules in polymers.

  11. Enhanced terahertz magnetic dipole response by subwavelength fiber

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Shadrivov, Ilya V.; Miroshnichenko, Andrey E.

    2018-01-01

    Dielectric sub-wavelength particles have opened up a new platform for realization of magnetic light. Recently, we have demonstrated that a dipole emitter by a sub-wavelength fiber leads to an enhanced magnetic response. Here, we experimentally demonstrate an enhanced magnetic dipole source......-fiber system excited by a magnetic source. This coupled magnetic dipole and optical fiber system can be considered a unit cell of metasurfaces for manipulation of terahertz radiation and is a proof-of-concept of a possibility to achieve enhanced radiation of a dipole source in proximity of a sub...

  12. Detection of internal fields in double-metal terahertz resonators

    DEFF Research Database (Denmark)

    Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei

    2017-01-01

    Terahertz (THz) double-metal plasmonic resonators enable enhanced light-matter coupling by exploiting strong field confinement. The double-metal design however restricts access to the internal fields. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal...... electromagnetic fields in double-metal plasmonic resonators. We use the concept of image charges and aperture-type scanning near-field THz time-domain microscopy to probe the fields confined within the closed resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub...

  13. Plasma characterization using terahertz-wave-enhanced fluorescence

    International Nuclear Information System (INIS)

    Liu Jingle; Zhang, X.-C.

    2010-01-01

    We demonstrate that the terahertz-wave-enhanced fluorescence emission from excited atoms or molecules can be employed in the characterization of laser-induced gas plasmas. The electron relaxation time and plasma density were deduced through applying the electron impact excitation/ionization and electron-ion recombination processes to the measured time-dependent enhanced fluorescence. The electron collision dynamics of nitrogen plasma excited at different gas pressures and laser pulse energies have been systematically investigated. This plasma characterization method provides picosecond temporal resolution and enables omnidirectional optical signal collection.

  14. Fiber MOPA based tunable source for terahertz spectroscopy

    International Nuclear Information System (INIS)

    Malinowski, A; Lin, D; Alam, S U; Zhang, Z; Ibsen, M; Richardson, D J; Young, J; Wright, P; Ozanyan, K; Stringer, M; Miles, R E

    2012-01-01

    We have developed a terahertz spectrometer based on difference frequency generation of beams from an ytterbium fiber master oscillator power amplifier (MOPA) system. The spectrometer has a resolution of ∼ 2 GHz. It can be tuned rapidly over several hundred GHz, and a wider frequency range can be covered (0.7–2.5 THz demonstrated) by swapping in alternate seed lasers and adjusting the alignment of the beams into the difference frequency generation (DFG) crystal. The system was constructed entirely from commercially available fiber and fiber components. We present some demonstration data on water vapor absorption lines

  15. Misfitting and Hater Blocking: A Feminist Disability Analysis of the Extraordinary Body on Reality Television

    Directory of Open Access Journals (Sweden)

    Krystal Cleary

    2016-12-01

    Full Text Available This article analyzes three popular TLC programs that are emblematic of contemporary reality televisual representations of the extraordinary body: Abby & Brittany (2012, The Little Couple (2009-, and My Big Fat Fabulous Life (2015-. Extending Rosemarie Garland-Thomson's concept of "misfitting," I demonstrate how the non-normative body fits seamlessly into the mediated domain of reality television precisely because of its misfit in material and social spheres. The representational mode of these programs appears as a corrective to oppressive depictions of people with non-normative bodies, yet, I argue, the discourse of extraordinary normalcy built into the narrative framework of these programs is in fact supported by a scaffolding of normativizing logics that hinge upon casts members' whiteness, upward class mobility, and fulfillment of conventional gender and sexual norms. As such, I examine how specific bodies–heterosexual, white, gender normative, affluent–are called upon to perform disability on reality television. I assert that these programs dangerously depoliticize disability by narratively isolating it from other facets of identity and power, and furthermore regard ableism as an individual and moralistic matter perpetuated by antagonistic "haters" rather than a concern of the State.

  16. Extraordinary tunable dynamic range of electrochemical aptasensor for accurate detection of ochratoxin A in food samples

    Directory of Open Access Journals (Sweden)

    Lin Cheng

    2017-06-01

    Full Text Available We report the design of a sensitive, electrochemical aptasensor for detection of ochratoxin A (OTA with an extraordinary tunable dynamic sensing range. This electrochemical aptasensor is constructed based on the target induced aptamer-folding detection mechanism and the recognition between OTA and its aptamers results in the conformational change of the aptamer probe and thus signal changes for measurement. The dynamic sensing range of the electrochemical aptasensor is successfully tuned by introduction of free assistant aptamer probes in the sensing system. Our electrochemical aptasensor shows an extraordinary dynamic sensing range of 11-order magnitude of OTA concentration from 10−8 to 102 ng/g. Of great significance, the signal response in all OTA concentration ranges is at the same current scale, demonstrating that our sensing protocol in this research could be applied for accurate detections of OTA in a broad range without using any complicated treatment of signal amplification. Finally, OTA spiked red wine and maize samples in different dynamic sensing ranges are determined with the electrochemical aptasensor under optimized sensing conditions. This tuning strategy of dynamic sensing range may offer a promising platform for electrochemical aptasensor optimizations in practical applications.

  17. An exploratory study into the effects of extraordinary nature on emotions, mood, and prosociality

    Directory of Open Access Journals (Sweden)

    Yannick eJoye

    2015-01-01

    Full Text Available Environmental psychology research has demonstrated that exposure to mundane natural environments can be psychologically beneficial, and can, for instance, improve individuals’ mood and concentration. However, little research has yet examined the psychological benefits of extraordinary, awe-evoking kinds of nature, such as spectacular mountain scenes or impressive waterfalls. In this study, we aimed to address the underrepresentation of such extraordinary nature in research on human – nature interactions. Specifically, we examined whether watching a picture slideshow of awesome as opposed to mundane nature differentially affected individuals’ emotions, mood, social value orientation, and their willingness to donate something to others. Our analyses revealed that, compared to mundane nature and a neutral condition, watching awesome natural scenes and phenomena had some unique and pronounced emotional effects (e.g., feeling small and humble, triggered the most mood improvement, and led to a more prosocial social value orientation. We found that participants’ willingness to donate did not differ significantly for any of the conditions.

  18. Medium-Range Forecast Skill for Extraordinary Arctic Cyclones in Summer of 2008-2016

    Science.gov (United States)

    Yamagami, Akio; Matsueda, Mio; Tanaka, Hiroshi L.

    2018-05-01

    Arctic cyclones (ACs) are a severe atmospheric phenomenon that affects the Arctic environment. This study assesses the forecast skill of five leading operational medium-range ensemble forecasts for 10 extraordinary ACs that occurred in summer during 2008-2016. Average existence probability of the predicted ACs was >0.9 at lead times of ≤3.5 days. Average central position error of the predicted ACs was less than half of the mean radius of the 10 ACs (469.1 km) at lead times of 2.5-4.5 days. Average central pressure error of the predicted ACs was 5.5-10.7 hPa at such lead times. Therefore, the operational ensemble prediction systems generally predict the position of ACs within 469.1 km 2.5-4.5 days before they mature. The forecast skill for the extraordinary ACs is lower than that for midlatitude cyclones in the Northern Hemisphere but similar to that in the Southern Hemisphere.

  19. Modulation of terahertz generation in dual-color filaments by an external electric field and preformed plasma

    International Nuclear Information System (INIS)

    Li Min; Li An-Yuan; Yuan Shuai; Zeng He-Ping; He Bo-Qu

    2016-01-01

    Terahertz generation driven by dual-color filaments in air is demonstrated to be remarkably enhanced by applying an external electric field to the filaments. As terahertz generation is sensitive to the dual-color phase difference, a preformed plasma is verified efficiently in modulating terahertz radiation from linear to elliptical polarization. In the presence of preformed plasma, a dual-color filament generates terahertz pulses of elliptical polarization and the corresponding ellipse rotates regularly with the change of the preformed plasma density. The observed terahertz modulation with the external electric field and the preformed plasma provides a simple way to estimate the plasma density and evaluate the photocurrent dynamics of the dual-color filaments. It provides further experimental evidence of the photo-current model in governing the dual-color filament driven terahertz generation processes. (paper)

  20. Intraband dynamics and terahertz emission in biased semiconductor superlattices coupled to double far-infrared pulses

    International Nuclear Information System (INIS)

    Min, Li; Xian-Wu, Mi

    2009-01-01

    This paper studies both the intraband polarization and terahertz emission of a semiconductor superlattice in combined dc and ac electric fields by using the superposition of two identical time delayed and phase shifted optical pulses. By adjusting the delay between these two optical pulses, our results show that the intraband polarization is sensitive to the time delay. The peak values appear again for the terahertz emission intensity due to the superposition of two optical pulses. The emission lines of terahertz blueshift and redshift in different ac electric fields and dynamic localization appears. The emission lines of THz only appear to blueshift when the biased superlattice is driven by a single optical pulse. Due to excitonic dynamic localization, the terahertz emission intensity decays with time in different dc and ac electric fields. These are features of this superlattice which distinguish it from a superlattice generated by a single optical pulse to drive it. (condensed matter: electronic structure, electrical, magnetic, and optical properties)