WorldWideScience

Sample records for extraocular muscle involvement

  1. Extraocular muscle function testing

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003397.htm Extraocular muscle function testing To use the sharing features on this page, please enable JavaScript. Extraocular muscle function testing examines the function of the eye ...

  2. Differential involvement of orbital fat and extraocular muscles in graves' ophthalmopathy.

    Science.gov (United States)

    Wiersinga, Wilmar M; Regensburg, Noortje I; Mourits, Maarten P

    2013-03-01

    Graves' ophthalmopathy (GO) is characterized by swelling of orbital fat and extraocular muscles, but little attention has been given to differential involvement of fat and muscles. Advancements in imaging allow rather accurate measurements of orbital bony cavity volume (OV), fat volume (FV) and muscle volume (MV), and are the topics of this review. Ratios of FV/OV and MV/OV neutralize gender differences. In adult Caucasian controls, mean values ± SD of FV/OV are 0.56 ± 0.11 and of MV/OV are 0.15 ± 0.02. FV increases substantially and MV decreases slightly with advancing age, requiring age-specific reference ranges. In 95 consecutive untreated Caucasian GO patients, both FV and MV were within normal limits in 25%, increased FV but normal MV was present in 5%, normal FV but increased MV was detected in 61%, and both increased FV and MV was evident in 9%. Increased FV was associated with more proptosis and longer GO duration. Increased MV was associated with older age, more severe GO (more proptosis and diplopia, worse eye muscle ductions), higher TBII and current smoking. At the cellular and molecular level differential involvement of fat and muscles might be related to differences between fibroblast phenotypes and cytokine profiles in each compartment, to different orbital T cell subsets during the course of the disease and to peroxisome proliferator activator receptor-γ polymorphisms and modulation of 11β-hydroxysteroid dehydrogenase-1. Enlarged muscles are apparently a rather early phenomenon in GO, whereas increases in fat mass occur relatively late. Why a minor subset of GO patients presents with an increase of only fat remains poorly understood.

  3. Extraocular muscle atrophy and central nervous system involvement in chronic progressive external ophthalmoplegia.

    Directory of Open Access Journals (Sweden)

    Cynthia Yu-Wai-Man

    Full Text Available Chronic progressive external ophthalmoplegia (CPEO is a classical mitochondrial ocular disorder characterised by bilateral progressive ptosis and ophthalmoplegia. These ocular features can develop either in isolation or in association with other prominent neurological deficits (CPEO+. Molecularly, CPEO can be classified into two distinct genetic subgroups depending on whether patients harbour single, large-scale mitochondrial DNA (mtDNA deletions or multiple mtDNA deletions secondary to a nuclear mutation disrupting mtDNA replication or repair. The aim of this magnetic resonance imaging (MRI study was to investigate whether the ophthalmoplegia in CPEO is primarily myopathic in origin or whether there is evidence of contributory supranuclear pathway dysfunction.Ten age-matched normal controls and twenty patients with CPEO were recruited nine patients with single, large-scale mtDNA deletions and eleven patients with multiple mtDNA deletions secondary to mutations in POLG, PEO1, OPA1, and RRM2B. All subjects underwent a standardised brain and orbital MRI protocol, together with proton magnetic resonance spectroscopy in two voxels located within the parietal white matter and the brainstem.There was evidence of significant extraocular muscle atrophy in patients with single or multiple mtDNA deletions compared with controls. There was no significant difference in metabolite concentrations between the patient and control groups in both the parietal white matter and brainstem voxels. Volumetric brain measurements revealed marked cortical and cerebellar atrophy among patients with CPEO+ phenotypes.The results of this study support a primary myopathic aetiology for the progressive limitation of eye movements that develops in CPEO.

  4. Wnt and Extraocular Muscle Sparing in Amyotrophic Lateral Sclerosis

    OpenAIRE

    2014-01-01

    The potential role of Wnt signaling factors in extraocular muscle (EOM) sparing in amyotrophic lateral sclerosis (ALS) was examined. Three of the Wnts were preferentially upregulated in EOM, suggesting that they may be involved in maintenance of neuromuscular junctions in the EOM of ALS patients.

  5. Congenital Fibrosis of the Extraocular Muscles

    Directory of Open Access Journals (Sweden)

    Leyla Niyaz

    2014-08-01

    Full Text Available Congenital fibrosis of the extraocular muscles (CFEOM is a rare disorder characterized by hereditary non-progressive restrictive strabismus and blepharoptosis. Although most of the cases are bilateral and isolated, some patients may have systemic findings. CFEOM is divided into three groups as CFEOM 1, 2, and 3 according to the phenotype. Primary responsible genes are KIF21A for CFEOM type 1 and 3 and PHOX2A/ARIX gene for CFEOM type 2. Studies suggest that abnormal innervation of the extraocular muscles is the cause of muscle fibrosis. Early treatment is important because of the risk of amblyopia. Surgery is the primary treatment option for strabismus and blepharoptosis. (Turk J Ophthalmol 2014; 44: 312-5

  6. Superior calcium homeostasis of extraocular muscles.

    Science.gov (United States)

    Zeiger, Ulrike; Mitchell, Claire H; Khurana, Tejvir S

    2010-11-01

    Extraocular muscles (EOMs) are a unique group of skeletal muscles with unusual physiological properties such as being able to undergo rapid twitch contractions over extended periods and escape damage in the presence of excess intracellular calcium (Ca(2+)) in Duchenne's muscular dystrophy (DMD). Enhanced Ca(2+) buffering has been proposed as a contributory mechanism to explain these properties; however, the mechanisms are not well understood. We investigated mechanisms modulating Ca(2+) levels in EOM and tibialis anterior (TA) limb muscles. Using Fura-2 based ratiometric Ca(2+) imaging of primary myotubes we found that EOM myotubes reduced elevated Ca(2+) ˜2-fold faster than TA myotubes, demonstrating more efficient Ca(2+) buffering. Quantitative PCR (qPCR) and western blotting revealed higher expression of key components of the Ca(2+) regulation system in EOM, such as the cardiac/slow isoforms sarcoplasmic Ca(2+)-ATPase 2 (Serca2) and calsequestrin 2 (Casq2). Interestingly EOM expressed monomeric rather than multimeric forms of phospholamban (Pln), which was phosphorylated at threonine 17 (Thr17) but not at the serine 16 (Ser16) residue. EOM Pln remained monomeric and unphosphorylated at Ser16 despite protein kinase A (PKA) treatment, suggesting differential signalling and modulation cascades involving Pln-mediated Ca(2+) regulation in EOM. Increased expression of Ca(2+)/SR mRNA, proteins, differential post-translational modification of Pln and superior Ca(2+) buffering is consistent with the improved ability of EOM to handle elevated intracellular Ca(2+) levels. These characteristics provide mechanistic insight for the potential role of superior Ca(2+) buffering in the unusual physiology of EOM and their sparing in DMD.

  7. Bilateral multiple extraocular muscle metastasis from breast carcinoma

    Directory of Open Access Journals (Sweden)

    Ramesh Murthy

    2011-01-01

    Full Text Available We report a rare presentation of an initially misdiagnosed case of a pseudotumor, which on histopathology was diagnosed as bilateral breast metastases of lobular carcinoma involving multiple extraocular muscles. A 61-year-old lady presented with external ophthalmoplegia and diplopia. Incisional biopsy was performed using a lid crease approach and the patient received radiotherapy and hormonal therapy. Following prolonged hormonal therapy, complete remission was achieved, with improvement in ocular motility and resolution of diplopia, about 18 months after the initial presentation. Multiple extraocular muscle involvement by breast carcinoma metastasis is very rare and should be considered in the differential diagnosis, especially in patients with a prior history of breast carcinoma.

  8. Successful repair of injury to the eyelid, lacrimal passage, and extraocular muscle

    Directory of Open Access Journals (Sweden)

    Shah, Shreya Mehul

    2016-03-01

    Full Text Available Introduction: Injury is a known cause of monocular blindness. Ocular trauma may affect lacrimal canaliculi and the extraocular muscle. We report this case as it includes injury to lid, lacrimal canaliculi and inferior rectus. Case description: A 25-year-old male presented with an injury caused by a sharp object that resulted in a conjunctival tear, lid tear involving the lacrimal canal, and rupture of the inferior rectus muscle. All of the structures were repaired successfully during a single procedure. Conclusion: An extraocular injury involving the conjunctiva, lid, lacrimal passages, and extraocular muscles can be repaired successfully during a single procedure.

  9. Creep Behavior of Passive Bovine Extraocular Muscle

    OpenAIRE

    Lawrence Yoo; Hansang Kim; Andrew Shin; Vijay Gupta; Demer, Joseph L.

    2011-01-01

    This paper characterized bovine extraocular muscles (EOMs) using creep, which represents long-term stretching induced by a constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500 s. A published quasilinear viscoelastic (QLV) relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed...

  10. Microanatomy of adult zebrafish extraocular muscles.

    Directory of Open Access Journals (Sweden)

    Daniel S Kasprick

    Full Text Available Binocular vision requires intricate control of eye movement to align overlapping visual fields for fusion in the visual cortex, and each eye is controlled by 6 extraocular muscles (EOMs. Disorders of EOMs are an important cause of symptomatic vision loss. Importantly, EOMs represent specialized skeletal muscles with distinct gene expression profile and susceptibility to neuromuscular disorders. We aim to investigate and describe the anatomy of adult zebrafish extraocular muscles (EOMs to enable comparison with human EOM anatomy and facilitate the use of zebrafish as a model for EOM research. Using differential interference contrast (DIC, epifluorescence microscopy, and precise sectioning techniques, we evaluate the anatomy of zebrafish EOM origin, muscle course, and insertion on the eye. Immunofluorescence is used to identify components of tendons, basement membrane and neuromuscular junctions (NMJs, and to analyze myofiber characteristics. We find that adult zebrafish EOM insertions on the globe parallel the organization of human EOMs, including the close proximity of specific EOM insertions to one another. However, analysis of EOM origins reveals important differences between human and zebrafish, such as the common rostral origin of both oblique muscles and the caudal origin of the lateral rectus muscles. Thrombospondin 4 marks the EOM tendons in regions that are highly innervated, and laminin marks the basement membrane, enabling evaluation of myofiber size and distribution. The NMJs appear to include both en plaque and en grappe synapses, while NMJ density is much higher in EOMs than in somatic muscles. In conclusion, zebrafish and human EOM anatomy are generally homologous, supporting the use of zebrafish for studying EOM biology. However, anatomic differences exist, revealing divergent evolutionary pressures.

  11. Extraocular muscle dynamics in diplopia from enophthalmos.

    Science.gov (United States)

    Yoon, Michael K; Economides, John R; Horton, Jonathan C

    2011-12-01

    The mechanism of diplopia from enophthalmos is not well understood. We describe a 55-year-old man who underwent a left transorbital craniotomy for clipping of a basilar aneurysm. The lateral orbital wall was not reconstructed properly, resulting in 8 mm of left enophthalmos. Months after surgery the patient developed diplopia with ocular excursions, although he remained orthotropic in primary gaze. The left eye was limited in elevation, adduction, and abduction. These findings were confirmed by eye movement recordings, which showed ocular separation increasing with gaze eccentricity. A CT scan demonstrated a defect in the sphenoid and frontal bones, profound enophthalmos, and shortening of the rectus muscles. Slack in the extraocular muscles reduced the force generated by each muscle, causing diplopia with ocular rotation. This case underscores the value of careful orbital wall reconstruction after orbitotomy and suggests a mechanism for diplopia produced by postoperative enophthalmos.

  12. Extraocular muscle afferent signals modulate visual attention.

    Science.gov (United States)

    Balslev, Daniela; Newman, William; Knox, Paul C

    2012-10-09

    Extraocular muscle afferent signals contribute to oculomotor control and visual localization. Prompted by the close links between the oculomotor and attention systems, it was investigated whether these proprioceptive signals also modulated the allocation of attention in space. A suction sclera contact lens was used to impose an eye rotation on the nonviewing, dominant eye. With their viewing, nondominant eye, participants (n = 4) fixated centrally and detected targets presented at 5° in the left or right visual hemifield. The position of the viewing eye was monitored throughout the experiment. As a control, visual localization was tested using finger pointing without visual feedback of the hand, whereas the nonviewing eye remained deviated. The sustained passive rotation of the occluded, dominant eye, while the other eye maintained central fixation, resulted in a lateralized change in the detectability of visual targets. In all participants, the advantage in speed and accuracy for detecting right versus left hemifield targets that occurred during a sustained rightward eye rotation of the dominant eye was reduced or reversed by a leftward eye rotation. The control experiment confirmed that the eye deviation procedure caused pointing errors consistent with an approximately 2° shift in perceived eye position, in the direction of rotation of the nonviewing eye. With the caveat of the small number of participants, these results suggest that extraocular muscle afferent signals modulate the deployment of attention in visual space.

  13. Creep behavior of passive bovine extraocular muscle.

    Science.gov (United States)

    Yoo, Lawrence; Kim, Hansang; Shin, Andrew; Gupta, Vijay; Demer, Joseph L

    2011-01-01

    This paper characterized bovine extraocular muscles (EOMs) using creep, which represents long-term stretching induced by a constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500 s. A published quasilinear viscoelastic (QLV) relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed for each loading rate and was similar among all six anatomical EOMs. The mean creep coefficient after 1,500 seconds for a wide range of initial loading rates was at 1.37 ± 0.03 (standard deviation, SD). The creep function derived from the relaxation-based QLV model agreed with observed creep to within 2.7% following 16.67%/s ramp loading. Measured creep agrees closely with a derived QLV model of EOM relaxation, validating a previous QLV model for characterization of EOM biomechanics.

  14. Creep Behavior of Passive Bovine Extraocular Muscle

    Directory of Open Access Journals (Sweden)

    Lawrence Yoo

    2011-01-01

    Full Text Available This paper characterized bovine extraocular muscles (EOMs using creep, which represents long-term stretching induced by a constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500 s. A published quasilinear viscoelastic (QLV relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed for each loading rate and was similar among all six anatomical EOMs. The mean creep coefficient after 1,500 seconds for a wide range of initial loading rates was at 1.37±0.03 (standard deviation, SD. The creep function derived from the relaxation-based QLV model agreed with observed creep to within 2.7% following 16.67%/s ramp loading. Measured creep agrees closely with a derived QLV model of EOM relaxation, validating a previous QLV model for characterization of EOM biomechanics.

  15. Fatigue resistance of rat extraocular muscles does not depend on creatine kinase activity.

    Science.gov (United States)

    McMullen, Colleen A; Hayess, Katrin; Andrade, Francisco H

    2005-08-17

    Creatine kinase (CK) links phosphocreatine, an energy storage system, to cellular ATPases. CK activity serves as a temporal and spatial buffer for ATP content, particularly in fast-twitch skeletal muscles. The extraocular muscles are notoriously fast and active, suggesting the need for efficient ATP buffering. This study tested the hypotheses that (1) CK isoform expression and activity in rat extraocular muscles would be higher, and (2) the resistance of these muscles to fatigue would depend on CK activity. We found that mRNA and protein levels for cytosolic and mitochondrial CK isoforms were lower in the extraocular muscles than in extensor digitorum longus (EDL). Total CK activity was correspondingly decreased in the extraocular muscles. Moreover, cytoskeletal components of the sarcomeric M line, where a fraction of CK activity is found, were downregulated in the extraocular muscles as was shown by immunocytochemistry and western blotting. CK inhibition significantly accelerated the development of fatigue in EDL muscle bundles, but had no major effect on the extraocular muscles. Searching for alternative ATP buffers that could compensate for the relative lack of CK in extraocular muscles, we determined that mRNAs for two adenylate kinase (AK) isoforms were expressed at higher levels in these muscles. Total AK activity was similar in EDL and extraocular muscles. These data indicate that the characteristic fatigue resistance of the extraocular muscles does not depend on CK activity.

  16. Fatigue resistance of rat extraocular muscles does not depend on creatine kinase activity

    Directory of Open Access Journals (Sweden)

    Hayeß Katrin

    2005-08-01

    Full Text Available Abstract Background Creatine kinase (CK links phosphocreatine, an energy storage system, to cellular ATPases. CK activity serves as a temporal and spatial buffer for ATP content, particularly in fast-twitch skeletal muscles. The extraocular muscles are notoriously fast and active, suggesting the need for efficient ATP buffering. This study tested the hypotheses that (1 CK isoform expression and activity in rat extraocular muscles would be higher, and (2 the resistance of these muscles to fatigue would depend on CK activity. Results We found that mRNA and protein levels for cytosolic and mitochondrial CK isoforms were lower in the extraocular muscles than in extensor digitorum longus (EDL. Total CK activity was correspondingly decreased in the extraocular muscles. Moreover, cytoskeletal components of the sarcomeric M line, where a fraction of CK activity is found, were downregulated in the extraocular muscles as was shown by immunocytochemistry and western blotting. CK inhibition significantly accelerated the development of fatigue in EDL muscle bundles, but had no major effect on the extraocular muscles. Searching for alternative ATP buffers that could compensate for the relative lack of CK in extraocular muscles, we determined that mRNAs for two adenylate kinase (AK isoforms were expressed at higher levels in these muscles. Total AK activity was similar in EDL and extraocular muscles. Conclusion These data indicate that the characteristic fatigue resistance of the extraocular muscles does not depend on CK activity.

  17. Traumatic avulsion of extraocular muscles: case reports

    Directory of Open Access Journals (Sweden)

    Nilza Minguini

    2013-04-01

    Full Text Available We described the clinical, surgical details and results (motor and sensory of the retrieving procedure of traumatically avulsed muscles in three patients with no previous history of strabismus or diplopia seen in the Department of Ophthalmology, State University of Campinas, Brazil. The slipped muscle portion was reinserted at the original insertion and under the remaining stump, which was sutured over the reinserted muscle. For all three cases there was recovery of single binocular vision and stereopsis.

  18. Ultrastructural organization of muscle fiber types and their distribution in the rat superior rectus extraocular muscle.

    Science.gov (United States)

    Rashed, Rashed M; El-Alfy, Sherif H

    2012-05-01

    Extraocular muscles (EOMs) are unique as they show greater variation in anatomical and physiological properties than any other skeletal muscles. To investigate the muscle fiber types and to understand better the structure-function correlation of the extraocular muscles, the present study examined the ultrastructural characteristics of the superior rectus muscle of rat. The superior rectus muscle is organized into two layers: a central global layer of mainly large-diameter fibers and an outer C-shaped orbital layer of principally small-diameter fibers. Six morphologically distinct fiber types were identified within the superior rectus muscle. Four muscle fiber types, three single innervated fibers (SIFs) and one multiple innervated fiber (MIF), were recognized in the global layer. The single innervated fibers included red, white and intermediate fibers. They differed from one another with respect to diameter, mitochondrial size and distribution, sarcoplasmic reticulum and myofibrillar size. The orbital layer contained two distinct MIFs in addition to the red and intermediate SIFs. The orbital MIFs were categorized into low oxidative and high oxidative types according to their mitochondrial content and distribution. The highly specialized function of the superior rectus extraocular muscle is reflected in the multiplicity of its fiber types, which exhibit unique structural features. The unique ultrastructural features of the extraocular muscles and their possible relation to muscle function are discussed. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. A new teaching model for demonstrating the movement of the extraocular muscles.

    Science.gov (United States)

    Iwanaga, Joe; Refsland, Jason; Iovino, Lee; Holley, Gary; Laws, Tyler; Oskouian, Rod J; Tubbs, R Shane

    2017-09-01

    The extraocular muscles consist of the superior, inferior, lateral, and medial rectus muscles and the superior and inferior oblique muscles. This study aimed to create a new teaching model for demonstrating the function of the extraocular muscles. A coronal section of the head was prepared and sutures attached to the levator palpebral superioris muscle and six extraocular muscles. Tension was placed on each muscle from a posterior approach and movement of the eye documented from an anterior view. All movements were clearly seen less than that of the inferior rectus muscle. To our knowledge, this is the first cadaveric teaching model for demonstrating the movements of the extraocular muscles. Clin. Anat. 30:733-735, 2017. © 2017Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Sparing of the extraocular muscles in mdx mice with absent or reduced utrophin expression: A life span analysis.

    Science.gov (United States)

    McDonald, Abby A; Hebert, Sadie L; McLoon, Linda K

    2015-11-01

    Sparing of the extraocular muscles in muscular dystrophy is controversial. To address the potential role of utrophin in this sparing, mdx:utrophin(+/-) and mdx:utrophin(-/-) mice were examined for changes in myofiber size, central nucleation, and Pax7-positive and MyoD-positive cell density at intervals over their life span. Known to be spared in the mdx mouse, and contrary to previous reports, the extraocular muscles from both the mdx:utrophin(+/-) and mdx:utrophin(-/-) mice were also morphologically spared. In the mdx:utrophin(+/)(-) mice, which have a normal life span compared to the mdx:utrophin(-/-) mice, the myofibers were larger at 3 and 12 months than the wild type age-matched eye muscles. While there was a significant increase in central nucleation in the extraocular muscles from all mdx:utrophin(+/)(-) mice, the levels were still very low compared to age-matched limb skeletal muscles. Pax7- and MyoD-positive myogenic precursor cell populations were retained and were similar to age-matched wild type controls. These results support the hypothesis that utrophin is not involved in extraocular muscle sparing in these genotypes. In addition, it appears that these muscles retain the myogenic precursors that would allow them to maintain their regenerative capacity and normal morphology over a lifetime even in these more severe models of muscular dystrophy.

  1. An unusual extraocular muscle anomaly in a patient with Crouzon's disease.

    OpenAIRE

    SNIR, M.; Gilad, E.; Ben-Sira, I

    1982-01-01

    A 29-year-old female suffering from Crouzon's disease was admitted to hospital with retinal detachment in the right eye. At operation agenesis of 4 extraocular muscles (superior and inferior recti and obliquus) was found, together with abnormal insertion of the 2 horizontal muscles. The same extraocular muscular abnormalities were found in the left eye. We suggest here a new surgical treatment in such cases and discuss the reasons for the limitation of ocular motility in such cases.

  2. An unusual extraocular muscle anomaly in a patient with Crouzon's disease.

    Science.gov (United States)

    Snir, M.; Gilad, E.; Ben-Sira, I.

    1982-01-01

    A 29-year-old female suffering from Crouzon's disease was admitted to hospital with retinal detachment in the right eye. At operation agenesis of 4 extraocular muscles (superior and inferior recti and obliquus) was found, together with abnormal insertion of the 2 horizontal muscles. The same extraocular muscular abnormalities were found in the left eye. We suggest here a new surgical treatment in such cases and discuss the reasons for the limitation of ocular motility in such cases. Images PMID:7066280

  3. Graves' disease: measurement of the extraocular muscle thickness with the echobiometer.

    Science.gov (United States)

    Schenome, M; Polizzi, A; Buono, C; Ciurlo, C; Ciurlo, G

    1998-01-01

    The authors measured extraocular muscle thickness in normal subjects and in patients affected by Graves' disease, using a Sonomed A-2000 echobiometer (probe with 10-MHz frequency); Hertel's exophthalmometry was also performed. Statistically significant differences in muscle thickness between normals and patients were found. This technique seems to be sufficiently useful and reliable in extraocular thickness evaluation, showing data similar to those of the recent literature.

  4. Determinants of Extraocular Muscle Volume in Patients with Graves' Disease

    Directory of Open Access Journals (Sweden)

    Samer El-Kaissi

    2012-01-01

    Full Text Available Background. To examine factors contributing to extraocular muscle (EOM volume enlargement in patients with Graves’ hyperthyroidism. Methods. EOM volumes were measured with orbital magnetic resonance imaging (MRI in 39 patients with recently diagnosed Graves’ disease, and compared to EOM volumes of 13 normal volunteers. Thyroid function tests, uptake on thyroid scintigraphy, anti-TSH-receptor antibody positivity and other parameters were then evaluated in patients with EOM enlargement. Results. 31/39 patients had one or more enlarged EOM, of whom only 2 patients had clinical EOM dysfunction. Compared to Graves’ disease patients with normal EOM volumes, those with EOM enlargement had significantly higher mean serum TSH (0.020±0.005 versus 0.007±0.002 mIU/L; P value 0.012, free-T4 (52.9±3.3 versus 41.2±1.7 pmol/L; P value 0.003 and technetium uptake on thyroid scintigraphy (13.51±1.7% versus 8.55±1.6%; P value 0.045. There were no differences between the 2 groups in anti-TSH-receptor antibody positivity, the proportion of males, tobacco smokers, or those with active ophthalmopathy. Conclusions. Patients with recently diagnosed Graves’ disease and EOM volume enlargement have higher serum TSH and more severe hyperthyroidism than patients with normal EOM volumes, with no difference in anti-TSH-receptor antibody positivity between the two groups.

  5. Surgical management of hypotropia in congenital fibrosis of extraocular muscles (CFEOM presented by pseudoptosis

    Directory of Open Access Journals (Sweden)

    Tawfik HA

    2012-12-01

    Full Text Available Hatem A Tawfik,1 Mohammad A Rashad21Oculoplastic Service, 2Pediatric Ophthalmology Service, Ophthalmology Department, Ain Shams University, Cairo, EgyptPurpose: To describe the demographics, characteristics, management pitfalls, and outcomes of pseudoptosis associated with congenital fibrosis of the extraocular muscles (CFEOM.Methods: A retrospective review was performed of eight patients presenting with ptosis and hypotropia to oculoplastic service. All patients underwent full ocular evaluation and magnetic resonance imaging of brain and orbit. Five of these patients underwent stepwise correction of hypotropia by single-stage adjustable strabismus surgery (SSASS, followed by a frontalis sling if needed.Results: Eight patients had congenital strabismus with severe ptosis and a positive forced duction test. There was a highly significant improvement from preoperative mean hypotropia angle of 30 prism diopters (PD to 9 PD mean postoperative angle (P = 0.006. Surgery for ptosis was not needed in 80% of eyes.Conclusion: CFEOM involving both ptosis and hypotropia could be properly managed with the correct sequence of surgical steps. Proper vertical alignment by correction of hypotropia utilizing SSASS may alleviate the need for ptosis surgery.Keywords: congenital fibrosis of extraocular muscles, CFEOM, single-stage adjustable suture surgery, SSASS, pseudoptosis

  6. Extraocular muscle is spared despite the absence of an intact sarcoglycan complex in gamma- or delta-sarcoglycan-deficient mice.

    Science.gov (United States)

    Porter, J D; Merriam, A P; Hack, A A; Andrade, F H; McNally, E M

    2001-03-01

    Models of the dystrophin-glycoprotein complex do not reconcile the novel sparing of extraocular muscle in muscular dystrophy. Extraocular muscle sparing in Duchenne muscular dystrophy implies the existence of adaptive properties in these muscles that may extend protection to other neuromuscular diseases. We studied the extraocular muscle morphology and dystrophin-glycoprotein complex organization in murine targeted deletion of the gamma-sarcoglycan (gsg(-/-)) and delta-sarcoglycan (dsg(-/-)) genes, two models of autosomal recessive limb girdle muscular dystrophy. In contrast to limb and diaphragm, the principal extraocular muscles were intact in gsg(-/-) and dsg(-/-) mice. However, central nucleated, presumptive regenerative, fibers were seen in the accessory extraocular muscles (retractor bulbi, levator palpebrae superioris) of both strains. Skeletal muscles of gsg(-/-) mice exhibited in vivo Evans Blue dye permeability, while the principal extraocular muscles did not. Disruption of gamma-sarcoglycan produced secondary displacement of alpha- and beta-sarcoglycans in the extraocular muscles. The intensity of immunofluorescence for dystrophin and alpha- and beta-dystroglycan also appeared to be slightly reduced. Utrophin localization was unchanged. The finding that sarcoglycan disruption was insufficient to elicit alterations in extraocular muscle suggests that loss of mechanical stability and increased sarcolemmal permeability are not inevitable consequences of mutations that disrupt the dystrophin-glycoprotein complex organization and must be accounted for in models of muscular dystrophy.

  7. Transcriptional and functional differences in stem cell populations isolated from Extraocular and Limb muscles

    DEFF Research Database (Denmark)

    Pacheco-Pinedo, Eugenia Cristina; Budak, Murat T; Zeiger, Ulrike

    2008-01-01

    The extraocular muscles (EOMs) are a distinct muscle group that displays an array of unique contractile, structural and regenerative properties. They also have differential sensitivity to certain diseases and are enigmatically spared in Duchenne muscular dystrophy (DMD). The EOMs are so distinct ...

  8. MAGNETIC RESONANCE IMAGING CONTRAST ENHANCEMENT OF EXTRA-OCULAR MUSCLES IN DOGS WITH NO CLINICAL EVIDENCE OF ORBITAL DISEASE

    NARCIS (Netherlands)

    JOSLYN, S.; Richards, S.; Boroffka, S.A.E.B.; Mitchell, M.; Hammond, G.; Sullivan, M.T.

    2013-01-01

    Enhancement of extra-ocular muscles has been reported in cases of orbital pathology in both veterinary and medical magnetic resonance imaging.We have also observed this finding in the absence of orbital disease. The purpose of this retrospective study was to describe extra-ocular muscle contrast enh

  9. MAGNETIC RESONANCE IMAGING CONTRAST ENHANCEMENT OF EXTRA-OCULAR MUSCLES IN DOGS WITH NO CLINICAL EVIDENCE OF ORBITAL DISEASE

    NARCIS (Netherlands)

    JOSLYN, S.; Richards, S.; Boroffka, S.A.E.B.; Mitchell, M.; Hammond, G.; Sullivan, M.T.

    2013-01-01

    Enhancement of extra-ocular muscles has been reported in cases of orbital pathology in both veterinary and medical magnetic resonance imaging.We have also observed this finding in the absence of orbital disease. The purpose of this retrospective study was to describe extra-ocular muscle contrast enh

  10. Effects of the Rho-Kinase Inhibitor Y-27632 on Extraocular Muscle Surgery in Rabbits

    OpenAIRE

    Ji‐Sun Moon; Hyun Kyung Kim; Sun Young Shin

    2017-01-01

    Purpose. To evaluate the effect of the Rho-kinase inhibitor Y-27632 on postoperative inflammation and adhesion following extraocular muscle surgery in rabbits. Methods. The superior rectus muscle reinsertion was performed on both eyes of 8 New Zealand white rabbits. After reinsertion, the rabbits received subconjunctival injections of the Rho-kinase inhibitor and saline on each eye. To assess acute and late inflammatory changes, Ki-67, CD11β+, and F4/80 were evaluated and the sites of muscle ...

  11. Altered Protein Composition and Gene Expression in Strabismic Human Extraocular Muscles and Tendons

    Science.gov (United States)

    Agarwal, Andrea B.; Feng, Cheng-Yuan; Altick, Amy L.; Quilici, David R.; Wen, Dan; Johnson, L. Alan; von Bartheld, Christopher S.

    2016-01-01

    Purpose To determine whether structural protein composition and expression of key regulatory genes are altered in strabismic human extraocular muscles. Methods Samples from strabismic horizontal extraocular muscles were obtained during strabismus surgery and compared with normal muscles from organ donors. We used proteomics, standard and customized PCR arrays, and microarrays to identify changes in major structural proteins and changes in gene expression. We focused on muscle and connective tissue and its control by enzymes, growth factors, and cytokines. Results Strabismic muscles showed downregulation of myosins, tropomyosins, troponins, and titin. Expression of collagens and regulators of collagen synthesis and degradation, the collagenase matrix metalloproteinase (MMP)2 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)1 and TIMP2, was upregulated, along with tumor necrosis factor (TNF), TNF receptors, and connective tissue growth factor (CTGF), as well as proteoglycans. Growth factors controlling extracellular matrix (ECM) were also upregulated. Among 410 signaling genes examined by PCR arrays, molecules with downregulation in the strabismic phenotype included GDNF, NRG1, and PAX7; CTGF, CXCR4, NPY1R, TNF, NTRK1, and NTRK2 were upregulated. Signaling molecules known to control extraocular muscle plasticity were predominantly expressed in the tendon rather than the muscle component. The two horizontal muscles, medial and lateral rectus, displayed similar changes in protein and gene expression, and no obvious effect of age. Conclusions Quantification of proteins and gene expression showed significant differences in the composition of extraocular muscles of strabismic patients with respect to important motor proteins, elements of the ECM, and connective tissue. Therefore, our study supports the emerging view that the molecular composition of strabismic muscles is substantially altered. PMID:27768799

  12. The role of extraocular muscle pulleys in incomitant non-paralytic strabismus

    Directory of Open Access Journals (Sweden)

    Robert A Clark

    2015-01-01

    Full Text Available The rectus extraocular muscles (EOMs and inferior oblique muscle have paths through the orbit constrained by connective tissue pulleys. These pulleys shift position during contraction and relaxation of the EOMs, dynamically changing the biomechanics of force transfer from the tendon onto the globe. The paths of the EOMs are tightly conserved in normal patients and disorders in the location and/or stability of the pulleys can create patterns of incomitant strabismus that may mimic oblique muscle dysfunction and cranial nerve paresis. Developmental disorders of pulley location can occur in conjunction with large, obvious abnormalities of orbital anatomy (e.g., craniosynostosis syndromes or subtle, isolated abnormalities in the location of one or more pulleys. Acquired disorders of pulley location can be divided into four broad categories: Connective tissue disorders (e.g., Marfan syndrome, globe size disorders (e.g., high myopia, senile degeneration (e.g., sagging eye syndrome, and trauma (e.g., orbital fracture or postsurgical. Recognition of these disorders is important because abnormalities in pulley location and movement are often resistant to standard surgical approaches that involve strengthening or weakening the oblique muscles or changing the positions of the EOM insertions. Preoperative diagnosis is aided by: (1 Clinical history of predisposing risk factors, (2 observation of malpositioning of the medial canthus, lateral canthus, and globe, and (3 gaze-controlled orbital imaging using direct coronal slices. Finally, surgical correction frequently involves novel techniques that reposition and stabilize the pulley and posterior muscle belly within the orbit using permanent scleral sutures or silicone bands without changing the location of the muscle′s insertion.

  13. Absence of all cyclovertical extraocular muscles in a child who has Apert syndrome.

    Science.gov (United States)

    Bustos, Daniel E; Donahue, Sean P

    2007-08-01

    A 6-month-old patient with Apert syndrome underwent strabismus surgery for a hypertropic eye. At surgery, the patient was found to have agenesis of all four cyclovertical muscles in one eye. Further investigation by computed tomography demonstrated absence of all four cyclovertical muscles in the fellow eye as well. A transposition procedure corrected the strabismus. While isolated aberrant or missing extraocular muscles are well documented in patients with craniofacial syndromes, bilateral absence of all four cyclovertical muscles, as demonstrated in this patient, poses unique treatment challenges.

  14. Use of extraocular muscle flaps in the correction of orbital implant exposure.

    Directory of Open Access Journals (Sweden)

    Hsueh-Yen Chu

    Full Text Available PURPOSES: The study is to describe a new surgical technique for correcting large orbital implant exposure with extraocular muscle flaps and to propose a treatment algorithm for orbital implant exposure. METHODS: In a retrospective study, seven patients with orbital implant exposure were treated with extraocular muscle flaps. All data were collected from patients in Chang Gung Memorial Hospital, Taiwan during 2007-2012. All surgeries were performed by one surgeon (Y.J.T. Patient demographics, the original etiology, details of surgical procedures, implant types, and follow-up interval were recorded. Small exposure, defined as exposure area smaller than 3 mm in diameter, was treated conservatively first with topical lubricant and prophylactic antibiotics. Larger defects were managed surgically. RESULTS: Seven patients consisting of two males and five females were successfully treated for orbital implant exposure with extraocular muscle flaps. The average age was 36.4 (range, 3-55 years old. Five patients were referred from other hospitals. One eye was enucleated for retinoblastoma. The other six eyes were eviscerated, including one for endophthalmitis and five for trauma. Mean follow-up time of all seven patients was 19.5 (range, 2-60 months. No patient developed recurrence of exposure during follow-up. All patients were fitted with an acceptable prosthesis and had satisfactory cosmetic and functional results. CONCLUSIONS: The most common complication of orbital implant is exposure, caused by breakdown of the covering layers, leading to extrusion. Several methods were reported to manage the exposed implants. We report our experience of treating implant exposure with extraocular muscle flaps to establish a well-vascularized environment that supplies both the wrapping material and the overlying ocular surface tissue. We believe it can work as a good strategy to manage or to prevent orbital implant exposure.

  15. The properties of the extraocular muscles of the frog. II. Pharmacological properties of the isolated superior oblique and superior rectus muscles.

    Science.gov (United States)

    Asmussen, G

    1978-01-01

    The pharmacological properties of the superior oblique and the superior rectus muscles of the frog's eye were investigated in comparison with those of a skeletal muscle (iliofibularis muscle) of the same animal. Acetylcholine causes sustained contractures of the extraocular muscles; this effect is increased by physostigmine and decreased or abolished by d-tubocurarine. Also the applications of succinylcholine, choline or caffeine are able to evoke contractures. There are no striking differences in pharmacological properties between extraocular and skeletal muscles of the frog. The time-course of the contractures and the sensitivity of the muscle preparations to the drugs which evoke contractures are identical in extraocular and iliofibularis muscles. In comparison with skeletal muscles there is no higher sensitivity of the extraocular muscles against curare-like drugs. The existence of adrenergic receptors could not be found neither in extraocular nor in skeletal muscles of the frog. It is concluded that in frogs no pharmacological differences exist between the muscle fibre types which compose the extraocular and the skeletal muscles.

  16. Contractile properties of extraocular muscle in Siamese cat.

    Science.gov (United States)

    Lennerstrand, G

    1979-01-01

    Siamese cats are albinos with poor visual resolution and severely impaired binocular vision. Eey muscle phyiology was studied in Siamese cats as a part of a more extensive project on eye muscle properties in cats with deficient binocular vision. Isometric contractions of the inferior oblique muscle were recorded in response to single and repetitive muscle nerve stimulation. Speed of contraction, measured as twitch contraction time, fusion frequency and rate of tetanic tension rise, was lower in Siamese than in normal cats. Eye muscles of Siamese cats fatiqued more easily to continuous activation than normal cat eye mucle. These functional changes have also been found in cats with binocular defects from monocular lid suture, but were much more marked in Siamese cats. It is suggested that the eye muscle changes represent muscular adaptations to genetically caused impairments of binocular vision and visual resolution in Siamese cats.

  17. The development of longitudinal variation of Myosin isoforms in the orbital fibers of extraocular muscles of rats.

    Science.gov (United States)

    Rubinstein, Neal A; Porter, John D; Hoh, Joseph F Y

    2004-09-01

    To examine the appearance of longitudinal variation of extraocular and embryonic myosin heavy chain (MyHC) isoforms during the development of orbital singly innervated fibers of rat extraocular muscles (EOMs). EOMs were dissected from rat pups of various ages and stained with isoform-specific monoclonal antibodies to the embryonic and extraocular MyHC isoforms and to neurofilaments, as well as with labeled alpha-bungarotoxin. The orbital layers of whole muscles were examined by confocal microscopy. RNase protection assays for the embryonic (Myh3) and extraocular (Myh13) MyHC isoform mRNAs were also performed. At 10 days postpartum, the EOM MyHC RNA was first detected by RNase protection assay. At 11 days postpartum, the extraocular isoform was detected in the orbital fibers as two thin stripes just proximal and distal to the neuromuscular junction (NMJ). Over the next few weeks, the area occupied by the extraocular isoform increased to include the entire central region of the orbital fibers at and surrounding the NMJ. At the same time, the embryonic isoform became excluded from the region of the NMJ. The orbital layer fibers of rat EOMs contain a longitudinal variation in MyHC isoforms not seen in other skeletal muscles. Development of this longitudinal variation begins as a late event postpartum; and the first appearance of it may be closely linked to neural contact. This targeting of MyHC isoforms to distinct domains is unique to EOMs. Copyright Association for Research in Vision and Ophthalmology

  18. The properties of the extraocular muscles of the frog. I. Mechanical properties of the isolated superior oblique and superior rectus muscles.

    Science.gov (United States)

    Asmussen, G

    1978-01-01

    The mechanical properties of two extraocular muscles (superior oblique and superior rectus muscles) of the frog were studied and compared with those of a frog's skeletal muscle (iliofibularis muscle) which contains the same types of muscle fibres as the oculorotatory muscles. The extraocular muscles are very fast twitching muscles. They exhibit a smaller contraction time, a smaller half-relaxation time, a higher fusion frequency, and a lower twitch-tetanus ratio than the skeletal muscles. The maximum isometric tetanic tension produced per unit cross-sectional area is lower in the extraocular muscles than in skeletal muscles. However, the extraocular muscles show a higher fatigue resistance than the skeletal muscles. With respect to the dynamic properties there are some differences between the various oculorotatory muscles of the frog. The superior rectus muscle exhibits a faster time-course of the contraction, a higher fusion frequency, and a higher fatigability than the superior oblique muscle. An increase of the extracellular K+-concentration evokes sustained contractures not only in the extraocular muscles but also in the iliofibularis muscle; between these muscles there are no striking differences in the mechanical threshold of the whole muscle preparation. The mechanical threshold depends on the Ca++-concentration of the bathing solution and it is found in a range between 12.5 and 17.5 mM K+ in a normal Ringer solution containing 1.8 mM Ca++. The static-mechanical properties of the extraocular muscles of the frog and the dependence of the active developed tension on the muscle extension are very similar to those which are known to exist in the extraocular muscles of other vertebrates. In tetanic activated frog's oculorotatory muscles a linear relationship exists between length and tension. A variation of the stimulation frequency does not change the slope of this curve but causes parallel shifts of the curve. The peculiar properties of the extraocular muscles

  19. Changes of orbital tissue volumes and proptosis in patients with thyroid extraocular muscle swelling after methylprednisolone pulse therapy.

    Science.gov (United States)

    Higashiyama, Tomoaki; Nishida, Yasuhiro; Ohji, Masahito

    2015-11-01

    To evaluate the changes of orbital tissue volumes and proptosis after methylprednisolone pulse therapy in thyroid-associated ophthalmopathy (TAO). The cross-sectional areas of orbital tissues and proptosis were measured with magnetic resonance imaging in 40 orbits of 20 patients with TAO before and after methylprednisolone pulse therapy. The volumes of the whole orbit, orbital fatty tissue, and extraocular muscles were calculated. The volumes and proptosis were compared before and after treatment using a paired t test. Before treatment, the mean volumes were 33.0 ± 4.8 cm(3) in the whole orbit, 19.9 ± 4.1 cm(3) in the orbital fatty tissue, and 4.6 ± 1.2 cm(3) in the total extraocular muscles. After treatment, the mean volumes were 32.5 ± 4.4 cm(3) in the whole orbit, 19.9 ± 3.7 cm(3) in the orbital fatty tissue, and 4.0 ± 1.0 cm(3) in the total extraocular muscles. The mean volumes of the whole orbit (P = 0.17) and orbital fatty tissue (P = 0.82) were not significantly decreased after treatment, while the mean volume of total extraocular muscles was significantly decreased (P tissue seemed to be unchanged after methylprednisolone pulse therapy while that of total extraocular muscles was decreased. The proptosis value seemed to be unchanged after treatment.

  20. Impact of Amyotrophic Lateral Sclerosis on Slow Tonic Myofiber Composition in Human Extraocular Muscles.

    Science.gov (United States)

    Tjust, Anton E; Danielsson, Adam; Andersen, Peter M; Brännström, Thomas; Pedrosa Domellöf, Fatima

    2017-07-01

    To analyze the proportion and cross-sectional area of myofibers containing myosin heavy chain slow-twitch (MyHCI) and myosin heavy chain slow tonic (MyHCsto) in extraocular muscles of autopsied amyotrophic lateral sclerosis (ALS) patients with either spinal or bulbar site of disease onset. Whole-muscle cross sections from the middle portion of the medial rectus were labeled with antibodies against MyHCI or MyHCsto and laminin. Myofibers labeled with the MyHC antibodies (MyHCI+sto) and the total number of myofibers were quantified in the orbital and global layer of 6 control individuals and 18 ALS patients. The cross-sectional area of myofibers labeled for either MyHC was quantified in 130 to 472 fibers/individual in the orbital and in 180 to 573 fibers/individual in the global layer of each specimen. The proportion of MyHCI+sto myofibers was significantly smaller in the orbital and global layer of ALS compared to control individuals. MyHCI+sto myofibers were significantly smaller in the global layer than in the orbital layer of ALS, whereas they were of similar size in control subjects. The decreased proportion of MyHCI+sto fibers correlated significantly with the age of death, but not disease duration, in patients who had the bulbar-onset variant of ALS but not in patients with spinal variant. ALS, regardless of site of onset, involves a loss of myofibers containing MyHCI+sto. Only in bulbar-onset cases did aging seem to play a role in the pathophysiological processes underlying the loss of MyHCI+sto fibers.

  1. Crotoxin in humans: analysis of the effects on extraocular and facial muscles

    Directory of Open Access Journals (Sweden)

    Geraldo de Barros Ribeiro

    2012-12-01

    Full Text Available PURPOSE: Crotoxin is the main neurotoxin of South American rattlesnake Crotalus durissus terrificus. The neurotoxic action is characterized by a presynaptic blockade. The purpose of this research is to assess the ability of crotoxin to induce temporary paralysis of extraocular and facial muscles in humans. METHODS: Doses of crotoxin used ranged from 2 to 5 units (U, each unit corresponding to one LD50. We first applied 2U of crotoxin in one of the extraocular muscles of 3 amaurotic individuals to be submitted to ocular evisceration. In the second stage, we applied crotoxin in 12 extraocular muscles of 9 patients with strabismic amblyopia. In the last stage, crotoxin was used in the treatment of blepharospasm in another 3 patients. RESULTS: No patient showed any systemic side effect or change in vision or any eye structure problem after the procedure. The only local side effects observed were slight conjunctival hyperemia, which recovered spontaneously. In 2 patients there was no change in ocular deviation after 2U crotoxin application. Limitation of the muscle action was observed in 8 of the 12 applications. The change in ocular deviation after application of 2U of crotoxin (9 injections was in average 15.7 prism diopters (PD. When the dose was 4U (2 applications the change was in average 37.5 PD and a single application of 5U produced a change of 16 PD in ocular deviation. This effect lasted from 1 to 3 months. Two of the 3 patients with blepharospasm had the hemifacial spasm improved with crotoxin, which returned after 2 months. CONCLUSIONS: This study provides data suggesting that crotoxin may be a useful new therapeutic option for the treatment of strabismus and blepharospasm. We expect that with further studies crotoxin could be an option for many other medical areas.

  2. Effects of the Rho-Kinase Inhibitor Y-27632 on Extraocular Muscle Surgery in Rabbits

    Directory of Open Access Journals (Sweden)

    Ji‐Sun Moon

    2017-01-01

    Full Text Available Purpose. To evaluate the effect of the Rho-kinase inhibitor Y-27632 on postoperative inflammation and adhesion following extraocular muscle surgery in rabbits. Methods. The superior rectus muscle reinsertion was performed on both eyes of 8 New Zealand white rabbits. After reinsertion, the rabbits received subconjunctival injections of the Rho-kinase inhibitor and saline on each eye. To assess acute and late inflammatory changes, Ki-67, CD11β+, and F4/80 were evaluated and the sites of muscle reattachment were evaluated for a postoperative adhesion score and histopathologically for collagen formation. Results. F4/80 antibody expression was significantly different in the Rho-kinase inhibitor-injected group at both postoperative day 3 and week 4 (p=0.038, 0.031. However, Ki-67 and CD11β+ were not different the between two groups. The difference in the SRM/conjunctiva adhesion score between the two groups was also significant (p=0.034. Conclusion. Intraoperative subconjunctival injection of the Rho-kinase inhibitor may be effective for adjunctive management of inflammation and fibrosis in rabbit eyes following extraocular muscle surgery.

  3. Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI.

    Science.gov (United States)

    Sengupta, Saikat; Smith, David S; Smith, Alex K; Welch, E Brian; Smith, Seth A

    2017-08-01

    The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion. Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left-right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated. Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s. This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease.

  4. Surgically mismanaged ptosis in a patient with congenital fibrosis of the extraocular muscles type I

    Directory of Open Access Journals (Sweden)

    Hatem A Tawfik

    2012-01-01

    Full Text Available Fibrosis syndromes comprise a rare form of severe limitation of ocular motility. An 11-year-old girl was referred for the correction of eyelid retraction. The eyelid retraction occurred immediately following levator resection surgery performed by a plastic surgeon who missed the restrictive extraocular muscle abnormalities. On examination, both eyes were fixed in an infraducted position (20 prism diopters (Δ, with a chin-up position and significant lagophthalmos. Bilateral 12-mm inferior rectus recession with adjustable sutures was performed, which resulted in significant reduction of lagophthalmos and elimination of the head tilt.

  5. Evaluation of dysthyroid optic neuropathy using T2-relaxation time of extraocular muscle as parameter

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Fumihiko; Maeda, Toshine; Inoue, Toyoko; Inoue, Yoichi [Olympia Eye Hospital, Tokyo (Japan)

    2001-11-01

    The T2 value of magnetic resonance imaging (MRI) is useful in evaluating the activity of dysthyroid ophthlamopathy. We applied this method in evaluating dysthyroid optic neuropathy in 15 affected eyes of 15 patients. Another group of 40 eyes of 20 patients of dysthyroid opthalmopathy without hypertrophy of extraocular muscles served as control. The T2 value in dysthyroid optic neuropathy significantly decreased following treatment with corticosteroid but the value was still higher than that in control eyes. The findings show that the T2 value of MRI is useful in evaluating the therapeutic effect of dysthyroid optic neuropathy. (author)

  6. Single motor unit activity in human extraocular muscles during the vestibulo-ocular reflex.

    Science.gov (United States)

    Weber, Konrad P; Rosengren, Sally M; Michels, Rike; Sturm, Veit; Straumann, Dominik; Landau, Klara

    2012-07-01

    Motor unit activity in human eye muscles during the vestibulo-ocular reflex (VOR) is not well understood, since the associated head and eye movements normally preclude single unit recordings. Therefore we recorded single motor unit activity following bursts of skull vibration and sound, two vestibular otolith stimuli that elicit only small head and eye movements. Inferior oblique (IO) and inferior rectus (IR) muscle activity was measured in healthy humans with concentric needle electrodes. Vibration elicited highly synchronous, short-latency bursts of motor unit activity in the IO (latency: 10.5 ms) and IR (14.5 ms) muscles. The activation patterns of the two muscles were similar, but reciprocal, with delayed activation of the IR muscle. Sound produced short-latency excitation of the IO muscle (13.3 ms) in the eye contralateral to the stimulus. Simultaneous needle and surface recordings identified the IO as the muscle of origin of the vestibular evoked myogenic potential (oVEMP) thus validating the physiological basis of this recently developed clinical test of otolith function. Single extraocular motor unit recordings provide a window into neural activity in humans that can normally only be examined using animal models and help identify the pathways of the translational VOR from otoliths to individual eye muscles.

  7. Analysis of neurotrophic factors in limb and extraocular muscles of mouse model of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Vahid M Harandi

    Full Text Available Amyotrophic lateral sclerosis (ALS is currently an incurable fatal motor neuron syndrome characterized by progressive weakness, muscle wasting and death ensuing 3-5 years after diagnosis. Neurotrophic factors (NTFs are known to be important in both nervous system development and maintenance. However, the attempt to translate the potential of NTFs into the therapeutic options remains limited despite substantial number of approaches, which have been tested clinically. Using quantitative RT-PCR (qRT-PCR technique, the present study investigated mRNA expression of four different NTFs: brain-derived neurotrophic factor (BDNF, neurotrophin-3 (NT-3, neurotrophin-4/5 (NT-4 and glial cell line-derived neurotrophic factor (GDNF in limb muscles and extraocular muscles (EOMs from SOD1G93A transgenic mice at early and terminal stages of ALS. General morphological examination revealed that muscle fibres were well preserved in both limb muscles and EOMs in early stage ALS mice. However, in terminal ALS mice, most muscle fibres were either atrophied or hypertrophied in limb muscles but unaffected in EOMs. qRT-PCR analysis showed that in early stage ALS mice, NT-4 was significantly down-regulated in limb muscles whereas NT-3 and GDNF were markedly up-regulated in EOMs. In terminal ALS mice, only GDNF was significantly up-regulated in limb muscles. We concluded that the early down-regulation of NT-4 in limb muscles is closely associated with muscle dystrophy and dysfunction at late stage, whereas the early up-regulations of GDNF and NT-3 in EOMs are closely associated with the relatively well-preserved muscle morphology at late stage. Collectively, the data suggested that comparing NTFs expression between limb muscles and EOMs from different stages of ALS animal models is a useful method in revealing the patho-physiology and progression of ALS, and eventually rescuing motor neuron in ALS patients.

  8. Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1)

    NARCIS (Netherlands)

    Yamada, K; Andrews, C; Chan, WM; McKeown, CA; Magli, A; de Berardinis, T; Loewenstein, A; Lazar, M; O'Keefe, M; Letson, R; London, A; Ruttum, M; Matsumoto, N; Saito, N; Morris, L; Del Monte, M; Johnson, RH; Uyama, E; Houtman, WA; de Vries, B; Carlow, TJ; Hart, BL; Krawiecki, N; Shoffner, J; Vogel, MC; Katowitz, J; Goldstein, SM; Levin, AV; Sener, EC; Ozturk, BT; Akarsu, AN; Brodsky, MC; Hanisch, F; Cruse, RP; Zubcov, AA; Robb, RM; Roggenkaemper, P; Gottlob, [No Value; Kowal, L; Battu, R; Traboulsi, EI; Franceschini, P; Newlin, A; Demer, JL; Engle, EC

    2003-01-01

    Congenital fibrosis of the extraocular muscles type 1 (CFEOM1; OMIM #135700) is an autosomal dominant strabismus disorder associated with defects of the oculomotor nerve. We show that individuals with CFEOM1 harbor heterozygous missense mutations in a kinesin motor protein encoded by KIF21A. We iden

  9. Constitutive properties, not molecular adaptations, mediate extraocular muscle sparing in dystrophic mdx mice.

    Science.gov (United States)

    Porter, John D; Merriam, Anita P; Khanna, Sangeeta; Andrade, Francisco H; Richmonds, Chelliah R; Leahy, Patrick; Cheng, Georgiana; Karathanasis, Paraskevi; Zhou, Xiaohua; Kusner, Linda L; Adams, Marvin E; Willem, Michael; Mayer, Ulrike; Kaminski, Henry J

    2003-05-01

    Extraocular muscle (EOM) is spared in Duchenne muscular dystrophy. Here, we tested putative EOM sparing mechanisms predicted from existing dystrophinopathy models. Data show that mdx mouse EOM contains dystrophin-glycoprotein complex (DGC)-competent and DGC-deficient myofibers distributed in a fiber type-specific pattern. Up-regulation of a dystrophin homologue, utrophin, mediates selective DGC retention. Counter to the DGC mechanical hypothesis, an intact DGC is not a precondition for EOM sarcolemmal integrity, and active adaptation at the level of calcium homeostasis is not mechanistic in protection. A partial, fiber type-specific retention of antiischemic nitric oxide to vascular smooth muscle signaling is not a factor in EOM sparing, because mice deficient in dystrophin and alpha-syntrophin, which localizes neuronal nitric oxide synthase to the sarcolemma, have normal EOMs. Moreover, an alternative transmembrane protein, alpha7beta1 integrin, does not appear to substitute for the DGC in EOM. Finally, genomewide expression profiling showed that EOM does not actively adapt to dystrophinopathy but identified candidate genes for the constitutive protection of mdx EOM. Taken together, data emphasize the conditional nature of dystrophinopathy and the potential importance of nonmechanical DGC roles and support the hypothesis that broad, constitutive structural cell signaling, and/or biochemical differences between EOM and other skeletal muscles are determinants of differential disease responsiveness.

  10. Study of crotoxin on the induction of paralysis in extraocular muscle in animal model

    Directory of Open Access Journals (Sweden)

    Geraldo de Barros Ribeiro

    2012-10-01

    Full Text Available PURPOSE: Crotoxin is the major toxin of the venom of the South American rattlesnake Crotalus durissus terrificus, capable of causing a blockade of the neurotransmitters at the neuromuscular junction. The objective of this study was to appraise the action and effectiveness of the crotoxin induced paralysis of the extraocular muscle and to compare its effects with the botulinum toxin type A (BT-A. METHODS: The crotoxin, with LD50 of 1.5 µg, was injected into the superior rectus muscle in ten New Zealand rabbits. The concentration variance was 0.015 up to 150 µg. Two rabbits received 2 units of botulinum toxin type A for comparative analysis. The evaluation of the paralysis was performed using serial electromyography. After the functional recovery of the muscles, which occurred after two months, six rabbits were sacrificed for anatomopathology study. RESULTS: The animals did not show any evidence of systemic toxicity. Transitory ptosis was observed in almost every animal and remained up to fourteen days. These toxins caused immediate blockade of the electrical potentials. The recovery was gradual in the average of one month with regeneration signs evident on the electromyography. The paralysis effect of the crotoxin on the muscle was proportional to its concentration. The changes with 1.5 µg crotoxin were similar to those produced by the botulinum toxin type A. The histopathology findings were localized to the site of the injection. No signs of muscle fiber's necrosis were seen in any sample. The alterations induced by crotoxin were also proportional to the concentration and similar to botulinum toxin type A in concentration of 1.5 µg. CONCLUSION: Crotoxin was able to induce transitory paralysis of the superior rectus muscle. This effect was characterized by reduction of action potentials and non-specific signs of fibrillation. Crotoxin, in concentration of 1.5 µg was able to induce similar effects as botulinum toxin type A.

  11. Regenerating nerve fiber innervation of extraocular muscles and motor functional changes following oculomotor nerve injuries at different sites

    Institute of Scientific and Technical Information of China (English)

    Wenchuan Zhang; Massimiliano Visocchi; Eduardo Fernandez; Xuhui Wang; Xinyuan Li; Shiting Li

    2011-01-01

    In the present study, the oculomotor nerves were sectioned at the proximal (subtentorial) and distal (superior orbital fissure) ends and repaired. After 24 weeks, vestibulo-ocular reflex evaluation confirmed that the regenerating nerve fibers following oculomotor nerve injury in the superior orbital fissure had a high level of specificity for innervating extraocular muscles. The level of functional recovery of extraocular muscles in rats in the superior orbital fissure injury group was remarkably superior over that in rats undergoing oculomotor nerve injuries at the proximal end (subtentorium). Horseradish peroxidase retrograde tracing through the right superior rectus muscle showed that the distribution of neurons in the nucleus of the oculomotor nerve was directly associated with the injury site, and that crude fibers were badly damaged. The closer the site of injury of the oculomotor nerve was to the extraocular muscle, the better the recovery of neurological function was. The mechanism may be associated with the aberrant number of regenerated nerve fibers passing through the injury site.

  12. Dystrophic changes in extraocular muscles after gamma irradiation in mdx:utrophin(+/-) mice.

    Science.gov (United States)

    McDonald, Abby A; Kunz, Matthew D; McLoon, Linda K

    2014-01-01

    Extraocular muscles (EOM) have a strikingly different disease profile than limb skeletal muscles. It has long been known that they are spared in Duchenne (DMD) and other forms of muscular dystrophy. Despite many studies, the cause for this sparing is not understood. We have proposed that differences in myogenic precursor cell properties in EOM maintain normal morphology over the lifetime of individuals with DMD due to either greater proliferative potential or greater resistance to injury. This hypothesis was tested by exposing wild type and mdx:utrophin(+/-) (het) mouse EOM and limb skeletal muscles to 18 Gy gamma irradiation, a dose known to inhibit satellite cell proliferation in limb muscles. As expected, over time het limb skeletal muscles displayed reduced central nucleation mirrored by a reduction in Pax7-positive cells, demonstrating a significant loss in regenerative potential. In contrast, in the first month post-irradiation in the het EOM, myofiber cross-sectional areas first decreased, then increased, but ultimately returned to normal compared to non-irradiated het EOM. Central nucleation significantly increased in the first post-irradiation month, resembling the dystrophic limb phenotype. This correlated with decreased EECD34 stem cells and a concomitant increase and subsequent return to normalcy of both Pax7 and Pitx2-positive cell density. By two months, normal het EOM morphology returned. It appears that irradiation disrupts the normal method of EOM remodeling, which react paradoxically to produce increased numbers of myogenic precursor cells. This suggests that the EOM contain myogenic precursor cell types resistant to 18 Gy gamma irradiation, allowing return to normal morphology 2 months post-irradiation. This supports our hypothesis that ongoing proliferation of specialized regenerative populations in the het EOM actively maintains normal EOM morphology in DMD. Ongoing studies are working to define the differences in the myogenic precursor cells

  13. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K., E-mail: mcloo001@tc.umn.edu

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a

  14. Sparing of extraocular muscle in aging and muscular dystrophies: a myogenic precursor cell hypothesis.

    Science.gov (United States)

    Kallestad, Kristen M; Hebert, Sadie L; McDonald, Abby A; Daniel, Mark L; Cu, Sharon R; McLoon, Linda K

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin(-/-) (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a subpopulation

  15. Extra-ocular muscle MRI in genetically-defined mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Pitceathly, Robert D.S.; Morrow, Jasper M.; Hanna, Michael G. [UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, MRC Centre for Neuromuscular Diseases, London (United Kingdom); Sinclair, Christopher D.J.; Yousry, Tarek A.; Thornton, John S. [UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, MRC Centre for Neuromuscular Diseases, London (United Kingdom); UCL Institute of Neurology, Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, London (United Kingdom); Woodward, Cathy; Sweeney, Mary G. [National Hospital for Neurology and Neurosurgery, Neurogenetics Unit, London (United Kingdom); Rahman, Shamima [UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, MRC Centre for Neuromuscular Diseases, London (United Kingdom); UCL Institute of Child Health, Mitochondrial Research Group, Clinical and Molecular Genetics Unit, London (United Kingdom); Plant, Gordon T.; Ali, Nadeem [National Hospital for Neurology and Neurosurgery, Department of Neuro-ophthalmology, London (United Kingdom); Moorfields Eye Hospital, Department of Neuro-ophthalmology, London (United Kingdom); Bremner, Fion [National Hospital for Neurology and Neurosurgery, Department of Neuro-ophthalmology, London (United Kingdom); Davagnanam, Indran [National Hospital for Neurology and Neurosurgery, The Lysholm Department of Neuroradiology, London (United Kingdom)

    2016-01-15

    Conventional and quantitative MRI was performed in patients with chronic progressive external ophthalmoplegia (CPEO), a common manifestation of mitochondrial disease, to characterise MRI findings in the extra-ocular muscles (EOMs) and investigate whether quantitative MRI provides clinically relevant measures of disease. Patients with CPEO due to single mitochondrial DNA deletions were compared with controls. Range of eye movement (ROEM) measurements, peri-orbital 3 T MRI T1-weighted (T1w) and short-tau-inversion-recovery (STIR) images, and T2 relaxation time maps were obtained. Blinded observers graded muscle atrophy and T1w/STIR hyperintensity. Cross-sectional areas and EOM mean T2s were recorded and correlated with clinical parameters. Nine patients and nine healthy controls were examined. Patients had reduced ROEM (patients 13.3 , controls 49.3 , p < 0.001), greater mean atrophy score and increased T1w hyperintensities. EOM mean cross-sectional area was 43 % of controls and mean T2s were prolonged (patients 75.6 ± 7.0 ms, controls 55.2 ± 4.1 ms, p < 0.001). ROEM correlated negatively with EOM T2 (rho = -0.89, p < 0.01), whilst cross-sectional area failed to correlate with any clinical measures. MRI demonstrates EOM atrophy, characteristic signal changes and prolonged T2 in CPEO. Correlation between elevated EOM T2 and ROEM impairment represents a potential measure of disease severity that warrants further evaluation. (orig.)

  16. Conserved and muscle-group-specific gene expression patterns shape postnatal development of the novel extraocular muscle phenotype.

    Science.gov (United States)

    Cheng, Georgiana; Merriam, Anita P; Gong, Bendi; Leahy, Patrick; Khanna, Sangeeta; Porter, John D

    2004-07-08

    Current models in skeletal muscle biology do not fully account for the breadth, causes, and consequences of phenotypic variation among skeletal muscle groups. The muscle allotype concept arose to explain frank differences between limb, masticatory, and extraocular (EOM) muscles, but there is little understanding of the developmental regulation of the skeletal muscle phenotypic range. Here, we used morphological and DNA microarray analyses to generate a comprehensive temporal profile for rat EOM development. Based upon coordinate regulation of morphologic/gene expression traits with key events in visual, vestibular, and oculomotor system development, we propose a model that the EOM phenotype is a consequence of extrinsic factors that are unique to its local environment and sensory-motor control system, acting upon a novel myoblast lineage. We identified a broad spectrum of differences between the postnatal transcriptional patterns of EOM and limb muscle allotypes, including numerous transcripts not traditionally associated with muscle fiber/group differences. Several transcription factors were differentially regulated and may be responsible for signaling muscle allotype specificity. Significant differences in cellular energetic mechanisms defined the EOM and limb allotypes. The allotypes were divergent in many other functional transcript classes that remain to be further explored. Taken together, we suggest that the EOM allotype is the consequence of tissue-specific mechanisms that direct expression of a limited number of EOM-specific transcripts and broader, incremental differences in transcripts that are conserved by the two allotypes. This represents an important first step in dissecting allotype-specific regulatory mechanisms that may, in turn, explain differential muscle group sensitivity to a variety of metabolic and neuromuscular diseases.

  17. Myosin heavy chain isoform expression in human extraocular muscles: longitudinal variation and patterns of expression in global and orbital layers.

    Science.gov (United States)

    Park, Kyung-Ah; Lim, Jeonghee; Sohn, Seongsoo; Oh, Sei Yeul

    2012-05-01

    We investigated the distribution of myosin heavy chain (MyHC) isoforms along the length of the global and orbital layers of human extraocular muscles (EOMs). Whole muscle tissue extracts of human EOMs were cross-sectioned consecutively and separated into orbital and global layers. The extracts from these layers were subjected to electrophoretic analysis, followed by quantification with scanning densitometry. MyHC isoforms displayed different distributions along the lengths of EOMs. In the orbital and global layers of all EOMs except for the superior oblique muscle, MyHCeom was enriched in the central regions. MyHCIIa and MyHCI were most abundant in the proximal and distal ends. A variation in MyHC isoform expression was apparent along the lengths of human EOMs. These results provide a basis for understanding the molecular mechanisms underlying the functional diversity of EOMs. Copyright © 2012 Wiley Periodicals, Inc.

  18. Squamous cell carcinoma of the conjunctiva with extraocular involvement: case report and literature review

    Directory of Open Access Journals (Sweden)

    Ignacio Goñi Espildora

    2016-05-01

    Full Text Available Resumen El carcinoma escamoso de la conjuntiva es el tumor maligno más frecuente de la superficie ocular. Constituye una enfermedad rara con una incidencia de 0,13 a 1,9 por 100 000 habitantes que afecta principalmente a individuos entre los 50 y los 75 años. Suele tener un curso lento y poco agresivo. El tratamiento depende de la extensión tumoral. En presencia de compromiso intraocular la enucleación está indicada y en presencia de compromiso extraocular la exanteración orbitaria es el tratamiento estándar. Reportamos el caso de un paciente de 82 años con carcinoma escamoso conjuntival con compromiso intra y extraocular, se discute el caso y se revisa la literatura.

  19. [The gene mutation screening of a family with congenital fibrosis of the extraocular muscles associated with corpus callosum agenesis].

    Science.gov (United States)

    Zhang, Jun-tao; Zhou, Lian-hong; Zha, Yun-fei; Liu, Tian; Tian, Ming-xing; Yuan, Jing; Xing, Yi-qiao

    2013-07-01

    To identify TUBB3 gene mutations in a Chinese family with congenital fibrosis of the extraocular muscle associated with corpus callosum agenesis. We have found a family with CFEOM associated with corpus callosum agenesis, including 4 affected individuals in three generations of 11 familial members. 4 affected individuals were sequenced by direct TUBB3 sequencing, 4 unaffected individuals in the family and 100 cases of unrelated normal person as a control. This family is in line with Mendelian autosomal dominant inheritance. Clinical manifestations belongs to CFEOM3. All affected individuals were detected with TUBB3 c.1249G > A mutation, the mutation is in exon 4, resulting in wild-type gene encoding the Aspartic acid ( Asp or D ) replaced .by Asparagine (Asn or N ). Our study supports that TUBB3 gene mutation c.1249G > A (p. Asp417Asn), is the underlying molecular pathogenesis of this family with CFEOM3.

  20. A functional SNP in the regulatory region of the decay-accelerating factor gene associates with extraocular muscle pareses in myasthenia gravis

    OpenAIRE

    Heckmann, J M; Uwimpuhwe, H; Ballo, R; Kaur, M.; Bajic, V.B.; Prince, S.

    2009-01-01

    Complement activation in myasthenia gravis (MG) may damage muscle endplate and complement regulatory proteins such as decay-accelerating factor (DAF) or CD55 may be protective. We hypothesize that the increased prevalence of severe extraocular muscle (EOM) dysfunction among African MG subjects reported earlier may result from altered DAF expression. To test this hypothesis, we screened the DAF gene sequences relevant to the classical complement pathway and found an association between myasthe...

  1. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    Directory of Open Access Journals (Sweden)

    Brenda L Bohnsack

    Full Text Available 1-Phenyl 2-thiourea (PTU is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM, PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03% and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf. Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4 in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3 and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.

  2. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    Science.gov (United States)

    Bohnsack, Brenda L; Gallina, Donika; Kahana, Alon

    2011-01-01

    1-Phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM), PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF) regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03%) and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf). Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4) in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3) and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.

  3. Magnetic resonance imaging of the extraocular muscles and corresponding cranial nerves in patients with special forms of strabismus

    Institute of Scientific and Technical Information of China (English)

    JIAO Yong-hong; ZHAO Kan-xing; WANG Zhen-chang; QIAN Xue-han; WU Xiao; MAN Feng-yuan; LU Wei; SHE Hai-cheng

    2009-01-01

    Background With the technical advances, magnetic resonance imaging (MRI) is now sensitive enough to detect subtle structural abnormalities of ocular motor nerves arising from the brainstem and orbits of living subjects. This study was designed to delineate the MRI characteristics in patients with special forms of strabismus.Methods A total of 29 patients with special forms of strabismus underwent orbital and intracalvarium MRI. Imaging of the ocular motor nerves in the brainstem was performed in 0.8 mm thickness image planes using the three-dimensional fast imaging employing steady-state acquisition (3D-FIESTA) sequence. Nerves to extraocular muscles (EOMs), EOMs and their associated connective tissues were imaged with T1 weighting in tri-planar scans by dual-phased coils within 2.0 mm thick planes.Results Patients with congenital fibrosis of the extraocular muscles exhibited hypoplasia of the oculomotor (CN3), abducens (CN6), trochlear (CN4) nerves, and the EOMs; hypoplasia of CN6 in the brainstem and an extra branch of the inferior division of CN3 to the lateral rectus were the most common but not the only presentation of Duane's retraction syndrome. Hypoplasia of CN6, facial (CN7) and hypoglossal (CN12) nerves were revealed in patients with M(o)bius syndrome. In a rare case of bilateral synergistic convergence and divergence, an enlarged branch of CN3 to the medial rectus and a questionable branch of CN3 to the inferior rectus bilaterally were found.Conclusion MRI can reveal subtle structures of the ocular motor nerves and their corresponding EOMs. This can provide valuable information regarding pathogenesis in some special forms of strabismus.

  4. Myostatin shows a specific expression pattern in pig skeletal and extraocular muscles during pre- and post-natal growth.

    Science.gov (United States)

    Patruno, Marco; Caliaro, Francesca; Maccatrozzo, Lisa; Sacchetto, Roberta; Martinello, Tiziana; Toniolo, Luana; Reggiani, Carlo; Mascarello, Francesco

    2008-02-01

    Myogenesis is driven by an extraordinary array of cellular signals that follow a common expression pattern among different animal phyla. Myostatin (mstn) is a secreted growth factor that plays a pivotal role in skeletal muscle mass regulation. The aim of the present study was to investigate mstn expression in a large mammal (the pig) in order to ascertain whether distinct expression changes of this factor might be linked to the fiber-type composition of the muscle examined and/or to specific developmental stages. To assess the expression pattern of mstn in relation to myogenic proliferative (Pax7 and MyoD) and differentiative (myogenin) markers, we evaluated muscles with different myosin heavy-chain compositions sampled during pre- and post-natal development and on myogenic cells isolated from the same muscles. Skeletal muscles showed higher levels of mRNA for mstn and all other genes examined during fetal development than after birth. The wide distribution of mstn was also confirmed by immunohistochemistry experiments supporting evidence for cytoplasmic staining in early fetal periods as well as the localization in type 1 fibers at the end of the gestation period. Extraocular muscles, in contrast, did not exhibit decreasing mRNA levels for mstn or other genes even in adult samples and expressed higher levels of both mstn mRNA and protein compared with skeletal muscles. Experiments carried out on myogenic cells showed that mstn mRNA levels decreased when myoblasts entered the differentiation program and that cells isolated at early post-natal stages maintained a high level of Pax7 expression. Our results showed that mstn had a specific expression pattern whose variations depended on the muscle type examined, thus supporting the hypothesis that at birth, porcine myogenic cells continue to be influenced by hyperplastic/proliferative mechanisms.

  5. Structural Functional Associations of the Orbit in Thyroid Eye Disease: Kalman Filters to Track Extraocular Rectal Muscles.

    Science.gov (United States)

    Chaganti, Shikha; Nelson, Katrina; Mundy, Kevin; Luo, Yifu; Harrigan, Robert L; Damon, Steve; Fabbri, Daniel; Mawn, Louise; Landman, Bennett

    2016-02-27

    Pathologies of the optic nerve and orbit impact millions of Americans and quantitative assessment of the orbital structures on 3-D imaging would provide objective markers to enhance diagnostic accuracy, improve timely intervention and eventually preserve visual function. Recent studies have shown that the multi-atlas methodology is suitable for identifying orbital structures, but challenges arise in the identification of the individual extraocular rectus muscles that control eye movement. This is increasingly problematic in diseased eyes, where these muscles often appear to fuse at the back of the orbit (at the resolution of clinical computed tomography imaging) due to inflammation or crowding. We propose the use of Kalman filters to track the muscles in three-dimensions to refine multi-atlas segmentation and resolve ambiguity due to imaging resolution, noise, and artifacts. The purpose of our study is to investigate a method of automatically generating orbital metrics from CT imaging and demonstrate the utility of the approach by correlating structural metrics of the eye orbit with clinical data and visual function measures in subjects with thyroid eye disease. The pilot study demonstrates that automatically calculated orbital metrics are strongly correlated with several clinical characteristics. Moreover, the superior, inferior, medial and lateral rectus muscles obtained using Kalman filters are each correlated with different categories of functional deficit. These findings serve as foundation for further investigation in the use of CT imaging in the study, analysis and diagnosis of ocular diseases, specifically thyroid eye disease.

  6. Loss of MAFB Function in Humans and Mice Causes Duane Syndrome, Aberrant Extraocular Muscle Innervation, and Inner-Ear Defects.

    Science.gov (United States)

    Park, Jong G; Tischfield, Max A; Nugent, Alicia A; Cheng, Long; Di Gioia, Silvio Alessandro; Chan, Wai-Man; Maconachie, Gail; Bosley, Thomas M; Summers, C Gail; Hunter, David G; Robson, Caroline D; Gottlob, Irene; Engle, Elizabeth C

    2016-06-02

    Duane retraction syndrome (DRS) is a congenital eye-movement disorder defined by limited outward gaze and retraction of the eye on attempted inward gaze. Here, we report on three heterozygous loss-of-function MAFB mutations causing DRS and a dominant-negative MAFB mutation causing DRS and deafness. Using genotype-phenotype correlations in humans and Mafb-knockout mice, we propose a threshold model for variable loss of MAFB function. Postmortem studies of DRS have reported abducens nerve hypoplasia and aberrant innervation of the lateral rectus muscle by the oculomotor nerve. Our studies in mice now confirm this human DRS pathology. Moreover, we demonstrate that selectively disrupting abducens nerve development is sufficient to cause secondary innervation of the lateral rectus muscle by aberrant oculomotor nerve branches, which form at developmental decision regions close to target extraocular muscles. Thus, we present evidence that the primary cause of DRS is failure of the abducens nerve to fully innervate the lateral rectus muscle in early development.

  7. Structural functional associations of the orbit in thyroid eye disease: Kalman filters to track extraocular rectal muscles

    Science.gov (United States)

    Chaganti, Shikha; Nelson, Katrina; Mundy, Kevin; Luo, Yifu; Harrigan, Robert L.; Damon, Steve; Fabbri, Daniel; Mawn, Louise; Landman, Bennett

    2016-03-01

    Pathologies of the optic nerve and orbit impact millions of Americans and quantitative assessment of the orbital structures on 3-D imaging would provide objective markers to enhance diagnostic accuracy, improve timely intervention, and eventually preserve visual function. Recent studies have shown that the multi-atlas methodology is suitable for identifying orbital structures, but challenges arise in the identification of the individual extraocular rectus muscles that control eye movement. This is increasingly problematic in diseased eyes, where these muscles often appear to fuse at the back of the orbit (at the resolution of clinical computed tomography imaging) due to inflammation or crowding. We propose the use of Kalman filters to track the muscles in three-dimensions to refine multi-atlas segmentation and resolve ambiguity due to imaging resolution, noise, and artifacts. The purpose of our study is to investigate a method of automatically generating orbital metrics from CT imaging and demonstrate the utility of the approach by correlating structural metrics of the eye orbit with clinical data and visual function measures in subjects with thyroid eye disease. The pilot study demonstrates that automatically calculated orbital metrics are strongly correlated with several clinical characteristics. Moreover, it is shown that the superior, inferior, medial and lateral rectus muscles obtained using Kalman filters are each correlated with different categories of functional deficit. These findings serve as foundation for further investigation in the use of CT imaging in the study, analysis and diagnosis of ocular diseases, specifically thyroid eye disease.

  8. Agreement between intraoperative measurements and optical coherence tomography of the limbus-insertion distance of the extraocular muscles.

    Science.gov (United States)

    de-Pablo-Gómez-de-Liaño, L; Fernández-Vigo, J I; Ventura-Abreu, N; Morales-Fernández, L; García-Feijóo, J; Gómez-de-Liaño, R

    2016-12-01

    To assess the agreement between intraoperative measurements of the limbus-insertion distance of the extraocular muscles with those measured by spectral domain optical coherence tomography. An analysis was made of a total of 67 muscles of 21 patients with strabismus. The limbus-insertion distance of the horizontal rectus muscles were measured using pre-operative SD-OCT and intra-operatively in 2 ways: 1) direct, after a conjunctival dissection in patients who underwent surgery, or 2) transconjunctival in patients who were treated with botulinum toxin, or in those who were not going to be operated. The intraclass correlation coefficient and Bland-Altman plots were calculated to determine the concordance between the 2 methods. The mean age was 45.9 ±20.9 years (range 16 to 85), with 52% being women. The percentage of identification by direct intraoperative measurement was 95.6% (22/23), by transconjunctival intraoperative measurement 90.9% (40/44), and by OCT 85% (57/67), with 22 muscles finally being analysed for the agreement study between direct intraoperative measurement and OCT measurements, and 35 muscles for the agreement between transconjuctival intraoperative measurement and OCT. The intraclass correlation coefficient showed good agreement with OCT and direct intraoperative measurements (0.931; 95% confidence interval (95% CI): 0.839-0.972; P<.001), and with transconjunctival intraoperative measurements (0.889; 95% CI: 0.790-0.942; P<.001). The SD-OCT is an effective technique to measure the distance from the insertion of the horizontal rectus muscles to the limbus, with a high agreement with intraoperative measurements being demonstrated. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. A continuum of myofibers in adult rabbit extraocular muscle: force, shortening velocity, and patterns of myosin heavy chain colocalization.

    Science.gov (United States)

    McLoon, Linda K; Park, Han Na; Kim, Jong-Hee; Pedrosa-Domellöf, Fatima; Thompson, Ladora V

    2011-10-01

    Extraocular muscle (EOM) myofibers do not fit the traditional fiber typing classifications normally used in noncranial skeletal muscle, in part, due to the complexity of their individual myofibers. With single skinned myofibers isolated from rectus muscles of normal adult rabbits, force and shortening velocity were determined for 220 fibers. Each fiber was examined for myosin heavy chain (MyHC) isoform composition by densitometric analysis of electrophoresis gels. Rectus muscle serial sections were examined for coexpression of eight MyHC isoforms. A continuum was seen in single myofiber shortening velocities as well as force generation, both in absolute force (g) and specific tension (kN/m(2)). Shortening velocity correlated with MyHCIIB, IIA, and I content, the more abundant MyHC isoforms expressed within individual myofibers. Importantly, single fibers with similar or identical shortening velocities expressed significantly different ratios of MyHC isoforms. The vast majority of myofibers in both the orbital and global layers expressed more than one MyHC isoform, with up to six isoforms in single fiber segments. MyHC expression varied significantly and unpredictably along the length of single myofibers. Thus EOM myofibers represent a continuum in their histological and physiological characteristics. This continuum would facilitate fine motor control of eye position, speed, and direction of movement in all positions of gaze and with all types of eye movements-from slow vergence movements to fast saccades. To fully understand how the brain controls eye position and movements, it is critical that this significant EOM myofiber heterogeneity be integrated into hypotheses of oculomotor control.

  10. Abnormal expression of seven myogenesis-related genes in extraocular muscles of patients with concomitant strabismus

    National Research Council Canada - National Science Library

    ZHU, YUJUAN; DENG, DAMING; LONG, CHONGDE; JIN, GUORONG; ZHANG, QINGJIONG; SHEN, HUANGXUAN

    2013-01-01

    ...) and muscle creatine kinase (MCK). This study evaluated the expression of the above seven myogenesis-related genes by real-time quantitative RT-PCR in 18 resected extrocular muscles of patients with concomitant strabismus and 12...

  11. Lymphomas and metastases of the extra-ocular musculature

    Energy Technology Data Exchange (ETDEWEB)

    Surov, Alexey; Behrmann, Curd; Koesling, Sabrina [Martin Luther University of Halle-Wittenberg, Department of Radiology, Halle (Germany); Holzhausen, Hans-Juergen [Martin Luther University of Halle-Wittenberg, Department of Pathology, Halle (Germany)

    2011-11-15

    The involvement of extra-ocular muscles in malignant diseases has been described only sporadically. The purpose of this study was to estimate the prevalence of orbital muscle lymphoma and metastases and to analyse their radiological findings. In the time period from January 2000 to January 2010, 11 patients with extra-ocular muscle malignancies (EOMM) were retrospectively identified in the radiological database of our institution. There were four women and seven men with a median age of 58 years (range, 47 to 72 years). In three patients non-Hodgkin lymphoma (NHL), in seven cases intramuscular metastases of solid tumours and in one patient plasmacytoma of orbital muscles were diagnosed. In all, magnetic resonance imaging (MRI) was performed on 11 patients using a 1.5-T MRI scanner (Magnetom Vision Sonata Upgrade, Siemens, Germany). The diagnosis of EOMM was confirmed histopathologically by muscle biopsy in all cases. The prevalence of orbital muscle involvement in plasmacytoma was 0.3%, in NHL 0.4% and in carcinomas 0.1%. Clinically, EOMM presented as painless proptosis and motility disturbance. Medial and lateral rectus muscles were involved in most patients. On T2-weighted images, the lesions were isointense or mixed iso-to-hyperintense in comparison to the unaffected musculature. On T1-weighted images, all tumours were homogeneously isointense. After intravenous administration of contrast medium, most lesions showed moderate heterogeneous enhancement. Lymphomas and metastases are rare lesions of the extra-ocular musculature with a prevalence below 0.5%. Their radiological and clinical signs are non-specific and include painless muscle enlargement or masses. They should be considered in the differential diagnosis of diseases of extra-ocular muscles. (orig.)

  12. CT in the diagnosis of isolated cysticercal infestation of extraocular muscle

    Energy Technology Data Exchange (ETDEWEB)

    Rauniyar, R.K.; Thakur, S.K.D.; Panda, A

    2003-02-01

    AIM: To evaluate the use of computed tomography (CT) and ultrasound (US) to diagnose orbital cysticercosis, and present the diagnostic features. METHOD: US and CT were used to evaluate patients with proptosis. Four patients were diagnosed as having orbital myocysticercosis and treated with oral albendazole and corticosteroid. Follow-up was undertaken with US and CT. RESULT: US features were confirmatory of myocysticercosis in two eyes where as CT was effective in diagnosing the condition in all four eyes. In two patients the medial rectus was involved, in one the superior rectus and, in the other, the inferior rectus muscles. Serial US and CT revealed complete resolution of the lesions in 3 months. CONCLUSION: CT is useful method in diagnosing isolated orbital myocysticercosis. Our report demonstrated that ophthalmic signs and symptoms in the presence of proptosis, especially in an endemic region, should alert the clinician to the possibility of myocysticercosis. Though CT is superior, US can be used as a economical follow-up investigation. Rauniyar, R. K. etal. (2003) Clinical Radiology58, 154--156.

  13. Crotoxin in humans: analysis of the effects on extraocular and facial muscles Crotoxina em humanos: estudo da ação em músculos extraoculares e faciais

    Directory of Open Access Journals (Sweden)

    Geraldo de Barros Ribeiro

    2012-12-01

    Full Text Available PURPOSE: Crotoxin is the main neurotoxin of South American rattlesnake Crotalus durissus terrificus. The neurotoxic action is characterized by a presynaptic blockade. The purpose of this research is to assess the ability of crotoxin to induce temporary paralysis of extraocular and facial muscles in humans. METHODS: Doses of crotoxin used ranged from 2 to 5 units (U, each unit corresponding to one LD50. We first applied 2U of crotoxin in one of the extraocular muscles of 3 amaurotic individuals to be submitted to ocular evisceration. In the second stage, we applied crotoxin in 12 extraocular muscles of 9 patients with strabismic amblyopia. In the last stage, crotoxin was used in the treatment of blepharospasm in another 3 patients. RESULTS: No patient showed any systemic side effect or change in vision or any eye structure problem after the procedure. The only local side effects observed were slight conjunctival hyperemia, which recovered spontaneously. In 2 patients there was no change in ocular deviation after 2U crotoxin application. Limitation of the muscle action was observed in 8 of the 12 applications. The change in ocular deviation after application of 2U of crotoxin (9 injections was in average 15.7 prism diopters (PD. When the dose was 4U (2 applications the change was in average 37.5 PD and a single application of 5U produced a change of 16 PD in ocular deviation. This effect lasted from 1 to 3 months. Two of the 3 patients with blepharospasm had the hemifacial spasm improved with crotoxin, which returned after 2 months. CONCLUSIONS: This study provides data suggesting that crotoxin may be a useful new therapeutic option for the treatment of strabismus and blepharospasm. We expect that with further studies crotoxin could be an option for many other medical areas.OBJETIVO: A crotoxina é a principal neurotoxina da cascavel sul-americana Crotalus durissus terrificus e sua ação neurotóxica caracteriza-se por um bloqueio pr

  14. [Central nervous system abnormalities related to congenital fibrosis of extraocular muscles].

    Science.gov (United States)

    Moguel-Ancheita, Silvia; Rodríguez-Garcidueñas, Wendolyn

    2009-01-01

    We undertook this study to describe central nervous system (CNS) abnormalities associated with congenital cranial dysinnervation disorders (CCDD). This was a retrospective, observational, transversal and descriptive study including patients with congenital fibrotic strabismus. We analyzed clinical files of patients from 2001 to 2006. Neurological lesions were reported. Restrictive strabismus was demonstrated in all cases. Sixteen patients were included: nine males and seven females. Different neurological lesions were reported: corpus callosum anomalies, severe cortipathy, epilepsy, cavum vergae, nystagmus, occipital subarachnoid cyst, and hydrocephalus. Mental retardation was reported in 56% of patients. Different malformations were reported: genital malformations, trigonocephalus, camptodactyly, mild facial hypoplasia, low set ears, and agenesis of left ear. Blepharoptosis was present in 81% of patients. The most frequent form of strabismus was exotropia (56%), hypotropia in 37.5%, hypertropia 18.7%, "A" pattern 18.7%, and esotropia in 6.25%. Affection was cranial nerve III, 93.75%; cranial nerve VI, 6.25%; cranial nerve VII, 6.25%; and lesion to cranial nerve II in eight cases (50%). We have suggested that failure in early stages of embryology of the CNS can lead to the development of paralytic strabismus and generate secondary fibrotic changes, not only in muscle structures but also in other orbital tissues. That is the reason why we have used the term "congenital fibrotic strabismus" to report cases included in CCDD. We have demonstrated the strong association of mental retardation and neurological alterations. Multidisciplinary rehabilitation is relevant for these patients.

  15. Unilateral blindness with third cranial nerve palsy and abnormal enhancement of extraocular muscles on magnetic resonance imaging of orbit after the ingestion of methanol.

    Science.gov (United States)

    Chung, Tae Nyoung; Kim, Sun Wook; Park, Yoo Seok; Park, Incheol

    2010-05-01

    Methanol is generally known to cause visual impairment and various systemic manifestations. There are a few reported specific findings for methanol intoxication on magnetic resonance imaging (MRI) of the brain. A case is reported of unilateral blindness with third cranial nerve palsy oculus sinister (OS) after the ingestion of methanol. Unilateral damage of the retina and optic nerve were confirmed by fundoscopy, flourescein angiography, visual evoked potential and electroretinogram. The optic nerve and extraocular muscles (superior rectus, medial rectus, inferior rectus and inferior oblique muscle) were enhanced by gadolinium-DTPA on MRI of the orbit. This is the first case report of permanent monocular blindness with confirmed unilateral damage of the retina and optic nerve, combined with third cranial nerve palsy after methanol ingestion.

  16. Extraocular Muscles Tension, Tonus, and Proprioception in Infantile Strabismus: Role of the Oculomotor System in the Pathogenesis of Infantile Strabismus—Review of the Literature

    Directory of Open Access Journals (Sweden)

    Costantino Schiavi

    2016-01-01

    Full Text Available The role played by the extraocular muscles (EOMs in the etiology of concomitant infantile strabismus is still debated and it has not yet definitively established if the sensory anomalies in concomitant strabismus are a consequence or a primary cause of the deviation. The commonest theory supposes that most strabismus results from abnormal innervation of the EOMs, but the cause of this dysfunction and its origin, whether central or peripheral, are still unknown. The interaction between sensory factors and innervational factors, that is, esotonus, accommodation, convergence, divergence, and vestibular reflexes in visually immature infants with family predisposition, is suspected to create conditions that prevent binocular alignment from stabilizing and strengthening. Some role in the onset of fixation instability and infantile strabismus could be played by the feedback control of eye movements and by dysfunction of eye muscle proprioception during the critical period of development of the visual sensory system. A possible role in the onset, maintenance, or worsening of the deviation of abnormalities of muscle force which have their clinical equivalent in eye muscle overaction and underaction has been investigated under either isometric or isotonic conditions, and in essence no significant anomalies of muscle force have been found in concomitant strabismus.

  17. Accommodation: The role of the external muscles of the eye: A consideration of refractive errors in relation to extraocular malfunction.

    Science.gov (United States)

    Hargrave, B K

    2014-11-01

    Speculation as to optical malfunction has led to dissatisfaction with the theory that the lens is the sole agent in accommodation and to the suggestion that other parts of the eye are also conjointly involved. Around half-a-century ago, Robert Brooks Simpkins suggested that the mechanical features of the human eye were precisely such as to allow for a lengthening of the globe when the eye accommodated. Simpkins was not an optical man but his theory is both imaginative and comprehensive and deserves consideration. It is submitted here that accommodation is in fact a twofold process, and that although involving the lens, is achieved primarily by means of a give - and - take interplay between adducting and abducting external muscles, whereby an elongation of the eyeball is brought about by a stretching of the delicate elastic fibres immediately behind the cornea. The three muscles responsible for convergence (superior, internal and inferior recti) all pull from in front backwards, while of the three abductors (external rectus and the two obliques) the obliques pull from behind forwards, allowing for an easy elongation as the eye turns inwards and a return to its original length as the abducting muscles regain their former tension, returning the eye to distance vision. In refractive errors, the altered length of the eyeball disturbs the harmonious give - and - take relationship between adductors and abductors. Such stresses are likely to be perpetuated and the error exacerbated. Speculation is not directed towards a search for a possible cause of the muscular imbalance, since none is suspected. Muscles not used rapidly lose tone, as evidenced after removal of a limb from plaster. Early attention to the need for restorative exercise is essential and results usually impressive. If flexibility of the external muscles of the eyes is essential for continuing good sight, presbyopia can be avoided and with it the supposed necessity of glasses in middle life. Early attention

  18. Nature and frequency of respiratory involvement in chronic progressive external ophthalmoplegia

    NARCIS (Netherlands)

    Smits, B.W.; Heijdra, Y.F.; Cuppen, F.; Engelen, B.G. van

    2011-01-01

    Chronic progressive external ophthalmoplegia (CPEO) is a relatively common mitochondrial disorder. Weakness of the extra-ocular, limb girdle and laryngeal muscles are established clinical features. Respiratory muscle involvement however has never been studied systematically, even though respiratory

  19. A functional SNP in the regulatory region of the decay-accelerating factor gene associates with extraocular muscle pareses in myasthenia gravis

    KAUST Repository

    Heckmann, J M

    2009-08-13

    Complement activation in myasthenia gravis (MG) may damage muscle endplate and complement regulatory proteins such as decay-accelerating factor (DAF) or CD55 may be protective. We hypothesize that the increased prevalence of severe extraocular muscle (EOM) dysfunction among African MG subjects reported earlier may result from altered DAF expression. To test this hypothesis, we screened the DAF gene sequences relevant to the classical complement pathway and found an association between myasthenics with EOM paresis and the DAF regulatory region c.-198CG SNP (odds ratio8.6; P0.0003). This single nucleotide polymorphism (SNP) results in a twofold activation of a DAF 5?-flanking region luciferase reporter transfected into three different cell lines. Direct matching of the surrounding SNP sequence within the DAF regulatory region with the known transcription factor-binding sites suggests a loss of an Sp1-binding site. This was supported by the observation that the c.-198CG SNP did not show the normal lipopolysaccharide-induced DAF transcriptional upregulation in lymphoblasts from four patients. Our findings suggest that at critical periods during autoimmune MG, this SNP may result in inadequate DAF upregulation with consequent complement-mediated EOM damage. Susceptible individuals may benefit from anti-complement therapy in addition to immunosuppression. © 2010 Macmillan Publishers Limited. All rights reserved.

  20. A functional SNP in the regulatory region of the decay-accelerating factor gene associates with extraocular muscle pareses in myasthenia gravis.

    Science.gov (United States)

    Heckmann, J M; Uwimpuhwe, H; Ballo, R; Kaur, M; Bajic, V B; Prince, S

    2010-01-01

    Complement activation in myasthenia gravis (MG) may damage muscle endplate and complement regulatory proteins such as decay-accelerating factor (DAF) or CD55 may be protective. We hypothesize that the increased prevalence of severe extraocular muscle (EOM) dysfunction among African MG subjects reported earlier may result from altered DAF expression. To test this hypothesis, we screened the DAF gene sequences relevant to the classical complement pathway and found an association between myasthenics with EOM paresis and the DAF regulatory region c.-198C>G SNP (odds ratio=8.6; P=0.0003). This single nucleotide polymorphism (SNP) results in a twofold activation of a DAF 5'-flanking region luciferase reporter transfected into three different cell lines. Direct matching of the surrounding SNP sequence within the DAF regulatory region with the known transcription factor-binding sites suggests a loss of an Sp1-binding site. This was supported by the observation that the c.-198C>G SNP did not show the normal lipopolysaccharide-induced DAF transcriptional upregulation in lymphoblasts from four patients. Our findings suggest that at critical periods during autoimmune MG, this SNP may result in inadequate DAF upregulation with consequent complement-mediated EOM damage. Susceptible individuals may benefit from anti-complement therapy in addition to immunosuppression.

  1. Study of crotoxin on the induction of paralysis in extraocular muscle in animal model Estudo da crotoxina na indução de paralisia da musculatura extraocular em modelo animal

    Directory of Open Access Journals (Sweden)

    Geraldo de Barros Ribeiro

    2012-10-01

    Full Text Available PURPOSE: Crotoxin is the major toxin of the venom of the South American rattlesnake Crotalus durissus terrificus, capable of causing a blockade of the neurotransmitters at the neuromuscular junction. The objective of this study was to appraise the action and effectiveness of the crotoxin induced paralysis of the extraocular muscle and to compare its effects with the botulinum toxin type A (BT-A. METHODS: The crotoxin, with LD50 of 1.5 µg, was injected into the superior rectus muscle in ten New Zealand rabbits. The concentration variance was 0.015 up to 150 µg. Two rabbits received 2 units of botulinum toxin type A for comparative analysis. The evaluation of the paralysis was performed using serial electromyography. After the functional recovery of the muscles, which occurred after two months, six rabbits were sacrificed for anatomopathology study. RESULTS: The animals did not show any evidence of systemic toxicity. Transitory ptosis was observed in almost every animal and remained up to fourteen days. These toxins caused immediate blockade of the electrical potentials. The recovery was gradual in the average of one month with regeneration signs evident on the electromyography. The paralysis effect of the crotoxin on the muscle was proportional to its concentration. The changes with 1.5 µg crotoxin were similar to those produced by the botulinum toxin type A. The histopathology findings were localized to the site of the injection. No signs of muscle fiber's necrosis were seen in any sample. The alterations induced by crotoxin were also proportional to the concentration and similar to botulinum toxin type A in concentration of 1.5 µg. CONCLUSION: Crotoxin was able to induce transitory paralysis of the superior rectus muscle. This effect was characterized by reduction of action potentials and non-specific signs of fibrillation. Crotoxin, in concentration of 1.5 µg was able to induce similar effects as botulinum toxin type A.OBJETIVO: A

  2. Autologous grafting of extraocular muscles: experimental study in rabbits Transplante autólogo de musculatura ocular extrínseca: estudo experimental em coelhos

    Directory of Open Access Journals (Sweden)

    Jorge Meireles-Teixeira

    2005-06-01

    Full Text Available PURPOSE: To evaluate the feasibility of autologous extraocular muscle grafting as a type of muscle expansion surgery. METHODS: The left superior rectus muscle of twenty-nine rabbits was resected and this fragment was attached to the endpoint of the respective right superior rectus (test group. Thereafter, the superior rectus of the left eye was reattached to the sclera (control group. Both groups were examined during different postoperative periods in order to assess their outcomes. RESULTS: The presence of hyperemia was slightly more frequent in the grafted group. Secretion and muscle atrophy were negligible in both groups. Fibrosis was greater in grafted animals. These muscles were weaker than the control muscles, although the force required to split muscular parts was always greater than the physiological one. CONCLUSIONS: This surgical technique was reliable and useful if one intends to achieve muscle expansion without the intrinsic risks of dealing with heterologous/artificial materials.OBJETIVO: Avaliar a viabilidade do uso de segmentos de músculos oculares extrínsecos como expansores de tendões musculares. MÉTODOS: Vinte e nove coelhos tiveram seu músculo reto superior esquerdo ressecado e o fragmento de cada um foi transplantado para o reto superior contralateral (grupo-teste. Então, o reto superior esquerdo foi reinserido na esclera (grupo-controle. Os animais foram então examinados em diversos períodos pós-operatórios, até os seus sacrifícios, para que se avaliasse o desenrolar dessa técnica cirúrgica. RESULTADOS: A hiperemia foi maior entre os testes. A secreção e a atrofia muscular foram mínimas nos dois grupos. Houve maior presença de fibrose no grupo-teste, mas não tão expressiva a ponto de inviabilizar os efeitos da cirurgia. Esses músculos também se romperam mais facilmente do que os do grupo-controle, porém, a força de rompimento foi sempre bem maior do que aquela presente numa contração muscular normal

  3. Susceptible mechanisms of extraocular muscles in the passive transferred experimental myasthenia gravis rats%重症肌无力被动转移大鼠模型眼外肌的易感机制研究

    Institute of Scientific and Technical Information of China (English)

    刘睿; 王桂平; 杜婴; 周琼; 苗建亭; 李柱一

    2012-01-01

    目的 探讨眼外肌在重症肌无力发病过程中的易感机制.方法 给予SD大鼠腹腔注射mAb35建立重症肌无力被动转移(PTMG)大鼠模型,对照组大鼠注射等量生理盐水.选取PTMG组和对照组大鼠眼外肌、膈肌、胫前肌3种骨骼肌组织.采用乙酰胆碱酯酶(AChE)染色法观察神经肌肉接头(NMJ)并检测NMJ面积和灰度;采用银环蛇毒免疫组化法检测乙酰胆碱受体( AChR)数量;采用电镜观察NMJ超微结构和其AChR情况,并分析比较神经末端面积和突触后膜面积的比值以及突触前后膜长度的比值.结果 AChE染色结果显示,对照组眼外肌NMJ面积相对其他两种骨骼肌更小(P<0.01),PTMG组眼外肌与其他两种骨骼肌NMJ面积比较无统计学差异(P>0.05).银环蛇毒免疫组化结果显示,PTMG组和对照组眼外肌与其它两种骨骼肌间AChR灰度值比较均有统计学差异(P<0.01).电镜观察结果显示,PTMG组3种骨骼肌突触前后膜长度比值均较对照组下降(P<0.01),神经末端面积与突触后膜面积比值较对照组增加(P<0.01),其中眼外肌的变化较其他骨骼肌更为显著.结论 PTMG大鼠模型眼外肌易感机制可能与眼外肌和其他骨骼肌间NMJ面积、AChR数量差异造成眼外肌NMJ安全系数较低有关.%Objective To investigate the susceptible mechanisms of extraocular muscles in passive transferred experimental myasthenia gravis ( PTMG) rats. Methods PTMG model was induced by intraperitoneally injection of purified monoclonal antibody 35. The control group were intraperitoneally injected with normal saline. The extraocular muscles, diaphragms and tibial front muscles in the PTMG group and control group were dissected. Acetylcholinesterase staining, which showed neuromuscular junctions, and alpha bungarotoxin immunohistochemical reaction, which showed acetylcholine receptors (AChR) were used. Neuromuscular junction (NMJ) ultrastructure was observed by transmission

  4. [Antisynthetase syndrome without muscle involvement].

    Science.gov (United States)

    Júdez Navarro, Enrique; Martínez Carretero, Myriam; Martínez Jiménez, Gonzalo Fidel

    2007-11-01

    Antisynthetase syndrome is a well defined syndrome characterized by the presence of interstitial lung disease in association with arthritis, miositis, mechanic's hands and Ruynaud's phenomenon in the presence of antisynthetase antibodies, especially Ac anti-Jo1. We described the case of a 68-year-old man with this syndrome in the absence of inflammatory muscle disease.

  5. 先天性眼外肌纤维化一家系临床分析及手术治疗%Clinical features and surgical treatment on a family with congenital fibrosis of the extraocular muscles

    Institute of Scientific and Technical Information of China (English)

    张剑飞; 王亚丽; 陈静; 乔珊丽

    2014-01-01

    AIM: To investigate the clinical characteristics, surgical outcome and curative effect of congenital fibrosis of the extraocular muscles ( CFEOM) . METHODS: The eye exam of members in a Chinese family with CFEOM includes visual acuity, intraocular pressure, dilated fundus exam, extraocular muscle function test, orbital CT scan, and ultrasound. We did extraocular muscle surgery or frontalis suspension procedure for affected subjects in the family. RESULTS: The incidence of CFEOM in this family was 31%. All patients were affected bilateraly with symptom of congenital eye movement disorder, ptosis, hypotropia, perverted convergence on upgaze and chin up head position. As the age grows, the diseases worsen unobviously. No other systemic disorder was found. Surgical treatment improved the anomalous head position although the ocular movement disorder preserved. CONCLUSION: The pattern of inheritance in our serial patients are autosomal dominant. Surgery can improve chin up head position and cosmetic appearance. However, the eye movement deficiency cannot be improved.%目的:探讨家族性先天性眼外肌纤维化的临床特点、手术治疗方法及疗效。  方法:对先天性眼外肌纤维化家系成员进行眼部的各项检查,包括:视力、眼压、眼底、眼外肌功能、眼眶CT、双眼B超等检查,并对部分患者行斜视矫正术及额肌悬吊术。  结果:该家系眼外肌纤维化发病率为31%。该家系各患者均双眼受累,自幼表现为眼球运动障碍、上睑下垂,眼球位于下转位,向正前方注视时伴有异常辐辏,向前注视抬下颌。随年龄增长病情加重不明显。其他全身系统器官未见异常。经手术治疗,下颌上抬及外观可获得明显改善,眼球运动改善不明显。  结论:该家系具有常染色体显性遗传特征。通过手术治疗可改善头位及外观。眼球运动无明显改善。

  6. 80例以复视为首发症状的眼外肌麻痹病因分析%Analysis of 80 cases of extraocular muscles paralysis with diplopia

    Institute of Scientific and Technical Information of China (English)

    李彬

    2014-01-01

    目的:探讨以复视为首发症状的眼肌麻痹患者的临床特征、鉴别诊断,探讨其病因及发病机制。方法回顾分析2008至2013年我院神经内科收治以复视症状为主症的眼肌麻痹患者80例,根据病史、详细的查体和眼部检查,分析其发病原因。结果80例病例中,糖尿病性眼肌麻痹24例(动眼神经麻痹16例,外展神经麻痹6例,合并动眼神经、外展神经麻痹2例),脑血管病20例,动脉粥样硬化性动眼神经、外展神经麻痹18例,颅内动脉瘤者10例,重症肌无力眼肌型2例,躯体形式障碍1例,颅内肿瘤2例,多发性硬化1例,神经梅毒1例,脑干脑炎1例。结论很多神经系统疾病可引起复视的神经眼科体征,其中糖尿病性眼肌麻痹为最主要病因,脑血管病、动脉瘤眼肌麻痹、动脉粥样硬化也是重要原因,其他还有重症肌无力(眼肌型)、躯体形式障碍、颅内占位等。以复视为首发症状的急性眼外肌麻痹病因复杂,容易误诊,临床医生应高度重视,明确诊断,以达到正确治疗。%Objective To evaluate clinical features of extraocular muscles paralysis that initially presented with di -plopia.Methods Eighty cases with extraocular muscles paralysis were analyzed for causes of disease by reviewing medical history, a thorough physical examination and a complete eye examination .The clinical features were studied .Results Twenty-four patients with extraocular muscles paralysis were caused by diabetes , including oculomotor nerve paralysis ( 16 cases), abducent nerve paralysis (6 cases), and combination of oculomotor nerve and abducent nerve paralysis (2 cases). Twenty cases were caused by cerebrovascular diseases , and 18 cases were caused by arteriosclerosis resulted oculomotor and abducent nerve paralysis .Ten cases were caused by intracranial aneurysms ,two cases by myasthenia gravis ,one case by so-matization disorder ,two by

  7. 带状疱疹并发眼外肌麻痹11例临床分析%Analysis of 11 cases of herpes zoster complicated by extraocular muscles paralysis

    Institute of Scientific and Technical Information of China (English)

    杨晓鸥

    2012-01-01

    11例带状疱疹并发眼外肌麻痹患者均表现为眼睑及周围皮肤带状疱疹,疹后14天~2个月出现复视、斜视,持续4周~2个月.早期眼部外用、严重者系统应用糖皮质激素治疗可防止眼部后遗症的发生.%Eleven cases of herpes zoster complicated by extraocular muscles paralysis were reported. All cases presented herpes zoster of eyelids and nearby skin. Ten days to two months after the onset of herpes zoster, diplopia and esotropia occurred and lasted for 4 weeks to 2 months. Early application of glucocorticoids can prevent the occurrence of ocular sequelae.

  8. Differential expression of genes involved in the calcium homeostasis in masticatory muscles of MDX mice.

    Science.gov (United States)

    Kunert-Keil, C H; Gredes, T; Lucke, S; Botzenhart, U; Dominiak, M; Gedrange, T

    2014-04-01

    Duchenne Muscular Dystrophy (DMD) and its murine model, mdx, are characterized by Ca(2+) induced muscle damage and muscle weakness followed by distorted dentofacial morphology. In both, DMD patients and in mdx mice, could be proven so far that only the extraocular muscles (EOM) are not affected by muscular dystrophy. The EOMs are protected against calcium overload by enhanced expression of genes involved in the Ca(2+) homeostasis. We could recently demonstrate that masticatory muscles of mdx mice are differentially affected by muscle dystrophy. The dystrophic masseter and temporalis shows muscle histology comparable to all other skeletal muscles in this animal model, whereas dystrophic tongue muscles seem to develop a milder phenotype. Due to this fact it is to hypothesize that an altered Ca(2+) homeostasis seems to underlie the mdx masticatory muscle pathology. Aim of this study was to examine the mRNA and protein levels of the sarcoplasmic reticulum Ca(2+) ATPases SERCA1 and SERCA2, the plasma membrane Ca(2+) ATPases Atp2b1 and Atp2b4, the sodium/calcium exchanger NCX1, the ryanodine receptor 1, parvalbumin, sarcolipin, phospholamban and the L-type Ca(2+) channel alpha-1 subunit (Cacna1s) in Musculus masseter, temporalis, and tongue of 100 day old control and mdx mice. In mdx masseter muscle significant increased mRNA levels of NCX1 and Cacna1s were found compared to control mice. In contrast, the mRNA amount of RYR1 was significant reduced in mdx temporalis muscle, whereas ATP2b4 was significant increased. In mdx tongue a down-regulation of the ATP2b1, sarcolipin and parvalbumin mRNA expression was found, whereas the phospholamban mRNA level was significantly increased compared to controls. These data were verified by western blot analyses. Our findings revealed that mdx masticatory muscles showed an unequally altered expression of genes involved in the Ca(2+) homeostasis that can support the differences in masticatory muscles response to dystrophin deficiency.

  9. Human Brain Reacts to Transcranial Extraocular Light.

    Science.gov (United States)

    Sun, Lihua; Peräkylä, Jari; Kovalainen, Anselmi; Ogawa, Keith H; Karhunen, Pekka J; Hartikainen, Kaisa M

    2016-01-01

    Transcranial extraocular light affects the brains of birds and modulates their seasonal changes in physiology and behavior. However, whether the human brain is sensitive to extraocular light is unknown. To test whether extraocular light has any effect on human brain functioning, we measured brain electrophysiology of 18 young healthy subjects using event-related potentials while they performed a visual attention task embedded with emotional distractors. Extraocular light delivered via ear canals abolished normal emotional modulation of attention related brain responses. With no extraocular light delivered, emotional distractors reduced centro-parietal P300 amplitude compared to neutral distractors. This phenomenon disappeared with extraocular light delivery. Extraocular light delivered through the ear canals was shown to penetrate at the base of the scull of a cadaver. Thus, we have shown that extraocular light impacts human brain functioning calling for further research on the mechanisms of action of light on the human brain.

  10. Original hydroxyapatite orbital implant covered with small autoscleral flap with extraocular rectus muscles orbital implantation%直肌及其止端处小巩膜瓣下义眼台植入术研究

    Institute of Scientific and Technical Information of China (English)

    景明; 孙琰; 周哲; 高玉; 马戈; 葛茸茸; 王传星; 蔡金辉

    2015-01-01

    目的 观察自创的带直肌止点处小巩膜瓣下羟基磷灰石(HA)义眼台植入术的临床效果.方法 用自创方法行义眼台植入术296例(296只眼),随机对其中32例(32只眼)进行眼眶增强MRI检查以观察术后1周、1、2、3、4、5、6及18个月义眼台血管化进程.结果 所有病例随访1 ~18个月,义眼台活动良好,无义眼台外露发生.增强MRI检查显示义眼台于术后1个月即完全血管化,随着时间进展,血管化密度逐渐增大.结论 作者自创的带直肌止点区域小巩膜瓣下HA义眼台植入术,彻底解决了HA义眼台植入术外露的问题,促进义眼台血管化的优势明显,具有良好的使用前景.%Objective To observe the clinical efficacy of orbital implantation with original hydroxyapatite (HA) orbital implant covered with small autoscleral flap at extraocular rectus muscles insertions area which was designed by the author.Methods Thirty-two cases were randomly selected from a total of 296 patients who were treated with the original hydroxyapatite implantation method.Serial precontrast and postcontrast T1-weighted magnetic resonance imaging (MRI) were obtained at 1 week,1,2,3,4,5,6 and 18 months after implantation to assess the fibrovascularization of HA orbital implants.Results Patients were followed up for 1to18 months.In all cases HAs were fixed to orbit and moved well.There was no complication of prostheses exposure.Contrast-enhanced MRI showed the HA spheres had achieved complete vascularization 1 month after implantation.The vascularization density increased with time.Conclusion The author' s original hydroxyapatite orbital implantation covered with small autoscleral flap with extraocular rectus muscles method completely solves the problem of prostheses exposure complication and its advantage of promoting the fibrovascularization is obvious.The application prospect is good.

  11. Severe paraspinal muscle involvement in facioscapulohumeral muscular dystrophy

    DEFF Research Database (Denmark)

    Dahlqvist, Julia R; Vissing, Christoffer R; Thomsen, Carsten;

    2014-01-01

    OBJECTIVE: In this study, involvement of paraspinal muscles in 50 patients with facioscapulohumeral dystrophy (FSHD) was evaluated using MRI. METHODS: The Dixon MRI technique was used in this observational study to quantify muscle fat content of paraspinal and leg muscles. Muscle strength in the ...

  12. Muscle involvement in juvenile idiopathic arthritis.

    Science.gov (United States)

    Lindehammar, H; Lindvall, B

    2004-12-01

    An observational study of changes in muscle structure and the relation to muscle strength in juvenile idiopathic arthritis (JIA). Fifteen children and teenagers (eight girls and seven boys) with JIA, aged 9-19 yr (mean age 16.1), were studied. Muscle biopsies were obtained from the anterior tibial muscle and were examined using histopathological and immunohistochemical methods. Muscle fibre types were classified and fibre areas measured. As markers of inflammation, the major histocompatibility complex (MHC) class I and class II and the membrane attack complex (MAC) were analysed. Results were compared with biopsies from the gastrocnemius muscle in 33 young (19-23 yr) healthy controls. Isometric and isokinetic muscle strengths were measured in ankle dorsiflexion. Strength was compared with reference values for healthy age-matched controls. Nerve conduction velocities were recorded in the peroneal and sural nerves. Four of the 15 muscle biopsies were morphologically normal. Eleven biopsies showed minor unspecific changes. Two of these also showed minor signs of inflammation. MHC class II expression was found in 4/15 patients, which was significantly more than in the healthy controls (P = 0.0143). The expression of MHC class I and MAC did not differ from that in the controls. The mean area of type I fibres was lower than that of type IIA fibres in 12/13 biopsies. Muscle strength was significantly reduced in the patient group. There was a significant positive correlation between muscle fibre area and muscle strength. Nerve conduction studies were normal in all cases. Changes in leg muscle biopsies appear to be common in children and teenagers with JIA. The presence of inflammatory cells in the muscle and expression of MHC class II on muscle fibres may be a sign of inflammatory myopathy. There are no findings of type II muscle fibre hypotrophy or neuropathy, as in adults with RA.

  13. Study of extraocular muscle with direct injection of insulin-like growth factorⅠ%胰岛素样生长因子局部注射对眼外肌作用的实验研究

    Institute of Scientific and Technical Information of China (English)

    余新平; 许金玲; 陈洁; 黄盈; 余焕云; 张芳; 高军

    2010-01-01

    Objective To evaluate the effects on muscle mass and force generation of IGF-I injection in adult rabbit superior rectus muscle. Methods One superior rectus muscle in normal adult rabbits received a single injection of 10ug (0.05ml) IGF-I, and the contralateral muscle received an injection of 0.05ml saline only. One week after injection, muscle force and muscle morphology were studied both in IGF treated and control muscles. Results In the treated muscles, the mean single-twitch force generation was 2.4515+1.1019mN compared with 1.1511+0.6755mN (t =2.58, P =0.049) in control muscles. Mean titanic force generation was increased significantly at all stimulation frequencies. The cross-sectional area of muscles was 10.04+2.52mm2 compared with 7.79+1.85 mm2 (t =2.84, P =0.047) in control. The frequency of activated satellite cells was 30.63+6.76% compared with 17.07+5.36% in control (t =8.73, P =0.000). Conclusions Direct injection of IGF-I effectively increase extraocular muscle force generation with increased number of activated satellite cells.%目的 探讨局部注射胰岛素样生长因子(insulin-like growth factor-Ⅰ,IGF-Ⅰ)对成年兔眼外肌的作用及机制.方法 7只成年新西兰大白兔,双眼上直肌随机注射0.05ml(10靏)IGF-Ⅰ或0.05ml生理盐水,1周后肌肉张力换能器检测上直肌肌肉力量,获取上直肌行组织学检查.结果 实验组上直肌单刺激收缩力为(2.4515±1.1019)mN,对照组上直肌为(1.1511±0.6755)mN,差异有统计学意义(t =2.58,P =0.049),实验组上直肌各刺激频率的强直收缩力比对照组明显更大,均有显著性差别.实验组单位重量肌肉的收缩力比对照组更大,各刺激频率均有显著性差异.实验组上直肌横截面面积为(10.04±2.52)mm2较对照组(7.79±1.85) mm2明显更大,差异有统计学意义(t =2.84,P =0.047);实验组上直肌中活化的卫星细胞为(30.63±6.76)%,比对照组(17.07±5.36)%显著更高(t =8.73,P =0.000).结论 成年动物

  14. Eye muscle repair - discharge

    Science.gov (United States)

    ... Lazy eye repair - discharge; Strabismus repair - discharge; Extraocular muscle surgery - discharge ... You or your child had eye muscle repair surgery to correct eye muscle ... term for crossed eyes is strabismus. Children most often ...

  15. Histotopographical study of human periocular elastic fibers using aldehyde-fuchsin staining with special reference to the sleeve and pulley system for extraocular rectus muscles.

    Science.gov (United States)

    Osanai, Hajime; Murakami, Gen; Ohtsuka, Aiji; Suzuki, Daisuke; Nakagawa, Takashi; Tatsumi, Haruyuki

    2009-09-01

    The aim of this study was to investigate the detailed configuration of periocular elastic fibers. Semiserial paraffin sections were made using 40 whole orbital contents from 27 elderly cadavers and stained by the aldehyde-fuchsin method. Periocular tissues were classified into three types according to directions of the elastic fibers, i.e., tissues containing anteroposteriorly running elastic fibers, those with mediolateral fibers, and those with meshwork of fibers. Anteroposterior elastic fiber-dominant tissue was seen in the upper eyelid and newly defined pulley plate for the medial and lateral recti (MR, LR). Mediolateral fibers were predominant in the central part of the inferior rectus pulley. In the pulley plates for the MR and LR, anteroposteriorly running fibers encased the striated muscle. Tenon's capsule and the epimysium of the recti were mediolateral fiber-dominant. However, at the entrance of the muscle terminal where Tenon's capsule reflects and continues to the epimysium, composite elastic fibers provided a meshwork-like skeleton. The elastic mesh was also seen around the lacrimal canaliculi. The pulley for the recti seemed to be composed of two parts--a connective tissue plate encasing the recti and specialized Tenon's capsule at an entrance or porta of the muscle. For both parts, elastic fibers were major functional components. The anteroposterior elastic fibers in the MR and LR pulley plates, especially, seemed to receive anteroposteriorly directed stress and tension from these striated muscles. The elastic interfaces seemed to prevent any concentration of stress that would interfere with periocular striated muscle functions, including hypothetical active pulleys.

  16. 4D-visualization of the orbit based on dynamic MRI with special focus on the extra-ocular muscles and the optic nerves

    Energy Technology Data Exchange (ETDEWEB)

    Kober, C. [Univ. of Applied Sciences Osnabrueck (Germany); Boerner, B.I.; Buitrago, C.; Klarhoefer, M.; Scheffler, K.; Kunz, C.; Zeilhofer, H.F. [Univ. Hospital Basle (Switzerland)

    2007-06-15

    By recording time dependent patients' behaviour, dynamic radiology is dedicated to capturing functional anatomy. Dynamic 'quasi-continuous' MRI data of lateral eye movements of a healthy volunteer were acquired using SE imaging sequence (Siemens, 1.5 T). By means of combined application of several image processing and visualization techniques, namely shaded and transparent surface reconstruction as well as direct volume rendering, 4D-visualization of the dynamics of the extra ocular muscles was possible. Though the original MRI data were quite coarse vascular structures could be recognized to some extent. For the sake of 4D-visualization of the optic nerve, the optic cavity was opened by axial clipping of the visualization. Superimposition of the original MRI slices to the visualization, either transparently or opaque, served as validation and comparison to conventional diagnosis. For facilitation of the analysis of the visualization results, stereoscopic rendering was rated as quite significant especially in the clinical setting. (orig.)

  17. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  18. MRI findings of muscle involvement in idiopathic hypereosinophilic syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hundt, W.; Staebler, A.; Reiser, M. [Department of Diagnostic Radiology, Klinikum Grosshadern, Muenchen (Germany)

    1999-04-01

    A 40-year-old white man presented with fever, muscle pain, skin nodules and persistent hypereosinophilia over a period of 1 year. In addition, he had ventricular arrhythmias with episodes of tachycardia. Besides a lack of response to antiparasitic therapy, laboratory and pathological data excluded the diagnosis of trichinosis or any other parasitic infection. The patient`s course of the disease over the previous 1{sup 1}/{sub 2} years was compatible with hypereosinophilic syndrome. In a muscle biopsy several eosinophilic perivascular and leucocytic intravascular infiltrates were found, indicative of muscle involvement by the disease. This is a report on the MRI findings of muscle involvement in idiopathic hypereosinophilic syndrome. (orig.) With 3 figs., 25 refs.

  19. Palisade endings of extraocular muscles in eyes with congenital nystagmus%先天性眼球震颤眼外肌栅栏状终末结构的研究

    Institute of Scientific and Technical Information of China (English)

    尚艳峰; 张静; 宫华青; 陈霞

    2012-01-01

    Objective To evaluate the morphology,distribution and function of palisade endings (PE) in human extraocular muscles (EOM),and observe the alterations in eyes with congenital nystagmus (CN).The etiology and pathogenesis of CN were also investigated.Methods It was a experimental study.The distal myotendinous junctions of the EOM were obtained during operation for CN ( CN group) and concomitant strabismus ( control group). The samples from patients with similar age and same extraction sites in the two groups were compared.The muscles cut during operation were immediately put into 4% glutaraldehyde fixative solution.And 1 - 2 transverse bands of tissue were cut every 1 mm from tendon insertion for specimens processing.The ultrastructure of EOM and PE in the two groups was observed by transmission electron microscopy. The distal parts of EOM cut during operation were put into 4% paraformaldehyde promptly.Myotendinous junction region whole mounts were labeled with antibodies against choline acetyltransferase (ChAT).Muscle fibers were counterstained with phalloidin.And longitudinal and transverse cryostat serial sections were cut at 25 μm and analyzed by confocal laser scanning microscopy.The ChAT expression,morphology and distribution of PE were observed.The same fragment of myotendinous junction in the two groups was selected.After the total protein was extracted,ChAT was detected by western blot.The expression level of ChAT was analyzed.Results Compared with the controls,the ultrastructure in the CN group had considerable variations.The axon of PE was swelled and deformed partly.The electron density was increased and presented as addicted to osmic acid. In the muscle cells,mitochondria was swelled,and sarcoplasmic reticulum was dilated.All PE exhibited ChAT immunoreactivity in human EOM.In the longitudinal section,nerve fibers extended from the muscle into the tendon,looped back and divided into several terminal arborizations (palisade endings) around the muscle

  20. Delayed onset muscle soreness: Involvement of neurotrophic factors.

    Science.gov (United States)

    Mizumura, Kazue; Taguchi, Toru

    2016-01-01

    Delayed-onset muscle soreness (DOMS) is quite a common consequence of unaccustomed strenuous exercise, especially exercise containing eccentric contraction (lengthening contraction, LC). Its typical sign is mechanical hyperalgesia (tenderness and movement related pain). Its cause has been commonly believed to be micro-damage of the muscle and subsequent inflammation. Here we present a brief historical overview of the damage-inflammation theory followed by a discussion of our new findings. Different from previous observations, we have observed mechanical hyperalgesia in rats 1-3 days after LC without any apparent microscopic damage of the muscle or signs of inflammation. With our model we have found that two pathways are involved in inducing mechanical hyperalgesia after LC: activation of the B2 bradykinin receptor-nerve growth factor (NGF) pathway and activation of the COX-2-glial cell line-derived neurotrophic factor (GDNF) pathway. These neurotrophic factors were produced by muscle fibers and/or satellite cells. This means that muscle fiber damage is not essential, although it is sufficient, for induction of DOMS, instead, NGF and GDNF produced by muscle fibers/satellite cells play crucial roles in DOMS.

  1. 21 CFR 886.3340 - Extraocular orbital implant.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extraocular orbital implant. 886.3340 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3340 Extraocular orbital implant. (a) Identification. An extraocular orbital implant is a nonabsorbable device intended to be implanted during...

  2. Restrictive extraocular myopathy: A presenting feature of acromegaly

    Directory of Open Access Journals (Sweden)

    Steven Heireman

    2011-01-01

    Full Text Available A 45-year-old man presented with binocular diplopia in primary gaze for 1 year. Orthoptic evaluation showed 10-prism diopter right eye hypotropia and 6-prism diopter right eye esotropia. The elevation and abduction of the right eye were mechanically restricted. This was associated with systemic features suggestive of acromegaly. Magnetic resonance imaging (MRI of the brain demonstrated a pituitary macroadenoma. An elevated serum insulin-like growth factor I level and the failure of growth hormone suppression after an oral glucose load biochemically confirmed the diagnosis of acromegaly. Computed tomography (CT of the orbit demonstrated bilateral symmetrical enlargement of the medial rectus and inferior rectus muscle bellies. All tests regarding Graves-Basedow disease were negative. Although rare, diplopia due to a restrictive extraocular myopathy could be the presenting symptom of acromegaly.

  3. Inferior oblique muscle paresis as a sign of myasthenia gravis.

    Science.gov (United States)

    Almog, Yehoshua; Ben-David, Merav; Nemet, Arie Y

    2016-03-01

    Myasthenia gravis may affect any of the six extra-ocular muscles, masquerading as any type of ocular motor pathology. The frequency of involvement of each muscle is not well established in the medical literature. This study was designed to determine whether a specific muscle or combination of muscles tends to be predominantly affected. This retrospective review included 30 patients with a clinical diagnosis of myasthenia gravis who had extra-ocular muscle involvement with diplopia at presentation. The diagnosis was confirmed by at least one of the following tests: Tensilon test, acetylcholine receptor antibodies, thymoma on chest CT scan, or suggestive electromyography. Frequency of involvement of each muscle in this cohort was inferior oblique 19 (63.3%), lateral rectus nine (30%), superior rectus four (13.3%), inferior rectus six (20%), medial rectus four (13.3%), and superior oblique three (10%). The inferior oblique was involved more often than any other muscle (pmyasthenia gravis can be difficult, because the disease may mimic every pupil-sparing pattern of ocular misalignment. In addition diplopia caused by paresis of the inferior oblique muscle is rarely encountered (other than as a part of oculomotor nerve palsy). Hence, when a patient presents with vertical diplopia resulting from an isolated inferior oblique palsy, myasthenic etiology should be highly suspected.

  4. A study of the pathological changes and expression of the hepatocyte growth factor in the extraocular muscle in concomitant strabismus%共同性斜视眼外肌的病理变化及肝细胞生长因子表达研究

    Institute of Scientific and Technical Information of China (English)

    罗琪; 周炼红; 易贝茜; 叶美红; 徐永红

    2015-01-01

    目的:研究共同性斜视弱侧眼外肌的病理变化及肝细胞生长因子(HGF)的表达。方法实验研究。收集在武汉大学人民医院眼科行共同性斜视手术的58例患者手术中切下的眼外肌作为斜视组,将其分成共同性外斜视(32例)和共同性内斜视(26例)2组,同期10例角膜移植供体眼眼外肌作为对照组(供体均无斜视)。观察眼外肌的组织结构变化,用免疫组织化学法检测眼外肌中HGF的表达,并测定其平均光密度值。比较斜视组与对照组眼外肌HGF的表达差异,并分析其与斜视度、患者年龄之间相关性。所得数据采用t检验及直线相关分析进行统计学处理。结果①共同性外斜视组内直肌肌纤维横截面积(308.9±68.4)μm2,显著低于对照组内直肌[(738.4±56.3)μm2](t=16.74,P<0.05),共同性内斜视组外直肌肌纤维横截面积(217.9±34.7)μm2,显著低于对照组外直肌[(620.9±46.5)μm2](t=28.34,P<0.05),差异有统计学意义。②Masson染色显示共同性斜视弱侧眼外肌肌纤维数量减少,排列紊乱,胶原纤维含量增多,纤维组织、脂肪组织和肌纤维间隙增宽。③免疫组化检测HGF在对照眼眼外肌及斜视眼弱侧眼外肌中均有阳性表达,主要表达于胞浆,细胞外基质中有少量的表达。其中共同性外斜视组内直肌(t=6.33,P<0.05)、共同性内斜视组外直肌(t=4.75,P<0.05)HGF的表达均低于对照组。④HGF的表达与患者病程(r=-0.856,P<0.05)以及斜视度(r=-0.525,P<0.05)呈负相关。结论共同性斜视弱侧眼外肌出现胶原纤维增生,肌纤维横截面积减小等萎缩性病理改变;HGF的低表达可能是共同性斜视发生的危险因素。%Objective To study the pathomorphological changes and expression of hepatocyte growth factor (HGF) in the extraocular muscle in concomitant strabismus

  5. Dopamine receptors in the substantia nigra are involved in the regulation of muscle tone.

    OpenAIRE

    Double, K L; Crocker, A D

    1995-01-01

    The aim of the present study was to localize the dopamine receptors involved in the regulation of muscle tone. A strategy was used whereby the effects on muscle tone of injecting the irreversible dopamine receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) in discrete brain regions were assessed. Increases in muscle tone were measured as changes in electromyographic activity of the gastrocnemius and tibialis muscles of conscious, unrestrained rats. No increases in muscle...

  6. MicroRNAs Involved in Skeletal Muscle Differentiation

    Institute of Scientific and Technical Information of China (English)

    Wen Luo; Qinghua Nie; Xiquan Zhang

    2013-01-01

    MicroRNAs (miRNAs) negatively regulate gene expression by promoting degradation of target mRNAs or inhibiting their translation.Previous studies have expanded our understanding that miRNAs play an important role in myogenesis and have a big impact on muscle mass,muscle fiber type and muscle-related diseases.The muscle-specific miRNAs,miR-206,miR-1 and miR-133,are among the most studied and best characterized miRNAs in skeletal muscle differentiation.They have a profound influence on multiple muscle differentiation processes,such as alternative splicing,DNA synthesis,and cell apoptosis.Many non-muscle-specific miRNAs are also required for the differentiation of muscle through interaction with myogenic factors.Studying the regulatory mechanisms of these miRNAs in muscle differentiation will extend our knowledge of miRNAs in muscle biology and will improve our understanding of the myogenesis regulation.

  7. Characteristic MRI Findings of upper Limb Muscle Involvement in Myotonic Dystrophy Type 1.

    Directory of Open Access Journals (Sweden)

    Kazuma Sugie

    Full Text Available The objective of our study was to evaluate the relation between muscle MRI findings and upper limb weakness with grip myotonia in patients with myotonic dystrophy type 1 (DM1. Seventeen patients with DM1 were evaluated by manual muscle strength testing and muscle MRI of the upper limbs. Many DM1 patients presenting with decreased grasping power frequently showed high intensity signals in the flexor digitorum profundus (FDP muscles on T1-weighted imaging. Patients presenting with upper limb weakness frequently also showed high intensity signals in the flexor pollicis longus, abductor pollicis longus, and extensor pollicis muscles. Disturbances of the distal muscles of the upper limbs were predominant in all DM1 patients. Some DM1 patients with a prolonged disease duration showed involvement of not only distal muscles but also proximal muscles in the upper limbs. Muscle involvement of the upper limbs on MRI strongly correlated positively with the disease duration or the numbers of CTG repeats. To our knowledge, this is the first study to provide a detailed description of the distribution and severity of affected muscles of the upper limbs on MRI in patients with DM1. We conclude that muscle MRI findings are very useful for identifying affected muscles and predicting the risk of muscle weakness in the upper limbs of DM1 patients.

  8. [Inflammatory myopathy with initial respiratory muscles involvement and rheumatoid arthritis].

    Science.gov (United States)

    Hunter, Martín; Telias, Irene; Collado, Victoria; Sarano, Judith; Alvarez, Clarisa; Suárez, Juan Pablo

    2014-01-01

    Inflammatory myopathies comprise a heterogeneous group of subacute, chronic and sometimes acute acquired muscle diseases. The most common inflammatory myopathies seen in practice can be separated into four distinct subsets: polymyositis, dermatomyositis, necrotizing autoimmune myositis and inclusion body myositis. These disorders present as proximal and symmetric muscle weakness but rarely respiratory muscles may also be affected. We report the case of a 39 year-old female with inflammatory myopathy with acute respiratory failure due to alveolar hypoventilation secondary to respiratory muscle dysfunction that required mechanical ventilation. The treatment with steroids, methotrexate and intravenous immune globulin was successful as well as the implementation of non-invasive ventilation as an alternative to endotracheal intubation.

  9. Muscle magnetic resonance imaging in spinal muscular atrophy type 3: Selective and progressive involvement.

    Science.gov (United States)

    Durmus, Hacer; Yilmaz, Ravza; Gulsen-Parman, Yesim; Oflazer-Serdaroglu, Piraye; Cuttini, Marina; Dursun, Memduh; Deymeer, Feza

    2017-05-01

    In this study we sought to identify magnetic resonance imaging (MRI) signs of selective muscle involvement and disease progression in patients with spinal muscular atrophy type 3b (SMA3b). Twenty-five patients with genetically confirmed SMA3b underwent MRI on a 1.5-Tesla MR scanner. MRI showed significantly more severe involvement of the iliopsoas than of the gluteus maximus muscles, and more severe involvement of the triceps brachii than of the biceps brachii muscles. The quadriceps femoris muscles were severely involved. The deltoid, adductor longus, portions of the hamstrings, gracilis, sartorius, and rectus abdominis muscles were well preserved. We found a significant positive correlation between MRI changes and disease duration for gluteus maximus and triceps brachii. Follow-up MRIs of 4 patients showed disease progression. This study confirms the pattern of selective muscle involvement suggested by previous studies and further refines muscle MRI changes in SMA3b. Progressive muscle involvement is implicated. Muscle Nerve 55: 651-656, 2017. © 2016 Wiley Periodicals, Inc.

  10. Presumed isotretinoin-induced extraocular myopathy

    Directory of Open Access Journals (Sweden)

    Md. Shahid Alam

    2016-01-01

    Full Text Available Isotretinoin a synthetic analogue of vitamin A is primarily used for cystic acne not responding to conventional treatment. Several ocular side effects including blurring of vision, decreased dark adaptation, corneal opacities and meibomian gland atrophy have been reported with prolonged use of isotretinoin. There have been reports of muscular damage caused by isotretinoin. Extra ocular myopathy as an adverse effect of long term used of isotretinoin has never been mentioned in literature. We report a case of a young male who presented to us with complaints of diplopia after using isotretinoin for a prolonged period. He was diagnosed as a case of presumed isotretinoin extraocular myopathy after imaging and other blood investigations.

  11. Muscle involvement in limb-girdle muscular dystrophy with GMPPB deficiency (LGMD2T)

    DEFF Research Database (Denmark)

    Østergaard, Sofie Thurø; Stojkovic, T; Dahlqvist, J R

    2016-01-01

    OBJECTIVE: In this study, muscle involvement assessed by MRI and levels of GMPPB and glycosylation of α-dystroglycan expression in muscle were examined in patients with limb-girdle muscular dystrophy (LGMD) type 2T. METHODS: Six new patients with genetically verified mutations in GMPPB were studied....... T1-weighted magnetic resonance images were obtained in 4 participants. Muscle strength and potential involvement of extramuscular organs were examined. Glycosylation of α-dystroglycan in muscle was studied, and GMPPB and α-dystroglycan expression was analyzed by Western blotting. Prevalence of LGMD2...

  12. Mitochondrial myopathy with respiratory muscle involvement: a case report

    Directory of Open Access Journals (Sweden)

    J. A. Levy

    1983-03-01

    Full Text Available A case of a 10-year-old patient with a benign congenital myopathy, suddenly aggravated because of an accentuated deficit in respiratory muscles is reported. The institution of assisted respiration at night allowed the patient to return to her daily activities. Examination of muscular biopsy with ultra-microscope permitted the diagnosis of mitochondrial myopathy.

  13. A Case Report of the Angiosarcoma Involving Epicranial Muscle and Fascia : Is the Occipitofrontalis Muscle Composed of Two Different Muscles?

    Science.gov (United States)

    Kim, Ho Kyun; Lee, Hui Joong

    2016-01-01

    The occipitofrontalis muscle is generally regarded as one muscle composed of two muscle bellies joined through the galea aponeurotica. However, two muscle bellies have different embryological origin, anatomical function and innervations. We report a case of angiosarcoma of the scalp in a 63-year-old man whose MR showed that the superficial fascia overlying the occipital belly becomes the temporoparietal fascia and ends at the superior end of the frontal belly. Beneath the superficial fascia, the occipital belly of the occipitofrontalis muscle becomes the galea aponeurotica and inserts into the underside of the frontal belly. The presented case report supported the concept of which the occipitofrontalis muscle appears to be composed of two anatomically different muscles.

  14. Involvement of the muscle-tendon junction in skeletal muscle atrophy: an ultrastructural study.

    Science.gov (United States)

    de Palma, L; Marinelli, M; Pavan, M; Bertoni-Freddari, C

    2011-01-01

    The muscle-tendon junction (MTJ) is a physiologically vital tissue interface and a highly specialized region in the muscle-tendon unit. It is the weakest point in the muscle-tendon unit, making it susceptible to strain injuries. Nonetheless, knowledge of the pathological changes affecting this region and of its response to the atrophy process is very limited. The aim of the study was to examine MTJ ultrastructural morphology in patients with different conditions that induce skeletal muscle atrophy and to attempt a grading of the atrophy process. Fifteen patients undergoing amputation in the distal or proximal third of the lower leg due to chronic or acute conditions were divided into two groups. Specimens of gastrocnemius muscle collected at the time of surgery were analyzed by histology and electron microscopy. The contact between muscle and tendon was measured using a dedicated software that calculated semi-automatically the base (B) and perimeter (P) of muscle cell finger-like processes at the MTJ. Electron microscopy. The cells in the atrophic muscle of the chronic group were shallow and bulky. In the acute group, the myotendinous endings differed significantly in their structure from those of the chronic group. In atrophic muscle, the contact between muscle and tendon was reduced by quantitative and qualitative changes in the myotendinous endings. The B/P ratio allowed definition of three grades of myotendinous ending degeneration. It is unclear whether degenerative changes induced by immobilization in muscle and, specifically, the MTJ are temporary and reversible or permanent. This preliminary study suggested a classification of ultrastructural MTJ changes into grade 0, reflecting a quite normal MTJ; grade 1, an intermediate process that might lead to irreversible atrophy or to recovery, spontaneously or with drug therapy; and grade 2, irreversible process with complete structural alteration.

  15. Pharmacomechanical coupling in smooth muscle may involve phosphatidylinositol metabolism.

    OpenAIRE

    Baron, C B; Cunningham, M.; Strauss, J F; Coburn, R F

    1984-01-01

    Cholinergic contraction of canine trachealis muscle, a contraction that primarily utilizes membrane potential-independent mechanisms for activating contractile proteins (pharmacomechanical coupling), is associated with a decline in the phosphatidylinositol pool, an increase in the phosphatidic acid and diacylglycerol pools, and an increased incorporation of 32PO4 into phosphatidylinositol. We found that these changes occur during development of the contraction and during maintenance of tensio...

  16. Pharmacomechanical coupling in smooth muscle may involve phosphatidylinositol metabolism.

    OpenAIRE

    Baron, C B; Cunningham, M; Strauss, J F; Coburn, R F

    1984-01-01

    Cholinergic contraction of canine trachealis muscle, a contraction that primarily utilizes membrane potential-independent mechanisms for activating contractile proteins (pharmacomechanical coupling), is associated with a decline in the phosphatidylinositol pool, an increase in the phosphatidic acid and diacylglycerol pools, and an increased incorporation of 32PO4 into phosphatidylinositol. We found that these changes occur during development of the contraction and during maintenance of tensio...

  17. Magnetic resonance imaging of congenital fibrosis of extraocular muscle associated with limb movement disorder in a family%伴有肢体运动障碍的先天性眼外肌纤维化综合征家系的影像学研究

    Institute of Scientific and Technical Information of China (English)

    周炼红; 李春义; 查云飞; 张俊涛; 刘甜

    2013-01-01

    Background Congenital fibrosis of extraocular muscles (CFEOM) affects patient' s appearance and quality of life,and no effective treatment for this disease is available.Imaging study is helpful for exploring the pathogenesis of CFEOM.Objective This study was to describe the characteristics of CFEOM associated with limb movement disorder using magnetic resonance imaging (MRI).Methods A family with CFEOM associated with limb movement disorder was investigated in Renmin Hospital of Wuhan University.Disease history was collected and the pedigree was investigated.Ophthalmologic examinations,including corrected visual acuity,refractive error,slitlamp examination,ophthalmoscopic examination,force of levator palpebrae superioris,ocular movement,eye position,forced duction test,and bell phenomenon examination,were performed.Ocular orbital and cranial MRI was performed in 4 CFEOM patients and 10 normal subjects to compare the structures of the extraocular muscles,motor nerve and cranium.Oral informed consent was obtained from each patient prior to any medical examination.Results A total of 1 1 members from 3 generations were investigated in this study,presenting with 4 cases of disease.The mode of inheritance of this family complied with the Mendelian autosomal dominant inheritance law.Clinical signs included disturbance of eye movement,deviation of eye position,ptosis,lack of Bell sign and positive reaction of passive pull test.In addition,unstable gait,improper body limb alignment,dysphasia and mental retardation were ohserved in 1 patient,which coincided with the diagnostic criteria of type 3 CFEOM.MRI results demonstrated that the levator palpebrae superioris,superior rectus and superior oblique muscle were clearly thinner,and the medial rectus,lateral rectus,inferior rectus muscle were thinning in the patients,showing significant differences in comparison with the normal controls(P<O.05).The oculomotor and abducens nerves became thinner and even absent in the patients

  18. Value of Free-Run Electromyographic Monitoring of Extraocular Cranial Nerves during Expanded Endonasal Surgery (EES) of the Skull Base.

    Science.gov (United States)

    Thirumala, Parthasarathy D; Mohanraj, Santhosh Kumar; Habeych, Miguel; Wichman, Kelley; Chang, Yue-Fang; Gardner, Paul; Snyderman, Carl; Crammond, Donald J; Balzer, Jeffrey

    2013-06-01

    Objective To evaluate the value of free-run electromyography (f-EMG) monitoring of extraocular cranial nerves (EOCN) III, IV, and VI during expanded endonasal surgery (EES) of the skull base in reducing iatrogenic cranial nerve (CN) deficits. Design We retrospectively identified 200 patients out of 990 who had at least one EOCN monitored during EES. We further separated patients into groups according to the specific CN monitored. In each CN group, we classified patients who had significant (SG) f-EMG activity as Group I and those who did not as Group II. Results A total of 696 EOCNs were monitored. The number of muscles supplied by EOCNs that had SG f-EMG activity was 88, including CN III = 46, CN IV = 21, and CN VI = 21. There were two deficits involving CN VI in patients who had SG f-EMG activity during surgery. There were 14 deficits observed, including CN III = 3, CN IV = 2, and CN VI = 9 in patients who did not have SG f-EMG activity during surgery. Conclusions f-EMG monitoring of EOCN during EES can be useful in identifying the location of the nerve. It seems to have limited value in predicting postoperative neurological deficits. Future studies to evaluate the EMG of EOCN during EES need to be done with both f-EMG and triggered EMG.

  19. [Patient of myofibrillar myopathy associated with muscle cramp and distal muscle involvement].

    Science.gov (United States)

    Okada, Yoichiro; Ayaki, Takashi; Matsumoto, Riki; Ito, Hidefumi; Takahashi, Ryosuke; Nakano, Satoshi

    2012-01-01

    A 53-year-old man presented mild, but gradually worsening, distal-dominant upper bilateral limbs weakness and muscle cramp in both legs from the age of 30. He had no obvious muscle atrophy during the course of the disease. Muscle biopsy of the right lateral vastus muscle showed myopathic changes with round or helical hyaline inclusions in eosinophilic on H&E staining and dark green on modified Gomori trichrome. There were also non-rimmed vacuoles. NADH-TR showed lack of enzymic activity in areas corresponding to the inclusions. Immunohistochemistry demonstrated abnormal accumulation of desmin and myotilin in fibers with inclusions. Given these pathological findings, he was diagnosed with myofibrillar myopathy (MFM). Because MFM is genetically heterogeneous, its clinical manifestations are reported as variable. While MFM patients are sometimes reported to develop serious conditions such as severe weakness, cardiomyopathy or respiratory failure, which require a pacemaker or mechanical ventilator, our case only had mild distal dominant limb weakness and muscle cramps. Our patient suggests that we must consider MFM as a differential diagnosis in adult onset distal myopathies.

  20. Isolated abscess in superior rectus muscle in a child

    Directory of Open Access Journals (Sweden)

    Sushank Ashok Bhalerao

    2015-01-01

    Full Text Available Pyomyositis is a primary bacterial infection of striated muscles nearly always caused by Staphylococcus aureus. Development of the intramuscular abscess involving the extra-ocular muscles (EOMs remains an extremely rare process. We herein present a case of isolated EOM pyomyositis involving superior rectus muscle in a 2-year male child who was referred with complaints of swelling in left eye (LE and inability to open LE since last 1-month. Orbital computed tomography (CT scan showed a well-defined, hypo-dense, peripheral rim-enhancing lesion in relation to left superior rectus muscle suggestive of left superior rectus abscess. The abscess was drained through skin approach. We concluded that pyomyositis of EOM should be considered in any patient presenting with acute onset of orbital inflammation and characteristic CT or magnetic resonance imaging features. Management consists of incision and drainage coupled with antibiotic therapy.

  1. Isotretinoin-induced acute severe myopathy involving pelvic girdle muscles: A case report

    Science.gov (United States)

    Sameem, Farah; Semira

    2016-01-01

    Oral isotretinoin has been in widespread use for more than three decades. It causes numerous side effects; skin and mucous membrane being commonly involved. Musculoskeletal adverse effects are also known to occur, but pelvic girdle myopathy is rarely reported. We report myopathy involving pelvic girdle muscles in a young male who received oral isotretinoin for folliculitis decalvans.

  2. Isotretinoin-induced acute severe myopathy involving pelvic girdle muscles: A case report

    Directory of Open Access Journals (Sweden)

    Farah Sameem

    2016-01-01

    Full Text Available Oral isotretinoin has been in widespread use for more than three decades. It causes numerous side effects; skin and mucous membrane being commonly involved. Musculoskeletal adverse effects are also known to occur, but pelvic girdle myopathy is rarely reported. We report myopathy involving pelvic girdle muscles in a young male who received oral isotretinoin for folliculitis decalvans.

  3. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population.

    Science.gov (United States)

    Morrison, Jamie I; Lööf, Sara; He, Pingping; Simon, András

    2006-01-30

    In contrast to mammals, salamanders can regenerate complex structures after injury, including entire limbs. A central question is whether the generation of progenitor cells during limb regeneration and mammalian tissue repair occur via separate or overlapping mechanisms. Limb regeneration depends on the formation of a blastema, from which the new appendage develops. Dedifferentiation of stump tissues, such as skeletal muscle, precedes blastema formation, but it was not known whether dedifferentiation involves stem cell activation. We describe a multipotent Pax7+ satellite cell population located within the skeletal muscle of the salamander limb. We demonstrate that skeletal muscle dedifferentiation involves satellite cell activation and that these cells can contribute to new limb tissues. Activation of salamander satellite cells occurs in an analogous manner to how the mammalian myofiber mobilizes stem cells during skeletal muscle tissue repair. Thus, limb regeneration and mammalian tissue repair share common cellular and molecular programs. Our findings also identify satellite cells as potential targets in promoting mammalian blastema formation.

  4. PROGRAMMED CELL DEATH IN EXTRAOCULAR MUSCLE TENDON/SCLERA PRECURSORS

    Science.gov (United States)

    AbstractPurpose: This study was designed to examine the occurrence of natural cell death in the periocular mesenchyme of mouse embryos. Methods: Vital staining with LysoTracker Red and Nile blue sulphate as well as terminal nick end labeling (TUNEL) were utiliz...

  5. PROGRAMMED CELL DEATH IN EXTRAOCULAR MUSCLE TENDON/SCLERA PRECURSORS

    Science.gov (United States)

    AbstractPurpose: This study was designed to examine the occurrence of natural cell death in the periocular mesenchyme of mouse embryos. Methods: Vital staining with LysoTracker Red and Nile blue sulphate as well as terminal nick end labeling (TUNEL) were utiliz...

  6. Genetics Home Reference: congenital fibrosis of the extraocular muscles

    Science.gov (United States)

    ... Cruse RP, Zubcov AA, Robb RM, Roggenkäemper P, Gottlob I, Kowal L, Battu R, Traboulsi EI, Franceschini ... Akarsu AN, Sabol LJ, Demer JL, Sullivan TJ, Gottlob I, Roggenkäemper P, Mackey DA, De Uzcategui CE, ...

  7. Involvement of STAT3 in Bladder Smooth Muscle Hypertrophy Following Bladder Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Ogawa,Norio

    2006-12-01

    Full Text Available We examined the involvement of the signal transducer and activator of transcription 3 (STAT3 in bladder outlet obstruction (BOO-induced bladder smooth muscle hypertrophy using a rat in vivo and in vitro study. BOO induced increases in bladder weight and bladder smooth muscle thickness 1 week after the operation. By using antibody microarrays, 64 of 389 proteins blotted on the array met our selection criteria of an INR value between > or = 2.0 and < or = 0.5. This result revealed up-regulation of transcription factors, cell cycle regulatory proteins, apoptosis-associated proteins and so on. On the other hand, down-regulation (INR value < or = 0.5 of proteins was not found. In a profiling study, we found an increase in the expression of STAT3. A significant increase in nuclear phosphorylated STAT3 expression was confirmed in bladder smooth muscle tissue by immunohistochemistry and Western blot analysis. Cyclical stretch-relaxation (1 Hz at 120% elongation significantly increased the expression of STAT3 and of alpha-smooth muscle actin in primary cultured bladder smooth muscle cells. Furthermore, the blockade of STAT3 expression by the transfection of STAT3 small interfering RNA (siRNA significantly prevented the stretch-induced increase in alpha-smooth muscle actin expression. These results suggest that STAT3 has an important role in the induction of bladder smooth muscle hypertrophy.

  8. A hedgehog-like signal is involved in slow muscle differentation in Sepia officinalis

    Directory of Open Access Journals (Sweden)

    A Grimaldi

    2007-01-01

    Full Text Available In the tentacle of Sepia officinalis, smooth-like, helical and cross-striated fibres deriving from different populations of myoblasts are present. Myoblasts appear at different times during the development and express two muscle-specific transcription factors: Myf5-like and MyoD-like factors. Myoblasts expressing Myf5 give rise to slow fibres, whereas fast fibres derive from MyoD+ myoblasts. We found that a Hedgehog (Hh-like signal was present in the central nerve cord of the tentacle from the early stages of development and in a specific population of myoblasts which are the precursors of slow muscle fibres. The model showed interesting similarities with vertebrates, in which Sonic hedgehog is a protein secreted by axial structures (the notochord and neurotube and is involved in slow muscle differentiation and in survival of muscle precursors.

  9. Quantitative Assessment of Trunk Muscles Involvement in Patients with Myotonic Dystrophy Type 1 Using a Whole Body Muscle Magnetic Resonance Imaging.

    Science.gov (United States)

    Park, Donghwi; Park, Jin-Sung

    2017-01-01

    The aim of this study was to analyze the pattern of trunk muscles involvement through a muscle MRI, in relation to the clinical data of patients diagnosed with myotonic dystrophy type 1 (DM1). Patients with DM1 who visited the neurology department were enrolled (n = 19). In all patients, the fatty degeneration of the muscle MRI in the lower cervical, upper thoracic, middle thoracic, and lumbosacral spine extensor muscle group and trunk flexor muscle group was evaluated. Clinical data, including CTG repeats, spinal deformity were analyzed to find the correlations with the fatty degeneration of trunk muscles in the muscle MRI. All DM1 patients who presented with very mild to severe functional status showed T1-weghted high intensity signals in the upper-thoracic spine extensor muscle group. The sum MRI score of the spine extensor muscle group showed a significant correlation with the 6-min walking test, and Cobb's angle. DM1 frequently affects the trunk muscles, even in the early stage of disease progression, regardless of disease severity or age of onset. Among the para-vertebral muscles, the selective involvement of spine extensor muscles may explain the cause of spinal deformities, which mirrors the functional status of DM1. © 2017 S. Karger AG, Basel.

  10. Familial amyloidotic polyneuropathy with muscle, vitreous, leptomeningeal, and cardiac involvement: Phenotypic, pathological, and MRI description

    Directory of Open Access Journals (Sweden)

    Prashantha D

    2010-01-01

    Full Text Available Familial amyloidotic polyneuropathy (FAN type 1 is a rare systemic disease that causes severe and disabling peripheral neuropathy. We describe the phenotypic, radiological, and pathological characteristics of a patient with familial amyloid polyneuropathy type 1 who had evidence of motor-sensory-autonomic neuropathy, ocular vitreous deposits, diffuse leptomeningeal involvement, and hypertrophic cardiomyopathy. Muscle involvement, an infrequently reported feature, was also observed. Early recognition of the disease has significant therapeutic implications.

  11. Skeletal muscle satellite cells, mitochondria and microRNAs: their involvement in the pathogenesis of ALS

    Directory of Open Access Journals (Sweden)

    Stavroula Tsitkanou

    2016-09-01

    Full Text Available Amyotrophic lateral sclerosis (ALS, also known as motor neurone disease (MND, is a fatal motor neurone disorder. It results in progressive degeneration and death of upper and lower motor neurones, protein aggregation, severe muscle atrophy and respiratory insufficiency. Median survival with ALS is between two to five years from the onset of symptoms. ALS manifests as either familial ALS (FALS (~10% of cases or sporadic ALS (SALS, (~90% of cases. Mutations in the copper/zinc (CuZn superoxide dismutase (SOD1 gene account for ~20% of FALS cases and the mutant SOD1 mouse model has been used extensively to help understand the ALS pathology. As the precise mechanisms causing ALS are not well understood there is presently no cure. Recent evidence suggests that motor neuron degradation may involve a cell non-autonomous phenomenon involving numerous cell types within various tissues. Skeletal muscle is now considered as an important tissue involved in the pathogenesis of ALS by activating a retrograde signalling cascade that degrades motor neurons. Skeletal muscle heath and function are regulated by numerous factors including satellite cells, mitochondria and microRNAs. Studies demonstrate that in ALS these factors show various levels of dysregulation within the skeletal muscle. This review provides an overview of their dysregulation in various ALS models as well as how they may contribute individually and/or synergistically to the ALS pathogenesis.

  12. The pattern of muscle involvement in ulnar neuropathy at the elbow

    Directory of Open Access Journals (Sweden)

    Dariush Eliaspour

    2012-01-01

    Full Text Available Objective: To determine the pattern of muscle involvement in patients with ulnar neuropathy at the elbow. Materials and Methods: This study evaluated all patients referred for upper limb electrodiagnostic study (EDX during 2007-2011 and included. patients with clinical signs and symptoms of ulnar neuropathy at the elbow. All patients had nerve conduction studies (NCS for ulnar neuropathy. Needle electromyography (EMG of four ulnar innervated muscles, flexor carpi ulnaris (FCU, flexor digitrom profoundus (FDP, first dorsal interosseous (FDI and abductor digiti minimi (ADM was evaluated. Results: During the study period 34 (23 males and 11 females patients were diagnosed with ulnar neuropathy at the elbow and three of them had bilateral involvement. Muscle involvement by EMG was as follows: FDI: 91.9%, ADM: 91.3%, FCU: 64.9% and FDP: 56.8%. Conclusion: In this study, EMG abnormalities of nerve damage were presented more commonly in the FCU muscle than in the FDP in patients with ulnar nerve lesion at the elbow.

  13. Comparação entre os métodos de injeção de toxina botulínica em músculo ocular externo com o uso do eletromiógrafo e com o uso da pinça de Mendonça Electromyograph assistance and Mendonça's forceps - a comparison between two methods of botulinum toxin A injection into the extraocular muscle

    Directory of Open Access Journals (Sweden)

    Tomás Fernando Scalamandré Mendonça

    2005-04-01

    Full Text Available OBJETIVO: Comparar dois métodos de aplicação de toxina botulínica A (TBA em músculo ocular externo: com auxílio de eletromiógrafo (EMG e com a pinça de Mendonça. MÉTODOS: Foram analisados no Departamento de Oftalmologia da UNIFESP 29 pacientes que apresentavam estrabismo e baixa acuidade visual em um olho. Foram divididos em dois grupos: grupo I - 17 pacientes que receberam a toxina botulínica A por meio de injeção com auxílio da pinça de Mendonça e grupo II - 12 pacientes que receberam a toxina botulínica A por injeção guiada pelo eletromiógrafo. Os pacientes dos dois grupos foram avaliados no 7º e no 14º dia após aplicação. Compararam-se os resultados dos dois grupos neste período de tempo. Os testes de correlação de Friedman e Mann-Whitney foram usados para análise estatística. RESULTADOS: Houve diferença estatística entre as médias de desvio pré-aplicação e em pelo menos um período (7º ou 14º dia após aplicação, tanto no grupo dos pacientes em que foi utilizada a pinça, quanto no grupo de pacientes em que foi utilizado o eletromiógrafo. Não houve diferença estatística dos desvios pré-aplicação e pós-aplicação entre os dois grupos. CONCLUSÃO: Os dois métodos de aplicação da toxina botulínica A são equivalentes e portanto, o uso da pinça de Mendonça pode ser método alternativo ao uso do eletromiógrafo, para guiar a injeção de toxina botulínica A.PURPOSE: To compare two methods of botulinum toxin A (BTA injection into the extraocular muscle (EOM: the electromyographically (EMG guided injection and the injection using Mendonça's forceps. METHODS: Twenty-nine (29 patients with strabismus and low visual acuity in one eye were examined at the Department of Ophthalmology of UNIFESP. They were divided into 2 groups - group I with 17 patients receiving the botulinum toxin A injection using Mendonça's forceps, and group II with 12 patients receiving the toxin with electromyographical

  14. [Treatment of primary retinal detachment. Minimal extraocular or intraocular?].

    Science.gov (United States)

    Kreissig, I

    2002-06-01

    The developments in treatment modalities for a primary retinal detachment over the last 70 years have been reviewed. There was a change from a surgery limited to the area of the break to a form of prophylactic surgery including the extent of the detachment. In between Rosengren had limited the treatment to the break with an intraocular gas bubble. A change was brought about by Custodis in 1953 who limited surgery to the break and omitted drainage. This procedure had serious postoperative complications which were eliminated by Lincoff by developing the cryosurgical detachment operation which was subsequently refined to extraocular minimal surgery. The ultimate realization of a minimal extraocular approach was the operation with a temporary balloon. Two additional intraocular procedures evolved, pneumatic retinopexy and primary vitrectomy, following one or the other pattern of treatment. With all four methods reattachment can result in 94-99% of the cases but differences can be seen in the morbidity and rate of reoperations.

  15. Absence of aquaporin-4 in skeletal muscle alters proteins involved in bioenergetic pathways and calcium handling.

    Directory of Open Access Journals (Sweden)

    Davide Basco

    Full Text Available Aquaporin-4 (AQP4 is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE, protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4(-/- compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4-/- muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase, as well as in Ca(2+ handling (i.e. parvalbumin, SERCA1. Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology.

  16. Absence of aquaporin-4 in skeletal muscle alters proteins involved in bioenergetic pathways and calcium handling.

    Science.gov (United States)

    Basco, Davide; Nicchia, Grazia Paola; D'Alessandro, Angelo; Zolla, Lello; Svelto, Maria; Frigeri, Antonio

    2011-04-28

    Aquaporin-4 (AQP4) is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE), protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4(-/-) compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4-/- muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase), as well as in Ca(2+) handling (i.e. parvalbumin, SERCA1). Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology.

  17. Mechanosensitive molecular networks involved in transducing resistance exercise-signals into muscle protein accretion

    Directory of Open Access Journals (Sweden)

    Emil Rindom

    2016-11-01

    Full Text Available Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS, may contribute to understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1, to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ-phosphatidic acid (PA axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK-Tuberous Sclerosis Complex 2TSC2-Ras homolog enriched in brain (Rheb axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA-striated muscle activator of Rho signaling (STARS axis or how it may implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP signaling through a small mother of decapentaplegic (Smad axis.

  18. Mechanosensitive Molecular Networks Involved in Transducing Resistance Exercise-Signals into Muscle Protein Accretion

    Science.gov (United States)

    Rindom, Emil; Vissing, Kristian

    2016-01-01

    Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS), may contribute to an understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1), to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ)-phosphatidic acid (PA) axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK)-Tuberous Sclerosis Complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA)-striated muscle activator of Rho signaling (STARS) axis or implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP) signaling through a small mother of decapentaplegic (Smad) axis. PMID:27909410

  19. Mechanosensitive Molecular Networks Involved in Transducing Resistance Exercise-Signals into Muscle Protein Accretion.

    Science.gov (United States)

    Rindom, Emil; Vissing, Kristian

    2016-01-01

    Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS), may contribute to an understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1), to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ)-phosphatidic acid (PA) axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK)-Tuberous Sclerosis Complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA)-striated muscle activator of Rho signaling (STARS) axis or implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP) signaling through a small mother of decapentaplegic (Smad) axis.

  20. Identification, isolation and expansion of myoendothelial cells involved in leech muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Annalisa Grimaldi

    Full Text Available Adult skeletal muscle in vertebrates contains myoendothelial cells that express both myogenic and endothelial markers, and which are able to differentiate into myogenic cells to contribute to muscle regeneration. In spite of intensive research efforts, numerous questions remain regarding the role of cytokine signalling on myoendothelial cell differentiation and muscle regeneration. Here we used Hirudo medicinalis (Annelid, leech as an emerging new model to study myoendothelial cells and muscle regeneration. Although the leech has relative anatomical simplicity, it shows a striking similarity with vertebrate responses and is a reliable model for studying a variety of basic events, such as tissue repair. Double immunohistochemical analysis were used to characterize myoendothelial cells in leeches and, by injecting in vivo the matrigel biopolymer supplemented with the cytokine Vascular Endothelial Growth Factor (VEGF, we were able to isolate this specific cell population expressing myogenic and endothelial markers. We then evaluated the effect of VEGF on these cells in vitro. Our data indicate that, similar to that proposed for vertebrates, myoendothelial cells of the leech directly participate in myogenesis both in vivo and in vitro, and that VEGF secretion is involved in the recruitment and expansion of these muscle progenitor cells.

  1. Illusion caused by vibration of muscle spindles reveals an involvement of muscle spindle inputs in regulating isometric contraction of masseter muscles.

    Science.gov (United States)

    Tsukiboshi, Taisuke; Sato, Hajime; Tanaka, Yuto; Saito, Mitsuru; Toyoda, Hiroki; Morimoto, Toshifumi; Türker, Kemal Sitki; Maeda, Yoshinobu; Kang, Youngnam

    2012-11-01

    Spindle Ia afferents may be differentially involved in voluntary isometric contraction, depending on the pattern of synaptic connections in spindle reflex pathways. We investigated how isometric contraction of masseter muscles is regulated through the activity of their muscle spindles that contain the largest number of intrafusal fibers among skeletal muscle spindles by examining the effects of vibration of muscle spindles on the voluntary isometric contraction. Subjects were instructed to hold the jaw at resting position by counteracting ramp loads applied on lower molar teeth. In response to the increasing-ramp load, the root mean square (RMS) of masseter EMG activity almost linearly increased under no vibration, while displaying a steep linear increase followed by a slower increase under vibration. The regression line of the relationship between the load and RMS was significantly steeper under vibration than under no vibration, suggesting that the subjects overestimated the ramp load and excessively counteracted it as reflected in the emergence of bite pressure. In response to the decreasing-ramp load applied following the increasing one, the RMS hardly decreased under vibration unlike under no vibration, leading to a generation of bite pressure even after the offset of the negative-ramp load until the vibration was ceased. Thus the subjects overestimated the increasing rate of the load while underestimating the decreasing rate of the load, due to the vibration-induced illusion of jaw opening. These observations suggest that spindle Ia/II inputs play crucial roles both in estimating the load and in controlling the isometric contraction of masseter muscles in the jaw-closed position.

  2. Signal pathways involved in emodin-induced contraction of smooth muscle cells from rat colon

    Institute of Scientific and Technical Information of China (English)

    Tao Ma; Qing-Hui Qi; Jian Xu; Zuo-Liang Dong; Wen-Xiu Yang

    2004-01-01

    AIM: To investigate the effects induced by emodin on single smooth muscle cells from rat colon in vitro, and to determine the signal pathways involved.METHODS: Cells were isolated from the muscle layers of Wistar rat colon by enzymatic digestion. Cell length was measured by computerized image micrometry. Intracellular Ca2+ ([Ca2+]i) signals were studied using the fluorescent Ca2+ indicator fluo-3 and confocal microscopy. PKCα distribution at rest state or after stimulation was measured with immunofluorescence confocal microscopy.RESULTS: (1) Emodin dose-dependently caused colonic smooth muscle cells contraction; (2) emodin induced an increase in intracellular Ca2+ concentration; (3) the contractile responses induced by emodin were respectively inhibited by preincubation of the cells with ML-7 (an inhibitorof MLCK)and calphostin C (an inhibitor of PKC); (4) Incubation of cells with emodin caused translocation of PKCα from cytosolic area to the membrane.CONCLUSION: Emodin has a direct contractile effect on colonic smooth muscle cell. This signal cascade induced by emodin is initiated by increased [Ca2+]i and PKCα translocation,which in turn lead to the activation of MLCK and the suppression of MLCP. Both of them contribute to the emodininduced contraction.

  3. Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Torriani, Martin [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Massachusetts General Hospital, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Townsend, Elise [MGH Institute of Health Professions and Massachusetts General Hospital, Boston, MA (United States); Thomas, Bijoy J.; Bredella, Miriam A.; Ghomi, Reza H. [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Tseng, Brian S. [Massachusetts General Hospital and Harvard Medical School, Pediatric Neuromuscular Clinic, Boston, MA (United States); Novartis Institute of Biomedical Research, Cambridge, MA (United States)

    2012-04-15

    To describe the involvement of lower leg muscles in boys with Duchenne muscular dystrophy (DMD) by using MR imaging (MRI) and spectroscopy (MRS) correlated to indices of functional status. Nine boys with DMD (mean age, 11 years) and eight healthy age- and BMI-matched boys (mean age, 13 years) prospectively underwent lower leg MRI, 1H-MRS of tibialis anterior (TA) and soleus (SOL) for lipid fraction measures, and 31P-MRS for pH and high-energy phosphate measures. DMD subjects were evaluated using the Vignos lower extremity functional rating, and tests including 6 min walk test (6MWT) and 10 m walk. DMD subjects had highest fatty infiltration scores in peroneal muscles, followed by medial gastrocnemius and soleus. Compared to controls, DMD boys showed higher intramuscular fat (P = 0.04), lipid fractions of TA and SOL (P = 0.02 and 0.003, respectively), pH of anterior compartment (P = 0.0003), and lower phosphocreatine/inorganic phosphorus ratio of posterior compartment (P = 0.02). The Vignos rating correlated with TA (r = 0.79, P = 0.01) and SOL (r = 0.71, P = 0.03) lipid fractions. The 6MWT correlated with fatty infiltration scores of SOL (r = -0.76, P = 0.046), medial (r = -0.80, P = 0.03) and lateral (r = -0.84, P = 0.02) gastrocnemius, intramuscular fat (r = -0.80, P = 0.03), and SOL lipid fraction (r = -0.89, P = 0.007). Time to walk 10 m correlated with anterior compartment pH (r = 0.78, P = 0.04). Lower leg muscles of boys with DMD show a distinct involvement pattern and increased adiposity that correlates with functional status. Lower leg MRI and 1H-MRS studies may help to noninvasively demonstrate the severity of muscle involvement. (orig.)

  4. Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling.

    Science.gov (United States)

    Retailleau, Kevin; Duprat, Fabrice; Arhatte, Malika; Ranade, Sanjeev Sumant; Peyronnet, Rémi; Martins, Joana Raquel; Jodar, Martine; Moro, Céline; Offermanns, Stefan; Feng, Yuanyi; Demolombe, Sophie; Patel, Amanda; Honoré, Eric

    2015-11-10

    The mechanically activated non-selective cation channel Piezo1 is a determinant of vascular architecture during early development. Piezo1-deficient embryos die at midgestation with disorganized blood vessels. However, the role of stretch-activated ion channels (SACs) in arterial smooth muscle cells in the adult remains unknown. Here, we show that Piezo1 is highly expressed in myocytes of small-diameter arteries and that smooth-muscle-specific Piezo1 deletion fully impairs SAC activity. While Piezo1 is dispensable for the arterial myogenic tone, it is involved in the structural remodeling of small arteries. Increased Piezo1 opening has a trophic effect on resistance arteries, influencing both diameter and wall thickness in hypertension. Piezo1 mediates a rise in cytosolic calcium and stimulates activity of transglutaminases, cross-linking enzymes required for the remodeling of small arteries. In conclusion, we have established the connection between an early mechanosensitive process, involving Piezo1 in smooth muscle cells, and a clinically relevant arterial remodeling.

  5. Does regulation of skeletal muscle function involve circulating microRNAs?

    Directory of Open Access Journals (Sweden)

    Wataru eAoi

    2014-02-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs involved in posttranscriptional gene regulation. Recently, growing evidence has shown that miRNAs are taken in by intracellular exosomes, secreted into circulation, and taken up by other cells. Circulating levels of several miRNAs are changed in diseases such as cancer, diabetes, and cardiovascular diseases; therefore, they are suggested to regulate functions of the recipient cells by modulating protein expression. Circulating miRNAs (c-miRNAs may also modulate skeletal muscle function in physiological and pathological conditions. It has been suggested that acute and chronic exercise transiently or adaptively changes the level of c-miRNAs, thus posttranscriptionally regulating proteins associated with energy metabolism, myogenesis, and angiogenesis. Circulating levels of several miRNAs that are enriched in muscle are altered in muscle disorders and may be involved in their development and progression. In addition, such c-miRNAs may be useful as biomarkers to determine various interactions between tissues and also to reflect athletic performance, physical fatigue, incidence risk, and development of diseases.

  6. Fgf regulates dedifferentiation during skeletal muscle regeneration in adult zebrafish.

    Science.gov (United States)

    Saera-Vila, Alfonso; Kish, Phillip E; Kahana, Alon

    2016-09-01

    Fibroblast growth factors (Fgfs) regulate critical biological processes such as embryonic development, tissue homeostasis, wound healing, and tissue regeneration. In zebrafish, Fgf signaling plays an important role in the regeneration of the spinal cord, liver, heart, fin, and photoreceptors, although its exact mechanism of action is not fully understood. Utilizing an adult zebrafish extraocular muscle (EOM) regeneration model, we demonstrate that blocking Fgf receptor function using either a chemical inhibitor (SU5402) or a dominant-negative transgenic construct (dnFGFR1a:EGFP) impairs muscle regeneration. Adult zebrafish EOMs regenerate through a myocyte dedifferentiation process, which involves a muscle-to-mesenchyme transition and cell cycle reentry by differentiated myocytes. Blocking Fgf signaling reduced cell proliferation and active caspase 3 levels in the regenerating muscle with no detectable levels of apoptosis, supporting the hypothesis that Fgf signaling is involved in the early steps of dedifferentiation. Fgf signaling in regenerating myocytes involves the MAPK/ERK pathway: inhibition of MEK activity with U0126 mimicked the phenotype of the Fgf receptor inhibition on both muscle regeneration and cell proliferation, and activated ERK (p-ERK) was detected in injured muscles by immunofluorescence and western blot. Interestingly, following injury, ERK2 expression is specifically induced and activated by phosphorylation, suggesting a key role in muscle regeneration. We conclude that the critical early steps of myocyte dedifferentiation in EOM regeneration are dependent on Fgf signaling.

  7. Intraocular and extraocular hemorrhage associated with ligature release of non-valved glaucoma drainage implant

    Directory of Open Access Journals (Sweden)

    Michelle Go

    2017-04-01

    Conclusions: and importance: This is the first report of a rare occurrence of intraocular and extraocular hemorrhage associated following spontaneous release of ligature of a non-valved glaucoma drainage implant. The presumed mechanism was sudden shallowing of the anterior chamber resulting in the tube irritating uveal vasculature. We do not have an explanation for the extraocular blood.

  8. Skeletal muscle lipid accumulation in type 2 diabetes may involve the liver X receptor pathway

    DEFF Research Database (Denmark)

    Kase, E.T.; Wensaas, A.J.; Aas, V.

    2005-01-01

    Liver X receptors (LXRs) are important regulators of cholesterol and lipid metabolism and are also involved in glucose metabolism. However, the functional role of LXRs in human skeletal muscle is at present unknown. This study demonstrates that chronic ligand activation of LXRs by a synthetic LXR....... Consistently, activation of LXRs induced the expression of relevant genes: fatty acid translocase (CD36/FAT), glucose transporters (GLUT1 and -4), sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor-gamma, carnitine palmitoyltransferase-1, and uncoupling protein 2 and 3...

  9. Estrogen receptor beta is involved in skeletal muscle hypertrophy induced by the phytoecdysteroid ecdysterone.

    Science.gov (United States)

    Parr, Maria Kristina; Zhao, Piwen; Haupt, Oliver; Ngueu, Sandrine Tchoukouegno; Hengevoss, Jonas; Fritzemeier, Karl Heinrich; Piechotta, Marion; Schlörer, Nils; Muhn, Peter; Zheng, Wen-Ya; Xie, Ming-Yong; Diel, Patrick

    2014-09-01

    The phytoectysteroid ecdysterone (Ecdy) was reported to stimulate protein synthesis and enhance physical performance. The aim of this study was to investigate underlying molecular mechanisms particularly the role of ER beta (ERβ). In male rats, Ecdy treatment increased muscle fiber size, serum IGF-1 increased, and corticosteron and 17β-estradiol (E2) decreased. In differentiated C2C12 myoblastoma cells, treatment with Ecdy, dihydrotestosterone, IGF-1 but also E2 results in hypertrophy. Hypertrophy induced by E2 and Ecdy could be antagonized with an antiestrogen but not by an antiandrogen. In HEK293 cells transfected with ER alpha (ERα) or ERβ, Ecdy treatment transactivated a reporter gene. To elucidate the role of ERβ in Ecdy-mediated muscle hypertrophy, C2C12 myotubes were treated with ERα (ALPHA) and ERβ (BETA) selective ligands. Ecdy and BETA treatment but not ALPHA induced hypertrophy. The effect of Ecdy, E2, and BETA could be antagonized by an ERβ-selective antagonist (ANTIBETA). In summary, our results indicate that ERβ is involved in the mediation of the anabolic activity of the Ecdy. These findings provide new therapeutic perspectives for the treatment of muscle injuries, sarcopenia, and cachectic disease, but also imply that such a substance could be abused for doping purposes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of lifelong football training on the expression of muscle molecular markers involved in healthy longevity.

    Science.gov (United States)

    Mancini, A; Vitucci, D; Labruna, G; Imperlini, E; Randers, M B; Schmidt, J F; Hagman, M; Andersen, T R; Russo, R; Orrù, S; Krustrup, P; Salvatore, F; Buono, P

    2017-04-01

    We investigated whether lifelong football training affects the expression of healthy longevity-related muscle molecular markers. Biopsies were collected from the vastus lateralis muscle of 10 lifelong football-trained men (68.2 ± 3.0 years) and of 10 active untrained healthy men (66.7 ± 1.3 years). Gene and protein expression was measured by RTqPCR on RNA and by western blotting on protein extracts from muscle biopsies, respectively. The expression of AMPKα1/α2, NAMPT, TFAM and PGC1α, which are markers of oxidative metabolism, and MyHC β isoform expression was higher in the muscle of football-trained men vs untrained men. Also citrate synthase activity was higher in trained than in untrained men (109.3 ± 9.2 vs 75.1 ± 9.2 mU/mg). These findings were associated with a healthier body composition in trained than in untrained men [body weight: 78.2 ± 6.5 vs 91.2 ± 11.2 kg; body mass index BMI: 24.4 ± 1.6 vs 28.8 ± 4.0 kg m(-2); fat%: 22.6 ± 8.0 vs 31.4 ± 5.0%)] and with a higher maximal oxygen uptake (VO2max: 34.7 ± 3.8 vs 27.3 ± 4.0 ml/min/kg). Also the expression of proteins involved in DNA repair and in senescence suppression (Erk1/2, Akt and FoxM1) was higher in trained than in untrained men. At BMI- and age-adjusted multiple linear regression analysis, fat percentage was independently associated with Akt protein expression, and VO2max was independently associated with TFAM mRNA and with Erk1/2 protein expression. Lifelong football training increases the expression of key markers involved in muscle oxidative metabolism, and in the DNA repair and senescence suppression pathways, thus providing the molecular basis for healthy longevity.

  11. Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle.

    Science.gov (United States)

    Mackey, Abigail L; Brandstetter, Simon; Schjerling, Peter; Bojsen-Moller, Jens; Qvortrup, Klaus; Pedersen, Mette M; Doessing, Simon; Kjaer, Michael; Magnusson, S Peter; Langberg, Henning

    2011-06-01

    The purpose of this study was to test the hypothesis that remodeling of skeletal muscle extracellular matrix (ECM) is involved in protecting human muscle against injury. Biopsies were obtained from medial gastrocnemius muscles after a single bout of electrical stimulation (B) or a repeated bout (RB) 30 d later, or 30 d after a single stimulation bout (RBc). A muscle biopsy was collected from the control leg for comparison with the stimulated leg. Satellite cell content, tenascin C, and muscle regeneration were assessed by immunohistochemistry; real-time PCR was used to measure mRNA levels of collagens, laminins, heat-shock proteins (HSPs), inflammation, and related growth factors. The large responses of HSPs, CCL2, and tenascin C detected 48 h after a single bout were attenuated in the RB trial, indicative of protection against injury. Satellite cell content and 12 target genes, including IGF-1, were elevated 30 d after a single bout. Among those displaying the greatest difference vs. control muscle, ECM laminin-β1 and collagen types I and III were elevated ∼6- to 9-fold (P<0.001). The findings indicate that the sequenced events of load-induced early deadhesion and later strengthening of skeletal muscle ECM play a role in protecting human muscle against future injury.

  12. Involvement of M-cadherin in terminal differentiation of skeletal muscle cells.

    Science.gov (United States)

    Zeschnigk, M; Kozian, D; Kuch, C; Schmoll, M; Starzinski-Powitz, A

    1995-09-01

    Cadherins are a gene family encoding calcium-dependent cell adhesion proteins which are thought to act in the establishment and maintenance of tissue organization. M-cadherin, one member of the family, has been found in myogenic cells of somitic origin during embryogenesis and in the adult. These findings have suggested that M-cadherin is involved in the regulation of morphogenesis of skeletal muscle cells. Therefore, we investigated the function of M-cadherin in the fusion of myoblasts into myotubes (terminal differentiation) in cell culture. Furthermore, we tested whether M-cadherin might influence (a) the expression of troponin T, a typical marker of biochemical differentiation of skeletal muscle cells, and (b) withdrawal of myoblasts from the cell cycle (called terminal commitment). The studies were performed by using antagonistic peptides which correspond to sequences of the putative M-cadherin binding domain. Analogous peptides of N-cadherin have previously been shown to interfere functionally with the N-cadherin-mediated cell adhesion. In the presence of antagonistic M-cadherin peptides, the fusion of myoblasts into myotubes was inhibited. Analysis of troponin T revealed that it was downregulated at the protein level although its mRNA was still detectable. In addition, withdrawal from the cell cycle typical for terminal commitment of muscle cells was not complete in fusion-blocked myogenic cells. Finally, expression of M-cadherin antisense RNA reducing the expression of the endogenous M-cadherin protein interfered with the fusion process of myoblasts. Our data imply that M-cadherin-mediated myoblast interaction plays an important role in terminal differentiation of skeletal muscle cells.

  13. A case of adult Pompe disease presenting with severe fatigue and selective involvement of type 1 muscle fibers.

    Science.gov (United States)

    van den Berg, Linda E M; de Vries, Juna M; Verdijk, Robert M; van der Ploeg, Ans T; Reuser, Arnold J J; van Doorn, Pieter A

    2011-03-01

    We present a case of adult Pompe disease (acid maltase deficiency) with an uncommon clinical presentation characterized by severe fatigue and myalgia prior to the onset of limb girdle weakness. Remarkably, the muscle biopsy demonstrated selective involvement of type 1 muscle fibers. The cause and clinical effects of fiber type specific involvement are currently unknown, but the phenomenon might contribute to the clinical heterogeneity in Pompe disease and the variable response to enzyme replacement therapy.

  14. Stimulation of the retina with a multielectrode extraocular visual prosthesis.

    Science.gov (United States)

    Chowdhury, Vivek; Morley, John W; Coroneo, Minas T

    2005-08-01

    An extraocular approach to developing a retinal prosthesis for blind patients using electrodes placed on the outer surface of the eye is suggested. Experiments were carried out to determine the feasibility of this approach, and evaluate electrode configurations and parameters for stimulation. In anaesthetized cats, a 21-electrode extraocular retinal prosthesis (ERP) array was sutured to the sclera over the lateral surface of the eye. Electrically evoked potentials (EEP) were recorded at the visual cortex bilaterally in response to retinal stimulation with the electrode array. Bipolar stimulation of the ERP array electrodes in horizontal and vertical configurations and at different interelectrode separations was investigated with biphasic constant-current pulses. Electrical stimulation of the lateral retina with an ERP elicited EEP that were higher in the ipsilateral visual cortex. The threshold for bipolar retinal stimulation was 500 microA. EEP amplitude increased with increases in stimulus pulse duration and current intensity. Retinal stimulation was slightly more effective with electrodes in a vertical as opposed to horizontal orientation. A larger interelectrode separation resulted in a higher EEP amplitude. Retinal stimulation with a prototype ERP array is demonstrated. The thresholds for retinal excitation are below safe charge-density limits for chronic neural stimulation. Ipsilateral localization of the EEP suggests that localized retinal stimulation is occurring. An ERP is a new approach to retinal prosthesis research, and might lead to the development of a low-resolution visual prosthesis for blind patients.

  15. MRI of extraocular orbital diseases; Comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Hiroyuki (Nagasaki Univ. (Japan). School of Medicine)

    1990-12-01

    The author investigated the usefulness of MRI in the diagnosis of extraocular orbital diseases, and the diagnostic ability of MRI was compared with that of CT. The materials consisted of 38 cases of diseases in extraocular orbital region (all cases were examined with MRI and 34 of them were also examined with CT). MRI was performed with spin echo or STIR sequences using a 1.5 tesla superconductive unit (GE SIGNA). CT was performed using SOMATOM CR and DR-H. The study showed that MRI was equally or more useful than CT in detecting lesions as well as assessing the internal architecture and extension of the lesions. Differentiation between benign and malignant tumors by MRI is difficult from their signal intensity only and can be made from their extraorbital extension, just as by CT. In Graves' orbitopathy, T{sub 2}-weighted images were more sensitive in reflecting its new or old pathological changes than CT. T{sub 1}-weighted images enhanced with Gd-DTPA were useful in differentiating sphenoid wing meningiomas from other tumors, but not useful in assessing the degree of intraorbital extension. STIR sequences were particularly useful in the diagnosis of optic nerve atrophy and expectd to be applied to the lesions which were not detected or poorly demonstrated with CT and spin echo sequences. (author).

  16. The TWEAK–Fn14 dyad is involved in age-associated pathological changes in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Tajrishi, Marjan M.; Sato, Shuichi; Shin, Jonghyun [Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Zheng, Timothy S.; Burkly, Linda C. [Department of Immunology, Biogen Idec, 14 Cambridge Center, Cambridge, MA 02142 (United States); Kumar, Ashok, E-mail: ashok.kumar@louisville.edu [Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202 (United States)

    2014-04-18

    Highlights: • The levels of TWEAK receptor Fn14 are increased in skeletal muscle during aging. • Deletion of Fn14 attenuates age-associated skeletal muscle fiber atrophy. • Deletion of Fn14 inhibits proteolysis in skeletal muscle during aging. • TWEAK–Fn14 signaling activates transcription factor NF-κB in aging skeletal muscle. • TWEAK–Fn14 dyad is involved in age-associated fibrosis in skeletal muscle. - Abstract: Progressive loss of skeletal muscle mass and strength (sarcopenia) is a major clinical problem in the elderly. Recently, proinflammatory cytokine TWEAK and its receptor Fn14 were identified as key mediators of muscle wasting in various catabolic states. However, the role of the TWEAK–Fn14 pathway in pathological changes in skeletal muscle during aging remains unknown. In this study, we demonstrate that the levels of Fn14 are increased in skeletal muscle of 18-month old (aged) mice compared with adult mice. Genetic ablation of Fn14 significantly increased the levels of specific muscle proteins and blunted the age-associated fiber atrophy in mice. While gene expression of two prominent muscle-specific E3 ubiquitin ligases MAFBx and MuRF1 remained comparable, levels of ubiquitinated proteins and the expression of autophagy-related molecule Atg12 were significantly reduced in Fn14-knockout (KO) mice compared with wild-type mice during aging. Ablation of Fn14 significantly diminished the DNA-binding activity of transcription factor nuclear factor-kappa B (NF-κB), gene expression of various inflammatory molecules, and interstitial fibrosis in skeletal muscle of aged mice. Collectively, our study suggests that the TWEAK–Fn14 signaling axis contributes to age-associated muscle atrophy and fibrosis potentially through its local activation of proteolytic systems and inflammatory pathways.

  17. Prevalence of Diplopia and Extraocular Movement Limitation according to the Location of Isolated Pure Blowout Fractures

    Directory of Open Access Journals (Sweden)

    Min Seok Park

    2012-05-01

    Full Text Available Background Isolated pure blowout fractures are clinically important because they are themain cause of serious complications such as diplopia and limitation of extraocular movement.Many reports have described the incidence of blowout fractures associated with diplopiaand limitation of extraocular movement; however, no studies have statistically analyzedthis relationship. The purpose of this study was to demonstrate the correlation betweenthe location of isolated pure blowout fractures and orbital symptoms such as diplopia andlimitation of extraocular movement.Methods We enrolled a total of 354 patients who had been diagnosed with isolated pureblowout fractures, based on computed tomography, from June 2008 to November 2011.Medical records were reviewed, and the prevalence of extraocular movement limitations anddiplopia were determined.Results There were 14 patients with extraocular movement limitation and 58 patientscomplained of diplopia. Extraocular movement limitation was associated with the followingfindings, in decreasing order of frequency: floor fracture (7.1%, extended fracture (3.6%,and medial wall (1.7%. However, there was no significant difference among the types offractures (P=0.60. Diplopia was more commonly associated with floor fractures (21.4%and extended type fractures (23.6% than medial wall fractures (10.4%. The difference wasstatistically significant (Bonferroni-corrected chi-squared test P<0.016.Conclusions Data indicate that extended type fractures and orbital floor fractures tend tocause diplopia more commonly than medial wall fractures. However, extraocular movementlimitation was not found to be dependent on the location of the orbital wall fracture.

  18. Transcriptome analysis reveals long intergenic non-coding RNAs involved in skeletal muscle growth and development in pig.

    Science.gov (United States)

    Zou, Cheng; Li, Jingxuan; Luo, Wenzhe; Li, Long; Hu, An; Fu, Yuhua; Hou, Ye; Li, Changchun

    2017-08-18

    Long intergenic non-coding RNAs (lincRNAs) play essential roles in numerous biological processes and are widely studied. The skeletal muscle is an important tissue that plays an essential role in individual movement ability. However, lincRNAs in pig skeletal muscles are largely undiscovered and their biological functions remain elusive. In this study, we assembled transcriptomes using RNA-seq data published in previous studies of our laboratory group and identified 323 lincRNAs in porcine leg muscle. We found that these lincRNAs have shorter transcript length, fewer exons and lower expression level than protein-coding genes. Gene ontology and pathway analyses indicated that many potential target genes (PTGs) of lincRNAs were involved in skeletal-muscle-related processes, such as muscle contraction and muscle system process. Combined our previous studies, we found a potential regulatory mechanism in which the promoter methylation of lincRNAs can negatively regulate lincRNA expression and then positively regulate PTG expression, which can finally result in abnormal phenotypes of cloned piglets through a certain unknown pathway. This work detailed a number of lincRNAs and their target genes involved in skeletal muscle growth and development and can facilitate future studies on their roles in skeletal muscle growth and development.

  19. Three days of intermittent stretching after muscle disuse alters the proteins involved in force transmission in muscle fibers in weanling rats.

    Science.gov (United States)

    Gianelo, M C S; Polizzelo, J C; Chesca, D; Mattiello-Sverzut, A C

    2016-02-01

    The aim of this study was to determine the effects of intermittent passive manual stretching on various proteins involved in force transmission in skeletal muscle. Female Wistar weanling rats were randomly assigned to 5 groups: 2 control groups containing 21- and 30-day-old rats that received neither immobilization nor stretching, and 3 test groups that received 1) passive stretching over 3 days, 2) immobilization for 7 days and then passive stretching over 3 days, or 3) immobilization for 7 days. Maximal plantar flexion in the right hind limb was imposed, and the stretching protocol of 10 repetitions of 30 s stretches was applied. The soleus muscles were harvested and processed for HE and picrosirius staining; immunohistochemical analysis of collagen types I, III, IV, desmin, and vimentin; and immunofluorescence labeling of dystrophin and CD68. The numbers of desmin- and vimentin-positive cells were significantly decreased compared with those in the control following immobilization, regardless of whether stretching was applied (Pstretching protocol was applied. In conclusion, the largest changes in response to stretching were observed in muscles that had been previously immobilized, and the stretching protocol applied here did not mitigate the immobilization-induced muscle changes. Muscle disuse adversely affected several proteins involved in the transmission of forces between the intracellular and extracellular compartments. Thus, the 3-day rehabilitation period tested here did not provide sufficient time for the muscles to recover from the disuse maladaptations in animals undergoing postnatal development.

  20. Juvenile idiopathic inflammatory myopathies: the value of magnetic resonance imaging in the detection of muscle involvement

    Directory of Open Access Journals (Sweden)

    Maria Odete Esteves Hilário

    2000-03-01

    Full Text Available CONTEXT: One of the major current challenges related to juvenile idiopathic inflammatory myopathy is the search for highly sensitive and specific non-invasive methods for diagnosis as well as for follow-up. OBJECTIVES: The aim of our study was to describe typical magnetic resonance imaging findings and to investigate the usefulness of this method in detecting active muscle disease in juvenile dermatomyositis and juvenile systemic lupus erythematosus patients. DESIGN: Transverse study, blinded assessment. SETTING: University referral unit (Pediatric Rheumatology section, Department of Pediatrics, Universidade Federal de São Paulo / Escola Paulista de Medicina. SAMPLE: Thirteen patients (9 girls with dermatomyositis, as well as 13 patients (12 girls with juvenile systemic lupus erythematosus and 10 normal children (5 girls, were enrolled in the study. MAIN MEASUREMENTS: Qualitative and quantitative analyses of gluteus maximus, quadriceps, adductors and flexors were performed and evaluated by two radiologists, blinded to all clinical information. Spin-echo in T1, DP, T2 and IR was used in all MRI images. RESULTS: The different muscle groups presented non-uniform involvement in the patients. The patients with dermatomyositis presented acute and chronic muscular alterations, while those with lupus presented only chronic myopathy, especially atrophy. In the dermatomyositis group, the major alterations were found in the gluteus and flexor regions (signal intensity and fat replacement. The signal intensity was increased in all acute myopathies. CONCLUSION: The qualitative and quantitative resonance analyses are useful in detecting clinically active disease in patients with dermatomyositis.

  1. Development-related expression patterns of protein-coding and miRNA genes involved in porcine muscle growth.

    Science.gov (United States)

    Wang, F J; Jin, L; Guo, Y Q; Liu, R; He, M N; Li, M Z; Li, X W

    2014-11-27

    Muscle growth and development is associated with remarkable changes in protein-coding and microRNA (miRNA) gene expression. To determine the expression patterns of genes and miRNAs related to muscle growth and development, we measured the expression levels of 25 protein-coding and 16 miRNA genes in skeletal and cardiac muscles throughout 5 developmental stages by quantitative reverse transcription-polymerase chain reaction. The Short Time-Series Expression Miner (STEM) software clustering results showed that growth-related genes were downregulated at all developmental stages in both the psoas major and longissimus dorsi muscles, indicating their involvement in early developmental stages. Furthermore, genes related to muscle atrophy, such as forkhead box 1 and muscle ring finger, showed unregulated expression with increasing age, suggesting a decrease in protein synthesis during the later stages of skeletal muscle development. We found that development of the cardiac muscle was a complex process in which growth-related genes were highly expressed during embryonic development, but they did not show uniform postnatal expression patterns. Moreover, the expression level of miR-499, which enhances the expression of the β-myosin heavy chain, was significantly different in the psoas major and longissimus dorsi muscles, suggesting the involvement of miR-499 in the determination of skeletal muscle fiber types. We also performed correlation analyses of messenger RNA and miRNA expression. We found negative relationships between miR-486 and forkhead box 1, and miR-133a and serum response factor at all developmental stages, suggesting that forkhead box 1 and serum response factor are potential targets of miR-486 and miR-133a, respectively.

  2. The posterior cricoarytenoid muscle is spared from MuRF1-mediated muscle atrophy in mice with acute lung injury.

    Science.gov (United States)

    Files, D Clark; Xiao, Kunhong; Zhang, Tan; Liu, Chun; Qian, Jiang; Zhao, Weiling; Morris, Peter E; Delbono, Osvaldo; Feng, Xin

    2014-01-01

    Skeletal muscle wasting in acute lung injury (ALI) patients increases the morbidity and mortality associated with this critical illness. The contribution of laryngeal muscle wasting to these outcomes is unknown, though voice impairments and aspiration are common in intensive care unit (ICU) survivors. We evaluated the intrinsic laryngeal abductor (PCA, posterior cricoarytenoid), adductor (CT, cricothyroid) and limb (EDL, extensor digitorum longus) muscles in a mouse model of ALI. Escherichia coli lipopolysaccharides were instilled into the lungs of adult male C57Bl6J mice (ALI mice). Limb and intrinsic laryngeal muscles were analyzed for fiber size, type, protein expression and myosin heavy chain (MyHC) composition by SDS-PAGE and mass spectroscopy. Marked muscle atrophy occurred in the CT and EDL muscles, while the PCA was spared. The E3 ubiquitin ligase muscle ring finger-1 protein (MuRF1), a known mediator of limb muscle atrophy in this model, was upregulated in the CT and EDL, but not in the PCA. Genetic inhibition of MuRF1 protected the CT and EDL from ALI-induced muscle atrophy. MyHC-Extraocular (MyHC-EO) comprised 27% of the total MyHC in the PCA, distributed as hybrid fibers throughout 72% of PCA muscle fibers. The vocal cord abductor (PCA) contains a large proportion of fibers expressing MyHC-EO and is spared from muscle atrophy in ALI mice. The lack of MuRF1 expression in the PCA suggests a previously unrecognized mechanism whereby this muscle is spared from atrophy. Atrophy of the vocal cord adductor (CT) may contribute to the impaired voice and increased aspiration observed in ICU survivors. Further evaluation of the sparing of muscles involved in systemic wasting diseases may lead to potential therapeutic targets for these illnesses.

  3. Atomic Force Microscopy Determination of Young’s Modulus of Bovine Extra-ocular Tendon Fiber Bundles

    Science.gov (United States)

    Yoo, Lawrence; Reed, Jason; Shin, Andrew; Demer, Joseph L.

    2014-01-01

    Extra-ocular tendons (EOTs) transmit the oculorotary force of the muscles to the eyeball to generate dynamic eye movements and align the eyes, yet the mechanical properties of the EOTs remain undefined. The EOTs are known to be composed of parallel bundles of small fibers whose mechanical properties must be determined in order to characterize the overall behavior of EOTs. The current study aimed to investigate the transverse Young’s modulus of EOT fiber bundles using atomic force microscopy (AFM). Fresh bovine EOT fiber bundle specimens were maintained under temperature and humidity control, and indented 100 nm by the inverted pyramid tip of an AFM (Veeco Digital Instruments, NY). Ten indentations were conducted for each of 3 different locations of 10 different specimens from each of 6 EOTs, comprising a total of 1,800 indentations. Young’s modulus for each EOT was determined using a Hertzian contact model. Young’s moduli for fiber bundles from all six EOTs were determined. Mean Young’s moduli for fiber bundles were similar for the six anatomical EOTs: lateral rectus 60.12 ± 2.69 (±SD) MPa, inferior rectus 59.69 ± 5.34 MPa, medial rectus 56.92 ±1.91 MPa, superior rectus 59.66 ±2.64 MPa, inferior oblique 57.7± 1.36 MPa, and superior oblique 59.15± 2.03. Variation in Young’s moduli among the six EOTs was not significant (P > 0.25). The Young’s modulus of bovine EOT fibers is highly uniform among the six extraocular muscles, suggesting that each EOT is assembled from fiber bundles representing the same biomechanical elements. This uniformity will simplify overall modeling. PMID:24767704

  4. Facilitation handlings induce increase in electromyographic activity of muscles involved in head control of cerebral palsy children.

    Science.gov (United States)

    Simon, Anelise de Saldanha; do Pinho, Alexandre Severo; Grazziotin Dos Santos, Camila; Pagnussat, Aline de Souza

    2014-10-01

    This study aimed to investigate the electromyographic (EMG) activation of the main cervical muscles involved in the head control during two postures widely used for the facilitation of head control in children with Cerebral Palsy (CP). A crossover trial involving 31 children with clinical diagnosis of CP and spastic quadriplegia was conducted. Electromyography was used to measure muscular activity in randomized postures. Three positions were at rest: (a) lateral decubitus, (b) ventral decubitus on the floor and (c) ventral decubitus on the wedge. Handlings for facilitating the head control were performed using the hip joint as key point of control in two postures: (a) lateral decubitus and (b) ventral decubitus on wedge. All children underwent standardized handlings, performed by the same researcher with experience in the neurodevelopmental treatment. EMG signal was recorded from muscles involved in the head control (paraspinal and sternocleidomastoid muscles) in sagittal, frontal and transverse planes, at the fourth cervical vertebra (C4), tenth thoracic vertebra (T10) and sternocleidomastoid muscle (SCM) levels. The results showed a significant increase in muscle activation when handling was performed in the lateral decubitus at C4 (Pcontrol, as evaluated by the activity of cervical and upper trunk muscles. Handling performed in lateral decubitus may induce a slightly better facilitation of head control. These findings contribute to evidence-based physiotherapy practice for the rehabilitation of severely spastic quadriplegic CP children.

  5. Developmental Stage, Muscle and Genetic Type Modify Muscle Transcriptome in Pigs: Effects on Gene Expression and Regulatory Factors Involved in Growth and Metabolism

    Science.gov (United States)

    Ayuso, Miriam; Fernández, Almudena; Núñez, Yolanda; Benítez, Rita; Isabel, Beatriz; Fernández, Ana I.; Rey, Ana I.; González-Bulnes, Antonio; Medrano, Juan F.; Cánovas, Ángela; López-Bote, Clemente J.

    2016-01-01

    Iberian pig production includes purebred (IB) and Duroc-crossbred (IBxDU) pigs, which show important differences in growth, fattening and tissue composition. This experiment was conducted to investigate the effects of genetic type and muscle (Longissimus dorsi (LD) vs Biceps femoris (BF)) on gene expression and transcriptional regulation at two developmental stages. Nine IB and 10 IBxDU piglets were slaughtered at birth, and seven IB and 10 IBxDU at four months of age (growing period). Carcass traits and LD intramuscular fat (IMF) content were measured. Muscle transcriptome was analyzed on LD samples with RNA-Seq technology. Carcasses were smaller in IB than in IBxDU neonates (p 1.5) by the developmental stage (5,812 genes), muscle type (135 genes), and genetic type (261 genes at birth and 113 at growth). Newborns transcriptome reflected a highly proliferative developmental stage, while older pigs showed upregulation of catabolic and muscle functioning processes. Regarding the genetic type effect, IBxDU newborns showed enrichment of gene pathways involved in muscle growth, in agreement with the higher prenatal growth observed in these pigs. However, IB growing pigs showed enrichment of pathways involved in protein deposition and cellular growth, supporting the compensatory gain experienced by IB pigs during this period. Moreover, newborn and growing IB pigs showed more active glucose and lipid metabolism than IBxDU pigs. Moreover, LD muscle seems to have more active muscular and cell growth, while BF points towards lipid metabolism and fat deposition. Several regulators controlling transcriptome changes in both genotypes were identified across muscles and ages (SIM1, PVALB, MEFs, TCF7L2 or FOXO1), being strong candidate genes to drive expression and thus, phenotypic differences between IB and IBxDU pigs. Many of the identified regulators were known to be involved in muscle and adipose tissues development, but others not previously associated with pig muscle growth

  6. Developmental Stage, Muscle and Genetic Type Modify Muscle Transcriptome in Pigs: Effects on Gene Expression and Regulatory Factors Involved in Growth and Metabolism.

    Science.gov (United States)

    Ayuso, Miriam; Fernández, Almudena; Núñez, Yolanda; Benítez, Rita; Isabel, Beatriz; Fernández, Ana I; Rey, Ana I; González-Bulnes, Antonio; Medrano, Juan F; Cánovas, Ángela; López-Bote, Clemente J; Óvilo, Cristina

    2016-01-01

    Iberian pig production includes purebred (IB) and Duroc-crossbred (IBxDU) pigs, which show important differences in growth, fattening and tissue composition. This experiment was conducted to investigate the effects of genetic type and muscle (Longissimus dorsi (LD) vs Biceps femoris (BF)) on gene expression and transcriptional regulation at two developmental stages. Nine IB and 10 IBxDU piglets were slaughtered at birth, and seven IB and 10 IBxDU at four months of age (growing period). Carcass traits and LD intramuscular fat (IMF) content were measured. Muscle transcriptome was analyzed on LD samples with RNA-Seq technology. Carcasses were smaller in IB than in IBxDU neonates (p 1.5) by the developmental stage (5,812 genes), muscle type (135 genes), and genetic type (261 genes at birth and 113 at growth). Newborns transcriptome reflected a highly proliferative developmental stage, while older pigs showed upregulation of catabolic and muscle functioning processes. Regarding the genetic type effect, IBxDU newborns showed enrichment of gene pathways involved in muscle growth, in agreement with the higher prenatal growth observed in these pigs. However, IB growing pigs showed enrichment of pathways involved in protein deposition and cellular growth, supporting the compensatory gain experienced by IB pigs during this period. Moreover, newborn and growing IB pigs showed more active glucose and lipid metabolism than IBxDU pigs. Moreover, LD muscle seems to have more active muscular and cell growth, while BF points towards lipid metabolism and fat deposition. Several regulators controlling transcriptome changes in both genotypes were identified across muscles and ages (SIM1, PVALB, MEFs, TCF7L2 or FOXO1), being strong candidate genes to drive expression and thus, phenotypic differences between IB and IBxDU pigs. Many of the identified regulators were known to be involved in muscle and adipose tissues development, but others not previously associated with pig muscle growth

  7. Post-mortem changes in chicken muscle : some key biochemical processes involved in the conversion of muscle to meat

    NARCIS (Netherlands)

    Schreurs, F.J.G.

    1999-01-01

    The post mortem changes taking place in poultry muscular tissue and the resulting meat quality, until the moment of consumption of the meat by the consumer are described. Modern broiler chickens grow 'at the edge of what is metabolically possible'. This hypothesis is derived from the fact that muscl

  8. Involvement of skeletal muscle protein, glycogen, and fat metabolism in the adaptation on early lactation of dairy cows.

    Science.gov (United States)

    Kuhla, Björn; Nürnberg, Gerd; Albrecht, Dirk; Görs, Solvig; Hammon, Harald M; Metges, Cornelia C

    2011-09-02

    During early lactation, high-yielding dairy cows cannot consume enough feed to meet nutrient requirements. As a consequence, animals drop into negative energy balance and mobilize body reserves including muscle protein and glycogen for milk production, direct oxidation, and hepatic gluconeogenesis. To examine which muscle metabolic processes contribute to the adaptation during early lactation, six German Holstein cows were blood sampled and muscle biopsied throughout the periparturient period. From pregnancy to lactation, the free plasma amino acid pattern imbalanced and plasma glucose decreased. Several muscle amino acids, as well as total muscle protein, fat, and glycogen, and the expression of glucose transporter-4 were reduced within the first 4 weeks of lactation. The 2-DE and MALDI-TOF-MS analysis identified 43 differentially expressed muscle protein spots throughout the periparturient period. In early lactation, expression of cytoskeletal proteins and enzymes involved in glycogen synthesis and in the TCA cycle was decreased, whereas proteins related to glycolysis, fatty acid degradation, lactate, and ATP production were increased. On the basis of these results, we propose a model in which the muscle breakdown in early lactation provides substrates for milk production by a decoupled Cori cycle favoring hepatic gluconeogenesis and by interfering with feed intake signaling.

  9. CF2 transcription factor is involved in the regulation of Mef2 RNA levels, nuclei number and muscle fiber size.

    Science.gov (United States)

    Arredondo, Juan J; Vivar, Jorge; Laine-Menéndez, Sara; Martínez-Morentin, Leticia; Cervera, Margarita

    2017-01-01

    CF2 and Mef2 influence a variety of developmental muscle processes at distinct stages of development. Nevertheless, the exact nature of the CF2-Mef2 relationship and its effects on muscle building remain yet to be resolved. Here, we explored the regulatory role of CF2 in the Drosophila embryo muscle formation. To address this question and not having proper null CF2 mutants we exploited loss or gain of function strategies to study the contribution of CF2 to Mef2 transcription regulation and to muscle formation. Our data point to CF2 as a factor involved in the regulation of muscle final size and/or the number of nuclei present in each muscle. This function is independent of its role as a Mef2 collaborative factor in the transcriptional regulation of muscle-structural genes. Although Mef2 expression patterns do not change, reductions or increases in parallel in CF2 and Mef2 transcript abundance were observed in interfered and overexpressed CF2 embryos. Since CF2 expression variations yield altered Mef2 expression levels but with correct spatio-temporal Mef2 expression patterns, it can be concluded that only the mechanism controlling expression levels is de-regulated. Here, it is proposed that CF2 regulates Mef2 expression through a Feedforward Loop circuit.

  10. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise.

    Science.gov (United States)

    Puchert, Malte; Adams, Volker; Linke, Axel; Engele, Jürgen

    2016-09-01

    The chemokine CXCL12 and its primary receptor, CXCR4, not only promote developmental myogenesis, but also muscle regeneration. CXCL12 chemoattracts CXCR4-positive satellite cells/blood-borne progenitors to the injured muscle, promotes myoblast fusion, partially with existing myofibers, and induces angiogenesis in regenerating muscles. Interestingly, the mechanisms underlying muscle regeneration are in part identical to those involved in muscular adaptation to intensive physical exercise. These similarities now prompted us to determine whether physical exercise would impact the CXCL12 system in skeletal muscle. We found that CXCL12 and CXCR4 are upregulated in the gastrocnemius muscle of rats that underwent a four-week period of constrained daily running exercise on a treadmill. Double-staining experiments confirmed that CXCL12 and CXCR4 are predominantly expressed in MyHC-positive muscle fibers. Moreover, these training-dependent increases in CXCL12 and CXCR4 expression also occurred in rats with surgical coronary artery occlusion, implying that the muscular CXCL12 system is still active in skeletal myopathy resulting from chronic heart failure. Expression of the second CXCL12 receptor, CXCR7, which presumably acts as a scavenger receptor in muscle, was not affected by training. Attempts to dissect the molecular events underlying the training-dependent effects of CXCL12 revealed that the CXCL12-CXCR4 axis activates anabolic mTOR-p70S6K signaling and prevents upregulation of the catabolic ubiquitin ligase MurF-1 in C2C12 myotubes, eventually increasing myotube diameters. Together, these findings point to a pivotal role of the CXCL12-CXCR4 axis in exercise-induced muscle maintenance and/or growth.

  11. Differential Muscle Involvement in Mice and Humans Affected by McArdle Disease

    DEFF Research Database (Denmark)

    Krag, Thomas O; Pinós, Tomàs; Nielsen, Tue L;

    2016-01-01

    , variations in fiber size, vacuoles, and some internal nuclei associated with cytosolic glycogen accumulation and ongoing regeneration; structural damage was seen only in a minority of human patients. Neither liver nor brain isoforms of glycogen phosphorylase were upregulated in muscles, thus providing...... no substitution for the missing muscle isoform. In the mice, the tibialis anterior (TA) muscles were invariably more damaged than the quadriceps muscles. This may relate to a 7-fold higher level of myophosphorylase in TA compared to quadriceps in wild-type mice and suggests higher glucose turnover in the TA. Thus......McArdle disease (muscle glycogenosis type V) is caused by myophosphorylase deficiency, which leads to impaired glycogen breakdown. We investigated how myophosphorylase deficiency affects muscle physiology, morphology, and glucose metabolism in 20-week-old McArdle mice and compared the findings...

  12. Rules of tissue packing involving different cell types: human muscle organization.

    Science.gov (United States)

    Sánchez-Gutiérrez, Daniel; Sáez, Aurora; Gómez-Gálvez, Pedro; Paradas, Carmen; Escudero, Luis M

    2017-01-10

    Natural packed tissues are assembled as tessellations of polygonal cells. These include skeletal muscles and epithelial sheets. Skeletal muscles appear as a mosaic composed of two different types of cells: the "slow" and "fast" fibres. Their relative distribution is important for the muscle function but little is known about how the fibre arrangement is established and maintained. In this work we capture the organizational pattern in two different healthy muscles: biceps brachii and quadriceps. Here we show that the biceps brachii muscle presents a particular arrangement, based on the different sizes of slow and fast fibres. By contrast, in the quadriceps muscle an unbiased distribution exists. Our results indicate that the relative size of each cellular type imposes an intrinsic organization into natural tessellations. These findings establish a new framework for the analysis of any packed tissue where two or more cell types exist.

  13. Split-hand plus sign in ALS: differential involvement of the flexor pollicis longus and intrinsic hand muscles.

    Science.gov (United States)

    Menon, Parvathi; Bae, Jong Seok; Mioshi, Eneida; Kiernan, Matthew C; Vucic, Steve

    2013-05-01

    The flexor pollicis longus (FPL), a key muscle involved in fractionated thumb movements, may be relatively spared in amyotrophic lateral sclerosis (ALS) compared to the thenar group of muscles, termed the split-hand plus sign. Consequently, the diagnostic utility of the split-hand plus sign was prospectively assessed in ALS. In total, 103 patients (37 ALS and 66 non-ALS) with neuromuscular symptoms underwent assessment of FPL and APB strength using the Medical Research Council (MRC) score. A median nerve strength index (MSI) was developed to quantify differential involvement by expressing the APB strength score as a fraction of the FPL strength score. The APB muscle strength was significantly reduced compared to FPL strength in ALS patients (p hand plus sign distinguished ALS from non-ALS neuromuscular disorders, thereby suggesting a diagnostic utility of this novel clinical sign in ALS.

  14. Insulin-independent GLUT4 translocation in proliferative vascular smooth muscle cells involves SM22α.

    Science.gov (United States)

    Zhao, Li-Li; Zhang, Fan; Chen, Peng; Xie, Xiao-Li; Dou, Yong-Qing; Lin, Yan-Ling; Nie, Lei; Lv, Pin; Zhang, Dan-Dan; Li, Xiao-Kun; Miao, Sui-Bing; Yin, Ya-Juan; Dong, Li-Hua; Song, Yu; Shu, Ya-Nan; Han, Mei

    2017-02-01

    The insulin-sensitive glucose transporter 4 (GLUT4) is a predominant facilitative glucose transporter in vascular smooth muscle cells (VSMCs) and is significantly upregulated in rabbit neointima. This study investigated the role of GLUT4 in VSMC proliferation, the cellular mechanism underlying PDGF-BB-stimulated GLUT4 translocation, and effects of SM22α, an actin-binding protein, on this process. Chronic treatment of VSMCs with PDGF-BB significantly elevated GLUT4 expression and glucose uptake. PDGF-BB-induced VSMC proliferation was dependent on GLUT4-mediated glucose uptake. Meanwhile, the response of GLUT4 to insulin decreased in PDGF-BB-stimulated VSMCs. PDGF-BB-induced GLUT4 translocation partially rescued glucose utilization in insulin-resistant cells. Immunofluorescence and western blot analysis revealed that PDGF-BB induced GLUT4 translocation in an actin dynamics-dependent manner. SM22α disruption facilitated GLUT4 translocation and glucose uptake by promoting actin dynamics and cortical actin polymerization. Similar results were observed in VSMCs of SM22α (-/-) mice. The in vivo experiments showed that the glucose level in the neointima induced by ligation was significantly increased in SM22α (-/-) mice, accompanied by increased neointimal thickness, compared with those in wild-type mice. These findings suggest that GLUT4-mediated glucose uptake is involved in VSMC proliferation, and provide a novel link between SM22α and glucose utilization in PDGF-BB-triggered proliferation.

  15. Calcineurin-NFAT signaling is involved in phenylephrine-induced vascular smooth muscle cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Xiao PANG; Ning-ling SUN

    2009-01-01

    Aim: Catecholamine-induced vascular smooth muscle cell (VSMC) proliferation is one of the major events in the pathogenesis of atherosclerosis and vascular remodeling. The calcineurin-NFAT pathway plays a role in regulating growth and differentiation in various cell types. We investigated whether the calcineurin-NFAT pathway was involved in the regulation of phenylephrine-induced VSMC proliferation.Methods: Proliferation of VSMC was measured using an MTT assay and cell counts. Localization of NFATcl was detected by immunofluorescence staining. NFATcl-DNA binding was determined by EMSA and luciferase activity analyses.NFATcl and calcineurin levels were assayed by immunoprecipitation.Results: Phenylephrine (PE, an α1-adrenoceptor agonist) increased VSMC proliferation and cell number. Prazosin (an α1-adrenoceptor antagonist), cyclosporin A (CsA, an inhibitor of calcineurin) and chelerythrine (an inhibitor of PKC)decreased PE-induced proliferation and cell number. Additional treatment of VSMC with CsA or chelerythrine further inhibited proliferation and cell number in the chelerythrine-pretreatment group and the CsA-pretreatment group. CsA and chelerythrine alone had no effect on either absorbance or cell number. CsA decreased PE-induced calcineurin levels and activity. NFATc1 was translocated from the cytoplasm to the nucleus upon treatment with PE. This translocation was reversed by CsA. CsA decreased the PE-induced NFATc1 level in the nucleus. PE increased NFAT's DNA binding activity and NFAT-dependent reporter gene expression. CsA blocked these effects.Conclusion: CsA partially suppresses PE-induced VSMC proliferation by inhibiting calcineurin activity and NFATc1 nuclear translocation. The calcineurin-NFATc1 pathway is involved in the hyperplastic growth of VSMC induced by phenylephrine.

  16. Anatomic localization of motor points for the neuromuscular blockade of hand intrinsic muscles involved in thumb-in-palm.

    Science.gov (United States)

    Im, Sun; Han, Seung Ho; Choi, Jin Hwan; Lee, Je Hoon; Ko, Young Jin; Lee, Jong In; Kim, Hye Won

    2008-09-01

    To determine the location of the motor points and intramuscular branches for the muscles involved in thumb-in-palm and the abductor pollicis brevis muscle, the latter of which, because of its anatomic proximity, may be inadvertently blocked. Hand intrinsic muscles from 20 fresh cadavers were dissected. The point of nerve entry to the muscle belly and the points where the intramuscular endings were located most proximally and distally were defined in relation to a reference line connecting the hook of hamate and the head of the first metacarpal bone. We were able to define a region, located from 66.08% +/- 8.67% to 70.28% +/- 10.62% of the reference line, with the hook of hamate as starting point, where intramuscular endings for the thumb-in-palm muscles were dense and farther from the intramuscular endings for the abductor pollicis brevis. The region around 40% of the reference line was the point where the intramuscular endings were most dense for the abductor pollicis brevis. The results may provide guidelines that could help in localizing the appropriate points for the neuromuscular blockade of thumb-in-palm muscles and, at the same time, help in minimizing the inadvertent block of the abductor pollicis brevis.

  17. Astragalus Polysaccharide Suppresses Skeletal Muscle Myostatin Expression in Diabetes: Involvement of ROS-ERK and NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Min Liu

    2013-01-01

    Full Text Available Objective. The antidiabetes drug astragalus polysaccharide (APS is capable of increasing insulin sensitivity in skeletal muscle and improving whole-body glucose homeostasis. Recent studies suggest that skeletal muscle secreted growth factor myostatin plays an important role in regulating insulin signaling and insulin resistance. We hypothesized that regulation of skeletal muscle myostatin expression may be involved in the improvement of insulin sensitivity by APS. Methods. APS was administered to 13-week-old diabetic KKAy and nondiabetic C57BL/6J mice for 8 weeks. Complementary studies examined APS effects on the saturated acid palmitate-induced insulin resistance and myostatin expression in C2C12 cells. Results. APS treatment ameliorated hyperglycemia, hyperlipidemia, and insulin resistance and decreased the elevation of myostatin expression and malondialdehyde production in skeletal muscle of noninsulin-dependent diabetic KKAy mice. In C2C12 cells in vitro, saturated acid palmitate-induced impaired glucose uptake, overproduction of ROS, activation of extracellular regulated protein kinases (ERK, and NF-κB were partially restored by APS treatment. The protective effects of APS were mimicked by ERK and NF-κB inhibitors, respectively. Conclusion. Our study demonstrates elevated myostatin expression in skeletal muscle of type 2 diabetic KKAy mice and in cultured C2C12 cells exposed to palmitate. APS is capable of improving insulin sensitivity and decreasing myostatin expression in skeletal muscle through downregulating ROS-ERK-NF-κB pathway.

  18. Effect of lifelong football training on the expression of muscle molecular markers involved in healthy longevity

    DEFF Research Database (Denmark)

    Mancini, A; Vitucci, D; Labruna, G

    2017-01-01

    PURPOSE: We investigated whether lifelong football training affects the expression of healthy longevity-related muscle molecular markers. METHODS: Biopsies were collected from the vastus lateralis muscle of 10 lifelong football-trained men (68.2 ± 3.0 years) and of 10 active untrained healthy men...

  19. MRI displays involvement of the temporalis muscle and the deep temporal artery in patients with giant cell arteritis

    Energy Technology Data Exchange (ETDEWEB)

    Veldhoen, Simon; Bley, Thorsten A. [University Medical Center Wuerzburg, Department of Diagnostic and Interventional Radiology, Wuerzburg (Germany); Klink, Thorsten [Inselspital - University Medical Center Bern, Department of Diagnostic, Interventional and Pediatric Radiology, Bern (Switzerland); Geiger, Julia [University Medical Center Freiburg, Department of Diagnostic and Interventional Radiology, Freiburg (Germany); University Children' s Hospital Zuerich, Division of Radiology, Zuerich (Switzerland); Vaith, Peter; Glaser, Cornelia [University Medical Center Freiburg, Department of Rheumatology and Immunology, Freiburg (Germany); Ness, Thomas [University Medical Center Freiburg, Department of Ophthalmology, Freiburg (Germany); Duwendag, Dirk [University Medical Center Kiel, Department of Ophthalmology, Kiel (Germany); Both, Marcus [University Medical Center Kiel, Department of Diagnostic and Interventional Radiology, Kiel (Germany)

    2014-11-15

    To assess deep temporal artery and temporalis muscle involvement in patients with giant cell arteritis (GCA). Ninety-nine patients who received magnetic resonance imaging (MRI) and superficial temporal artery biopsy (TAB) were included in this study. Patients with positive TAB (n = 61) were defined as GCA patients, those with negative TAB (n = 38) as the GCA-negative reference group. Contrast-enhanced T1w-images were acquired utilizing 1.5 T and 3 T MRI. Two radiologists assessed the images. Mural contrast-hyperenhancement and wall thickening of the deep temporal artery and hyperenhancement of the muscle were defined as inflammation. MRI results were correlated with jaw claudication in 70 patients. The two observers found temporalis muscle involvement in 19.7 % (n = 12) and 21.3 % (n = 13) of GCA patients. It occurred bilaterally in 100 %. Specificities were 92/97 % and sensitivities were 20/21 %. Deep temporal artery involvement was found in 34.4 % (n = 21) and 49.2 % (n = 30) and occurred bilaterally in 80/90.5 %. Specificities were 84/95 % and sensitivities were 34/49 %. Both structures were affected simultaneously in 18/21.3 %. Jaw claudication correlated moderately with inflammation of the temporalis muscle (r = 0.31; p < 0.05) and the deep temporal artery (r = 0.38; p = 0.01). MRI visualizes changes in the temporalis muscle and the deep temporal artery in GCA. Moderate correlation of clinical symptoms with MRI results was observed. circle Approximately 20 % of GCA patients presented with temporalis muscle inflammation. (orig.)

  20. MRI for the demonstration of subclinical muscle involvement in muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Sookhoo, S. [Department of Neuroradiology, Newcastle upon Tyne (United Kingdom); MacKinnon, I. [Department of Neuroradiology, Newcastle upon Tyne (United Kingdom); Bushby, K. [Department of Clinical Genetics, International Centre for Life, Newcastle upon Tyne (United Kingdom); Chinnery, P.F. [Department of Neurology, Regional Neurosciences Centre, Newcastle upon Tyne (United Kingdom); Birchall, D. [Department of Neuroradiology, Newcastle upon Tyne (United Kingdom)]. E-mail: daniel.birchall@nuth.nhs.uk

    2007-02-15

    Aim: To compare magnetic resonance imaging (MRI) with clinical examination for the detection of muscle abnormality in patients with muscular dystrophy. Methods: Muscle power in 20 patients with a variety of forms of muscular dystrophy was examined clinically using the Medical Research Council (MRC) grading scale, and patients were subsequently imaged with MRI. MRI and clinical examination for the detection of muscle normality and abnormality were compared using a McNemar chi-squared test to examine differences between the two methods. Results: MRI demonstrated radiological evidence of muscle abnormality more often than clinical examination; 50% of movements assessed as normal on clinical examination were associated with muscle abnormalities on MRI, including a significant proportion where there was severe radiological abnormality, indicating that focally advanced disease may be undetectable clinically. Conclusion: The combination of clinical examination and MRI could improve the accuracy of phenotypic characterization of patients with muscular dystrophy, and this in turn could allow a more focussed molecular analysis through muscle biopsy or genetic investigation. This may also be very helpful in the assessment of the degree of muscle compromise not only in the early phases of the disease but especially during follow-up and can be used in therapeutic trials.

  1. Calcium-binding proteins in skeletal muscles of the mdx mice: potential role in the pathogenesis of Duchenne muscular dystrophy.

    Science.gov (United States)

    Pertille, Adriana; de Carvalho, Candida Luiza Tonizza; Matsumura, Cintia Yuri; Neto, Humberto Santo; Marques, Maria Julia

    2010-02-01

    Duchenne muscular dystrophy is one of the most common hereditary diseases. Abnormal ion handling renders dystrophic muscle fibers more susceptible to necrosis and a rise in intracellular calcium is an important initiating event in dystrophic muscle pathogenesis. In the mdx mice, muscles are affected with different intensities and some muscles are spared. We investigated the levels of the calcium-binding proteins calsequestrin and calmodulin in the non-spared axial (sternomastoid and diaphragm), limb (tibialis anterior and soleus), cardiac and in the spared extraocular muscles (EOM) of control and mdx mice. Immunoblotting analysis showed a significant increase of the proteins in the spared mdx EOM and a significant decrease in the most affected diaphragm. Both proteins were comparable to the cardiac muscle controls. In limb and sternomastoid muscles, calmodulin and calsequestrin were affected differently. These results suggest that differential levels of the calcium-handling proteins may be involved in the pathogenesis of myonecrosis in mdx muscles. Understanding the signaling mechanisms involving Ca(2+)-calmodulin activation and calsequestrin expression may be a valuable way to develop new therapeutic approaches to the dystrophinopaties.

  2. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine.

    Science.gov (United States)

    Liu, Tingjiao; Lin, Jinghan; Ju, Ting; Chu, Lei; Zhang, Liming

    2015-08-01

    Arterial calcification is common in vascular diseases and involves conversion of vascular smooth muscle cells (VSMCs) to an osteoblast phenotype. Clinical studies suggest that the development of atherosclerosis can be promoted by homocysteine (HCY), but the mechanisms remain unclear. Here, we determined whether increases in HCY levels lead to an increase in VSMC calcification and differentiation, and examined the role of an extracellular matrix remodeler, matrix metalloproteinase-2 (MMP-2). Rat VSMCs were exposed to calcification medium in the absence or presence of HCY (10, 100 or 200 μmol/L) or an MMP-2 inhibitor (10(-6) or 10(-5) mol/L). MTT assays were performed to determine the cytotoxicity of the MMP-2 inhibitor in calcification medium containing 200 μmol/L HCY. Calcification was assessed by measurements of calcium deposition and alkaline phosphatase (ALP) activity as well as von Kossa staining. Expression of osteocalcin, bone morphogenetic protein (BMP)-2, and osteopontin, and MMP-2 was determined by immunoblotting. Calcification medium induced osteogenic differentiation of VSMCs. HCY promoted calcification, increased osteocalcin and BMP-2 expression, and decreased expression of osteopontin. MMP-2 expression was increased by HCY in a dose-dependent manner in VSMCs exposed to both control and calcification medium. The MMP-2 inhibitor decreased the calcium content and ALP activity, and attenuated the osteoblastic phenotype of VSMCs. Vascular calcification and osteogenic differentiation of VSMCs were positively regulated by HCY through increased/restored MMP-2 expression, increased expression of calcification proteins, and decreased anti-calcification protein levels. In summary, MMP-2 inhibition may be a protective strategy against VSMC calcification.

  3. Effects of long-term football training on the expression profile of genes involved in muscle oxidative metabolism.

    Science.gov (United States)

    Alfieri, A; Martone, D; Randers, M B; Labruna, G; Mancini, A; Nielsen, J J; Bangsbo, J; Krustrup, P; Buono, P

    2015-02-01

    We investigated whether long-term recreational football training affects the expression of health-related biochemical and molecular markers in healthy untrained subjects. Five untrained healthy men trained for 1 h 2.4 times/week for 12 weeks and 1.3 times/week for another 52 weeks. Blood samples and a muscle biopsy from the vastus lateralis were collected at T0 (pre intervention) and at T1 (post intervention). Gene expression was measured by RTqPCR on RNA extracted from muscle biopsies. The expression levels of the genes principally involved in energy metabolism (PPARγ, adiponectin, AMPKα1/α2, TFAM, NAMPT, PGC1α and SIRT1) were measured at T0 and T1. Up-regulation of PPARγ (p football training could be a useful tool to improve the expression of muscle molecular biomarkers that are correlated to oxidative metabolism in healthy males.

  4. Involvement of nitric oxide in myotoxicity produced by diisopropylphosphorofluoridate (DFP)-induced muscle hyperactivity

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ramesh C. [Toxicology Department, Breathitt Veterinary Center, Murray State University, PO Box 2000, Hopkinsville, KY 42240 (United States); Milatovic, Dejan [Department of Pathology, Medical Center North, Vanderbilt University, Nashville, Tennessee (United States); Dettbarn, Wolf-D. [Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (United States)

    2002-12-01

    Oxidative stress, as determined by increased lipid peroxidation, has been implicated in the pathology of myotoxicity. As a model system to study the response of muscle to oxidative insults, we have studied the effects of diisopropylphosphorofluoridate (DFP)-induced muscle hyperactivity on levels of nitric oxide (NO) and energy metabolites in rat skeletal muscles. In in vivo experiments, citrulline levels as indicators of NO and NO synthase (NOS), and ATP and phosphocreatine (PCr) as indicators of mitochondrial dysfunction, were determined using HPLC methods 15 min, 30 min, 60 min, 2 h, and 24 h after intoxication. Within 15 min of DFP exposure, with onset of fasciculations, citrulline levels were significantly elevated in all three muscles [soleus, extensor digitorum longus (EDL), and diaphragm]. Maximum increases in citrulline (272-288%) were noted 60 min after DFP injection. At this time point, acetylcholinesterase activity was reduced by 90-96% (soleus < diaphragm < EDL). The levels of ATP and PCr were maximally reduced (30-43%), and total adenine nucleotides, and total creatine compounds showed declines. The findings revealed that the increase in NOS activity and NO was greater than the decrease of ATP and PCr. Since memantine (MEM) has been shown to reduce nerve and muscle hyperactivity, we have studied the possible protective effect of MEM on the DFP-induced biochemical changes. Pretreatment with MEM (18 mg/kg s.c.) and atropine sulfate (16 mg/kg s.c.), 60 min and 15 min, respectively, before DFP injection prevented the increase in citrulline and muscle hyperactivity and the decrease in ATP and PCr. These data suggest that free radical reactions by depleting high-energy phosphates may be initiating the cascade of events leading to myotoxicity during DFP-induced muscle hyperactivity. (orig.)

  5. Effects of long-term football training on the expression profile of genes involved in muscle oxidative metabolism

    DEFF Research Database (Denmark)

    Alfieri, A; Martone, D; Randers, Morten Bredsgaard

    2015-01-01

    and a muscle biopsy from the vastus lateralis were collected at T0 (pre intervention) and at T1 (post intervention). Gene expression was measured by RTqPCR on RNA extracted from muscle biopsies. The expression levels of the genes principally involved in energy metabolism (PPARγ, adiponectin, AMPKα1/α2, TFAM......, NAMPT, PGC1α and SIRT1) were measured at T0 and T1. Up-regulation of PPARγ (p ... are directly or indirectly involved in the glucose and lipid oxidative metabolism. Multiple linear regression analysis revealed that fat percentage was independently associated with NAMPT, PPARγ and adiponectin expression. In conclusion, long-term recreational football training could be a useful tool...

  6. Involvement of the Interosseous and Lumbrical Muscle-Tendon Units in the Lateral and Spiral Cords in Dupuytren's Disease of the Middle Fingers.

    Science.gov (United States)

    Thoma, Achilleas; Karpinski, Marta

    2017-07-01

    The nature of intrinsic muscle involvement in Dupuytren's disease of the middle fingers (long and ring) remains poorly characterized. Over the years, the authors have observed that both the spiral and lateral digital cords in the middle fingers receive contribution from intrinsic muscle-tendon units. This report describes the anatomical characteristics and frequency of intrinsic muscle-tendon unit involvement in Dupuytren's disease of the middle fingers. Intrinsic muscle involvement in the middle digits was recorded in the operative reports of patients undergoing Dupuytren's surgery between October of 2013 and February of 2016. The anatomical variations of diseased fascia were delineated and classified. Of the 113 digits with Dupuytren's contracture operated on during this period, 52 involved the middle fingers (12 long and 40 ring fingers). Intrinsic muscles were found to be involved in the contracture of 14 of these digits. Two unique contracture patterns were identified: type I contracture, which involves a lateral digital cord originating from intrinsic muscle-tendon units and contracting only the proximal interphalangeal joint; and type II contracture, which involves a spiral cord receiving contribution from intrinsic muscle-tendon units and contracting both the metacarpophalangeal and proximal interphalangeal joints. The frequency of type I and type II contractures was 6 percent and 12 percent, respectively. Intrinsic hand muscles may contribute to Dupuytren's disease in the middle digits, and the authors suggest resecting cords as close as possible to their musculotendinous origin to improve postoperative outcomes.

  7. Cardiac myostatin upregulation occurs immediately after myocardial ischemia and is involved in skeletal muscle activation of atrophy.

    Science.gov (United States)

    Castillero, Estibaliz; Akashi, Hirokazu; Wang, Catherine; Najjar, Marc; Ji, Ruiping; Kennel, Peter J; Sweeney, H Lee; Schulze, Paul C; George, Isaac

    2015-01-30

    Myostatin (MSTN), a negative regulator of muscle growth and size, is increased after acute myocardial infarction (AMI) but timing of upregulation after injury is not known. In this study, we investigated the timing of the MSTN/AKT/p38 pathway activation in heart and skeletal muscle after AMI, as well as the potential effect of cardiac injury-related MSTN endocrine signaling on skeletal muscle and other circulating growth factors. Coronary artery ligation was performed in C57BL/6 mice at age 8 weeks to induce AMI. Mice were sacrificed at different time points (10 m, 1 h, 2 h, 6 h, 12 h, 24 h, 1 week, 2 weeks, 1 months and 2 months) after surgery (n=3 per time point, n=18 total). Cardiac and circulating MSTN upregulation occurred as early as 10 min after AMI. Two months after AMI, increased cardiac MSTN/SMAD2,3 and p38 together with decreased IGF-1/AKT signaling suggest an anti-hypertrophic profile. In skeletal muscle, an absence of local MSTN increase was accompanied by increased MSTN-dependent SMAD2,3 signaling, suggestive of paracrine effects due to cardiac-derived MSTN. Protein degradation by the ubiquitin-proteasome system in the skeletal muscle was also evident. Serum from 24h post-MI mice effectively induced a MSTN-dependent increase in atrogin1 and MuRF1. Our study shows that cardiac MTSN activation occurs rapidly after cardiac ischemia and may be involved in peripheral protein degradation in the skeletal muscle by activating atrogin1 and MuRF1. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Recurrent Myonecrosis Involving Adductor Muscle Group Bilaterally: A Rare Complication of Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Manzoor Bhat

    2014-11-01

    Full Text Available Diabetic myonecrosis is a rare and underdiagnosed complication of long-standing, uncontrolled diabetes. It usually occurs in patients with long-standing diabetes in the presence of microvascular complications. Thigh muscles are more commonly affected and the usual presentation is thigh swelling with or without pain, systemic features being rare. Magnetic resonance imaging is the gold standard for diagnosis. Most patients recover spontaneously with bed rest, adequate analgesia and good glycemic control. We present a case of recurrent myonecrosis of adductor muscles of the thigh in a patient with long standing type 2 diabetes mellitus who recovered with conservative management.

  9. Dependence of Force Produced by Polypyrrole Based Artificial Muscles on Ionic Species Involved

    DEFF Research Database (Denmark)

    Careem, M.A.; Vidanapathirana, K.P.; Skaarup, Steen

    2004-01-01

    Artificial muscles have been fabricated in the form bilayer strips using an insulating polymer layer and polypyrrole (PPy) conducting polymer film, and the force produced by them during redox processes have been investigated. This study reports the effects of anions in the polymerization electrol......Artificial muscles have been fabricated in the form bilayer strips using an insulating polymer layer and polypyrrole (PPy) conducting polymer film, and the force produced by them during redox processes have been investigated. This study reports the effects of anions in the polymerization...

  10. TNF-α is involved in activating DNA fragmentation in skeletal muscle

    Science.gov (United States)

    Carbó, N; Busquets, S; van Royen, M; Alvarez, B; López-Soriano, F J; Argilés, J M

    2002-01-01

    Intraperitoneal administration of 100 μg kg−1 (body weight) of tumour necrosis factor-α to rats for 8 consecutive days resulted in a significant decrease in protein content, which was concomitant with a reduction in DNA content. Interestingly, the protein/DNA ratio was unchanged in the skeletal muscle of the tumour necrosis factor-α-treated animals as compared with the non-treated controls. Analysis of muscle DNA fragmentation clearly showed enhanced laddering in the skeletal muscle of tumour necrosis factor-α-treated animals, suggesting an apoptotic phenomenon. In a different set of experiments, mice bearing a cachexia-inducing tumour (the Lewis lung carcinoma) showed an increase in muscle DNA fragmentation (9.8-fold) as compared with their non-tumour-bearing control counterparts as previously described. When gene-deficient mice for tumour necrosis factor-α receptor protein I were inoculated with Lewis lung carcinoma, they were also affected by DNA fragmentation; however the increase was only 2.1-fold. These results suggest that tumour necrosis factor-α partly mediates DNA fragmentation during experimental cancer-associated cachexia. British Journal of Cancer (2002) 86, 1012–1016. DOI: 10.1038/sj/bjc/6600167 www.bjcancer.com © 2002 Cancer Research UK PMID:11953838

  11. Whole-Body Muscle MRI in Patients with Hyperkalemic Periodic Paralysis Carrying the SCN4A Mutation T704M: Evidence for Chronic Progressive Myopathy with Selective Muscle Involvement.

    Science.gov (United States)

    Lee, Young Han; Lee, Hyung Soo; Lee, Hyo Eun; Hahn, Seok; Nam, Tai Seung; Shin, Ha Young; Choi, Young Chul; Kim, Seung Min

    2015-10-01

    Hyperkalemic periodic paralysis (hyperKPP) is a muscle sodium-ion channelopathy characterized by recurrent paralytic attacks. A proportion of affected individuals develop fixed or chronic progressive weakness that results in significant disability. However, little is known about the pathology of hyperKPP-induced fixed weakness, including the pattern of muscle involvement. The aim of this study was to characterize the patterns of muscle involvement in hyperKPP by whole-body magnetic resonance imaging (MRI). We performed whole-body muscle MRI in seven hyperKPP patients carrying the T704M mutation in the SCN4A skeletal sodium-channel gene. Muscle fat infiltration, suggestive of chronic progressive myopathy, was analyzed qualitatively using a grading system and was quantified by the two-point Dixon technique. Whole-body muscle MRI analysis revealed muscle atrophy and fatty infiltration in hyperKPP patients, especially in older individuals. Muscle involvement followed a selective pattern, primarily affecting the posterior compartment of the lower leg and anterior thigh muscles. The muscle fat fraction increased with patient age in the anterior thigh (r=0.669, p=0.009), in the deep posterior compartment of the lower leg (r=0.617, p=0.019), and in the superficial posterior compartment of the lower leg (r=0.777, p=0.001). Our whole-body muscle MRI findings provide evidence for chronic progressive myopathy in hyperKPP patients. The reported data suggest that a selective pattern of muscle involvement-affecting the posterior compartment of the lower leg and the anterior thigh-is characteristic of chronic progressive myopathy in hyperKPP.

  12. Extraocular Light Therapy in Winter Depression : A Double-blind Placebo-controlled Study

    NARCIS (Netherlands)

    Koorengevel, Kathelijne M.; Gordijn, Marijke C.M.; Beersma, Domien G.M.; Meesters, Ybe; den Boer, Johan; Hoofdakker, Rutger H. van den; Daan, Serge

    2001-01-01

    Background: It has been hypothesized that the circadian pacemaker is phase delayed in seasonal affective disorder, (SAD) winter type, and that the phase advance resulting from morning ocular light accounts for the efficacy of light therapy. Extraocular light has been reported to produce phase-shifts

  13. Striated muscle involvement in experimental oral infection by herpes simplex virus type 1.

    Science.gov (United States)

    Gonzalez, María Inés; Sanjuan, Norberto A

    2013-07-01

    Herpes simplex virus type 1 is one of the most frequent causes of oral infection in humans, especially during early childhood. Several experimental models have been developed to study the pathogenesis of this virus but all of them employed adult animals. In this work, we developed an experimental model that uses mice younger than 4 days old, to more closely resemble human infection. Mice were infected subcutaneously with the prototype strain McIntyre of Herpes simplex-1, and the progression of infection was studied by immunoperoxidase. All animals died within 24-72 h post-infection, while viral antigens were found in the oral epithelium, nerves and brain. The most striking result was the finding of viral antigens in the nucleus and cytoplasm of cells belonging to striated muscles. Organotypic cultures of striated muscles were performed, and viral replication was observed in them by immunocytochemistry, electron microscopy and viral isolation. We conclude that the infection of striated muscles is present from the onset of oral infection and, eventually, could explain some clinical observations in humans.

  14. [Capacitative Ca²⁺ entry is involved in ACh-induced distal colon smooth muscle contraction in rats].

    Science.gov (United States)

    Kong, De-Hu; Zhou, Hua; Song, Jie; Ke, Dao-Ping; Hu, Jin-Lan; Li, Zhong-Wen; Ma, Rong

    2006-04-25

    , respectively), indicating that additional channels might be involved in the contractile mechanism. Furthermore, ACh only induced transient contractions in the absence of extracellular Ca(2+). Readmission of Ca(2+) into the extracellular compartment resulted in a significant and sustained increase in the tension of the smooth muscle. This response was not affected by verapamil (5 mumol/L) and Cd(2+) (5 mumol/L), both of which efficiently block VOCC at the doses. However, La(3+), a known inhibitor of SOCC, significantly suppressed the Ca(2+) readdition-induced contraction in a dose-dependent manner. On the basis of these results, we conclude that contraction of smooth muscle in the distal colon is regulated by multiple Ca(2+) channels. In addition to VOCC-mediated Ca(2+) influx, SOCC-mediated CCE participates in agonist-induced contractile response of distal colon smooth muscle in rats.

  15. No muscle involvement in myoclonus-dystonia caused by epsilon-sarcoglycan gene mutations1

    DEFF Research Database (Denmark)

    Hjermind, L.E.; Vissing, J.; Asmus, F.;

    2008-01-01

    Mutations in the epsilon-sarcoglycan gene (SGCE) can cause autosomal dominant inherited myoclonus-dystonia (M-D). Defects in other sarcoglycans; alpha-, beta-, gamma-, and delta can cause autosomal recessive inherited limb girdle muscular dystrophies. epsilon- and alpha-sarcoglycans are very...... homologous and may substitute for one-another in different tissues. We therefore investigated whether mutations in SGCE also cause abnormalities of skeletal and myocardial muscle. Six patients with clinically and genetically verified M-D and no signs of limb-girdle muscular dystrophy were included. Skeletal...

  16. Muscle involvement during intermittent contraction patterns with different target force feedback modes

    DEFF Research Database (Denmark)

    Sjøgaard, G; Jørgensen, L V; Ekner, D

    2000-01-01

    and following 30 min of intermittent contractions showed larger fatigue development with proprioceptive feedback than visual feedback. Also rating of perceived exertion increased more during proprioceptive feedback than visual feedback. This may in part be explained by small differences in the mechanics during...... timing and force level is generally not specified. DESIGN: Repeated measure design in which six subjects in randomized order performed two experimental conditions only differing in feedback mode. METHODS: Intermittent static elbow flexion was performed against either a fixed-force transducer (visual...... and consequently the development muscle fatigue and disorders....

  17. Transcriptome analysis of skeletal muscle tissue to identify genes involved in pre-slaughter stress response in pigs

    Directory of Open Access Journals (Sweden)

    Vincenzo Russo

    2010-01-01

    Full Text Available The knowledge of genes and molecular processes controlling stress reactions and involved in the genetic system determining resistance to stress in pigs could be important for the improvement of meat quality. This research aimed to compare the expression profiles of skeletal muscle between physically stressed and not stressed pigs of different breeds immediately before slaughter. DNA microarray analysis showed that different functional categories of genes are up-regulated in stressed compared to not stressed pigs and relevant differences among breeds were found.

  18. GLUT-4 translocation in skeletal muscle studied with a cell-free assay: involvement of phospholipase D.

    Science.gov (United States)

    Kristiansen, S; Nielsen, J N; Bourgoin, S; Klip, A; Franco, M; Richter, E A

    2001-09-01

    GLUT-4-containing membranes immunoprecipitated from insulin-stimulated rat skeletal muscle produce the phospholipase D (PLD) product phosphatidic acid. In vitro stimulation of PLD in crude membrane with ammonium sulfate (5 mM) resulted in transfer of GLUT-4 (3.0-fold vs. control) as well as transferrin receptor proteins from large to small membrane structures. The in vitro GLUT-4 transfer could be blocked by neomycin (a PLD inhibitor), and neomycin also reduced insulin-stimulated glucose transport in intact incubated soleus muscles. Furthermore, protein kinase B(beta) (PKB(beta)) was found to associate with the GLUT-4 protein and was transferred to small vesicles in response to ammonium sulfate in vitro. Finally, addition of cytosolic proteins, prepared from basal skeletal muscle, and GTP nucleotides to an enriched GLUT-4 membrane fraction resulted in in vitro transfer of GLUT-4 to small membranes (6.8-fold vs. unstimulated control). The cytosol and nucleotide-induced GLUT-4 transfer could be blocked by neomycin and N-ethylmaleimide. In conclusion, we have developed a cell-free assay that demonstrates in vitro GLUT-4 transfer. This transfer may suggest release of GLUT-4-containing vesicles from donor GLUT-4 membranes involving PLD activity and binding of PKB(beta) to GLUT-4.

  19. Transient receptor potential A1 is involved in cold-induced contraction in the isolated rat colon smooth muscle.

    Science.gov (United States)

    Dong, Yang; Shi, Hai-Lian; Shi, Jian-Rong; Wu, Da-Zheng

    2010-08-25

    Transient receptor potential (TRP) A1, a member of TRP channel family, is activated by noxious cold. The aims of this study were to determine if TRPA1 contributed to cold-induced contractions in the isolated rat colon preparations and explore the potential mechanisms. The colon smooth muscle layers were surgically isolated from the male Wistar rats and changes in isotonic tension of longitudinal muscle under various treatments were recorded as colonic motilities. Cold stimuli were obtained by the reperfusion with Krebs-Henseleit solution at given temperature using Constant Flow Pump. The mRNA expressions of TRPA1, TRPV1 and TRPM8 in rat colon smooth muscle layer were examined by using reverse transcription-polymerase chain reaction (RT-PCR) techniques. The results showed that the contractions induced by cold stimuli (from 37 degrees C to 12 degrees C stepwise) were inversely proportional to the temperature with a maximum contraction at 17 degrees C in both proximal and distal colons (Pcolon smooth muscle layers. Cold-induced colonic contractions were specially inhibited by TRPA1 blocker, ruthenium red (30 μmol/L), in the proximal and distal colon (Pcolons (both PCA, 1 mmol/L). Extracellular calcium removal (EGTA, 1 mmol/L), PLC blocker (U73122, 10 μmol/L) and IP(3) receptor blocker (2-aminoethoxydiphenyl borate, 2-APB, 30 μmol/L) all decreased the contractions evoked by the cooling at 17 degrees C in the proximal and distal colon (PCa(2+) channels blocker nifedipine (1 μmol/L) and neurotoxin tetrodotoxin (TTX, 2 μmol/L) decreased the contractile response in the distal colon (Pcolon. In conclusion, TRPA1 contributes to cold-induced contractions of the rat colon smooth muscle, and the mechanism of TRPA1 activation involves PLC/IP(3)/Ca(2+) pathway. L-type Ca(2+) channel and neurogenic mechanism other than muscarinic receptor might be partially involved in cold-induced contraction of the distal colon, which probably resulted in higher contraction of distal colon

  20. CD8 T cells are involved in skeletal muscle regeneration through facilitating MCP-1 secretion and Gr1(high) macrophage infiltration.

    Science.gov (United States)

    Zhang, Jing; Xiao, Zhicheng; Qu, Chao; Cui, Wei; Wang, Xiaonan; Du, Jie

    2014-11-15

    Inflammatory microenvironments play a key role in skeletal muscle regeneration. The infiltration of CD8 T cells into injured muscle has been reported. However, the role of CD8 T cells during skeletal muscle regeneration remains unclear. In this study, we used cardiotoxin-induced mouse skeletal muscle injury/regeneration model to investigate the role of CD8 T cells. Muscle regeneration was impaired and matrix deposit was increased in CD8α-deficient mice compared with wild-type (WT) mice whose CD8 T cells were infiltrated into damaged muscle after cardiotoxin injection. Adoptive transfer of CD8 T cells to CD8α-deficient mice improved muscle regeneration and inhibited matrix remodeling. Compared with WT mice, CD8α deficiency limited the recruitment of Gr1(high) macrophages (MPs) into muscle, resulting in the reduction of satellite cell number. The expression of MCP-1 (MCP-1/CCL2), which regulates the migration of Gr1(high) MPs, was reduced in CD8α-deficient mice compared with WT mice. Coculture CD8 T cells with MPs promoted MCP-1 secretion. The i.m. injection of MCP-1 markedly promoted the recruitment of Gr1(high) MPs and improved muscle regeneration in CD8α-deficient mice. We conclude that CD8 T cells are involved in skeletal muscle regeneration by regulating the secretion of MCP-1 to recruit Gr1(high) MPs, which facilitate myoblast proliferation.

  1. Muscle involvement during intermittent contraction patterns with different target force feedback modes

    DEFF Research Database (Denmark)

    Sjøgaard, G; Jørgensen, L V; Ekner, D

    2000-01-01

    feedback) or a weight to be held in position (proprioceptive feedback) both corresponding to 30% maximal voluntary contraction. Contraction and relaxation timing of 6 and 4 s, respectively, was shown on a VDU screen as colour code identical in both conditions. RESULTS: Test contractions performed before...... and following 30 min of intermittent contractions showed larger fatigue development with proprioceptive feedback than visual feedback. Also rating of perceived exertion increased more during proprioceptive feedback than visual feedback. This may in part be explained by small differences in the mechanics during...... the two different feedback modes. In line with this, EMG recorded from four shoulder/arm muscles analyzed for amplitude and frequency showed similar activity initially; but later, during the 30 min contraction larger amplitudes were attained during proprioceptive feedback than visual feedback. CONCLUSIONS...

  2. Involvement of phospholipase D in store-operated calcium influx in vascular smooth muscle cells.

    Science.gov (United States)

    Walter, M; Tepel, M; Nofer, J R; Neusser, M; Assmann, G; Zidek, W

    2000-08-11

    In non-excitable cells, sustained intracellular Ca2+ increase critically depends on influx of extracellular Ca2+. Such Ca2+ influx is thought to occur by a 'store-operated' mechanism, i.e. the signal for Ca2+ entry is believed to result from the initial release of Ca2+ from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Here we show that the depletion of cellular Ca2+ stores by thapsigargin or bradykinin is functionally linked to a phosphoinositide-specific phospholipase D (PLD) activity in cultured vascular smooth muscle cells (VSMC), and that phosphatidic acid formed via PLD enhances sustained calcium entry in this cell type. These results suggest a regulatory role for PLD in store-operated Ca2+ entry in VSMC.

  3. Mechanical stretch upregulates proteins involved in Ca2+ sensitization in urinary bladder smooth muscle hypertrophy.

    Science.gov (United States)

    Boopathi, Ettickan; Gomes, Cristiano; Zderic, Stephen A; Malkowicz, Bruce; Chakrabarti, Ranjita; Patel, Darshan P; Wein, Alan J; Chacko, Samuel

    2014-09-15

    Partial bladder outlet obstruction (pBOO)-induced remodeling of bladder detrusor smooth muscle (DSM) is associated with the modulation of cell signals regulating contraction. We analyzed the DSM from obstructed murine urinary bladders for the temporal regulation of RhoA GTPase and Rho-activated kinase (ROCK), which are linked to Ca(2+) sensitization. In addition, the effects of equibiaxial cell stretch, a condition thought to be associated with pBOO-induced bladder wall smooth muscle hypertrophy and voiding frequency, on the expression of RhoA, ROCK, and C-kinase-activated protein phosphatase I inhibitor (CPI-17) were investigated. DSM from 1-, 3-, 7-, and 14-day obstructed male mice bladders and benign prostatic hyperplasia (BPH)-induced obstructed human bladders revealed overexpression of RhoA and ROCK-β at the mRNA and protein levels compared with control. Primary human bladder myocytes seeded onto type I collagen-coated elastic silicone membranes were subjected to cyclic equibiaxial stretch, mimicking the cellular mechanical stretch in the bladder in vivo, and analyzed for the expression of RhoA, ROCK-β, and CPI-17. Stretch caused a significant increase of RhoA, ROCKβ, and CPI-17 expression. The stretch-induced increase in CPI-17 expression occurs at the transcriptional level and is associated with CPI-17 promoter binding by GATA-6 and NF-κB, the transcription factors responsible for CPI-17 gene transcription. Cell stretch caused by bladder overdistension in pBOO is the likely mechanism for initiating overexpression of the signaling proteins regulating DSM tone.

  4. Tendinous muscle insertions (scleromuscular junctions of the recti muscles) in patients with ocular alignment problems.

    Science.gov (United States)

    Todorova, M G; Palmowski-Wolfe, A M; Meyer, P

    2015-04-01

    The purpose of this study was to prove the hypothesis whether the scleromuscular junction of extraocular recti muscle is tendinous. Muscle samples of the 41 extraocular recti muscles of 33 patients and 4 muscle-/eye-matched samples from 2 postmortem eyes, were processed for light/electron microscopy and immunohistochemistry with antibodies against desmin, smooth-muscle actin and muscle regulating proteins like myf3 and myf4 (myogenin), tenascin C and for 8 samples against collagens I to IV. Histological examination of the muscle samples confirmed a thick collagen-structured tissue, specific for muscle tendon; without appearance of muscle tissue. This was confirmed by immunohistochemistry with antibodies against desmin, smooth-muscle actin, myf3 and myf4 (myogenin) and for eight samples with collagens I to IV. Anti-tenascin C marker was only strongly positive in the connective tissue of the blood vessel walls. Electron microscopy demonstrated collagen bundles composed of parallel oriented fibrils with a moderate amount of ground substance. The absence of contractile fibers at the sclerotendinous junction is an entirely normal finding in humans and cannot be related to ocular alignment pathogenesis. Georg Thieme Verlag KG Stuttgart · New York.

  5. Zyxin Is Involved In Regulation Of Mechanotransduction In Arteriole Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Zhe eSun

    2012-12-01

    Full Text Available Zyxin is a focal adhesion protein that has been implicated in the modulation of cell adhesion and motility, and is hypothesized to be a mechano-sensor in integrin-mediated responses to mechanical force. To test the functional role of zyxin in the mechanotransduction of microvascular smooth muscle cells (VSMC, we utilized atomic force microscopy (AFM to apply localized pulling forces to VSMC through a fibronectin (FN focal adhesion induced by a FN-coated bead on cell surface. Application of force with the AFM induced an increase of zyxin accumulation at the site of the FN-bead focal adhesion that accompanied the VSMC contractile response. Whereas, reduction of zyxin expression by using a zyxin-shRNA construct abolished the VSMC contractile response to AFM pulling forces, even though the zyxin-silenced VSMCs displayed increased adhesion to FN in both AFM adhesion assays and cell adhesion assays. The reduced zyxin expression significantly impaired cell spreading and reorganization of the actin cytoskeleton that could indicate a possible underlying reason for the loss of a contractile response to mechanical force. Consistent with these observations, zyxin silencing also resulted in reduced expression of Rac1, which plays an important role in the actin reorganization in VSMC, but increased TRIP6 and FAK expression, the latter being a major protein that promote cell adhesion. In conclusion, these data support an important enabling role for zyxin in VSMCs ability to mechanically respond to applied force.

  6. Involvement of NF-κB and muscle specific E3 ubiquitin ligase MuRF1 in cigarette smoke-induced catabolism in C2 myotubes.

    Science.gov (United States)

    Kaisari, Sharon; Rom, Oren; Aizenbud, Dror; Reznick, Abraham Z

    2013-01-01

    Cigarette smoking has been identified as a risk factor for muscular damage and sarcopenia, the age-related loss of muscle mass and strength in old age. Cigarette smoke (CS)-induced oxidative stress and p38 MAPK activation have been shown to be the main cellular mechanisms leading to skeletal muscle catabolism. In order to investigate the involvement of NF-κB as another possible cellular mechanism by which CS promotes muscle catabolism, C2 myotubes, from an in vitro skeletal muscle cell line, were exposed to different time periods of whole vapor phase CS in the presence or absence of NF-κB inhibitor, IMD-0354. The CS-induced reduction in diameter of myotubes and time-dependent degradation of the main contractile protein myosin heavy chain were abolished by NF-κB inhibition. Also, C2 exposure to CS resulted in IκB-α degradation and NF-κB activation, which led to upregulation of the muscle specific E3 ubiquitin ligase MuRF1, but not MAFbx/atrogin-1. In conclusion, our results demonstrate that vapor phase CS exposure to skeletal myotubes triggers NF-κB activation leading to skeletal muscle cell damage and breakdown of muscle proteins mediated by muscle specific E3 ubiquitin ligase MuRF1. Our findings provide another possible molecular mechanism for the catabolic effects of CS in skeletal muscle.

  7. Iron-induced skeletal muscle atrophy involves an Akt-forkhead box O3-E3 ubiquitin ligase-dependent pathway.

    Science.gov (United States)

    Ikeda, Yasumasa; Imao, Mizuki; Satoh, Akiho; Watanabe, Hiroaki; Hamano, Hirofumi; Horinouchi, Yuya; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Miyamoto, Licht; Ishizawa, Keisuke; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2016-05-01

    Skeletal muscle wasting or sarcopenia is a critical health problem. Skeletal muscle atrophy is induced by an excess of iron, which is an essential trace metal for all living organisms. Excessive amounts of iron catalyze the formation of highly toxic hydroxyl radicals via the Fenton reaction. However, the molecular mechanism of iron-induced skeletal muscle atrophy has remained unclear. In this study, 8-weeks-old C57BL6/J mice were divided into 2 groups: vehicle-treated group and the iron-injected group (10 mg iron day(-1)mouse(-1)) during 2 weeks. Mice in the iron-injected group showed an increase in the iron content of the skeletal muscle and serum and ferritin levels in the muscle, along with reduced skeletal muscle mass. The skeletal muscle showed elevated mRNA expression of the muscle atrophy-related E3 ubiquitin ligases, atrogin-1 and muscle ring finger-1(MuRF1), on days 7 and 14 of iron treatment. Moreover, iron-treated mice showed reduced phosphorylation of Akt and forkhead box O3 (FOXO3a) in skeletal muscles. Inhibition of FOXO3a using siRNA in vitro in C2C12 myotube cells inhibited iron-induced upregulation of atrogin-1 and MuRF1 and reversed the reduction in myotube diameters. Iron-load caused oxidative stress, and an oxidative stress inhibitor abrogated iron-induced muscle atrophy by reactivating the Akt-FOXO3a pathway. Iron-induced skeletal muscle atrophy is suggested to involve the E3 ubiquitin ligase mediated by the reduction of Akt-FOXO3a signaling by oxidative stress.

  8. Vasopressin-stimulated Ca2+ spiking in vascular smooth muscle cells involves phospholipase D.

    Science.gov (United States)

    Li, Y; Shiels, A J; Maszak, G; Byron, K L

    2001-06-01

    Physiological concentrations of [Arg(8)]vasopressin (AVP; 10-500 pM) stimulate oscillations of cytosolic free Ca2+ concentration (Ca2+ spikes) in A7r5 vascular smooth muscle cells. We previously reported that this effect of AVP was blocked by a putative phospholipase A2 (PLA2) inhibitor, ONO-RS-082 (5 microM). In the present study, the products of PLA2, arachidonic acid (AA), and lysophospholipids were found to be ineffective in stimulating Ca2+ spiking, and inhibitors of AA metabolism did not prevent AVP-stimulated Ca2+ spiking. Thin layer chromatography was used to monitor the release of AA and phosphatidic acid (PA), which are the products of PLA2 and phospholipase D (PLD), respectively. AVP (100 pM) stimulated both AA and PA formation, but only PA formation was inhibited by ONO-RS-082 (5 microM). Exogenous PLD (type VII; 2.5 U/ml) stimulated Ca2+ spiking equivalent to the effect of 100 pM AVP. AVP stimulated transphosphatidylation of 1-butanol (a PLD-catalyzed reaction) but not 2-butanol, and 1-butanol (but not 2-butanol) completely prevented AVP-stimulated Ca2+ spiking. Protein kinase C (PKC) inhibition, which completely prevents AVP-stimulated Ca2+ spiking, did not inhibit AVP-stimulated phosphatidylbutanol formation. These results suggest that AVP-stimulated Ca2+ spiking depends on activation of PLD rather than PLA2 and that PKC activation may be downstream of PLD in the signaling cascade.

  9. Acute strength exercise and the involvement of small or large muscle mass on plasma brain-derived neurotrophic factor levels

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Correia

    2010-01-01

    Full Text Available OBJECTIVE: Blood neurotrophins, such as the brain-derived neurotrophic factor, are considered to be of great importance in mediating the benefits of physical exercise. In this study, the effect of acute strength exercise and the involvement of small versus large muscle mass on the levels of plasma brain-derived neurotrophic factor were evaluated in healthy individuals. METHODS: The concentric strengths of knee (large and elbow (small flexor and extensor muscles were measured on two separate days. Venous blood samples were obtained from 16 healthy subjects before and after exercise. RESULTS: The levels of brain-derived neurotrophic factor in the plasma did not significantly increase after both arm and leg exercise. There was no significant difference in the plasma levels of the brain-derived neurotrophic factor in the arms and legs. CONCLUSION: The present results demonstrate that acute strength exercise does not induce significant alterations in the levels of brain-derived neurotrophic factor plasma concentrations in healthy individuals. Considering that its levels may be affected by various factors, such as exercise, these findings suggest that the type of exercise program may be a decisive factor in altering peripheral brain-derived neurotrophic factor.

  10. Involvement of Rac1 and the actin cytoskeleton in insulin- and contraction-stimulated intracellular signaling and glucose uptake in mature skeletal muscle

    DEFF Research Database (Denmark)

    Sylow, Lykke

    by exercise is therefore an important alternative way to maintain whole body glucose homeostasis in insulin resistant states such as Type 2 Diabetes. Although the insulin- and exercise-stimulated signaling pathways to glucose uptake have been studied extensively, the underlying mechanisms are not well...... understood. The aim of the current PhD was therefore to investigate the involvement of Rac1 and the actin cytoskeleton in the regulation of insulin- and contraction-stimulated glucose uptake in mature skeletal muscle. The central findings of this PhD thesis was that Rac1 was activated by both insulin...... and muscle contraction in mouse and human skeletal muscle. Most importantly, Rac1 was involved in the regulation of both insulin- and contraction-stimulated glucose uptake. Interestingly, Rac1 signaling was defective in skeletal muscle of insulin resistant obese and T2D human subjects as well as in obese...

  11. Muscle-specific E3 ubiquitin ligases are involved in muscle atrophy of cancer cachexia: an in vitro and in vivo study.

    Science.gov (United States)

    Yuan, Lei; Han, Jun; Meng, Qingyang; Xi, Qiulei; Zhuang, Qiulin; Jiang, Yi; Han, Yusong; Zhang, Bo; Fang, Jing; Wu, Guohao

    2015-05-01

    Muscle atrophy F-Box (MAFbx)/atrogin-1 and muscle ring-finger-1 (MuRF-1) have been identified as two muscle-specific E3 ubiquitin ligases that are highly expressed in skeletal muscle during muscle atrophy. However, the role of muscle-specific E3 ubiquitin ligases during the process of muscle atrophy of cancer cachexia remains largely unknown. In the present study, we analyzed the expression of atrogin-1 and MuRF-1 in the skeletal muscle of patients with malignant and benign disease. The possible mechanisms were studied both in a colon 26-induced cancer cachexia mouse model and in tumor necrosis factor-α (TNF-α) induced atrophy C2C12 cells. Our results demonstrated that atrogin-1 and MuRF-1 tended to be increased in the skeletal muscle of patients with malignant disease even before weight loss. Non-tumor body weights and gastrocnemius weights were significantly decreased while expression levels of ubiquitin proteasome pathway associated genes (atrogin-1, MuRF-1, ubiquitin and E2-14K) were upregulated in cancer cachexia mice. Significant myotube atrophy with atrogin-1 overexpression was observed in the C2C12 cells treated with TNF-α. Meanwhile, knockdown of atrogin-1 by small interfering RNA (siRNA) protected C2C12 cells from the adverse effect of TNF-α. In conclusion, muscle-specific E3 ubiquitin ligases were upregulated during cancer cachexia, and atrogin-1 may be a potential molecular target for treating muscle atrophy induced by cancer cachexia.

  12. A case of adult-onset reducing body myopathy presenting a novel clinical feature, asymmetrical involvement of the sternocleidomastoid and trapezius muscles.

    Science.gov (United States)

    Fujii, Takayuki; Hayashi, Shintaro; Kawamura, Nobutoshi; Higuchi, Masa-Aki; Tsugawa, Jun; Ohyagi, Yasumasa; Hayashi, Yukiko K; Nishino, Ichizo; Kira, Jun-Ichi

    2014-08-15

    We herein report a 32-year-old woman with adult-onset reducing body myopathy (RBM) who had a mutation in the four-and-a-half LIM domain 1 gene (FHL1) and showed a marked asymmetrical involvement of sternocleidomastoid and trapezius muscles. At 30 years of age she noticed bilateral foot drop, and over the next two years developed difficulty raising her right arm. At 32 years of age she was admitted to our hospital for a diagnostic evaluation. Neurological examination showed moderate weakness and atrophy of her right sternocleidomastoid muscle, right trapezius muscle, and bilateral upper proximal muscles. There were severe weakness and atrophy of her bilateral tibialis anterior muscles. Her deep tendon reflexes were hypoactive in her upper extremities. Her serum creatine kinase level was mildly increased. Muscle biopsy specimens from the left tibialis anterior muscle revealed marked variation in fiber size, some necrotic or regenerating fibers, and reducing bodies. Gene analysis of FHL1 demonstrated a mutation: a heterozygous missense mutation of c.377G>A (p. C126T) in FHL1. Compared with previous adult-onset RBM cases harboring mutations in FHL1, our case was characterized by asymmetrical atrophy of the sternocleidomastoid and trapezius muscles. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Skeletal muscle lipid accumulation in type 2 diabetes may involve the liver X receptor pathway

    DEFF Research Database (Denmark)

    Kase, Eili T; Wensaas, Andreas J; Aas, Vigdis;

    2005-01-01

    . Interestingly, in response to activation of LXRs, myotubes from patients with type 2 diabetes showed an elevated uptake and incorporation of palmitate into complex lipids but an absence of palmitate oxidation to CO(2). These results provide evidence for a functional role of LXRs in both lipid and glucose...... metabolism and energy uncoupling in human myotubes. Furthermore, these data suggest that increased intramyocellular lipid content in type 2 diabetic patients may involve an altered response to activation of components in the LXR pathway........ Consistently, activation of LXRs induced the expression of relevant genes: fatty acid translocase (CD36/FAT), glucose transporters (GLUT1 and -4), sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor-gamma, carnitine palmitoyltransferase-1, and uncoupling protein 2 and 3...

  14. Cardiac troponin testing in idiopathic inflammatory myopathies and systemic sclerosis-spectrum disorders: biomarkers to distinguish between primary cardiac involvement and low-grade skeletal muscle disease activity.

    Science.gov (United States)

    Hughes, Michael; Lilleker, James B; Herrick, Ariane L; Chinoy, Hector

    2015-05-01

    Primary cardiac involvement, an under-recognised manifestation of the idiopathic inflammatory myopathies (IIM) and systemic sclerosis (SSc)-spectrum disorders, is associated with significant mortality. Within these two conditions, traditional skeletal muscle enzyme testing may not effectively distinguish between skeletal and cardiac muscle involvement, especially in patients with subclinical cardiac disease. Accurate biomarkers are thus required to screen for cardiac disease, to better inform both therapeutic decision-making and treatment response. The widespread uptake of cardiac troponin testing has revolutionised the management of acute coronary syndromes. While cardiac troponin I (cTnI) appears specific to the myocardium, cardiac troponin T (cTnT) is also expressed by skeletal muscle, including regenerating skeletal muscle tissue. There is increasing interest about the role of cardiac troponins as a putative biomarker of primary cardiac involvement in IIM and SSc-spectrum disorders. Herewith we discuss subclinical cardiac disease in IIM and SSc-spectrum disorders, the respective roles of cTnI and cTnT testing, and the re-expression of cTnT within regenerating skeletal muscle tissue. There remains wide variation in access to cardiac troponin testing nationally and internationally. We propose two pragmatic clinical pathways using cardiac troponins, preferably measuring concomitant cTnT followed by confirmatory (cardiac) cTnI to screen patients for subclinical cardiac disease and/or low-grade skeletal muscle disease activity, and also an agenda for future research.

  15. Prevention of oculocardiac reflex (O.C.R during extraocular muscle surgery

    Directory of Open Access Journals (Sweden)

    Misurya V

    1990-01-01

    Full Text Available In the present study the effectiveness of intravenous atropine sulphate which blocks the peripheral muscarinic receptors at the heart and retrobulbar xylocaine hydrochloride which blocks the conduction at ciliary ganglion on the afferent limb of OCR was studied during strabismus surgery. The study was conducted on fifty three patients of either sex having squint of more than ten years duration. The patients were randomly allocated into four groups. No preanaesthetic medication with atropine or retrobulbar block with xylocaine was given in control group of patients. In the second group, only preanaesthetic medication with atropine was given; while in the third group only retrobulbar injection of xylocaine was given five minutes before operation. In the last group both atropine as preanaesthetic medication and xylocaine as retrobulbar block were given. The electrocardiographic recordings were taken before and throughout the operative procedure. It was interesting to note that in the group where atropine and xylocaine were used none of the patients exhibited activation of OCR. Results have been discussed.

  16. Postnatal changes of local neuronal circuits involved in activation of jaw-closing muscles.

    Science.gov (United States)

    Inoue, Tomio; Nakamura, Shiro; Takamatsu, Junichi; Tokita, Kenichi; Gemba, Akiko; Nakayama, Kiyomi

    2007-04-01

    Feeding behaviour in mammals changes from suckling to mastication during postnatal development and the neuronal circuits controlling feeding behaviour should change in parallel to the development of orofacial structures. In this review we discuss the location of excitatory premotor neurons for jaw-closing motoneurons (JCMNs) and postnatal changes of excitatory synaptic transmission from the supratrigeminal region (SupV) to JCMNs. We show that neurons located in SupV and the reticular formation dorsal to the facial nucleus most likely excite JCMNs. Excitatory inputs from SupV to JCMNs are mediated by activation of glutamate and glycine receptors in neonatal rats, whereas glycinergic inputs from SupV to JCMNs become inhibitory with age. We also show that the incidence of post-spike afterdepolarization increases during postnatal development, whereas the amplitude and half-duration of the medium-duration afterhyperpolarization decrease with age. Such postnatal changes in synaptic transmission from SupV to JCMNs and membrane properties of JCMNs might be involved in the transition from suckling to mastication.

  17. Muscle biopsy

    Science.gov (United States)

    ... Inflammatory diseases of muscle (such as polymyositis or dermatomyositis ) Diseases of the connective tissue and blood vessels ( ... disease that involves inflammation and a skin rash ( dermatomyositis ) Inherited muscle disorder ( Duchenne muscular dystrophy ) Inflammation of ...

  18. Enhancement of non-heme iron absorption by anchovy (Engraulis japonicus) muscle protein hydrolysate involves a nanoparticle-mediated mechanism.

    Science.gov (United States)

    Wu, Haohao; Zhu, Suqin; Zeng, Mingyong; Liu, Zunying; Dong, Shiyuan; Zhao, Yuanhui; Huang, Hai; Lo, Y Martin

    2014-08-27

    The mechanisms by which meat enhances human absorption of non-heme iron remain unknown. Recently, anchovy (Engraulis japonicus) muscle protein hydrolysate (AMPH) was found to mediate the formation of nanosized ferric hydrolysis products in vitro. The current paper evaluates the effects of AMPH on the bioavailability and the intestinal speciation of non-heme iron in rats, followed by an investigation of cellular uptake pathways of in vitro-formed AMPH-stabilized nanosized ferric hydrolysis products (ANPs) by polarized human intestinal epithelial (Caco-2) cells. The hemoglobin regeneration efficiencies in anemic rats followed the order ferric citrate (9.79 ± 2.02%) iron in the groups of FC+AMPH, FeSO4, and ANPs were significantly lower than the corresponding hemoglobin regeneration efficiencies (P iron in intestinal iron absorption from FC+AMPH, FeSO4, and ANPs. Calcein-fluorescence measurements of the labile iron pool of polarized Caco-2 cells revealed the involvement of both divalent transporter 1 and endocytosis in apical uptake of ANPs, with endocytosis dominating at acidic extracellular pH. Overall, AMPH enhancement of non-heme iron absorption involves a nanoparticle-mediated mechanism.

  19. Identification of mechanisms involved in the relaxation of rabbit cavernous smooth muscle by a new nitric oxide donor ruthenium compound

    Directory of Open Access Journals (Sweden)

    João Batista Gadelha de Cerqueira

    2012-10-01

    Full Text Available PURPOSE: The aim of this study was to evaluate the relaxation in vitro of cavernous smooth muscle induced by a new NO donor of the complex nitrosil-ruthenium, named trans-[Ru(NH34(caffeine(NO]C13 (Rut-Caf and sodium nitroprusside (SNP. MATERIALS AND METHODS: The tissues, immersed in isolated bath systems, were pre-contracted with phenilephrine (PE (1 µM and then concentration-response curves (10-12 - 10-4 M were obtained. To clarify the mechanism of action involved, it was added to the baths ODQ (10 µM, 30 µM, oxyhemoglobin (10 µM, L-cysteine (100 µM, hydroxicobalamine (100 µM, glibenclamide, iberotoxin and apamine. Tissue samples were frozen in liquid nitrogen to measure the amount of cGMP and cAMP produced. RESULTS: The substances provoked significant relaxation of the cavernous smooth muscle. Both Rut-Caf and SNP determined dose-dependent relaxation with similar potency (pEC50 and maximum effect (Emax. The substances showed activity through activation of the soluble guanylyl cyclase (sGC, because the relaxations were inhibited by ODQ. Oxyhemoglobin significantly diminished the relaxation effect of the substances. L-cysteine failed to modify the relaxations caused by the agents. Hydroxicobalamine significantly diminished the relaxation effect of Rut-Caf. Glibenclamide significantly increased the efficacy of Rut-Caf (pEC50 4.09 x 7.09. There were no alterations of potency or maximum effect of the substances with the addition of the other ion channel blockers. Rut-Caf induced production of significant amounts of cGMP and cAMP during the relaxation process. CONCLUSIONS: In conclusion, Rut-Caf causes relaxation of smooth muscle of corpus cavernosum by means of activation of sGC with intracellular production of cGMP and cAMP; and also by release of NO in the intracellular environment. Rut-Caf releases the NO free radical and it does not act directly on the potassium ion channels.

  20. Vascular smooth muscle G(q) signaling is involved in high blood pressure in both induced renal and genetic vascular smooth muscle-derived models of hypertension.

    Science.gov (United States)

    Harris, David M; Cohn, Heather I; Pesant, Stéphanie; Zhou, Rui-Hai; Eckhart, Andrea D

    2007-11-01

    More than 30% of the US population has high blood pressure (BP), and less than a third of people treated for hypertension have it controlled. In addition, the etiology of most high BP is not known. Having a better understanding of the mechanisms underlying hypertension could potentially increase the effectiveness of treatment. Because G(q) signaling mediates vasoconstriction and vascular function can cause BP abnormalities, we were interested in determining the role of vascular smooth muscle (VSM) G(q) signaling in two divergent models of hypertension: a renovascular model of hypertension through renal artery stenosis and a genetic model of hypertension using mice with VSM-derived high BP. Inhibition of VSM G(q) signaling attenuated BP increases induced by renal artery stenosis to a similar extent as losartan, an ANG II receptor blocker and current antihypertensive therapy. Inhibition of G(q) signaling also attenuated high BP in our genetic VSM-derived hypertensive model. In contrast, BP remained elevated 25% following treatment with losartan, and prazosin, an alpha(1)-adrenergic receptor antagonist, only decreased BP by 35%. Inhibition of G(q) signaling attenuated VSM reactivity to ANG II and resulted in a 2.4-fold rightward shift in EC(50). We also determined that inhibition of G(q) signaling was able to reverse VSM hypertrophy in the genetic VSM-derived hypertensive model. These results suggest that G(q) signaling is an important signaling pathway in two divergent models of hypertension and, perhaps, optimization of antihypertensive therapy could occur with the identification of particular G(q)-coupled receptors involved.

  1. Myosin Heavy Chain Gene Expression in Developing Neonatal Skeletal Muscle: Involvement of the Nerve, Gravity, and Thyroid State

    Science.gov (United States)

    Baldwin, K. M.; Adams, G.; Haddad, F.; Zeng, M.; Qin, A.; Qin, L.; McCue, S.; Bodell, P.

    1999-01-01

    The myosin heavy chain (MHC) gene family encodes at least six MHC proteins (herein designated as neonatal, embryonic, slow type I (beta), and fast IIa, IIx, and IIb) that are expressed in skeletal muscle in a muscle-specific and developmentally-regulated fashion. At birth, both antigravity (e.g. soleus) and locomotor (e.g., plantaris) skeletal muscles are undifferentiated relative to the adult MHC phenotype such that the neonatal and embryonic MHC isoforms account for 80 - 90% of the MHC pool in a fast locomotor muscle; whereas, the embryonic and slow, type I isoforms account for approx. 90% of the pool in a typical antigravity muscle. The goal of this study was to investigate the role of an intact nerve, gravity and thyroid hormone (T3), as well as certain interactions of these interventions, on MHC gene expression in developing neonatal skeletal muscles of rodents.

  2. The differentiation of skeletal muscle cells involves a protein-tyrosine phosphatase-alpha-mediated C-Src signaling pathway

    DEFF Research Database (Denmark)

    Lu, Huogen; Shah, Poonam; Ennis, David

    2002-01-01

    Protein-tyrosine phosphatase-alpha (PTPalpha) plays an important role in various cellular signaling events, including proliferation and differentiation. In this study, we established L6 cell lines either underexpressing or overexpressing PTPalpha by stable transfection of cells with antisense PTP....... Moreover, enhanced expression of PTPalpha and activation of Src was detected during myogenesis. Together, these data indicate that PTPalpha is involved in the regulation of L6 myoblast growth and skeletal muscle cell differentiation via an Src-mediated signaling pathway....... PTPalpha or with full-length wild-type human or mouse or double catalytic site Cys --> Ala mutant (DM8) PTPalpha cDNA. Expression of PTPalpha in these cell lines was determined by immunoblotting and immunofluorescence. Cells harboring antisense PTPalpha exhibited a significantly reduced growth rate...... myogenesis 2 days earlier than wild-type L6 cells. Overexpression of phosphatase-inactive mutant PTPalpha recapitulated the phenotype of the antisense cells. The different myogenic activities of these cell lines were correlated with the expression of myogenin and creatine kinase activity. Consistent...

  3. Multi-purpose extraocular forceps for small-gauge pars plana vitrectomy.

    Science.gov (United States)

    Reichel, Elias; Chun, Dal W; Gurley, Kiersten

    2012-01-01

    A multi-purpose titanium forceps has been developed for small-gauge pars plana vitrectomy surgery. These forceps were designed to provide the vitreoretinal surgeon with a single tool for the extraocular manipulations that are necessary for the placement and removal of 23- and 25-gauge trochars for small-incision, sutureless pars plana vitrectomy surgery. The forceps has been designed to allow for the atraumatic manipulation of the conjunctiva, measurement of distance from the limbus, and a strong purchase of the trochar for both its fixation and removal.

  4. Sushruta in 600 B.C. introduced extraocular expulsion of lens material.

    Science.gov (United States)

    Grzybowski, Andrzej; Ascaso, Francisco J

    2014-03-01

    It is generally accepted that Jacques Daviel introduced in the 18th century the extracapsular technique of extraction of the lens while the couching method of cataract operation had already been practiced since ancient times. Present study analyses the first known cataract surgery description in three translations into English from the original Sanskrit Sushruta textbook and all the available literature on the subject. We found evidences that some sort of extraocular expulsion of lens material through a limbal puncture (paracentesis) was described by the Indian surgeon. Nevertheless, this incision cannot be considered as a classic extracapsular procedure because it was not large enough to allow the extraction of the entire lens.

  5. Altered Expression Pattern of Molecular Factors Involved in Colonic Smooth Muscle Functions: An Immunohistochemical Study in Patients with Diverticular Disease

    Science.gov (United States)

    Mattii, Letizia; Ippolito, Chiara; Segnani, Cristina; Battolla, Barbara; Colucci, Rocchina; Dolfi, Amelio; Bassotti, Gabrio; Blandizzi, Corrado; Bernardini, Nunzia

    2013-01-01

    Background The pathogenesis of diverticular disease (DD) is thought to result from complex interactions among dietary habits, genetic factors and coexistence of other bowel abnormalities. These conditions lead to alterations in colonic pressure and motility, facilitating the formation of diverticula. Although electrophysiological studies on smooth muscle cells (SMCs) have investigated colonic motor dysfunctions, scarce attention has been paid to their molecular abnormalities, and data on SMCs in DD are lacking. Accordingly, the main purpose of this study was to evaluate the expression patterns of molecular factors involved in the contractile functions of SMCs in the tunica muscularis of colonic specimens from patients with DD. Methods and Findings By means of immunohistochemistry and image analysis, we examined the expression of Cx26 and Cx43, which are prominent components of gap junctions in human colonic SMCs, as well as pS368-Cx43, PKCps, RhoA and αSMA, all known to regulate the functions of gap junctions and the contractile activity of SMCs. The immunohistochemical analysis revealed significant abnormalities in DD samples, concerning both the expression and distribution patterns of most of the investigated molecular factors. Conclusion This study demonstrates, for the first time, that an altered pattern of factors involved in SMC contractility is present at level of the tunica muscularis of DD patients. Moreover, considering that our analysis was conducted on colonic tissues not directly affected by diverticular lesions or inflammatory reactions, it is conceivable that these molecular alterations may precede and predispose to the formation of diverticula, rather than being mere consequences of the disease. PMID:23437299

  6. The Effects of Group Relaxation Training/Large Muscle Exercise, and Parental Involvement on Attention to Task, Impulsivity, and Locus of Control among Hyperactive Boys.

    Science.gov (United States)

    Porter, Sally S.; Omizo, Michael M.

    1984-01-01

    The study examined the effects of group relaxation training/large muscle exercise and parental involvement on attention to task, impulsivity, and locus of control among 34 hyperactive boys. Following treatment both experimental groups recorded significantly higher attention to task, lower impulsivity, and lower locus of control scores. (Author/CL)

  7. Comparison of muscle involvement and posture between the conventional deadlift and a 'walk-in' style deadlift machine.

    Science.gov (United States)

    Snyder, Benjamin J; Cauthen, Courtney P; Senger, Scott R

    2016-11-16

    The deadlift exercise is one of the most effective exercises for developing lower-body strength; however, technique errors can lead to low back injuries. The use of a 'walk-in' deadlift machine removes the weight bar by using a lever system with independent handles on either side of the body. Theoretically, this would allow alignment of the load with the center of gravity, encouraging a more upright torso and decreasing the involvement of the low back extensors. This study compared trunk angle, knee angle and electrical activity of key muscles between the conventional deadlift (CDL) and two foot positions (ball of foot or toe alignment) with pronated grip, (called BallPro and ToePro) of a walk-in deadlift machine among high-skilled and low-skilled lifters. While there were no skill group differences, in the combined groups the walk-in deadlift resulted in a significantly more upright trunk angle (p≤.05) for both the BallPro (29.9° ± 12.0 SD) and the ToePro (32.4° ± 10.4) compared to the CDL (23.7° ± 11.3) at the start of the lift. Similar results were noted in the mid-concentric phase, with trunk angles for the ToePro (46.9° ± 6.8) significantly different from CDL (42.66° ± 3.7), and for the mid-eccentric phase of the lift, with ToePro (47.2° ± 7.0) significantly higher than CDL (42.9° ± 6.5). ToePro knee angle was significantly more flexed (101.6° ± 10.6) than CDL (110.8° ± 11.5) at the starting position, with both BallPro (135.7° ± 14.2) and ToePro (136.5° ± 8.8) significantly more flexed than CDL (159.3° ± 5.9) in both the mid-concentric phase and the mid-eccentric phase (BallPro 129.2° ± 14.0, ToePro 127.7° ± 8.9, and CDL 150.5° ± 7.8). In the combined low and high skilled groups, electrical activity as a percent of maximum isometric root mean square activity of the erector spinae during the BallPro variation (53.1% ± 33.8) was significantly lower than CDL (73.19% ± 23.9), while vastus lateralis activity was significantly

  8. β2-Adrenoceptor is involved in connective tissue remodeling in regenerating muscles by decreasing the activity of MMP-9.

    Science.gov (United States)

    Silva, Meiricris T; Nascimento, Tábata L; Pereira, Marcelo G; Siqueira, Adriane S; Brum, Patrícia C; Jaeger, Ruy G; Miyabara, Elen H

    2016-07-01

    We investigated the role of β2-adrenoceptors in the connective tissue remodeling of regenerating muscles from β2-adrenoceptor knockout (β2KO) mice. Tibialis anterior muscles from β2KO mice were cryolesioned and analyzed after 3, 10, and 21 days. Regenerating muscles from β2KO mice showed a significant increase in the area density of the connective tissue and in the amount of collagen at 10 days compared with wild-type (WT) mice. A greater increase occurred in the expression levels of collagen I, III, and IV in regenerating muscles from β2KO mice evaluated at 10 days compared with WT mice; this increase continued at 21 days, except for collagen III. Matrix metalloproteinase (MMP-2) activity increased to a similar extent in regenerating muscles from both β2KO and WT mice at 3 and 10 days. This was also the case for MMP-9 activity in regenerating muscles from both β2KO and WT mice at 3 days; however, at 10 days post-cryolesion, this activity returned to baseline levels only in WT mice. MMP-3 activity was unaltered in regenerating muscles at 10 days. mRNA levels of tumor necrosis factor-α increased in regenerating muscles from WT and β2KO mice at 3 days and, at 10 days post-cryolesion, returned to baseline only in WT mice. mRNA levels of interleukin-6 increased in muscles from WT mice at 3 days post-cryolesion and returned to baseline at 10 days post-cryolesion but were unchanged in β2KO mice. Our results suggest that the β2-adrenoceptor contributes to collagen remodeling during muscle regeneration by decreasing MMP-9 activity.

  9. Isolated extraocular orbital mass: a rare presentation of sarcoidosis.

    Science.gov (United States)

    Sah, Birendra P; Sharma, Bikram; Iannuzzi, Michael C

    2016-10-07

    We report a case of orbital sarcoidosis in a 66 year old male who presented with one month history of right eye swelling and intermittent diplopia. MRI revealed an enhancing infiltrative soft tissue mass in the inferior aspect of the right orbit and biopsy of the mass demonstrated non-necrotizing granulomas. Chest CT scan was normal and PET scan showed no other organ involvement. He was treated with tapering doses of prednisone over six months. Although relapse occurred while tapering prednisone to 20 mg per day, he responded well to the addition of azathioprine with complete resolution of visual difficulties and orbital the mass on repeat MRI. Sarcoidosis, presenting as an isolated orbital mass is rare, can be successfully treated and should be included in differential diagnosis.

  10. Simple Eyes, Extraocular Photoreceptors and Opsins in the American Horseshoe Crab.

    Science.gov (United States)

    Battelle, Barbara-Anne

    2016-11-01

    The eyes and photoreceptors of the American horseshoe crab Limulus polyphemus have been studied since the 1930s, and this work has been critical for understanding basic mechanisms of vision. One of the attractions of Limulus as a preparation for studies of vision is that it has three different types of eyes-a pair of later compound, image-forming eyes and two types of simple eyes, a pair of median ocelli, and three pair of larval eyes. Each eye type is tractable for experimentation. Limulus also has extraocular photoreceptors in its segmental ganglia and tail. The current contribution focuses on photoreceptors in Limulus larval eyes and ocelli and its extraocular photoreceptors with the goal of summarizing what is currently known and not known about their physiology and function and the opsins they express. The Limulus genome encodes a surprisingly large number of opsins (18), and studies of their expression pattern have raised new questions about the role of opsin co-expression, the functions of peropsins expressed outside of eyes, and the physiological relevance of opsins with apparently very low expression levels. Studies of opsin expression in Limulus lead one to wonder whether photoreceptors yet to be discovered might be present throughout its central nervous system. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  11. The Ang II-induced growth of vascular smooth muscle cells involves a phospholipase D-mediated signaling mechanism.

    Science.gov (United States)

    Freeman, E J

    2000-02-15

    Angiotensin (Ang) II acts as a mitogen in vascular smooth muscle cells (VSMC) via the activation of multiple signaling cascades, including phospholipase C, tyrosine kinase, and mitogen-activated protein kinase pathways. However, increasing evidence supports signal-activated phospholipases A(2) and D (PLD) as additional mechanisms. Stimulation of PLD results in phosphatidic acid (PA) formation, and PA has been linked to cell growth. However, the direct involvement of PA or its metabolite diacylglycerol (DAG) in Ang II-induced growth is unclear. PLD activity was measured in cultured rat VSMC prelabeled with [(3)H]oleic acid, while the incorporation of [(3)H]thymidine was used to monitor growth. We have previously reported the Ang II-dependent, AT(1)-coupled stimulation of PLD and growth in VSMC. Here, we show that Ang II (100 nM) and exogenous PLD (0.1-100 units/mL; Streptomyces chromofuscus) stimulated thymidine incorporation (43-208% above control). PA (100 nM-1 microM) also increased thymidine incorporation to 135% of control. Propranolol (100 nM-10 microM), which inhibits PA phosphohydrolase, blocked the growth stimulated by Ang II, PLD, or PA by as much as 95%, an effect not shared by other beta-adrenergic antagonists. Propranolol also increased the production of PA in the presence of Ang II by 320% and reduced DAG and arachidonic acid (AA) accumulation. The DAG lipase inhibitor RHC-80267 (1-10 microM) increased Ang II-induced DAG production, while attenuating thymidine incorporation and release of AA. Thus, it appears that activation of PLD, formation of PA, conversion of PA to DAG, and metabolism of DAG comprise an important signaling cascade in Ang II-induced growth of VSMC.

  12. A Patient with Psoriatic Arthritis Imaged with FDG PET/CT Demonstrated an Unusual Imaging Pattern with Muscle and Fascia Involvement: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Bains, Sukharn; Khan, Sana; Aparici, Carina Mari [Univ. of California, San Francisco (United States); Win, Aung Zaw; Reimert, Matthew [San Fracisco Veterans Affairs Medical Center, San Francisco (United States)

    2012-06-15

    We describe the case of a patient with known history of psoriasis that presented with 1 year of unexplained fever, muscle weakness and marked weight loss, suspicious for B symptoms of a malignant origin. [{sup 18}F]-Fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET/CT) scans demonstrated an unusual serpiginous pattern of uptake in the fascia and muscles as well as lymph node activity. Multiple histological samples, including a final PET-probe guided lymph node surgical resection, excluded malignancy and confirmed the diagnosis of reactive inflammatory changes, with a plausible diagnosis of autoimmune lymphoproliferative syndrome with associated lymphadenitis, fasciitis and myositis, possibly mediated by tumor necrosis factor (TNF) inhibitor. To our knowledge, there is no evidence of a previously reported FDG uptake pattern of fascia and muscle involvement in psoriatic arthritis.

  13. Distinct α2 Na,K-ATPase membrane pools are differently involved in early skeletal muscle remodeling during disuse.

    Science.gov (United States)

    Kravtsova, Violetta V; Petrov, Alexey M; Matchkov, Vladimir V; Bouzinova, Elena V; Vasiliev, Alexander N; Benziane, Boubacar; Zefirov, Andrey L; Chibalin, Alexander V; Heiny, Judith A; Krivoi, Igor I

    2016-02-01

    The Na,K-ATPase is essential for the contractile function of skeletal muscle, which expresses the α1 and α2 subunit isoforms of Na,K-ATPase. The α2 isozyme is predominant in adult skeletal muscles and makes a greater contribution in working compared with noncontracting muscles. Hindlimb suspension (HS) is a widely used model of muscle disuse that leads to progressive atrophy of postural skeletal muscles. This study examines the consequences of acute (6-12 h) HS on the functioning of the Na,K-ATPase α1 and α2 isozymes in rat soleus (disused) and diaphragm (contracting) muscles. Acute disuse dynamically and isoform-specifically regulates the electrogenic activity, protein, and mRNA content of Na,K-ATPase α2 isozyme in rat soleus muscle. Earlier disuse-induced remodeling events also include phospholemman phosphorylation as well as its increased abundance and association with α2 Na,K-ATPase. The loss of α2 Na,K-ATPase activity results in reduced electrogenic pump transport and depolarized resting membrane potential. The decreased α2 Na,K-ATPase activity is caused by a decrease in enzyme activity rather than by altered protein and mRNA content, localization in the sarcolemma, or functional interaction with the nicotinic acetylcholine receptors. The loss of extrajunctional α2 Na,K-ATPase activity depends strongly on muscle use, and even the increased protein and mRNA content as well as enhanced α2 Na,K-ATPase abundance at this membrane region after 12 h of HS cannot counteract this sustained inhibition. In contrast, additional factors may regulate the subset of junctional α2 Na,K-ATPase pool that is able to recover during HS. Notably, acute, low-intensity muscle workload restores functioning of both α2 Na,K-ATPase pools. These results demonstrate that the α2 Na,K-ATPase in rat skeletal muscle is dynamically and acutely regulated by muscle use and provide the first evidence that the junctional and extrajunctional pools of the α2 Na,K-ATPase are regulated

  14. Distinct α2 Na,K-ATPase membrane pools are differently involved in early skeletal muscle remodeling during disuse

    Science.gov (United States)

    Kravtsova, Violetta V.; Petrov, Alexey M.; Matchkov, Vladimir V.; Bouzinova, Elena V.; Vasiliev, Alexander N.; Benziane, Boubacar; Zefirov, Andrey L.; Chibalin, Alexander V.; Heiny, Judith A.

    2016-01-01

    The Na,K-ATPase is essential for the contractile function of skeletal muscle, which expresses the α1 and α2 subunit isoforms of Na,K-ATPase. The α2 isozyme is predominant in adult skeletal muscles and makes a greater contribution in working compared with noncontracting muscles. Hindlimb suspension (HS) is a widely used model of muscle disuse that leads to progressive atrophy of postural skeletal muscles. This study examines the consequences of acute (6–12 h) HS on the functioning of the Na,K-ATPase α1 and α2 isozymes in rat soleus (disused) and diaphragm (contracting) muscles. Acute disuse dynamically and isoform-specifically regulates the electrogenic activity, protein, and mRNA content of Na,K-ATPase α2 isozyme in rat soleus muscle. Earlier disuse-induced remodeling events also include phospholemman phosphorylation as well as its increased abundance and association with α2 Na,K-ATPase. The loss of α2 Na,K-ATPase activity results in reduced electrogenic pump transport and depolarized resting membrane potential. The decreased α2 Na,K-ATPase activity is caused by a decrease in enzyme activity rather than by altered protein and mRNA content, localization in the sarcolemma, or functional interaction with the nicotinic acetylcholine receptors. The loss of extrajunctional α2 Na,K-ATPase activity depends strongly on muscle use, and even the increased protein and mRNA content as well as enhanced α2 Na,K-ATPase abundance at this membrane region after 12 h of HS cannot counteract this sustained inhibition. In contrast, additional factors may regulate the subset of junctional α2 Na,K-ATPase pool that is able to recover during HS. Notably, acute, low-intensity muscle workload restores functioning of both α2 Na,K-ATPase pools. These results demonstrate that the α2 Na,K-ATPase in rat skeletal muscle is dynamically and acutely regulated by muscle use and provide the first evidence that the junctional and extrajunctional pools of the α2 Na,K-ATPase are regulated

  15. Diabetic muscle infarction: two cases: one with recurrent and bilateral lesions and one with usual unilateral involvement.

    Science.gov (United States)

    Arroyave, Jorge A; Aljure, Dahyana Cadavid; Cañas, Carlos A; Vélez, Juan D; Abadía, Fabio Bonilla

    2013-04-01

    Diabetic muscle infarction is a rare complication of diabetes. We describe 2 cases of diabetic muscle infarction, each one of them with a particular form of clinical presentation: recurrence, bilateral engagement, and unilateral compromise. Both cases had history of poorly controlled diabetes mellitus and diabetic nephropathy. The diagnosis was based on clinical, imaging, and anatomopathological features. The treatment was with a close control of diabetes mellitus, analgesics, short-term immobilization, and physical therapy.

  16. Ocular and extra-ocular features of patients with Leber congenital amaurosis and mutations in CEP290

    NARCIS (Netherlands)

    Yzer, Suzanne; den Hollander, Anneke I.; Lopez, Irma; Pott, Jan-Willem R.; de Faber, Jan Tjeerd H. N.; Cremers, Frans P. M.; Koenekoop, Robert K.; van den Born, L. Ingeborgh

    2012-01-01

    Purpose: This study investigated the centrosomal protein, 290-KD (CEP290) associated genotype and ocular and extra-ocular phenotype in 18 patients with Leber congenital amaurosis (LCA). Methods: Eighteen patients with LCA from 14 families with mutations in the CEP290 gene were identified with sequen

  17. Ocular and extra-ocular features of patients with Leber congenital amaurosis and mutations in CEP290

    NARCIS (Netherlands)

    Yzer, S.; Hollander, A.I. den; Lopez, I.; Pott, J.W.; Faber, J.T. de; Cremers, F.P.; Koenekoop, R.K.; Born, L.I. van den

    2012-01-01

    PURPOSE: This study investigated the centrosomal protein, 290-KD (CEP290) associated genotype and ocular and extra-ocular phenotype in 18 patients with Leber congenital amaurosis (LCA). METHODS: Eighteen patients with LCA from 14 families with mutations in the CEP290 gene were identified with sequen

  18. Ocular and extra-ocular features of patients with Leber congenital amaurosis and mutations in CEP290

    NARCIS (Netherlands)

    Yzer, Suzanne; den Hollander, Anneke I.; Lopez, Irma; Pott, Jan-Willem R.; de Faber, Jan Tjeerd H. N.; Cremers, Frans P. M.; Koenekoop, Robert K.; van den Born, L. Ingeborgh

    2012-01-01

    Purpose: This study investigated the centrosomal protein, 290-KD (CEP290) associated genotype and ocular and extra-ocular phenotype in 18 patients with Leber congenital amaurosis (LCA). Methods: Eighteen patients with LCA from 14 families with mutations in the CEP290 gene were identified with sequen

  19. Application of the FlexiForce contact surface force sensor to continuous extraocular compression monitoring during craniotomy for cerebral aneurysms.

    Science.gov (United States)

    Mutoh, Tatsushi; Ishikawa, Tatsuya; Nishimura, Hiromi; Yasui, Nobuyuki

    2010-01-01

    The aims of this study were to introduce our newly developed device equipped with a contact surface force sensor (FlexiForce) for monitoring extraocular compression continuously, and to illustrate its potential clinical application using this device in patients undergoing uncomplicated frontotemporal or bifrontal craniotomy for surgical clipping of unruptured anterior circulation aneurysms. In a pilot study with volunteers, we determined the critical force of 100 gf to cause painful ocular sensation. Then we performed the bilateral extraocular force measurements in 15 patients undergoing uncomplicated frontotemporal or bifrontal craniotomy for surgical clipping of unruptured anterior circulation aneurysms. Extraocular force increased immediately after retraction of the flap, increased to 144+/-26 gf (mean+/-SD) during lower craniotomy close to the orbit, was maintained at 91+/-18 gf during microsurgery, and returned close to baseline at 24+/-14 gf after restoration of skin flap retraction. Such changes were observed only on the surgical side in frontotemporal craniotomy. Abnormal increase in extraocular force was effectively reduced by placing a real-time digital panel meter to warn surgeons to avoid excessive skin flap retraction during the surgical procedure. In conclusion, this new tool may allow us to monitor the external forces that can be applied intraoperatively to the ocular globe in the supine position.

  20. Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl.

    Science.gov (United States)

    Nacu, Eugen; Glausch, Mareen; Le, Huy Quang; Damanik, Febriyani Fiain Rochel; Schuez, Maritta; Knapp, Dunja; Khattak, Shahryar; Richter, Tobias; Tanaka, Elly M

    2013-02-01

    During salamander limb regeneration, only the structures distal to the amputation plane are regenerated, a property known as the rule of distal transformation. Multiple cell types are involved in limb regeneration; therefore, determining which cell types participate in distal transformation is important for understanding how the proximo-distal outcome of regeneration is achieved. We show that connective tissue-derived blastema cells obey the rule of distal transformation. They also have nuclear MEIS, which can act as an upper arm identity regulator, only upon upper arm amputation. By contrast, myogenic cells do not obey the rule of distal transformation and display nuclear MEIS upon amputation at any proximo-distal level. These results indicate that connective tissue cells, but not myogenic cells, are involved in establishing the proximo-distal outcome of regeneration and are likely to guide muscle patterning. Moreover, we show that, similarly to limb development, muscle patterning in regeneration is influenced by β-catenin signalling.

  1. Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle

    DEFF Research Database (Denmark)

    Mackey, Abigail; Brandstetter, Simon; Schjerling, Peter

    2011-01-01

    of collagens, laminins, heat-shock proteins (HSPs), inflammation, and related growth factors. The large responses of HSPs, CCL2, and tenascin C detected 48 h after a single bout were attenuated in the RB trial, indicative of protection against injury. Satellite cell content and 12 target genes, including IGF-1......, were elevated 30 d after a single bout. Among those displaying the greatest difference vs. control muscle, ECM laminin-ß1 and collagen types I and III were elevated ~6- to 9-fold (P...

  2. Transverse fascial suspension with muscle bow traction: advantages for full-thickness lip reconstruction involving the oral commissure using free flap.

    Science.gov (United States)

    Sasaki, Kaoru; Adachi, Koji; Sekido, Mitsuru

    2012-07-01

    Large full-thickness oral defects involving the oral commissure continue to be a challenge for reconstructive surgeons. Although local flaps are the best option for full-thickness lip reconstruction, they are unavailable for large defects. In particular, recent advances in microsurgery have extended the available surgical options using free flaps, but for full-thickness large oral defects involving the oral commissure, it is still difficult to obtain good function and competence. The major disadvantages are the drooping and loosening of the reconstructed lip and the difficulty in restoring a natural oral commissure. We present two cases of lip reconstruction for full-thickness large defects involving the oral commissure in which free flaps with the muscle bow traction method were used to overcome these problems. In case 1, the lip was reconstructed with a free radial forearm-palmaris longus tendon composite flap. The tendon was sutured onto the orbicularis oris stumps. In case 2, the lip was reconstructed with a free anterolateral thigh flap including the fascia lata. A fascial strip in the flap was sutured to the residual orbicularis muscles. In each case, additional nonvascularised fascia lata was harvested and suspended the reconstructed lip in transverse direction as a muscle bow traction method. Both patients achieved good oral competence without medial deviation of the oral commissure and were able to resume a regular diet without drooping and loosening of the reconstructed lip. For large full-thickness oral defects involving the oral commissure, transverse fascial suspension with muscle bow traction is useful for functional and cosmetic reconstruction.

  3. Defective glucose and lipid metabolism in human immunodeficiency virus-infected patients with lipodystrophy involve liver, muscle tissue and pancreatic beta-cells

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Dela, Flemming

    2005-01-01

    OBJECTIVES: Lipodystrophy and insulin resistance are prevalent among human immunodeficiency virus (HIV)-infected patients on combined antiretroviral therapy (HAART). Aiming to provide a detailed description of the metabolic adverse effects of HIV-lipodystrophy, we investigated several aspects of ....... CONCLUSION: Our data suggest that normoglycaemic lipodystrophic HIV-infected patients display impaired glucose and lipid metabolism in multiple pathways involving liver, muscle tissue and beta-cell function....

  4. Metástase no músculo reto inferior como sinal de apresentação de adenocarcinoma renal: relato de caso Inferior rectus muscle metastasis as a presenting sign of renal cell carcinoma: case report

    Directory of Open Access Journals (Sweden)

    Allan Christian Pieroni Gonçalves

    2006-06-01

    Full Text Available Proptose e diplopia decorrentes de alargamento de músculo extra-ocular representam importante sinal de apresentação de várias afecções da órbita. Embora a causa mais comum de alargamento de músculo extra-ocular seja a orbitopatia distiroidiana, o diagnóstico diferencial destas doenças é extenso. Relatamos neste trabalho o caso de um paciente com história de diplopia e proptose unilateral de três meses que apresentava importante espessamento isolado do músculo reto inferior direito e após investigação clínica, radiológica e biopsia incisional teve o diagnóstico de tumor metastático de células renais para o músculo reto inferior. Há poucos casos relatados de metástases para a musculatura ocular extrínseca sendo assim nosso objetivo relatar um novo caso, revisar a literatura e reforçar a inclusão deste distúrbio no diagnóstico diferencial do espessamento da musculatura extra-ocular.Proptosis and diplopia due to enlargement of extraocular muscles represent important presenting signs of many orbital disorders. Although dysthyroid ophthalmopathy is the most common cause of enlargement of extraocular muscles, the differential diagnosis is extensive. We report a patient with a 3-month history of diplopia and unilateral proptosis and a markedly enlarged inferior rectus muscle on imaging studies. A biopsy of the lesion followed by systemic evaluation established the diagnosis of metastatic renal cell carcinoma. There are few cases of metastatic tumors to the extraocular muscles reported in the literature and thus our objective is to report a new case, review the literature and reiterate the inclusion of this disorder in the differential diagnosis of enlargement of the extraocular muscles.

  5. Involvement of cAMP/Epac/PI3K-dependent pathway in the antiproteolytic effect of epinephrine on rat skeletal muscle.

    Science.gov (United States)

    Baviera, Amanda Martins; Zanon, Neusa Maria; Navegantes, Luiz Carlos C; Kettelhut, Isis Carmo

    2010-02-05

    Very little is known about the signaling pathways by which catecholamines exert anabolic effects on muscle protein metabolism, stimulating protein synthesis and suppressing proteolysis. The present work tested the hypothesis that epinephrine-induced inhibition of muscle proteolysis is mediated through the cAMP/Epac/PI3K-dependent pathway with the involvement of AKT and Foxo. The incubation of extensor digitorum longus (EDL) muscles from rats with epinephrine and/or insulin increased the phosphorylation of AKT and its downstream target Foxo3a, a well-known effect that prevents Foxo translocation to the nucleus and the activation of proteolysis. Similar effects on AKT/Foxo signaling were observed in muscles incubated with DBcAMP (cAMP analog). The stimulatory effect of epinephrine on AKT phosphorylation was completely blocked by wortmannin (selective PI3K inhibitor), suggesting that the epinephrine-induced activation of AKT is mediated through PI3K. As for epinephrine and DBcAMP, the incubation of muscles with 8CPT-2Me-cAMP (selective Epac agonist) reduced rates of proteolysis and increased phosphorylation levels of AKT and Foxo3a. The specific PKA agonist (N6BZ-cAMP) inhibited proteolysis and abolished the epinephrine-induced AKT and Foxo3a phosphorylation. On the other hand, inhibition of PKA by H89 further increased the phosphorylation levels of AKT and Foxo3a induced by epinephrine, DBcAMP or 8CPT-2Me-cAMP. These findings suggest that the antiproteolytic effect of the epinephrine on isolated skeletal muscle may occur through a cAMP/Epac/PI3K-dependent pathway, which leads to the phosphorylation of AKT and Foxo3a. The parallel activation of PKA-dependent pathway also inhibits proteolysis and seems to limit the stimulatory effect of cAMP on AKT/Foxo3a signaling.

  6. Followup of a Dog with an Intraocular Silicone Prosthesis Combined with an Extraocular Glass Prosthesis

    Directory of Open Access Journals (Sweden)

    Gwendolyna Romkes

    2012-01-01

    Full Text Available Because of unpredictable corneal changes, evisceration and implantation of a silicone prosthesis does not always lead to a satisfying cosmetic result. This paper describes the use of an intraocular silicone prosthesis in combination with an extraocular glass prosthesis and shows a followup of two and a half years in a nonexperimental study. An intraocular silicone prosthesis was implanted after evisceration of the left eye in a five-month-old Bernese mountain dog. A glass prosthesis was fitted four weeks after evisceration. Two and a half years after the operation, the dog is in good health and free of medication. No short-term or long-term complications were seen. The owners do not have trouble with handling the glass prosthesis. The combination of both prostheses shows a perfect solution to retrieve a normal looking and moving eye after evisceration.

  7. Transcriptome and Proteome Expressions Involved in Insulin Resistance in Muscle and Activated T-Lymphocytes of Patients with Type 2 Diabetes

    Institute of Scientific and Technical Information of China (English)

    Frankie; B.; Stentz; Abbas; E.; Kitabchi

    2007-01-01

    We analyzed the genes expressed (transcriptomes) and the proteins translated (pro- teomes) in muscle tissues and activated CD4+ and CD8+ T-lymphocytes (T-cells) of five Type 2 diabetes (T2DM) subjects using Affymetrix microarrays and mass spectrometry, and compared them with matched non-diabetic controls. Gene ex- pressions of insulin receptor (INSR), vitamin D receptor, insulin degrading enzyme, Akt, insulin receptor substrate-1 (IRS-1), IRS-2, glucose transporter 4 (GLUT4), and enzymes of the glycolytic pathway were decreased at least 50% in T2DM than in controls. However, there was greater than two-fold gene upregulation of plasma cell glycoprotein-1, tumor necrosis factor α (TNFα), and gluconeogenic enzymes in T2DM than in controls. The gene silencing for INSR or TNFα resulted in the inhibition or stimulation of GLUT4, respectively. Proteome profiles correspond- ing to molecular weights of the above translated transcriptomes showed different patterns of changes between T2DM and controls. Meanwhile, changes in tran- scriptomes and proteomes between muscle and activated T-cells of T2DM were comparable. Activated T-cells, analogous to muscle cells, expressed insulin sig- naling and glucose metabolism genes and gene products. In conclusion, T-cells and muscle in T2DM exhibited differences in expression of certain genes and gene products relative to non-diabetic controls. These alterations in transcriptomes and proteomes in T2DM may be involved in insulin resistance.

  8. Low intensity training of mdx mice reduces carbonylation and increases expression levels of proteins involved in energy metabolism and muscle contraction.

    Science.gov (United States)

    Hyzewicz, Janek; Tanihata, Jun; Kuraoka, Mutsuki; Ito, Naoki; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2015-05-01

    High intensity training induces muscle damage in dystrophin-deficient mdx mice, an animal model for Duchenne muscular dystrophy. However, low intensity training (LIT) rescues the mdx phenotype and even reduces the level of protein carbonylation, a marker of oxidative damage. Until now, beneficial effects of LIT were mainly assessed at the physiological level. We investigated the effects of LIT at the molecular level on 8-week-old wild-type and mdx muscle using 2D Western blot and protein-protein interaction analysis. We found that the fast isoforms of troponin T and myosin binding protein C as well as glycogen phosphorylase were overcarbonylated and downregulated in mdx muscle. Some of the mitochondrial enzymes of the citric acid cycle were overcarbonylated, whereas some proteins of the respiratory chain were downregulated. Of functional importance, ATP synthase was only partially assembled, as revealed by Blue Native PAGE analysis. LIT decreased the carbonylation level and increased the expression of fast isoforms of troponin T and of myosin binding protein C, and glycogen phosphorylase. In addition, it increased the expression of aconitate hydratase and NADH dehydrogenase, and fully restored the ATP synthase complex. Our study demonstrates that the benefits of LIT are associated with lowered oxidative damage as revealed by carbonylation and higher expression of proteins involved in energy metabolism and muscle contraction. Potentially, these results will help to design therapies for DMD based on exercise mimicking drugs.

  9. Akt-dependent and Akt-independent pathways are involved in protein synthesis activation during reloading of disused soleus muscle.

    Science.gov (United States)

    Mirzoev, Timur M; Tyganov, Sergey A; Shenkman, Boris S

    2017-03-01

    The purpose of our study was to assess the contribution of insulin growth factor-1-dependent and phosphatidic acid-dependent signaling pathways to activation of protein synthesis (PS) in rat soleus muscle during early recovery from unloading. Wistar rats were divided into: Control, 14HS [14-day hindlimb suspension (HS)], 3R+placebo (3-day reloading + saline administration), 3R+Wort (3-day reloading + wortmannin administration), 3R+But (3-day reloading + 1-butanol administration). SUnSET and Western blot analyses were used in this study. Wortmannin and 1-butanol induced a decrease in protein kinase B (phospho-Akt) and the rate of PS (P Muscle Nerve 55: 393-399, 2017. © 2016 Wiley Periodicals, Inc.

  10. Salmonella enterica Typhimurium infection causes metabolic changes in chicken muscle involving AMPK, fatty acid and insulin/mTOR signaling

    OpenAIRE

    Arsenault, Ryan J.; Napper, Scott; Kogut, Michael H.

    2013-01-01

    Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) infection of chickens that are more than a few days old results in asymptomatic cecal colonization with persistent shedding of bacteria. We hypothesized that while the bacterium colonizes and persists locally in the cecum it has systemic effects, including changes to metabolic pathways of skeletal muscle, influencing the physiology of the avian host. Using species-specific peptide arrays to perform kinome analysis on metabolic s...

  11. Salmonella enterica Typhimurium infection causes metabolic changes in chicken muscle involving AMPK, fatty acid and insulin/mTOR signaling.

    Science.gov (United States)

    Arsenault, Ryan J; Napper, Scott; Kogut, Michael H

    2013-05-17

    Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) infection of chickens that are more than a few days old results in asymptomatic cecal colonization with persistent shedding of bacteria. We hypothesized that while the bacterium colonizes and persists locally in the cecum it has systemic effects, including changes to metabolic pathways of skeletal muscle, influencing the physiology of the avian host. Using species-specific peptide arrays to perform kinome analysis on metabolic signaling pathways in skeletal muscle of Salmonella Typhimurium infected chickens, we have observed key metabolic changes that affected fatty acid and glucose metabolism through the 5'-adenosine monophosphate-activated protein kinase (AMPK) and the insulin/mammalian target of rapamycin (mTOR) signaling pathway. Over a three week time course of infection, we observed changes in the phosphorylation state of the AMPK protein, and proteins up and down the pathway. In addition, changes to a large subset of the protein intermediates of the insulin/mTOR pathway in the skeletal muscle were altered by infection. These changes occur in pathways with direct effects on fatty acid and glucose metabolism. This is the first report of significant cellular metabolic changes occurring systemically in chicken due to a Salmonella infection. These results have implications not only for animal production and health but also for the understanding of how Salmonella infection in the intestine can have widespread, systemic effects on the metabolism of chickens without disease-like symptoms.

  12. Mechanism of angiotensin II-induced arachidonic acid metabolite release in aortic smooth muscle cells: involvement of phospholipase D.

    Science.gov (United States)

    Shinoda, J; Kozawa, O; Suzuki, A; Watanabe-Tomita, Y; Oiso, Y; Uematsu, T

    1997-02-01

    In a previous study, we have shown that angiotensin II (Ang II) activates phosphatidylcholine-hydrolyzing phospholipase D due to Ang II-induced Ca2+ influx from extracellular space in subcultured rat aortic smooth muscle cells. In the present study, we have investigated the role of phospholipase D in Ang II-induced arachidonic acid (AA) metabolite release and prostacyclin synthesis in subcultured rat aortic smooth muscle cells. Ang II significantly stimulated AA metabolite release in a concentration-dependent manner in the range between 1 nmol/I and 0.1 mumol/I. D.L.-Propranolol hydrochloride (propranolol), an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the Ang II-induced release of AA metabolites. The Ang II-induced AA metabolite release was reduced by chelating extracellular Ca2+ with EGTA. Genistein, an inhibitor of protein tyrosine kinases, significantly suppressed the Ang II-induced AA metabolite release. 1,6-Bis-(cyclohexyloximinocarbonylamino)-hexane (RHC-80267), a potent and selective inhibitor of diacylglycerol lipase, significantly inhibited the Ang II-induced AA metabolite release. Both propranolol and RHC-80267 inhibited the Ang II-induced synthesis of 6-keto-prostaglandin F1 alpha, a stable metabolite of prostacyclin. The synthesis was suppressed by genistein. These results strongly suggest that the AA metabolite release induced by Ang II is mediated, at least in part, through phosphatidylcholine hydrolysis by phospholipase D activation in aortic smooth muscle cells.

  13. Envolvimento das musculaturas esquelética e cardíaca na esclerose sistêmica Skeletal and cardiac muscles involvement in systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Lilian Schade

    2011-08-01

    Full Text Available Pacientes com Esclerose Sistêmica (ES podem apresentar envolvimento muscular na forma de miosite ou miopatianão inflamatória. É verificada também associação entre acometimento muscular e disfunção ventricular esquerda (DVE em pacientes com ES, o que lhes confere pior prognóstico. Avaliamos 87 pacientes do Hospital de Clínicas da Universidade Federal do Paraná, com diagnóstico de ES, quanto à presença de manifestações da musculatura esquelética e a relação destas com DVE. Verificamos uma prevalência de 42,5% de acometimento muscular nos pacientes avaliados, observando uma correlação positiva com a forma difusa da doença. Afastadas outras causas de DVE, três dos quatro pacientes com fração de ejeção abaixo do valor de normalidade apresentaram alteração de força muscular, atrofia e/ou elevação de enzima creatinofosfoquinase sérica (CPKPatients with systemic sclerosis (SSc can have muscle involvement in the form of myositis or non-infl ammatory myopathy. The muscle involvement can be associated with left ventricular dysfunction (LVD in patients with SSc, resulting in worse prognosis. Eighty-seven patients of the Hospital de Clínicas of the Universidade Federal do Paraná, diagnosed with SSc, were assessed regarding the presence of skeletal muscle manifestations and their relation with LVD. A 42.5% prevalence of muscle involvement was observed in the patients studied, as well as a positive correlation with the diffuse form of the disease. Excluding other causes of LVD, three of the four patients with ejection fraction below the normal reference value had alteration of the muscle strength, atrophy and/or serum creatine phosphokinase (CPK elevation

  14. Irradiation followed by muscle surgery for dysthyroid ophthalmopathy with diplopia

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Satoko; Asakura, Akiko [Iwate Prefectural Central Hospital, Morioka (Japan); Ogasawara, Kosuke; Mori, Toshiro; Shibuya, Masako; Kurihara, Hideo; Tazawa, Yutaka

    1995-10-01

    We obtained favorable therapeutic outcome in 12 cases of dysthyroid ophthalmopathy with diplopia. All the patients underwent Lineac irradiation to the retrobulbar tissue totalling 15 to 20 Gy over 10 days. Extraocular muscle surgery was performed 30 days after irradiation. Diplopia at the primary position almost disappeared one day after surgery. An additional surgery was necessary in one case. The interval between onset of diplopia and surgery averaged 6.1 months. Irradiation prior to muscle surgery appeared to be beneficial in allowing an early surgery and in avoiding surgical overcorrection. (author).

  15. Anterior transposition of the inferior oblique muscle as the initial treatment of a snapped inferior rectus muscle.

    Science.gov (United States)

    Aguirre-Aquino, B I; Riemann, C D; Lewis, H; Traboulsi, E I

    2001-02-01

    Snapping or tearing of an extraocular muscle refers to its rupture across its width, usually at the junction between muscle and tendon several millimeters behind the insertion. Tearing occurs during strabismus or retinal reattachment surgery, or after trauma. If the proximal end of the muscle cannot be located, transposition procedures are necessary to achieve ocular realignment. These surgical procedures carry the risk of anterior segment ischemia, especially in the elderly. Anterior transposition of the inferior oblique muscle has been used for the treatment of inferior oblique overaction, especially in the presence of a dissociated vertical deviation, and in patients with fourth nerve palsy. We transposed the inferior oblique muscle insertion in a 73-year-old woman with a snapped inferior rectus muscle.

  16. A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle

    OpenAIRE

    Gudde, Anke E. E. G.; González-Barriga, Anchel; van den Broek, Walther J. A. A.; Wieringa, Bé; Wansink, Derick G

    2016-01-01

    Muscular manifestation of myotonic dystrophy type 1 (DM1), a common inheritable degenerative multisystem disorder, is mainly caused by expression of RNA from a (CTG·CAG) n -expanded DM1 locus. Here, we report on comparative profiling of expression of normal and expanded endogenous or transgenic transcripts in skeletal muscle cells and biopsies from DM1 mouse models and patients in order to help us in understanding the role of this RNA-mediated toxicity. In tissue of HSA LR mice, the most inte...

  17. Altered expression of genes involved in mitochondrial oxidative phosphorylation and insulin signaling in skeletal muscle of obese women with polycystic ovary syndrome (PCOS)

    DEFF Research Database (Denmark)

    Skov, Vibe

    ) metabolically characterized by euglycemic-hyperinsulinemic clamp and indirect calorimetry. First, Welch's two sample t-test was applied to examine the significance of OXPHOS and insulin signaling genes separately. The overall significance of the OXPHOS and insulin signaling genes was assessed by calculating...... regulation of genes involved in insulin signaling (PInsulin signaling was significantly regulated using GenMAPP (P...Background and aims: Abnormalities in mitochondrial oxidative phosphorylation (OXPHOS) and insulin signaling have been implicated in the pathogenesis of skeletal muscle insulin resistance in type 2 diabetes. We hypothesized that altered expression of OXPHOS and insulin signaling genes could...

  18. Tumor necrosis factor-α downregulates sodium current in skeletal muscle by protein kinase C activation: involvement in critical illness polyneuromyopathy.

    Science.gov (United States)

    Guillouet, Maité; Gueret, Gildas; Rannou, Fabrice; Giroux-Metges, Marie-Agnès; Gioux, Maxime; Arvieux, Charles C; Pennec, Jean-Pierre

    2011-11-01

    Sepsis is involved in the decrease of membrane excitability of skeletal muscle, leading to polyneuromyopathy. This effect is mediated by alterations of the properties of voltage-gated sodium channels (Na(V)), but the exact mechanism is still unknown. The aim of the present study was to check whether tumor necrosis factor (TNF-α), a cytokine released during sepsis, exerts a rapid effect on Na(V). Sodium current (I(Na)) was recorded by macropatch clamp in skeletal muscle fibers isolated from rat peroneus longus muscle, in control conditions and after TNF-α addition. Analyses of dose-effect and time-effect relationships were carried out. Effect of chelerythrine, a PKC inhibitor, was also studied to determine the way of action of TNF-α. TNF-α induced a reversible dose- and time-dependent inhibition of I(Na). A maximum inhibition of 75% of the control current was observed. A shift toward more negative potentials of activation and inactivation curves of I(Na) was also noticed. These effects were prevented by chelerythrine pretreatment. TNF-α is a cytokine released in the early stages of sepsis. Besides a possible transcriptional role, i.e., modification of the channel type and/or number, we demonstrated the existence of a rapid, posttranscriptional inhibition of Na(V) by TNF-α. The downregulation of the sodium current could be mediated by a PKC-induced phosphorylation of the sodium channel, thus leading to a significant decrease in muscle excitability.

  19. Analysis of fatty infiltration and inflammation of the pelvic and thigh muscles in boys with Duchenne muscular dystrophy (DMD): grading of disease involvement on MR imaging and correlation with clinical assessments.

    Science.gov (United States)

    Kim, Hee Kyung; Merrow, Arnold C; Shiraj, Sahar; Wong, Brenda L; Horn, Paul S; Laor, Tal

    2013-10-01

    Prior reports focus primarily on muscle fatty infiltration in Duchenne muscular dystrophy (DMD). However, the significance of muscle edema is uncertain. To evaluate the frequency and degree of muscle fat and edema, and correlate these with clinical function. Forty-two boys (ages 5-19 years) with DMD underwent pelvic MRI. Axial T1- and fat-suppressed T2-weighted images were evaluated to grade muscle fatty infiltration (0-4) and edema (0-3), respectively. Degree and frequency of disease involvement were compared to clinical evaluations. Gluteus maximus had the greatest mean fatty infiltration score, followed by adductor magnus and gluteus medius muscles, and had the most frequent and greatest degree of fatty infiltration. Gluteus maximus also had the greatest mean edema score, followed by vastus lateralis and gluteus medius muscles. These muscles had the most frequent edema, although the greatest degree of edema was seen in other muscles. There was correlation between cumulative scores of fatty infiltration and all clinical evaluations (P < 0.05). In DMD, the muscles with the most frequent fatty infiltration had the greatest degree of fatty infiltration and correlated with patient function. However, the muscles with the most frequent edema were different from those with the greatest degree of edema. Thus, edema may not predict patient functional status.

  20. Referred pain areas of active myofascial trigger points in head, neck, and shoulder muscles, in chronic tension type headache.

    Science.gov (United States)

    Fernández-de-Las-Peñas, César; Ge, Hong-You; Alonso-Blanco, Cristina; González-Iglesias, Javier; Arendt-Nielsen, Lars

    2010-10-01

    Our aim was to analyze the differences in the referred pain patterns and size of the areas of those myofascial trigger points (TrPs) involved in chronic tension type headache (CTTH) including a number of muscles not investigated in previous studies. Thirteen right handed women with CTTH (mean age: 38 ± 6 years) were included. TrPs were bilaterally searched in upper trapezius, sternocleidomastoid, splenius capitis, masseter, levator scapulae, superior oblique (extra-ocular), and suboccipital muscles. TrPs were considered active when both local and referred pain evoked by manual palpation reproduced total or partial pattern similar to a headache attack. The size of the referred pain area of TrPs of each muscle was calculated. The mean number of active TrPs within each CTTH patient was 7 (95% CI 6.2-8.0). A greater number (T = 2.79; p = 0.016) of active TrPs was found at the right side (4.2 ± 1.5) when compared to the left side (2.9 ± 1.0). TrPs in the suboccipital muscles were most prevalent (n = 12; 92%), followed by the superior oblique muscle (n =11/n = 9 right/left side), the upper trapezius muscle (n = 11/n = 6) and the masseter muscle (n = 9/n=7). The ANOVA showed significant differences in the size of the referred pain area between muscles (F = 4.7, p = 0.001), but not between sides (F = 1.1; p = 0.3): as determined by a Bonferroni post hoc analysis the referred pain area elicited by levator scapulae TrPs was significantly greater than the area from the sternocleidomastoid (p = 0.02), masseter (p = 0.003) and superior oblique (p = 0.001) muscles. Multiple active TrPs exist in head, neck and shoulder muscles in women with CTTH. The referred pain areas of TrPs located in neck muscles were larger than the referred pain areas of head muscles. Spatial summation of nociceptive inputs from multiple active TrPs may contribute to clinical manifestations of CTTH. Copyright © 2009 Elsevier Ltd. All rights reserved.

  1. Voltage-gated sodium channel expressed in cultured human smooth muscle cells: involvement of SCN9A.

    Science.gov (United States)

    Jo, Taisuke; Nagata, Taiji; Iida, Haruko; Imuta, Hiroyuki; Iwasawa, Kuniaki; Ma, Ji; Hara, Kei; Omata, Masao; Nagai, Ryozo; Takizawa, Hajime; Nagase, Takahide; Nakajima, Toshiaki

    2004-06-04

    Voltage-gated Na(+) channel (I(Na)) is expressed under culture conditions in human smooth muscle cells (hSMCs) such as coronary myocytes. The aim of this study is to clarify the physiological, pharmacological and molecular characteristics of I(Na) expressed in cultured hSMCs obtained from bronchus, main pulmonary and coronary artery. I(Na), was recorded in these hSMCs and inhibited by tetrodotoxin (TTX) with an IC(50) value of approximately 10 nM. Reverse transcriptase/polymerase chain reaction (RT-PCR) analysis of mRNA showed the prominent expression of transcripts for SCN9A, which was consistent with the results of real-time quantitative RT-PCR. These results provide novel evidence that TTX-sensitive Na(+) channel expressed in cultured hSMCs is mainly composed of Na(v)1.7.

  2. Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223.

    Directory of Open Access Journals (Sweden)

    Ashraf Yusuf Rangrez

    Full Text Available BACKGROUND: An elevated serum inorganic phosphate (Pi level is a major risk factor for kidney disease and downstream vascular complications. We focused on the effect of Pi levels on human aortic vascular smooth muscle cells (VSMCs, with an emphasis on the role of microRNAs (miRNAs. METHODOLOGY/PRINCIPAL FINDINGS: Exposure of human primary VSMCs in vitro to pathological levels of Pi increased calcification, migration rate and concomitantly reduced cell proliferation and the amount of the actin cytoskeleton. These changes were evidenced by significant downregulation of miRNA-143 (miR-143 and miR-145 and concomitant upregulation of their targets and key markers in synthetic VSMCs, such as Krüppel-like factors-4 and -5 and versican. Interestingly, we also found that miR-223 (a marker of muscle damage and a key factor in osteoclast differentiation is expressed in VSMCs and is significantly upregulated in Pi-treated cells. Over-expressing miR-223 in VSMCs increased proliferation and markedly enhanced VSMC migration. Additionally, we found that the expression of two of the known miR-223 targets, Mef2c and RhoB, was highly reduced in Pi treated as well as miR-223 over-expressing VSMCs. To complement these in vitro findings, we also observed significant downregulation of miR-143 and miR-145 and upregulation of miR-223 in aorta samples collected from ApoE knock-out mice, which display vascular calcification. CONCLUSIONS/SIGNIFICANCE: Our results suggest that (i high levels of Pi increase VSMC migration and calcification, (ii altered expression levels of miR-223 could play a part in this process and (iii miR-223 is a potential new biomarker of VSMC damage.

  3. Inorganic Phosphate Accelerates the Migration of Vascular Smooth Muscle Cells: Evidence for the Involvement of miR-223

    Science.gov (United States)

    Metzinger-Le Meuth, Valérie; Hénaut, Lucie; Djelouat, Mohamed Seif el Islam; Benchitrit, Joyce; Massy, Ziad A.; Metzinger, Laurent

    2012-01-01

    Backgound An elevated serum inorganic phosphate (Pi) level is a major risk factor for kidney disease and downstream vascular complications. We focused on the effect of Pi levels on human aortic vascular smooth muscle cells (VSMCs), with an emphasis on the role of microRNAs (miRNAs). Methodology/Principal Findings Exposure of human primary VSMCs in vitro to pathological levels of Pi increased calcification, migration rate and concomitantly reduced cell proliferation and the amount of the actin cytoskeleton. These changes were evidenced by significant downregulation of miRNA-143 (miR-143) and miR-145 and concomitant upregulation of their targets and key markers in synthetic VSMCs, such as Krüppel-like factors−4 and −5 and versican. Interestingly, we also found that miR-223 (a marker of muscle damage and a key factor in osteoclast differentiation) is expressed in VSMCs and is significantly upregulated in Pi-treated cells. Over-expressing miR-223 in VSMCs increased proliferation and markedly enhanced VSMC migration. Additionally, we found that the expression of two of the known miR-223 targets, Mef2c and RhoB, was highly reduced in Pi treated as well as miR-223 over-expressing VSMCs. To complement these in vitro findings, we also observed significant downregulation of miR-143 and miR-145 and upregulation of miR-223 in aorta samples collected from ApoE knock-out mice, which display vascular calcification. Conclusions/Significance Our results suggest that (i) high levels of Pi increase VSMC migration and calcification, (ii) altered expression levels of miR-223 could play a part in this process and (iii) miR-223 is a potential new biomarker of VSMC damage. PMID:23094093

  4. A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle.

    Science.gov (United States)

    Gudde, Anke E E G; González-Barriga, Anchel; van den Broek, Walther J A A; Wieringa, Bé; Wansink, Derick G

    2016-04-15

    Muscular manifestation of myotonic dystrophy type 1 (DM1), a common inheritable degenerative multisystem disorder, is mainly caused by expression of RNA from a (CTG·CAG)n-expanded DM1 locus. Here, we report on comparative profiling of expression of normal and expanded endogenous or transgenic transcripts in skeletal muscle cells and biopsies from DM1 mouse models and patients in order to help us in understanding the role of this RNA-mediated toxicity. In tissue of HSA(LR) mice, the most intensely used 'muscle-only' model in the DM1 field, RNA from the α-actin (CTG)250 transgene was at least 1000-fold more abundant than that from the Dmpk gene, or the DMPK gene in humans. Conversely, the DMPK transgene in another line, DM500/DMSXL mice, was expressed ∼10-fold lower than the endogenous gene. Temporal regulation of expanded RNA expression differed between models. Onset of expression occurred remarkably late in HSA(LR) myoblasts during in vitro myogenesis whereas Dmpk or DMPK (trans)genes were expressed throughout proliferation and differentiation phases. Importantly, quantification of absolute transcript numbers revealed that normal and expanded Dmpk/DMPK transcripts in mouse models and DM1 patients are low-abundance RNA species. Northern blotting, reverse transcriptase-quantitative polymerase chain reaction, RNA-sequencing and fluorescent in situ hybridization analyses showed that they occur at an absolute number between one and a few dozen molecules per cell. Our findings refine the current RNA dominance theory for DM1 pathophysiology, as anomalous factor binding to expanded transcripts and formation of soluble or insoluble ribonucleoprotein aggregates must be nucleated by only few expanded DMPK transcripts and therefore be a small numbers game.

  5. Muscle involvement in leprosy: study of the anterior tibial muscle in 40 patients Alterações musculares na lepra: estudo do músculo tibial anterior em 40 pacientes

    Directory of Open Access Journals (Sweden)

    LINEU CESAR WERNECK

    1999-09-01

    Full Text Available The involvement of skeletal striated muscle in leprosy is considered secondary due to peripheral neuropathy, but some studies point it to a primary muscle lesion. In order to investigate the muscle involvement in leprosy, we studied 40 patients (lepromatous 23, tuberculoid 13, borderline 2 and indeterminate 2. The motor nerve conduction of the peroneal nerves had a reduction of the velocity, decreased compound muscle action potential and sometimes absence of potentials. The electromyographic study of the anterior tibial muscle showed signs of recent and chronic denervation in 77.5% of the cases and no myopathic potentials. The anterior tibial muscle biopsy revealed denervation in 45% of the cases, interstitial inflammatory myopathy in 30% and mixed (myopathic and neuropathic pattern in 12.5%. Acid fast bacillus was detected in 25% of the cases, always in the interstitial tissue. Inflammatory reaction was present in the interstitial space and in patients with the lepromatous type. The histological findings clearly defined the presence of the so-called "Leprous Interstitial Myositis" on the top of denervation signs.O envolvimento do músculo estriado na lepra é considerado secundário à lesão dos nervos periféricos, mas alguns estudos relataram acometimento muscular primário. A fim de verificar esta controvérsia estudamos 40 pacientes com lepra, sendo 23 da forma lepromatosa, 13 da tuberculoide, 2 borderline e 2 indeterminada. Realizamos a neurocondução do nervo peroneiro, junto com eletromiografia e biópsia do músculo tibial anterior. Encontramos redução de velocidade de condução, da amplitude e algumas vezes ausência de potenciais no nervo peroneiro. A eletromiografia do tibial anterior mostrou sinais de desinervação recente e crônica em 77,5% dos casos e não foi encontrada evidência de padrão "miopático". A biópsia do músculo tibial anterior revelou desinervação em 45% dos casos, miopatia inflamatória intersticial em

  6. Oxidative Stress and Upregulation of Antioxidant Proteins, Including Adiponectin, in Extraocular Muscular Cells, Orbital Adipocytes, and Thyrocytes in Graves' Disease Associated with Orbitopathy.

    Science.gov (United States)

    Marique, Lancelot; Senou, Maximin; Craps, Julie; Delaigle, Aurélie; Van Regemorter, Elliott; Wérion, Alexis; Van Regemorter, Victoria; Mourad, Michel; Nyssen-Behets, Catherine; Lengelé, Benoit; Baldeschi, Lelio; Boschi, Antonella; Brichard, Sonia; Daumerie, Chantal; Many, Marie-Christine

    2015-09-01

    Graves' orbitopathy (GO) is the main extrathyroidal manifestation associated with Graves' disease (GD). It is characterized by reduced eye motility due to an increased volume of orbital fat and/or of extraocular muscles (EOMs) infiltrated by fibrosis and adipose tissue. The pathogenetic mechanisms leading to fibrosis and adipogenesis are mainly based on the interaction between orbital fibroblasts and immune cells (lymphocytes and mast cells) infiltrating the GO EOMs. Analysis of the morphological status, oxidative stress (OS), and antioxidant defenses in the orbital muscular cells and adipocytes in GO patients compared with controls was conducted. Both cell types are affected by OS, as shown by the increased expression of 4-hydroxynonenal, which leads to apoptosis in muscular cells. However, the EOMs and the adipocytes possess antioxidant defenses (peroxiredoxin 5 and catalase) against the OS, which are also upregulated in thyrocytes in GD. The expression of adiponectin (ApN) and proliferator-activated receptor gamma (PPARγ) is also increased in GO muscular cells and adipocytes. OS and antioxidant proteins expression are correlated to the level of blood antithyrotropin receptor antibodies (TSHR-Ab). Even when TSHR-Ab level is normalized, OS and antioxidant protein expression is high in EOM muscular cells and adipocytes in GO compared with controls. This justifies a supplementation with antioxidants in active as well as chronic GO patients. Orbital muscular cells are also the sources of PPARγ and ApN, which have direct or indirect local protective effects against OS. Modulation of these proteins could be considered as a future therapeutic approach for GO.

  7. Adrenoceptors promote glucose uptake into adipocytes and muscle by an insulin-independent signaling pathway involving mechanistic target of rapamycin complex 2.

    Science.gov (United States)

    Mukaida, Saori; Evans, Bronwyn A; Bengtsson, Tore; Hutchinson, Dana S; Sato, Masaaki

    2017-02-01

    Uptake of glucose into skeletal muscle and adipose tissue plays a vital role in metabolism and energy balance. Insulin released from β-islet cells of the pancreas promotes glucose uptake in these target tissues by stimulating translocation of GLUT4 transporters to the cell surface. This process is complex, involving signaling proteins including the mechanistic (or mammalian) target of rapamycin (mTOR) and Akt that intersect with multiple pathways controlling cell survival, growth and proliferation. mTOR exists in two forms, mTOR complex 1 (mTORC1), and mTOR complex 2 (mTORC2). mTORC1 has been intensively studied, acting as a key regulator of protein and lipid synthesis that integrates cellular nutrient availability and energy balance. Studies on mTORC2 have focused largely on its capacity to activate Akt by phosphorylation at Ser473, however recent findings demonstrate a novel role for mTORC2 in cellular glucose uptake. For example, agonists acting at β2-adrenoceptors (ARs) in skeletal muscle or β3-ARs in brown adipose tissue increase glucose uptake in vitro and in vivo via mechanisms dependent on mTORC2 but not Akt. In this review, we will focus on the signaling pathways downstream of β-ARs that promote glucose uptake in skeletal muscle and brown adipocytes, and will highlight how the insulin and adrenergic pathways converge and interact in these cells. The identification of insulin-independent mechanisms that promote glucose uptake should facilitate novel treatment strategies for metabolic disease.

  8. LncRNA-Six1 Encodes a Micropeptide to Activate Six1 in Cis and Is Involved in Cell Proliferation and Muscle Growth

    Directory of Open Access Journals (Sweden)

    Qinghua Nie

    2017-04-01

    Full Text Available Long non-coding RNAs (lncRNAs play important roles in epigenetic regulation of skeletal muscle development. In our previous RNA-seq study (accession number GSE58755, we found that lncRNA-Six1 is an lncRNA that is differentially expressed between White Recessive Rock (WRR and Xinghua (XH chicken. In this study, we have further demonstrated that lncRNA-Six1 is located 432 bp upstream of the gene encoding the protein Six homeobox 1 (Six1. A dual-luciferase reporter assay identified that lncRNA-Six1 overlaps the Six1 proximal promoter. In lncRNA-Six1, a micropeptide of about 7.26 kDa was found to play an important role in the lncRNA-Six1 in cis activity. Overexpression of lncRNA-Six1 promoted the mRNA and protein expression level of the Six1 gene, while knockdown of lncRNA-Six1 inhibited Six1 expression. Moreover, tissue expression profiles showed that both the lncRNA-Six1 and the Six1 mRNA were highly expressed in chicken breast tissue. LncRNA-Six1 overexpression promoted cell proliferation and induced cell division. Conversely, its loss of function inhibited cell proliferation and reduced cell viability. Similar effects were observed after overexpression or knockdown of the Six1 gene. In addition, overexpression or knockdown of Six1 promoted or inhibited, respectively, the expression levels of muscle-growth-related genes, such as MYOG, MYHC, MYOD, IGF1R, and INSR. Taken together, these data demonstrate that lncRNA-Six1 carries out cis-acting regulation of the protein-encoding Six1 gene, and encodes a micropeptide to activate Six1 gene, thus promoting cell proliferation and being involved in muscle growth.

  9. Involvement of estrogen receptor-βin farrerol inhibition of rat thoracic aorta vascular Smooth muscle cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Qun-yi LI; Li CHEN; Yan-hui ZHU; Meng ZHANG; Yi-ping WANG; Ming-wei WANG

    2011-01-01

    AIm:TO investigate the effect of farrerol,a major active component isolated from a traditional Chinese herb"Man-shan-hong"(the dried Ieaves of Rhododendron dauncum L)on fetal bovine serum(FBS)-induced proliferation of cultured vascular smooth muscle cells (VSMCs)of rat thoracic aorta.Methods:VSMCs proliferation,DNA synthesis and cell cycle progression were studied using the MTT assay,bromodeoxyuridine(BrdU)incorporation and flow cytometry,respectively.The mRNA levels of cell cycle proteins were quantified using real-time RT-PCR, and the phosphorylation of ERKl/2 was determined using Western blotting.Reporter gene and receptor binding assays were employed to study the interaction between farrerol and estrogen receptors(ERs).Results:FarreroI(0.3-10 μmol/L)inhibited VSMC proliferation and DNA synthesis induced by 5%FBS in a concentration-dependent manner.The effects were associated with G,cell cycle arrest.down-regulation of cell cycle proteins and reduction in FBS-induced ERKl/2 phosphorylation.Using a reporter gene.it was found that farrerol(3 μmol/L)induced 2.1-fold transcription of ER.In receptor binding assays, farrerol inhibited the binding of [3H]estradiol for ERa and ERβ with IC50 values of 57 μmol/L and 2.7 μmol/L, respectively.implying that farrerol had a higher affinity for ERl3.Finally,the inhibition of VSMC proliferation by farrerol(3 μmol/L)was abolished by the specific ERβ antagonist PHTPP(5 μmol/L).Conclusion:FarreroI acts as a functional phytoestrogen to inhibit FBS-induced VSMC proliferation, mainly via interaction with ERβ,which may be helpful in the treatment of cardiovascular diseases related to abnormal VSMCs proliferation.

  10. Defective glucose and lipid metabolism in human immunodeficiency virus-infected patients with lipodystrophy involve liver, muscle tissue and pancreatic beta-cells

    DEFF Research Database (Denmark)

    2005-01-01

    of glucose metabolism, lipid metabolism and beta-cell function in lipodystrophic HIV-infected patients. METHODS: [3-3H]glucose was applied during euglycaemic hyperinsulinaemic clamps in association with indirect calorimetry in 43 normoglycaemic HIV-infected patients (18 lipodystrophic patients on HAART (LIPO....... CONCLUSION: Our data suggest that normoglycaemic lipodystrophic HIV-infected patients display impaired glucose and lipid metabolism in multiple pathways involving liver, muscle tissue and beta-cell function.......OBJECTIVES: Lipodystrophy and insulin resistance are prevalent among human immunodeficiency virus (HIV)-infected patients on combined antiretroviral therapy (HAART). Aiming to provide a detailed description of the metabolic adverse effects of HIV-lipodystrophy, we investigated several aspects...

  11. The p-ERK–p-c-Jun–cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjia [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Song, Ting [Nursing Department of Orthopedics 3rd Ward, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Ni, Leng; Yang, Genhuan; Song, Xitao; Wu, Lifei [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Bao, E-mail: liubao72@yahoo.com.cn [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Changwei, E-mail: liucw@vip.sina.com [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China)

    2014-10-24

    Highlights: • Smooth muscle cells proliferated after exposure to cigarette smoke extract. • The p-ERK, p-c-Jun, and cyclinD1 expressions increased in the process. • The p-ERK inhibitor, U0126, can reverse these effects. • The p-ERK → p-c-Jun → cyclinD1 pathway is involved in the process. - Abstract: An epidemiological survey has shown that smoking is closely related to atherosclerosis, in which excessive proliferation of vascular smooth muscle cells (SMCs) plays a key role. To investigate the mechanism underlying this unusual smoking-induced proliferation, cigarette smoke extract (CSE), prepared as smoke-bubbled phosphate-buffered saline (PBS), was used to induce effects mimicking those exerted by smoking on SMCs. As assessed by Cell Counting Kit-8 detection (an improved MTT assay), SMC viability increased significantly after exposure to CSE. Western blot analysis demonstrated that p-ERK, p-c-Jun, and cyclinD1 expression increased. When p-ERK was inhibited using U0126 (inhibitor of p-ERK), cell viability decreased and the expression of p-c-Jun and cyclinD1 was reduced accordingly, suggesting that p-ERK functions upstream of p-c-Jun and cyclinD1. When a c-Jun over-expression plasmid was transfected into SMCs, the level of cyclinD1 in these cells increased. Moreover, when c-Jun was knocked down by siRNA, cyclinD1 levels decreased. In conclusion, our findings indicate that the p-ERK–p-c-Jun–cyclinD1 pathway is involved in the excessive proliferation of SMCs exposed to CSE.

  12. The differentiation and morphogenesis of craniofacial muscles.

    Science.gov (United States)

    Noden, Drew M; Francis-West, Philippa

    2006-05-01

    Unraveling the complex tissue interactions necessary to generate the structural and functional diversity present among craniofacial muscles is challenging. These muscles initiate their development within a mesenchymal population bounded by the brain, pharyngeal endoderm, surface ectoderm, and neural crest cells. This set of spatial relations, and in particular the segmental properties of these adjacent tissues, are unique to the head. Additionally, the lack of early epithelialization in head mesoderm necessitates strategies for generating discrete myogenic foci that may differ from those operating in the trunk. Molecular data indeed indicate dissimilar methods of regulation, yet transplantation studies suggest that some head and trunk myogenic populations are interchangeable. The first goal of this review is to present key features of these diversities, identifying and comparing tissue and molecular interactions regulating myogenesis in the head and trunk. Our second focus is on the diverse morphogenetic movements exhibited by craniofacial muscles. Precursors of tongue muscles partly mimic migrations of appendicular myoblasts, whereas myoblasts destined to form extraocular muscles condense within paraxial mesoderm, then as large cohorts they cross the mesoderm:neural crest interface en route to periocular regions. Branchial muscle precursors exhibit yet another strategy, establishing contacts with neural crest populations before branchial arch formation and maintaining these relations through subsequent stages of morphogenesis. With many of the prerequisite stepping-stones in our knowledge of craniofacial myogenesis now in place, discovering the cellular and molecular interactions necessary to initiate and sustain the differentiation and morphogenesis of these neglected craniofacial muscles is now an attainable goal.

  13. Granulomatous slack skin - seven years follow-up of a case with features of "parapsoriasis en plaques", muscle involvement, granulomatous vasculitis, and necrobiotic changes.

    Science.gov (United States)

    ChiriŢă, Aurel Doru; Mărgăritescu, Irina

    2016-01-01

    Granulomatous slack skin (GSS) represents an extremely rare variant of mycosis fungoides with only 70 cases reported in the literature to date. It is characterized clinically by the occurrence of bulky, pendulous skinfolds, usually located in flexural areas and histologically by an infiltrate composed of small neoplastic T-lymphocytes joined by granulomatous inflammation with scattered multinucleated giant cells containing nuclei arranged in a wreath-like fashion. Since its first description, very rare cases of GSS with muscle involvement, large vessels involvement, or necrobiotic changes have been reported. We present an extraordinary case of GSS with all these unusual features developing in the lesions of the same patient. The long follow-up of seven years allowed us to document the evolution of each lesion. Some lesions appeared and evolved in a manner very reminiscent of those of "parapsoriasis en plaques", others were classical GSS lesions, and still others developed large ulcerated lesions. These ulcerated lesions consistently failed to respond to conventional wound therapy, skin directed therapy [retinoids + psoralen combined with ultraviolet A (PUVA)-therapy], and interferon-alpha therapy. Remarkably, the ulcers completely healed when systemic corticosteroids were added. We hence postulate that the ulcers appeared because of large vessel vasculitis rather than tumoral direct destruction.

  14. Mepivacaine-induced contraction involves phosphorylation of extracellular signal-regulated kinase through activation of the lipoxygenase pathway in isolated rat aortic smooth muscle.

    Science.gov (United States)

    Lee, Hyo Min; Ok, Seong-Ho; Sung, Hui-Jin; Eun, So Young; Kim, Hye Jung; Lee, Soo Hee; Kang, Sebin; Shin, Il-Woo; Lee, Heon Keun; Chung, Young-Kyun; Choi, Mun-Jeoung; Bae, Sung Il; Sohn, Ju-Tae

    2013-04-01

    Mepivacaine is an aminoamide local anesthetic with an intermediate duration that intrinsically produces vasoconstriction both in vivo and in vitro. This study investigated the arachidonic acid metabolic pathways involved in mepivacaine-induced contraction, and elucidated the associated cellular mechanism with a particular focus on extracellular signal-regulated kinase (ERK) in endothelium-denuded rat aorta. Isolated rat thoracic aortic rings were suspended for isometric tension recording. Cumulative mepivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: quinacrine dihydrochloride, nordihydroguaiaretic acid, phenidone, AA-861, indomethacin, NS-398, SC-560, fluconazole, PD 98059, and verapamil. Mepivacaine-induced ERK phosphorylation, 5-lipoxygenase (5-LOX) expression, and cyclooxygenase (COX)-2 expression in rat aortic smooth muscle cells were detected by Western blot analysis in the presence or absence of inhibitors. Mepivacaine produced tonic contraction in isolated endothelium-denuded rat aorta. Quinacrine dihydrochloride, nordihydroguaiaretic acid, phenidone, AA-861, NS-398, PD 98059, and verapamil attenuated mepivacaine-induced contraction in a concentration-dependent manner. However, fluconazole had no effect on mepivacaine-induced contraction. PD 98059, quinacrine dihydrochloride, nordihydroguaiaretic acid, AA-861, phenidone, and indomethacin attenuated mepivacaine-induced ERK phosphorylation. Mepivacaine upregulated 5-LOX and COX-2 expression. These results suggest that mepivacaine-induced contraction involves ERK activation, which is primarily mediated by the 5-LOX pathway and in part by the COX-2 pathway.

  15. Involvement of trigeminal transition zone and laminated subnucleus caudalis in masseter muscle hypersensitivity associated with tooth inflammation.

    Directory of Open Access Journals (Sweden)

    Kohei Shimizu

    Full Text Available A rat model of pulpitis/periapical periodontitis was used to study mechanisms underlying extraterritorial enhancement of masseter response associated with tooth inflammation. Periapical bone loss gradually increased and peaked at 6 weeks after complete Freund's adjuvant (CFA application to the upper molar tooth pulp (M1. On day 3, the number of Fos-immunoreactive (IR cells was significantly larger in M1 CFA rats compared with M1 vehicle (veh rats in the trigeminal subnucleus interpolaris/caudalis transition zone (Vi/Vc. The number of Fos-IR cells was significantly larger in M1 CFA and masseter (Mass capsaicin applied (M1 CFA/Mass cap rats compared with M1 veh/Mass veh rats in the contralateral Vc and Vi/Vc. The number of phosphorylated extracellular signal-regulated kinase (pERK-IR cells was significantly larger in M1 CFA/Mass cap and M1 veh/Mass cap rats compared to Mass-vehicle applied rats with M1 vehicle or CFA in the Vi/Vc. Pulpal CFA application caused significant increase in the number of Fos-IR cells in the Vi/Vc but not Vc on week 6. The number of pERK-IR cells was significantly lager in the rats with capsaicin application to the Mass compared to Mass-vehicle treated rats after pulpal CFA- or vehicle-application. However, capsaicin application to the Mass did not further affect the number of Fos-IR cells in the Vi/Vc in pulpal CFA-applied rats. The digastric electromyographic (d-EMG activity after Mass-capsaicin application was significantly increased on day 3 and lasted longer at 6 weeks after pulpal CFA application, and these increase and duration were significantly attenuated by i.t. PD98059, a MEK1 inhibitor. These findings suggest that Vi/Vc and Vc neuronal excitation is involved in the facilitation of extraterritorial hyperalgesia for Mass primed with periapical periodontitis or acute pulpal-inflammation. Furthermore, phosphorylation of ERK in the Vi/Vc and Vc play pivotal roles in masseter hyperalgesia after pulpitis or

  16. Severe Headache with Eye Involvement from Herpes Zoster Ophthalmicus, Trigeminal Tract, and Brainstem Nuclei

    Directory of Open Access Journals (Sweden)

    Sasitorn Siritho

    2015-01-01

    Full Text Available A 43-year-old female presented with severe sharp stabbing right-sided periorbital and retroorbital area headache, dull-aching unilateral jaw pain, eyelid swelling, ptosis, and tearing of the right eye but no rash. The pain episodes lasted five minutes to one hour and occurred 10–15 times per day with unremitting milder pain between the attacks. She later developed an erythematous maculopapular rash over the right forehead and therefore was treated with antivirals. MRI performed one month after the onset revealed small hypersignal-T2 in the right dorsolateral mid-pons and from the right dorsolateral aspect of the pontomedullary region to the right dorsolateral aspect of the upper cervical cord, along the course of the principal sensory nucleus and spinal nucleus of the right trigeminal nerve. No definite contrast enhancement of the right brain stem/upper cervical cord was seen. Orbital imaging showed no abnormality of bilateral optic nerves/chiasm, extraocular muscles, and globes. Slight enhancement of the right V1, V2, and the cisterna right trigeminal nerve was detected. Our findings support the hypothesis of direct involvement by virus theory, reflecting rostral viral transmission along the gasserian ganglion to the trigeminal nuclei at brainstem and caudal spreading along the descending tract of CN V.

  17. Intraocular and extraocular cameras for retinal prostheses: Effects of foveation by means of visual prosthesis simulation

    Science.gov (United States)

    McIntosh, Benjamin Patrick

    Blindness due to Age-Related Macular Degeneration and Retinitis Pigmentosa is unfortunately both widespread and largely incurable. Advances in visual prostheses that can restore functional vision in those afflicted by these diseases have evolved rapidly from new areas of research in ophthalmology and biomedical engineering. This thesis is focused on further advancing the state-of-the-art of both visual prostheses and implantable biomedical devices. A novel real-time system with a high performance head-mounted display is described that enables enhanced realistic simulation of intraocular retinal prostheses. A set of visual psychophysics experiments is presented using the visual prosthesis simulator that quantify, in several ways, the benefit of foveation afforded by an eye-pointed camera (such as an eye-tracked extraocular camera or an implantable intraocular camera) as compared with a head-pointed camera. A visual search experiment demonstrates a significant improvement in the time to locate a target on a screen when using an eye-pointed camera. A reach and grasp experiment demonstrates a 20% to 70% improvement in time to grasp an object when using an eye-pointed camera, with the improvement maximized when the percept is blurred. A navigation and mobility experiment shows a 10% faster walking speed and a 50% better ability to avoid obstacles when using an eye-pointed camera. Improvements to implantable biomedical devices are also described, including the design and testing of VLSI-integrable positive mobile ion contamination sensors and humidity sensors that can validate the hermeticity of biomedical device packages encapsulated by hermetic coatings, and can provide early warning of leaks or contamination that may jeopardize the implant. The positive mobile ion contamination sensors are shown to be sensitive to externally applied contamination. A model is proposed to describe sensitivity as a function of device geometry, and verified experimentally. Guidelines are

  18. Effect of dietary fish oil on the expression of genes involved in lipid metabolism in liver and skeletal muscle of lactating sows.

    Science.gov (United States)

    Gessner, D K; Gröne, B; Rosenbaum, S; Most, E; Hillen, S; Becker, S; Erhardt, G; Reiner, G; Eder, K

    2016-04-01

    This study investigated the hypothesis that dietary supplementation of fish oil as a source of n-3 polyunsaturated fatty acids (PUFA) influences the expression of target genes of sterol regulatory element-binding proteins (SREBP)-1 and (SREBP)-2 involved in triacylglycerol (TAG) synthesis and fatty acid and cholesterol metabolism in the liver, and moreover activates the expression of target genes of peroxisome proliferation-activated receptor (PPAR)-α involved in TAG and fatty acid catabolism in liver and skeletal muscle. Twenty lactating sows were fed a control diet or a fish oil diet with either 50 g of a mixture of palm oil and soya bean oil (4:1, w/w) or fish oil per kg. The diet of the fish oil group contained 19.1 g of n-3 PUFA (mainly 20:5 n-3 and 22:6 n-3) per 100 g of total fatty acids, while the diet of the control group contained 2.4 g of n-3 PUFA (mainly 18:3 n-3) per 100 g of total fatty acids. The fish oil group had reduced relative mRNA concentrations of various target genes of SREBP-1 involved in fatty acid and TAG synthesis in comparison with the control group (p oil supplementation. Concentrations of cholesterol and TAG in plasma, fat content of milk and weight gains of litters during the suckling period were not different between the two groups of sows. In conclusion, this study suggests that fish oil has only minor effects on hepatic lipid metabolism, which are non-critical with respect to milk production in sows.

  19. Thyroid Eye Disease With Significant Levator Involvement and Ptosis: A Case Report.

    Science.gov (United States)

    Scruggs, Ryan T; Black, Evan H

    2015-01-01

    A case of an 87-year-old woman with a history of Graves disease presenting with a 5-year history of severe ptosis and very poor levator function of the left side is presented. MRI revealed marked enlargement of all extraocular muscles and significant enlargement of the left levator muscle. Given the patient's age and atypical presentation of thyroid eye disease (TED), she was taken to the operating room for biopsy and ptosis repair with frontalis suspension. Histopathological analysis revealed chronic inflammation and fibrosis consistent with Graves disease.

  20. Biphasic Erk1/2 activation sequentially involving Gs and Gi signaling is required in beta3-adrenergic receptor-induced primary smooth muscle cell proliferation.

    Science.gov (United States)

    Hadi, Tarik; Barrichon, Marina; Mourtialon, Pascal; Wendremaire, Maeva; Garrido, Carmen; Sagot, Paul; Bardou, Marc; Lirussi, Frédéric

    2013-05-01

    The beta3 adrenergic receptor (B3-AR) reportedly induces cell proliferation, but the signaling pathways that were proposed, involving either Gs or Gi coupling, remain controversial. To further investigate the role of G protein coupling in B3-AR induced proliferation, we stimulated primary human myometrial smooth muscle cells with SAR150640 (B3-AR agonist) in the absence or presence of variable G-protein inhibitors. Specific B3-AR stimulation led to an Erk1/2 induced proliferation. We observed that the proliferative effects of B3-AR require two Erk1/2 activation peaks (the first after 3min, the second at 8h). Erk1/2 activation at 3min was mimicked by forskolin (adenylyl-cyclase activator), and was resistant to pertussis toxin (Gi inhibitor), suggesting a Gs protein signaling. This first signaling also required the downstream Gs signaling effectors PKA and Src. However, Erk1/2 activation at 8h turned out to be pertussis toxin-dependent, and PKA-independent, indicating a Gi signaling pathway in which Src and PI3K were required. The pharmacological inhibition of both the Gs and Gi pathway abolished B3-AR-induced proliferation. Altogether, these data indicate that B3-AR-induced proliferation depends on the biphasic activation of Erk1/2 sequentially induced by the Gs/PKA/Src and Gi/Src/PI3K signaling pathways. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Nuclear Receptor Nurr1 Is Expressed In and Is Associated With Human Restenosis and Inhibits Vascular Lesion Formation In Mice Involving Inhibition of Smooth Muscle Cell Proliferation and Inflammation

    NARCIS (Netherlands)

    P.I. Bonta; T.W.H. Pols; C.M. van Tiel; M. Vos; E.K. Arkenbout; J. Rohlena; K.T. Koch; M.P.M. de Maat; M.W.T. Tanck; R.J. de Winter; H. Pannekoek; E.A.L. Biessen; I. Bot; C.J.M. de Vries

    2010-01-01

    Background-Restenosis is the major drawback of percutaneous coronary interventions involving excessive activation and proliferation of vascular smooth muscle cells (SMCs). The nuclear receptor Nurr1 is an early response gene known mainly for its critical role in the development of dopamine neurons.

  2. T2 mapping provides multiple approaches to characterize muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5–15 year old boys with Duchenne Muscular Dystrophy

    Science.gov (United States)

    Arpan, Ishu; Forbes, Sean C; Lott, Donovan J; Senesac, Claudia R; Daniels, Michael J; Triplett, William T; Deol, Jasjit K; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2012-01-01

    Purpose Skeletal muscles of children with Duchenne muscular dystrophy (DMD) have enhanced susceptibility to damage and progressive lipid infiltration, which contribute to an increase in magnetic resonance proton transverse relaxation time (T2). Therefore, examining T2 changes in individual muscles may be useful for monitoring disease progression in DMD. In this study we utilized mean T2, percent elevated pixels, and T2 heterogeneity to assess changes in composition of dystrophic muscles. In addition, we used fat saturation (fatsat) to distinguish T2 changes due to edema and inflammation from fat infiltration in muscles. Methods Thirty subjects with DMD and 15 age-matched controls underwent T2-weighted imaging of their lower leg using 3-T MR system. T2 maps were developed and four lower leg muscles were manually traced (soleus, medial gastrocnemius, peroneal and tibialis anterior). Mean T2 of the traced regions of interest (ROI), width of T2 histograms, and percent-elevated pixels were calculated. Results We found that even in young children with DMD, muscles had elevated mean T2, were more heterogeneous, and had a greater percent-elevated pixels in the lower leg muscles than controls. T2 measures decreased with fat saturation, but were still higher (pmuscles than controls. Further, T2 measures showed positive correlations with timed functional tests (r=0.23–0.79). Conclusion The elevated T2 measures with and without fat saturation in all ages of DMD examined (5–15 years) compared to unaffected controls indicate that the dystrophic muscles have increased regions of damage, edema, and fat infiltration. This study shows that T2 mapping provides multiple approaches that can be effectively utilized to characterize muscle tissue in children with DMD even in the early stages of the disease. Therefore, T2 mapping may prove clinically useful in monitoring muscle changes due to disease process or therapeutic interventions in DMD. PMID:23044995

  3. Obturator internus muscle strains

    Directory of Open Access Journals (Sweden)

    Caoimhe Byrne, MB BCh, BAO

    2017-03-01

    Full Text Available We report 2 cases of obturator internus muscle strains. The injuries occurred in young male athletes involved in kicking sports. Case 1 details an acute obturator internus muscle strain with associated adductor longus strain. Case 2 details an overuse injury of the bilateral obturator internus muscles. In each case, magnetic resonance imaging played a crucial role in accurate diagnosis.

  4. T₂ mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5-15-year-old boys with Duchenne muscular dystrophy.

    Science.gov (United States)

    Arpan, Ishu; Forbes, Sean C; Lott, Donovan J; Senesac, Claudia R; Daniels, Michael J; Triplett, William T; Deol, Jasjit K; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2013-03-01

    Skeletal muscles of children with Duchenne muscular dystrophy (DMD) show enhanced susceptibility to damage and progressive lipid infiltration, which contribute to an increase in the MR proton transverse relaxation time (T₂). Therefore, the examination of T₂ changes in individual muscles may be useful for the monitoring of disease progression in DMD. In this study, we used the mean T₂, percentage of elevated pixels and T₂ heterogeneity to assess changes in the composition of dystrophic muscles. In addition, we used fat saturation to distinguish T₂ changes caused by edema and inflammation from fat infiltration in muscles. Thirty subjects with DMD and 15 age-matched controls underwent T₂ -weighted imaging of their lower leg using a 3-T MR system. T₂ maps were developed and four lower leg muscles were manually traced (soleus, medial gastrocnemius, peroneal and tibialis anterior). The mean T₂ of the traced regions of interest, width of the T₂ histograms and percentage of elevated pixels were calculated. We found that, even in young children with DMD, lower leg muscles showed elevated mean T₂, were more heterogeneous and had a greater percentage of elevated pixels than in controls. T₂ measures decreased with fat saturation, but were still higher (P damage, edema and fat infiltration. This study shows that T₂ mapping provides multiple approaches that can be used effectively to characterize muscle tissue in children with DMD, even in the early stages of the disease. Therefore, T₂ mapping may prove to be clinically useful in the monitoring of muscle changes caused by the disease process or by therapeutic interventions in DMD.

  5. ATP sensitive potassium channels in the skeletal muscle functions : involvement of the KCNJ11(Kir6.2 gene in the determination of Warner Bratzer shear force

    Directory of Open Access Journals (Sweden)

    Domenico eTricarico

    2016-05-01

    Full Text Available The ATP-sensitive K+-channels (KATP are distributed in the tissues coupling metabolism with K+ ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1, KCNJ11 (Kir6.2, ABCC8 (SUR1 and ABCC9 (SUR2 genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibres is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.

  6. Intrinsic laryngeal muscles are spared from myonecrosis in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Marques, Maria Julia; Ferretti, Renato; Vomero, Viviane Urbini; Minatel, Elaine; Neto, Humberto Santo

    2007-03-01

    Intrinsic laryngeal muscles share many anatomical and physiological properties with extraocular muscles, which are unaffected in both Duchenne muscular dystrophy and mdx mice. We hypothesized that intrinsic laryngeal muscles are spared from myonecrosis in mdx mice and may serve as an additional tool to understand the mechanisms of muscle sparing in dystrophinopathy. Intrinsic laryngeal muscles and tibialis anterior (TA) muscle of adult and aged mdx and control C57Bl/10 mice were investigated. The percentage of central nucleated fibers, as a sign of muscle fibers that had undergone injury and regeneration, and myofiber labeling with Evans blue dye, as a marker of myofiber damage, were studied. Except for the cricothyroid muscle, none of the intrinsic laryngeal muscles from adult and old mdx mice showed signs of myofiber damage or Evans blue dye labeling, and all appeared to be normal. Central nucleation was readily visible in the TA of the same mdx mice. A significant increase in the percentage of central nucleated fibers was observed in adult cricothyroid muscle compared to the other intrinsic laryngeal muscles, which worsened with age. Thus, we have shown that the intrinsic laryngeal muscles are spared from the lack of dystrophin and may serve as a useful model to study the mechanisms of muscle sparing in dystrophinopathy.

  7. Influences of dietary vitamin D restriction on bone strength, body composition and muscle in rats fed a high-fat diet: involvement of mRNA expression of MyoD in skeletal muscle.

    Science.gov (United States)

    Oku, Yuno; Tanabe, Rieko; Nakaoka, Kanae; Yamada, Asako; Noda, Seiko; Hoshino, Ayumi; Haraikawa, Mayu; Goseki-Sone, Masae

    2016-06-01

    Vitamin D insufficiency is associated with a greater risk of osteoporosis and also influences skeletal muscle functions, differentiation and development. The present study investigated the influences of vitamin D restriction on the body composition, bone and skeletal muscle in rats fed a high-fat diet. Sprague-Dawley strain male rats (11weeks old) were divided into four groups and fed experimental diets: a basic control diet (Cont.), a basic control diet with vitamin D restriction (DR), a high-fat diet (F) and a high-fat diet with vitamin D restriction (FDR). At 28days after starting the experimental diets, the visceral fat mass was significantly increased in the F group compared with Cont. group, and the muscle mass tended to decrease in the DR group compared with Cont. group. The total volume of the femur was significantly lower in the DR group compared with Cont. group, and the bone mineral density (BMD) of the femur was significantly lower in the FDR group compared with F group. MyoD is one of the muscle-specific transcription factors. The levels of mRNA expression of MyoD of the gastrocnemius and soleus muscles from the DR group were reduced markedly compared with those from the Cont. group. In conclusion, our findings revealed the influences of a vitamin D-restricted high-fat diet on the bone strength, body composition and muscle. Further studies on vitamin D insufficiency in the regulation of muscle as well as fat and bone metabolism would provide valuable data for the prevention of lifestyle-related disorders, including osteoporosis and sarcopenia.

  8. Muscle biopsy (image)

    Science.gov (United States)

    A muscle biopsy involves removal of a plug of tissue usually by a needle to be later used for examination. Sometimes ... there is a patchy condition expected an open biopsy may be used. Open biopsy involves a small ...

  9. Involvement of inositol 1,4,5-trisphosphate formation in the voltage-dependent regulation of the Ca(2+) concentration in porcine coronary arterial smooth muscle cells.

    Science.gov (United States)

    Yamamura, Hisao; Ohya, Susumu; Muraki, Katsuhiko; Imaizumi, Yuji

    2012-08-01

    The involvement of inositol 1,4,5-trisphosphate (IP(3)) formation in the voltage-dependent regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) was examined in smooth muscle cells of the porcine coronary artery. Slow ramp depolarization from -90 to 0 mV induced progressive [Ca(2+)](i) increase. The slope was reduced or increased in the presence of Cd(2+) or (±)-1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-[trifluoromethyl]-phenyl)pyridine-3-carboxlic acid methyl ester (Bay K 8644), respectively. The decrease in [Ca(2+)](i) via the membrane hyperpolarization induced by K(+) channel openers (levcromakalim and Evans blue) under current clamp was identical to that under voltage clamp. The step hyperpolarization from -40 to -80 mV reduced [Ca(2+)](i) uniformly over the whole-cell area with a time constant of ∼10 s. The [Ca(2+)](i) at either potential was unaffected by heparin, an inhibitor of IP(3) receptors. Alternatively, [Ca(2+)](i) rapidly increased in the peripheral regions by depolarization from -80 to 0 mV and stayed at that level (∼400 nM) during a 60-s pulse. When the pipette solution contained IP(3) pathway blockers [heparin, 2-aminoethoxydiphenylborate, xestospongin C, or 1-[6-[((17β)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione (U73122)], the peak [Ca(2+)](i) was unchanged, but the sustained [Ca(2+)](i) was gradually reduced by ∼250 nM within 30 s. In the presence of Cd(2+), a long depolarization period slightly increased the [Ca(2+)](i), which was lower than that in the presence of heparin alone. In coronary arterial myocytes, the sustained increase in the [Ca(2+)](i) during depolarization was partly caused by the Ca(2+) release mediated by the enhanced formation of IP(3). The initial [Ca(2+)](i) elevation triggered by the Ca(2+) influx though voltage-dependent Ca(2+) channels may be predominantly responsible for the activation of phospholipase C for IP(3) formation.

  10. Rescue of dystrophic skeletal muscle by PGC-1α involves a fast to slow fiber type shift in the mdx mouse.

    Directory of Open Access Journals (Sweden)

    Joshua T Selsby

    Full Text Available Increased utrophin expression is known to reduce pathology in dystrophin-deficient skeletal muscles. Transgenic over-expression of PGC-1α has been shown to increase levels of utrophin mRNA and improve the histology of mdx muscles. Other reports have shown that PGC-1α signaling can lead to increased oxidative capacity and a fast to slow fiber type shift. Given that it has been shown that slow fibers produce and maintain more utrophin than fast skeletal muscle fibers, we hypothesized that over-expression of PGC-1α in post-natal mdx mice would increase utrophin levels via a fiber type shift, resulting in more slow, oxidative fibers that are also more resistant to contraction-induced damage. To test this hypothesis, neonatal mdx mice were injected with recombinant adeno-associated virus (AAV driving expression of PGC-1α. PGC-1α over-expression resulted in increased utrophin and type I myosin heavy chain expression as well as elevated mitochondrial protein expression. Muscles were shown to be more resistant to contraction-induced damage and more fatigue resistant. Sirt-1 was increased while p38 activation and NRF-1 were reduced in PGC-1α over-expressing muscle when compared to control. We also evaluated if the use a pharmacological PGC-1α pathway activator, resveratrol, could drive the same physiological changes. Resveratrol administration (100 mg/kg/day resulted in improved fatigue resistance, but did not achieve significant increases in utrophin expression. These data suggest that the PGC-1α pathway is a potential target for therapeutic intervention in dystrophic skeletal muscle.

  11. Are interstitial cells of Cajal involved in mechanical stress-induced gene expression and impairment of smooth muscle contractility in bowel obstruction?

    Directory of Open Access Journals (Sweden)

    Chester C Wu

    Full Text Available BACKGROUND AND AIMS: The network of interstitial cells of Cajal (ICC is altered in obstructive bowel disorders (OBD. However, whether alteration in ICC network is a cause or consequence of OBD remains unknown. This study tested the hypothesis that mechanical dilation in obstruction disrupts the ICC network and that ICC do not mediate mechanotranscription of COX-2 and impairment of smooth muscle contractility in obstruction. METHODS: Medical-grade silicon bands were wrapped around the distal colon to induce partial obstruction in wild-type and ICC deficient (W/W(v mice. RESULTS: In wild-type mice, colon obstruction led to time-dependent alterations of the ICC network in the proximal colon segment. Although unaffected on days 1 and 3, the ICC density decreased markedly and the network was disrupted on day 7 of obstruction. COX-2 expression increased, and circular muscle contractility decreased significantly in the segment proximal to obstruction. In W/W(v control mice, COX-2 mRNA level was 4.0 (±1.1-fold higher (n=4 and circular muscle contractility was lower than in wild-type control mice. Obstruction further increased COX-2 mRNA level in W/W(v mice to 7.2 (±1.0-fold vs. W/W(v controls [28.8 (±4.1-fold vs. wild-type controls] on day 3. Obstruction further suppressed smooth muscle contractility in W/W(v mice. However, daily administration of COX-2 inhibitor NS-398 significantly improved muscle contractility in both W/W(v sham and obstruction mice. CONCLUSIONS: Lumen dilation disrupts the ICC network. ICC deficiency has limited effect on stretch-induced expression of COX-2 and suppression of smooth muscle contractility in obstruction. Rather, stretch-induced COX-2 plays a critical role in motility dysfunction in partial colon obstruction.

  12. Collision and containment detection between biomechanically based eye muscle volumes.

    Science.gov (United States)

    Santana Sosa, Graciela; Kaltofen, Thomas

    2011-01-01

    Collision and containment detection between three-dimensional objects is a common requirement in simulation systems. However, few solutions exist when exclusively working with deformable bodies. In our ophthalmologic diagnostic software system, the extraocular eye muscles are represented by surface models, which have been reconstructed from magnetic resonance images. Those models are projected onto the muscle paths calculated by the system's biomechanical model. Due to this projection collisions occur. For their detection, three approaches have been implemented, which we present in this paper: one based on image-space techniques using OpenGL, one based on the Bullet physics library and one using an optimized space-array data structure together with software rendering. Finally, an outlook on a possible response to the detected collisions is given.

  13. The Notch target E(spl)mδ is a muscle-specific gene involved in methylmercury toxicity in motor neuron development.

    Science.gov (United States)

    Engel, Gregory L; Rand, Matthew D

    2014-01-01

    Methylmercury (MeHg) is a ubiquitous environmental toxin that has a selective and potent impact on the nervous system, particularly during neural development yet, the mechanisms for its apparent neurodevelopmental specificity are unknown. The Notch receptor pathway has been implicated as a MeHg target in several studies. Notch signaling mediates cell-cell signals in a number of developmental contexts including neurogenesis and myogenesis, where it fundamentally acts to repress differentiation. Previous work in our lab has shown that MeHg causes preferential upregulation of a canonical Notch response gene, E(spl)mδ, in Drosophila embryos. In parallel, MeHg is seen to disrupt outgrowth of embryonic intersegmental motor nerves (ISN), which can be mimicked by expression of activated Notch in embryonic neurons. However, overexpression of E(spl)mδ in developing neurons fails to elicit motor neuron outgrowth defects, pointing to a non-autonomous role for E(spl)mδ in motor axon development. In this study we investigate a role for E(spl)mδ in conveying the toxicity of MeHg in the embryo. We find that endogenous expression of the E(spl)mδ gene localizes to developing somatic muscles in embryos. Notably, E(spl)mδ expression is seen in several muscles that are known synaptic targets for both the ISN and the segmental motor nerve (SN). We also demonstrate that the SN, similar to the ISN, exhibits disrupted axon outgrowth in response to MeHg. E(spl)mδ can induce a SN motor neuron phenotype, similar to MeHg treatment; but, only when E(spl)mδ expression is targeted to developing muscles. E(spl)mδ overexpression in developing muscles also results in aberrant muscle morphology, which is not apparent with expression of the closely related E(spl)mγ in developing muscles. Our data point to a role for the Notch target E(spl)mδ in mediating MeHg toxicity in embryonic development by disrupting the coordinated targeting of motor neurons to their muscle targets.

  14. Muscle Disorders

    Science.gov (United States)

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  15. Muscle Cramps

    Science.gov (United States)

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur ... minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves that malfunction. Sometimes ...

  16. Symptomatic muscle involvement in neurosarcoidosis: a clinicopathological study of 5 cases Envolvimento muscular sintomático na neurossarcoidose: estudo clinicopatológico de 5 casos

    Directory of Open Access Journals (Sweden)

    Rosana Herminia Scola

    2001-06-01

    Full Text Available We report on the clinical course and histopathologic muscle alterations of five patients diagnosed with neurosarcoidosis, who underwent biopsy due to their muscle manifestations. The five patients were females and only one was less than 40 years of age. Proximal muscle weakness was presented by all and only two patients complained of myalgia. Only normal values of serum muscle enzymes were detected. Electromyography revealed diverse findings such as normal, myopathic and neuropathic patterns. Granuloma was not present in one muscle biopsy. Two patients thoroughly recovered by taking only prednisone and one patient required a methotrexate addition for 3 months before becoming asymptomatic. The other two patients received azathioprine, one due to steroid side effects but without a satisfactory evolution, and the other to strengthen the prednisone régime, with excellent results.Relatamos o curso clínico e as alterações histopatológicas musculares de 5 pacientes com diagnóstico clínico de neurossarcoidose, os quais foram submetidos à biópsia por apresentarem sintomatologia muscular. As cinco pacientes eram do sexo feminino e apenas uma com menos de 40 anos. Todas apresentavam fraqueza muscular proximal e apenas duas pacientes se queixaram de mialgia. Valores normais de enzimas musculares foram encontrados em todos os casos. A eletromiografia identificou vários padrões tal como normal, miopático e neuropático. Apenas uma paciente não apresentou granuloma na biópsia muscular. Das cinco pacientes, duas apresentaram melhora completa apenas usando prednisona. Uma paciente necessitou o acréscimo de metotrexato por 3 meses antes de se tornar assintomática. As outras duas pacientes fizeram uso de azatioprina, uma devido a efeitos colaterais do corticóide mas sem evolução satisfatória, e a outra para reforçar a terapia com prednisona com excelente resposta.

  17. Long-term prospective assessment of shoulder function after breast reconstruction involving a latissimus dorsi muscle flap transfer and postoperative radiotherapy.

    Science.gov (United States)

    Sowa, Yoshihiro; Morihara, Toru; Kushida, Rie; Sakaguchi, Koichi; Taguchi, Tetsuya; Numajiri, Toshiaki

    2017-05-01

    Several investigators have evaluated the impaired function of the shoulder after removal of the latissimus dorsi muscle for breast reconstruction. However, a few investigators have studied whether including radiotherapy has a negative effect on functional recovery of the shoulder by a long-term follow-up after surgery. In this study, we compared objective measurements of shoulder function preoperatively and postoperatively for 3 years after latissimus dorsi muscle (LDM) flap transfer and postoperative radiotherapy (PRT). Eighteen patients who underwent unilateral transfer of a pedicled LDM flap and PRT within 2 months of breast-conserving surgery were enrolled in this study. Range of motion (ROM) and muscle strength in exhaustive shoulder movements were measured before surgery, and at 3 and 6 months, and 1 and 3 years. The results of ROM measurements at 3months postsurgery showed significant decreases in both flexion and abduction by 7.1 and 9.2 % and at 3 years postsurgery by 4.7 and 5.7 %. The muscle strength measurements at 3 months postsurgery showed statistically significant decreases both in adduction and in the 2nd medial rotation by 30.7 and 25.9 % and at 3 years postsurgery by 36.4 and 20.4 %. A significant improvement in these impairments was not observed for 3 years after surgery compared with that at 3 months after surgery. A combination of the LDM flap procedure and PRT could be associated with a higher incidence of tissue adhesions in both flexion and abduction and muscle deficit both in adduction and in the 2nd medial rotation.

  18. Quantitative T2 combined with texture analysis of nuclear magnetic resonance images identify different degrees of muscle involvement in three mouse models of muscle dystrophy: mdx, Largemyd and mdx/Largemyd.

    Directory of Open Access Journals (Sweden)

    Aurea B Martins-Bach

    Full Text Available Quantitative nuclear magnetic resonance imaging (MRI has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant-T2-measurements to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05, in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05. The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human

  19. Quantitative T2 Combined with Texture Analysis of Nuclear Magnetic Resonance Images Identify Different Degrees of Muscle Involvement in Three Mouse Models of Muscle Dystrophy: mdx, Largemyd and mdx/Largemyd

    Science.gov (United States)

    Martins-Bach, Aurea B.; Malheiros, Jackeline; Matot, Béatrice; Martins, Poliana C. M.; Almeida, Camila F.; Caldeira, Waldir; Ribeiro, Alberto F.; Loureiro de Sousa, Paulo; Azzabou, Noura; Tannús, Alberto; Carlier, Pierre G.; Vainzof, Mariz

    2015-01-01

    Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant—T2—measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research

  20. Muscle strain injuries.

    Science.gov (United States)

    Garrett, W E

    1996-01-01

    One of the most common injuries seen in the office of the practicing physician is the muscle strain. Until recently, little data were available on the basic science and clinical application of this basic science for the treatment and prevention of muscle strains. Studies in the last 10 years represent action taken on the direction of investigation into muscle strain injuries from the laboratory and clinical fronts. Findings from the laboratory indicate that certain muscles are susceptible to strain injury (muscles that cross multiple joints or have complex architecture). These muscles have a strain threshold for both passive and active injury. Strain injury is not the result of muscle contraction alone, rather, strains are the result of excessive stretch or stretch while the muscle is being activated. When the muscle tears, the damage is localized very near the muscle-tendon junction. After injury, the muscle is weaker and at risk for further injury. The force output of the muscle returns over the following days as the muscle undertakes a predictable progression toward tissue healing. Current imaging studies have been used clinically to document the site of injury to the muscle-tendon junction. The commonly injured muscles have been described and include the hamstring, the rectus femoris, gastrocnemius, and adductor longus muscles. Injuries inconsistent with involvement of a single muscle-tendon junction proved to be at tendinous origins rather than within the muscle belly. Important information has also been provided regarding injuries with poor prognosis, which are potentially repairable surgically, including injuries to the rectus femoris muscle, the hamstring origin, and the abdominal wall. Data important to the management of common muscle injuries have been published. The risks of reinjury have been documented. The early efficacy and potential for long-term risks of nonsteroidal antiinflammatory agents have been shown. New data can also be applied to the field

  1. Muscles, exercise and obesity

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Febbraio, Mark A

    2012-01-01

    . The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within......During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines...... the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal...

  2. Optical characterization of muscle

    Science.gov (United States)

    Oliveira, Luís; Lage, Armindo; Pais Clemente, Manuel; Tuchin, Valery V.

    2012-03-01

    Optical characterization and internal structure of biological tissues is highly important for biomedical optics. In particular for optical clearing processes, such information is of vital importance to understand the mechanisms involved through the variation of the refractive indices of tissue components. The skeletal muscle presents a fibrous structure with an internal arrangement of muscle fiber cords surrounded by interstitial fluid that is responsible for strong light scattering. To determine the refractive index of muscle components we have used a simple method of measuring tissue mass and refractive index during dehydration. After performing measurements for natural and ten dehydration states of the muscle samples, we have determined the dependence between the refractive index of the muscle and its water content. Also, we have joined our measurements with some values reported in literature to perform some calculations that have permitted to determine the refractive index of the dried muscle fibers and their corresponding volume percentage inside the natural muscle.

  3. Capsaicin mimics mechanical load-induced intracellular signaling events: involvement of TRPV1-mediated calcium signaling in induction of skeletal muscle hypertrophy.

    Science.gov (United States)

    Ito, Naoki; Ruegg, Urs T; Kudo, Akira; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2013-01-01

    Mechanical load-induced intracellular signaling events are important for subsequent skeletal muscle hypertrophy. We previously showed that load-induced activation of the cation channel TRPV1 caused an increase in intracellular calcium concentrations ([Ca ( 2+) ]i) and that this activated mammalian target of rapamycin (mTOR) and promoted muscle hypertrophy. However, the link between mechanical load-induced intracellular signaling events, and the TRPV1-mediated increases in [Ca ( 2+) ]i are not fully understood. Here we show that administration of the TRPV1 agonist, capsaicin, induces phosphorylation of mTOR, p70S6K, S6, Erk1/2 and p38 MAPK, but not Akt, AMPK or GSK3β. Furthermore, the TRPV1-induced phosphorylation patterns resembled those induced by mechanical load. Our results continue to highlight the importance of TRPV1-mediated calcium signaling in load-induced intracellular signaling pathways.

  4. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Skov, Vibe; Glintborg, Dorte; Knudsen, Steen

    2007-01-01

    Insulin resistance in skeletal muscle is a major risk factor for the development of type 2 diabetes in women with polycystic ovary syndrome (PCOS). In patients with type 2 diabetes, insulin resistance in skeletal muscle is associated with abnormalities in insulin signaling, fatty acid metabolism...... of metabolically characterized PCOS patients (n = 16) and healthy control subjects (n = 13) using two different approaches for global pathway analysis: gene set enrichment analysis (GSEA 1.0) and gene map annotator and pathway profiler (GenMAPP 2.0). We demonstrate that impaired insulin-stimulated total, oxidative...... mitochondrial oxidative metabolism, which is, in part, mediated by reduced PGC-1alpha levels. These abnormalities may contribute to the increased risk of type 2 diabetes observed in women with PCOS....

  5. Physical training and weight loss in dogs lead to transcriptional changes in genes involved in the glucose-transport pathway in muscle and adipose tissues.

    Science.gov (United States)

    Herrera Uribe, Juber; Vitger, Anne D; Ritz, Christian; Fredholm, Merete; Bjørnvad, Charlotte R; Cirera, Susanna

    2016-02-01

    Obesity is a worldwide problem in humans and domestic animals. Interventions, including a combination of dietary management and exercise, have proven to be effective for inducing weight loss in humans. In companion animals, the role of exercise in the management of obesity has received relatively little attention. The aim of the present study was to investigate changes in the transcriptome of key energy metabolism genes in muscle and adipose tissues in response to diet-induced weight loss alone, or combined with exercise in dogs. Overweight pet dogs were enrolled on a weight loss programme, based on calorie restriction and physical training (FD group, n = 5) or calorie restriction alone (DO group, n = 7). mRNA expression of 12 genes and six microRNAs were investigated using quantitative real-time PCR (qPCR). In the FD group, FOXO1 and RAC1 were expressed at lower levels in adipose tissue, whereas ESRRA and AKT2 were more highly expressed in muscle, when compared with the DO group. Comparing expression before and after the intervention, in the DO group, nine genes and three microRNAs showed significant altered expression in adipose tissue (PPARG, ADIPOQ and FOXO1; P ESRRA, AKT2, PGC1a and mir-23; P < 0.001) in muscle. Thus, calorie restriction causes regulation of several metabolic genes in both tissues. The mild exercise, incorporated into this study design, was sufficient to elicit transcriptional changes in adipose and muscle tissues, suggesting a positive effect on glucose metabolism. The study findings support inclusion of exercise in management of canine obesity.

  6. Mouse model of testosterone-induced muscle fiber hypertrophy: involvement of p38 mitogen-activated protein kinase-mediated Notch signaling.

    Science.gov (United States)

    Brown, Danielle; Hikim, Amiya P Sinha; Kovacheva, Ekaterina L; Sinha-Hikim, Indrani

    2009-04-01

    As a prerequisite for studies using mutant mice, we established a mouse model for investigating the molecular mechanisms by which testosterone (T) promotes muscle growth. Groups of six adult male mice (C57BL/6) received one of the following treatments: 1) vehicle (sterile distilled water; normal control) and 2) GnRH antagonist with empty (sham control) or 2 cm T- filled implant. Mice were killed 2, 6, and 8 weeks after treatment. T treatment for 8 weeks resulted in a significant (Pmuscles. T-induced fiber-hypertrophy was accompanied by up-regulation of the Notch ligand Delta 1 and activation of Notch signaling, as evidenced by increase in activated forms of Notch 1 and Notch 2. Consistent with this, we also observed an increase in the number of proliferating cell nuclear antigen (PCNA)-positive nuclei in muscles of T-treated mice, indicating that activation of Notch signaling enhanced cell proliferation. T supplementation not only triggered p38 mitogen-activated protein kinase (MAPK) activation but also concurrently inhibited c-Jun NH(2)-terminal kinase (JNK) activation within 2 weeks of treatment. Concomitant administration of SB203580, a p38 MAPK inhibitor, effectively blocked T-induced activation of Notch signaling and significantly (Pmuscle fiber hypertrophy through activation of Notch signaling and the inactivation of JNK together with the activation of p38 MAPK may be critical for T-induced activation of Notch signaling and, as a consequence, muscle fiber hypertrophy.

  7. Valores referenciais da eletromiografia de músculos envolvidos na deglutição: uma revisão sistemática Reference values for the electromyography of muscles involved in swallowing: a systematic review

    Directory of Open Access Journals (Sweden)

    Luciana Rodrigues Belo

    2012-02-01

    Full Text Available TEMA: normalidade da eletromiografia de superfície de músculos envolvidos na deglutição. OBJETIVO: investigar se a literatura aponta valores referenciais de normalidade para a duração, amplitude e características dos eletromiogramas dos músculos envolvidos na deglutição (orbicular da boca, masseter, músculos da região supra-hióidea e músculos da região infra-hióidea cobertos pelo músculo platisma. CONCLUSÃO: a busca resultou em 33 referências, das quais somente cinco enquadraram-se nos critérios de inclusão. Apenas uma referência foi classificada com um bom nível de qualidade pela escala de Jadad com modificações. Os artigos selecionados podem não apontar valores referenciais confiáveis principalmente para a amplitude e morfologia da eletromiografia de superfície, pois utilizaram uma freqüência de amostragem inadequada para os registros eletromiográficos o que potencializa a obtenção de dados distorcidos da atividade muscular. Tendo em vista a variabilidade inter e entre os sujeitos, a literatura sugere a realização de técnicas de normalização do sinal eletromiográfico.BACKGROUND: normal surface electromyography (sEMG of muscles involved in swallowing. PURPOSE: to investigate if the literature indicates normal parameters for duration, amplitude and characteristics of the electromyograms of the muscles involved in swallowing (orbicularis oris, masseter, muscles of the suprahyoid muscles and the infra-hyoid region covered by the platysma muscle. CONCLUSION: the search resulted in 33 references, of which only five were within the inclusion criteria. Only one reference was classified with good level of quality by the Jadad scale with modifications. The selected articles cannot point reliable reference values mainly for EMG amplitude and morphology, because they used a inappropriate sampling rate for the EMG recordings that maximizes the achievement of distorted data for the muscle activity. Literature suggests

  8. Does preoperative abduction value affect functional outcome of combined muscle transfer and release procedures in obstetrical palsy patients with shoulder involvement?

    Directory of Open Access Journals (Sweden)

    Onel Defne

    2004-08-01

    Full Text Available Abstract Background Obstetric palsy is the injury of the brachial plexus during delivery. Although many infants with plexopathy recover with minor or no residual functional deficits, some children don't regain sufficient limb function because of functional limitations, bony deformities and joint contractures. Shoulder is the most frequently affected joint with internal rotation contracture causing limitation of abduction, external rotation. The treatment comprises muscle release procedures such as posterior subscapularis sliding or anterior subscapularis tendon lengtening and muscle transfers to restore the missing external rotation and abduction function. Methods We evaluated whether the preoperative abduction degree affects functional outcome. Between 1998 and 2002, 46 children were operated on to restore shoulder abduction and external rotation. The average age at surgery was 7.6 years and average follow up was 40.8 months. We compared the postoperative results of the patients who had preoperative abduction less than 90° (Group I: n = 37 with the patients who had preoperative abduction greater than 90° (Group II: n = 9, in terms of abduction and external rotation function with angle measurements and Mallet classification. We inquired whether patients in Group I needed another muscle transfer along with latissimus dorsi and teres major transfers. Results In Group I the average abduction improved from 62.5° to 131.4° (a 68.9° ± 22.9°gain and the average external rotation improved from 21.4° to 82.6° (a 61.1° ± 23°gain. In Group II the average abduction improved from 99.4°to 140°(a40.5° ± 16°gain and the average external rotation improved from 33.2°to 82.7° (a 49.5° ± 23.9° gain. Although there was a significant difference between Group I and II for preoperative abduction (p = 0.000 and abduction gain in degrees (p = 0.001, the difference between postoperative values of both groups was not significant (p = 0.268. There was

  9. Study on etiologic causes of binocular diplopia in patients with extraocular related diseases in department of ophthalmology%眼科首诊双眼复视患者的眼外相关病因分析

    Institute of Scientific and Technical Information of China (English)

    王珣竹

    2012-01-01

    Objective To explore the etiologic causes of binocular diplopia as the first onset symptom in patients with extraocular related ophthalmic diseases. Methods On the basis of medical history, routine ophthalmologic examination and ocular muscle examination, general check - up and blood biochemical examinations were applied to explore the pathogenic causes. Results The main aetiological cause was vascular disease, then traumatic injury of cranial nerves and abducent nerve palsy were its secondary causes. Conclusion The pathogenic factors of binocular diplopia were complicated, therefore detail clinical data should be correctly collected and necessary diagnostic examinations should be performed for proper diagnosis and treatment.%目的 探讨眼科以双眼复视为首发症状的眼外相关病因的分布情况.方法 根据病史、眼科专科检查、全身相关检查及相关科室检查会诊意见分析病因.结果 68例双眼复视患者中,发病原因中以血管性疾病居多(占32.3%);外伤次之,占16.2%.眼外肌及颅神经受累情况,外展神经麻痹居多24例,占35.3%.结论 双眼复视病因复杂,详细正确的临床资料和必要的辅助检查有助于明确病因.

  10. Sporadic and familial blepharophimosis -ptosis-epicanthus inversus syndrome: FOXL2 mutation screen and MRI study of the superior levator eyelid muscle.

    Science.gov (United States)

    Dollfus, H; Stoetzel, C; Riehm, S; Lahlou Boukoffa, W; Bediard Boulaneb, F; Quillet, R; Abu-Eid, M; Speeg-Schatz, C; Francfort, J J; Flament, J; Veillon, F; Perrin-Schmitt, F

    2003-02-01

    The analysis of the FOXL2 gene (3q23) in a series of two families and two sporadic cases affected with Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome (BPES) is presented. This study detected two novel FOXL2 mutations (missence and nonsens mutations) and confirmed the recurrence of a previously described duplication. Magnetic Resonance Imaging (MRI) of the orbit, in one family, showed absence or hypotrophy of the eyelid superior levator muscle suggesting a possible role of FOXL2 in the development of this extra-ocular muscle.

  11. Muscle contraction and force

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Risbo, Jens; Pierzynowski, Stefan G.

    2008-01-01

    Muscle contraction studies often focus solely on myofibres and the proteins known to be involved in the processes of sarcomere shortening and cross-bridge cycling, but skeletal muscle also comprises a very elaborate ancillary network of capillaries, which not only play a vital role in terms...... contributor to force transfer within muscular tissue....

  12. Immunohistochemical analysis of laryngeal muscles in normal horses and horses with subclinical recurrent laryngeal neuropathy.

    Science.gov (United States)

    Rhee, Hannah S; Steel, Catherine M; Derksen, Frederik J; Robinson, N Edward; Hoh, Joseph F Y

    2009-08-01

    We used immunohistochemistry to examine myosin heavy-chain (MyHC)-based fiber-type profiles of the right and left cricoarytenoideus dorsalis (CAD) and arytenoideus transversus (TrA) muscles of six horses without laryngoscopic evidence of recurrent laryngeal neuropathy (RLN). Results showed that CAD and TrA muscles have the same slow, 2a, and 2x fibers as equine limb muscles, but not the faster contracting fibers expressing extraocular and 2B MyHCs found in laryngeal muscles of small mammals. Muscles from three horses showed fiber-type grouping bilaterally in the TrA muscles, but only in the left CAD. Fiber-type grouping suggests that denervation and reinnervation of fibers had occurred, and that these horses had subclinical RLN. There was a virtual elimination of 2x fibers in these muscles, accompanied by a significant increase in the percentage of 2a and slow fibers, and hypertrophy of these fiber types. The results suggest that multiple pathophysiological mechanisms are at work in early RLN, including selective denervation and reinnervation of 2x muscle fibers, corruption of neural impulse traffic that regulates 2x and slow muscle fiber types, and compensatory hypertrophy of remaining fibers. We conclude that horses afflicted with mild RLN are able to remain subclinical by compensatory hypertrophy of surviving muscle fibers.

  13. Skeletal muscle

    Science.gov (United States)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  14. Involvement of large-conductance Ca2+-activated K+ channels in chloroquine-induced force alterations in pre-contracted airway smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ming-Yu Wei

    Full Text Available The participation of large-conductance Ca2+ activated K+ channels (BKs in chloroquine (chloro-induced relaxation of precontracted airway smooth muscle (ASM is currently undefined. In this study we found that iberiotoxin (IbTx, a selective inhibitor of BKs and chloro both completely blocked spontaneous transient outward currents (STOCs in single mouse tracheal smooth muscle cells, which suggests that chloro might block BKs. We further found that chloro inhibited Ca2+ sparks and caffeine-induced global Ca2+ increases. Moreover, chloro can directly block single BK currents completely from the intracellular side and partially from the extracellular side. All these data indicate that the chloro-induced inhibition of STOCs is due to the blockade of chloro on both BKs and ryanodine receptors (RyRs. We also found that low concentrations of chloro resulted in additional contractions in tracheal rings that were precontracted by acetylcholine (ACH. Increases in chloro concentration reversed the contractile actions to relaxations. In the presence of IbTx or paxilline (pax, BK blockers, chloro-induced contractions were inhibited, although the high concentrations of chloro-induced relaxations were not affected. Taken together, our results indicate that chloro blocks BKs and RyRs, resulting in abolishment of STOCs and occurrence of contraction, the latter will counteract the relaxations induced by high concentrations of chloro.

  15. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  16. Muscle disorder

    Science.gov (United States)

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  17. Hypoxia-increased expression of genes involved in inflammation, dedifferentiation, pro-fibrosis, and extracellular matrix remodeling of human bladder smooth muscle cells.

    Science.gov (United States)

    Wiafe, Bridget; Adesida, Adetola; Churchill, Thomas; Adewuyi, Esther Ekpe; Li, Zack; Metcalfe, Peter

    2017-01-01

    Partial bladder outlet obstruction (pBOO) is characterized by exaggerated stretch, hydrodynamic pressure, and inflammation which cause significant damage and fibrosis to the bladder wall. Several studies have implicated hypoxia in its pathophysiology. However, the isolated progressive effects of hypoxia on bladder cells are not yet defined. Sub-confluent normal human bladder smooth muscle cells (hbSMC) were cultured in 3% O2 tension for 2, 24, 48, and 72 h. RNA, cellular proteins, and secreted proteins were used for gene expression analysis, immunoblotting, and ELISA, respectively. Transcription of hypoxia-inducible factor (HIF)1α and HIF2α were transiently induced after 2 h of hypoxia (p inflammation, de-differentiation, pro-fibrotic changes, and increased extracellular matrix expression. This elucidates mechanisms of hypoxia-driven bladder deterioration in bladder cells, which is important in tailoring in vivo experiments and may ultimately translate into improved clinical outcomes.

  18. Eye muscle proprioception is represented bilaterally in the sensorimotor cortex

    DEFF Research Database (Denmark)

    Balslev, Daniela; Albert, Neil B; Miall, Chris

    2011-01-01

    The cortical representation of eye position is still uncertain. In the monkey a proprioceptive representation of the extraocular muscles (EOM) of an eye were recently found within the contralateral central sulcus. In humans, we have previously shown a change in the perceived position of the right...... eye after a virtual lesion with rTMS over the left somatosensory area. However, it is possible that the proprioceptive representation of the EOM extends to other brain sites, which were not examined in these previous studies. The aim of this fMRI study was to sample the whole brain to identify...... the proprioceptive representation for the left and the right eye separately. Data were acquired while passive eye movement was used to stimulate EOM proprioceptors in the absence of a motor command. We also controlled for the tactile stimulation of the eyelid by removing from the analysis voxels activated by eyelid...

  19. Involvement of Ca2+ Signaling in the Synergistic Effects between Muscarinic Receptor Antagonists and β2-Adrenoceptor Agonists in Airway Smooth Muscle

    Science.gov (United States)

    Fukunaga, Kentaro; Kume, Hiroaki; Oguma, Tetsuya; Shigemori, Wataru; Tohda, Yuji; Ogawa, Emiko; Nakano, Yasutaka

    2016-01-01

    Long-acting muscarinic antagonists (LAMAs) and short-acting β2-adrenoceptor agonists (SABAs) play important roles in remedy for COPD. To propel a translational research for development of bronchodilator therapy, synergistic effects between SABAs with LAMAs were examined focused on Ca2+ signaling using simultaneous records of isometric tension and F340/F380 in fura-2-loaded tracheal smooth muscle. Glycopyrronium (3 nM), a LAMA, modestly reduced methacholine (1 μM)-induced contraction. When procaterol, salbutamol and SABAs were applied in the presence of glycopyrronium, relaxant effects of these SABAs are markedly enhanced, and percent inhibition of tension was much greater than the sum of those for each agent and those expected from the BI theory. In contrast, percent inhibition of F340/F380 was not greater than those values. Bisindolylmaleimide, an inhibitor of protein kinase C (PKC), significantly increased the relaxant effect of LAMA without reducing F340/F380. Iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ (KCa) channels, significantly suppressed the effects of these combined agents with reducing F340/F380. In conclusion, combination of SABAs with LAMAs synergistically enhances inhibition of muscarinic contraction via decreasing both Ca2+ sensitization mediated by PKC and Ca2+ dynamics mediated by KCa channels. PKC and KCa channels may be molecular targets for cross talk between β2-adrenoceptors and muscarinic receptors. PMID:27657061

  20. miR-125b targets DNMT3b and mediates p53 DNA methylation involving in the vascular smooth muscle cells proliferation induced by homocysteine.

    Science.gov (United States)

    Cao, ChengJian; Zhang, HuiPing; Zhao, Li; Zhou, Longxia; Zhang, Minghao; Xu, Hua; Han, Xuebo; Li, Guizhong; Yang, Xiaoling; Jiang, YiDeng

    2016-09-10

    MicroRNAs (miRNAs) are short non-coding RNA and play crucial roles in a wide array of biological processes, including cell proliferation, differentiation and apoptosis. Our previous studies found that homocysteine(Hcy) can stimulate the proliferation of vascular smooth muscle cells (VSMCs), however, the underlying mechanisms were not fully elucidated. Here, we found proliferation of VSMCs induced by Hcy was of correspondence to the miR-125b expression reduced both in vitro and in the ApoE knockout mice, the hypermethylation of p53, its decreased expression, and DNA (cytosine-5)-methyltransferase 3b (DNMT3b) up-regulated. And, we found DNMT3b is a target of miR-125b, which was verified by the Dual-Luciferase reporter assay and western blotting. Besides, the siRNA interference for DNMT3b significantly decreased the methylation level of p53, which unveiled the causative role of DNMT3b in p53 hypermethylation. miR-125b transfection further confirmed its regulative roles on p53 gene methylation status and the VSMCs proliferation. Our data suggested that a miR-125b-DNMT3b-p53 signal pathway may exist in the VSMCs proliferation induced by Hcy.

  1. Involvement of Ca2+ Signaling in the Synergistic Effects between Muscarinic Receptor Antagonists and β2-Adrenoceptor Agonists in Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Kentaro Fukunaga

    2016-09-01

    Full Text Available Long-acting muscarinic antagonists (LAMAs and short-acting β2-adrenoceptor agonists (SABAs play important roles in remedy for COPD. To propel a translational research for development of bronchodilator therapy, synergistic effects between SABAs with LAMAs were examined focused on Ca2+ signaling using simultaneous records of isometric tension and F340/F380 in fura-2-loaded tracheal smooth muscle. Glycopyrronium (3 nM, a LAMA, modestly reduced methacholine (1 μM-induced contraction. When procaterol, salbutamol and SABAs were applied in the presence of glycopyrronium, relaxant effects of these SABAs are markedly enhanced, and percent inhibition of tension was much greater than the sum of those for each agent and those expected from the BI theory. In contrast, percent inhibition of F340/F380 was not greater than those values. Bisindolylmaleimide, an inhibitor of protein kinase C (PKC, significantly increased the relaxant effect of LAMA without reducing F340/F380. Iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ (KCa channels, significantly suppressed the effects of these combined agents with reducing F340/F380. In conclusion, combination of SABAs with LAMAs synergistically enhances inhibition of muscarinic contraction via decreasing both Ca2+ sensitization mediated by PKC and Ca2+ dynamics mediated by KCa channels. PKC and KCa channels may be molecular targets for cross talk between β2-adrenoceptors and muscarinic receptors.

  2. [Eales' disease involving central nervous system white matter].

    Science.gov (United States)

    Antigüedad, A; Zarranz, J J

    1994-01-01

    Eales' disease (ED) is a rare condition characterized by repeated retinal and vitreous hemorrhages. The only extraocular involvement described occasionally in the literature is neurological. Histologically, vasculitis in ED is usually restricted to the eye, but occasionally involves the central nervous system, where demyelinizing lesions may also occur. We present a 34-year-old male with ED and subclinical central nervous system involvement. Craneal magnetic resonance images (MR) suggested demyelinization; brainstem auditory and somatosensory evoked potentials were abnormal. There was moderate pleocytosis in CSF and intratecal production of immunoglobulins with oligoclonal bands. Follow-up over a period of 2.5 years showed no clinical, MR or CSF changes in spite of continued opthamological impairment. Little is known about factors that affect the development or not of demyelinizing lesions in ED patients with neurological involvement demonstrated by intratecal production of immunoglobulins. Identification of such factors may contribute to our understanding of other diseases, such as multiple sclerosis.

  3. Myosin Heavy Chain 2B isoform is expressed in specialized eye muscles but not in trunk and limb muscles of cattle

    Directory of Open Access Journals (Sweden)

    L Maccatrozzo

    2009-06-01

    Full Text Available Myosin heavy chain isoforms (MHC of adult skeletal muscles are codified by four genes named: slow, or type 1, and fast types 2A, 2X and 2B. The slow, 2A and 2X isoforms have been found expressed in all mammalian species studied so far whereas there is a large inter-species variability in the expression of MHC-2B. In this study histochemistry (m- ATPase, immunohistochemistry with the use of specific monoclonal antibodies and RT-PCR were combined together to assess whether the MHC-2B gene is expressed in bovine muscles. ATPase staining and RT-PCR experiments showed that three MHC isoforms (1, 2A, 2X were expressed in trunk and limb muscles. Slow or type 1 expression was confirmed using a specific antibody (BA-F8 whereas the detection of fast MHC isoforms were validate by means of BF-35 antibody although not by the SC-71 antibody. MHC-2B was absent in limb and trunk muscles, but was present in specialized eye muscles (rectus lateralis and retractor bulbi as consistently showed by RT-PCR and reactivity with a specific antibody (BF-F3. Interestingly, a cardiac isoform, MHC-a- cardiac was found to be expressed not only in extraocular muscles but also in masticatory muscles as masseter.

  4. 甲状腺相关性眼病眼外肌病变的手术治疗%Operative effect about extraocular myopathy in patients with Thyroid-associated ophthalmopathy

    Institute of Scientific and Technical Information of China (English)

    黄勇志; 何剑峰

    2016-01-01

    Objective:To discuss surgery effect about extraocular myopathy in patients with Thyroid -associated ophthalmopathy . Methods:The surgical management of strabismus in 13 cases with Thyroid -associated ophthalmopathy who received extraocular muscle surgery in our hospital were retrospectively analyzed .Nine cases were males and 4 were females,ranging in age from 28 to 61 years(mean:46 years).All patients were Vertical strabismus.The preoperative deciation of all cases was 25°to 45°.The patients were followed up for 3 ~18 months.Postoperative results were divided into 2 categories:successful outcome :orthotropia, or deviation ≤5°,there was no di-plopia or residual little diplopia could being corrected by low degree prism in primary position or reading position ,compensatory head pos-ture disappeared;Failure:deviation >5°in primary position,There are persistent diplopia that it was not easy being corrected by prism in primary position or reading position ,Compensatory head posture could not being significantly improved .Results:All patients accepted sin-gle vertical rectus recession .Postoperatively,76.9% patients were orthotropic in primary position , rebuilded binocular field of single vi-sion.There was small residual deviation (≤5°) in primary position in 15.4%patients .All patients could significantly improve compensa-tory head posture. Surgical success rate was 92.8%.Diplopia could not being eliminated in secondary positions .Postoperative eyeball motility improved markedly .Serious complications were not found .Conclusion:The surgical management of extraocular myopathy in pa-tients with TAO was safe and effective after inflammation disappeared and stable eye position , single rectus recession could correct large deviation in patients with restrictive strabismus , It could significantly improve diplopia and compensatory head posture .%目的:观察甲状腺相关性眼病眼外肌病变手术治疗临床效果. 方法:回顾性分析我院13例14眼TAO

  5. Inhibitory Effect of Ginsenoside Rg1 on Vascular Smooth Muscle Cell Proliferation Induced by PDGF-BB Is Involved in Nitric Oxide Formation

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2012-01-01

    Full Text Available Ginsenoside Rg1 (Rg1 has been reported to suppress the proliferation of vascular smooth muscle cells (VSMCs. This study aimed to observe the role of nitric oxide (NO in Rg1-antiproliferative effect. VSMCs from the thoracic aorta of SD rats were cultured by tissue explant method, and the effect of Rg1 (20 mg⋅L-1, 60 mg⋅L-1, and 180 mg⋅L-1 on platelet-derived growth factor-BB (PDGF-BB-induced proliferation was evaluated by MTT assay. The cell cycle was analyzed by flow cytometry. For probing the mechanisms, the content of NO in supernatant and cGMP level in VSMCs was measured by nitric oxide kit and cGMP radio-immunity kit, respectively; the expressions of protooncogene c-fos and endothelial NO synthase (eNOS mRNA in the VSMCs were detected by real-time RT-PCR; the intracellular free calcium concentration ([Ca2+]i was detected with Fura-2/AM-loaded VSMCs. Comparing with that in normal group, Rg1 180 mg⋅L-1 did not change the absorbance of MTT and cell percent of G0/G1, G2/M, and S phase in normal cells (P>0.05. Contrarily, PDGF-BB could increase the absorbance of MTT (P<0.01 and the percent of the S phase cells but decrease the G0/G1 phase cell percent in the cell cycle, accompanied with an upregulating c-fos mRNA expression (P<0.01, which was reversed by additions of Rg1(20 mg⋅L-1, 60 mg⋅L-1, and 180 mg⋅L-1. Rg1 administration could also significantly increase the NO content in supernatant and the cGMP level in VSMCs, as well as the eNOS mRNA expression in the cells, in comparison of that in the group treated with PDGF-BB alone (P<0.01. Furthermore, Rg1 caused a further increase in the elevated [Ca2+]i induced by PDGF-BB. It was concluded that Rg1 could inhibit the VSMC proliferation induced by PDGF-BB through restricting the G0/G1 phase to S-phase progression in cell cycle. The mechanisms may be related to the upregulation of eNOS mRNA and the increase of the formation of NO and cGMP.

  6. Muscle dysfunction in male hypogonadism.

    Science.gov (United States)

    Chauhan, A K; Katiyar, B C; Misra, S; Thacker, A K; Singh, N K

    1986-05-01

    Twenty-eight consecutive male patients with primary and secondary hypogonadism (14 each) were evaluated clinically and electrophysiologically for muscle dysfunction. Although generalised muscle weakness was initially reported by only 9 patients, on direct questioning, it was recorded in 19. Objective weakness was found in 13 patients and it involved both the proximal and distal limb muscles. Quantitative electromyography showed evidence of myopathy in the proximal muscle in 25 patients, i.e., reduced MUP duration and amplitude with increased polyphasia in the deltoid and the gluteus maximus. There were no denervation potentials. None of the patients showed clinical neuropathy or NCV abnormalities. Thus, the profile of muscle involvement in hypogonadism closely simulates limb-girdle muscular dystrophy and other endocrine myopathies. The incidence of muscle involvement was higher in secondary hypogonadism. Diminished androgens in primary hypogonadism and diminished growth hormone in the secondary hypogonadism are probably responsible for the myopathy.

  7. Indoxyl sulfate-induced activation of (pro)renin receptor is involved in expression of TGF-β1 and α-smooth muscle actin in proximal tubular cells.

    Science.gov (United States)

    Saito, Shinichi; Shimizu, Hidehisa; Yisireyili, Maimaiti; Nishijima, Fuyuhiko; Enomoto, Atsushi; Niwa, Toshimitsu

    2014-05-01

    Activation of (pro)renin receptor (PRR) is involved in the progression of chronic kidney disease. However, the role of indoxyl sulfate, a uremic toxin, in the activation of PRR is not clear. The present study aimed to clarify the role of indoxyl sulfate in activation of PRR, in relation to renal expression of fibrotic genes. Renal expression of PRR and renin/prorenin was up-regulated in chronic kidney disease rats compared with normal rats, whereas AST-120 suppressed these expression by reducing serum levels of indoxyl sulfate. Furthermore, administration of indoxyl sulfate to normotensive and hypertensive rats increased renal expression of PRR and renin/prorenin. Indoxyl sulfate induced expression of PRR and prorenin in cultured human proximal tubular cells (HK-2 cells). Indoxyl sulfate-induced PRR expression was inhibited by small interfering RNAs of signal transducer and activator of transcription 3 (Stat3) and nuclear factor-κB p65 in proximal tubular cells. N-acetylcysteine, an antioxidant, and diphenyleneiodonium, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase, suppressed indoxyl sulfate-induced PRR expression in proximal tubular cells. N-acetylcysteine prevented indoxyl sulfate-induced phosphorylation of Stat3 in proximal tubular cells. PRR small interfering RNA inhibited indoxyl sulfate-induced expression of TGF-β1 and α-smooth muscle actin in proximal tubular cells. Taken together, indoxyl sulfate-induced up-regulation of prorenin expression and activation of PRR through production of reactive oxygen species and activation of Stat3 and nuclear factor-κB play an important role in the expression of TGF-β1 and α-smooth muscle actin in proximal tubular cells. Thus, indoxyl sulfate-induced activation of prorenin/PRR might be involved in renal fibrosis.

  8. Pericranial muscle dysfunction in primary headache and its correction

    Directory of Open Access Journals (Sweden)

    Vera Valentinovna Osipova

    2010-01-01

    comorbid association, and the involvement of muscle tension in the pathophysiology of TTN. Approaches to treating muscle tension in patients with primary headache disorders are discussed and a role of myorelaxants in the correction of muscle dysfunction is emphasized.

  9. Localising rectus muscle insertions using high frequency wide-field ultrasound biomicroscopy.

    Science.gov (United States)

    Khan, Hayat Ahmad; Smith, David R; Kraft, Stephen P

    2012-05-01

    The ultrasound biomicroscope (UBM) can accurately locate an extraocular muscle (EOM) insertion. The authors compared the accuracy of the Sonomed UBM (SUBM), a new 'wide-field ultrasound biomicroscope', with the older model Humphrey UBM (HUBM) in localising EOM insertions and compared their ranges of detection of muscle insertions. Prospective, double-masked, observational study of 27 patients undergoing primary (n=40 muscles) or repeat (n=10 muscles) horizontal or vertical rectus muscle surgery. EOM insertional distances were measured with SUBM, and then intraoperatively with callipers. A Bland-Altman analysis and intraclass correlation coefficient were used to compare the SUBM and surgical data. For all muscles, the differences between SUBM and surgery measurements were less than 1.0 mm. The mean of the SUBM insertion distances was 6.67 mm (SD 1.65 mm) versus 6.7 mm (SD 1.6 mm) at surgery. The intraclass correlation coefficient showed 'excellent' correlation between the two sets of data and was higher than that reported with HUBM. The image quality with the SUBM was superior to the HUBM, and its range of field was much larger (14×18 mm vs 5×6 mm). The SUBM with its smaller, more manoeuvrable probe handpiece and a wider scanning field was more accurate in detecting muscle insertions compared with HUBM.

  10. Muscle atrophy

    Science.gov (United States)

    ... atrophy. Exercises may include ones done in a swimming pool to reduce the muscle workload, and other types ... a physical examination and ask about your medical history and symptoms, including: When did the muscle atrophy ...

  11. Your Muscles

    Science.gov (United States)

    ... develops. There they help to push the baby out of the mother's body when it's time to be born. You'll find smooth muscles at work behind the scenes in your eyes, too. These muscles keep the eyes ... thick muscles of the heart contract to pump blood out and then relax to let blood back in ...

  12. Modeling Muscles

    Science.gov (United States)

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  13. Role of enzymatic activity in muscle damage and cytotoxicity induced by Bothrops asper Asp49 phospholipase A2 myotoxins: are there additional effector mechanisms involved?

    Directory of Open Access Journals (Sweden)

    Diana Mora-Obando

    2014-09-01

    Full Text Available Viperid venoms often contain mixtures of Asp49 and Lys49 PLA2 myotoxin isoforms, relevant to development of myonecrosis. Given their difference in catalytic activity, mechanistic studies on each type require highly purified samples. Studies on Asp49 PLA2s have shown that enzyme inactivation using p-bromophenacyl bromide (p-BPB drastically affects toxicity. However, based on the variable levels of residual toxicity observed in some studies, it has been suggested that effector mechanisms independent of catalysis may additionally be involved in the toxicity of these enzymes, possibly resembling those of the enzymatically inactive Lys49 myotoxins. A possibility that Lys49 isoforms could be present in Asp49 PLA2 preparations exists and, if undetected in previous studies, could explain the variable residual toxicity. This question is here addressed by using an enzyme preparation ascertained to be free of Lys49 myotoxins. In agreement with previous reports, inactivation of the catalytic activity of an Asp49 myotoxin preparation led to major inhibition of toxic effects in vitro and in vivo. The very low residual levels of myotoxicity (7% and cytotoxicity (4% observed can be attributed to the low, although detectable, enzyme remaining active after p-BPB treatment (2.7%, and would be difficult to reconcile with the proposed existence of additional catalytic-independent toxic mechanisms. These findings favor the concept that the effector mechanism of toxicity of Asp49 PLA2 myotoxins from viperids fundamentally relies on their ability to hydrolyze phospholipids, arguing against the proposal that membrane disruption may also be caused by additional mechanisms that are independent of catalysis.

  14. 眼外肌矫正术治疗先天性下睑退缩%Repair of lower eyelid retraction via diorthosis of the extraocular muscle

    Institute of Scientific and Technical Information of China (English)

    张丽蓉; 胡兰; 何伟

    2013-01-01

    Objective To assess the effects of balanced adjustment of superior or inferior rectus insertion in both eye for the treatment of lower eyelid retraction.Methods The anatomical structure of eyelid and eyeball was analyzed,and the binocular vision function and fundus in 2 adult lower eyelid retractors were totally examined.Plication of both inferior rectus was performed in one case,and the other with recession of both superior rectus.Eye position and binocular vision were assessed intraoperatively and postoperative follow-up was carried out.Results Eye movement was normal in both cases,non accompanied with diplopia,decreased vision,headache and dizziness.The width of palpebral fissure is normal in all eye,and there were no scar and pathological changes.Patients looked naturelly and the satisfaction was obtained.Conclusion Surgery of superior or inferior rectus is effective with little damage and quick recovery.%目的 通过均衡调整双眼球上、下直肌的附着点,使眼球向下移位,矫正下睑退缩外观.方法 对2例成年先天性下睑退缩患者,进行眼睑及眼球解剖结构特点的分析,全面检查分析双眼视功能及眼底功能,选择局部麻醉下双眼下直肌折叠缩短术1例,双眼上直肌后徙术1例,并在术中调整眼球位置及观察双眼视觉效果,术后跟踪随访.结果 本组2例患者术后眼球各向运动无明显受限,双眼无复视,无视力下降及头痛头晕,双眼无不适感.双眼睑裂高度正常,眼睑皮肤无手术瘢痕及病理性改变,患者容貌自然美观,效果满意.结论 此术式损伤轻微,术后恢复快,效果理想.

  15. Muscle spindles in the human bulbospongiosus and ischiocavernosus muscles.

    Science.gov (United States)

    Peikert, Kevin; May, Christian Albrecht

    2015-07-01

    Muscle spindles are crucial for neuronal regulation of striated muscles, but their presence and involvement in the superficial perineal muscles is not known. Bulbospongiosus and ischiocavernosus muscle specimens were obtained from 31 human cadavers. Serial sections were stained with hematoxylin and eosin, Sirius red, antibodies against Podocalyxin, myosin heavy chain isoforms (MyHC-slow tonic, S46; MyHC-2a/2x, A4.74), and neurofilament for the purpose of muscle spindle screening, counting, and characterization. A low but consistent number of spindles were detected in both muscles. The muscles contained few intrafusal fibers, but otherwise showed normal spindle morphology. The extrafusal fibers of both muscles were small in diameter. The presence of muscle spindles in bulbospongiosus and ischiocavernosus muscles supports physiological models of pelvic floor regulation and may provide a basis for further clinical observations regarding sexual function and micturition. The small number of muscle spindles points to a minor level of proprioceptive regulation. © 2014 Wiley Periodicals, Inc.

  16. [Delayed post effort muscle soreness].

    Science.gov (United States)

    Coudreuse, J M; Dupont, P; Nicol, C

    2004-08-01

    Muscle intolerance to exercise may result from different processes. Diagnosis involves confirming first the source of pain, then potential pathological myalgia. Delayed-onset muscle soreness (DOMS), commonly referred as tiredness, occurs frequently in sport. DOMS usually develops 12-48 h after intensive and/or unusual eccentric muscle action. Symptoms usually involve the quadriceps muscle group but may also affect the hamstring and triceps surae groups. The muscles are sensitive to palpation, contraction and passive stretch. Acidosis, muscle spasm and microlesions in both connective and muscle tissues may explain the symptoms. However, inflammation appears to be the most common explanation. Interestingly, there is strong evidence that the progression of the exercise-induced muscle injury proceeds no further in the absence of inflammation. Even though unpleasant, DOMS should not be considered as an indicator of muscle damage but, rather, a sign of the regenerative process, which is well known to contribute to the increased muscle mass. DOMS can be associated with decreased proprioception and range of motion, as well as maximal force and activation. DOMS disappears 2-10 days before complete functional recovery. This painless period is ripe for additional joint injuries. Similarly, if some treatments are well known to attenuate DOMS, none has been demonstrated to accelerate either structural or functional recovery. In terms of the role of the inflammatory process, these treatments might even delay overall recovery.

  17. Quantitative ultrasound of denervated hand muscles.

    Science.gov (United States)

    Simon, Neil G; Ralph, Jeffrey W; Lomen-Hoerth, Catherine; Poncelet, Ann N; Vucic, Steve; Kiernan, Matthew C; Kliot, Michel

    2015-08-01

    Presentations to the neuromuscular clinic commonly involve hand muscle denervation, but few studies have evaluated hand muscle ultrasound. Ultrasound studies of abductor pollicis brevis, first dorsal interosseous, and abductor digit minimi were prospectively performed in a cohort of 34 patients (77 muscles) with electromyography (EMG)-confirmed denervation, compared with 58 healthy control subjects. In control subjects, muscle thickness was highly reproducible [intraclass correlation coefficient (ICC) = 0.88-0.98], and echogenicity was moderately reproducible (ICC = 0.542-0.686). Age, gender, and body mass index influenced muscle thickness and echogenicity. Ultrasound changes in denervated muscles correlated with the severity of EMG abnormalities. A z-score cutoff of 0 identified denervated muscles with a sensitivity of 100% and 89% for echogenicity and muscle thickness, respectively. Hand muscle ultrasound provides a noninvasive method to quantify muscle denervation and may be useful as a screening tool before EMG studies. © 2014 Wiley Periodicals, Inc.

  18. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species.

    Science.gov (United States)

    Mascarello, Francesco; Toniolo, Luana; Cancellara, Pasqua; Reggiani, Carlo; Maccatrozzo, Lisa

    2016-09-01

    In the mammalian genome, among myosin heavy chain (MyHC) isoforms a family can be identified as sarcomeric based on their molecular structure which allows thick filament formation. In this study we aimed to assess the expression of the 10 sarcomeric isoforms in human skeletal muscles, adopting this species as a reference for comparison with all other mammalian species. To this aim, we set up the condition for quantitative Real Time PCR assay to detect and quantify MyHC mRNA expression in a wide variety of human muscles from somitic, presomitic and preotic origin. Specific patterns of expression of the following genes MYH1, MYH2, MYH3, MYH4, MYH6, MYH7, MYH8, MYH13, MYH14/7b and MYH15 were demonstrated in various muscle samples. On the same muscle samples which were analysed for mRNA expression, the corresponding MyHC proteins were studied with SDS PAGE and Western blot. The mRNA-protein comparison allowed the identification of 10 distinct proteins based on the electrophoretic migration rate. Three groups were formed based on the migration rate: fast migrating comprising beta/slow/1, alpha cardiac and fast 2B, slow migrating comprising fast 2X, fast 2A and two developmental isoforms (NEO and EMB), intermediate migrating comprising EO MyHC, slow B (product of MYH15), slow tonic (product of MYH14/7b). Of special interest was the demonstration of a protein band corresponding to 2B-MyHC in laryngeal muscles and the finding that all 10 isoforms are expressed in extraocular muscles. These latter muscles are the unique localization for extraocular, slow B (product of MYH15) and slow tonic (product of MYH14/7b).

  19. Muscle MRI findings in facioscapulohumeral muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Gerevini, Simonetta; Caliendo, Giandomenico; Falini, Andrea [IRCCS San Raffaele Scientific Institute, Neuroradiology Unit, Head and Neck Department, Milan (Italy); Scarlato, Marina; Previtali, Stefano Carlo [IRCCS San Raffaele Scientific Institute, Department of Neurology, INSPE and Division of Neuroscience, Milan (Italy); Maggi, Lorenzo; Pasanisi, Barbara; Morandi, Lucia [Fondazione IRCCS Istituto Neurologico ' ' Carlo Besta' ' , Neuromuscular Diseases and Neuroimmunology Unit, Milan (Italy); Cava, Mariangela [IRCCS San Raffaele Scientific Institute, Department of Radiology and Center for Experimental Imaging, Milan (Italy)

    2016-03-15

    Facioscapulohumeral muscular dystrophy (FSHD) is characterized by extremely variable degrees of facial, scapular and lower limb muscle involvement. Clinical and genetic determination can be difficult, as molecular analysis is not always definitive, and other similar muscle disorders may have overlapping clinical manifestations. Whole-body muscle MRI examination for fat infiltration, atrophy and oedema was performed to identify specific patterns of muscle involvement in FSHD patients (30 subjects), and compared to a group of control patients (23) affected by other myopathies (NFSHD). In FSHD patients, we detected a specific pattern of muscle fatty replacement and atrophy, particularly in upper girdle muscles. The most frequently affected muscles, including paucisymptomatic and severely affected FSHD patients, were trapezius, teres major and serratus anterior. Moreover, asymmetric muscle involvement was significantly higher in FSHD as compared to NFSHD patients. In conclusion, muscle MRI is very sensitive for identifying a specific pattern of involvement in FSHD patients and in detecting selective muscle involvement of non-clinically testable muscles. Muscle MRI constitutes a reliable tool for differentiating FSHD from other muscular dystrophies to direct diagnostic molecular analysis, as well as to investigate FSHD natural history and follow-up of the disease. (orig.)

  20. Restoration of uridine 5′-triphosphate-suppressed delayed rectifying K+ currents by an NO activator KMUP-1 involves RhoA/Rho kinase signaling in pulmonary artery smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Zen-Kong Dai

    2016-12-01

    Full Text Available We have demonstrated that KMUP-1 (7-[2-[4-(2-chlorobenzenepiperazinyl]ethyl]-1,3-dimethylxanthine blunts monocrotaline-induced pulmonary arterial hypertension by altering Ca2+ sensitivity, K+-channel function, endothelial nitric oxide synthase activity, and RhoA/Rho kinase (ROCK expression. This study further investigated whether KMUP-1 impedes uridine 5′-triphosphate (UTP-inhibited delayed rectifying K+ (KDR current in rat pulmonary arteries involved the RhoA/ROCK signaling. Pulmonary artery smooth muscle cells (PASMCs were enzymatically dissociated from rat pulmonary arteries. KMUP-1 (30μM attenuated UTP (30μM-mediated membrane depolarization and abolished UTP-enhanced cytosolic Ca2+ concentration. Whole-cell patch-clamp electrophysiology was used to monitor KDR currents. A voltage-dependent KDR current was isolated and shown to consist of a 4-aminopyridine (5mM-sensitive component and an insensitive component. The 4-aminopyridine sensitive KDR current was suppressed by UTP (30μM. The ROCK inhibitor Y27632 (30μM abolished the ability of UTP to inhibit the KDR current. Like Y27632, KMUP-1 (30μM similarly abolished UTP-inhibited KDR currents. Superfused protein kinase A and protein kinase G inhibitors (KT5720, 300nM and KT5823, 300nM did not affect UTP-inhibited KDR currents, but the currents were restored by adding KMUP-1 (30μM to the superfusate. KMUP-1 reversal of KDR current inhibition by UTP predominantly involves the ROCK inhibition. The results indicate that the RhoA/ROCK signaling pathway plays a key role in eliciting PASMCs depolarization caused by UTP, which would result in pulmonary artery constriction. KMUP-1 blocks UTP-mediated PASMCs depolarization, suggesting that it would prevent abnormal pulmonary vasoconstriction.

  1. Flap tear of rectus muscles: an underlying cause of strabismus after orbital trauma.

    Science.gov (United States)

    Ludwig, Irene H; Brown, Mark S

    2002-11-01

    To present an avulsion injury of the rectus muscle after orbital trauma, usually the inferior rectus, and detail its diagnosis and operative repair. Forty-three patients underwent repair of flap tears of 62 rectus muscles. During surgery, we found the muscle abnormality was often subtle, with narrowing or thinning of the remaining attached global layer of muscle. The detached flap of external (orbital) muscle was found embedded in surrounding orbital fat and connective tissue. Retrieval and repair were performed in each case. The causes of orbital trauma were as follows: orbital fractures (15 patients), blunt trauma with no fracture (11 patients), suspected trauma but did not undergo computerized tomographic scan (12 patients), and status after retinal detachment repair (5 patients). Of note, 15 of the 43 patients (35%) underwent repair of the flap tear alone, without any additional orbital or strabismus surgery. Diagnostically, the predominant motility defect in 45 muscles was limitation toward the field of action of the muscle, presumably as a result of a tether created by the torn flap; these tethers simulated muscle palsy. Seventeen muscles were restricted away from their field of action, simulating entrapment. The direction taken by the flap during healing determined the resultant strabismus pattern. All patients with gaze limitation toward an orbital fracture had flap tears. The worst results after flap tear repair were seen in patients (1) who had undergone orbital fracture repair before presentation, (2) who had undergone previous attempts at strabismus repair, and (3) who had the longest intervals between the precipitating event and the repair. The best results were obtained in patients who underwent simultaneous fracture and strabismus repair or early strabismus repair alone. Avulsion-type flap tears of the extraocular muscles are a common cause of posttraumatic strabismus. Early repair produces the best results, but improvement is possible despite long

  2. Intramuscular variation in fresh ham muscle color

    Science.gov (United States)

    This experiment was conducted to characterize a defect involving pale muscle tissue in the superficial, ventral portion of ham muscles, resulting in two-toned appearance of cured ham products. Biceps femoris muscles (n = 200), representing 3 production systems, were obtained from the ham-boning lin...

  3. Emerin increase in regenerating muscle fibers

    Directory of Open Access Journals (Sweden)

    S Squarzoni

    2009-06-01

    Full Text Available The fate of emerin during skeletal muscle regeneration was investigated in an animal model by means of crush injury. Immunofluorescence, immunoblotting and mRNA analysis demonstrated that emerin level is increased in regenerating rat muscle fibers with respect to normal mature myofibers. This finding suggests an involvement of emerin during the muscle fiber regeneration process, in analogy with its reported involvement in muscle cell differentiation in vitro. The impairment of skeletal muscle physiological regeneration or reorganization could be a possible pathogenetic mechanism for Emery Dreifuss muscular dystrophy.

  4. Semimembranosus muscle herniation: a rare case with emphasis on muscle biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Naffaa, Lena [American University of Beirut, Department of Diagnostic Radiology, P.O. Box 11-0236, Riad El-Solh, Beirut (Lebanon); Moukaddam, Hicham [Saint Rita Medical Center, Lima, OH (United States); Samim, Mohammad [New York University, Department of Radiology, Hospital for Joint Disease, New York, NY (United States); Lemieux, Aaron [University of California, San Diego School of Medicine, La Jolla, CA (United States); Smitaman, Edward [University of California, San Diego, Teleradiology and Education Center, San Diego, CA (United States)

    2017-03-15

    Muscle herniations are rare and most reported cases involve muscles of the lower leg. We use a case of muscle herniation involving the semimembranosus muscle, presenting as a painful mass in an adolescent male after an unspecified American football injury, to highlight a simple concept of muscle biomechanics as it pertains to muscle hernia(s): decreased traction upon muscle fibers can increase conspicuity of muscle herniation(s) - this allows a better understanding of the apt provocative maneuvers to employ, during dynamic ultrasound or magnetic resonance imaging, in order to maximize diagnostic yield and, thereby, limit patient morbidity related to any muscle herniation. Our patient subsequently underwent successful decompressive fasciotomy and has since returned to his normal daily activities. (orig.)

  5. Muscle pain

    African Journals Online (AJOL)

    Causes of muscle pain include stress, physical activity, infections, hyper or .... Acupuncture. It is a traditional Chinese-based therapeutic method which ..... and Spinal Mechanisms of Pain and Dry Needling Mediated Analgesia: A Clinical.

  6. Stable atrogin-1 (Fbxo32 and MuRF1 (Trim63 gene expression is involved in the protective mechanism in soleus muscle of hibernating Daurian ground squirrels (Spermophilus dauricus

    Directory of Open Access Journals (Sweden)

    Kai Dang

    2016-01-01

    Full Text Available Understanding the mechanisms that protect against or limit muscle atrophy in hibernators during prolonged inactivity has important implications for its treatment. We examined whether external factors influence the pathways regulating protein synthesis and degradation, leading to muscle atrophy prevention in Daurian ground squirrels (Spermophilus dauricus. We investigated the effects of 14-day hindlimb-unloading (HU in different seasons and two-month hibernation on the soleus (SOL muscle wet mass, muscle-to-body mass ratio, fiber cross sectional area (CSA, fiber distribution and muscle ultrastructure. We also measured changes in the protein expression and activation states of Akt, mTOR and FoxO1 and the mRNA expression of atrogin-1 and MuRF1. Compared with the control groups, autumn and winter HU significantly lowered SOL muscle wet mass and muscle-to-body mass ratio, decreased type I and II fiber CSA and induced ultrastructural anomalies. However, these measured indices were unchanged between Pre-hibernation and Hibernation groups. Furthermore, phosphorylation levels of Akt and mTOR significantly decreased, while the phosphorylation level of FoxO1 and mRNA expression of atrogin-1 and MuRF1 increased after HU. During hibernation, the phosphorylation levels of Akt and mTOR significantly decreased, but the phosphorylation level of FoxO1 and mRNA expression of atrogin-1 and MuRF1 remained unchanged. Overall, our findings suggest that disuse and seasonality may not be sufficient to initiate the innate protective mechanism that prevents SOL atrophy during prolonged periods of hibernation inactivity. The stable expression of atrogin-1 and MuRF1 may facilitate to prevent SOL atrophy via controlling ubiquitination of muscle proteins during hibernation.

  7. Referred pain elicited by manual exploration of the lateral rectus muscle in chronic tension-type headache.

    Science.gov (United States)

    Fernández-de-Las-Peñas, César; Cuadrado, Maria Luz; Gerwin, Robert D; Pareja, Juan A

    2009-01-01

    To analyze the presence of referred pain elicited by manual examination of the lateral rectus muscle in patients with chronic tension-type headache (CTTH). A case-control blinded study. It has been found previously that the manual examination of the superior oblique muscle can elicit referred pain to the head in some patients with migraine or tension-type headache. However, a referred pain from other extraocular muscles has not been investigated. Fifteen patients with CTTH and 15 healthy subjects without headache history were included. A blinded assessor performed a manual examination focused on the search for myofascial trigger points (TrPs) in the right and left lateral rectus muscles. TrP diagnosis was made when there was referred pain evoked by maintained pressure on the lateral corner of the orbit (anatomical projection of the lateral rectus muscle) for 20 seconds, and increased referred pain while the subject maintained a medial gaze on the corresponding side (active stretching of the muscle) for 15 seconds. On each side, a 10-point numerical pain rate scale was used to assess the intensity of referred pain at both stages of the examination. Ten patients with CTTH (66.6%) had referred pain that satisfied TrPs diagnostic criteria, while only one healthy control (0.07%) reported referred pain upon the examination of the lateral rectus muscles (P < 0.001). The elicited referred pain was perceived as a deep ache located at the supraorbital region or the homolateral forehead. Pain was evoked on both sides in all subjects with TrPs, with no difference in pain intensity between the right and the left. The average pain intensity was significantly greater in the patient group (P < 0.001). All CTTH patients with referred pain recognized it as the frontal pain that they usually experienced during their headache attacks, which was consistent with active TrPs. In some patients with CTTH, the manual examination of lateral rectus muscle TrPs elicits a referred pain that

  8. 甲状腺相关性眼病伴眼外肌肌腱受累1例%Thyroid eye disease with tendon involvement

    Institute of Scientific and Technical Information of China (English)

    Ng Guan Fook; Dinesh Kumar; Ang Ee Ling; Liza-Sharmini

    2012-01-01

    目的:报告1例甲状腺相关性眼病的非典型CT扫描表现.方法:一位64岁的中国女性出现复视3mo,无视力模糊.14a前她曾患甲状腺功能亢进症伴多结节甲状腺肿并行甲状腺切除术.眼科检查发现双眼下斜视并向上注视受限.左眼red desaturation并Ⅰ级相对性瞳孔传入障碍.T3,T4和促甲状腺激素(thyroid stimulating hormone,TSH)正常.TSH受体、抗体水平高,与Graves病一致.磁共振成像(magnetic resonance imaging,MRI)显示双下直肌弥漫性增大,肌腱受累.结果:给予几周期静脉注射甲基强的松龙继之以口服强的松后视力无提高,反之继续下降.行左眼眼眶减压术,术后其左眼视力有所改善.结论:有肌腱受累的眼外肌增大不能排除甲状腺相关性眼眶病(thyroid assciated orbitopathy,TAO)的可能.%AIM: To report an atypical CT scan finding of thyroid eye disease.METHODS: A 64 years old Chinese lady presented with diplopia for 3 months without blurring of vision. She had been diagnosed as thyrotoxicosis with multinodular goitre 14 years back and thyroidectomy was done 14 years ago. Eye examination revealed both eye hypotropia with restricted up gaze movement. There was presence of red desaturation on her left eye with grade I relative afferent pupillary defect. Hormone profile showed normal triiodothyronine (T3), tetraiodothyronine (T4) and thyroid stimulating hormone(TSH). TSH receptor antibody was high which was consistent with Graves disease. Magnetic resonance imaging(MRI) showed diffused enlargement of both inferior rectus muscle with tendon involvement.RESULTS: Few cycle of intravenous methylprednisolone followed by oral prednisolone were given but left eye vision deteriorated in spite of medical treatment. Left eye orbital decompression was done and her left eye visual acuity was improved after the surgery.CONCLUSION: Extraocular muscle enlargement with tendon involvement does not exclude possibility of thyroid associated

  9. Muscle dysfunction in cancer patients

    DEFF Research Database (Denmark)

    Christensen, Jesper Frank; Jones, L W; Andersen, J L

    2014-01-01

    implications of muscle dysfunction in cancer patients. The efficacy of exercise training to prevent and/or mitigate cancer-related muscle dysfunction is also discussed. DESIGN: We identified 194 studies examining muscular outcomes in cancer patients by searching PubMed and EMBASE databases. RESULTS: Muscle...... dysfunction is evident across all stages of the cancer trajectory. The causes of cancer-related muscle dysfunction are complex, but may involve a wide range of tumor-, therapy- and/or lifestyle-related factors, depending on the clinical setting of the individual patient. The main importance of muscle...... dysfunction in cancer patients lies in the correlation to vital clinical end points such as cancer-specific and all-cause mortality, therapy complications and quality of life (QoL). Such associations strongly emphasize the need for effective therapeutic countermeasures to be developed and implemented...

  10. Magnetic resonance imaging of facial muscles

    Energy Technology Data Exchange (ETDEWEB)

    Farrugia, M.E. [Department of Clinical Neurology, University of Oxford, Radcliffe Infirmary, Oxford (United Kingdom)], E-mail: m.e.farrugia@doctors.org.uk; Bydder, G.M. [Department of Radiology, University of California, San Diego, CA 92103-8226 (United States); Francis, J.M.; Robson, M.D. [OCMR, Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford (United Kingdom)

    2007-11-15

    Facial and tongue muscles are commonly involved in patients with neuromuscular disorders. However, these muscles are not as easily accessible for biopsy and pathological examination as limb muscles. We have previously investigated myasthenia gravis patients with MuSK antibodies for facial and tongue muscle atrophy using different magnetic resonance imaging sequences, including ultrashort echo time techniques and image analysis tools that allowed us to obtain quantitative assessments of facial muscles. This imaging study had shown that facial muscle measurement is possible and that useful information can be obtained using a quantitative approach. In this paper we aim to review in detail the methods that we applied to our study, to enable clinicians to study these muscles within the domain of neuromuscular disease, oncological or head and neck specialties. Quantitative assessment of the facial musculature may be of value in improving the understanding of pathological processes occurring within facial muscles in certain neuromuscular disorders.

  11. DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation.

    Science.gov (United States)

    Miyata, Kohei; Miyata, Tomoko; Nakabayashi, Kazuhiko; Okamura, Kohji; Naito, Masashi; Kawai, Tomoko; Takada, Shuji; Kato, Kiyoko; Miyamoto, Shingo; Hata, Kenichiro; Asahara, Hiroshi

    2015-01-15

    Although DNA methylation is considered to play an important role during myogenic differentiation, chronological alterations in DNA methylation and gene expression patterns in this process have been poorly understood. Using the Infinium HumanMethylation450 BeadChip array, we obtained a chronological profile of the genome-wide DNA methylation status in a human myoblast differentiation model, where myoblasts were cultured in low-serum medium to stimulate myogenic differentiation. As the differentiation of the myoblasts proceeded, their global DNA methylation level increased and their methylation patterns became more distinct from those of mesenchymal stem cells. Gene ontology analysis revealed that genes whose promoter region was hypermethylated upon myoblast differentiation were highly significantly enriched with muscle-related terms such as 'muscle contraction' and 'muscle system process'. Sequence motif analysis identified 8-bp motifs somewhat similar to the binding motifs of ID4 and ZNF238 to be most significantly enriched in hypermethylated promoter regions. ID4 and ZNF238 have been shown to be critical transcriptional regulators of muscle-related genes during myogenic differentiation. An integrated analysis of DNA methylation and gene expression profiles revealed that de novo DNA methylation of non-CpG island (CGI) promoters was more often associated with transcriptional down-regulation than that of CGI promoters. These results strongly suggest the existence of an epigenetic mechanism in which DNA methylation modulates the functions of key transcriptional factors to coordinately regulate muscle-related genes during myogenic differentiation.

  12. Quantitative Muscle Ultrasonography in Carpal Tunnel Syndrome.

    Science.gov (United States)

    Lee, Hyewon; Jee, Sungju; Park, Soo Ho; Ahn, Seung-Chan; Im, Juneho; Sohn, Min Kyun

    2016-12-01

    To assess the reliability of quantitative muscle ultrasonography (US) in healthy subjects and to evaluate the correlation between quantitative muscle US findings and electrodiagnostic study results in patients with carpal tunnel syndrome (CTS). The clinical significance of quantitative muscle US in CTS was also assessed. Twenty patients with CTS and 20 age-matched healthy volunteers were recruited. All control and CTS subjects underwent a bilateral median and ulnar nerve conduction study (NCS) and quantitative muscle US. Transverse US images of the abductor pollicis brevis (APB) and abductor digiti minimi (ADM) were obtained to measure muscle cross-sectional area (CSA), thickness, and echo intensity (EI). EI was determined using computer-assisted, grayscale analysis. Inter-rater and intra-rater reliability for quantitative muscle US in control subjects, and differences in muscle thickness, CSA, and EI between the CTS patient and control groups were analyzed. Relationships between quantitative US parameters and electrodiagnostic study results were evaluated. Quantitative muscle US had high inter-rater and intra-rater reliability in the control group. Muscle thickness and CSA were significantly decreased, and EI was significantly increased in the APB of the CTS group (all pquantitative muscle US parameters may be useful for detecting muscle changes in CTS. Further study involving patients with other neuromuscular diseases is needed to evaluate peripheral muscle change using quantitative muscle US.

  13. Variations in pectoral girdle muscles in dogs.

    Science.gov (United States)

    Alić, I; Trbojević Vukičević, T; Đuras, M; Kužir, S; Fazarinc, G; Gjurčević Kantura, V

    2014-02-01

    Muscle variations take the form of additional muscle bundle or belly, unusual muscle origin or termination, as well as complete muscle absence. Knowledge of such variations not only has clinical importance for guiding surgery, but also can help reveal phylogenetic relationships. To improve our understanding of muscle variations in dogs, 57 medium-sized, cross-breed male and female adult animals were dissected as part of a gross anatomy course between 2005 and 2011. Variations in pectoral girdle muscles were observed in 7 (12.3%) dogs and took the form of an additional muscle bundle in the brachiocephalicus muscle (n = 2), in the omotransversarius muscle (n = 2), in the cervical part of the rhomboideus muscle (n = 2) and in the cervical part of the serratus ventralis muscle (n = 1). Muscle variation was bilateral in only one dog; it involved the omotransversarius muscle. The variations did not seem to be sex dependent. Such variations can appear regularly in dogs and should be taken into consideration during anatomical dissection. © 2013 Blackwell Verlag GmbH.

  14. How to make rapid eye movements “rapid”: the role of growth factors for muscle contractile properties

    Science.gov (United States)

    Li, Tian; Feng, Cheng-Yuan

    2011-01-01

    Different muscle functions require different muscle contraction properties. Saccade-generating extraocular muscles (EOMs) are the fastest muscles in the human body, significantly faster than limb skeletal muscles. Muscle contraction speed is subjected to plasticity, i.e., contraction speed can be adjusted to serve different demands, but little is known about the molecular mechanisms that control contraction speed. Therefore, we examined whether myogenic growth factors modulate contractile properties, including twitch contraction time (onset of force to peak force) and half relaxation time (peak force to half relaxation). We examined effects of three muscle-derived growth factors: insulin-like growth factor 1 (IGF1), cardiotrophin-1 (CT1), and glial cell line-derived neurotrophic factor (GDNF). In gain-of-function experiments, CT1 or GDNF injected into the orbit shortened contraction time, and IGF1 or CT1 shortened half relaxation time. In loss-of-function experiments with binding proteins or neutralizing antibodies, elimination of endogenous IGFs prolonged both contraction time and half relaxation time, while eliminating endogenous GDNF prolonged contraction time, with no effect on half relaxation time. Elimination of endogenous IGFs or CT1, but not GDNF, significantly reduced contractile force. Thus, IGF1, CT1, and GDNF have partially overlapping but not identical effects on muscle contractile properties. Expression of these three growth factors was measured in chicken and/or rat EOMs by real-time PCR. The “fast” EOMs express significantly more message encoding these growth factors and their receptors than skeletal muscles with slower contractile properties. Taken together, these findings indicate that EOM contractile kinetics is regulated by the amount of myogenic growth factors available to the muscle. PMID:21279379

  15. Musculoskeletal involvement in sarcoidosis*, **

    Science.gov (United States)

    Nessrine, Akasbi; Zahra, Abourazzak Fatima; Taoufik, Harzy

    2014-01-01

    Sarcoidosis is a multisystem inflammatory disorder of unknown cause. It most commonly affects the pulmonary system but can also affect the musculoskeletal system, albeit less frequently. In patients with sarcoidosis, rheumatic involvement is polymorphic. It can be the presenting symptom of the disease or can appear during its progression. Articular involvement is dominated by nonspecific arthralgia, polyarthritis, and Löfgren's syndrome, which is defined as the presence of lung adenopathy, arthralgia (or arthritis), and erythema nodosum. Skeletal manifestations, especially dactylitis, appear mainly as complications of chronic, multiorgan sarcoidosis. Muscle involvement in sarcoidosis is rare and usually asymptomatic. The diagnosis of rheumatic sarcoidosis is based on X-ray findings and magnetic resonance imaging findings, although the definitive diagnosis is made by anatomopathological study of biopsy samples. Musculoskeletal involvement in sarcoidosis is generally relieved with nonsteroidal anti-inflammatory drugs or corticosteroids. In corticosteroid-resistant or -dependent forms of the disease, immunosuppressive therapy, such as treatment with methotrexate or anti-TNF-α, is employed. The aim of this review was to present an overview of the various types of osteoarticular and muscle involvement in sarcoidosis, focusing on their diagnosis and management. PMID:24831403

  16. Musculoskeletal involvement in sarcoidosis

    Directory of Open Access Journals (Sweden)

    Akasbi Nessrine

    2014-04-01

    Full Text Available Sarcoidosis is a multisystem inflammatory disorder of unknown cause. It most commonly affects the pulmonary system but can also affect the musculoskeletal system, albeit less frequently. In patients with sarcoidosis, rheumatic involvement is polymorphic. It can be the presenting symptom of the disease or can appear during its progression. Articular involvement is dominated by nonspecific arthralgia, polyarthritis, and Löfgren's syndrome, which is defined as the presence of lung adenopathy, arthralgia (or arthritis, and erythema nodosum. Skeletal manifestations, especially dactylitis, appear mainly as complications of chronic, multiorgan sarcoidosis. Muscle involvement in sarcoidosis is rare and usually asymptomatic. The diagnosis of rheumatic sarcoidosis is based on X-ray findings and magnetic resonance imaging findings, although the definitive diagnosis is made by anatomopathological study of biopsy samples. Musculoskeletal involvement in sarcoidosis is generally relieved with nonsteroidal anti-inflammatory drugs or corticosteroids. In corticosteroid-resistant or -dependent forms of the disease, immunosuppressive therapy, such as treatment with methotrexate or anti-TNF-α, is employed. The aim of this review was to present an overview of the various types of osteoarticular and muscle involvement in sarcoidosis, focusing on their diagnosis and management.

  17. Pathophysiology of muscle dysfunction in COPD.

    Science.gov (United States)

    Gea, Joaquim; Agustí, Alvar; Roca, Josep

    2013-05-01

    Muscle dysfunction often occurs in patients with chronic obstructive pulmonary disease (COPD) and may involve both respiratory and locomotor (peripheral) muscles. The loss of strength and/or endurance in the former can lead to ventilatory insufficiency, whereas in the latter it limits exercise capacity and activities of daily life. Muscle dysfunction is the consequence of complex interactions between local and systemic factors, frequently coexisting in COPD patients. Pulmonary hyperinflation along with the increase in work of breathing that occur in COPD appear as the main contributing factors to respiratory muscle dysfunction. By contrast, deconditioning seems to play a key role in peripheral muscle dysfunction. However, additional systemic factors, including tobacco smoking, systemic inflammation, exercise, exacerbations, nutritional and gas exchange abnormalities, anabolic insufficiency, comorbidities and drugs, can also influence the function of both respiratory and peripheral muscles, by inducing modifications in their local microenvironment. Under all these circumstances, protein metabolism imbalance, oxidative stress, inflammatory events, as well as muscle injury may occur, determining the final structure and modulating the function of different muscle groups. Respiratory muscles show signs of injury as well as an increase in several elements involved in aerobic metabolism (proportion of type I fibers, capillary density, and aerobic enzyme activity) whereas limb muscles exhibit a loss of the same elements, injury, and a reduction in fiber size. In the present review we examine the current state of the art of the pathophysiology of muscle dysfunction in COPD.

  18. Muscle strain (image)

    Science.gov (United States)

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  19. Clinicopathological study of three cases of infantile fibromatosis of the orbit.

    Science.gov (United States)

    Hayashi, Kengo; Katori, Nobutada; Otsuki, Yoshiro; Ohno-Matsui, Kyoko

    2014-10-01

    We report the clinical and pathological findings in three infants with infantile fibromatosis that involved several extraocular muscles which led to disorders of ocular motility. We also describe their clinical features before and after surgery. This was a retrospective interventional case study with clinicopathological correlations. We present three cases of infantile fibromatosis that were diagnosed by clinical features and histopathlogical examination of biopsy specimens. The three patients were all female children aged 1, 3, and 3 years at their initial visit. The orbital tumor was unilateral in all patients. All three patients had disorders of ocular motility because the tumors involved ≥2 extraocular muscles. The margins between the tumor and the involved extraocular muscles were not distinct. We performed partial resection of the tumors to preserve the extraocular muscles. In all cases, the tumors partially remained, but periodic postoperative magnetic resonance imaging showed no enlargement of the tumors during the follow-up period. All three patients had residual limitations of eye movements. We should consider the postoperative binocular function when we treat infantile benign fibrous tumors involving the extraocular muscles.

  20. Stress-induced Skeletal Muscle Gadd45a Expression Reprograms Myonuclei and Causes Muscle Atrophy*

    Science.gov (United States)

    Ebert, Scott M.; Dyle, Michael C.; Kunkel, Steven D.; Bullard, Steven A.; Bongers, Kale S.; Fox, Daniel K.; Dierdorff, Jason M.; Foster, Eric D.; Adams, Christopher M.

    2012-01-01

    Diverse stresses including starvation and muscle disuse cause skeletal muscle atrophy. However, the molecular mechanisms of muscle atrophy are complex and not well understood. Here, we demonstrate that growth arrest and DNA damage-inducible 45a protein (Gadd45a) is a critical mediator of muscle atrophy. We identified Gadd45a through an unbiased search for potential downstream mediators of the stress-inducible, pro-atrophy transcription factor ATF4. We show that Gadd45a is required for skeletal muscle atrophy induced by three distinct skeletal muscle stresses: fasting, muscle immobilization, and muscle denervation. Conversely, forced expression of Gadd45a in muscle or cultured myotubes induces atrophy in the absence of upstream stress. We show that muscle-specific ATF4 knock-out mice have a reduced capacity to induce Gadd45a mRNA in response to stress, and as a result, they undergo less atrophy in response to fasting or muscle immobilization. Interestingly, Gadd45a is a myonuclear protein that induces myonuclear remodeling and a comprehensive program for muscle atrophy. Gadd45a represses genes involved in anabolic signaling and energy production, and it induces pro-atrophy genes. As a result, Gadd45a reduces multiple barriers to muscle atrophy (including PGC-1α, Akt activity, and protein synthesis) and stimulates pro-atrophy mechanisms (including autophagy and caspase-mediated proteolysis). These results elucidate a critical stress-induced pathway that reprograms muscle gene expression to cause atrophy. PMID:22692209

  1. Is myofascial pain in temporomandibular disorder patients a manifestation of delayed-onset muscle soreness?

    NARCIS (Netherlands)

    Koutris, M.; Lobbezoo, F.; Sümer, N.C.; Atis, E.S.; Türker, K.S.; Naeije, M.

    2013-01-01

    Objective: In a study to the possible role of overuse of the jaw muscles in the pathogenesis of jaw muscle pain, we used a protocol involving concentric and eccentric muscle contractions to provoke a state of delayed-onset muscle soreness (DOMS) in the jaw muscles of healthy individuals. We tested

  2. Is myofascial pain in temporomandibular disorder patients a manifestation of delayed-onset muscle soreness?

    NARCIS (Netherlands)

    Koutris, M.; Lobbezoo, F.; Sümer, N.C.; Atis, E.S.; Türker, K.S.; Naeije, M.

    2013-01-01

    Objective: In a study to the possible role of overuse of the jaw muscles in the pathogenesis of jaw muscle pain, we used a protocol involving concentric and eccentric muscle contractions to provoke a state of delayed-onset muscle soreness (DOMS) in the jaw muscles of healthy individuals. We tested w

  3. iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-κB and p53

    Science.gov (United States)

    Yasukawa, Takashi; Ishimaru, Kazuhiro; Yasuhara, Shingo; Yu, Yong-Ming; Martyn, J. A. Jeevendra; Tompkins, Ronald. G.; Shimokado, Kentaro; Kaneki, Masao

    2017-01-01

    Inflammation and apoptosis develop in skeletal muscle after major trauma, including burn injury, and play a pivotal role in insulin resistance and muscle wasting. We and others have shown that inducible nitric oxide synthase (iNOS), a major mediator of inflammation, plays an important role in stress (e.g., burn)-induced insulin resistance. However, it remains to be determined how iNOS induces insulin resistance. Moreover, the interrelation between inflammatory response and apoptosis is poorly understood, although they often develop simultaneously. Nuclear factor (NF)-κB and p53 are key regulators of inflammation and apoptosis, respectively. Sirt1 inhibits p65 NF-κB and p53 by deacetylating these transcription factors. Recently, we have shown that iNOS induces S-nitrosylation of Sirt1, which inactivates Sirt1 and thereby increases acetylation and activity of p65 NF-κB and p53 in various cell types, including skeletal muscle cells. Here, we show that iNOS enhances burn-induced inflammatory response and apoptotic change in mouse skeletal muscle along with S-nitrosylation of Sirt1. Burn injury induced robust expression of iNOS in skeletal muscle and gene disruption of iNOS significantly inhibited burn-induced increases in inflammatory gene expression and apoptotic change. In parallel, burn increased Sirt1 S-nitrosylation and acetylation and DNA-binding capacity of p65 NF-κB and p53, all of which were reversed or ameliorated by iNOS deficiency. These results indicate that iNOS functions not only as a downstream effector but also as an upstream enhancer of burn-induced inflammatory response, at least in part, by Sirt1 S-nitrosylation-dependent activation (acetylation) of p65 NF-κB. Our data suggest that Sirt1 S-nitrosylation may play a role in iNOS-mediated enhanced inflammatory response and apoptotic change, which, in turn, contribute to muscle wasting and supposedly to insulin resistance after burn injury. PMID:28099528

  4. Factors in delayed muscle soreness.

    Science.gov (United States)

    Abraham, W M

    1977-01-01

    The possible causes of delayed muscle soreness which occur 24 to 48 hr after exercise were examined from three different approaches, each designed to test an existing hypothesis. Surface electromyograms were used to evaluate the muscle spasm theory; the possibility of actual muscle cell damage was monitored by the presence of myoglobinuria, while the ratio of hydroxyproline/creatinine (OHP/Cr) in 24 hr urine collection was used as a marker for connective tissue involvement. In the first study, although all volunteers developed muscle soreness 24 and 48 hr after exercise, no change in the EMG activity of the sore muscles was observed. Myoglobin excretion was found in 88% of the subjects who developed soreness. However, in a second study, 92% of the subject who performed both moderate and heavy exercise but did not develop muscle soreness had myoglobinuria. In contrast, during a third experiment subjects on gelatin-free diets showed an increase (P less than .1) in the OHP/Cr between control (.020+/-.001) and 48 hr post-exercise (.002+/-.001, X+/-SE). Soreness resulted in all cases. When the OHP/Cr value is taken for the day of maximal soreness, the post-exercise mean increases to .024+/-.001 and the level of significance rises (P less than .005). These observations support the concept that exercise induced soreness may be related to disruption of the connective tissue elements in the muscle and/or their attachments.

  5. ACUTE EXERCISE-INDUCED MUSCLE INJURY

    OpenAIRE

    Mckune, Andrew J; Stuart J Semple; Edith M Peters-Futre

    2012-01-01

    While much research has recently been focussing on the chronic effects of overtraining, the acute damaging effects of individual eccentric exercise bouts on muscle remain of interest and underlie long-term training effects. Systemic markers of muscle damage are limited in terms of sensitivity and reliability. A clearer insight into the extent of the damage and mechanisms involved are being obtained from ultrastructural, functional and molecular examination of the muscle. There are currently i...

  6. Parental Involvement

    OpenAIRE

    Ezra S Simon

    2008-01-01

    This study was conducted in Ghana to investigate, (1) factors that predict parental involvement, (2) the relationship between parental home and school involvement and the educational achievement of adolescents, (3) the relationship between parental authoritativeness and the educational achievement of adolescent students, (4) parental involvement serving as a mediator between their authoritativeness and the educational achievement of the students, and (5) whether parental involvement decreases...

  7. Study on distribution of terminal branches of the facial nerve in mimetic muscles (orbicularis oculi muscle and orbicularis oris muscle).

    Science.gov (United States)

    Mitsukawa, Nobuyuki; Moriyama, Hiroshi; Shiozawa, Kei; Satoh, Kaneshige

    2014-01-01

    There have been many anatomical reports to date regarding the course of the facial nerve to the mimetic muscles. However, reports are relatively scarce on the detailed distribution of the terminal branches of the facial nerve to the mimetic muscles. In this study, we performed detailed examination of the terminal facial nerve branches to the mimetic muscles, particularly the branches terminating in the orbicularis oculi muscle and orbicularis oris muscle. Examination was performed on 25 Japanese adult autopsy cases, involving 25 hemifaces. The mean age was 87.4 years (range, 60-102 years). There were 12 men and 13 women (12 left hemifaces and 13 right hemifaces). In each case, the facial nerve was exposed through a preauricular skin incision. The main trunk of the facial nerve was dissected from the stylomastoid foramen. A microscope was used to dissect the terminal branches to the periphery and observe them. The course and distribution were examined for all terminal branches of the facial nerve. However, focus was placed on the course and distribution of the zygomatic branch, buccal branch, and mandibular branch to the orbicularis oculi muscle and orbicularis oris muscle. The temporal branch was distributed to the orbicularis oculi muscle in all cases and the marginal mandibular branch was distributed to the orbicularis oris muscle in all cases. The zygomatic branch was distributed to the orbicularis oculi muscle in all cases, but it was also distributed to the orbicularis oris muscle in 10 of 25 cases. The buccal branch was not distributed to the orbicularis oris muscle in 3 of 25 cases, and it was distributed to the orbicularis oculi muscle in 8 cases. There was no significant difference in the variations. The orbicularis oculi muscle and orbicularis oris muscle perform particularly important movements among the facial mimetic muscles. According to textbooks, the temporal branch and zygomatic branch innervate the orbicularis oculi muscle, and the buccal branch

  8. Isobaric Tagging-Based Quantification for Proteomic Analysis: A Comparative Study of Spared and Affected Muscles from mdx Mice at the Early Phase of Dystrophy.

    Directory of Open Access Journals (Sweden)

    Cintia Yuri Matsumura

    Full Text Available Duchenne muscular dystrophy (DMD is the most common childhood myopathy, characterized by muscle loss and cardiorespiratory failure. While the genetic basis of DMD is well established, secondary mechanisms associated with dystrophic pathophysiology are not fully clarified yet. In order to obtain new insights into the molecular mechanisms of muscle dystrophy during earlier stages of the disease, we performed a comparative proteomic profile of the spared extraocular muscles (EOM vs. affected diaphragm from the mdx mice, using a label based shotgun proteomic approach. Out of the 857 identified proteins, 42 to 62 proteins had differential abundance of peptide ions. The calcium-handling proteins sarcalumenin and calsequestrin-1 were increased in control EOM compared with control DIA, reinforcing the view that constitutional properties of EOM are important for their protection against myonecrosis. The finding that galectin-1 (muscle regeneration, annexin A1 (anti-inflammatory and HSP 47 (fibrosis were increased in dystrophic diaphragm provides novel insights into the mechanisms through which mdx affected muscles are able to counteract dystrophy, during the early stage of the disease. Overall, the shotgun technique proved to be suitable to perform quantitative comparisons between distinct dystrophic muscles and allowed the suggestion of new potential biomarkers and drug targets for dystrophinopaties.

  9. Calpain 3 is important for muscle regeneration

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Sveen, Marie-Louise; Duno, Morten;

    2012-01-01

    Limb girdle muscular dystrophy (LGMD) type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study...

  10. Aggressive musculo-apo neurotic fibromatosis, findings in image in a case of posttraumatic involvement of the scalene muscle; Fibromatosis musculo-aponeurotica agresiva, hallazgos en imagen en un caso de afectacion postraumatica dle musculo escaleno

    Energy Technology Data Exchange (ETDEWEB)

    Vizcaino, I.; Costa, S.; Cremades, A. [Hospital Universitario Dr. Peset. Valencia (Spain)

    2001-07-01

    Musculoaponeurotic fibromatosis is a well-differentiated benign tumoral condition of fibroblastic origin that is classified as a tumor of the soft tissue. These lesions present an intermediate biological behavior between the benign fibroblastic tumors and fibrosarcoma, and have the capacity of presenting local relapse, but never metastasis. One case of post-traumatic musculoaponeurotic fibromatosis of the scalene muscle is presented by the study of the ultrasonography, CT and MRI. The imaging findings are not characteristics, but they are useful to carry out the differential diagnosis and extension study. (Author) 14 refs.

  11. Supplementation of branched-chain amino acids to a reduced-protein diet improves growth performance in piglets: involvement of increased feed intake and direct muscle growth-promoting effect.

    Science.gov (United States)

    Zheng, Liufeng; Wei, Hongkui; Cheng, Chuanshang; Xiang, Quanhang; Pang, Jiaman; Peng, Jian

    2016-06-01

    The aim of this study was to investigate whether supplementing branched-chain amino acids (AA) (BCAA) along with a reduced-protein diet increases piglet growth, and whether elevated feed intake and muscle growth-promoting effect contribute to this improvement. In Expt 1, twenty-eight weanling piglets were randomly fed one of the following four diets: a positive control (PC) diet, a reduced-protein negative control (NC) diet, an NC diet supplemented with BCAA to the same levels as in the PC diet (test 1 (T1)) and an NC diet supplemented with a 2-fold dose of BCAA in T1 diet (test 2 (T2)) for 28 d. In Expt 2, twenty-one weanling piglets were randomly assigned to NC, T1 and pair-fed T1 (P) groups. NC and T1 diets were the same as in Expt 1, whereas piglets in the P group were individually pair-fed with the NC group. In Expt 1, the NC group had reduced piglet growth and feed intake compared with the PC group, which were restored in T1 and T2 groups, but no differences were detected between T1 and T2 groups. In Expt 2, T1 and P groups showed increases in growth and mass of some muscles compared with the NC group. Increased feed intake after BCAA supplementation was associated with increased mRNA expressions of agouti-related peptide and co-express neuropeptide Y (NPY) and phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 (S6K1), as well as decreased mRNA expressions of melanocortin-4 receptor and cocaine- and amphetamine-regulated transcript and phosphorylation of eukaryotic initiation factor 2α in the hypothalamus. No differences were observed among PC, T1 and T2 groups except for higher NPY mRNA expression in the T2 group than in the PC group (Expt 1). Phosphorylation of mTOR and S6K1 in muscle was enhanced after BCAA supplementation, which was independent of change in feed intake (Expt 2). In conclusion, supplementing BCAA to reduced-protein diets increases feed intake and muscle mass, and contributes to better growth

  12. Muscle disease.

    Science.gov (United States)

    Tsao, Chang-Yong

    2014-02-01

    On the basis of strong research evidence, Duchenne muscular dystrophy (DMD), the most common severe childhood form of muscular dystrophy, is an X-linked recessive disorder caused by out-of-frame mutations of the dystrophin gene. Thus, it is classified asa dystrophinopathy. The disease onset is before age 5 years. Patients with DMD present with progressive symmetrical limb-girdle muscle weakness and become wheelchair dependent after age 12 years. (2)(3). On the basis of some research evidence,cardiomyopathy and congestive heart failure are usually seen in the late teens in patients with DMD. Progressive scoliosis and respiratory in sufficiency often develop once wheelchair dependency occurs. Respiratory failure and cardiomyopathy are common causes of death, and few survive beyond the third decade of life. (2)(3)(4)(5)(6)(7). On the basis of some research evidence, prednisone at 0.75 mg/kg daily (maximum dose, 40 mg/d) or deflazacort at 0.9 mg/kg daily (maximum dose, 39 mg/d), a derivative of prednisolone (not available in the United States), as a single morning dose is recommended for DMD patients older than 5 years, which may prolong independent walking from a few months to 2 years. (2)(3)(16)(17). Based on some research evidence, treatment with angiotensin-converting enzyme inhibitors, b-blockers, and diuretics has been reported to be beneficial in DMD patients with cardiac abnormalities. (2)(3)(5)(18). Based on expert opinion, children with muscle weakness and increased serum creatine kinase levels may be associated with either genetic or acquired muscle disorders (Tables 1 and 3). (14)(15)

  13. Muscle channelopathies.

    Science.gov (United States)

    Statland, Jeffrey; Phillips, Lauren; Trivedi, Jaya R

    2014-08-01

    Skeletal muscle channelopathies are rare heterogeneous diseases with marked genotypic and phenotypic variability. Despite advances in understanding of the molecular pathology of these disorders, the diverse phenotypic manifestations remain a challenge in diagnosis and therapeutics. These disorders can cause lifetime disability and affect quality of life. There is no treatment of these disorders approved by the US Food and Drug Administration at this time. Recognition and treatment of symptoms might reduce morbidity and improve quality of life. This article summarizes the clinical manifestations, diagnostic studies, pathophysiology, and treatment options in nondystrophic myotonia, congenital myasthenic syndrome, and periodic paralyses. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Development of digastric muscles in human fetuses: a review and findings in the flexor digitorum superficialis muscle.

    Science.gov (United States)

    Rodríguez-Vázquez, José Francisco; Jin, Zhe Wu; Zhao, Peng; Murakami, Gen; Li, Xiang Wu; Jin, Yu

    2017-09-04

    The digastricus and omohyoideus muscles are digastric muscles with two muscle bellies. An insertion tendon of the posterior belly becomes an intermediate tendon in digastricus muscles, whereas a single band-like muscle in omohyoideus muscles may later be interrupted by an intermediate tendon, possibly due to muscle cell death caused by mechanical stress. In human fetuses, an intermediate tendon provides the temporal origins of the tensor veli palatini and tensor tympani muscles. Some reptiles, including snakes, carry multiple series of digastric-like axial muscles, in which each intersegmental septum is likely to become an intermediate tendon. These findings indicate that many pathways are involved in the development of digastric muscles. A review of these morphologies suggested that the flexor digitorum superficialis (FDS) muscle was a digastric muscle, although the intermediate tendon may not be visible in the surface view in adults. The present observations support the hypothesis that the proximal anlage at the elbow develops into a deep muscle slip to a limited finger, while the distal anlage at the wrist develops into the other slips. The findings suggest that, in the FDS muscle, the proximal and distal bellies of the embryonic digastric muscle fuse together to form a laminar structure, in which muscle slips accumulate from the palmar to the deep side of the forearm.

  15. Simultaneous Knee Extensor Muscle Action Induces an Increase in Voluntary Force Generation of Plantar Flexor Muscles.

    Science.gov (United States)

    Suzuki, Takahito; Shioda, Kohei; Kinugasa, Ryuta; Fukashiro, Senshi

    2017-02-01

    Suzuki, T, Shioda, K, Kinugasa, R, and Fukashiro, S. Simultaneous knee extensor muscle action induces an increase in voluntary force generation of plantar flexor muscles. J Strength Cond Res 31(2): 365-371, 2017-Maximum activation of the plantar flexor muscles is required for various sporting activities that involve simultaneous plantar flexion and knee extension. During a multi-joint movement, activation of the plantar flexor muscles is affected by the activity of the knee extensor muscles. We hypothesized that coactivation of the plantar flexor muscles and knee extensor muscles would result in a higher plantar flexion torque. To test this hypothesis, 8 male volunteers performed maximum voluntary isometric action of the plantar flexor muscles with and without isometric action of the knee extensor muscles. Surface electromyographic data were collected from 8 muscles of the right lower limb. Voluntary activation of the triceps surae muscles, evaluated using the interpolated twitch technique, significantly increased by 6.4 percentage points with intentional knee extensor action (p = 0.0491). This finding is in line with a significant increase in the average rectified value of the electromyographic activity of the vastus lateralis, fibularis longus, and soleus muscles (p = 0.013, 0.010, and 0.045, respectively). The resultant plantar flexion torque also significantly increased by 11.5% of the predetermined maximum (p = 0.031). These results suggest that higher plantar flexor activation coupled with knee extensor activation facilitates force generation during a multi-joint task.

  16. Mechanisms behind Estrogens’ Beneficial Effect on Muscle Strength in Females

    Science.gov (United States)

    Lowe, Dawn A.; Baltgalvis, Kristen A.; Greising, Sarah M.

    2010-01-01

    Muscle weakness ensues when serum testosterone declines with age in men. Testosterone’s female counterpart, estrogen, has also been implicated in age-related strength loss but these results are less conclusive. Our working hypothesis is that estrogens do benefit muscle strength, and that the underlying mechanism involves estrogen receptors to improve muscle quality more so than quantity. PMID:20335737

  17. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    NARCIS (Netherlands)

    Gouw, S.; Wijer, A. de; Creugers, N.H.J.; Kalaykova, S.I.

    2017-01-01

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism.

  18. Muscle phenotype in patients with myotonic dystrophy type 1

    DEFF Research Database (Denmark)

    Andersen, Anne Grete Kielgast; Orngreen, Mette C; Preisler, Nicolai Rasmus;

    2012-01-01

    Introduction: The pathogenesis of muscle involvement in patients with myotonic dystrophy type 1 (DM1) is not well understood. In this study, we characterized the muscle phenotype in patients with confirmed DM1. Methods: In 38 patients, muscle strength was tested by hand-held dynamometry. Myotonia...

  19. Anatomy of the Eye

    Science.gov (United States)

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Anatomy of the Eye En Español Read in Chinese External (Extraocular) Anatomy Extraocular Muscles: There are six muscles that are ...

  20. Dengue: muscle biopsy findings in 15 patients

    OpenAIRE

    Malheiros,S. M. F.; A. S. B. Oliveira; Schmidt, B.; Camargo Lima, J. G. [UNIFESP; Gabbai, A A

    1993-01-01

    Dengue is known to produce a syndrome involving muscles, tendons and joints. The hallmark of this syndrome is severe myalgia but includes fever, cutaneous rash, and headache. The neuromuscular aspects of this infection are outlined only in isolated reports, and the muscle histopathological features during myalgia have not been described. In order to ascertain the actual neuromuscular involvement in dengue and better comprehend the histological nature of myalgia, we performed a clinical and ne...

  1. The number and choice of muscles impact the results of muscle synergy analyses

    Directory of Open Access Journals (Sweden)

    Katherine Muterspaugh Steele

    2013-08-01

    Full Text Available One theory for how humans control movement is that muscles are activated in weighted groups or synergies. Studies have shown that electromyography (EMG from a variety of tasks can be described by a low-dimensional space thought to reflect synergies. These studies use algorithms, such as nonnegative matrix factorization, to identify synergies from EMG. Due to experimental constraints, EMG can rarely be taken from all muscles involved in a task. However, it is unclear if the choice of muscles included in the analysis impacts estimated synergies. The aim of our study was to evaluate the impact of the number and choice of muscles on synergy analyses. We used a musculoskeletal model to calculate muscle activations required to perform an isometric upper-extremity task. Synergies calculated from the activations from the musculoskeletal model were similar to a prior experimental study. To evaluate the impact of the number of muscles included in the analysis, we randomly selected subsets of between 5 and 29 muscles and compared the similarity of the synergies calculated from each subset to a master set of synergies calculated from all muscles. We determined that the structure of synergies is dependent upon the number and choice of muscles included in the analysis. When five muscles were included in the analysis, the similarity of the synergies to the master set was only 0.57 ± 0.54; however, the similarity improved to over 0.8 with more than ten muscles. We identified two methods, selecting dominant muscles from the master set or selecting muscles with the largest maximum isometric force, which significantly improved similarity to the master set and can help guide future experimental design. Analyses that included a small subset of muscles also over-estimated the variance accounted for (VAF by the synergies compared to an analysis with all muscles. Thus, researchers should use caution using VAF to evaluate synergies when EMG is measured from a small

  2. [Molecular mechanisms of skeletal muscle hypertrophy].

    Science.gov (United States)

    Astratenkova, I V; Rogozkin, V A

    2014-06-01

    Enzymes Akt, AMPK, mTOR, S6K and PGC-1a coactivator take part in skeletal muscles in the regulation of synthesis of proteins. The expression of these proteins is regulated by growth factors, hormones, nutrients, mechanical loading and leads to an increase in muscle mass and skeletal muscle hypertrophy. The review presents the results of studies published in the past four years, which expand knowledge on the effects of various factors on protein synthesis in skeletal muscle. The attention is focused on the achievements that reveal and clarify the signaling pathways involved in the regulation of protein synthesis in skeletal muscle. The central place is taken by mTOR enzyme which controls and regulates the main stages of the cascade of reactions of muscle proteins providing synthesis in the conditions of human life. coactivator PGC-1a.

  3. Muscle strain treatment

    Science.gov (United States)

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  4. Muscle MRI in pediatrics: clinical, pathological and genetic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Cejas, Claudia P.; Serra, Maria M.; Galvez, David F.G. [Foundation for Neurological Research Dr. Raul Carrea (FLENI), Radiology Department, Buenos Aires (Argentina); Cavassa, Eliana A.; Vazquez, Gabriel A.; Massaro, Mario E.L.; Schteinschneider, Angeles V. [Foundation for Neurological Research Dr. Raul Carrea (FLENI), Department of Neuropediatrics, Buenos Aires (Argentina); Taratuto, Ana L. [Foundation for Neurological Research Dr. Raul Carrea (FLENI), Neuropathology Consultant, Buenos Aires (Argentina)

    2017-05-15

    Pediatric myopathies comprise a very heterogeneous group of disorders that may develop at different ages and affect different muscle groups. Its diagnosis is sometimes difficult and must be confirmed by muscle biopsy and/or genetic analysis. In recent years, muscle involvement patterns observed on MRI have become a valuable tool, aiding clinical diagnosis and enriching pathological and genetic assessments. We selected eight myopathy cases from our institutional database in which the pattern of muscle involvement observed on MRI was almost pathognomonic and could therefore contribute to establishing diagnosis. Muscle biopsy, genetic diagnosis or both confirmed all cases. (orig.)

  5. Marcus Gunn jaw winking with trigemino-oculomotor synkinesis of the inferior division of the oculomotor nerve.

    Science.gov (United States)

    Kassem, Iris S; Kodsi, Sylvia R

    2009-06-01

    Synkinetic aberrant innervation syndromes can involve abnormal movements of multiple extraocular and eyelid muscles. The authors describe a case of eyelid elevation associated with simultaneous adduction and depression of the eye upon chewing, sucking on a bottle, or wide opening of the mouth since birth. This represents a unique case of congenital Marcus Gunn jaw winking with trigemino-oculomotor synkinesis involving the inferior branch of the oculomotor nerve. The most likely explanation for these abnormal movements is prenatal aberrant innervation of eyelid and extraocular muscles.

  6. Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells: involvement of the MAPK, NF-κB and AP-1 signaling pathways.

    Science.gov (United States)

    Kim, Ji-Yun; Park, Hye-Jin; Um, Sung Hee; Sohn, Eun-Hwa; Kim, Byung-Oh; Moon, Eun-Yi; Rhee, Dong-Kwon; Pyo, Suhkneung

    2012-01-01

    Atherosclerosis is a long-term inflammatory disease of the arterial wall. Increased expression of the cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) is associated with increased proliferation of vascular smooth muscle cells (VSMCs), leading to increased neointima or atherosclerotic lesion formation. Therefore, the functional inhibition of adhesion molecules could be a critical therapeutic target of inflammatory disease. In the present study, we investigate the effect of sulforaphane on the expression of VCAM-1 induced by TNF-α in cultured mouse vascular smooth muscle cell lines. Pretreatment of VSMCs for 2h with sulforaphane (1-5μg/ml) dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and protein expression of VCAM-1. Sulforaphane also suppressed TNF-α-induced production of intracellular reactive oxygen species (ROS) and activation of p38, ERK and JNK. Furthermore, sulforaphane inhibited NK-κB and AP-1 activation induced by TNF-α. Sulforaphane inhibited TNF-α-induced ΙκΒ kinase activation, subsequent degradation of ΙκΒα and nuclear translocation of p65 NF-κB and decreased c-Jun and c-Fos protein level. This study suggests that sulforaphane inhibits the adhesive capacity of VSMC and downregulates the TNF-α-mediated induction of VCAM-1 in VSMC by inhibiting the MAPK, NF-κB and AP-1 signaling pathways and intracellular ROS production. Thus, sulforaphane may have beneficial effects to suppress inflammation within the atherosclerotic lesion. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    Science.gov (United States)

    Gouw, Simone; de Wijer, Anton; Creugers, Nico Hj; Kalaykova, Stanimira I

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism. However, most studies of muscle-stretching exercises have mainly focused on their influence on performance (eg, range of motion, coordination, and muscle strength) of the limb or trunk muscles of healthy individuals or individuals with sports-related injuries. Very few have investigated stretching of the human masticatory muscles and none muscle-stretching exercises in the management of (sleep) bruxism. This article reviews the literature on muscle-stretching exercises and their potential role in the management of sleep bruxism or its consequences in the musculoskeletal system.

  8. Force Transmission between Synergistic Skeletal Muscles through Connective Tissue Linkages

    Directory of Open Access Journals (Sweden)

    Huub Maas

    2010-01-01

    Full Text Available The classic view of skeletal muscle is that force is generated within its muscle fibers and then directly transmitted in-series, usually via tendon, onto the skeleton. In contrast, recent results suggest that muscles are mechanically connected to surrounding structures and cannot be considered as independent actuators. This article will review experiments on mechanical interactions between muscles mediated by such epimuscular myofascial force transmission in physiological and pathological muscle conditions. In a reduced preparation, involving supraphysiological muscle conditions, it is shown that connective tissues surrounding muscles are capable of transmitting substantial force. In more physiologically relevant conditions of intact muscles, however, it appears that the role of this myofascial pathway is small. In addition, it is hypothesized that connective tissues can serve as a safety net for traumatic events in muscle or tendon. Future studies are needed to investigate the importance of intermuscular force transmission during movement in health and disease.

  9. Molecular mechanisms and treatment options for muscle wasting eiseases

    OpenAIRE

    Rüegg, Markus A; Glass, David J.

    2010-01-01

    Loss of muscle mass can be the consequence of pathological changes, as observed in muscular dystrophies; or it can be secondary to cachexia-inducing diseases that cause muscle atrophy, such as cancer, heart disease, or chronic obstructive pulmonary disease; or it can be a consequence of aging or simple disuse. Although muscular dystrophies are rare, muscle loss affects millions of people worldwide.Wediscuss the molecular mechanisms involved in muscular dystrophy and in muscle atrophy and pres...

  10. Spontaneous waves in muscle fibres

    Science.gov (United States)

    Günther, Stefan; Kruse, Karsten

    2007-11-01

    Mechanical oscillations are important for many cellular processes, e.g. the beating of cilia and flagella or the sensation of sound by hair cells. These dynamic states originate from spontaneous oscillations of molecular motors. A particularly clear example of such oscillations has been observed in muscle fibers under non-physiological conditions. In that case, motor oscillations lead to contraction waves along the fiber. By a macroscopic analysis of muscle fiber dynamics we find that the spontaneous waves involve non-hydrodynamic modes. A simple microscopic model of sarcomere dynamics highlights mechanical aspects of the motor dynamics and fits with the experimental observations.

  11. Quantitative Muscle Ultrasonography in Carpal Tunnel Syndrome

    Science.gov (United States)

    2016-01-01

    Objective To assess the reliability of quantitative muscle ultrasonography (US) in healthy subjects and to evaluate the correlation between quantitative muscle US findings and electrodiagnostic study results in patients with carpal tunnel syndrome (CTS). The clinical significance of quantitative muscle US in CTS was also assessed. Methods Twenty patients with CTS and 20 age-matched healthy volunteers were recruited. All control and CTS subjects underwent a bilateral median and ulnar nerve conduction study (NCS) and quantitative muscle US. Transverse US images of the abductor pollicis brevis (APB) and abductor digiti minimi (ADM) were obtained to measure muscle cross-sectional area (CSA), thickness, and echo intensity (EI). EI was determined using computer-assisted, grayscale analysis. Inter-rater and intra-rater reliability for quantitative muscle US in control subjects, and differences in muscle thickness, CSA, and EI between the CTS patient and control groups were analyzed. Relationships between quantitative US parameters and electrodiagnostic study results were evaluated. Results Quantitative muscle US had high inter-rater and intra-rater reliability in the control group. Muscle thickness and CSA were significantly decreased, and EI was significantly increased in the APB of the CTS group (all p<0.05). EI demonstrated a significant positive correlation with latency of the median motor and sensory NCS in CTS patients (p<0.05). Conclusion These findings suggest that quantitative muscle US parameters may be useful for detecting muscle changes in CTS. Further study involving patients with other neuromuscular diseases is needed to evaluate peripheral muscle change using quantitative muscle US. PMID:28119835

  12. Distinct muscle apoptotic pathways are activated in muscles with different fiber types a rat model of critical illness myopathy

    OpenAIRE

    Barnes, Benjamin T.; Confides, Amy L.; Rich, Mark M.; Dupont-Versteegden, Esther E.

    2015-01-01

    Critical illness myopathy (CIM) is associated with severe muscle atrophy and fatigue in affected patients. Apoptotic signaling is involved in atrophy and is elevated in muscles from patients with CIM. In this study we investigated underlying mechanisms of apoptosis-related pathways in muscles with different fiber type composition in a rat model of CIM using denervation and glucocorticoid administration (denervation and steroid-induced myopathy, DSIM). Soleus and tibialis anterior (TA) muscles...

  13. Epigenetic regulation of muscle phenotype and adaptation: a potential role in COPD muscle dysfunction.

    Science.gov (United States)

    Barreiro, Esther; Sznajder, Jacob I

    2013-05-01

    Quadriceps muscle dysfunction occurs in one-third of patients with chronic obstructive pulmonary disease (COPD) in very early stages of their condition, even prior to the development of airway obstruction. Among several factors, deconditioning and muscle mass loss are the most relevant contributing factors leading to this dysfunction. Moreover, epigenetics, defined as the process whereby gene expression is regulated by heritable mechanisms that do not affect DNA sequence, could be involved in the susceptibility to muscle dysfunction, pathogenesis, and progression. Herein, we review the role of epigenetic mechanisms in muscle development and adaptation to environmental factors such as immobilization and exercise, and their implications in the pathophysiology and susceptibility to muscle dysfunction in COPD. The epigenetic modifications identified so far include DNA methylation, histone acetylation and methylation, and non-coding RNAs such as microRNAs (miRNAs). In the present review, we describe the specific contribution of epigenetic mechanisms to the regulation of embryonic myogenesis, muscle structure and metabolism, immobilization, and exercise, and in muscles of COPD patients. Events related to muscle development and regeneration and the response to exercise and immobilization are tightly regulated by epigenetic mechanisms. These environmental factors play a key role in the outcome of muscle mass and function as well as in the susceptibility to muscle dysfunction in COPD. Future research remains to be done to shed light on the specific target pathways of miRNA function and other epigenetic mechanisms in the susceptibility, pathogenesis, and progression of COPD muscle dysfunction.

  14. Community involvement

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1979-09-01

    Full Text Available Community involvement is the main theme of Health Year. Governments have a responsibility for the health of their people, and in this country under the present 3-tier system of government, the responsibility for the rendering of health services is divided between central, provincial and local government. However, under our democratic system, all people have the right to, and it is indeed their duty, to participate individually and collectively in the planning and implementation of services to meet their health needs. Ultimately, through involvement of individuals, families and communities, greater self-reliance is achieved leading to greater responsibility being assumed by people for their own health.

  15. Neuromuscular imaging in inherited muscle diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wattjes, Mike P. [VU University Medical Center, Department of Radiology, De Boelelaan 1117, HV, Amsterdam (Netherlands); Kley, Rudolf A. [Klinken Bergmannsheil, Ruhr-University, Department of Neurology, Neuromuscular Centre Ruhrgebiet, Bochum (Germany); Fischer, Dirk [University Hospital of Basel, Department of Neurology, Basel (Switzerland); University Children' s Hospital Basel, Department of Neuropaediatrics, Basel (Switzerland)

    2010-10-15

    Driven by increasing numbers of newly identified genetic defects and new insights into the field of inherited muscle diseases, neuromuscular imaging in general and magnetic resonance imaging (MRI) in particular are increasingly being used to characterise the severity and pattern of muscle involvement. Although muscle biopsy is still the gold standard for the establishment of the definitive diagnosis, muscular imaging is an important diagnostic tool for the detection and quantification of dystrophic changes during the clinical workup of patients with hereditary muscle diseases. MRI is frequently used to describe muscle involvement patterns, which aids in narrowing of the differential diagnosis and distinguishing between dystrophic and non-dystrophic diseases. Recent work has demonstrated the usefulness of muscle imaging for the detection of specific congenital myopathies, mainly for the identification of the underlying genetic defect in core and centronuclear myopathies. Muscle imaging demonstrates characteristic patterns, which can be helpful for the differentiation of individual limb girdle muscular dystrophies. The aim of this review is to give a comprehensive overview of current methods and applications as well as future perspectives in the field of neuromuscular imaging in inherited muscle diseases. We also provide diagnostic algorithms that might guide us through the differential diagnosis in hereditary myopathies. (orig.)

  16. Return to sport after muscle injury.

    Science.gov (United States)

    Wong, Stephanie; Ning, Anne; Lee, Carlin; Feeley, Brian T

    2015-06-01

    Skeletal muscle injuries are among the most common sports-related injuries that result in time lost from practice and competition. The cellular response to muscle injury can often result in changes made to the muscle fibers as well as the surrounding extracellular matrix during repair. This can negatively affect the force and range of the injured muscle even after the patient's return to play. Diagnosis of skeletal muscle injury involves both history and physical examinations; imaging modalities including ultrasound and magnetic resonance imaging (MRI) can also be used to assess the extent of injury. Current research is investigating potential methods, including clinical factors and MRI, by which to predict a patient's return to sports. Overall, function of acutely injured muscles seems to improve with time. Current treatment methods for skeletal muscle injuries include injections of steroids, anesthetics, and platelet-rich plasma (PRP). Other proposed methods involve inhibitors of key players in fibrotic pathways, such as transforming growth factor (TGF)-ß and angiotensin II, as well as muscle-derived stem cells.

  17. Pancreatic Involvement in Melioidosis

    Directory of Open Access Journals (Sweden)

    Vui Heng Chong

    2010-07-01

    Full Text Available Context Melioidosis is endemic to tropical regions and, despite the common occurrence of intra-abdominal abscesses, pancreatic involvement in melioidosis has not previously been reported. Objective We report our experience with pancreatic melioidosis. Patients All 65 patients treated for melioidosis who had computed tomography (CT scans were identified from prospective databases and were retrospectively reviewed. Main outcome measures A detailed review of cases with pancreas involvement was carried out. Results There were four cases (three males and one female; median age 29.5 years, range: 25-48 years with pancreatic melioidosis, giving a prevalence of 6.2%. All had predisposing conditions (two had poorly controlled diabetes mellitus and two had thalassemia for melioidosis. Fever (100%, anorexia (100%, weight loss (100%, rigor (75% and abdominal pain (75% were the most common symptoms at presentation and the median duration of symptoms before presentation was six weeks (range: 2-8 weeks. All pancreatic abscesses were detected on CT scan. Multiple foci involvement was common (3 to 6 sites: blood (4 patients, liver (3 patients, psoas muscle (2 patients, spleen (2 patients, infected ascites (2 patients and lung (1 patient. Pancreatic involvement ranged from multi-focal micro-abscesses to focal large abscesses and involved all parts of the pancreas (body 100%, head 75% and tail 50%. Associated pancreatic findings included splenic vein thrombosis, peripancreatic inflammation and peripancreatic fat streaking. All the pancreatic abscesses were resolved with antibiotics without requiring pancreatic abscess drainage (including one patient who died from disseminated melioidosis. Conclusion Pancreatic involvement typically occurs as part of multi-organ involvement and commonly manifests as multifoci micro-abscesses. Associated pancreatic abnormalities were also common. All responded to treatment without requiring drainage

  18. Muscle Weakness

    Science.gov (United States)

    Al Kaissi, Ali; Ryabykh, Sergey; Ochirova, Polina; Kenis, Vladimir; Hofstätter, Jochen G.; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit

    2017-01-01

    Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years) were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl) were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome). And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A) as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations. PMID:28210640

  19. Reconditioning aging muscles.

    Science.gov (United States)

    Kraus, H

    1978-06-01

    Weakness or stiffness of key posture muscles can cause much of the disability seen in elderly patients. Too much tension and too little exercise greatly increase the natural loss of muscular fitness with age. A systematic program of exercise, stressing relaxation and stretching of tight muscles and strenghthening of weak muscles, can improve physical fitness. The program must be tailored to the patient, starting with relaxation and gentle limbering exercises and proceeding ultimately to vigorous muscle-stretching exercises. Muscle aches and pain from tension and muscle imbalance are to be expected. Relaxation relieves tension pain, and strengthening weak muscles and stretching tight muscles will correct muscle imbalance. To prevent acute muscle spasm, the patient should avoid excessive exertion and increase exercise intensity gradually.

  20. Muscle channelopathies and related diseases.

    Science.gov (United States)

    Fontaine, Bertrand

    2013-01-01

    Muscle channelopathies and related disorders are neuromuscular disorders predominantly of genetic origin which are caused by mutations in ion channels or genes that play a role in muscle excitability. They include different forms of periodic paralysis which are characterized by acute and reversible attacks of muscle weakness concomitant to changes in blood potassium levels. These disorders may also present as distinguishable myotonic syndromes (slowed muscle relaxation) which have in common lack of involvement of dystrophic changes of the muscle, in contrast to dystrophia myotonica. Recent advances have been made in the diagnosis of these different disorders, which require, in addition to a careful clinical evaluation, detailed EMG and molecular study. Although these diseases are rare, they deserve attention since patients may benefit from drugs which can dramatically improve their condition. Patients may have atypical presentations, sometimes life-threatening, which may delay a proper diagnosis, mostly in the first months of life. The creation of specialized reference centers in the Western world has greatly benefited the proper recognition of these neuromuscular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Neural control of muscle relaxation in echinoderms.

    Science.gov (United States)

    Elphick, M R; Melarange, R

    2001-03-01

    neuropeptides that influence muscle tone have been isolated from the sea cucumber Stichopus japonicus using body wall muscle as a bioassay, but at present SALMFamide peptides are the only ones that have been found to have a direct relaxing action on echinoderm muscle. One of the Stichopus japonicus peptides (holothurin 1), however, causes a reduction in the magnitude of electrically evoked muscle contraction in Stichopus japonicus and also causes 'softening' of the body wall dermis, a 'mutable connective tissue'. It seems most likely that this effect of holothurin 1 on body wall dermis is mediated by constituent muscle cells, and the concept of 'mutable connective tissue' in echinoderms may therefore need to be re-evaluated to incorporate the involvement of muscle, as proposed recently for the spine ligament in sea urchins.

  2. Role of Smooth Muscle in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Stephen M Collins

    1996-01-01

    Full Text Available The notion that smooth muscle function is altered in inflammation is prompted by clinical observations of altered motility in patients with inflammatory bowel disease (IBD. While altered motility may reflect inflammation-induced changes in intrinsic or extrinsic nerves to the gut, changes in gut hormone release and changes in muscle function, recent studies have provided in vitro evidence of altered muscle contractility in muscle resected from patients with ulcerative colitis or Crohn’s disease. In addition, the observation that smooth muscle cells are more numerous and prominent in the strictured bowel of IBD patients compared with controls suggests that inflammation may alter the growth of intestinal smooth muscle. Thus, inflammation is associated with changes in smooth muscle growth and contractility that, in turn, contribute to important symptoms of IBD including diarrhea (from altered motility and pain (via either altered motility or stricture formation. The involvement of smooth muscle in this context may be as an innocent bystander, where cells and products of the inflammatory process induce alterations in muscle contractility and growth. However, it is likely that intestinal muscle cells play a more active role in the inflammatory process via the elaboration of mediators and trophic factors, including cytokines, and via the production of collagen. The concept of muscle cells as active participants in the intestinal inflammatory process is a new concept that is under intense study. This report summarizes current knowledge as it relates to these two aspects of altered muscle function (growth and contractility in the inflamed intestine, and will focus on mechanisms underlying these changes, based on data obtained from animal models of intestinal inflammation.

  3. PARALYSIS OF FACIAL-MUSCLES IN LEPROSY PATIENTS WITH LAGOPHTHALMOS

    NARCIS (Netherlands)

    LUBBERS, WJ; SCHIPPER, A; HOGEWEG, M; DESOLDENHOFF, R

    1994-01-01

    The objective of the study was to determine the pattern of involvement of facial muscles in lagophthalmos. Fifty-seven patients with lagophthalmos were examined to assess the degree of paralysis of facial muscles. Eighty-one percent of the patients with lagophthalmos had involvement of at least one

  4. PARALYSIS OF FACIAL-MUSCLES IN LEPROSY PATIENTS WITH LAGOPHTHALMOS

    NARCIS (Netherlands)

    LUBBERS, WJ; SCHIPPER, A; HOGEWEG, M; DESOLDENHOFF, R

    The objective of the study was to determine the pattern of involvement of facial muscles in lagophthalmos. Fifty-seven patients with lagophthalmos were examined to assess the degree of paralysis of facial muscles. Eighty-one percent of the patients with lagophthalmos had involvement of at least one

  5. Peroxisome proliferator-activated receptor-γ activation enhances insulin-stimulated glucose disposal by reducing ped/pea-15 gene expression in skeletal muscle cells: evidence for involvement of activator protein-1.

    Science.gov (United States)

    Ungaro, Paola; Mirra, Paola; Oriente, Francesco; Nigro, Cecilia; Ciccarelli, Marco; Vastolo, Viviana; Longo, Michele; Perruolo, Giuseppe; Spinelli, Rosa; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2012-12-14

    The gene network responsible for inflammation-induced insulin resistance remains enigmatic. In this study, we show that, in L6 cells, rosiglitazone- as well as pioglitazone-dependent activation of peroxisome proliferator-activated receptor-γ (PPARγ) represses transcription of the ped/pea-15 gene, whose increased activity impairs glucose tolerance in mice and humans. Rosiglitazone enhanced insulin-induced glucose uptake in L6 cells expressing the endogenous ped/pea-15 gene but not in cells expressing ped/pea-15 under the control of an exogenous promoter. The ability of PPARγ to affect ped/pea-15 expression was also lost in cells and in C57BL/6J transgenic mice expressing ped/pea-15 under the control of an exogenous promoter, suggesting that ped/pea-15 repression may contribute to rosiglitazone action on glucose disposal. Indeed, high fat diet mice showed insulin resistance and increased ped/pea-15 levels, although these effects were reduced by rosiglitazone treatment. Both supershift and ChIP assays revealed the presence of the AP-1 component c-JUN at the PED/PEA-15 promoter upon 12-O-tetradecanoylphorbol-13-acetate stimulation of the cells. In these experiments, rosiglitazone treatment reduced c-JUN presence at the PED/PEA-15 promoter. This effect was not associated with a decrease in c-JUN expression. In addition, c-jun silencing in L6 cells lowered ped/pea-15 expression and caused nonresponsiveness to rosiglitazone, although c-jun overexpression enhanced the binding to the ped/pea-15 promoter and blocked the rosiglitazone effect. These results indicate that PPARγ regulates ped/pea-15 transcription by inhibiting c-JUN binding at the ped/pea-15 promoter. Thus, ped/pea-15 is downstream of a major PPARγ-regulated inflammatory network. Repression of ped/pea-15 transcription might contribute to the PPARγ regulation of muscle sensitivity to insulin.

  6. Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review

    Directory of Open Access Journals (Sweden)

    Kênia KP Menezes

    2016-07-01

    Full Text Available Question: After stroke, does respiratory muscle training increase respiratory muscle strength and/or endurance? Are any benefits carried over to activity and/or participation? Does it reduce respiratory complications? Design: Systematic review of randomised or quasi-randomised trials. Participants: Adults with respiratory muscle weakness following stroke. Intervention: Respiratory muscle training aimed at increasing inspiratory and/or expiratory muscle strength. Outcome measures: Five outcomes were of interest: respiratory muscle strength, respiratory muscle endurance, activity, participation and respiratory complications. Results: Five trials involving 263 participants were included. The mean PEDro score was 6.4 (range 3 to 8, showing moderate methodological quality. Random-effects meta-analyses showed that respiratory muscle training increased maximal inspiratory pressure by 7 cmH2O (95% CI 1 to 14 and maximal expiratory pressure by 13 cmH2O (95% CI 1 to 25; it also decreased the risk of respiratory complications (RR 0.38, 95% CI 0.15 to 0.96 compared with no/sham respiratory intervention. Whether these effects carry over to activity and participation remains uncertain. Conclusion: This systematic review provided evidence that respiratory muscle training is effective after stroke. Meta-analyses based on five trials indicated that 30 minutes of respiratory muscle training, five times per week, for 5 weeks can be expected to increase respiratory muscle strength in very weak individuals after stroke. In addition, respiratory muscle training is expected to reduce the risk of respiratory complications after stroke. Further studies are warranted to investigate whether the benefits are carried over to activity and participation. Registration: PROSPERO (CRD42015020683. [Menezes KKP, Nascimento LR, Ada L, Polese JC, Avelino PR, Teixeira-Salmela LF (2016 Respiratory muscle training increases respiratory muscle strength and reduces respiratory

  7. Fetal development of the pulley for muscle insertion tendons: A review and new findings related to the tensor tympani tendon.

    Science.gov (United States)

    Rodríguez-Vázquez, Jose Francisco; Honkura, Yohei; Katori, Yukio; Murakami, Gen; Abe, Hiroshi

    2017-01-01

    The existence of hard tissue pulleys that act to change the direction of a muscle insertion tendon is well known in the human body. These include (1) the trochlea for the extraocular obliquus superior muscle, (2) the pterygoid hamulus for the tensor veli palatini muscle, (3) the deep sulcus on the plantar aspect of the cuboid bone for the peroneus longus tendon, (4) the lesser sciatic notch for the obturator internus muscle, and (5) the bony trochleariformis process for the tensor tympani muscle tendon. In addition, (6) the stapedius muscle tendon shows a lesser or greater angulation at the pyramidal eminence of the temporal bone. Our recent studies have shown that the development of pulleys Nos. 1 and 2 can be explained by a change in the topographical relationship between the pulley and the tendon, that of pulley No. 3 by the rapidly growing calcaneus pushing the tendon, and that of pulley No. 4 by migration of the insertion along the sciatic nerve and gluteus medius tendon. Therefore, in Nos. 1-4, an initially direct tendon curves secondarily and obtains an attachment to the pulley. In case No. 6, the terminal part of the stapedius tendon originates secondarily from the interzone mesenchymal tissue of the incudostapedial joint. In the case of pulley No. 5, we newly demonstrated that its initial phase of development was similar to No. 6, but the tensor tympani tendon achieved a right-angled turn under guidance by a specific fibrous tissue and it migrated along the growing malleus manubrium. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition

    DEFF Research Database (Denmark)

    Nielsen, Anders Rinnov; Mounier, Remi; Plomgaard, Peter

    2007-01-01

    of recovery without any changes in muscle IL-15 protein content or plasma IL-15 at any of the investigated time points. In conclusion, IL-15 mRNA level is enhanced in skeletal muscles dominated by type 2 fibres and resistance exercise induces increased muscular IL-15 mRNA levels. IL-15 mRNA levels in skeletal......The cytokine interleukin-15 (IL-15) has been demonstrated to have anabolic effects in cell culture systems. We tested the hypothesis that IL-15 is predominantly expressed by type 2 skeletal muscle fibres, and that resistance exercise regulates IL-15 expression in muscle. Triceps brachii, vastus...... lateralis quadriceps and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers (n = 14), because these muscles are characterized by having different fibre-type compositions. In addition, healthy, normally physically active male subjects (n = 8) not involved...

  9. Changes in muscle strength and morphology after muscle unloading in Special Forces missions

    DEFF Research Database (Denmark)

    Thorlund, J B; Jakobsen, O; Madsen, T

    2011-01-01

    The purpose of the present study was to determine the changes in maximal muscle strength, rapid force capacity, jumping performance and muscle morphology following a Special Forces military operation involving 8 days of muscle unloading. Nine male Special Forces soldiers were tested before (pre......) and immediately after (post1) an 8-day simulated special support and reconnaissance (SSR) mission and after 3 h of active recovery (post2). Maximal muscle strength (MVC) and rate of force development (RFD) were measured along with maximal counter movement jump height (JH). Muscle biopsies were obtained from...... the vastus lateralis at pre and post1. Acute reductions were found in MVC (11%), JH (10%) and RFD (17-22%) after 8 days of muscle unloading (post1) (P...

  10. ACUTE EXERCISE-INDUCED MUSCLE INJURY

    Directory of Open Access Journals (Sweden)

    Andrew J McKune

    2012-03-01

    Full Text Available While much research has recently been focussing on the chronic effects of overtraining, the acute damaging effects of individual eccentric exercise bouts on muscle remain of interest and underlie long-term training effects. Systemic markers of muscle damage are limited in terms of sensitivity and reliability. A clearer insight into the extent of the damage and mechanisms involved are being obtained from ultrastructural, functional and molecular examination of the muscle. There are currently indications that while the initial muscle damage may appear to have negative consequences in the short term, intense eccentric exercise appears to initiate a remodelling process and promote favourable adaptation of muscle following training, which has applications for promoting health, rehabilitation and sports performance.

  11. Three-dimensional interactive and stereotactic atlas of head muscles and glands correlated with cranial nerves and surface and sectional neuroanatomy.

    Science.gov (United States)

    Nowinski, Wieslaw L; Chua, Beng Choon; Johnson, Aleksandra; Qian, Guoyu; Poh, Lan Eng; Yi, Su Hnin Wut; Bivi, Aminah; Nowinska, Natalia G

    2013-04-30

    Three-dimensional (3D) relationships between head muscles and cranial nerves innervating them are complicated. Existing sources present these relationships in illustrations, radiologic scans, or autopsy photographs, which are limited for learning and use. Developed electronic atlases are limited in content, quality, functionality, and/or presentation. We create a truly 3D interactive, stereotactic and high quality atlas, which provides spatial relationships among head muscles, glands and cranial nerves, and correlates them to surface and sectional neuroanatomy. The head muscles and glands were created from a 3T scan by contouring them and generating 3D models. They were named and structured according to Terminologia anatomica. The muscles were divided into: extra-ocular, facial, masticatory and other muscles, and glands into mouth and other glands. The muscles, glands (and also head) were placed in a stereotactic coordinate system. This content was integrated with cranial nerves and neuroanatomy created earlier. To explore this complex content, a scalable user interface was designed with 12 modules including central nervous system (cerebrum, cerebellum, brainstem, spinal cord), cranial nerves, muscles, glands, arterial system, venous system, tracts, deep gray nuclei, ventricles, white matter, visual system, head. Anatomy exploration operations include compositing/decompositing, individual/group selection, 3D view-index mapping, 3D labeling, highlighting, distance measuring, 3D brain cutting, and axial/coronal/sagittal triplanar display. To our best knowledge, this is the first truly 3D, stereotactic, interactive, fairly complete atlas of head muscles, and the first attempt to create a 3D stereotactic atlas of glands. Its use ranges from education of students and patients to research to potential clinical applications.

  12. Korean mistletoe (Viscum album coloratum) extract regulates gene expression related to muscle atrophy and muscle hypertrophy.

    Science.gov (United States)

    Jeong, Juseong; Park, Choon-Ho; Kim, Inbo; Kim, Young-Ho; Yoon, Jae-Min; Kim, Kwang-Soo; Kim, Jong-Bae

    2017-01-21

    Korean mistletoe (Viscum album coloratum) is a semi-parasitic plant that grows on various trees and has a diverse range of effects on biological functions, being implicated in having anti-tumor, immunostimulatory, anti-diabetic, and anti-obesity properties. Recently, we also reported that Korean mistletoe extract (KME) improves endurance exercise in mice, suggesting its beneficial roles in enhancing the capacity of skeletal muscle. We examined the expression pattern of several genes concerned with muscle physiology in C2C12 myotubes cells to identify whether KME inhibits muscle atrophy or promotes muscle hypertrophy. We also investigated these effects of KME in denervated mice model. Interestingly, KME induced the mRNA expression of SREBP-1c, PGC-1α, and GLUT4, known positive regulators of muscle hypertrophy, in C2C12 cells. On the contrary, KME reduced the expression of Atrogin-1, which is directly involved in the induction of muscle atrophy. In animal models, KME mitigated the decrease of muscle weight in denervated mice. The expression of Atrogin-1 was also diminished in those mice. Moreover, KME enhanced the grip strength and muscle weight in long-term feeding mice. Our results suggest that KME has beneficial effects on muscle atrophy and muscle hypertrophy.

  13. [Unusual muscular involvement in ankylosing spondylitis].

    Science.gov (United States)

    Wattiaux, M J; Rondier, J; Bletry, O; Godeau, P; Cayla, J

    1985-03-01

    Muscle involvement in ankylosing spondylitis has been little studied. The authors report two cases with marked muscular atrophy and functional impotence, which had directed the diagnosis towards a myopathy over a period of several years in the first case, and a suspected primary muscular disease associated with ankylosing spondylitis in the second. Muscle biopsies eliminated the diagnosis of myopathy in both cases, with rapid functional recovery with proper treatment. Following a review of the literature, two hypotheses can be considered to explain the muscular involvement in ankylosing spondylitis: one mechanism which appears well-established is a radiculitis with involvement of the paravertebral muscles: other authors suggest that there is nonspecific, generalized muscular involvement in this disorder.

  14. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    OpenAIRE

    Matthew Emerson Randolph; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies, such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in t...

  15. Multisystem involvement in neuromyelitis optica

    Directory of Open Access Journals (Sweden)

    Megan M Langille

    2015-01-01

    Full Text Available We describe a case of pediatric neuromyelitis optica (NMO with muscle and lung involvement in addition to central nervous system disease. Our patient initially presented with features of area postrema syndrome, then subsequently with optic neuritis. The patient also had recurrent hyperCKemia that responded to corticosteroids. Finally, axillary and hilar adenopathy with pulmonary consolidation were noted as well and responded to immunomodulation. Our case highlights multisystem involvement in NMO including non-infectious pulmonary findings which have not been described in the pediatric population previously.

  16. Muscle imaging data in late-onset Pompe disease reveal a correlation between the pre-existing degree of lipomatous muscle alterations and the efficacy of long-term enzyme replacement therapy

    Directory of Open Access Journals (Sweden)

    Kai Michael Gruhn

    2015-06-01

    Conclusions: The results demonstrate that fatty muscle degeneration can occur before clinical manifestation of muscle weakness and suggest that mildly affected muscles may respond better to ERT treatment than severely involved muscles. If these findings can be validated by further studies, it should be discussed if muscle alterations detected by muscle MRI may be an objective sign of disease manifestation justifying an early start of ERT in clinically asymptomatic patients in order to improve the long-term outcome.

  17. Dengue: muscle biopsy findings in 15 patients

    Directory of Open Access Journals (Sweden)

    S.M.F. Malheiros

    1993-06-01

    Full Text Available Dengue is known to produce a syndrome involving muscles, tendons and joints. The hallmark of this syndrome is severe myalgia but includes fever, cutaneous rash, and headache. The neuromuscular aspects of this infection are outlined only in isolated reports, and the muscle histopathological features during myalgia have not been described. In order to ascertain the actual neuromuscular involvement in dengue and better comprehend the histological nature of myalgia, we performed a clinical and neurological evaluation, a serum CPK level and a muscle biopsy (with histochemistry in 15 patients (4 males, median age 23 years (range 14-47 with classic dengue fever, serologically confirmed, during the bra-zilian dengue epidemics from September 1986 to March 1987. All patients had a history of fever, headache and severe myalgia. Upon examination 4 had a cutaneous rash, 3 had fever, and 3 a small hepatomegaly. The neurological examination was unremarkable in all and included a manual muscle test. CPK was mildly elevated in only 3 patients. Muscle biopsy revealed a light to moderate perivascular mononuclear infiltrate in 12 patients and lipid accumulation in 11. Mild mitochondrial proliferation was seen in 3, few central nuclei in 3, rare foci of myonecrosis in 3, and 2 patients had type grouping. Dengue in our patients, produced myalgia but no detectable muscle weakness or other neuromuscular involvement. The main histopathological correlation with myalgia seems to be a perivascular mononuclear infiltrate and lipid accumulation.

  18. Eye muscle repair - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100062.htm Eye muscle repair - series—Normal anatomy To use the sharing ... the eyeball to the eye socket. The external muscles of the eye are found behind the conjunctiva. ...

  19. Clinical phenotype, muscle MRI and muscle pathology of LGMD1F.

    Science.gov (United States)

    Peterle, Enrico; Fanin, Marina; Semplicini, Claudio; Padilla, Juan Jesus Vilchez; Nigro, Vincenzo; Angelini, Corrado

    2013-08-01

    Of the seven autosomal dominant genetically distinct forms of LGMD so far described, in only four the causative gene has been identified (LGMD1A-1D). We describe clinical, histopathological and muscle MRI features of a large Italo-Spanish kindred with LGMD1F presenting proximal-limb and axial muscle weakness. We obtained complete clinical data and graded the progression of the disease in 29 patients. Muscle MRI was performed in seven patients. Three muscle biopsies from two patients were investigated. Patients with age at onset in the early teens, had a more severe phenotype with a rapid disease course; adult onset patients presented a slow course. Muscle MRI showed prominent atrophy of lower limb muscles, involving especially the vastus lateralis. Widening the patients population resulted in the identification of previously unreported features, including dysphagia, arachnodactyly and respiratory insufficiency. Muscle biopsies showed diffuse fibre atrophy, which evolved with time, chronic myopathic changes, basophilic cytoplasmic areas, autophagosomes and accumulation of myofibrillar and cytoskeletal proteins. The LGMD1F is characterized by a selective involvement of limb muscles with respiratory impairment in advanced stages, and by different degrees of clinical progression. Novel clinical features emerged from the investigation of additional patients.

  20. A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis

    Science.gov (United States)

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-01-01

    Genes controlling muscle size and survival play important roles in muscle wasting diseases. In Drosophila melanogaster metamorphosis, larval abdominal muscles undergo two developmental fates. While a doomed population is eliminated by cell death, another persistent group is remodelled and survives into adulthood. To identify and characterize genes involved in the development of remodelled muscles, we devised a workflow consisting of in vivo imaging, targeted gene perturbation and quantitative image analysis. We show that inhibition of TOR signalling and activation of autophagy promote developmental muscle atrophy in early, while TOR and yorkie activation are required for muscle growth in late pupation. We discovered changes in the localization of myonuclei during remodelling that involve anti-polar migration leading to central clustering followed by polar migration resulting in localization along the midline. We demonstrate that the Cathepsin L orthologue Cp1 is required for myonuclear clustering in mid, while autophagy contributes to central positioning of nuclei in late metamorphosis. In conclusion, studying muscle remodelling in metamorphosis can provide new insights into the cell biology of muscle wasting. PMID:26998322

  1. Trunk muscle activities during abdominal bracing: comparison among muscles and exercises.

    Science.gov (United States)

    Maeo, Sumiaki; Takahashi, Takumi; Takai, Yohei; Kanehisa, Hiroaki

    2013-01-01

    Abdominal bracing is often adopted in fitness and sports conditioning programs. However, there is little information on how muscular activities during the task differ among the muscle groups located in the trunk and from those during other trunk exercises. The present study aimed to quantify muscular activity levels during abdominal bracing with respect to muscle- and exercise-related differences. Ten healthy young adult men performed five static (abdominal bracing, abdominal hollowing, prone, side, and supine plank) and five dynamic (V- sits, curl-ups, sit-ups, and back extensions on the floor and on a bench) exercises. Surface electromyogram (EMG) activities of the rectus abdominis (RA), external oblique (EO), internal oblique (IO), and erector spinae (ES) muscles were recorded in each of the exercises. The EMG data were normalized to those obtained during maximal voluntary contraction of each muscle (% EMGmax). The % EMGmax value during abdominal bracing was significantly higher in IO (60%) than in the other muscles (RA: 18%, EO: 27%, ES: 19%). The % EMGmax values for RA, EO, and ES were significantly lower in the abdominal bracing than in some of the other exercises such as V-sits and sit-ups for RA and EO and back extensions for ES muscle. However, the % EMGmax value for IO during the abdominal bracing was significantly higher than those in most of the other exercises including dynamic ones such as curl-ups and sit-ups. These results suggest that abdominal bracing is one of the most effective techniques for inducing a higher activation in deep abdominal muscles, such as IO muscle, even compared to dynamic exercises involving trunk flexion/extension movements. Key PointsTrunk muscle activities during abdominal bracing was examined with regard to muscle- and exercise-related differences.Abdominal bracing preferentially activates internal oblique muscles even compared to dynamic exercises involving trunk flexion/extension movements.Abdominal bracing should be

  2. Influence of different control strategies on muscle activation patterns in trunk muscles.

    Science.gov (United States)

    Hansen, Laura; Anders, Christoph

    2014-12-01

    Adequate training of the trunk muscles is essential to prevent low back pain. Although sit-ups are simple to perform, the perceived high effort is the reason why training the abdominal muscles is seldom continued over a longer period of time. It is well known that the abdominal muscles are inferior to the back muscles in terms of force, but this cannot explain the extreme difference in perceived effort between trunk flexion and extension tasks. Therefore, this study was aimed at the identification of control strategy influences on the muscular stress level. Thirty-nine subjects were investigated. The performed tasks were restricted to the sagittal plane and were implemented with simulated and realized tilt angles. Subjects were investigated in an upright position with their lower bodies fixed and their upper bodies free. Posture-controlled tasks involved graded forward and backward tilting, while force-controlled tasks involved the application of force based on a virtual tilt angle. The Surface EMG (SEMG) was taken from five trunk muscles on both sides. Control strategies seemed to have no systematic influence on the SEMG amplitudes of the back muscles. In contrast, the abdominal muscles exhibited significantly higher stress levels under posture-controlled conditions without relevantly increasing antagonistic co-activation of back muscles. The abdominal muscles' relative differences ranged from an average of 20% for the external oblique abdominal muscle to approximately 40% for the rectus abdominal muscle. The perceived high effort expended during sit-ups can now be explained by the posture-controlled contractions that are required.

  3. Morphological analysis and muscle-associated gene expression during different muscle growth phases of Megalobrama amblycephala.

    Science.gov (United States)

    Zhu, K C; Yu, D H; Zhao, J K; Wang, W M; Wang, H L

    2015-09-28

    Skeletal muscle growth is regulated by both positive and negative factors, such as myogenic regulatory factors (MRFs) and myostatin (MSTN), and involves both hyperplasia and hypertrophy. In the present study, morphological changes during muscle development in Megalobrama amblycephala were characterized and gene expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) analysis in juvenile [60, 90, 120, and 180 days post-hatching (dph)] and adult fish. Our results show that during muscle development, the frequency of muscle fibers with a diameter muscles, with a concomitant increase in the frequency of >30 μm fibers in red muscle and >50 μm fibers in white muscle. At 90-120 dph, the ratio of hyperplastic to hypertrophic areas in red and white muscles increased, but later decreased at 120-180 dph. The effect of hypertrophy was significantly larger than hyperplasia during these phases. qRT-PCR indicated MRF and MSTN (MSTNa and MSTNb) genes had similar expression patterns that peaked at 120 dph, with the exception of MSTNa. This new information on the molecular regulation of muscle growth and rapid growth phases will be of value to the cultivation of M. amblycephala.

  4. Intercostal muscles and purring in the cat: the influence of afferent inputs.

    Science.gov (United States)

    Kirkwood, P A; Sears, T A; Stagg, D; Westgaard, R H

    1987-03-03

    Feline purring has previously been reported as originating in a central oscillator, independent of afferent inputs, and also as not involving expiratory muscles. Here we show, via electromyographic recordings from intercostal muscles, quantified by cross-correlation, that expiratory muscles can be involved and that even if the oscillator is central, reflex components nevertheless play a considerable part in the production of the periodic pattern of muscle activation seen during purring.

  5. Muscle force recovery in relation to muscle oxygenation.

    Science.gov (United States)

    Ufland, Pierre; Lapole, Thomas; Ahmaidi, Said; Buchheit, Martin

    2012-09-01

    The aim of this study was to investigate the relative contribution of human muscle reoxygenation on force recovery following a maximal voluntary contraction (MVC). Ten athletes (22·9 ± 4·0 years) executed a plantar-flexion sequence including two repeated MVCs [i.e. a 30-s MVC (MVC(30)) followed by a 10-s MVC (MVC(10))] separated by 10, 30, 60, 120 or 300 s of passive recovery. A 10-min passive recovery period was allowed between each MVC sequence. This procedure was randomly repeated with two different recovery conditions: without (CON) or with (OCC) arterial occlusion of the medial gastrocnemius. During OCC, the occlusion was maintained from the end of MVC(30) to the end of MVC(10). Muscle oxygenation (Near-infrared spectroscopy, NIRS, [Hb(diff) ]) was continuously measured during all MVC sequences and expressed as a percentage of the maximal changes in optical density observed during MVC(30). Maximal Torque was analysed at the start of each contraction. Torque during each MVC(10) was expressed as a percentage of the Torque during the previous MVC(30). Torque recovery was complete within 300 s after MVC(30) during CON (MVC(10) = 101·8 ± 5·0%); 88·6 ± 8·9% of the Torque was recovered during OCC (P = 0·005). There was also a moderate correlation between absolute level of muscle oxygenation and Torque (r = 0·32 (90% CI, 0·09;0·52), P = 0·02). Present findings confirm the role of human muscle oxygenation in muscular force recovery during repeated-maximal efforts. However, the correlation between absolute muscle oxygenation and force level during recovery is only moderate, suggesting that other mechanisms are likely involved in the force recovery process.

  6. Exercise-induced muscle cramp. Proposed mechanisms and management.

    Science.gov (United States)

    Bentley, S

    1996-06-01

    Muscle cramp is a common, painful, physiological disturbance of skeletal muscle. Many athletes are regularly frustrated by exercise-induced muscle cramp yet the pathogenesis remains speculative with little scientific research on the subject. This has resulted in a perpetuation of myths as to the cause and treatment of it. There is a need for scientifically based protocols for the management of athletes who suffer exercise-related muscle cramp. This article reviews the literature and neurophysiology of muscle cramp occurring during exercise. Disturbances at various levels of the central and peripheral nervous system and skeletal muscle are likely to be involved in the mechanism of cramp and may explain the diverse range of conditions in which cramp occurs. The activity of the motor neuron is subject to a multitude of influences including peripheral receptor sensory input, spinal reflexes, inhibitory interneurons in the spinal cord, synaptic and neurotransmitter modulation and descending CNS input. The muscle spindle and golgi tendon organ proprioceptors are fundamental to the control of muscle length and tone and the maintenance of posture. Disturbance in the activity of these receptors may occur through faulty posture, shortened muscle length, intense exercise and exercise to fatigue, resulting in increased motor neuron activity and motor unit recruitment. The relaxation phase of muscle contraction is prolonged in a fatigued muscle, raising the likelihood of fused summation of action potentials if motor neuron activity delivers a sustained high firing frequency. Treatment of cramp is directed at reducing muscle spindle and motor neuron activity by reflex inhibition and afferent stimulation. There are no proven strategies for the prevention of exercise-induced muscle cramp but regular muscle stretching using post-isometric relaxation techniques, correction of muscle balance and posture, adequate conditioning for the activity, mental preparation for competition and

  7. A novel electrical model of nerve and muscle using Pspice

    CERN Document Server

    Peasgood, W; Lam, C K; Armstrong, A G; Wood, W

    2003-01-01

    In this work, a model is developed to simulate the biological processes involved in nerve fibre transmission and subsequent muscle contraction. The model has been based on approximating biological structure and function to electrical circuits and as such was implemented on an electronics simulation software package called Pspice. Models of nerve, the nerve-muscle interface and muscle fibre have been implemented. The time dependent ionic properties of the nerve and muscle membranes have been simulated using the Hodgkin-Huxley equations and for the muscle fibre, the implementation of the Huxley sliding filament theory for muscular contraction. The results show that nerve may be considered as a fractal transmission line and that the amplitude of the nerve membrane depolarization is dependent on the dimensions of the fibre. Additionally, simulation of the nerve-muscle interface allows the fractal nerve model to be connected to the muscle fibre model and it is shown that a two sarcomere molecular simulation can pr...

  8. Periorbital scleroderma associated with heterochromia iridis.

    Science.gov (United States)

    Stone, R A; Scheie, H G

    1980-12-01

    Two patients had biopsy-proven linear scleroderma, associated with a pigmentary abnormality of the anterior segment of the eye. One patient had heterochromia iridis, atrophy of the upper eyelid, a typical coup de sabre lesion, and a markedly asymmetric pigmentary glaucoma. The second patient had bilateral scalp involvement, paresis of the extraocular muscles, blepharoptosis, and heterochromia iridis.

  9. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Søren; Scheele, Camilla; Yfanti, Christina;

    2010-01-01

    of all four myomiRs (P training expression levels 14 days after ceasing the training programme. Components of major pathways involved in endurance adaptation such as MAPK and TGF-ß were predicted to be targeted by the myomiRs examined. Tested......, but their role in regulating human skeletal muscle adaptation remains unknown.......Muscle specific miRNAs, myomiRs, have been shown to control muscle development in vitro and are differentially expressed at rest in diabetic skeletal muscle. Therefore, we investigated the expression of these myomiRs, including miR-1, miR-133a, miR-133b and miR-206 in muscle biopsies from vastus...

  10. Regulation of gene expression mediating indeterminate muscle growth in teleosts.

    Science.gov (United States)

    Ahammad, A K Shakur; Asaduzzaman, Md; Asakawa, Shuichi; Watabe, Shugo; Kinoshita, Shigeharu

    2015-08-01

    Teleosts are unique among vertebrates due to their indeterminate muscle growth, i.e., continued production of neonatal muscle fibers until death. However, the molecular mechanism(s) underlying this property is unknown. Here, we focused on the torafugu (Takifugu rubripes) myosin heavy chain gene, MYHM2528-1, which is specifically expressed in neonatal muscle fibers produced by indeterminate muscle growth. We examined the flanking region of MYHM2528-1 through an in vivo reporter assay using zebrafish (Danio rerio) and identified a 2100 bp 5'-flanking sequence that contained sufficient promoter activity to allow specific gene expression. The effects of enhanced promoter activity were observed at the outer region of the fast muscle and the dorsal edge of slow muscle in zebrafish larvae. At the juvenile stage, the promoter was specifically activated in small diameter muscle fibers scattered throughout fast muscle and in slow muscle near the septum separating slow and fast muscles. This spatio-temporal promoter activity overlapped with known myogenic zones involved in teleost indeterminate muscle growth. A deletion mutant analysis revealed that the -2100 to -600 bp 5'flanking sequence of MYHM2528-1 is essential for promoter activity. This region contains putative binding sites for several representative myogenesis-related transcription factors and nuclear factor of activated T-cell (NFAT), a transcription activator involved in regeneration of mammalian adult skeletal muscle. A significant reduction in the promoter activity of the MYHM2528-1 deletion constructs was observed in accordance with a reduction in the number of these binding sites, suggesting the involvement of specific transcription factors in indeterminate muscle growth.

  11. Monomelic amyotrophy with proximal upper limb involvement: a case report

    OpenAIRE

    Al-Ghawi, Eman; Al-Harbi, Talal; Al-Sarawi, Adnan; Binfalah, Mohamed

    2016-01-01

    Background Monomelic amyotrophy is an uncommon, benign, unilateral disorder of the lower motor neurons, affecting predominantly the hand and forearm muscles. Proximal involvement of the arm and shoulder muscles is an unusual presentation that has been rarely reported in the literature. Case presentation A 28-year-old white man presented with insidious-onset, slowly progressive, unilateral weakness and atrophy of his left shoulder girdle and deltoid muscles. A neurological examination revealed...

  12. Oxidative proteome alterations during skeletal muscle ageing

    Directory of Open Access Journals (Sweden)

    Sofia Lourenço dos Santos

    2015-08-01

    Full Text Available Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions. Although increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein targets, also referred as to the ‘oxi-proteome’ or ‘carbonylome’, have not been characterized yet. To better understand the mechanisms by which these damaged proteins build up and potentially affect muscle function, proteins targeted by these modifications have been identified in human rectus abdominis muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young counterparts. These proteins are involved in key cellular functions such as cellular morphology and transport, muscle contraction and energy metabolism. Importantly, impairment of these pathways has been described in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxidation may therefore impact directly on the above-mentioned pathways, hence contributing to the generation of the sarcopenic phenotype.

  13. Postural and ventilatory functions of intercostal muscles.

    Science.gov (United States)

    Duron, B

    1973-01-01

    During spontaneous breathing, the interchondral muscles present a pattern of activity similar to that of the diaphragm. The external intercostals and most of the internal intercostals generally show electrical discharges not related to ventilatory rhythm. Studies of the electrical responses of these muscles in experimental variations of their length show that the external and internal intercostals are readily activated by this category of reflexes while the diaphragm and the interchondrals are not. Bilateral multisegmental sections of spinal dorsal roots do not affect the respiratory activity of the diaphragm and of the interchondral muscles; on the contrary, all types of activity - spontaneous or reflex - disappear from the intercostals. Electrical stimulation of appropriate points in the bulbar pyramids in decerebrate cats can activate at the same time different intercostals and leg muscles without modifying the rhythmic inspiratory activity of the diaphragm and the interchondrals. In preparations with chronically implanted electrodes, the intercostals muscles are chiefly involved in posture. These results fit very well with our histological findings which disclose a much greater density of muscle spindles in external intercostals than in the diaphragm or in the interchondral muscles.

  14. Calcium's Role in Mechanotransduction during Muscle Development

    Directory of Open Access Journals (Sweden)

    Tatiana Benavides Damm

    2014-01-01

    Full Text Available Mechanotransduction is a process where cells sense their surroundings and convert the physical forces in their environment into an appropriate response. Calcium plays a crucial role in the translation of such forces to biochemical signals that control various biological processes fundamental in muscle development. The mechanical stimulation of muscle cells may for example result from stretch, electric and magnetic stimulation, shear stress, and altered gravity exposure. The response, mainly involving changes in intracellular calcium concentration then leads to a cascade of events by the activation of downstream signaling pathways. The key calcium-dependent pathways described here include the nuclear factor of activated T cells (NFAT and mitogen-activated protein kinase (MAPK activation. The subsequent effects in cellular homeostasis consist of cytoskeletal remodeling, cell cycle progression, growth, differentiation, and apoptosis, all necessary for healthy muscle development, repair, and regeneration. A deregulation from the normal process due to disuse, trauma, or disease can result in a clinical condition such as muscle atrophy, which entails a significant loss of muscle mass. In order to develop therapies against such diseased states, we need to better understand the relevance of calcium signaling and the downstream responses to mechanical forces in skeletal muscle. The purpose of this review is to discuss in detail how diverse mechanical stimuli cause changes in calcium homeostasis by affecting membrane channels and the intracellular stores, which in turn regulate multiple pathways that impart these effects and control the fate of muscle tissue.

  15. Functional Compartmentalization of the Human Superficial Masseter Muscle

    OpenAIRE

    Guzmán-Venegas, Rodrigo A.; Biotti Picand, Jorge L.; Francisco J Berral de la Rosa

    2015-01-01

    Some muscles have demonstrated a differential recruitment of their motor units in relation to their location and the nature of the motor task performed; this involves functional compartmentalization. There is little evidence that demonstrates the presence of a compartmentalization of the superficial masseter muscle during biting. The aim of this study was to describe the topographic distribution of the activity of the superficial masseter (SM) muscle's motor units using high-density surface e...

  16. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth.

    Science.gov (United States)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon; Vendelbo, Mikkel Holm; Paoli, Frank de; Vissing, Kristian

    2014-10-15

    Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training (P eccentric resistance training while type II fiber hypertrophy was accentuated when combining concentric resistance training with whey protein supplementation.

  17. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Directory of Open Access Journals (Sweden)

    Matthew Emerson Randolph

    2015-10-01

    Full Text Available The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies, such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some muscular dystrophies. The biology of muscle stem cells varies depending on their embryologic origins and the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.

  18. Clinical Analysis of 133 Cases of Extraocular Stage and Metastasis Stage Metastatic Retinoblastoma%眼外期及远处播散期视网膜母细胞瘤133例

    Institute of Scientific and Technical Information of China (English)

    张谊; 黄东生; 张伟令; 王一卓; 周燕; 韩涛; 洪亮; 杨怡平

    2011-01-01

    Objective To analyze the clinical characteristics and curative effect of terminal retinoblastoma(Rb). Methods The clinical document of 133 cases (162 eyes,78 male,55 female) with extraocular and metastasis stage of Rb confirmed in Department of Pediatrics of Tongren Hospital from Sep. 2005 to May 2010 were retrospectively analyzed. The average age of 133 cases was 2.04 years old( range 0. 33 -12.66 years old); primary eye types:the right eyes diagnosed primarily were 48 cases (extraocular 36 cases,metastasis stage 12 cases) ,left eyes diagnosed primarily were 56 cases (extraocular 46 cases, metastasis stage 10 cases), and double eyes diagnosed primarily were 29 cases.Results Leucocoria was the most common manifestation of terminal Rb with the primary diagnosis rate was 69.92% (93/133 cases) based on this symptom; secondly,lacrimation, flare, photophobia, exophthalmos ( 10.52% ) and side - glance ( 9.77% ), weak - eyed, blindness,cataract ( 6.77 % ), misdiagnose ( 1.51% ), recur after operation ( 1.51% ). The hospitalized rate of male [ 58 % (78/133 cases) ] was more than that of female. Seven cases (5.26%) showed the positive family history in all of cases. In all the 133 cases,131 cases (98.49%) had an increase in neurone specific enolase(NSE) ,the max was 370.00 μ.g · L-1. The total survival rate was 82.35% (98/119 cases), 14 cases ( in the metastasis stage 9 cases ,extraocular 5 cases) given up treatment and lost followed - up. One hundred and nineteen cases were followed up: the median follow - up visit was 27 months,the survival rate was 82.35% (98/119 cases). Moreover,the survival rate of Rb in the metastasis stage was 26.08% (6/23 cases); the survival rate of Rb in the extraocluar stage was 95.83% (92/96 cases). Conclusions The mortality of terminal Rb is very high, especially in metastasis stage. Therefore, it is very important to diagnose early and give an overall treatment.%目的 总结晚期视网膜母细胞瘤(Rb)患儿的

  19. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy.

    Science.gov (United States)

    Bar-On, Lynn; Aertbeliën, Erwin; Molenaers, Guy; Desloovere, Kaat

    2014-01-01

    The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP) these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8 ± 3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I-IV) of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG) from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG) compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (pmuscles into activation patterns (pmuscles with different patterns react differently to treatment.

  20. The Pilates Method increases respiratory muscle strength and performance as well as abdominal muscle thickness.

    Science.gov (United States)

    Giacomini, Mateus Beltrame; da Silva, Antônio Marcos Vargas; Weber, Laura Menezes; Monteiro, Mariane Borba

    2016-04-01

    The aim of this study was to verify the effects of the Pilates Method (PM) training program on the thickness of the abdominal wall muscles, respiratory muscle strength and performance, and lung function. This uncontrolled clinical trial involved 16 sedentary women who were assessed before and after eight weeks of PM training. The thickness of the transversus abdominis (TrA), internal oblique (IO) and external oblique (EO) muscles was assessed. The respiratory muscle strength was assessed by measuring the maximum inspiratory (MIP) and expiratory (MEP) pressure. The lung function and respiratory muscle performance were assessed by spirometry. An increase was found in MIP (p = 0.001), MEP (p = 0.031), maximum voluntary ventilation (p = 0.020) and the TrA (p abdominal wall muscle hypertrophy and an increase in respiratory muscle strength and performance, preventing weakness in abdominal muscles and dysfunction in ventilatory mechanics, which could favor the appearance of illnesses.

  1. Resistance Exercise Reduces Skeletal Muscle Cachexia and Improves Muscle Function in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Salaheddin Sharif

    2011-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic, systemic, autoimmune, inflammatory disease associated with cachexia (reduced muscle and increased fat. Although strength-training exercise has been used in persons with RA, it is not clear if it is effective for reducing cachexia. A 46-year-old woman was studied to determine: (i if resistance exercise could reverse cachexia by improving muscle mass, fiber cross-sectional area, and muscle function; and (2 if elevated apoptotic signaling was involved in cachexia with RA and could be reduced by resistance training. A needle biopsy was obtained from the vastus lateralis muscle of the RA subject before and after 16 weeks of resistance training. Knee extensor strength increased by 13.6% and fatigue decreased by 2.8% Muscle mass increased by 2.1%. Average muscle fiber cross-sectional area increased by 49.7%, and muscle nuclei increased slightly after strength training from 0.08 to 0.12 nuclei/μm2. In addition, there was a slight decrease (1.6% in the number of apoptotic muscle nuclei after resistance training. This case study suggests that resistance training may be a good tool for increasing the number of nuclei per fiber area, decreasing apoptotic nuclei, and inducing fiber hypertrophy in persons with RA, thereby slowing or reversing rheumatoid cachexia.

  2. Premature aging in skeletal muscle lacking serum response factor.

    Directory of Open Access Journals (Sweden)

    Charlotte Lahoute

    Full Text Available Aging is associated with a progressive loss of muscle mass, increased adiposity and fibrosis that leads to sarcopenia. At the molecular level, muscle aging is known to alter the expression of a variety of genes but very little is known about the molecular effectors involved. SRF (Serum Response Factor is a crucial transcription factor for muscle-specific gene expression and for post-natal skeletal muscle growth. To assess its role in adult skeletal muscle physiology, we developed a post-mitotic myofiber-specific and tamoxifen-inducible SRF knockout model. Five months after SRF loss, no obvious muscle phenotype was observed suggesting that SRF is not crucial for myofiber maintenance. However, mutant mice progressively developed IIB myofiber-specific atrophy accompanied by a metabolic switch towards a more oxidative phenotype, muscular lipid accumulation, sarcomere disorganization and fibrosis. After injury, mutant muscles exhibited an altered regeneration process, showing smaller regenerated fibers and persistent fibrosis. All of these features are strongly reminiscent of abnormalities encountered in aging skeletal muscle. Interestingly, we also observed an important age associated decrease in SRF expression in mice and human muscles. Altogether, these results suggest that a naturally occurring SRF down-regulation precedes and contributes to the muscle aging process. Indeed, triggering SRF loss in the muscles of mutant mice results in an accelerated aging process.

  3. Skeletal muscle lipid metabolism in exercise and insulin resistance

    DEFF Research Database (Denmark)

    Kiens, Bente

    2006-01-01

    Lipids as fuel for energy provision originate from different sources: albumin-bound long-chain fatty acids (LCFA) in the blood plasma, circulating very-low-density lipoproteins-triacylglycerols (VLDL-TG), fatty acids from triacylglycerol located in the muscle cell (IMTG), and possibly fatty acids...... of insulin resistance in skeletal muscle, including possible molecular mechanisms involved, is discussed....

  4. Muscle hernias of the lower leg: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Mellado, J.M. [Radiology Department, Hospital Virgen de la Cinta, Tortosa, Tarragona (Spain)]|[IDI - Centre Tarragona, Ressonancia Magnetica, Hospital Joan XXIII, Tarragona (Spain); Perez del Palomar, L. [Radiology Department, Hospital Virgen de la Cinta, Tortosa, Tarragona (Spain)

    1999-08-01

    Muscle hernias of the lower leg involving the tibialis anterior, peroneus brevis, and lateral head of the gastrocnemius were found in three different patients. MRI findings allowed recognition of herniated muscle in all cases and identification of fascial defect in two of them. MR imaging findings and the value of dynamic MR imaging is emphasized. (orig.) With 3 figs., 10 refs.

  5. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence......, of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle...

  6. The TORC1/P70S6K and TORC1/4EBP1 signaling pathways have a stronger contribution on skeletal muscle growth than MAPK/ERK in an early vertebrate: Differential involvement of the IGF system and atrogenes.

    Science.gov (United States)

    Fuentes, Eduardo N; Einarsdottir, Ingibjörg Eir; Paredes, Rodolfo; Hidalgo, Christian; Valdes, Juan Antonio; Björnsson, Björn Thrandur; Molina, Alfredo

    2015-01-01

    Knowledge about the underlying mechanisms, particularly the signaling pathways that account for muscle growth in vivo in early vertebrates is still scarce. Fish (Paralichthys adspersus) were fasted for 3weeks to induce a catabolic period of strong muscle atrophy. Subsequently, fish were refed for 2weeks to induce compensatory muscle hypertrophy. During refeeding, the fish were treated daily with either rapamycin (TORC blocker), PD98059 (MEK blocker), or PBS (V; vehicle), or were untreated (C; control). Rapamycin and PD98059 differentially impaired muscle cellularity in vivo, growth performance, and the expression of growth-related genes, and the inhibition of TORC1 had a greater impact on fish muscle growth than the inhibition of MAPK. Blocking TORC1 inhibited the phosphorylation of P70S6K and 4EBP1, two downstream components activated by TORC1, thus affecting protein contents in muscle. Concomitantly, the gene expression in muscle of igf-1, 2 and igfbp-4, 5 was down-regulated while the expression of atrogin-1, murf-1, and igfbp-2, 3 was up-regulated. Muscle hypertrophy was abolished and muscle atrophy was promoted, which finally affected body weight. TORC2 complex was not affected by rapamycin. On the other hand, the PD98059 treatment triggered ERK inactivation, a downstream component activated by MEK. mRNA contents of igf-1 in muscle were down-regulated, and muscle hypertrophy was partially impaired. The present study provides the first direct data on the in vivo contribution of TORC1/P70S6K, TORC1/4EBP1, and MAPK/ERK signaling pathways in the skeletal muscle of an earlier vertebrate, and highlights the transcendental role of TORC1 in growth from the cellular to organism level. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Non-Coding RNAs in Muscle Dystrophies

    Directory of Open Access Journals (Sweden)

    Alessandra Ferlini

    2013-09-01

    Full Text Available ncRNAs are the most recently identified class of regulatory RNAs with vital functions in gene expression regulation and cell development. Among the variety of roles they play, their involvement in human diseases has opened new avenues of research towards the discovery and development of novel therapeutic approaches. Important data come from the field of hereditary muscle dystrophies, like Duchenne muscle dystrophy and Myotonic dystrophies, rare diseases affecting 1 in 7000–15,000 newborns and is characterized by severe to mild muscle weakness associated with cardiac involvement. Novel therapeutic approaches are now ongoing for these diseases, also based on splicing modulation. In this review we provide an overview about ncRNAs and their behavior in muscular dystrophy and explore their links with diagnosis, prognosis and treatments, highlighting the role of regulatory RNAs in these pathologies.

  8. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Mark W., E-mail: mhamrick@mail.mcg.edu [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Herberg, Samuel; Arounleut, Phonepasong [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); He, Hong-Zhi [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Shiver, Austin [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Qi, Rui-Qun [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Zhou, Li [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Department of Internal Medicine, Henry Ford Health System, Detroit, MI (United States); Isales, Carlos M. [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); and others

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  9. The hamstring muscle complex.

    Science.gov (United States)

    van der Made, A D; Wieldraaijer, T; Kerkhoffs, G M; Kleipool, R P; Engebretsen, L; van Dijk, C N; Golanó, P

    2015-07-01

    The anatomical appearance of the hamstring muscle complex was studied to provide hypotheses for the hamstring injury pattern and to provide reference values of origin dimensions, muscle length, tendon length, musculotendinous junction (MTJ) length as well as width and length of a tendinous inscription in the semitendinosus muscle known as the raphe. Fifty-six hamstring muscle groups were dissected in prone position from 29 human cadaveric specimens with a median age of 71.5 (range 45-98). Data pertaining to origin dimensions, muscle length, tendon length, MTJ length and length as well as width of the raphe were collected. Besides these data, we also encountered interesting findings that might lead to a better understanding of the hamstring injury pattern. These include overlapping proximal and distal tendons of both the long head of the biceps femoris muscle and the semimembranosus muscle (SM), a twist in the proximal SM tendon and a tendinous inscription (raphe) in the semitendinosus muscle present in 96 % of specimens. No obvious hypothesis can be provided purely based on either muscle length, tendon length or MTJ length. However, it is possible that overlapping proximal and distal tendons as well as muscle architecture leading to a resultant force not in line with the tendon predispose to muscle injury, whereas the presence of a raphe might plays a role in protecting the muscle against gross injury. Apart from these architectural characteristics that may contribute to a better understanding of the hamstring injury pattern, the provided reference values complement current knowledge on surgically relevant hamstring anatomy. IV.

  10. Role of autophagy in COPD skeletal muscle dysfunction.

    Science.gov (United States)

    Hussain, Sabah N A; Sandri, Marco

    2013-05-01

    Chronic obstructive pulmonary disease (COPD) is a debilitating disease caused by parenchymal damage and irreversible airflow limitation. In addition to lung dysfunction, patients with COPD develop weight loss, malnutrition, poor exercise performance, and skeletal muscle atrophy. The latter has been attributed to an imbalance between muscle protein synthesis and protein degradation. Several reports have confirmed that enhanced protein degradation and atrophy of limb muscles of COPD patient is mediated in part through activation of the ubiquitin-proteasome pathway and that this activation is triggered by enhanced production of reactive oxygen species. Until recently, the importance of the autophagy-lysosome pathway in protein degradation of skeletal muscles has been largely ignored, however, recent evidence suggests that this pathway is actively involved in recycling of cytosolic proteins, organelles, and protein aggregates in normal skeletal muscles. The protective role of autophagy in the regulation of muscle mass has recently been uncovered in mice with muscle-specific suppression of autophagy. These mice develop severe muscle weakness, atrophy, and decreased muscle contractility. No information is yet available about the involvement of the autophagy in the regulation of skeletal muscle mass in COPD patients. Pilot experiments on vastus lateralis muscle samples suggest that the autophagy-lysosome system is induced in COPD patients compared with control subjects. In this review, we summarize recent progress related to molecular structure, regulation, and roles of the autophagy-lysosome pathway in normal and diseased skeletal muscles. We also speculate about regulation and functional importance of this system in skeletal muscle dysfunction in COPD patients.

  11. MUSCLE INJURIES IN ATHLETES.

    Science.gov (United States)

    Barroso, Guilherme Campos; Thiele, Edilson Schwansee

    2011-01-01

    This article had the aim of demonstrating the physiology, diagnosis and treatment of muscle injuries, focusing on athletes and their demands and expectations. Muscle injuries are among the most common complaints in orthopedic practice, occurring both among athletes and among non-athletes. These injuries present a challenge for specialists, due to the slow recovery, during which time athletes are unable to take part in training and competitions, and due to frequent sequelae and recurrences of the injuries. Most muscle injuries (between 10% and 55% of all injuries) occur during sports activities. The muscles most commonly affected are the ischiotibial, quadriceps and gastrocnemius. These muscles go across two joints and are more subject to acceleration and deceleration forces. The treatment for muscle injuries varies from conservative treatment to surgery. New procedures are being used, like the hyperbaric chamber and the use of growth factors. However, there is still a high rate of injury recurrence. Muscle injury continues to be a topic of much controversy. New treatments are being researched and developed, but prevention through muscle strengthening, stretching exercises and muscle balance continues to be the best "treatment".

  12. Accessory piriformis muscle

    Directory of Open Access Journals (Sweden)

    Sedat Develi

    2017-03-01

    Full Text Available Piriformis muscle originates from facies pelvica of sacrum and inserts on the trochanter major. It is one of the lateral rotator muscles of the hip and a landmark point in the gluteal region since n. ischiadicus descends to the thigh by passing close to the muscle. This contiguity may be associated with the irritation of the nerve which is known as piriformis syndrome. A rare anatomic variation of the muscle which observed on 74 years old male cadaver is discussed in this case report. [Cukurova Med J 2017; 42(1.000: 182-183

  13. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence...

  14. Skeletal muscle development and regeneration.

    NARCIS (Netherlands)

    Grefte, S.; Kuijpers-Jagtman, A.M.; Torensma, R.; Hoff, J.W. Von den

    2007-01-01

    In the late stages of muscle development, a unique cell population emerges that is a key player in postnatal muscle growth and muscle regeneration. The location of these cells next to the muscle fibers triggers their designation as satellite cells. During the healing of injured muscle tissue, satell

  15. Skeletal muscle development and regeneration.

    NARCIS (Netherlands)

    Grefte, S.; Kuijpers-Jagtman, A.M.; Torensma, R.; Hoff, J.W. Von den

    2007-01-01

    In the late stages of muscle development, a unique cell population emerges that is a key player in postnatal muscle growth and muscle regeneration. The location of these cells next to the muscle fibers triggers their designation as satellite cells. During the healing of injured muscle tissue,

  16. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...... the role of skeletal muscle transverse tubules as potential modulators of tissue insulin responsiveness....

  17. Mechanisms of Muscle Growth and Atrophy in Mammals and Drosophila

    Science.gov (United States)

    Piccirillo, Rosanna; Demontis, Fabio; Perrimon, Norbert; Goldberg, Alfred L.

    2014-01-01

    The loss of skeletal muscle mass (atrophy) that accompanies disuse and systemic diseases is highly debilitating. Although the pathogenesis of this condition has been primarily studied in mammals, Drosophila is emerging as an attractive system to investigate some of the mechanisms involved in muscle growth and atrophy. In this review, we highlight the outstanding unsolved questions that may benefit from a combination of studies in both flies and mammals. In particular, we discuss how different environmental stimuli and signaling pathways influence muscle mass and strength and how a variety of disease states can cause muscle wasting. PMID:24038488

  18. Involvement of multiple cell lineages in atherogenesis | Ogeng'o ...

    African Journals Online (AJOL)

    Involvement of multiple cell lineages in atherogenesis. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... smooth muscle cells, fibroblasts, stem cells, pericytes, mast cells, dendritic cells, macrophages and immigrant cells usually found in ...

  19. The effects of finger extension on shoulder muscle activity

    National Research Council Canada - National Science Library

    Yi, Chae-Woo; Shin, Ju-Yong; Kim, Youn-Joung

    2015-01-01

    ...) on the activity of the shoulder muscles (proximal upper limb). [Subjects and Methods] This study involved 14 healthy male adults with no musculoskeletal disorder or pain related to the shoulders and hands...

  20. Mechanisms of muscle growth and atrophy in mammals and Drosophila

    National Research Council Canada - National Science Library

    Piccirillo, Rosanna; Demontis, Fabio; Perrimon, Norbert; Goldberg, Alfred L

    2014-01-01

    .... Although the pathogenesis of this condition has been primarily studied in mammals, Drosophila is emerging as an attractive system to investigate some of the mechanisms involved in muscle growth and atrophy. Results...

  1. Ischemia causes muscle fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  2. Regulation of muscle atrophy in aging and disease.

    Science.gov (United States)

    Vinciguerra, Manlio; Musaro, Antonio; Rosenthal, Nadia

    2010-01-01

    Muscle aging is characterized by a decline in functional performance and restriction of adaptability, due to progressive loss of muscle tissue coupled with a decrease in strength and force output. Together with selective activation ofapoptotic pathways, a hallmark of age-related muscle loss or sarcopenia is the progressive incapacity of regeneration machinery to replace damaged muscle. These characteristics are shared by pathologies involving muscle wasting, such as muscular dystrophies or amyotrophic lateral sclerosis, cancer and AIDS, all characterized by alterations in metabolic and physiological parameters, progressive weakness in specific muscle groups. Modulation ofextracellular agonists, receptors, protein kinases, intermediate molecules, transcription factors and tissue-specific gene expression collectively compromise the functionality of skeletal muscle tissue, leading to muscle degeneration and persistent protein degradation through activation ofproteolytic systems, such as calpain, ubiquitin-proteasome and caspase. Additional decrements in muscle growth factors compromise skeletal muscle growth, differentiation, survival and regeneration. A better understanding of the mechanisms underlying the pathogenesis of muscle atrophy and wasting associated with different diseases has been the objective of numerous studies and represents an important first step for the development of therapeutic approaches. Among these, insulin-like growth factor-1 (IGF-1) has emerged as a growth factor with a remarkably wide range of actions and a tremendous potential as a therapeutic in attenuating the atrophy and frailty associated with muscle aging and diseases. In this chapter we provide an overview of current concepts in muscle atrophy, focusing specifically on the molecular basis of IGF-1 action and survey current gene and cell therapeutic approaches to rescue muscle atrophy in aging and disease.

  3. Corticospinal Excitability of Trunk Muscles during Different Postural Tasks.

    Science.gov (United States)

    Chiou, Shin-Yi; Gottardi, Sam E A; Hodges, Paul W; Strutton, Paul H

    2016-01-01

    Evidence suggests that the primary motor cortex (M1) is involved in both voluntary, goal-directed movements and in postural control. Trunk muscles are involved in both tasks, however, the extent to which M1 controls these muscles in trunk flexion/extension (voluntary movement) and in rapid shoulder flexion (postural control) remains unclear. The purpose of this study was to investigate this question by examining excitability of corticospinal inputs to trunk muscles during voluntary and postural tasks. Twenty healthy adults participated. Transcranial magnetic stimulation was delivered to the M1 to examine motor evoked potentials (MEPs) in the trunk muscles (erector spinae (ES) and rectus abdominis (RA)) during dynamic shoulder flexion (DSF), static shoulder flexion (SSF), and static trunk extension (STE). The level of background muscle activity in the ES muscles was matched across tasks. MEP amplitudes in ES were significantly larger in DSF than in SSF or in STE; however, this was not observed for RA. Further, there were no differences in levels of muscle activity in RA between tasks. Our findings reveal that corticospinal excitability of the ES muscles appears greater during dynamic anticipatory posture-related adjustments than during static tasks requiring postural (SSF) and goal-directed voluntary (STE) activity. These results suggest that task-oriented rehabilitation of trunk muscles should be considered for optimal transfer of therapeutic effect to function.

  4. Corticospinal Excitability of Trunk Muscles during Different Postural Tasks.

    Directory of Open Access Journals (Sweden)

    Shin-Yi Chiou

    Full Text Available Evidence suggests that the primary motor cortex (M1 is involved in both voluntary, goal-directed movements and in postural control. Trunk muscles are involved in both tasks, however, the extent to which M1 controls these muscles in trunk flexion/extension (voluntary movement and in rapid shoulder flexion (postural control remains unclear. The purpose of this study was to investigate this question by examining excitability of corticospinal inputs to trunk muscles during voluntary and postural tasks. Twenty healthy adults participated. Transcranial magnetic stimulation was delivered to the M1 to examine motor evoked potentials (MEPs in the trunk muscles (erector spinae (ES and rectus abdominis (RA during dynamic shoulder flexion (DSF, static shoulder flexion (SSF, and static trunk extension (STE. The level of background muscle activity in the ES muscles was matched across tasks. MEP amplitudes in ES were significantly larger in DSF than in SSF or in STE; however, this was not observed for RA. Further, there were no differences in levels of muscle activity in RA between tasks. Our findings reveal that corticospinal excitability of the ES muscles appears greater during dynamic anticipatory posture-related adjustments than during static tasks requiring postural (SSF and goal-directed voluntary (STE activity. These results suggest that task-oriented rehabilitation of trunk muscles should be considered for optimal transfer of therapeutic effect to function.

  5. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy.

    Science.gov (United States)

    de Theije, C C; Langen, R C J; Lamers, W H; Gosker, H R; Schols, A M W J; Köhler, S E

    2015-01-15

    Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers.

  6. The Physiological Regulation of Skeletal Muscle Fatty Acid Supply and Oxidation During Moderate-Intensity Exercise

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2015-01-01

    involved in the regulation of the active muscle NEFA uptake include (1) increased energy demand; (2) delivery of NEFA to the muscle; (3) transport of NEFA into the muscle by NEFA transporters; and (4) activation of the NEFAs and either oxidation or re-esterification into IMTAG. The increased metabolic...

  7. Simultaneous bilateral contracture of the infraspinatus muscle.

    Science.gov (United States)

    Franch, J; Bertran, J; Remolins, G; Fontecha, P; Díaz-Bertrana, M C; Durall, I

    2009-01-01

    A case of bilateral fibrotic contracture of the infraspinatus muscles in a five-year-old Belgian Shepherd dog is described. The dog was presented with progressive forelimb lameness with postural and gait abnormalities three months after an episode of overexertion. When walking, the lower part of both forelimbs swung in a lateral arc causing a circumduction movement and in the standing position, the dog showed elbow adduction with external rotation of the distal part of both front limbs. Orthopaedic examination revealed bilateral atrophy of both infraspinatus and supraspinatus muscles and restriction in the range of motion of both shoulders, especially when attempting abduction and flexion. No specific findings were observed in the shoulder or elbow radiographs but hyperechogenic areas were evident in the ultrasonographic examination of both infraspinatus muscles. A diagnosis of fibrotic contracture of both infraspinatus muscles was established and bilateral tenectomy of the insertion tendons of the infraspinatus muscles was performed. Complete recovery of the animal was achieved after the surgery, which was confirmed in a long-term follow-up (10 months). In conclusion, physical examination and ultrasonography allowed a proper diagnosis of the condition, and tenectomy of the infraspinatus muscles resulted in a complete recovery of the patient even with bilateral involvement.

  8. Craniomandibular disorders and masticatory muscle function.

    Science.gov (United States)

    Bakke, M; Möller, E

    1992-02-01

    The heading craniomandibular disorders covers a wide range of abnormal and pathologic conditions accompanied by orofacial pain and impaired mandibular function, the masticatory muscles and the temporomandibular joints being the structures most frequently involved. Prevalences of severe craniomandibular disorders accompanied by headache and facial pain urgently in need of treatment are 1-2% in children, about 5% in adolescents, and 5-15% in adults, with higher values in women than in men. With respect to physiology and ergonomics, masticatory muscles are comparable to other human skeletal muscles, e.g. of shoulder, neck and lower back. Therefore these muscles share pathogenesis, symptoms and signs of muscular disorders caused by prolonged, low-level static contractions or intermittent isometric contractions at higher levels. Since the same elements of performance in the masticatory muscles are influenced by occlusal factors, they link the development of muscular fatigue, discomfort and pain to the dental occlusion. Furthermore, changes of the occlusal surfaces, e.g. due to dental treatment, may influence the performance of the masticatory muscles, and consequently interfere with local muscular function.

  9. Skeletal muscle disorders of glycogenolysis and glycolysis.

    Science.gov (United States)

    Godfrey, Richard; Quinlivan, Ros

    2016-07-01

    Skeletal muscle disorders of glycogenolysis and glycolysis account for most of the conditions collectively termed glycogen storage diseases (GSDs). These disorders are rare (incidence 1 in 20,000-43,000 live births), and are caused by autosomal or X-linked recessive mutations that result in a specific enzyme deficiency, leading to the inability to utilize muscle glycogen as an energy substrate. McArdle disease (GSD V) is the most common of these disorders, and is caused by mutations in the gene encoding muscle glycogen phosphorylase. Symptoms of McArdle disease and most other related GSDs include exercise intolerance, muscle contracture, acute rhabdomyolysis, and risk of acute renal failure. Older patients may exhibit muscle wasting and weakness involving the paraspinal muscles and shoulder girdle. For patients with these conditions, engaging with exercise is likely to be beneficial. Diagnosis is frequently delayed owing to the rarity of the conditions and lack of access to appropriate investigations. A few randomized clinical trials have been conducted, some focusing on dietary modification, although the quality of the evidence is low and no specific recommendations can yet be made. The development of EUROMAC, an international registry for these disorders, should improve our knowledge of their natural histories and provide a platform for future clinical trials.

  10. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne;

    2007-01-01

    with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern......BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  11. Healthy Muscles Matter

    Science.gov (United States)

    ... lower than normal number of red blood cells. Atrophy (A-truh-fee). Wasting away of the body or of an organ or part, as from deficient nutrition, nerve damage, or lack of use. Cardiac (KAR-dee-ak) muscle . The heart muscle. An ...

  12. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A;

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  13. Turning Marrow into Muscle

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ In unexpected testimony2 to the versatility3 of the body's cells,researchers have found they can make bone marrow cells turn into muscle, causing mice with muscular dystrophy4 to produce correctly working muscle cells. The experiment suggests that a form of bone marrow transplant- - a well established surgical procedure5- - could in principle treat patients with a variety of diseases.

  14. Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle.

    Science.gov (United States)

    Musarò, Antonio; Carosio, Silvia

    2017-01-01

    Skeletal muscle tissue is characterized by a population of quiescent mononucleated myoblasts, localized between the basal lamina and sarcolemma of myofibers, known as satellite cells. Satellite cells play a pivotal role in muscle homeostasis and are the major source of myogenic precursors in mammalian muscle regeneration.This chapter describes protocols for isolation and culturing satellite cells isolated from mouse skeletal muscles. The classical procedure, which will be discussed extensively in this chapter, involves the enzymatic dissociation of skeletal muscles, while the alternative method involves isolation of satellite cells from isolated myofibers in which the satellite cells remain in their in situ position underneath the myofiber basal lamina.In particular, we discuss the technical aspect of satellite cell isolation, the methods necessary to enrich the satellite cell fraction and the culture conditions that optimize proliferation and myotube formation of mouse satellite cells.

  15. Role of microRNAs in skeletal muscle hypertrophy

    Directory of Open Access Journals (Sweden)

    Keisuke eHitachi

    2014-01-01

    Full Text Available Skeletal muscle comprises approximately 40% of body weight, and is important for locomotion, as well as for metabolic homeostasis. Adult skeletal muscle mass is maintained by a fine balance between muscle protein synthesis and degradation. In response to cytokines, nutrients, and mechanical stimuli, skeletal muscle mass is increased (hypertrophy, whereas skeletal muscle mass is decreased (atrophy in a variety of conditions, including cancer cachexia, starvation, immobilization, aging, and neuromuscular disorders. Recent studies have determined two important signaling pathways involved in skeletal muscle mass. The insulin-like growth factor-1 (IGF-1/Akt pathway increases skeletal muscle mass via stimulation of protein synthesis and inhibition of protein degradation. By contrast, myostatin signaling negatively regulates skeletal muscle mass by reducing protein synthesis. In addition, the discovery of microRNAs as novel regulators of gene expression has provided new insights into a multitude of biological processes, especially in skeletal muscle physiology. We summarize here the current knowledge of microRNAs in the regulation of skeletal muscle hypertrophy, focusing on the IGF-1/Akt pathway and myostatin signaling.