WorldWideScience

Sample records for extractive electrospray ionization

  1. On the mechanism of extractive electrospray ionization (EESI) in the dual-spray configuration.

    Science.gov (United States)

    Wang, Rui; Gröhn, Arto Juhani; Zhu, Liang; Dietiker, Rolf; Wegner, Karsten; Günther, Detlef; Zenobi, Renato

    2012-03-01

    Dual-spray extractive electrospray ionization (EESI) mass spectrometry as a versatile analytical technique has attracted much interest due to its advantages over conventional electrospray ionization (ESI). The crucial difference between EESI and ESI is that in the EESI process, the analytes are introduced in nebulized form via a neutral spray and ionized by collisions with the charged droplets from an ESI source formed by spraying pure solvent. However, the mechanism of the droplet-droplet interactions in the EESI process is still not well understood. For example, it is unclear which type of droplet-droplet interaction is dominant: bounce, coalescence, disruption, or fragmentation? In this work, droplet-droplet interaction was investigated in detail based on a theoretical model. Phase Doppler anemometry (PDA) was employed to investigate the droplet behavior in the EESI plume and provide the experimental data (droplet size and velocity) necessary for theoretical analysis. Furthermore, numerical simulations were performed to clarify the influence of the sheath gas flow on the EESI process. No coalescence between the droplets in the ESI spray and the droplets in the sample spray was observed using various geometries and sample flow rates. Theoretical analysis, together with the PDA results, suggests that droplet fragmentation may be the dominant type of droplet-droplet interaction in the EESI. The interaction time between the ESI droplet and the sample droplet was estimated to be <5 μs. This work gives a clear picture of droplet-droplet interactions in the dual-spray EESI process and detailed information for the optimization of this method for future applications that require higher sensitivity.

  2. On-chip electromembrane extraction for monitoring drug metabolism in real time by electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Petersen, Nickolaj J.; Pedersen, Jacob Sønderby; Poulsen, Nicklas Nørgård

    2012-01-01

    A temperature controlled (37 °C) metabolic reaction chamber with a volume of 1 mL was coupled directly to electrospray ionization mass spectrometry (ESI-MS) by the use of a 50 µm deep counter flow micro-chip electromembrane extraction (EME) system. The EME/ESI-MS system was used to study the in v......A temperature controlled (37 °C) metabolic reaction chamber with a volume of 1 mL was coupled directly to electrospray ionization mass spectrometry (ESI-MS) by the use of a 50 µm deep counter flow micro-chip electromembrane extraction (EME) system. The EME/ESI-MS system was used to study...

  3. Quantitative detection of nitric oxide in exhaled human breath by extractive electrospray ionization mass spectrometry

    Science.gov (United States)

    Pan, Susu; Tian, Yong; Li, Ming; Zhao, Jiuyan; Zhu, Lanlan; Zhang, Wei; Gu, Haiwei; Wang, Haidong; Shi, Jianbo; Fang, Xiang; Li, Penghui; Chen, Huanwen

    2015-03-01

    Exhaled nitric oxide (eNO) is a useful biomarker of various physiological conditions, including asthma and other pulmonary diseases. Herein a fast and sensitive analytical method has been developed for the quantitative detection of eNO based on extractive electrospray ionization mass spectrometry (EESI-MS). Exhaled NO molecules selectively reacted with 2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) reagent, and eNO concentration was derived based on the EESI-MS response of 1-oxyl-2-phenyl-4, 4, 5, 5-tetramethylimidazoline (PTI) product. The method allowed quantification of eNO below ppb level (~0.02 ppbv) with a relative standard deviation (RSD) of 11.6%. In addition, eNO levels of 20 volunteers were monitored by EESI-MS over the time period of 10 hrs. Long-term eNO response to smoking a cigarette was recorded, and the observed time-dependent profile was discussed. This work extends the application of EESI-MS to small molecules (mass spectrometers. Long-term quantitative profiling of eNO by EESI-MS opens new possibilities for the research of human metabolism and clinical diagnosis.

  4. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-08-11

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L(-1) (S/N = 3) in lake water samples and ~0.5 μg·L(-1) in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10-1000 μg·L(-1). Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L(-1) gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples.

  5. Detection of creatinine in exhaled breath of humans with chronic kidney disease by extractive electrospray ionization mass spectrometry.

    Science.gov (United States)

    Zeng, Qian; Li, Penghui; Cai, Yunfeng; Zhou, Wei; Wang, Haidong; Luo, Jiao; Ding, Jianhua; Chen, Huanwen

    2016-02-09

    Exhaled breath contains chemicals that have a diagnostic value in human pathologies. Here in vivo breath analysis of creatinine has been demonstrated by constructing a novel platform based on extractive electrospray ionization mass spectrometry (EESI-MS) without sample pretreatment. Under optimized experimental conditions, the limit of creatinine detection in breath was 30.57 ng L(-1), and the linear range of detection was from 0.3 μg L(-1) to 100 μg L(-1). The concentration range of creatinine in the exhaled breath of 50 volunteers with chronic kidney disease was from 42 pptv to 924 pptv, and the range of the relative standard deviations was from 9.3% to 19.2%. The method provides high sensitivity, high specificity and high speed for semi-quantitative analysis of creatinine in exhaled human breath.

  6. Rapid fingerprinting and classification of extra virgin olive oil by microjet sampling and extractive electrospray ionization mass spectrometry.

    Science.gov (United States)

    Law, Wai Siang; Chen, Huan Wen; Balabin, Roman; Berchtold, Christian; Meier, Lukas; Zenobi, Renato

    2010-04-01

    Microjet sampling in combination with extractive electrospray ionization (EESI) mass spectrometry (MS) was applied to the rapid characterization and classification of extra virgin olive oil (EVOO) without any sample pretreatment. When modifying the composition of the primary ESI spray solvent, mass spectra of an identical EVOO sample showed differences. This demonstrates the capability of this technique to extract molecules with varying polarities, hence generating rich molecular information of the EVOO. Moreover, with the aid of microjet sampling, compounds of different volatilities (e.g.E-2-hexenal, trans-trans-2,4-heptadienal, tyrosol and caffeic acid) could be sampled simultaneously. EVOO data was also compared with that of other edible oils. Principal Component Analysis (PCA) was performed to discriminate EVOO and EVOO adulterated with edible oils. Microjet sampling EESI-MS was found to be a simple, rapid (less than 2 min analysis time per sample) and powerful method to obtain MS fingerprints of EVOO without requiring any complicated sample pretreatment steps.

  7. Solid phase extraction-electrospray ionization mass spectrometric method for the determination of palladium

    International Nuclear Information System (INIS)

    Pranaw Kumar; Telmore, Vijay M.; Jaison, P.G.; Sarkar, Arnab; Alamelu, D.; Aggarwal, S.K.

    2015-01-01

    Platinum group of element (PGEs) are extensively used as a catalyst and anticancer reagent. Due to the soft nature of PGEs, sulphur based donar ligands are used for the separation of these elements. Studies on the formation of different species are helpful for obtaining the ideas about separation of these elements from the complex matrices. Palladium (Pd) is studied as a representative element which is also formed by nuclear fission of fissile nuclides. In view of the relatively small amount of solvent required for separation, solid phase extraction is preferred over most of the separation methods. Solid phase extraction method using DPX as a stationary phase was previously reported for the separation of Pd in SHLLW using benzoylthiourea as a ligand. However, in case of large volume samples manual extraction by DPX is tedious task. In the present studies, the feasibility of extraction using benzoylthiourea on automated solid phase extraction system was carried out for the extraction of Pd

  8. Direct quantification of creatinine in human urine by using isotope dilution extractive electrospray ionization tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li Xue [Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Applied Chemistry Department, East China Institute of Technology, Nanchang 330013 (China); Fang Xiaowei [Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Applied Chemistry Department, East China Institute of Technology, Nanchang 330013 (China); Yu Zhiqiang; Sheng Guoying [Guangdong Key Laboratory of Environmental Protection and Resource Utilization, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wu Minghong [Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Fu Jiamo [Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Guangdong Key Laboratory of Environmental Protection and Resource Utilization, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen Huanwen, E-mail: chw8868@gmail.com [Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Applied Chemistry Department, East China Institute of Technology, Nanchang 330013 (China)

    2012-10-20

    Highlights: Black-Right-Pointing-Pointer High throughput analysis of urinary creatinine is achieved by using ID-EESI-MS/MS. Black-Right-Pointing-Pointer Urine sample is directly analyzed and no sample pre-treatment is required. Black-Right-Pointing-Pointer Accurate quantification is accomplished with isotope dilution technique. - Abstract: Urinary creatinine (CRE) is an important biomarker of renal function. Fast and accurate quantification of CRE in human urine is required by clinical research. By using isotope dilution extractive electrospray ionization tandem mass spectrometry (EESI-MS/MS) a high throughput method for direct and accurate quantification of urinary CRE was developed in this study. Under optimized conditions, the method detection limit was lower than 50 {mu}g L{sup -1}. Over the concentration range investigated (0.05-10 mg L{sup -1}), the calibration curve was obtained with satisfactory linearity (R{sup 2} = 0.9861), and the relative standard deviation (RSD) values for CRE and isotope-labeled CRE (CRE-d3) were 7.1-11.8% (n = 6) and 4.1-11.3% (n = 6), respectively. The isotope dilution EESI-MS/MS method was validated by analyzing six human urine samples, and the results were comparable with the conventional spectrophotometric method (based on the Jaffe reaction). Recoveries for individual urine samples were 85-111% and less than 0.3 min was taken for each measurement, indicating that the present isotope dilution EESI-MS/MS method is a promising strategy for the fast and accurate quantification of urinary CRE in clinical laboratories.

  9. Direct quantification of creatinine in human urine by using isotope dilution extractive electrospray ionization tandem mass spectrometry

    International Nuclear Information System (INIS)

    Li Xue; Fang Xiaowei; Yu Zhiqiang; Sheng Guoying; Wu Minghong; Fu Jiamo; Chen Huanwen

    2012-01-01

    Highlights: ► High throughput analysis of urinary creatinine is achieved by using ID-EESI–MS/MS. ► Urine sample is directly analyzed and no sample pre-treatment is required. ► Accurate quantification is accomplished with isotope dilution technique. - Abstract: Urinary creatinine (CRE) is an important biomarker of renal function. Fast and accurate quantification of CRE in human urine is required by clinical research. By using isotope dilution extractive electrospray ionization tandem mass spectrometry (EESI–MS/MS) a high throughput method for direct and accurate quantification of urinary CRE was developed in this study. Under optimized conditions, the method detection limit was lower than 50 μg L −1 . Over the concentration range investigated (0.05–10 mg L −1 ), the calibration curve was obtained with satisfactory linearity (R 2 = 0.9861), and the relative standard deviation (RSD) values for CRE and isotope-labeled CRE (CRE-d3) were 7.1–11.8% (n = 6) and 4.1–11.3% (n = 6), respectively. The isotope dilution EESI–MS/MS method was validated by analyzing six human urine samples, and the results were comparable with the conventional spectrophotometric method (based on the Jaffe reaction). Recoveries for individual urine samples were 85–111% and less than 0.3 min was taken for each measurement, indicating that the present isotope dilution EESI–MS/MS method is a promising strategy for the fast and accurate quantification of urinary CRE in clinical laboratories.

  10. A Comparison of Tissue Spray and Lipid Extract Direct Injection Electrospray Ionization Mass Spectrometry for the Differentiation of Eutopic and Ectopic Endometrial Tissues

    Science.gov (United States)

    Chagovets, Vitaliy; Wang, Zhihao; Kononikhin, Alexey; Starodubtseva, Natalia; Borisova, Anna; Salimova, Dinara; Popov, Igor; Kozachenko, Andrey; Chingin, Konstantin; Chen, Huanwen; Frankevich, Vladimir; Adamyan, Leila; Sukhikh, Gennady

    2018-02-01

    Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.

  11. Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays

    Science.gov (United States)

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2010-10-19

    Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

  12. Cloud-point extraction is compatible with liquid chromatography coupled to electrospray ionization mass spectrometry for the determination of antazoline in human plasma.

    Science.gov (United States)

    Giebułtowicz, Joanna; Kojro, Grzegorz; Piotrowski, Roman; Kułakowski, Piotr; Wroczyński, Piotr

    2016-09-05

    Cloud-point extraction (CPE) is attracting increasing interest in a number of analytical fields, including bioanalysis, as it provides a simple, safe and environmentally-friendly sample preparation technique. However, there are only few reports on the application of this extraction technique in liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this study, CPE was used for the isolation of antazoline from human plasma. To date, only one method of antazoline isolation from plasma exists-liquid-liquid extraction (LLE). The aim of this study was to prove the compatibility of CPE and LC-ESI-MS/MS and the applicability of CPE to the determination of antazoline in spiked human plasma and clinical samples. Antazoline was isolated from human plasma using Triton X-114 as a surfactant. Xylometazoline was used as an internal standard. NaOH concentration, temperature and Triton X-114 concentration were optimized. The absolute matrix effect was carefully investigated. All validation experiments met international acceptance criteria and no significant relative matrix effect was observed. The compatibility of CPE and LC-ESI-MS/MS was confirmed using clinical plasma samples. The determination of antazoline concentration in human plasma in the range 10-2500ngmL(-1) by the CPE method led to results which are equivalent to those obtained by the widely used liquid-liquid extraction method. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Electrophoretic extraction of low molecular weight cationic analytes from sodium dodecyl sulfate containing sample matrices for their direct electrospray ionization mass spectrometry.

    Science.gov (United States)

    Kinde, Tristan F; Lopez, Thomas D; Dutta, Debashis

    2015-03-03

    While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 μg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis.

  14. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation. © 2015 SETAC.

  15. Determination of pharmaceutical compounds in surface- and ground-water samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry

    Science.gov (United States)

    Cahill, J.D.; Furlong, E.T.; Burkhardt, M.R.; Kolpin, D.; Anderson, L.G.

    2004-01-01

    Commonly used prescription and over-the-counter pharmaceuticals are possibly present in surface- and ground-water samples at ambient concentrations less than 1 μg/L. In this report, the performance characteristics of a combined solid-phase extraction isolation and high-performance liquid chromatography–electrospray ionization mass spectrometry (HPLC–ESI-MS) analytical procedure for routine determination of the presence and concentration of human-health pharmaceuticals are described. This method was developed and used in a recent national reconnaissance of pharmaceuticals in USA surface waters. The selection of pharmaceuticals evaluated for this method was based on usage estimates, resulting in a method that contains compounds from diverse chemical classes, which presents challenges and compromises when applied as a single routine analysis. The method performed well for the majority of the 22 pharmaceuticals evaluated, with recoveries greater than 60% for 12 pharmaceuticals. The recoveries of angiotensin-converting enzyme inhibitors, a histamine (H2) receptor antagonist, and antihypoglycemic compound classes were less than 50%, but were retained in the method to provide information describing the potential presence of these compounds in environmental samples and to indicate evidence of possible matrix enhancing effects. Long-term recoveries, evaluated from reagent-water fortifications processed over 2 years, were similar to initial method performance. Method detection limits averaged 0.022 μg/L, sufficient for expected ambient concentrations. Compound-dependent matrix effects on HPLC/ESI-MS analysis, including enhancement and suppression of ionization, were observed as a 20–30% increase in measured concentrations for three compounds and greater than 50% increase for two compounds. Changing internal standard and more frequent ESI source maintenance minimized matrix effects. Application of the method in the national survey demonstrates that several

  16. Identification and Quantification of the Major Constituents in Egyptian Carob Extract by Liquid Chromatography?Electrospray Ionization-Tandem Mass Spectrometry

    OpenAIRE

    Owis, Asmaa Ibrahim; El-Naggar, El-Motaz Bellah

    2016-01-01

    Background: Carob - Ceratonia siliqua L., commonly known as St John's-bread or locust bean, family Fabaceae - is one of the most useful native Mediterranean trees. There is no data about the chromatography methods performed by high performance liquid chromatography (HPLC) for determining polyphenols in Egyptian carob pods. Objective: To establish a sensitive and specific liquid chromatography?electrospray ionization (ESI)-tandem mass spectrometry (MSn) methodology for the identification of th...

  17. Identification and Quantification of the Major Constituents in Egyptian Carob Extract by Liquid Chromatography–Electrospray Ionization-Tandem Mass Spectrometry

    Science.gov (United States)

    Owis, Asmaa Ibrahim; El-Naggar, El-Motaz Bellah

    2016-01-01

    Background: Carob - Ceratonia siliqua L., commonly known as St John's-bread or locust bean, family Fabaceae - is one of the most useful native Mediterranean trees. There is no data about the chromatography methods performed by high performance liquid chromatography (HPLC) for determining polyphenols in Egyptian carob pods. Objective: To establish a sensitive and specific liquid chromatography–electrospray ionization (ESI)-tandem mass spectrometry (MSn) methodology for the identification of the major constituents in Egyptian carob extract. Materials and Methods: HPLC with diode array detector and ESI-mass spectrometry (MS) was developed for the identification and quantification of phenolic acids, flavonoid glycosides, and aglycones in the methanolic extract of Egyptian C. siliqua. The MS and MSn data together with HPLC retention time of phenolic components allowed structural characterization of these compounds. Peak integration of ions in the MS scans had been used in the quantification technique. Results: A total of 36 compounds were tentatively identified. Twenty-six compounds were identified in the negative mode corresponding to 85.4% of plant dry weight, while ten compounds were identified in the positive mode representing 16.1% of plant dry weight, with the prevalence of flavonoids (75.4% of plant dry weight) predominantly represented by two methylapigenin-O-pentoside isomers (20.9 and 13.7% of plant dry weight). Conclusion: The identification of various compounds present in carob pods opens a new door to an increased understanding of the different health benefits brought about by the consumption of carob and its products. SUMMARY This research proposed a good example for the rapid identification of major constituents in complex systems such as herbs using sensitive, accurate and specific method coupling HPLC with DAD and MS, which facilitate the clarification of phytochemical composition of herbal medicine for better understanding of their nature and

  18. Real-Time Metabolomics on Living Microorganisms Using Ambient Electrospray Ionization Flow-Probe

    DEFF Research Database (Denmark)

    Hsu, Cheng-Chih; ElNaggar, Mariam S.; Peng, Yao

    2013-01-01

    sampling probe for electrospray ionization-mass spectrometry to extract and ionize metabolite mixtures directly from living microbial colonies grown on soft nutrient agar in Petri-dishes without any sample pretreatment. To demonstrate the robustness of the method, this technique was applied to observe...

  19. Simultaneous determination of thirteen flavonoids from Xiaobuxin-Tang extract using high-performance liquid chromatography coupled with electrospray ionization mass spectrometry.

    Science.gov (United States)

    Cen, Meifeng; Ruan, Jinxiu; Huang, Lihua; Zhang, Zhenqing; Yu, Nengjiang; Zhang, Youzhi; Cheng, Xuange; Xiong, Xiaohong; Wang, Guixiang; Zang, Linquan; Wang, Sujun

    2015-11-10

    A simple and reliable high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis method was established to simultaneously determine thirteen flavonoids of Xiaobuxing-Tang in intestine perfusate, namely onpordin, 3'-O-methylorobol, glycitein, patuletin, genistein, luteolin, quercetin, nepitrin, quercimeritrin, daidzin, patulitrin, quercetagitrin and 3-glucosylisorhamnetin. Detection was performed on a quadrupole mass spectrometer equipped with an electrospray ionization (ESI) source operating in negative ionization mode. Negative ion ESI was used to form deprotonated molecules at m/z 315 for onpordin, m/z 299 for 3'-O-methylorobol, m/z 283 for glycitein, m/z 331 for patuletin, m/z 269 for genistein, m/z 285 for luteolin, m/z 301 for quercetin, m/z 477 for nepitrin, m/z 463 for quercimeritrin, m/z 461 for daidzin, m/z 493 for patulitrin, m/z 479 for quercetagitrin, m/z 477 for 3-glucosylisorhamnetin and m/z 609.2 for rutin. The linearity, sensitivity, selectivity, repeatability, accuracy, precision, recovery and matrix effect of the assay were evaluated. The proposed method was successfully applied to simultaneous determination of these thirteen flavonoids, and using this method, the intestinal absorption profiles of thirteen flavonoids were preliminarily predicted. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Determination of gardenia yellow colorants in soft drink, pastry, instant noodles with ultrasound-assisted extraction by high performance liquid chromatography-electrospray ionization tandem mass spectrum.

    Science.gov (United States)

    Zhou, Wei-E; Zhang, Yuan; Li, Yang; Ling, Yun; Li, Hong-Na; Li, Shao-Hui; Jiang, Shou-Jun; Ren, Zhi-Qin; Huang, Zhi-Qiang; Zhang, Feng

    2016-05-13

    A novel, rapid and simple analytical method was developed for the quantitative determination of crocin, crocetin and geniposide in soft drink, pastry and instant noodles. The solid samples were relatively homogenized into powders and fragments. The gardenia yellow colorants were successively extracted with methanol using ultrasound-assisted extraction. The analytes were quantitatively measured in the extracts by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. High correlation coefficients (r(2)>0.995) of crocin, crocetin and geniposide were obtained within their linear ranges respectively (50-1000ng/mL, 50-1000ng/mL, 15-240ng/mL) by external standard method. The limits of detection (LODs) were 0.02μg/g for crocin, 0.01μg/g for crocetin and 0.002μg/g for geniposide. And the limits of quantitation (LOQs) were in the ranges of 0.05-0.45μg/g for crocin, and in the ranges of 0.042-0.32μg/g for crocetin, and in the ranges of 0.02-0.15μg/g for geniposide in soft drink, pastry and instant noodles samples. The average recoveries of crocin, crocetin and geniposide ranged from 81.3% to 117.6% in soft drink, pastry and instant noodles. The intra- and inter-day precisions were respectively in the range of 1.3-4.8% and 1.7-11.8% in soft drink, pastry and instant noodle. The developed methods were successfully validated and applied to the soft drink, pastry, and instant noodles collected from the located market in Beijing from China. Crocin, crocetin and geniposide were detected in the collected samples. The average concentrations ranged from 0.84 to 4.20mg/g for crocin, and from 0.62 to 3.11mg/g for crocetin, and from 0.18 to 0.79mg/g for gardenia in various food samples. The method can provide evidences for government to determine gardenia yellow pigments and geniposide in food. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electrospray ionization of uranyl-citrate complexes

    Science.gov (United States)

    Somogyi, Árpád; Pasilis, Sofie P.; Pemberton, Jeanne E.

    2007-09-01

    Results presented here demonstrate the usefulness of electrospray ionization and gas-phase ion-molecule reactions to predict structural and electronic differences in complex inorganic ions. Electrospray ionization of uranyl citrate solutions generates positively and negatively charged ions that participate in further ion-molecule reactions in 3D ion trap and FT-ICR mass analyzers. Most ions observed are derived from the major solution uranyl-citrate complexes and involve species of {(UO2)2Cit2}2-, (UO2)3Cit2, and {(UO2)3Cit3}3-, where Cit indicates the citrate trianion, C6H5O73-. In a 3D ion trap operated at relatively high pressure, complex adducts containing solvent molecules, alkali and ammonium cations, and nitrate or chloride anions are dominant, and proton/alkali cation (Na+, K+) exchange is observed for up to six exchangeable protons in an excess of alkali cations. Adduct formation in a FT-ICR cell that is operated at lower pressures is less dominant, and direct detection of positive and negative ions of the major solution complexes is possible. Multiply charged ions are also detected, suggesting the presence of uranium in different oxidation states. Changes in uranium oxidation state are detected by He-CID and SORI-CID fragmentation, and certain fragments undergo association reactions in trapping analyzers, forming "exotic" species such as [(UO2)4O3]-, [(UO2)4O4]-, and [(UO2)4O5]-. Ion-molecule reactions with D2O in the FT-ICR cell indicate substantial differences in H/D exchange rate and D2O accommodation for different ion structures and charge states. Most notably, the positively charged ions [H2(UO2)2Cit2(H)]+ and [(UO2)2(Cit)]+ accommodate two and three D2O molecules, respectively, which reflects well the structural differences, i.e., tighter uranyl-citrate coordination in the former ion than in the latter. The corresponding negatively charged ions accommodate zero or two D2O molecules, which can be rationalized using suggested solution phase structures

  2. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen; Amad, Maan H.; Emwas, Abdul-Hamid M.

    2013-01-01

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed

  3. Profiling of ornithine lipids in bacterial extracts of Rhodobacter sphaeroides by reversed-phase liquid chromatography with electrospray ionization and multistage mass spectrometry (RPLC-ESI-MS(n)).

    Science.gov (United States)

    Granafei, Sara; Losito, Ilario; Trotta, Massimo; Italiano, Francesca; de Leo, Vincenzo; Agostiano, Angela; Palmisano, Francesco; Cataldi, Tommaso R I

    2016-01-15

    Ornithine lipids (OLs), a sub-group of the large (and of emerging interest) family of lipoamino acids of bacterial origin, contain a 3-hydroxy fatty acyl chain linked via an amide bond to the α-amino group of ornithine and via an ester bond to a second fatty acyl chain. OLs in extracts of Rhodobacter sphaeroides (R. sphaeroides) were investigated by high-performance reversed phase liquid chromatography (RPLC) with electrospray ionization mass spectrometry (ESI-MS) in negative ion mode using a linear ion trap (LIT). The presence of OLs bearing both saturated (i.e, 16:0, 17:0, 18:0, 19:0 and 20:0) and unsaturated chains (i.e., 18:1, 19:1, 19:2 and 20:1) was ascertained and their identification, even for isomeric, low abundance and partially co-eluting species, was achieved by low-energy collision induced dissociation (CID) multistage mass spectrometry (MS(n), n = 2-4). OLs signatures found in two R. sphaeroides strains, i.e., wild type 2.4.1 and mutant R26, were examined and up to 16 and 17 different OL species were successfully identified, respectively. OLs in both bacterial strains were characterized by several combinations of fatty chains on ester-linked and amide-linked 3-OH fatty acids. Multistage MS spectra of monoenoic amide-linked 3-OH acyl chains, allowed the identification of positional isomer of OL containing 18:1 (i.e. 9-octadecenoic) and 20:1 (i.e. 11-eicosenoic) fatty acids. The most abundant OL ([M-H](-) at m/z 717.5) in R. sphaeroides R26 was identified as OL 3-OH 20:1/19:1 (i.e., 3-OH-eicosenoic acid amide-linked to ornithine and esterified to a nonadecenoic chain containing a cyclopropane ring). An unusual OL (m/z 689.5 for the [M-H](-) ion), most likely containing a cyclopropene ester-linked acyl chain (i.e., OL 3-OH 18:0/19:2), was retrieved only in the carotenoidless mutant strain R26. Based on the biosynthetic pathways already known for cyclopropa(e)ne ring-including acyl chains, a plausible explanation was invoked for the enzymatic

  4. Fundamentals of Biomolecule Analysis by Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Weinecke, Andrea; Ryzhov, Victor

    2005-01-01

    Electrospray ionization (ESI) is a soft ionization technique that allows transfer of fragile biomolecules directly from solution into the gas phase. An instrumental analysis laboratory experiment is designed that would introduce the students to the ESI technique, major parameters of the ion trap mass spectrometers and some caveats in…

  5. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  6. [Determination of metformin hydrochloride, melamine and dicyandiamide in metformin hydrochloride preparations by tandem dual solid phase extraction cartridges-high performance liquid chromatography-electrospray ionization multi-stage mass spectrometry].

    Science.gov (United States)

    Zhou, Yanfen; Wang, Fanghuan; Wang, Zelan; Zhan, Haijuan; Liu, Wanyi; Meng, Zhe

    2018-02-08

    A method for the confirmation and quantification of metformin hydrochloride and its relative substances melamine and dicyandiamide using tandem dual solid phase extraction (SPE) cartridges and high performance liquid chromatography-electrospray ionization multi-stage mass spectrometry (HPLC-ESI-MS n ) was developed. The samples were extracted with anhydrous ethanol containing 0.1% (v/v) acetic acid under ultrasound-assisted conditions. The extracts were concentrated and purified using Cleanert PCX and C18 tandem dual solid phase extraction cartridges, and eluted with 5% (v/v) ammonia methanol solution. The separation was performed on a Kromasil-C18 column (100 mm×4.6 mm, 3.5 μm) with gradient elution. The detection was performed in selected ion monitoring (SIM) mode using electrospray ionization multi-stage mass spectrometry. The external standard method was used for quantification. The extraction solvents, types of SPE cartridges and eluents were optimized by comparing the recoveries under different conditions. The results showed that the detector response of each target compound was linear in corresponding mass concentration ranges with the correlation coefficients ( r 2 ) ≥ 0.9992. The limits of detection (LODs) and the limits of quantification (LOQs) of the three analytes were 1.48-13.61 μg/kg and 5.96-45.67 μg/kg, respectively. The recoveries of the three analytes were 65.02%-118.33% spiked at low, medium and high levels. The relative standard deviations (RSDs) were no more than 13.41%. The method is reliable, easy, and has a better purification effect. The method can be applied to the routine analysis of metformin hydrochloride and its relative substances melamine and dicyandiamide in different preparations of metformin hydrochloride.

  7. Direct analysis of triterpenes from high-salt fermented cucumbers using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI)

    Science.gov (United States)

    High-salt samples present a challenge to mass spectrometry (MS) analysis, particularly when electrospray ionization (ESI) is used, requiring extensive sample preparation steps such as desalting, extraction, and purification. In this study, infrared matrix-assisted laser desorption electrospray ioniz...

  8. A compact high resolution electrospray ionization ion mobility spectrometer.

    Science.gov (United States)

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75 mm drift tube length and a drift voltage of 5 kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100 °C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Analysis of metals in solution using electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Van Berkel, G.J.; McLuckey, S.A.; Glish, G.L.

    1991-01-01

    Electrospray ionization-mass spectrometry (ES-MS) has gained most of its recent attention because of the ability to produce multiply charged ions from very large biomolecules making them amenable to analysis by most modern mass spectrometers. However, ES-MS is equally well suited for compounds of low or moderate molecular weight that are difficult to volatilize intact by others methods. Moreover, the early work of Fenn and co-workers (1,2) and recent reports by Kebarle and co-workers (3,4) attest to the applicability of ES-MS to the study of the gas-phase chemistry of multiply solvated or coordinated metal ions. The utility of ES-MS for the analysis of metals in solution derives in part from the facility with which the metal ions are solvated by or form complexes with the ES solvent or other reagents added to the solvent. Solvation and complexation can be a hindrance, however, in the analytical application of ES-MS to the analysis of metals in solution, especially solutions of metals in water. The data presented here demonstrate that many of the problems in the ES-MS analysis of metals can be overcome by complexing the metals with crown ethers and/or extracting the metals from water into an organic phase using crown ethers. 5 refs., 4 figs

  10. Comprehensive Characterization of Extractable and Nonextractable Phenolic Compounds by High-Performance Liquid Chromatography-Electrospray Ionization-Quadrupole Time-of-Flight of a Grape/Pomegranate Pomace Dietary Supplement.

    Science.gov (United States)

    Pérez-Ramírez, Iza F; Reynoso-Camacho, Rosalía; Saura-Calixto, Fulgencio; Pérez-Jiménez, Jara

    2018-01-24

    Grape and pomegranate are rich sources of phenolic compounds, and their derived products could be used as ingredients for the development of functional foods and dietary supplements. However, the profile of nonextractable or macromolecular phenolic compounds in these samples has not been evaluated. Here, we show a comprehensive characterization of extractable and nonextractable phenolic compounds of a grape/pomegranate pomace dietary supplement using high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight (HPLC-ESI-QTOF) and matrix-assisted laser desorption/ionization (MALDI)-TOF techniques. The main extractable phenolic compounds were several anthocyanins (principally malvidin 3-O-glucoside) as well as gallotannins and gallagyl derivatives; some phenolic compounds were reported in grape or pomegranate for the first time. Additionally, there was a high proportion of nonextractable phenolic compounds, including vanillic acid, and dihydroxybenzoic acid. Unidentified polymeric structures were detected by MALDI-TOF MS analysis. This study shows that mixed grape and pomegranate pomaces are a source of different classes of phenolic compounds including a high proportion of nonextractable phenolic compounds.

  11. Electrospray Ionization Mass Spectrometric Analysis of Highly Reactive Glycosyl Halides

    Directory of Open Access Journals (Sweden)

    Lajos Kovács

    2012-07-01

    Full Text Available Highly reactive glycosyl chlorides and bromides have been analysed by a routine mass spectrometric method using electrospray ionization and lithium salt adduct-forming agents in anhydrous acetonitrile solution, providing salient lithiated molecular ions [M+Li]+, [2M+Li]+ etc. The role of other adduct-forming salts has also been evaluated. The lithium salt method is useful for accurate mass determination of these highly sensitive compounds.

  12. Quantitative determination of juvenile hormone III and 20-hydroxyecdysone in queen larvae and drone pupae of Apis mellifera by ultrasonic-assisted extraction and liquid chromatography with electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Zhou, Jinhui; Qi, Yitao; Hou, Yali; Zhao, Jing; Li, Yi; Xue, Xiaofeng; Wu, Liming; Zhang, Jinzhen; Chen, Fang

    2011-09-01

    In this paper, a method for the rapid and sensitive analysis of juvenile hormone III (JH III) and 20-hydroxyecdysone (20E) in queen larvae and drone pupae samples was presented. Ultrasound-assisted extraction provided a significant shortening of the leaching time for the extraction of JH III and 20E and satisfactory sensitivity as compared to the conventional shake extraction procedure. After extraction, determination was carried out by liquid chromatography-tandem mass spectrometry (LC-MS/MS) operating in electrospray ionization positive ion mode via multiple reaction monitoring (MRM) without any clean-up step prior to analysis. A linear gradient consisting of (A) water containing 0.1% formic acid and (B) acetonitrile containing 0.1% formic acid, and a ZORBAX SB-Aq column (100 mm × 2.1 mm, 3.5 μm) were employed to obtain the best resolution of the target analytes. The method was validated for linearity, limit of quantification, recovery, matrix effects, precision and stability. Drone pupae samples were found to contain 20E at concentrations of 18.0 ± 0.1 ng/g (mean ± SD) and JH III was detected at concentrations of 0.20 ± 0.06 ng/g (mean ± SD) in queen larvae samples. This validated method provided some practical information for the actual content of JH III and 20E in queen larvae and drone pupae samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Analysis of flavonoids from lotus (Nelumbo nucifera) leaves using high performance liquid chromatography/photodiode array detector tandem electrospray ionization mass spectrometry and an extraction method optimized by orthogonal design.

    Science.gov (United States)

    Chen, Sha; Wu, Ben-Hong; Fang, Jin-Bao; Liu, Yan-Ling; Zhang, Hao-Hao; Fang, Lin-Chuan; Guan, Le; Li, Shao-Hua

    2012-03-02

    The extraction protocol of flavonoids from lotus (Nelumbo nucifera) leaves was optimized through an orthogonal design. The solvent was the most important factor comparing solvent, solvent:tissue ratio, extraction time, and temperature. The highest yield of flavonoids was achieved with 70% methanol-water and a solvent:tissue ratio of 30:1 at 4 °C for 36 h. The optimized analytical method for HPLC was a multi-step gradient elution using 0.5% formic acid (A) and CH₃CN containing 0.1% formic acid (B), at a flow rate of 0.6 mL/min. Using this optimized method, thirteen flavonoids were simultaneously separated and identified by high performance liquid chromatography coupled with photodiode array detection/electrospray ionization mass spectrometry (HPLC/DAD/ESI-MS(n)). Five of the bioactive compounds are reported in lotus leaves for the first time. The flavonoid content of the leaves of three representative cultivars was assessed under the optimized extraction and HPLC analytical conditions, and the seed-producing cultivar 'Baijianlian' had the highest flavonoid content compared with rhizome-producing 'Zhimahuoulian' and wild floral cultivar 'Honglian'. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Monitoring of wine aging process by electrospray ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    Alexandra Christine Helena Frankland Sawaya

    2011-09-01

    Full Text Available The characterization of wine samples by direct insertion electrospray ionization mass spectrometry (ESI-MS, without pre-treatment or chromatographic separation, in a process denominated fingerprinting, has been applied to several samples of wine produced with grapes of the Pinot noir, Merlot and Cabernet Sauvignon varieties from the state o Rio Grande do Sul, in Brazil. The ESI-MS fingerprints of the samples detected changes which occurred during the aging process in the three grape varieties. Principal Component Analysis (PCA of the negative ion mode fingerprints was used to group the samples, pinpoint the main changes in their composition, and indicate marker ions for each group of samples.

  15. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization.

    Science.gov (United States)

    Talaty, Nari; Takáts, Zoltán; Cooks, R Graham

    2005-12-01

    Desorption electrospray ionization (DESI) mass spectrometry is applied to the in situ detection of alkaloids in the tissue of poison hemlock (Conium maculatum), jimsonweed (Datura stramonium) and deadly nightshade (Atropa belladonna). The experiment is carried out by electrospraying micro-droplets of solvent onto native or freshly-cut plant tissue surfaces. No sample preparation is required and the mass spectra are recorded under ambient conditions, in times of a few seconds. The impact of the sprayed droplets on the surface produces gaseous ions from organic compounds originally present in the plant tissue. The effects of operating parameters, including the electrospray high voltage, heated capillary temperature, the solvent infusion rate and the carrier gas pressure on analytical performance are evaluated and optimized. Different types of plant material are analyzed including seeds, stems, leaves, roots and flowers. All the previously reported alkaloids have been detected in C. maculatum, while fifteen out of nineteen known alkaloids for D. stramonium and the principal alkaloids of A. belladonna were also identified. All identifications were confirmed by tandem mass spectrometry. Results obtained show similar mass spectra, number of alkaloids, and signal intensities to those obtained when extraction and separation processes are performed prior to mass spectrometric analysis. Evidence is provided that DESI ionization occurs by both a gas-phase ionization process and by a droplet pick-up mechanism. Quantitative precision of DESI is compared with conventional electrospray ionization mass spectrometry (after sample workup) and the RSD values for the same set of 25 dicotyledonous C. maculatum seeds (one half of each seed analyzed by ESI and the other by DESI) are 9.8% and 5.2%, respectively.

  16. Reversed phase liquid chromatography hyphenated to continuous flow-extractive desorption electrospray ionization-mass spectrometry for analysis and charge state manipulation of undigested proteins

    Czech Academy of Sciences Publication Activity Database

    Li, L.; Yang, S.; Vidová, Veronika; Rice, E. M.; Wijeratne, A.; Havlíček, Vladimír; Schug, K. A.

    2015-01-01

    Roč. 21, č. 3 (2015), s. 361-368 ISSN 1469-0667 R&D Projects: GA ČR(CZ) GAP206/12/1150; GA MŠk(CZ) LH14064; GA MŠk LO1509 Institutional support: RVO:61388971 Keywords : protein chromatography * ambient ionization * charge-state manipulation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.011, year: 2015

  17. Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Svensson, B; Roepstorff, P

    1996-01-01

    Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy is presen......Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy...... is presented encompassing protein characterization prior to and after cloning of the corresponding gene....

  18. Electrospray ionization deposition of BSA under vacuum conditions

    Science.gov (United States)

    Hecker, Dominic; Gloess, Daniel; Frach, Peter; Gerlach, Gerald

    2015-05-01

    Vacuum deposition techniques like thermal evaporation and CVD with their precise layer control and high layer purity often cannot be applied for the deposition of chemical or biological molecules. The molecules are usually decomposed by heat. To overcome this problem, the Electrospray ionization (ESI) process known from mass spectroscopy is employed to transfer molecules into vacuum and to deposit them on a substrate. In this work, a homemade ESI tool was used to deposit BSA (Bovine serum albumin) layers with high deposition rates. Solutions with different concentrations of BSA were prepared using a methanol:water (MeOH:H2O) mixture (1:1) as solvent. The influence of the substrate distance on the deposition rate and on the transmission current was analyzed. Furthermore, the layer thickness distribution and layer adhesion were investigated.

  19. Probe-Substrate Distance Control in Desorption Electrospray Ionization

    Science.gov (United States)

    Yarger, Tyler J.; Yuill, Elizabeth M.; Baker, Lane A.

    2018-03-01

    We introduce probe-substrate distance (Dps)-control to desorption electrospray ionization (DESI) and report a systematic investigation of key experimental parameters. Examination of voltage, flow rate, and nebulizing gas pressure suggests as Dps decreases, the distance-dependent spray current increases, until a critical point. At the critical point the relationship inverts, and the spray current decreases as the probe moves closer to the surface due to constriction of solution flow by the nebulizing gas. Dps control was used to explore the use of spray current as a signal for feedback positioning, while mass spectrometry imaging was performed simultaneously. Further development of this technique is expected to find application in study of structure-function relationships for clinical diagnostics, biological investigation, and materials characterization. [Figure not available: see fulltext.

  20. Low pressure electrospray ionization system and process for effective transmission of ions

    Science.gov (United States)

    Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Kelly, Ryan T [Wet Richland, WA; Smith, Richard D [Richland, WA

    2010-03-02

    A system and method are disclosed that provide up to complete transmission of ions between coupled stages with low effective ion losses. A novel "interfaceless" electrospray ionization system is further described that operates the electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer.

  1. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen

    2013-04-30

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed that corresponds to the dehydrodimer of pterostilbene in mass-to-charge ratio. Since such unexpected dimerization may lead to decreased monomer signal during quantitative analysis, it was of interest to identify the origin and structure of the observed pterostilbene dimer and examine the experimental conditions that influence its formation. METHODS Liquid Chromatography/Mass Spectrometry (LC/MS), Nuclear Magnetic Resonance (NMR), and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) were used to examine the origin of the dimerization products. The structure of the formed pterostilbene dimer was examined by performing MSn analysis on the dimer ion. Effects of solvent composition, analyte concentration, radical scavenger, and other experimental conditions on the dimerization were also studied. RESULTS LC/MS and NMR analyses clearly showed that the starting solution did not contain the pterostilbene dimer. Solvent type and radical scavenger concentration were found to have pronounced effects on the dimer formation. Particularly, presence of acetonitrile or ammonium acetate had favorable effects on the extent of dimerization during ESI-MS analysis whereas hydroquinone and butylated hydroquinone had negative effects. Dimer formation decreased at high flow rates and when fused-silica capillary was used as the spray needle. CONCLUSIONS The data indicate that this dimerization occurs as a result of solution-phase electrochemical reactions taking place during the electrospray process. A possible structure for this dimer was proposed based on the MSn analysis and was similar to that of the enzymatically derived pterostilbene dehydrodimer already reported in the literature. Copyright © 2013 John Wiley & Sons, Ltd

  2. Quantitation of tamsulosin in human plasma by liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Din, Li; Li, Limin; Tao, Ping; Yang, Jin; Zhang, Zhengxing

    2002-02-05

    A highly sensitive method for quantitation of tamsulosin in human plasma using 1-(2,6-dimethyl-3-hydroxylphenoxy)-2-(3,4-methoxyphenylethylamino)-propane hydrochloride as the internal standard (I.S.) was established using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). After alkalization with saturated sodium bicarbonate, plasma were extracted by ethyl acetate and separated by HPLC on a C18 reversed-phase column using a mobile phase of methanol-water-acetic acid-triethylamine (620:380:1.5:1.5, v/v). Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. LC-ESI-MS was performed in the selected ion monitoring (SIM) mode using target ions at m/z 228 for tamsulosin and m/z 222 for the I.S. Calibration curves, which were linear over the range 0.2-30 ng/ml, were analyzed contemporaneously with each batch of samples, along with low (0.5 ng/ml), medium (3 ng/ml) and high (30 ng/ml) quality control samples. The intra- and inter-assay variability ranged from 2.14 to 8.87% for the low, medium and high quality control samples. The extraction recovery of tamsulosin from plasma was in the range of 84.2-94.5%. The method has been used successfully to study tamsulosin pharmacokinetics in adult humans.

  3. Application of liquid chromatography-electrospray ionization mass spectrometry for study of steroid-converting enzymes.

    Science.gov (United States)

    Miksík, Ivan; Mikulíková, Katerina; Pácha, Jirí; Kucka, Marek; Deyl, Zdenek

    2004-02-05

    A high-performance liquid chromatography-atmospheric pressure ionization-electrospray ionization mass spectrometry (HPLC-API-ESI-MS) method was developed for the analysis of steroids in a study of steroid-converting enzymes. Separations ware done on a Zorbax Eclipse XDB-C18 column (eluted with a linear methanol-water-acetic acid gradient) and identification of the steroids involved was done by API-ESI-MS using positive ion mode and extracted ion analysis. The applicability of the present method for studying steroid metabolism was proven in assaying two steroid-converting enzymes (20beta-hydroxysteroid dehydrogenase and 11beta-hydroxysteroid dehydrogenase) in various biological samples (rat and chicken intestine, chicken oviduct).

  4. The updated bottom up solution applied to atmospheric pressure photoionization and electrospray ionization mass spectrometry

    Science.gov (United States)

    The Updated Bottom Up Solution (UBUS) was recently applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglycerols (TAGs). This report demonstrates that the UBUS applies equally well to atmospheric pressure photoionization (APPI) MS and to electrospray ionizatio...

  5. High throughput reaction screening using desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Wleklinski, Michael; Loren, Bradley P; Ferreira, Christina R; Jaman, Zinia; Avramova, Larisa; Sobreira, Tiago J P; Thompson, David H; Cooks, R Graham

    2018-02-14

    We report the high throughput analysis of reaction mixture arrays using methods and data handling routines that were originally developed for biological tissue imaging. Desorption electrospray ionization (DESI) mass spectrometry (MS) is applied in a continuous on-line process at rates that approach 10 4 reactions per h at area densities of up to 1 spot per mm 2 (6144 spots per standard microtiter plate) with the sprayer moving at ca. 10 4 microns per s. Data are analyzed automatically by MS using in-house software to create ion images of selected reagents and products as intensity plots in standard array format. Amine alkylation reactions were used to optimize the system performance on PTFE membrane substrates using methanol as the DESI spray/analysis solvent. Reaction times can be screening of processes like N -alkylation and Suzuki coupling reactions as reported herein. Products and by-products were confirmed by on-line MS/MS upon rescanning of the array.

  6. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    Science.gov (United States)

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  7. Analysis of solvent dyes in refined petroleum products by electrospray ionization mass spectrometry

    Science.gov (United States)

    Rostad, C.E.

    2010-01-01

    Solvent dyes are used to color refined petroleum products to enable differentiation between gasoline, diesel, and jet fuels. Analysis for these dyes in the hydrocarbon product is difficult due to their very low concentrations in such a complex matrix. Flow injection analysis/electrospray ionization/mass spectrometry in both negative and positive mode was used to optimize ionization of ten typical solvent dyes. Samples of hydrocarbon product were analyzed under similar conditions. Positive electrospray ionization produced very complex spectra, which were not suitably specific for targeting only the dyes. Negative electrospray ionization produced simple spectra because aliphatic and aromatic moieties were not ionized. This enabled screening for a target dye in samples of hydrocarbon product from a spill.

  8. Optimization of the Extraction of Anthocyanins from the Fruit Skin of Rhodomyrtus tomentosa (Ait. Hassk and Identification of Anthocyanins in the Extract Using High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS

    Directory of Open Access Journals (Sweden)

    Yuan-Ming Sun

    2012-05-01

    Full Text Available Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants. In this study, the extraction of anthocyanins from freeze-dried fruit skin of downy rose-myrtle (Rhodomyrtus tomentosa (Ait. Hassk var. Gangren was optimized using response surface methodology (RSM. Using 60% ethanol containing 0.1% (v/v hydrochloric acid as extraction solvent, the optimal conditions for maximum yields of anthocyanin (4.358 ± 0.045 mg/g were 15.7:1 (v/w liquid to solid ratio, 64.38 °C with a 116.88 min extraction time. The results showed good fits with the proposed model for the anthocyanin extraction (R2 = 0.9944. Furthermore, the results of high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS analysis of the anthocyanins extracted from the fruit skin of downy rose-myrtle revealed the presence of five anthocyanin components, which were tentatively identified as delphinidin-3-glucoside, cyanidin-3-glucoside, peonidin-3-glucoside, petunidin-3-glucoside and malvidin-3-glucoside.

  9. Probing uranyl(VI) speciation in the presence of amidoxime ligands using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2013-10-15

    Extraction processes using poly(acrylamidoxime) resins are being developed to extract uranium from seawater. The main complexing agents in these resins are thought to be 2,6-dihydroxyiminopiperidine (DHIP) and N(1),N(5)-dihydroxypentanediimidamide (DHPD), which form strong complexes with uranyl(VI) at the pH of seawater. It is important to understand uranyl(VI) speciation in the presence of these and similar amidoxime ligands to understand factors affecting uranyl(VI) adsorption to the poly(acrylamidoxime) resins. Experiments were carried out in positive ion mode on a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. The ligands investigated were DHIP, DHPD, and N(1),N(2)-dihydroxyethanediimidamide (DHED). DHED and DHPD differ only in the number of carbons separating the oxime groups. The effects on the mass spectra of changes in uranyl(VI):ligand ratio, pH, and ligand type were examined. DHIP binds uranyl(VI) more effectively than DHPD or DHED in the pH range investigated, forming ions derived from solution-phase species with uranyl(VI):DHIP stoichiometries of 1:1, 1:2, and 2:3. The 2:3 uranyl(VI):DHIP complex appears to be a previously undescribed solution species. Ions related to uranyl(VI):DHPD complexes were detected in very low abundance. DHED is a more effective complexing agent for uranyl(VI) than DHPD, forming ions having uranyl(VI):DHED stoichiometries of 1:1, 1:2, 1:3, and 2:3. This study presents a first look at the solution chemistry of uranyl(VI)-amidoxime complexes using electrospray ionization mass spectrometry. The appearance of previously undescribed solution species suggests that the uranyl-amidoxime system is a rich and relatively complex one, requiring a more in-depth investigation. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Chemical characterization of synthetic cannabinoids by electrospray ionization FT-ICR mass spectrometry.

    Science.gov (United States)

    Kill, Jade B; Oliveira, Izabela F; Tose, Lilian V; Costa, Helber B; Kuster, Ricardo M; Machado, Leandro F; Correia, Radigya M; Rodrigues, Rayza R T; Vasconcellos, Géssica A; Vaz, Boniek G; Romão, Wanderson

    2016-09-01

    The synthetic cannabinoids (SCs) represent the most recent advent of the new psychotropic substances (NPS) and has become popularly known to mitigate the effects of the Δ(9)-THC. The SCs are dissolved in organic solvents and sprayed in a dry herbal blend. However, little information is reported on active ingredients of SCs as well as the excipients or diluents added to the herbal blend. In this work, the direct infusion electrospray ionization Fourier transform ion cyclotron mass spectrometry technique (ESI-FT-ICR MS) was applied to explore the chemical composition of nine samples of herbal extract blends, where a total of 11 SCs (UR-144, JWH-073, XLR-11, JWH-250, JWH-122, AM-2201, AKB48, JWH-210, JWH-081, MAM-2201 and 5F-AKB48) were identified in the positive ionization mode, ESI(+), and other 44 chemical species (saturated and unsaturated fatty acids, sugars, flavonoids, etc.) were detected in the negative ionization mode, ESI(-). Additionally, CID experiments were performed, and fragmentation pathways were proposed to identify the connectivity of SCs. Thus, the direct infusion ESI-FT-ICR MS technique is a powerful tool in forensic chemistry that enables the rapid and unequivocal way for the determination of molecular formula, the degree of unsaturation (DBE-double bond equivalent) and exact mass (<1ppm) of a total of 55 chemical species without the prior separation step. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Chemotaxonomic markers of organic, natural, and genetically modified soybeans detected by direct infusion electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Santos, L.S.; Catharino, R.R.; Eberlin, M.N.; Tsai, S.M.

    2006-01-01

    The crude methanolic extracts of a single bean from samples of organic, natural or genetically modified (GM) soybeans [Glycine max. (Merrill) L.] were analyzed by direct infusion electrospray ionization mass spectrometry (ESI-MS). These extracts, containing the most polar natural products of soybeans (free aglycones, monoglucosides, diglucosides and esters including isoflavones and flavones) provide characteristic fingerprinting mass spectra owing to different proportions or sets of components. Spectra distinctiveness is confirmed by chemometric multivariate analysis of the ESIMS data, which place the three-types of beans into well-defined groups. When ESI-MS is applied, these polar components constitute therefore unique chemotaxonomic markers able to provide fast soybean typification. (author)

  12. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  13. Comprehensive biothreat cluster identification by PCR/electrospray-ionization mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Rangarajan Sampath

    Full Text Available Technology for comprehensive identification of biothreats in environmental and clinical specimens is needed to protect citizens in the case of a biological attack. This is a challenge because there are dozens of bacterial and viral species that might be used in a biological attack and many have closely related near-neighbor organisms that are harmless. The biothreat agent, along with its near neighbors, can be thought of as a biothreat cluster or a biocluster for short. The ability to comprehensively detect the important biothreat clusters with resolution sufficient to distinguish the near neighbors with an extremely low false positive rate is required. A technological solution to this problem can be achieved by coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS. The biothreat assay described here detects ten bacterial and four viral biothreat clusters on the NIAID priority pathogen and HHS/USDA select agent lists. Detection of each of the biothreat clusters was validated by analysis of a broad collection of biothreat organisms and near neighbors prepared by spiking biothreat nucleic acids into nucleic acids extracted from filtered environmental air. Analytical experiments were carried out to determine breadth of coverage, limits of detection, linearity, sensitivity, and specificity. Further, the assay breadth was demonstrated by testing a diverse collection of organisms from each biothreat cluster. The biothreat assay as configured was able to detect all the target organism clusters and did not misidentify any of the near-neighbor organisms as threats. Coupling biothreat cluster-specific PCR to electrospray ionization mass spectrometry simultaneously provides the breadth of coverage, discrimination of near neighbors, and an extremely low false positive rate due to the requirement that an amplicon with a precise base composition of a biothreat agent be detected by mass spectrometry.

  14. Flame Atmospheric Pressure Chemical Ionization Coupled with Negative Electrospray Ionization Mass Spectrometry for Ion Molecule Reactions.

    Science.gov (United States)

    Cheng, Sy-Chyi; Bhat, Suhail Muzaffar; Shiea, Jentaie

    2017-07-01

    Flame atmospheric pressure chemical ionization (FAPCI) combined with negative electrospray ionization (ESI) mass spectrometry was developed to detect the ion/molecule reactions (IMRs) products between nitric acid (HNO 3 ) and negatively charged amino acid, angiotensin I (AI) and angiotensin II (AII), and insulin ions. Nitrate and HNO 3 -nitrate ions were detected in the oxyacetylene flame, suggesting that a large quantity of nitric acid (HNO 3 ) was produced in the flame. The HNO 3 and negatively charged analyte ions produced by a negative ESI source were delivered into each arm of a Y-shaped stainless steel tube where they merged and reacted. The products were subsequently characterized with an ion trap mass analyzer attached to the exit of the Y-tube. HNO 3 showed the strongest affinity to histidine and formed (M histidine -H+HNO 3 ) - complex ions, whereas some amino acids did not react with HNO 3 at all. Reactions between HNO 3 and histidine residues in AI and AII resulted in the formation of dominant [M AI -H+(HNO 3 )] - and [M AII -H+(HNO 3 )] - ions. Results from analyses of AAs and insulin indicated that HNO 3 could not only react with basic amino acid residues, but also with disulfide bonds to form [M-3H+(HNO 3 ) n ] 3- complex ions. This approach is useful for obtaining information about the number of basic amino acid residues and disulfide bonds in peptides and proteins. Graphical Abstract ᅟ.

  15. Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food.

    Science.gov (United States)

    García-Reyes, Juan F; Jackson, Ayanna U; Molina-Díaz, Antonio; Cooks, R Graham

    2009-01-15

    Desorption electrospray ionization (DESI) is applied to the rapid, in situ, direct qualitative and quantitative (ultra)trace analysis of agrochemicals in foodstuffs. To evaluate the potential of DESI mass spectrometry (MS) in toxic residue testing in food, 16 representative multiclass agricultural chemicals (pesticides, insecticides, herbicides, and fungicides) were selected (namely, ametryn, amitraz, azoxystrobin, bitertanol, buprofezin, imazalil, imazalil metabolite, isofenphos-methyl, malathion, nitenpyram, prochloraz, spinosad, terbuthylazine, thiabendazole, and thiacloprid). The DESI-MS experiments were performed using 3 microL of solution spotted onto conventional smooth poly(tetrafluoroethylene) (PTFE) surfaces, with examination by MS and tandem mass spectrometry (MS/MS) using an ion trap mass spectrometer. Optimization of the spray solvent led to the use of acetonitrile/water (80:20) (v/v), with 1% formic acid. Most of the compounds tested showed remarkable sensitivity in the positive ion mode, approaching that attainable with conventional direct infusion electrospray mass spectrometry. To evaluate the potential of the proposed approach in real samples, different experiments were performed including the direct DESI-MS/MS analysis of fruit peels and also of fruit/vegetable extracts. The results proved that DESI allows the detection and confirmation of traces of agrochemicals in actual market-purchased samples. In addition, MS/MS confirmation of selected pesticides in spiked vegetable extracts was obtained at absolute levels as low as 1 pg for ametryn. Quantitation of imazalil residues was also undertaken using an isotopically labeled standard. The data obtained were in agreement with those from the liquid chromatography mass spectrometry (LC-MS) reference method, with relative standard deviation (RSD) values consistently below 15%. The results obtained demonstrate the sensitivity of DESI as they meet the stringent European Union pesticide regulation

  16. Characterization of Proanthocyanidins from Parkia biglobosa (Jacq. G. Don. (Fabaceae by Flow Injection Analysis — Electrospray Ionization Ion Trap Tandem Mass Spectrometry and Liquid Chromatography/Electrospray Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Wagner Vilegas

    2013-03-01

    Full Text Available The present study investigates the chemical composition of the African plant Parkia biglobosa (Fabaceae roots and barks by Liquid Chromatography - Electrospray Ionization and Direct Injection Tandem Mass Spectrometry analysis. Mass spectral data indicated that B-type oligomers are present, namely procyanidins and prodelphinidins, with their gallate and glucuronide derivatives, some of them in different isomeric forms. The analysis evidenced the presence of up to 40 proanthocyanidins, some of which are reported for the first time. In this study, the antiradical activity of extracts of roots and barks from Parkia biglobosa was evaluated using DPPH method and they showed satisfactory activities.

  17. Determination of short chain carboxylic acids in vegetable oils and fats using ion exclusion chromatography electrospray ionization mass spectrometry.

    Science.gov (United States)

    Viidanoja, Jyrki

    2015-02-27

    A new method for quantification of short chain C1-C6 carboxylic acids in vegetable oils and fats by employing Liquid Chromatography Mass Spectrometry (LC-MS) has been developed. The method requires minor sample preparation and applies non-conventional Electrospray Ionization (ESI) liquid phase chemistry. Samples are first dissolved in chloroform and then extracted using water that has been spiked with stable isotope labeled internal standards that are used for signal normalization and absolute quantification of selected acids. The analytes are separated using Ion Exclusion Chromatography (IEC) and detected with Electrospray Ionization Mass Spectrometry (ESI-MS) as deprotonated molecules. Prior to ionization the eluent that contains hydrochloric acid is modified post-column to ensure good ionization efficiency of the analytes. The averaged within run precision and between run precision were generally lower than 8%. The accuracy was between 85 and 115% for most of the analytes. The Lower Limit of Quantification (LLOQ) ranged from 0.006 to 7mg/kg. It is shown that this method offers good selectivity in cases where UV detection fails to produce reliable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry

    NARCIS (Netherlands)

    Coulier, L.; Bas, R.; Jespersen, S.; Verheij, E.; Werf, M.J. van der; Hankemeier, T.

    2006-01-01

    We have developed an analytical method, consisting of ion-pair liquid chromatography coupled to electrospray ionization mass spectrometry (IP-LC-ESI-MS), for the simultaneous quantitative analysis of several key classes of polar metabolites, like nucleotides, coenzyme A esters, sugar nucleotides,

  19. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  20. Hands-on Electrospray Ionization-Mass Spectrometry for Upper-Level Undergraduate and Graduate Students

    Science.gov (United States)

    Stock, Naomi L.; March, Raymond E.

    2014-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is a powerful technique for the detection, identification, and quantification of organic compounds. As mass spectrometers have become more user-friendly and affordable, many students--often with little experience in mass spectrometry--find themselves needing to incorporate mass spectrometry into…

  1. Desorption electrospray ionization mass spectrometry in the analysis of chemical food contaminants in food

    NARCIS (Netherlands)

    Nielen, M.W.F.; Hooijerink, H.; Zomer, P.; Mol, J.G.J.

    2011-01-01

    Since its introduction, desorption electrospray ionization (DESI) mass spectrometry (MS) has been mainly applied in pharmaceutical and forensic analysis. We expect that DESI will find its way in many different fields, including food analysis. In this review, we summarize DESI developments aimed at

  2. Application of silicon nanowires and indium tin oxide surfaces in desorption electrospray ionization

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Novák, Petr; Volný, Michael; Kruppa, G. H.; Kostiainen, R.; Lemr, Karel; Havlíček, Vladimír

    2008-01-01

    Roč. 14, č. 6 (2008), s. 391-399 ISSN 1469-0667 R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50200510 Keywords : mass spectrometry * desorption electrospray ionization * nanowires Subject RIV: CE - Biochemistry Impact factor: 1.167, year: 2008

  3. Complexation of malic acid with cadmium(II) probed by electrospray ionization mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Jaklová Dytrtová, Jana; Jakl, M.; Schröder, Detlef

    2012-01-01

    Roč. 90, 15 Feb (2012), s. 63-68 ISSN 0039-9140 Institutional research plan: CEZ:AV0Z40550506 Keywords : electrospray ionization * hazardous metal s * mass spectrometry * root exudates * soil solution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2012

  4. Feasibility of nonvolatile buffers in capillary electrophoresis-electrospray ionization-mass spectrometry of proteins

    NARCIS (Netherlands)

    Eriksson, Jonas H.C.; Mol, Roelof; Somsen, Govert W.; Hinrichs, Wouter L.J.; Frijlink, Henderik W.; de Jong, Gerhardus J.

    2004-01-01

    The combination of capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS) via a triaxial interface was studied as a potential means for the characterization of intact proteins. To evaluate the possibility to use a nonvolatile electrolyte for CE, the effect of sodium

  5. Electrosprayed Polyvinylpyrrolidone (PVP) Submicron Particles Loaded by Green Tea Extracts

    Science.gov (United States)

    Kamaruddin; Sriyanti, I.; Edikresnha, D.; Munir, M. M.; Khairurrijal, K.

    2018-05-01

    Electrospraying technique has been successfully used to synthesize composite submicron particles of polyvinylpyrrolidone (PVP) and green tea extract (GTE). The precursor solutions were PVP in ethanol (15 wt%) and GTE in ethanol (10 wt%), which were then mixed at varying ratio. The mixed solution then underwent electrospraying process at an applied voltage of 15 kV, a distance of collector to the nozzle at 15 cm, and a flow rate of 3 µL/min. The composite submicron particles of PVP-GTE showed smooth and fine spherical morphology without fibers or beaded fibers. To a certain degree, the increase of GTE content in the PVP-GTE mixed solution decreased the average diameter of PVP-GTE composite particles. Moreover, the analysis of the FTIR spectra confirmed the existing molecular interaction between PVP and GTE in the composite submicron particles as shown by the shift of PVP wavenumber towards GTE, which has typically smaller wavenumber.

  6. Use of an Open Port Sampling Interface Coupled to Electrospray Ionization for the On-Line Analysis of Organic Aerosol Particles

    Science.gov (United States)

    Swanson, Kenneth D.; Worth, Anne L.; Glish, Gary L.

    2018-02-01

    A simple design for an open port sampling interface coupled to electrospray ionization (OPSI-ESI) is presented for the analysis of organic aerosols. The design uses minimal modifications to a Bruker electrospray (ESI) emitter to create a continuous flow, self-aspirating open port sampling interface. Considerations are presented for introducing aerosol to the open port sampling interface including aerosol gas flow and solvent flow rates. The device has been demonstrated for use with an aerosol of nicotine as well as aerosol formed in the pyrolysis of biomass. Upon comparison with extractive electrospray ionization (EESI), this device has similar sensitivity with increased reproducibility by nearly a factor of three. The device has the form factor of a standard Bruker/Agilent ESI emitter and can be used without any further instrument modifications.

  7. Shrinking droplets in electrospray ionization and their influence on chemical equilibria.

    Science.gov (United States)

    Wortmann, Arno; Kistler-Momotova, Anna; Zenobi, Renato; Heine, Martin C; Wilhelm, Oliver; Pratsinis, Sotiris E

    2007-03-01

    We investigated how chemical equilibria are affected by the electrospray process, using simultaneous in situ measurements by laser-induced fluorescence (LIF) and phase Doppler anemometry (PDA). The motivation for this study was the increasing number of publications in which electrospray ionization mass spectrometry is used for binding constant determination. The PDA was used to monitor droplet size and velocity, whereas LIF was used to monitor fluorescent analytes within the electrospray droplets. Using acetonitrile as solvent, we found an average initial droplet diameter of 10 microm in the electrospray. The PDA allowed us to follow the evolution of these droplets down to a size of 1 microm. Rhodamine B-sulfonylchloride was used as a fluorescent analyte within the electrospray. By spatially resolved LIF it was possible to probe the dimerization equilibrium of this dye. Measurements at different spray positions showed no influence of the decreasing droplet size on the monomer-dimer equilibrium. However, with the fluorescent dye pair DCM and oxazine 1 it was shown that a concentration increase does occur within electrosprayed droplets, using fluorescence resonance energy transfer as a probe for the average pair distance.

  8. Differentiation of isomeric 2-aryldimethyltetrahydro-5-quinolinones by electron ionization and electrospray ionization mass spectrometry.

    Science.gov (United States)

    Kumar, Ch Dinesh; Chary, V Naresh; Dinesh, A; Reddy, P S; Srinivas, K; Gayatri, G; Sastry, G N; Prabhakar, S

    2011-10-15

    A series of isomeric 2-aryl-6,6-dimethyltetrahydro-5-quinolinones (set I) and 2-aryl-7,7-dimethyltetrahydro-5-quinolinones (set II) were studied under positive ion electron ionization (EI) and electrospray ionization (ESI) techniques. Under EI conditions, the molecular ions were found to be less stable in set I isomers, and they resulted in abundant fragment ions, i.e., [M-CH(3)](+), [M-CO](+.), [M-HCO](+), [M-(CH(3),CO)](+), and [M-(CH(3),CH(2)O)](+), when compared with set II isomers. In addition, the set I isomers showed specific fragment ions corresponding to [M-OH](+) and [M-OCH(3)](+). The retro-Diels-Alder (RDA) product ion was always higher in set II isomers. The ESI mass spectra produced [M + H](+) ions, and their decomposition showed favorable loss of CH(3) radical, CH(4) and C(2)H(6) molecules in set I isomers. The set II isomers, however, showed predominant RDA product ions, and specific loss of H(2)O. The selectivity in EI and ESI was attributed to the instability of set I isomers by the presence of a gem-dimethyl group at the α-position, and it was supported by the data from model compounds without a gem-dimethyl group. Density functional theory (DFT) calculations successfully corroborated the fragmentation pathways for diagnostic ions. This study revealed the effect of a gem-dimethyl group located at the α-position to the carbonyl having aromatic/unsaturated carbon on the other side of the carbonyl group. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Characterization of microstructured fibre emitters: in pursuit of improved nano electrospray ionization performance.

    Science.gov (United States)

    Wu, Xinyun; Oleschuk, Richard D; Cann, Natalie M

    2012-09-21

    Full-dimensional computational fluid dynamics (CFD) simulations are presented for nano electrospray ionization (ESI) with various emitter designs. Our CFD electrohydrodynamic simulations are based on the Taylor-Melcher leaky-dielectric model, and the volume of fluid technique for tracking the fast-changing liquid-gas interface. The numerical method is first validated for a conventional 20 μm inner diameter capillary emitter. The impact of ESI voltage, flow rate, emitter tapering, surface hydrophobicity, and fluid conductivity on the nano-ESI behavior are thoroughly investigated and compared with experiments. Multi-electrospray is further simulated with 2-hole and 3-hole emitters with the latter having a linear or triangular hole arrangement. The simulations predict multi-electrospray behavior in good agreement with laboratory observations.

  10. Toward single-cell analysis by plume collimation in laser ablation electrospray ionization mass spectrometry.

    Science.gov (United States)

    Stolee, Jessica A; Vertes, Akos

    2013-04-02

    Ambient ionization methods for mass spectrometry have enabled the in situ and in vivo analysis of biological tissues and cells. When an etched optical fiber is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass spectrometry, the analysis of large single cells becomes possible. However, because in this arrangement the ablation plume expands in three dimensions, only a small portion of it is ionized by the electrospray. Here we show that sample ablation within a capillary helps to confine the radial expansion of the plume. Plume collimation, due to the altered expansion dynamics, leads to greater interaction with the electrospray plume resulting in increased ionization efficiency, reduced limit of detection (by a factor of ~13, reaching 600 amol for verapamil), and extended dynamic range (6 orders of magnitude) compared to conventional LAESI. This enhanced sensitivity enables the analysis of a range of metabolites from small cell populations and single cells in the ambient environment. This technique has the potential to be integrated with flow cytometry for high-throughput metabolite analysis of sorted cells.

  11. Characterization of Rhodamine Self-Assembled Films Using Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Shi, Ruixia; Na, Na; Jiang, Fubin; Ouyang, Jin

    2013-06-01

    Growth process information and molecular structure identification are very important for characterization of self-assembled films. Here, we explore the possible application of desorption electrospray ionization mass spectrometry (DESI-MS) that provides the assembled information of rhodamine B (Rh B) and rhodamine 123 (Rh 123) films. With the help of lab-made DESI source, two characteristic ions [Rh B]+ and [Rh 123]+ are observed directly in the open environment. To evaluate the reliability of this technique, a comparative study of ultraviolet-visible (UV-vis) spectroscopy and our method is carried out, and the result shows good correlation. According to the signal intensity of characteristic ions, the layer-by-layer adsorption process of dyes can be monitored, and the thicknesses of multilayer films can also be comparatively determined. Combining the high sensitivity, selectivity, and speed of mass spectrometry, the selective adsorption of similar structure molecules under different pH is recognized easily from extracted ion chronograms. The variation trend of dyes signalling intensity with concentration of polyelectrolyte is studied as well, which reflects the effect of surface charge on dyes deposition. Additionally, the desorption area, surface morphology, and thicknesses of multilayer films are investigated using fluorescence microscope, scanning electron microscope (SEM), and atomic force microscopy (AFM), respectively. Because the desorption area was approximately as small as 2 mm2, the distribution situation of organic dyes in an arbitrary position could be gained rapidly, which means DESI-MS has advantages on in situ analysis.

  12. Identifying the related compounds using electrospray ionization tandem mass spectrometry: bromotyrosine alkaloids from marine sponge Psammaplysilla purpurea

    Digital Repository Service at National Institute of Oceanography (India)

    Tilvi, S.; DeSouza, L.

    electrospray ionization tandem mass spectrometry (ESI-MS/MS). This sponge has tremendous chemical diversity of bromotyrosine alkaloids. Here we have used the proteomics approach in identifying related bromotyrosine alkaloids based on the predicated mass...

  13. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Santa, Tomofumi

    2011-01-01

    Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is one of the most prominent analytical techniques owing to its inherent selectivity and sensitivity. In LC/ESI-MS/MS, chemical derivatization is often used to enhance the detection sensitivity. Derivatization improves the chromatographic separation, and enhances the mass spectrometric ionization efficiency and MS/MS detectability. In this review, an overview of the derivatization reagents which have been applied to LC/ESI-MS/MS is presented, focusing on the applications to low molecular weight compounds. 2010 John Wiley & Sons, Ltd.

  14. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization

    DEFF Research Database (Denmark)

    Feketeová, Linda; Albright, Abigail L; Sørensen, Brita Singers

    2014-01-01

    Radiosensitizers are used in radiotherapy to enhance tumour control of radioresistant hypoxic tumours. While the detailed mechanism of radiosensitization is still unknown, the formation of radical anions is believed to be a key step. Thus understanding the ionization reactions of radiosensitizers......, misonidazole and related compounds using a hybrid linear ion trap – Fourier Transform Ion Cyclotron Resonance mass spectrometer (Finnigan-LTQ-FT). A key finding is that negative electrospray ionization of these radiosensitizers leads to the formation of radical anions, allowing their fragmentation reactions...

  15. Separation and identification of corticosterone metabolites by liquid chromatography--electrospray ionization mass spectrometry.

    Science.gov (United States)

    Miksík, I; Vylitová, M; Pácha, J; Deyl, Z

    1999-04-16

    High-performance liquid chromatography coupled to atmospheric pressure ionization-electrospray ionization mass spectrometry (API-ESI-MS) was investigated for the analysis of corticosterone metabolites; their characterization was obtained by combining the separation on Zorbax Eclipse XDB C18 column (eluted with a methanol-water-acetic acid gradient) with identification using positive ion mode API-ESI-MS and selected ion analysis. The applicability of this method was verified by monitoring the activity of steroid converting enzymes (20beta-hydroxysteroid dehydrogenase and 11beta-hydroxysteroid dehydrogenase) in avian intestines.

  16. Electrospray ionizer for mass spectrometry of aerosol particles

    Science.gov (United States)

    He, Siqin; Hogan, Chris; Li, Lin; Liu, Benjamin Y. H.; Naqwi, Amir; Romay, Francisco

    2017-09-19

    A device and method are disclosed to apply ESI-based mass spectroscopy to submicrometer and nanometer scale aerosol particles. Unipolar ionization is utilized to charge the particles in order to collect them electrostatically on the tip of a tungsten rod. Subsequently, the species composing the collected particles are dissolved by making a liquid flow over the tungsten rod. This liquid with dissolved aerosol contents is formed into highly charged droplets, which release unfragmented ions for mass spectroscopy, such as time-of-flight mass spectroscopy. The device is configured to operate in a switching mode, wherein aerosol deposition occurs while solvent delivery is turned off and vice versa.

  17. Effects of liquid post-column addition in electrospray ionization performance in supercritical fluid chromatography-mass spectrometry.

    Science.gov (United States)

    Akbal, Laura; Hopfgartner, Gérard

    2017-09-29

    In supercritical fluid chromatography coupled to atmospheric pressure ionization mass spectrometry (SFC-MS), the use of a make-up post-column is almost mandatory to avoid analyte precipitation, especially when using low percentage of modifier (supercritical conditions (1mL/min 40°C, 150bar) to gaseous state (room temperature, atmospheric pressure), the CO 2 expands around 430 times, contributing to almost 5% of the nebulizing process. In positive mode, the presence of ammonium ions either in the mobile phase or in the make-up did significantly increase the MS signal, even at basic apparent pH. The ionization performance of electrospray is influenced by the acidic buffer power of the carbon dioxide, and was found to be restricted in the apparent pH range of 3.8-7.2 in the various conditions investigated. This may challenge sensitive detection in negative mode, as illustrated for bosentan. The use of DMSO as make-up additive (up to 30%) showed a simplification of the full scan spectrum regarding the adducts. Finally, the optimization of make-up composition leads to an enhancement up to a factor of 69 on the electrospray MS response signal, for the SFC-SRM/MS analysis of HIV protease inhibitors in plasma extracted from Dried Plasma Spots. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Determination of Aspartame and Caffeine in Carbonated Beverages Utilizing Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Bergen, H. Robert, III; Benson, Linda M.; Naylor, Stephen

    2000-10-01

    Mass spectrometry has undergone considerable changes in the past decade. The advent of "soft ionization" techniques such as electrospray ionization (ESI) affords the direct analysis of very polar molecules without need for the complex inefficient derivatization procedures often required in GC-MS. These ionization techniques make possible the direct mass spectral analysis of polar nonvolatile molecules such as DNA and proteins, which previously were difficult or impossible to analyze by MS. Compounds that readily take on a charge (acids and bases) lend themselves to ESI-MS analysis, whereas compounds that do not readily accept a charge (e.g. sugars) are often not seen or are seen only as inefficient adducts (e.g., M+Na+). To gain exposure to this state-of-the-art analytical procedure, high school students utilize ESI-MS in an analysis of aspartame and caffeine. They dilute a beverage sample and inject the diluted sample into the ESI-MS. The lab is procedurally simple and the results clearly demonstrate the potential and limitations of ESI-coupled mass spectrometry. Depending upon the instructional goals, the outlined procedures can be used to quantify the content of caffeine and aspartame in beverages or to understand the capabilities of electrospray ionization.

  19. Soft Supercharging of Biomolecular Ions in Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Chingin, Konstantin; Xu, Ning; Chen, Huanwen

    2014-06-01

    The charge states of biomolecular ions in ESI-MS can be significantly increased by the addition of low-vapor supercharging (SC) reagents into the spraying solution. Despite the considerable interest from the community, the mechanistic aspects of SC are not well understood and are hotly debated. Arguments that denaturation accounts for the increased charging observed in proteins sprayed from aqueous solutions containing SC reagent have been published widely, but often with incomplete or ambiguous supporting data. In this work, we explored ESI MS charging and SC behavior of several biopolymers including proteins and DNA oligonucleotides. Analytes were ionized from 100 mM ammonium acetate (NH4Ac) aqueous buffer in both positive (ESI+) and negative (ESI-) ion modes. SC was induced either with m-NBA or by the elevated temperature of ESI capillary. For all the analytes studied we, found striking differences in the ESI MS response to these two modes of activation. The data suggest that activation with m-NBA results in more extensive analyte charging with lower degree of denaturation. When working solution with m-NBA was analyzed at elevated temperatures, the SC effect from m-NBA was neutralized. Instead, the net SC effect was similar to the SC effect achieved by thermal activation only. Overall, our observations indicate that SC reagents enhance ESI charging of biomolecules via distinctly different mechanism compared with the traditional approaches based on analyte denaturation. Instead, the data support the hypothesis that the SC phenomenon involves a direct interaction between a biopolymer and SC reagent occurring in evaporating ESI droplets.

  20. What Protein Charging (and Supercharging) Reveal about the Mechanism of Electrospray Ionization

    Science.gov (United States)

    Ogorzalek Loo, Rachel R.; Lakshmanan, Rajeswari; Loo, Joseph A.

    2014-10-01

    Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range, and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate with those observed by ESI-MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase, the extent of charging. This region incorporates properties (e.g., basicities) intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging ("supercharging") such as m-NBA, sulfolane, and 3-nitrobenzonitrile increase analyte charge from "denaturing" and "native" solvent systems. It is suggested that additives' Brønsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Brønsted acidities for negative ESI. Because supercharging agents reduce an analyte's solution ionization, excess spray charge is bestowed on evaporating ions carrying fewer opposing charges. Brønsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte).

  1. Improving N-Glycan Coverage using HPLC-MS with Electrospray Ionization at Subambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Marginean, Ioan; Kronewitter, Scott R.; Moore, Ronald J.; Slysz, Gordon W.; Monroe, Matthew E.; Anderson, Gordon A.; Tang, Keqi; Smith, Richard D.

    2012-10-01

    Human serum glycan profiling with mass spectrometry (MS) has been employed to study several disease conditions and is demonstrating promise for e.g. clinical biomarker discovery. However, the poor glycan ionization efficiency and the large dynamic range of glycan concentrations in human sera hinder comprehensive profiling. In particular, large glycans are problematic because they are present at low concentrations and prone to fragmentation. Here we show that the sub-ambient pressure ionization with nanoelectrospray (SPIN)-MS can expand the serum glycome profile when compared with the conventional atmospheric pressure electrospray ionization (ESI)-MS with a heated capillary inlet. Notably, the ions generated by the SPIN interface were observed at higher charge states for 50% of the annotated glycans. Out of a total of 130 detected glycans, 34 were only detected with the SPIN-MS, resulting in improved coverage of glycan families as well as of glycans with larger numbers of labile monosaccharides.

  2. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Marolla, Ana Paula Cleto [Universidade Federal de São Paulo, São Paulo, SP (Brazil); Waisberg, Jaques [Hospital do Servidor Público Estadual, São Paulo, SP (Brazil); Faculdade de Medicina do ABC, Santo André, SP (Brazil); Saba, Gabriela Tognini [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Waisberg, Daniel Reis [Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP (Brazil); Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva [Faculdade de Medicina do ABC, Santo André, SP (Brazil)

    2015-07-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student’s t test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.

  3. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva

    2015-01-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student'st test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.

  4. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva

    2015-01-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student’s t test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues

  5. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  6. A Comparison of Alternating Current and Direct Current Electrospray Ionization for Mass Spectrometry

    Science.gov (United States)

    Sarver, Scott A.; Chetwani, Nishant; Dovichi, Norman J.; Go, David B.; Gartner, Carlos A.

    2014-04-01

    A series of studies comparing the performance of alternating current electrospray ionization (AC ESI) mass spectrometry (MS) and direct current electrospray ionization (DC ESI) MS have been conducted, exploring the absolute signal intensity and signal-to-background ratios produced by both methods using caffeine and a model peptide as targets. Because the high-voltage AC signal was more susceptible to generating gas discharges, the operating voltage range of AC ESI was significantly smaller than that for DC ESI, such that the absolute signal intensities produced by DC ESI at peak voltages were one to two orders of magnitude greater than those for AC ESI. Using an electronegative nebulizing gas, sulfur hexafluoride (SF6), instead of nitrogen (N2) increased the operating range of AC ESI by ~50 %, but did not appreciably improve signal intensities. While DC ESI generated far greater signal intensities, both ionization methods produced comparable signal-to-background noise, with AC ESI spectra appearing qualitatively cleaner. A quantitative calibration analysis was performed for two analytes, caffeine and the peptide MRFA. AC ESI utilizing SF6 outperforms all other techniques for the detection of MRFA, producing chromatographic limits of detection nearly one order of magnitude lower than that of DC ESI utilizing N2, and one-half that of DC ESI utilizing SF6. However, DC ESI outperforms AC ESI for the analysis of caffeine, indicating that improvements in spectral quality may benefit certain compounds or classes of compounds, on an individual basis.

  7. Electrospray ionization mass spectrometric method for the determination of cannabinoid precursors

    DEFF Research Database (Denmark)

    Hansen, H.H.; Hansen, S.H.; Bøjrnsdottir, I.

    1999-01-01

    electrospray ionization mass spectrometry (ESI-MS). The procedure provides complete positioning of all acyl and alkenyl groups contained in each NAPE species. The calibration curve for standard NAPE was linear over the range 100 fmol-50 pmol (0.1-50 ng) per injection. The lower limit of detection (signal......-to-noise ratio of 3) was 100 fmol, implying that this method is superior to previous methods for the determination of NAPE. These results suggest that this ESI-MS method can be used to identify and quantify NAPE species in mammalian tissues and provide information on the corresponding NAEs to be released from...

  8. A qualitative study of amlodipine and its related compounds by electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Gibbons, John; Pugh, Jonathan; Dimopoulos-Italiano, Gina; Pike, Richard

    2006-01-01

    A comprehensive structural analysis of amlodipine and certain related compounds was performed by electrospray ionization tandem mass spectrometry. Triple quadrupole and quadrupole time-of-flight instruments were used to provide collision-induced dissociation and accurate mass measurement for selected product and second-generation product ions. A unique ion rearrangement was observed, which was found to be characteristic of certain dihydropyridines. This study provides a fundamental understanding of the fragmentation of these compounds. The structural elucidation of an unknown impurity is presented as an example. Copyright (c) 2006 John Wiley & Sons, Ltd.

  9. Origin of supercharging in electrospray ionization of noncovalent complexes from aqueous solution.

    Science.gov (United States)

    Sterling, Harry J; Williams, Evan R

    2009-10-01

    The use of m-nitrobenzyl alcohol (m-NBA) to enhance charging of noncovalent complexes formed by electrospray ionization from aqueous solutions was investigated. Addition of up to 1% m-NBA can result in a significant increase in the average charging of complexes, ranging from approximately 13% for the homo-heptamer of NtrC4-RC (317 kDa; maximum charge state increases from 42+ to 44+) to approximately 49% for myoglobin (17.6 kDa; maximum charge state increases from 9+ to 16+). Charge state distributions of larger complexes obtained from heated solutions to which no m-NBA was added are remarkably similar to those containing small amounts of m-NBA. Dissociation of the complexes through identical channels both upon addition of higher concentrations of m-NBA and heating is observed. These results indicate that the enhanced charging upon addition of m-NBA to aqueous electrospray solutions is a result of droplet heating owing to the high boiling point of m-NBA, which results in a change in the higher-order structure and/or dissociation of the complexes. For monomeric proteins and small complexes, the enhancement of charging is lower for heated aqueous solutions than from solutions with m-NBA because rapid folding of proteins from heated solutions that do not contain m-NBA can occur after the electrospray droplet is formed and is evaporatively cooled.

  10. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    Science.gov (United States)

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Gas-phase complexes formed between amidoxime ligands and vanadium or iron investigated using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2016-08-15

    Amidoxime-functionalized sorbents can be used to extract uranium from seawater. Iron(III) and vanadium(V) may compete with uranium for adsorption sites. We use 2,6-dihydroxyiminopiperidine (DHIP) and N(1) ,N(5) -dihydroxypentanediimidamide (DHPD) to model amidoxime functional groups and characterize the vanadium(V) and iron(III) complexes with these ligands. We also examine the effect of iron(III) and vanadium(V) on uranyl(VI) complexation by DHIP and DHPD. The experiments were carried out in positive ion mode using a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. The effect on the mass spectra of changes in ligand, metal:ligand mole ratio, and pH was examined. Iron(III) formed a 1:2 metal:ligand complex with DHIP at all metal:ligand mole ratios and pH values investigated; it formed both 1:2 and 1:3 metal:ligand complexes with DHPD. Vanadium(V) formed 1:1 and 1:2 metal:ligand complexes with DHIP. A 1:2 metal:ligand complex was formed with DHPD at all vanadium(V):DHPD mole ratios investigated. Changes in solution pH did not affect the ions observed. The relative binding affinities of the metal ions towards DHIP followed the order iron(III) > vanadium(V) > uranyl(VI). This study presents a first look at the gas-phase vanadium(V)- and iron(III)-DHIP and -DHPD complexes using electrospray ionization mass spectrometry. These metals form stronger complexes with amidoxime ligands than uranyl(VI), and will affect uranyl(VI) adsorption to amidoxime-based sorbents. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Stabilization of Proteins and Noncovalent Protein Complexes during Electrospray Ionization by Amino Acid Additives.

    Science.gov (United States)

    Zhang, Hua; Lu, Haiyan; Chingin, Konstantin; Chen, Huanwen

    2015-07-21

    Ionization of proteins and noncovalent protein complexes with minimal disturbance to their native structure presents a great challenge for biological mass spectrometry (MS). In living organisms, the native structure of intracellular proteins is commonly stabilized by solute amino acids (AAs) accumulated in cells at very high concentrations. Inspired by nature, we hypothesized that AAs could also pose a stabilizing effect on the native structure of proteins and noncovalent protein complexes during ionization. To test this hypothesis, here we explored MS response for various protein complexes upon the addition of free AAs at mM concentrations into the electrospray ionization (ESI) solution. Thermal activation of ESI droplets in the MS inlet capillary was employed as a model destabilizing factor during ionization. Our results indicate that certain AAs, in particular proline (Pro), pose considerable positive effect on the stability of noncovalent protein complexes in ESI-MS without affecting the signal intensity of protein ions and original protein-ligand equilibrium, even when added at the 20 mM concentration. The data suggest that the degree of protein stabilization is primarily determined by the osmolytic and ampholytic characteristics of AA solutes. The highest stability and visibility of noncovalent protein complexes in ESI-MS are achieved using AA additives with neutral isoelectric point, moderate proton affinity, and unfavorable interaction with the native protein state. Overall, our results indicate that the simple addition of free amino acids into the working solution can notably improve the stability and accuracy of protein analysis by native ESI-MS.

  13. Chemical profile of pineapple cv. Vitória in different maturation stages using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Ogawa, Elizângela M; Costa, Helber B; Ventura, José A; Caetano, Luiz Cs; Pinto, Fernanda E; Oliveira, Bruno G; Barroso, Maria Eduarda S; Scherer, Rodrigo; Endringer, Denise C; Romão, Wanderson

    2018-02-01

    Pineapple is the fruit of Ananas comosus var. comosus plant, being cultivated in tropical areas and has high energy content and nutritional value. Herein, 30 samples of pineapple cv. Vitória were analyzed as a function of the maturation stage (0-5) and their physico-chemical parameters monitored. In addition, negative-ion mode electrospray ionization mass spectrometry [ESI(-)FT-ICR MS] was used to identify and semi-quantify primary and secondary metabolites present in the crude and phenolic extracts of pineapple, respectively. Physico-chemical tests show an increase in the total soluble solids (TSS) values and in the TSS/total titratable acidity ratio as a function of the maturity stage, where a maximum value was observed in stage 3 (¾ of the fruit is yellow, which corresponds to the color of the fruit peel). ESI(-)FT-ICR MS analysis for crude extracts showed the presence mainly of sugars as primary metabolites present in deprotonated molecule form ([M - H] - and [2 M - H] - ions) whereas, for phenolic fractions, 11 compounds were detected, being the most abundant in the third stage of maturation. This behavior was confirmed by quantitative analysis of total polyphenols. ESI-FT-ICR MS was efficient in identifying primary (carbohydrates and organic acids) and secondary metabolites (13 phenolic compounds) presents in the crude and phenolic extract of the samples, respectively. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Quantitative Caffeine Analysis Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  15. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    Science.gov (United States)

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Atmospheric Pressure-Thermal Desorption (AP-TD)/Electrospray Ionization-Mass Spectrometry for the Rapid Analysis of Bacillus Spores

    Science.gov (United States)

    A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry are coupled and used for the rapid analysis of Bacillus spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile co...

  17. Redox reactions of copper(II) upon electrospray ionization in the presence of acridine ligands with an amide side chain

    Czech Academy of Sciences Publication Activity Database

    Tintaru, A.; Charles, L.; Milko, Petr; Roithová, J.; Schröder, Detlef

    2009-01-01

    Roč. 22, č. 3 (2009), s. 229-233 ISSN 0894-3230 R&D Projects: GA AV ČR KJB400550704; GA ČR GA203/08/1487 Institutional research plan: CEZ:AV0Z40550506 Keywords : acridine * copper * electrospray ionization * mass spectrometry * quinoline Subject RIV: CC - Organic Chemistry Impact factor: 1.602, year: 2009

  18. Subtle differences in molecular recognition between modified glycopeptide antibiotics and bacterial receptor peptides identified by electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J. D.; Staroske, T; Roepstorff, P

    1999-01-01

    showing that electrospray ionization mass spectrometry (ESI-MS) can be used in the rapid quantitative analysis of mixtures of vancomycin-group antibiotics and their bacterial cell-wall receptors allowing the identification of even subtle differences in binding constants. Differences in affinities...

  19. CHARACTERIZATION OF DANSYLATED CYSTEINE, GLUTATHIONE DISULFIDE, CYSTEINE AND CYSTINE BY NARROW BORE LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    Science.gov (United States)

    A method using reversed phase high performance liquid chromatography/electrospray ionization-mass spectrometric (RP-LC/ESI-MS) method has been developed to confirm the identity of dansylated derivatives of cysteine and glutathione, and their respective dimers. Cysteine, GSH, CSSC...

  20. CHARACTERIZATION OF DANSYLATED CYSTEINE, CYSTINE, GLUTATHIONE, AND GLUTATHIONE DISULFIDE BY NARROW BORE LIQUID CHROMATOGRAPHY - ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    Science.gov (United States)

    A method using reversed phase high performance liquid chromtography/electrospray ionization-mass spectrometry (RP-LC/ESI-MS) has been developed to confirm the dientity of dansylated derivatives of cysteine (C) and glutathione (GSH), and their respective dimers, cystine (CSSC) and...

  1. Charge State Coalescence During Electrospray Ionization Improves Peptide Identification by Tandem Mass Spectrometry

    Science.gov (United States)

    Meyer, Jesse G.; A. Komives, Elizabeth

    2012-08-01

    We report the effects of supercharging reagents dimethyl sulphoxide (DMSO) and m-nitrobenzyl alcohol ( m-NBA) applied to untargeted peptide identification, with special emphasis on non-tryptic peptides. Peptides generated from a mixture of five standard proteins digested with trypsin, elastase, or pepsin were separated with nanoflow liquid chromatography using mobile phases modified with either 5 % DMSO or 0.1 % m-NBA. Eluting peptides were ionized by online electrospray and sequenced by both CID and ETD using data-dependent MS/MS. Statistically significant improvements in peptide identifications were observed with DMSO co-solvent. In order to understand this observation, we assessed the effects of supercharging reagents on the chromatographic separation and the electrospray quality. The increase in identifications was not due to supercharging, which was greater for the 0.1 % m-NBA co-solvent and not observed for the 5.0 % DMSO co-solvent. The improved MS/MS efficiency using the DMSO modified mobile phase appeared to result from charge state coalescence.

  2. Focused Electrospray Deposition for Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    International Nuclear Information System (INIS)

    Jeong, Kyung Hwan; Seo, Jong Cheol; Yoon, Hye Joo; Shin, Seung Koo

    2010-01-01

    Focused electrospray (FES) deposition method is presented for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. FES ion optics consists of two cylindrical focusing electrodes capped with a truncated conical electrode through which an electrospray emitter passes along the cylindrical axis. A spray of charged droplets is focused onto a sample well on a MALDI target plate under atmospheric pressure. The shape and size distributions of matrix crystals are visualized by scanning electron microscope and the mass spectra are obtained by time-of-flight mass spectrometry. Angiotensin II, bradykinin, and substance P are used as test samples, while α-cyano-4-hydroxycinnamic acid and dihydroxybenzoic acid are employed as matrices. FES of a sample/matrix mixture produces fine crystal grains on a 1.3 mm spot and reproducibly yields the mass spectra with little shot-to-shot and spot-to-spot variations. Although FES greatly stabilizes the signals, the space charge due to matrix ions limits the detection sensitivity of peptides. To avoid the space charge problem, we adopted a dual FES/FES mode, which separately deposits matrix and sample by FES in sequence. The dual FES/FES mode reaches the detection sensitivity of 0.88 amol, enabling ultrasensitive detection of peptides by homogeneously depositing matrix and sample under atmospheric pressure

  3. Tandem mass spectrometry characteristics of polyester anions and cations formed by electrospray ionization.

    Science.gov (United States)

    Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael

    2005-01-01

    Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.

  4. Fast quantitative detection of cocaine in beverages using nanoextractive electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Hu, Bin; Peng, Xuejiao; Yang, Shuiping; Gu, Haiwei; Chen, Huanwen; Huan, Yanfu; Zhang, Tingting; Qiao, Xiaolin

    2010-02-01

    Without any sample pretreatment, effervescent beverage fluids were manually sprayed into the primary ion plume created by using a nanoelectrospray ionization source for direct ionization, and the analyte ions of interest were guided into an ion trap mass spectrometer for tandem mass analysis. Functional ingredients (e.g., vitamins, taurine, and caffeine, etc.) and spiked impurity (e.g., cocaine) in various beverages, such as Red Bull energy drink, Coco-cola, and Pepsi samples were rapidly identified within 1.5 s. The limit of detection was found to be 7-15 fg (S/N = 3) for cocaine in different samples using the characteristic fragment (m/z 150) observed in the MS(3) experiments. Typical relative standard deviation and recovery of this method were 6.9%-8.6% and 104%-108% for direct analysis of three actual samples, showing that nanoextractive electrospray ionization tandem mass spectrometry is a useful technique for fast screening cocaine presence in beverages. 2010. Published by Elsevier Inc.

  5. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging

    DEFF Research Database (Denmark)

    Li, Bin; Baden, Camilla Knudsen; Hansen, Natascha Kristine Krahl

    2013-01-01

    In comparison to the technology platforms developed to localize transcripts and proteins, imaging tools for visualization of metabolite distributions in plant tissues are less well developed and lack versatility. This hampers our understanding of plant metabolism and dynamics. In this study we...... demonstrate that Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) of tissue imprints on porous Teflon can be used to accurately image the distribution of even labile plant metabolites such as hydroxynitrile glucosides, which normally undergo enzymatic hydrolysis by specific ß......-glucosidases upon cell disruption. This fast and simple sample preparation resulted in no substantial differences in the distribution and ratios of all hydroxynitrile glucosides between leaves from wildtype Lotus japonicus and a ß-glucosidase mutant plant lacking the ability to hydrolyze certain hydroxynitrile...

  6. Study of cyclization of chelating compounds using electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Shi Ying; Campbell, J.A.

    2000-01-01

    Electrospray ionization mass spectrometry (ESI-MS) was used for the study of cyclization of organic chelating compounds (chelators). Four chelating compounds were studied: Symmetrical ethylenediaminediacetic acid (s-EDDA), Unsymmetrical ethylenediaminediacetic acid (u-EDDA), N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA), and N-(2-hydroxyethyl)iminodiacetic acid (HEIDA). The chelators were cyclized with treatments of acids and heating. The open and cyclized form of the chelators were semi-quantified by both positive and negative ion modes ESI-MS. The kinetics of chelator cyclization was studied as a function of reaction temperature and the pH of the matrix. The cyclization of s-EDDA was found to be a pseudo-first order reaction in s-EDDA and overall second order. The cyclizations of HEIDA and HEDTA are reversible reactions. Higher temperature and lower pH favors cyclization. (author)

  7. Imaging of plant materials using indirect desorption electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Janfelt, Christian

    2015-01-01

    Indirect desorption electrospray ionization mass spectrometry (DESI-MS) imaging is a method for imaging distributions of metabolites in plant materials, in particular leaves and petals. The challenge in direct imaging of such plant materials with DESI-MS is particularly the protective layer of cu...... of interest from parts of their matrix while preserving the spatial information in the two dimensions. The imprint can then easily be imaged by DESI-MS. The method delivers simple and robust mass spectrometry imaging of plant material with very high success ratios....... of cuticular wax present in leaves and petals. The cuticle protects the plant from drying out, but also makes it difficult for the DESI sprayer to reach the analytes of interest inside the plant material. A solution to this problem is to imprint the plant material onto a surface, thus releasing the analytes...

  8. Determination of clarithromycin in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Jiang, Yao; Wang, Jiang; Li, Hao; Wang, Yingwu; Gu, Jingkai

    2007-03-12

    A rapid and sensitive method has been developed for the determination of clarithromycin in human plasma with liquid chromatography-tandem mass spectrometry. Clarithromycin and the internal standard, telmisartan were precipitated from the matrix (50 microl) with 200 microl acetonitrile and separated by HPLC using formic acid:10 mM ammonium acetate:methanol (1:99:400, v/v/v) as the mobile phase. The assay based on detection by electrospray positive ionization mass spectrometry in the multiple-reaction monitoring mode was finished within 2.4 min. Linearity was over the concentration range 10-5000 ng/ml with a limit of detection of 0.50 ng/ml. Intra- and inter-day precision measured as relative standard deviation were bioequivalence study of two tablet formulations of clarithromycin.

  9. Molecular identification of Mucorales in human tissues: contribution of PCR electrospray-ionization mass spectrometry.

    Science.gov (United States)

    Alanio, A; Garcia-Hermoso, D; Mercier-Delarue, S; Lanternier, F; Gits-Muselli, M; Menotti, J; Denis, B; Bergeron, A; Legrand, M; Lortholary, O; Bretagne, S

    2015-06-01

    Molecular methods are crucial for mucormycosis diagnosis because cultures are frequently negative, even if microscopy suggests the presence of hyphae in tissues. We assessed PCR/electrospray-ionization mass spectrometry (PCR/ESI-MS) for Mucorales identification in 19 unfixed tissue samples from 13 patients with proven or probable mucormycosis and compared the results with culture, quantitative real-time PCR, 16S-23S rRNA gene internal transcribed spacer region (ITS PCR) and 18S PCR sequencing. Concordance with culture identification to both genus and species levels was higher for PCR/ESI-MS than for the other techniques. Thus, PCR/ESI-MS is suitable for Mucorales identification, within 6 hours, for tissue samples for which microscopy results suggest the presence of hyphae. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Quantification of cardiolipin by liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Garrett, Teresa A; Kordestani, Reza; Raetz, Christian R H

    2007-01-01

    Cardiolipin (CL), a tetra-acylated glycerophospholipid composed of two phosphatidyl moieties linked by a bridging glycerol, plays an important role in mitochondrial function in eukaryotic cells. Alterations to the content and acylation state of CL cause mitochondrial dysfunction and may be associated with pathologies such as ischemia, hypothyrodism, aging, and heart failure. The structure of CL is very complex because of microheterogeneity among its four acyl chains. Here we have developed a method for the quantification of CL molecular species by liquid chromatography-electrospray ionization mass spectrometry. We quantify the [M-2H](2-) ion of a CL of a given molecular formula and identify the CLs by their total number of carbons and unsaturations in the acyl chains. This method, developed using mouse macrophage RAW 264.7 tumor cells, is broadly applicable to other cell lines, tissues, bacteria and yeast. Furthermore, this method could be used for the quantification of lyso-CLs and bis-lyso-CLs.

  11. Evaporation and discharge dynamics of highly charged multicomponent droplets generated by electrospray ionization.

    Science.gov (United States)

    Grimm, Ronald L; Beauchamp, J L

    2010-01-28

    We investigate the Rayleigh discharge and evaporation dynamics of highly charged two-component droplets consisting principally of methanol with 2-methoxyethanol, tert-butanol, or m-nitrobenzyl alcohol. A phase Doppler anemometer (PDA) characterizes droplets generated by electrospray ionization (ESI) according to size, velocity, and charge as they move through a uniform electric field within an ion mobility spectrometer (IMS). Repeated field reversals result in droplet "ping-pong" through the PDA. This generates individual droplet histories of solvent evaporation behavior and the dynamics of charge loss to progeny droplets during Rayleigh discharge events. On average, methanol droplets discharge at 127% their Rayleigh limit of charge, q(R), and release 25% of the net charge. Charge loss from methanol/2-methoxyethanol droplets behaves similarly to pure 2-methoxyethanol droplets which release approximately 28% of their net charge. Binary methanol droplets containing up to 50% tert-butanol discharge at a lower percent q(R) than pure methanol and release a greater fraction of their net charge. Mixed 99% methanol/1% m-nitrobenzyl alcohol droplets possess discharge characteristics similar to those of methanol. However, droplets of methanol containing 2% m-nitrobenzyl evaporate down to a fixed size and charge that remains constant with no observable discharges. Quasi-steady-state evaporation models accurately describe observed evaporation phenomena in which methanol/tert-butanol droplets evaporate at a rate similar to that of pure methanol and methanol/2-methoxyethanol droplets evaporate at a rate similar to that of 2-methoxyethanol. We compare these results to previous Rayleigh discharge experiments and discuss the implications for binary solvents in electrospray mass spectrometry (ESI-MS) and field-induced droplet ionization mass spectrometry (FIDI-MS).

  12. Electro-spray Ionization Mass Spectrometry Investigation of BTBP - Lanthanide(III) and Actinide(III) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Retegan, T.; Ekberg, Ch. [Chalmers, Dept Chem and Biol Engn, SE-41296 Gothenburg, (Sweden); Berthon, L.; Zorz, N. [DEN DRCP SCPS LCSE, CEA Marcoule, Bagnols Sur Ceze, (France)

    2009-07-01

    In the framework of nuclear waste reprocessing, the separation processes of minor actinides from fission products are developed using liquid-liquid extraction. To gain an understanding of the mechanism involved in the extraction process, a complex formation of actinides and lanthanides with BTBPs (6, 6'-bis(5, 6-dialkyl-1, 2, 4-triazin-3-yl)-2, 2'-bipyridines) was characterized using the Electro-spray Ionization Mass Spectrometry (ESI-MS) technique. This study was carried out to compare the influence of diluents and side groups of the extractants on complex formation. Three different diluents, nitrobenzene, octanol and cyclohexanone, and two extractants, C5-BTBP and CyMe{sub 4}-BTBP, were selected for this experiment. It was found that the change of the diluent and of the substituent on the BTBP moiety does not modify the stoichiometry of the complexes which is L{sub 2}M(NO{sub 3}){sub 3}. It is proposed that one nitrate is directly coordinated to the metal ion, the two other anions probably remaining in the outer coordination sphere. The difference observed in extracting properties is probably due to the solvation of the complexes by the diluent. The noncovalent force that holds complexes together are likely to be largely governed by electrostatic interactions even if the hydrophobic exterior of the complexes plays an important role in the complexation/extraction mechanism. The study of the stability of the ions in the gas phase shows that the C5-BTBP ligand has a labile hydrogen atom, which is a fragility point of C5-BTBP. (authors)

  13. Terverticillate Penicillia studied by direct electrospray mass spectrometric profiling of crude extracts: I. Chemosystematics

    DEFF Research Database (Denmark)

    Smedsgaard, Jørn; Frisvad, Jens Christian

    1997-01-01

    ) and Yeast Extract Sucrose agar (YES) directly into the electrospray source of the mass spectrometer. A data matrix was made from each substrate by transferring the complete centroid mass spectrum from 200 to 700 amu as 501 variables to individual columns. No attempt was made to identify ions in the mass......A chemosystematic study of 339 isolates from all known terverticillate Penicillium taxa was performed using electrospray mass spectrometric analysis of extractable metabolites. The mass profiles were made by injecting crude plug extracts made from cultures grown on Czapek Yeast Autolysate agar (CYA...

  14. Determination of ramipril in human plasma and its fragmentation by UPLC-Q-TOF-MS with positive electrospray ionization

    Directory of Open Access Journals (Sweden)

    Szpot Paweł

    2015-06-01

    Full Text Available This report presents the application of ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry with positive electrospray ionization, to determine ramipril in human plasma. First, the proteins in human plasma were precipitated using acetonitrile, then the supernatant was extracted by ethyl acetate at pH 3 and finally, the extract was analyzed using a UPLC-QTOF- MS system. The method was validated and the coefficient of determination (R2 was > 0.999, the lower limit of quantification (LLOQ was 0.5 ng mL-1. Precision, recovery and stability were determined for three different concentrations of ramipril. RSD for this method ranged from 3.3 to 8.6 %. The intra-day mean recovery was from 65.3 to 97.3 %. In addition, the fragmentation of ramipril was studied. Due to high resolution of the spectrometer, it was possible to measure fragment masses accurately and determine their molecular and chemical formulas with high accuracy.

  15. Determination of the appetite suppressant P57 in Hoodia gordonii plant extracts and dietary supplements by liquid chromatography/electrospray ionization mass spectrometry (LC-MSD-TOF) and LC-UV methods.

    Science.gov (United States)

    Avula, Bharathi; Wang, Yan-Hong; Pawar, Rahul S; Shukla, Yatin J; Schaneberg, Brian; Khan, Ikhlas A

    2006-01-01

    Hoodia gordonii is traditionally used in South Africa for its appetite suppressant properties. P57AS3 (P57), an oxypregnane steroidal glycoside, is the only reported active constituent from this plant as an appetite suppressant. Effective quality control of these extracts or products requires rapid methods to determine P57 content. New methods of liquid chromatography/mass spectrometry (LC/MS) and LC-UV for analysis of P57 from H. gordonii have been developed. The quantitative determination of P57 was achieved with a Phenomenex Gemini (Torrance, CA) reversed-phase column using gradient mobile phase of water and acetonitrile, both containing 0.1% acetic acid. The method was validated for linearity, repeatability, and limits of detection and quantification. Good results were obtained in terms of repeatability (relative standard deviation <5.0%) and recovery (98.5-103.5%). The developed methods were applied to the determination of P57 for H. gordonii plant samples, one related genus (Opuntia ficus-indica), and dietary supplements that claim to contain H. gordonii.

  16. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte.

    Science.gov (United States)

    Banerjee, Shibdas; Mazumdar, Shyamalava

    2012-01-01

    The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research.

  17. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte

    Science.gov (United States)

    Banerjee, Shibdas; Mazumdar, Shyamalava

    2012-01-01

    The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI. Several groups have investigated the origin and implications of the multiple charge states of proteins observed in the ESI-mass spectra of the proteins. The charged analytes produced by ESI can be fragmented by activating them in the gas-phase, and thus tandem mass spectrometry has been developed, which provides very important insights on the structural properties of the molecule. The review will highlight recent developments and emerging directions in this fascinating area of research. PMID:22611397

  18. Evaluation of Offline Tandem and Online Solid-Phase Extraction with Liquid Chromatography/Electrospray Ionization-Mass Spectrometry for Analysis of Antibiotics in Ambient Water and Comparison to an Independent Method

    Science.gov (United States)

    Meyer, M.T.; Lee, E.A.; Ferrell, G.M.; Bumgarner, J.E.; Varns, Jerry

    2007-01-01

    This report describes the performance of an offline tandem solid-phase extraction (SPE) method and an online SPE method that use liquid chromatography/mass spectrometry for the analysis of 23 and 35 antibiotics, respectively, as used in several water-quality surveys conducted since 1999. In the offline tandem SPE method, normalized concentrations for the quinolone, macrolide, and sulfonamide antibiotics in spiked environmental samples averaged from 81 to 139 percent of the expected spiked concentrations. A modified standard-addition technique was developed to improve the quantitation of the tetracycline antibiotics, which had 'apparent' concentrations that ranged from 185 to 1,200 percent of their expected spiked concentrations in matrix-spiked samples. In the online SPE method, normalized concentrations for the quinolone, macrolide, sulfonamide, and tetracycline antibiotics in matrix-spiked samples averaged from 51 to 142 percent of their expected spiked concentrations, and the beta-lactam antibiotics in matrix-spiked samples averaged from 22 to 76 percent of their expected spiked concentration. Comparison of 44 samples analyzed by both the offline tandem SPE and online SPE methods showed 50 to 100 percent agreement in sample detection for overlapping analytes and 68 to 100 percent agreement in a presence-absence comparison for all analytes. The offline tandem and online SPE methods were compared to an independent method that contains two overlapping antibiotic compounds, sulfamethoxazole and trimethoprim, for 96 and 44 environmental samples, respectively. The offline tandem SPE showed 86 and 92 percent agreement in sample detection and 96 and 98 percent agreement in a presence-absence comparison for sulfamethoxazole and trimethoprim, respectively. The online SPE method showed 57 and 56 percent agreement in sample detection and 72 and 91 percent agreement in presence-absence comparison for sulfamethoxazole and trimethoprim, respectively. A linear regression with

  19. Desorption electro-spray ionization - orbitrap mass spectrometry of synthetic polymers and copolymers

    International Nuclear Information System (INIS)

    Friia, Manel; Legros, Veronique; Tortajada, Jeanine; Buchmann, William

    2012-01-01

    Desorption Electro-Spray Ionization (DESI) - Orbitrap Mass Spectrometry (MS) was evaluated as a new tool for the characterization of various industrial synthetic polymers (poly(ethylene glycol), poly(propylene glycol), poly(methylmethacrylate), poly(dimethylsiloxane)) and copolymers, with masses ranging from 500 g.mol -1 up to more than 20000 g.mol -1 . Satisfying results in terms of signal stability and sensitivity were obtained from hydrophobic surfaces (HTC Prosolia) with a mixture water/methanol (10/90) as spray solvent in the presence of sodium salt. Taking into account the formation of multiplied charged species by DESI-MS, a strategy based on the use of a deconvolution software followed by the automatic assignment of the ions was described allowing the rapid determination of Mn, Mw and PDI values. DESI-Orbitrap MS results were compared to those obtained from matrix-assisted laser desorption/ionization- time-of-flight MS and gel permeation chromatography. An application of DESI-Orbitrap MS for the detection and identification of polymers directly from cosmetics was described. (authors)

  20. Derivatization of Dextran for Multiply Charged Ion Formation and Electrospray Ionization Time-of-Flight Mass Spectrometric Analysis

    Science.gov (United States)

    Tapia, Jesus B.; Hibbard, Hailey A. J.; Reynolds, Melissa M.

    2017-10-01

    We present the use of a simple, one-pot derivatization to allow the polysaccharide dextran to carry multiple positive charges, shifting its molecular weight distribution to a lower m/ z range. We performed this derivatization because molecular weight measurements of polysaccharides by mass spectrometry are challenging because of their lack of readily ionizable groups. The absence of ionizable groups limits proton abstraction and suppresses proton adduction during the ionization process, producing mass spectra with predominantly singly charged metal adduct ions, thereby limiting the detection of large polysaccharides. To address this challenge, we derivatized dextran T1 (approximately 1 kDa) by attaching ethylenediamine, giving dextran readily ionizable, terminal amine functional groups. The attached ethylenediamine groups facilitated proton adduction during the ionization process in positive ion mode. Using the low molecular weight dextran T1, we tracked the number of ethylenediamine attachments by measuring the mass shift from underivatized to derivatized dextran T1. Using electrospray ionization time-of-flight mass spectrometry, we observed derivatized dextran chains ranging from two to nine glucose residues with between one and four attachments/charges. Our success in shifting derivatized dextran T1 toward the low m/ z range suggests potential for this derivatization as a viable route for analysis of high molecular weight polysaccharides using electrospray ionization time-of-flight mass spectrometry. [Figure not available: see fulltext.

  1. Virtual quantification of metabolites by capillary electrophoresis-electrospray ionization-mass spectrometry: predicting ionization efficiency without chemical standards.

    Science.gov (United States)

    Chalcraft, Kenneth R; Lee, Richard; Mills, Casandra; Britz-McKibbin, Philip

    2009-04-01

    A major obstacle in metabolomics remains the identification and quantification of a large fraction of unknown metabolites in complex biological samples when purified standards are unavailable. Herein we introduce a multivariate strategy for de novo quantification of cationic/zwitterionic metabolites using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) based on fundamental molecular, thermodynamic, and electrokinetic properties of an ion. Multivariate calibration was used to derive a quantitative relationship between the measured relative response factor (RRF) of polar metabolites with respect to four physicochemical properties associated with ion evaporation in ESI-MS, namely, molecular volume (MV), octanol-water distribution coefficient (log D), absolute mobility (mu(o)), and effective charge (z(eff)). Our studies revealed that a limited set of intrinsic solute properties can be used to predict the RRF of various classes of metabolites (e.g., amino acids, amines, peptides, acylcarnitines, nucleosides, etc.) with reasonable accuracy and robustness provided that an appropriate training set is validated and ion responses are normalized to an internal standard(s). The applicability of the multivariate model to quantify micromolar levels of metabolites spiked in red blood cell (RBC) lysates was also examined by CE-ESI-MS without significant matrix effects caused by involatile salts and/or major co-ion interferences. This work demonstrates the feasibility for virtual quantification of low-abundance metabolites and their isomers in real-world samples using physicochemical properties estimated by computer modeling, while providing deeper insight into the wide disparity of solute responses in ESI-MS. New strategies for predicting ionization efficiency in silico allow for rapid and semiquantitative analysis of newly discovered biomarkers and/or drug metabolites in metabolomics research when chemical standards do not exist.

  2. Simultaneous determination of water-soluble vitamins in selected food matrices by liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Gentili, Alessandra; Caretti, Fulvia; D'Ascenzo, Giuseppe; Marchese, Stefano; Perret, Daniela; Di Corcia, Daniele; Rocca, Lucia Mainero

    2008-07-01

    A rapid, simple and sensitive method based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) with an electrospray ionization (ESI) source for the simultaneous analysis of fourteen water-soluble vitamins (B1, B2, two B3 vitamers, B5, five B6 vitamers, B8, B9, B12 and C) in various food matrices, i.e. maize flour, green and golden kiwi and tomato pulp, is presented here. Analytes were separated by ion-suppression reversed-phase liquid chromatography in less than 10 min and detected in positive ion mode. Sensitivity and specificity of this method allowed two important results to be achieved: (i) limits of detection of the analytes at ng g(-1) levels (except for vitamin C); (ii) development of a rapid sample treatment that minimizes analyte exposition to light, air and heat, eliminating any step of extract concentration. Analyte recovery depended on the type of matrix. In particular, recovery of the analytes in maize flour was > or =70%, with the exception of vitamin C, pyridoxal-5'-phosphate and vitamin B9 (ca 40%); with tomato pulp, recovery was > or =64%, except for vitamin C (41%); with kiwi, recovery was > or =73%, except for nicotinamide (ca. 30%).

  3. The yeast metabolome addressed by electrospray ionization mass spectrometry: Initiation of a mass spectral library and its applications for metabolic footprinting by direct infusion mass spectrometry

    DEFF Research Database (Denmark)

    Højer-Pedersen, Jesper Juul; Smedsgaard, Jørn; Nielsen, Jens

    2008-01-01

    Mass spectrometry (MS) has been a major driver for metabolomics, and gas chromatography (GC)-MS has been one of the primary techniques used for microbial metabolomics. The use of liquid chromatography (LC)-MS has however been limited, but electrospray ionization (ESI) is very well suited...... for ionization of microbial metabolites without any previous derivatization needed. To address the capabilities of ESI-MS in detecting the metabolome of Saccharomyces cerevisiae, the in silico metabolome of this organism was used as a template to present a theoretical metabolome. This showed that in combination......, which could be assigned using the in silico metabolome. By this approach metabolic footprinting can advance from a classification method that is used to derive biological information based on guilt-by-association, to a tool for extraction of metabolic differences, which can guide new targeted biological...

  4. Determination of pyrrolizidine alkaloids in comfrey by liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Liu, Feng; Wan, Sow Yin; Jiang, Zhangjian; Li, Sam Fong Yau; Ong, Eng Shi; Osorio, Jhon Carlos Castaño

    2009-12-15

    Symphytum officinale L. (comfrey) is a medicinal plant commonly used in decoctions and aliments. Besides therapeutic bioactive compounds present in the herb, it is found to contain hepatotoxic pyrrolizidine alkaloids (PAs), such as lycopsamine and others. In the present study, PAs such as lycopsamine, echimidine and lasiocarpine were determined using electrospray liquid chromatography-mass spectrometry (LC-MS) with the method precision (relative standard deviation, RSD) comfrey followed by the comparison with heating under reflux with the RSD ranging from 2.49% to 19.32%. Our results showed a higher extraction efficiency for heating under reflux compared with PHWE. It was proposed that the lower extraction efficiency for PHWE was attributable to dissolved nitrogen from air which caused the reduction in the solubility of lycopsamine in the compressed hot solvent. In this study, quantitative analysis of PAs in comfrey was demonstrated. In addition, it was found that the use of subcritical water for extractions depended on the physical properties of the dissolved solutes and their tendency to degrade under the chosen extraction conditions.

  5. METHOD 332.0: DETERMINATION OF PERCHLORATE IN DRINKING WATER BY ION CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY AND ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    Science.gov (United States)

    This method is applicable to the identification and quantitation of perchlorate in raw and finished drinking waters. The approach used is ion chromatography with suppressed conductivity and electrospray ionization mass spectrometry (IC-ESI/MS)

  6. Identification of Guest-Host Inclusion Complexes in the Gas Phase by Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Mendes, De´bora C.; Ramamurthy, Vaidhyanathan; Da Silva, Jose´ P.

    2015-01-01

    In this laboratory experiment, students follow a step-by-step procedure to prepare and study guest-host complexes in the gas phase using electrospray ionization-mass spectrometry (ESI-MS). Model systems are the complexes of hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) with the guest 4-styrylpyridine (SP). Aqueous solutions of CB7 or CB8…

  7. Synthesis and Electrospray Ionization Mass Spectra of N-(1,3,2-Dioxaphosphorinan-2-ylmethyl)thiophosphoramidates

    Institute of Scientific and Technical Information of China (English)

    MIAO,Zhi-Wei; FU,Cui-Rong; WANG,Bin; CUI,Zhan-Wei; ZHANG,Jian-Feng; CHEN,Ru-Yu

    2007-01-01

    N-(1,3,2-Dioxaphosphorinan-2-ylmethyl) thiophosphoramidates were synthesized and determined by NMR spectra and positive ion electrospray ionization mass spectrometry (ESI-MS) in conjunction with tandem mass spectrometry (MS/MS). The fragmentation pathways were investigated. The results show that these characteristic ions in ESI mass spectra are useful in the structural determination of N-(1,3,2-dioxaphosphorinan-2-ylmethyl)thiophosphoramidates.

  8. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry

    OpenAIRE

    Shariatgorji, Mohammadreza; Strittmatter, Nicole; Nilsson, Anna; Kallbäck, Patrik; Alvarsson, Alexandra; Zhang, Xiaoqun; Vallianatou, Theodosia; Svenningsson, Per; Goodwin, Richard J. A.; Andrén, Per E.

    2016-01-01

    With neurological processes involving multiple neurotransmitters and neuromodulators, it is important to have the ability to directly map and quantify multiple signaling molecules simultaneously in a single analysis. By utilizing a molecular-specific approach, namely desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we demonstrated that the technique can be used to image multiple neurotransmitters and their metabolites (dopamine, dihydroxyphenylacetic acid, 3-methoxytyr...

  9. Internal energy effects on the solvation and reactivity of multiply charged biomolecules for electrospray ionization mass spectroscopy. [Bovine ubiquitin

    Energy Technology Data Exchange (ETDEWEB)

    Light-Wahl, K.J.; Winger, B.E.; Rockwood, A.L.; Smith, R.D.

    1992-06-01

    Mild (capillary) interface conditions which do not completely desolvate the ions of proteins in electrospray ionization mass spectrometry (ESI-MS) may be required to probe the higher order structures and weak associations. For the small protein bovine ubiquitin, two ion distributions (unsolvated ions and unresolved solvated ions) were observed. The resolvable solvation for leucine-enkephalin with methanol and water shows that the use of countercurrent N{sub 2} flow at the capillary affects the solvation observed. 2 figs. (DLC)

  10. Terverticillate penicillia studied by direct electrospray mass spectrometric profiling of crude extracts II. Database and identification

    DEFF Research Database (Denmark)

    Smedsgaard, Jørn

    1997-01-01

    A mass spectral database was built using standard instrument software from 678 electrospray mass spectra (mass profiles) from crude fungal extracts of terverticillate taxa within the genus Penicillium. The match factors calculated from searching all the mass profiles stored in the database were...

  11. Investigation of some biologically relevant redox reactions using electrochemical mass spectrometry interfaced by desorption electrospray ionization.

    Science.gov (United States)

    Lu, Mei; Wolff, Chloe; Cui, Weidong; Chen, Hao

    2012-04-01

    Recently we have shown that, as a versatile ionization technique, desorption electrospray ionization (DESI) can serve as a useful interface to combine electrochemistry (EC) with mass spectrometry (MS). In this study, the EC/DESI-MS method has been further applied to investigate some aqueous phase redox reactions of biological significance, including the reduction of peptide disulfide bonds and nitroaromatics as well as the oxidation of phenothiazines. It was found that knotted/enclosed disulfide bonds in the peptides apamin and endothelin could be electrochemically cleaved. Subsequent tandem MS analysis of the resulting reduced peptide ions using collision-induced dissociation (CID) and electron-capture dissociation (ECD) gave rise to extensive fragment ions, providing a fast protocol for sequencing peptides with complicated disulfide bond linkages. Flunitrazepam and clonazepam, a class of nitroaromatic drugs, are known to undergo reduction into amines which was proposed to involve nitroso and N-hydroxyl intermediates. Now in this study, these corresponding intermediate ions were successfully intercepted and their structures were confirmed by CID. This provides mass spectrometric evidence for the mechanism of the nitro to amine conversion process during nitroreduction, an important redox reaction involved in carcinogenesis. In addition, the well-known oxidation reaction of chlorpromazine was also examined. The putative transient one-electron transfer product, the chlorpromazine radical cation (m/z 318), was captured by MS, for the first time, and its structure was also verified by CID. In addition to these observations, some features of the DESI-interfaced electrochemical mass spectrometry were discussed, such as simple instrumentation and the lack of background signal. These results further demonstrate the feasibility of EC/DESI-MS for the study of the biology-relevant redox chemistry and would find applications in proteomics and drug development research.

  12. Polymer Analysis by Liquid Chromatography/Electrospray Ionization Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Nielen, M W; Buijtenhuijs, F A

    1999-05-01

    Hyphenation of liquid chromatography (LC) techniques with electrospray ionization (ESI) orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) provides both MS-based structural information and LC-based quantitative data in polymer analysis. In one experimental setup, three different LC modes are interfaced with MS:  size-exclusion chromatography (SEC/MS), gradient polymer elution chromatography (GPEC/MS), and liquid chromatography at the critical point of adsorption (LCCC/MS). In SEC/MS, both absolute mass calibration of the SEC column based on the polymer itself and determination of monomers and end groups from the mass spectra are achieved. GPEC/MS shows detailed chemical heterogeneity of the polymer and the chemical composition distribution within oligomer groups. In LCCC/MS, the retention behavior is primarily governed by chemical heterogeneities, such as different end group functionalities, and quantitative end group calculations can be easily made. The potential of these methods and the benefit of time-of-flight analyzers in polymer analysis are discussed using SEC/MS of a polydisperse poly(methyl methacrylate) sample, GPEC/MS of dipropoxylated bisphenol A/adipic acid polyester resin, LCCC/MS of alkylated poly(ethylene glycol), and LCCC/MS of terephthalic acid/neopentyl glycol polyester resin.

  13. Droplet electrospray ionization mass spectrometry for high throughput screening for enzyme inhibitors.

    Science.gov (United States)

    Sun, Shuwen; Kennedy, Robert T

    2014-09-16

    High throughput screening (HTS) is important for identifying molecules with desired properties. Mass spectrometry (MS) is potentially powerful for label-free HTS due to its high sensitivity, speed, and resolution. Segmented flow, where samples are manipulated as droplets separated by an immiscible fluid, is an intriguing format for high throughput MS because it can be used to reliably and precisely manipulate nanoliter volumes and can be directly coupled to electrospray ionization (ESI) MS for rapid analysis. In this study, we describe a "MS Plate Reader" that couples standard multiwell plate HTS workflow to droplet ESI-MS. The MS plate reader can reformat 3072 samples from eight 384-well plates into nanoliter droplets segmented by an immiscible oil at 4.5 samples/s and sequentially analyze them by MS at 2 samples/s. Using the system, a label-free screen for cathepsin B modulators against 1280 chemicals was completed in 45 min with a high Z-factor (>0.72) and no false positives (24 of 24 hits confirmed). The assay revealed 11 structures not previously linked to cathepsin inhibition. For even larger scale screening, reformatting and analysis could be conducted simultaneously, which would enable more than 145,000 samples to be analyzed in 1 day.

  14. Critical Evaluation of Native Electrospray Ionization Mass Spectrometry for Fragment-Based Screening.

    Science.gov (United States)

    Göth, Melanie; Badock, Volker; Weiske, Jörg; Pagel, Kevin; Kuropka, Benno

    2017-08-08

    Fragment-based screening presents a promising alternative to high-throughput screening and has gained great attention in recent years. So far, only a few studies have discussed mass spectrometry as a screening technology for fragments. Herein, we report the application of native electrospray ionization mass spectrometry (MS) for screening defined sets of fragments against four different target proteins. Fragments were selected from a primary screening conducted with a thermal shift assay (TSA) and represented different binding categories. Our data indicated that, beside specific complex formation, many fragments show extensive multiple binding and also charge-state shifts. Both of these factors complicate automated data analysis and decrease the attractiveness of native MS as a primary screening tool for fragments. A comparison of the hits identified by native MS and TSA showed good agreement for two of the proteins. Furthermore, we discuss general challenges, including the determination of an optimal fragment concentration and the question of how to rank fragment hits according to their affinity. In conclusion, we consider native MS to be a highly valuable tool for the validation and deeper investigation of promising fragment hits rather than a method for primary screening. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  16. Detection of protonated non-Watson-Crick base pairs using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Ishida, Riyoko; Iwahashi, Hideo

    2018-03-01

    Many studies have shown that protonated nucleic acid base pairs are involved in a wide variety of nucleic acid structures. However, little information is available on relative stability of hemiprotonated self- and non-self-dimers at monomer level. We used electrospray ionization mass spectrometry (ESI-MS) to evaluate the relative stability under various concentrations of hydrogen ion. These enable conjecture of the formation of protonated non-Watson-Crick base pairs based on DNA and RNA base sequence. In the present study, we observed that ESI-MS peaks corresponded to respective self-dimers for all examined nucleosides except for adenosine. Peak heights depended on the concentration of hydrogen ion. The ESI-MS peak heights of the hemiprotonated cytidine dimers and the hemiprotonated thymidine dimer sharply increased with increased concentration of hydrogen ion, suggesting direct participation of hydrogen ion in dimer formations. In ESI-MS measurements of the solutions containing adenosine, cytidine, thymidine and guanosine, we observed protonated cytidine-guanosine dimer (CH+-G) and protonated cytidine-thymidine dimer (CH+-T) in addition to hemiprotonated cytidine-cytidine dimer (CH+-C) with following relative peak height, (CH+-C) > (CH+-G) ≈ (CH+-T) > (CH+-A). Additionally, in the ESI-MS measurements of solutions containing adenosine, thymidine and guanosine, we observed a considerable amount of protonated adenosine-guanosine (AH+-G) and protonated adenosine-thymidine (AH+-T).

  17. Direct analysis of ethylenediaminetetraacetic acid (EDTA) on concrete by reactive-desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Lebeau, D; Reiller, P E; Lamouroux, C

    2015-01-01

    Analysis of organic ligands such as ethylenediaminetetraacetic acid (EDTA) is today an important challenge due to their ability to increase the mobility of radionuclides and metals. Reactive desorption electrospray ionization mass spectrometry (reactive-DESI-MS) was used for direct analysis of EDTA on concrete samples. EDTA forms complexes and those with Fe(III) ions are among the most thermodynamically favored. This complexing capacity was used to improve the specific detection of EDTA directly on a concrete matrix by doping the solvent spray of DESI with a solution of FeCl3 to selectively create the complex between EDTA and Fe(III). Thus, EDTA sensitivity was largely improved by two orders of magnitude with reactive-DESI-MS experiments thanks to the specific detection of EDTA as a [EDTA-4H+Fe(III)](-) complex. The proof of principle that reactive DESI can be applied to concrete samples to detect EDTA has been demonstrated. Its capacity for semi-quantitative determination and localization of EDTA under ambient conditions and with very little sample preparation, minimizing sample manipulations and solvent volumes, two important conditions for the development of new methodologies in the field of analytical chemistry, has been shown. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ammonium Bicarbonate Addition Improves the Detection of Proteins by Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Honarvar, Elahe; Venter, Andre R.

    2017-06-01

    The analysis of protein by desorption electrospray ionization mass spectrometry (DESI-MS) is considered impractical due to a mass-dependent loss in sensitivity with increase in protein molecular weights. With the addition of ammonium bicarbonate to the DESI-MS analysis the sensitivity towards proteins by DESI was improved. The signal to noise ratio (S/N) improvement for a variety of proteins increased between 2- to 3-fold relative to solvent systems containing formic acid and more than seven times relative to aqueous methanol spray solvents. Three methods for ammonium bicarbonate addition during DESI-MS were investigated. The additive delivered improvements in S/N whether it was mixed with the analyte prior to sample deposition, applied over pre-prepared samples, or simply added to the desorption spray solvent. The improvement correlated well with protein pI but not with protein size. Other ammonium or bicarbonate salts did not produce similar improvements in S/N, nor was this improvement in S/N observed for ESI of the same samples. As was previously described for ESI, DESI also caused extensive protein unfolding upon the addition of ammonium bicarbonate. [Figure not available: see fulltext.

  19. Analysis of antibiotics from liquid sample using electrospray ionization-ion mobility spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Li; Jian, Jia; Xiaoguang, Gao; Xiuli, He [State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); Li Jianping, E-mail: jpli@mail.ie.ac.cn [State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The reduced mobilities of 18 antibiotics are determined. Black-Right-Pointing-Pointer Establishing antibiotic mass-mobility correlation using (12,4) potential model. Black-Right-Pointing-Pointer Multi-component characteristics of antibiotics can be revealed using ESI-IMS. Black-Right-Pointing-Pointer Most mixtures of antibiotics can be analyzed using ESI-IMS. Black-Right-Pointing-Pointer The detection limit of amoxicillin is 70 pg. - Abstract: The recent findings of antibiotic residues in aquatic environment at trace level have gained much concern for the detrimental effect on ecological and human health due to bacterial resistance. Here, the feasibility of using electrospray ionization ion mobility spectrometry (ESI-IMS) for analysis antibiotics in liquid sample is demonstrated. Reduced mobilities and collision cross sections of 18 antibiotics are experimentally measured and compared with theoretical values according to mass-mobility correlation. Gentamicin is used as an example to investigate the capability of ESI-IMS for multi-component analysis of antibiotics. Mixtures of antibiotics at different concentrations are analyzed. The estimated detection limit for amoxicillin is 0.7 mg L{sup -1} (70 pg) and the linear range of response maintains over two orders. This method will be a potential technique for the analysis of antibiotics in aquatic environment.

  20. Metabolic Profiling Directly from the Petri Dish Using Nanospray Desorption Electrospray Ionization Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, Jeramie D.; Roach, Patrick J.; Heath, Brandi S.; Alexandrov, Theodore; Laskin, Julia; Dorrestein, Pieter C.

    2013-11-05

    Understanding molecular interaction pathways in complex biological systems constitutes a treasure trove of knowledge that might facilitate the specific, chemical manipulation of the countless microbiological systems that occur throughout our world. However, there is a lack of methodologies that allow the direct investigation of chemical gradients and interactions in living biological systems, in real time. Here, we report the use of nanospray desorption electrospray ionization (nanoDESI) imaging mass spectrometry for in vivo metabolic profiling of living bacterial colonies directly from the Petri dish with absolutely no sample preparation needed. Using this technique, we investigated single colonies of Shewanella oneidensis MR-1, Bacillus subtilis 3610, and Streptomyces coelicolor A3(2) as well as a mixed biofilm of S. oneidensis MR-1 and B. subtilis 3610. Data from B. subtilis 3610 and S. coelicolor A3(2) provided a means of validation for the method while data from S. oneidensis MR-1 and the mixed biofilm showed a wide range of compounds that this bacterium uses for the dissimilatory reduction of extracellular metal oxides, including riboflavin, iron-bound heme and heme biosynthetic intermediates, and the siderophore putrebactin.

  1. Ion-neutral Clustering of Bile Acids in Electrospray Ionization Across UPLC Flow Regimes

    Science.gov (United States)

    Brophy, Patrick; Broeckling, Corey D.; Murphy, James; Prenni, Jessica E.

    2018-02-01

    Bile acid authentic standards were used as model compounds to quantitatively evaluate complex in-source phenomenon on a UPLC-ESI-TOF-MS operated in the negative mode. Three different diameter columns and a ceramic-based microfluidic separation device were utilized, allowing for detailed descriptions of bile acid behavior across a wide range of flow regimes and instantaneous concentrations. A custom processing algorithm based on correlation analysis was developed to group together all ion signals arising from a single compound; these grouped signals produce verified compound spectra for each bile acid at each on-column mass loading. Significant adduction was observed for all bile acids investigated under all flow regimes and across a wide range of bile acid concentrations. The distribution of bile acid containing clusters was found to depend on the specific bile acid species, solvent flow rate, and bile acid concentration. Relative abundancies of each cluster changed non-linearly with concentration. It was found that summing all MS level (low collisional energy) ions and ion-neutral adducts arising from a single compound improves linearity across the concentration range (0.125-5 ng on column) and increases the sensitivity of MS level quantification. The behavior of each cluster roughly follows simple equilibrium processes consistent with our understanding of electrospray ionization mechanisms and ion transport processes occurring in atmospheric pressure interfaces. [Figure not available: see fulltext.

  2. Real-time hydrogen/deuterium exchange kinetics via supercharged electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Sterling, Harry J; Williams, Evan R

    2010-11-01

    Amide hydrogen/deuterium exchange (HDX) rate constants of bovine ubiquitin in an ammonium acetate solution containing 1% of the electrospray ionization (ESI) "supercharging" reagent m-nitrobenzyl alcohol (m-NBA) were obtained using top-down, electron transfer dissociation (ETD) tandem mass spectrometry (MS). The supercharging reagent replaces the acid and temperature "quench" step in the conventional MS approach to HDX experiments by causing rapid protein denaturation to occur in the ESI droplet. The higher charge state ions that are produced with m-NBA are more unfolded, as measured by ion mobility, and result in higher fragmentation efficiency and higher sequence coverage with ETD. Single amino acid resolution was obtained for 44 of 72 exchangeable amide sites, and summed kinetic data were obtained for regions of the protein where adjacent fragment ions were not observed, resulting in an overall spatial resolution of 1.3 residues. Comparison of these results with previous values from NMR indicates that the supercharging reagent does not cause significant structural changes to the protein in the initial ESI solution and that scrambling or back-exchange is minimal. This new method for top-down HDX-MS enables real-time kinetic data measurements under physiological conditions, similar to those obtained using NMR, with comparable spatial resolution and significantly better sensitivity.

  3. Analysis of antibiotics from liquid sample using electrospray ionization-ion mobility spectrometry

    International Nuclear Information System (INIS)

    Li Shu; Jia Jian; Gao Xiaoguang; He Xiuli; Li Jianping

    2012-01-01

    Highlights: ► The reduced mobilities of 18 antibiotics are determined. ► Establishing antibiotic mass-mobility correlation using (12,4) potential model. ► Multi-component characteristics of antibiotics can be revealed using ESI-IMS. ► Most mixtures of antibiotics can be analyzed using ESI-IMS. ► The detection limit of amoxicillin is 70 pg. - Abstract: The recent findings of antibiotic residues in aquatic environment at trace level have gained much concern for the detrimental effect on ecological and human health due to bacterial resistance. Here, the feasibility of using electrospray ionization ion mobility spectrometry (ESI-IMS) for analysis antibiotics in liquid sample is demonstrated. Reduced mobilities and collision cross sections of 18 antibiotics are experimentally measured and compared with theoretical values according to mass-mobility correlation. Gentamicin is used as an example to investigate the capability of ESI-IMS for multi-component analysis of antibiotics. Mixtures of antibiotics at different concentrations are analyzed. The estimated detection limit for amoxicillin is 0.7 mg L −1 (70 pg) and the linear range of response maintains over two orders. This method will be a potential technique for the analysis of antibiotics in aquatic environment.

  4. Interactions of nucleobases with alkali earth metal cations--electrospray ionization mass spectrometric study.

    Science.gov (United States)

    Frańska, Magdalena

    2007-01-01

    Interactions of nucleobases with alkali earth metal cations have been studied by electrospray ionization mass spectrometry (ESI-MS). Nucleobases containing at least one oxygen atom form stable complexes with alkali earth metal cations. This phenomenon can be explained on the grounds of the well known theory of hard and soft acids and bases. Uracil and thymine make complexes only when in their deprotonoted forms. The cations of great radii (Sr(2+), Ba(2+)) are more prone to form complexes of stoichiometry 1:1 with uracil and thymine than the cations of small radii (Mg(2+), Ca(2+)). On the other hand, Mg(2+) forms complexes of stoichiometry 2:1 and 3:2 with uracil and thymine. Gas-phase stabilities of the 1:1 complexes are higher for the cations of small radii, in contrast to the solution stabilities. For cytosine and 9- methylhypoxantine the 1:1 complexes of their deprotonated forms are observed at higher cone voltage as a result of HCl molecule loss from the complexes containing the counter ion (Cl(-)). In solution, more stable complexes are formed with metal cations of low radii. Gas-phase stability of the complexes formed by deprotonated 9- methyl-hypoxantine increases with increasing metal cation radius.

  5. Electrospray ionization mass spectrometry and partial least squares discriminant analysis applied to the quality control of olive oil.

    Science.gov (United States)

    Alves, Junia O; Botelho, Bruno G; Sena, Marcelo M; Augusti, Rodinei

    2013-10-01

    Direct infusion electrospray ionization mass spectrometry in the positive ion mode [ESI(+)-MS] is used to obtain fingerprints of aqueous-methanolic extracts of two types of olive oils, extra virgin (EV) and ordinary (OR), as well as of samples of EV olive oil adulterated by the addition of OR olive oil and other edible oils: corn (CO), sunflower (SF), soybean (SO) and canola (CA). The MS data is treated by the partial least squares discriminant analysis (PLS-DA) protocol aiming at discriminating the above-mentioned classes formed by the genuine olive oils, EV (1) and OR (2), as well as the EV adulterated samples, i.e. EV/SO (3), EV/CO (4), EV/SF (5), EV/CA (6) and EV/OR (7). The PLS-DA model employed is built with 190 and 70 samples for the training and test sets, respectively. For all classes (1-7), EV and OR olive oils as well as the adulterated samples (in a proportion varying from 0.5 to 20.0% w/w) are properly classified. The developed methodology required no ions identification and demonstrated to be fast, as each measurement lasted about 3 min including the extraction step and MS analysis, and reliable, because high sensitivities (rate of true positives) and specificities (rate of true negatives) were achieved. Finally, it can be envisaged that this approach has potential to be applied in quality control of EV olive oils. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Investigation of pyrrolizidine alkaloids and their N-oxides in commercial comfrey-containing products and botanical materials by liquid chromatography electrospray ionization mass spectrometry.

    Science.gov (United States)

    Altamirano, Jorgelina C; Gratz, Samuel R; Wolnik, Karen A

    2005-01-01

    Pyrrolizidine alkaloids (PAs) and their N-oxides are found in several plant families throughout the world. PAs are potentially toxic to the liver and/or lungs in humans and may cause acute liver failure, cirrhosis, pneumonitis, or pulmonary hypertension. PAs are also carcinogenic to animals, and they have been linked to the development of hepatocellular and skin squamous cell carcinomas as well as liver angiosarcomas. According to experimental studies, the quantity of PAs in some herbal teas and dietary supplements is sufficient to be carcinogenic in exposed individuals. A method for the extraction and identification of PAs and their N-oxides in botanical materials and commercial comfrey-containing products has been developed using liquid chromatography electrospray ionization mass spectrometry. Following optimization of the extraction procedure and the chromatographic conditions, the method was applied to the analysis of 10 herbal remedies. All of the products that were labeled to contain comfrey were found to contain measurable quantities of PAs.

  7. Fragmentation pathways and structural characterization of organophosphorus compounds related to the Chemical Weapons Convention by electron ionization and electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Hosseini, Seyed Esmaeil; Saeidian, Hamid; Amozadeh, Ali; Naseri, Mohammad Taghi; Babri, Mehran

    2016-12-30

    For unambiguous identification of Chemical Weapons Convention (CWC)-related chemicals in environmental samples, the availability of mass spectra, interpretation skills and rapid microsynthesis of suspected chemicals are essential requirements. For the first time, the electron ionization single quadrupole and electrospray ionization tandem mass spectra of a series of O-alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates (Scheme 1, cpd 4) were studied for CWC verification purposes. O-Alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates were prepared through a microsynthetic method and were analyzed using electron ionization and electrospray ionization mass spectrometry with gas and liquid chromatography, respectively, as MS-inlet systems. General EI and ESI fragmentation pathways were proposed and discussed, and collision-induced dissociation studies of the protonated derivatives of these compounds were performed to confirm proposed fragment ion structures by analyzing mass spectra of deuterated analogs. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as McLafferty rearrangement, hydrogen rearrangement and a previously unknown intramolecular electrophilic aromatic substitution reaction. The EI and ESI fragmentation routes of the synthesized compounds 4 were investigated with the aim of detecting and identifying CWC-related chemicals during on-site inspection and/or off-site analysis and toxic chemical destruction monitoring. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  9. Electrospray ionization mass spectrometry for the hydrolysis complexes of cisplatin: implications for the hydrolysis process of platinum complexes.

    Science.gov (United States)

    Feifan, Xie; Pieter, Colin; Jan, Van Bocxlaer

    2017-07-01

    Non-enzyme-dependent hydrolysis of the drug cisplatin is important for its mode of action and toxicity. However, up until today, the hydrolysis process of cisplatin is still not completely understood. In the present study, the hydrolysis of cisplatin in an aqueous solution was systematically investigated by using electrospray ionization mass spectrometry coupled to liquid chromatography. A variety of previously unreported hydrolysis complexes corresponding to monomeric, dimeric and trimeric species were detected and identified. The characteristics of the Pt-containing complexes were investigated by using collision-induced dissociation (CID). The hydrolysis complexes demonstrate distinctive and correlative CID characteristics, which provides tools for an informative identification. The most frequently observed dissociation mechanism was sequential loss of NH 3 , H 2 O and HCl. Loss of the Pt atom was observed as the final step during the CID process. The formation mechanisms of the observed complexes were explored and experimentally examined. The strongly bound dimeric species, which existed in solution, are assumed to be formed from the clustering of the parent compound and its monohydrated or dihydrated complexes. The role of the electrospray process in the formation of some of the observed ions was also evaluated, and the electrospray ionization-related cold clusters were identified. The previously reported hydrolysis equilibria were tested and subsequently refined via a hydrolysis study resulting in a renewed mechanistic equilibrium system of cisplatin as proposed from our results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Rapid Quantification of Low-Viscosity Acetyl-Triacylglycerols Using Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Bansal, Sunil; Durrett, Timothy P

    2016-09-01

    Acetyl-triacylglycerols (acetyl-TAG) possess an sn-3 acetate group, which confers useful chemical and physical properties to these unusual triacylglycerols (TAG). Current methods for quantification of acetyl-TAG are time consuming and do not provide any information on the molecular species profile. Electrospray ionization mass spectrometry (ESI-MS)-based methods can overcome these drawbacks. However, the ESI-MS signal intensity for TAG depends on the aliphatic chain length and unsaturation index of the molecule. Therefore response factors for different molecular species need to be determined before any quantification. The effects of the chain length and the number of double-bonds of the sn-1/2 acyl groups on the signal intensity for the neutral loss of short chain length sn-3 groups were quantified using a series of synthesized sn-3 specific structured TAG. The signal intensity for the neutral loss of the sn-3 acyl group was found to negatively correlated with the aliphatic chain length and unsaturation index of the sn-1/2 acyl groups. The signal intensity of the neutral loss of the sn-3 acyl group was also negatively correlated with the size of that chain. Further, the position of the group undergoing neutral loss was also important, with the signal from an sn-2 acyl group much lower than that from one located at sn-3. Response factors obtained from these analyses were used to develop a method for the absolute quantification of acetyl-TAG. The increased sensitivity of this ESI-MS-based approach allowed successful quantification of acetyl-TAG in various biological settings, including the products of in vitro enzyme activity assays.

  11. Observing the real time formation of phosphine-ligated gold clusters by electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ligare, Marshall R.; Johnson, Grant E.; Laskin, Julia

    2017-01-01

    Early stages of the reduction and nucleation of solution-phase gold clusters are largely unknown. This is due, in part, to the high reaction rates and the complexity of the cluster synthesis process. Through the addition of a diphosphine ligand, 1-4,Bis(diphenylphosphino)butane (L4) to the gold precursor, chloro(triphenylphosphine) gold(I) (Au(PPh3)Cl), in methanol organometallic complexes of the type, [Au(L4)x(L4O)y(PPh3)z]+, are formed. These complexes lower the rate of reduction so that the reaction can be directly monitored from 1 min to over an hour using on-line electrospray ionization mass spectrometry (ESI-MS). Our results indicate that the formation of Au8(L4)42+, Au9(L4)4H2+ and Au10(L4)52+ cationic clusters occurs through different reaction pathways that may be kinetically controlled either through the reducing agent concentration or the extent of oxidation of L4. Through comparison of selected ion chronograms our results indicate that Au2(L4)2H+ may be an intermediate in the formation of Au8(L4)42+and Au10(L4)52+ while a variety of chlorinated clusters are involved in the formation of Au9(L4)4H2+. Additionally, high-resolution mass spectrometry was employed to identify 53 gold containing species produced under highly oxidative conditions. New intermediate species are identified which help understand how different gold cluster nuclearities can be stabilized during the growth process.

  12. Selective and sensitive detection of chromium(VI) in waters using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Weldy, Effie; Wolff, Chloe; Miao, Zhixin; Chen, Hao

    2013-09-01

    From 2000 through 2011, there were 14 criminal cases of violations of the Clean Water Act involving the discharge of chromium, a toxic heavy metal, into drinking and surface water sources. As chromium(VI), a potential carcinogen present in the environment, represents a significant safety concern, it is currently the subject of an EPA health risk assessment. Therefore, sensitive and selective detection of this species is highly desired. This study reports the analysis of chromium(VI) in water samples by electrospray ionization mass spectrometry (ESI-MS) following its reduction and complexation with ammonium pyrrolidinedithiocarbamate (APDC). The reduction and subsequent complexation produce a characteristic [Cr(III)O]-PDC complex which can be detected as a protonated ion of m/z 507 in the positive ion mode. The detection is selective to chromium(VI) under acidic pH, even in the presence of chromium(III) and other metal ions, providing high specificity. Different water samples were examined, including deionized, tap, and river waters, and sensitive detection was achieved. In the case of deionized water, quantification over the concentration range of 3.7 to 148ppb gave an excellent correlation coefficient of 0.9904 using the enhanced MS mode scan. Using the single-reaction monitoring (SRM) mode (monitoring the characteristic fragmentation of m/z 507 to m/z 360), the limit of detection (LOD) was found to be 0.25ppb. The LOD of chromium(VI) for both tap and river water samples was determined to be 2.0ppb. A preconcentration strategy using simple vacuum evaporation of the aqueous sample was shown to further improve the ESI signal by 15 fold. This method, with high sensitivity and selectivity, should provide a timely solution for the real-world analysis of toxic chromium(VI). Copyright © 2012 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Delivering Transmembrane Peptide Complexes to the Gas Phase Using Nanodiscs and Electrospray Ionization

    Science.gov (United States)

    Li, Jun; Richards, Michele R.; Kitova, Elena N.; Klassen, John S.

    2017-10-01

    The gas-phase conformations of dimers of the channel-forming membrane peptide gramicidin A (GA), produced from isobutanol or aqueous solutions of GA-containing nanodiscs (NDs), are investigated using electrospray ionization-ion mobility separation-mass spectrometry (ESI-IMS-MS) and molecular dynamics (MD) simulations. The IMS arrival times measured for (2GA + 2Na)2+ ions from isobutanol reveal three different conformations, with collision cross-sections (Ω) of 683 Å2 (conformation 1, C1), 708 Å2 (C2), and 737 Å2 (C3). The addition of NH4CH3CO2 produced (2GA + 2Na)2+ and (2GA + H + Na)2+ ions, with Ω similar to those of C1, C2, and C3, as well as (2GA + 2H)2+, (2GA + 2NH4)2+, and (2GA + H + NH4)2+ ions, which adopt a single conformation with a Ω similar to that of C2. These results suggest that the nature of the charging agents, imparted by the ESI process, can influence dimer conformation in the gas phase. Notably, the POPC NDs produced exclusively (2GA + 2NH4)2+ dimer ions; the DMPC NDs produced both (2GA + 2H)2+ and (2GA + 2NH4)2+ dimer ions. While the Ω of (2GA + 2H)2+ is similar to that of C2, the (2GA + 2NH4)2+ ions from NDs adopt a more compact structure, with a Ω of 656 Å2. It is proposed that this compact structure corresponds to the ion conducting single stranded head-to-head helical GA dimer. These findings highlight the potential of NDs, combined with ESI, for transferring transmembrane peptide complexes directly from lipid bilayers to the gas phase. [Figure not available: see fulltext.

  14. Physicochemical Parameters Affecting the Electrospray Ionization Efficiency of Amino Acids after Acylation

    Science.gov (United States)

    2017-01-01

    Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC–MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pKa, and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure–property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response. PMID:28737384

  15. Evaluation of PCR electrospray-ionization mass spectrometry for rapid molecular diagnosis of bovine mastitis.

    Science.gov (United States)

    Perreten, Vincent; Endimiani, Andrea; Thomann, Andreas; Wipf, Juliette R K; Rossano, Alexandra; Bodmer, Michèle; Raemy, Andreas; Sannes-Lowery, Kristin A; Ecker, David J; Sampath, Rangarajan; Bonomo, Robert A; Washington, Cicely

    2013-06-01

    Bovine mastitis, an inflammatory disease of the mammary gland, is one of the most costly diseases affecting the dairy industry. The treatment and prevention of this disease is linked heavily to the use of antibiotics in agriculture and early detection of the primary pathogen is essential to control the disease. Milk samples (n=67) from cows suffering from mastitis were analyzed for the presence of pathogens using PCR electrospray-ionization mass spectrometry (PCR/ESI-MS) and were compared with standard culture diagnostic methods. Concurrent identification of the primary mastitis pathogens was obtained for 64% of the tested milk samples, whereas divergent results were obtained for 27% of the samples. The PCR/ESI-MS failed to identify some of the primary pathogens in 18% of the samples, but identified other pathogens as well as microorganisms in samples that were negative by culture. The PCR/ESI-MS identified bacteria to the species level as well as yeasts and molds in samples that contained a mixed bacterial culture (9%). The sensitivity of the PCR/ESI-MS for the most common pathogens ranged from 57.1 to 100% and the specificity ranged from 69.8 to 100% using culture as gold standard. The PCR/ESI-MS also revealed the presence of the methicillin-resistant gene mecA in 16.2% of the milk samples, which correlated with the simultaneous detection of staphylococci including Staphylococcus aureus. We demonstrated that PCR/ESI-MS, a more rapid diagnostic platform compared with bacterial culture, has the significant potential to serve as an important screening method in the diagnosis of bovine clinical mastitis and has the capacity to be used in infection control programs for both subclinical and clinical disease. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Quantifying Protein-Carbohydrate Interactions Using Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Yao, Yuyu; Shams-Ud-Doha, Km; Daneshfar, Rambod; Kitova, Elena N.; Klassen, John S.

    2015-01-01

    The application of liquid sample desorption electrospray ionization mass spectrometry (liquid sample DESI-MS) for quantifying protein-carbohydrate interactions in vitro is described. Association constants for the interactions between lysozyme and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc, and between a single chain antibody and α-D-Galp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 and β-D-Glcp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 measured using liquid sample DESI-MS were found to be in good agreement with values measured by isothermal titration calorimetry and the direct ESI-MS assay. The reference protein method, which was originally developed to correct ESI mass spectra for the occurrence of nonspecific ligand-protein binding, was shown to reliably correct liquid sample DESI mass spectra for nonspecific binding. The suitability of liquid sample DESI-MS for quantitative binding measurements carried out using solutions containing high concentrations of the nonvolatile biological buffer phosphate buffered saline (PBS) was also explored. Binding of lysozyme to β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc in aqueous solutions containing up to 1× PBS was successfully monitored using liquid sample DESI-MS; with ESI-MS the binding measurements were limited to concentrations less than 0.02 X PBS.

  17. Electrospray Ionization Mechanisms for Large Polyethylene Glycol Chains Studied Through Tandem Ion Mobility Spectrometry

    Science.gov (United States)

    Larriba, Carlos; de la Mora, Juan Fernandez; Clemmer, David E.

    2014-08-01

    Ion mobility mass spectrometry (IMS-MS) is used to investigate the abundance pattern, n z (m) of Poly-(ethyleneglycol) (PEG) electrosprayed from water/methanol as a function of mass and charge state. We examine n z (m) patterns from a diversity of solution cations, primarily dimethylammonium and triethylammonium. The ability of PEG chains to initially attach to various cations in the spraying chamber, and to retain them (or not) on entering the MS, provide valuable clues on the ionization mechanism. Single chains form in highly charged and extended shapes in most buffers. But the high initial charge they hold under atmospheric pressure is lost on transit to the vacuum system for large cations. In contrast, aggregates of two or more chains carry in all buffers at most the Rayleigh charge of a water drop of the same volume. This shows either that they form via Dole's charge residue mechanism, or that highly charged and extended aggregates are ripped apart by Coulombic repulsion. IMS-IMS experiments in He confirm these findings, and provide new mechanistic insights on the stability of aggregates. When collisionally activated, initially globular dimers are stable. However, slightly nonglobular dimers projecting out a linear appendix are segregated into two monomeric chains. The breakup of a charged dimer is therefore a multi-step process, similar to the Fenn-Consta polymer extrusion mechanism. The highest activation barrier is associated to the first step, where a short chain segment carrying a single charge escapes (ion-evaporates) from a charged drop, leading then to gradual field extrusion of the whole chain out of the drop.

  18. Capillary column switching restricted-access media-liquid chromatography-electrospray ionization-tandem mass spectrometry system for simultaneous and direct analysis of drugs in biofluids.

    Science.gov (United States)

    Santos-Neto, Alvaro J; Markides, Karin E; Sjöberg, Per J R; Bergquist, Jonas; Lancas, Fernando M

    2007-08-15

    Capillary online restricted-access media-liquid chromatography-electrospray ionization-tandem mass spectrometry (RAM-LC-ESI-MS/MS) for direct analysis of drugs and metabolites spiked in biological fluids was developed. Using a column switching setup it was possible to perform effective sample preparation and analysis of raw biological fluids (plasma and urine) without matrix effects in the electrospray mass spectrometric detection step. The peak focusing efficiency of the extraction column was more effective in backflush compared to foreflush mode. The system was able to concentrate diminished samples of polar drugs and their metabolites reaching quantifiable results as low as 1 ng/mL utilizing a sample volume of only 333 nL of biofluids. New column hardware was developed to circumvent clogging problems experienced with plasma injections. The glass fiber filter frit, which is commonly used, was replaced with a short piece of 20 microm i.d. fused silica capillary. The extraction columns were able to handle up to 60 injections and showed a high loading capacity, making the saturation of the MS detector the limiting factor on the linear dynamic range. The simultaneous separation and detection of 10 drugs and metabolites was obtained in 8 min of analysis, including the online sample preparation and enrichment step.

  19. Gas-phase copper and silver complexes with phosphorothioate and phosphorodithioate pesticides investigated using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2015-01-01

    Efforts to improve agricultural productivity have led to a growing dependency on organophosphorus pesticides. Phosphorothioate and phosphorodithioate pesticides are organophosphorus pesticide subclasses with widespread application for the control of insects feeding on vegetables and fruits. However, even low doses of these pesticides can cause neurological problems in humans; thus, their determination and monitoring in agricultural foodstuffs is important for human health. Phosphorothioate and phosphorodithioate pesticides may be poorly ionized during electrospray, adversely affecting limits of detection. These pesticides can form complexes with Cu(2+) and Ag(+) , however, potentially improving ionization. In the present work, we used electrospray ionization/mass spectrometry (ESI/MS) to study fenitrothion, parathion, diazinon, and malathion coordination complexes with silver and copper ions. Stable 1 : 1 and 1 : 2 metal/pesticide complexes were detected. Mass spectra acquired from pesticide solutions containing Ag(+) or Cu(2+) showed a significant increase in signal-to-background ratio over those acquired from solutions containing only the pesticides, with Ag(+) improving detection more effectively than Cu(2+). Addition of Ag(+) to a pesticide solution improved the limit of detection by ten times. The relative affinity of each pesticide for Ag(+) was related to complex stability, following the order diazinon > malathion > fenitrothion > parathion. The formation of Ag(+)-pesticide complexes can significantly improve the detection of phosphorothioate and phosphorodithioate pesticides using ESI/MS. The technique could potentially be used in reactive desorption electrospray ionization/mass spectrometry to detect phosphorothioate and phosphorodithioate pesticides on fruit and vegetable skins. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Determination of phosphatidylethanolamine molecular species in various food matrices by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2).

    Science.gov (United States)

    Zhou, Li; Zhao, Minjie; Ennahar, Saïd; Bindler, Françoise; Marchioni, Eric

    2012-04-01

    A liquid chromatographic-electrospray ionization-tandem mass spectrometric (LC-ESI-MS(2)) method has been developed for determination of the molecular species of phosphatidylethanolamine (PE) in four food matrices (soy, egg yolk, ox liver, and krill oil). The extraction and purification method consisted of a pressurized liquid extraction procedure for total lipid (TL) extraction, purification of phospholipids (PLs) by adsorption on a silica gel column, and separation of PL classes by semi-preparative normal-phase HPLC. Separation and identification of PE molecular species were performed by reversed-phase HPLC coupled with electrospray ionization tandem mass spectrometry (ESI-MS(2)). Methanol containing 5 mmol L(-1) ammonium formate was used as the mobile phase. A variety of PE molecular species were detected in the four food matrices. (C16:0-C18:2)PE, (C18:2-C18:2)PE, and (C16:0-C18:1)PE were the major PE molecular species in soy. Egg yolk PE contained (C16:0-C18:1)PE, (C18:0-C18:1)PE, (C18:0-C18:2)PE, and (C16:0-C18:2)PE as the major molecular species. Ox liver PE was rich in the species (C18:0-C18:1)PE, (C18:0-C20:4)PE, and (C18:0-C18:2)PE. Finally, krill oil which was particularly rich in (C16:0(alkyl)-C22:6(acyl))plasmanylethanolamine (PakE), (C16:0-C22:6)PE, and (C16:0-C20:5)PE, seemed to be an interesting potential source for supplementation of food with eicosapentaenoic acid and docosahexaenoic acid.

  1. Analysis of acylcarnitine profiles in umbilical cord blood and during the early neonatal period by electrospray ionization tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    E. Vieira Neto

    2012-06-01

    Full Text Available Acylcarnitine profiling by electrospray ionization tandem mass spectrometry (ESI-MS/MS is a potent tool for the diagnosis and screening of fatty acid oxidation and organic acid disorders. Few studies have analyzed free carnitine and acylcarnitines in dried blood spots (DBS of umbilical cord blood (CB and the postnatal changes in the concentrations of these analytes. We have investigated these metabolites in healthy exclusively breastfed neonates and examined possible effects of birth weight and gestational age. DBS of CB were collected from 162 adequate for gestational age neonates. Paired DBS of heel-prick blood were collected 4-8 days after birth from 106 of these neonates, the majority exclusively breastfed. Methanol extracts of DBS with deuterium-labeled internal standards were derivatized before analysis by ESI-MS/MS. Most of the analytes were measured using a full-scan method. The levels of the major long-chain acylcarnitines, palmitoylcarnitine, stearoylcarnitine, and oleoylcarnitine, increased by 27, 12, and 109%, respectively, in the first week of life. Free carnitine and acetylcarnitine had a modest increase: 8 and 11%, respectively. Propionylcarnitine presented a different behavior, decreasing 9% during the period. The correlations between birth weight or gestational age and the concentrations of the analytes in DBS were weak (r £ 0.20 or nonsignificant. Adaptation to breast milk as the sole source of nutrients can explain the increase of these metabolites along the early neonatal period. Acylcarnitine profiling in CB should have a role in the early detection of metabolic disorders in high-risk neonates.

  2. Analysis of acylcarnitine profiles in umbilical cord blood and during the early neonatal period by electrospray ionization tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Neto, E. [Serviço de Genética Médica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Laboratório Diagnósticos Laboratoriais Especializados, Rio de Janeiro, RJ (Brazil); Fonseca, A.A.; Almeida, R.F. [Laboratório Diagnósticos Laboratoriais Especializados, Rio de Janeiro, RJ (Brazil); Figueiredo, M.P.; Porto, M.A.S. [Maternidade Escola, Rio de Janeiro, RJ (Brazil); Ribeiro, M.G. [Serviço de Genética Médica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2012-04-13

    Acylcarnitine profiling by electrospray ionization tandem mass spectrometry (ESI-MS/MS) is a potent tool for the diagnosis and screening of fatty acid oxidation and organic acid disorders. Few studies have analyzed free carnitine and acylcarnitines in dried blood spots (DBS) of umbilical cord blood (CB) and the postnatal changes in the concentrations of these analytes. We have investigated these metabolites in healthy exclusively breastfed neonates and examined possible effects of birth weight and gestational age. DBS of CB were collected from 162 adequate for gestational age neonates. Paired DBS of heel-prick blood were collected 4-8 days after birth from 106 of these neonates, the majority exclusively breastfed. Methanol extracts of DBS with deuterium-labeled internal standards were derivatized before analysis by ESI-MS/MS. Most of the analytes were measured using a full-scan method. The levels of the major long-chain acylcarnitines, palmitoylcarnitine, stearoylcarnitine, and oleoylcarnitine, increased by 27, 12, and 109%, respectively, in the first week of life. Free carnitine and acetylcarnitine had a modest increase: 8 and 11%, respectively. Propionylcarnitine presented a different behavior, decreasing 9% during the period. The correlations between birth weight or gestational age and the concentrations of the analytes in DBS were weak (r ≤ 0.20) or nonsignificant. Adaptation to breast milk as the sole source of nutrients can explain the increase of these metabolites along the early neonatal period. Acylcarnitine profiling in CB should have a role in the early detection of metabolic disorders in high-risk neonates.

  3. Separation of Opiate Isomers Using Electrospray Ionization and Paper Spray Coupled to High-Field Asymmetric Waveform Ion Mobility Spectrometry

    Science.gov (United States)

    Manicke, Nicholas E.; Belford, Michael

    2015-05-01

    One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.

  4. Depth profiling of inks in authentic and counterfeit banknotes by electrospray laser desorption ionization/mass spectrometry.

    Science.gov (United States)

    Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie

    2016-01-01

    Electrospray laser desorption ionization is an ambient ionization technique that generates neutrals via laser desorption and ionizes those neutrals in an electrospray plume and was utilized to characterize inks in different layers of copy paper and banknotes of various currencies. Depth profiling of inks was performed on overlapping color bands on copy paper by repeatedly scanning the line with a pulsed laser beam operated at a fixed energy. The molecules in the ink on a banknote were desorbed by irradiating the banknote surface with a laser beam operated at different energies, with results indicating that different ions were detected at different depths. The analysis of authentic $US100, $100 RMB and $1000 NTD banknotes indicated that ions detected in 'color-shifting' and 'typography' regions were significantly different. Additionally, the abundances of some ions dramatically changed with the depth of the aforementioned regions. This approach was used to distinguish authentic $1000 NTD banknotes from counterfeits. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus

    International Nuclear Information System (INIS)

    Melko, Joshua J.; Ard, Shaun G.; Shuman, Nicholas S.; Viggiano, Albert A.; Pedder, Randall E.; Taormina, Christopher R.

    2015-01-01

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H 3 O + , but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re + with O 2 proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re 2 2+ is found to charge transfer with O 2 at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba + , which is reacted with N 2 O to create BaO + , and we find a rate constant that agrees with the literature

  6. Turnover rates in microorganisms by laser ablation electrospray ionization mass spectrometry and pulse-chase analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stopka, Sylwia A.; Mansour, Tarek R.; Shrestha, Bindesh [Department of Chemistry, W.M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC 20052 (United States); Maréchal, Éric; Falconet, Denis [Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, CEA-CNRS-INRA-Univ. Grenoble Alpes, Grenoble (France); Vertes, Akos, E-mail: vertes@gwu.edu [Department of Chemistry, W.M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC 20052 (United States)

    2016-01-01

    Biochemical processes rely on elaborate networks containing thousands of compounds participating in thousands of reaction. Rapid turnover of diverse metabolites and lipids in an organism is an essential part of homeostasis. It affects energy production and storage, two important processes utilized in bioengineering. Conventional approaches to simultaneously quantify a large number of turnover rates in biological systems are currently not feasible. Here we show that pulse-chase analysis followed by laser ablation electrospray ionization mass spectrometry (LAESI-MS) enable the simultaneous and rapid determination of metabolic turnover rates. The incorporation of ion mobility separation (IMS) allowed an additional dimension of analysis, i.e., the detection and identification of isotopologs based on their collision cross sections. We demonstrated these capabilities by determining metabolite, lipid, and peptide turnover in the photosynthetic green algae, Chlamydomonas reinhardtii, in the presence of {sup 15}N-labeled ammonium chloride as the main nitrogen source. Following the reversal of isotope patterns in the chase phase by LAESI-IMS-MS revealed the turnover rates and half-lives for biochemical species with a wide range of natural concentrations, e.g., chlorophyll metabolites, lipids, and peptides. For example, the half-lives of lyso-DGTS(16:0) and DGTS(18:3/16:0), t{sub 1/2} = 43.6 ± 4.5 h and 47.6 ± 2.2 h, respectively, provided insight into lipid synthesis and degradation in this organism. Within the same experiment, half-lives for chlorophyll a, t{sub 1/2} = 24.1 ± 2.2 h, and a 2.8 kDa peptide, t{sub 1/2} = 10.4 ± 3.6 h, were also determined. - Highlights: • High-throughput pulse-chase analysis using direct sampling of biological cells. • Ion mobility separation for the elucidation of isotopologs. • Identification of isotopologs in difference heat plots of DT vs. m/z. • Simultaneous determination of turnover rates for lipids and

  7. Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging for Monitoring Secondary Metabolites Production during Antagonistic Interaction of Fungi.

    Science.gov (United States)

    Tata, Alessandra; Perez, Consuelo; Campos, Michel L; Bayfield, Mark A; Eberlin, Marcos N; Ifa, Demian R

    2015-12-15

    Direct analysis of microbial cocultures grown on agar media by desorption electrospray ionization mass spectrometry (DESI-MS) is quite challenging. Due to the high gas pressure upon impact with the surface, the desorption mechanism does not allow direct imaging of soft or irregular surfaces. The divots in the agar, created by the high-pressure gas and spray, dramatically change the geometry of the system decreasing the intensity of the signal. In order to overcome this limitation, an imprinting step, in which the chemicals are initially transferred to flat hard surfaces, was coupled to DESI-MS and applied for the first time to fungal cocultures. Note that fungal cocultures are often disadvantageous in direct imaging mass spectrometry. Agar plates of fungi present a complex topography due to the simultaneous presence of dynamic mycelia and spores. One of the most devastating diseases of cocoa trees is caused by fungal phytopathogen Moniliophthora roreri. Strategies for pest management include the application of endophytic fungi, such as Trichoderma harzianum, that act as biocontrol agents by antagonizing M. roreri. However, the complex chemical communication underlying the basis for this phytopathogen-dependent biocontrol is still unknown. In this study, we investigated the metabolic exchange that takes place during the antagonistic interaction between M. roreri and T. harzianum. Using imprint-DESI-MS imaging we annotated the secondary metabolites released when T. harzianum and M. roreri were cultured in isolation and compared these to those produced after 3 weeks of coculture. We identified and localized four phytopathogen-dependent secondary metabolites, including T39 butenolide, harzianolide, and sorbicillinol. In order to verify the reliability of the imprint-DESI-MS imaging data and evaluate the capability of tape imprints to extract fungal metabolites while maintaining their localization, six representative plugs along the entire M. roreri/T. harzianum

  8. ELECTROSPRAY, TECHNIQUE AND APPLICATIONS

    NARCIS (Netherlands)

    BRUINS, AP

    Electrospray makes use of ions present in electrically charged droplets in an aerosol. The generation of an aerosol by electrospray has already been published by Zeleny in 1917. The feasibility of electrospray as an ionization technique was demonstrated by Fenn and coworkers, and by a group of

  9. Rapid screening of basic colorants in processed vegetables through mass spectrometry using an interchangeable thermal desorption electrospray ionization source.

    Science.gov (United States)

    Chao, Yu-Ying; Chen, Yen-Ling; Lin, Hong-Yi; Huang, Yeou-Lih

    2018-06-20

    Thermal desorption electrospray ionization/mass spectrometry (TD-ESI-MS) employing a quickly interchangeable ionization source is a relatively new ambient ionization mass spectrometric technique that has had, to date, only a limited number of applications related to food safety control. With reallocation of resources, this direct-analysis technique has had wider use in food analysis when operated in dual-working mode (pretreatment-free qualitative screening and conventional quantitative confirmation) after switching to an ambient ionization source from a traditional atmospheric pressure ionization source. Herein, we describe the benefits and challenges associated with the use of a TD-ESI source to detect adulterants in processed vegetables (PVs), as a proof-of-concept for the detection of basic colorants. While TD-ESI can offer direct qualitative screening analyses for PVs with detection capabilities lower than those provided with liquid chromatography/UV detection within 30 s, the use of TD-ESI for semi-quantification is applicable only for homogeneous food matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Measurement of total acid number (TAN) and TAN boiling point distribution in petroleum products by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Qian, Kuangnan; Edwards, Kathleen E; Dechert, Gary J; Jaffe, Stephen B; Green, Larry A; Olmstead, William N

    2008-02-01

    We report a new method for rapid measurement of total acid number (TAN) and TAN boiling point (BP) distribution for petroleum crude and products. The technology is based on negative ion electrospray ionization mass spectrometry (ESI-MS) for selective ionization of petroleum acid and quantification of acid structures and molecular weight distributions. A chip-based nanoelectrospray system enables microscale (boiling point distributions of TAN values can be calculated from the composition. The rapid measurement of TAN BP distributions by ESI is demonstrated for a series of high-TAN crudes and distillation cuts. TAN values determined by the technique agree well with those by the titration method. The distributed properties compare favorably with those measured by distillation and measurement of TAN of corresponding cuts.

  11. Comparison of electrospray ionization and atmospheric pressure photoionization liquid chromatography mass spectrometry methods for analysis of ergot alkaloids from endophyte-infected sleepygrass (Achnatherum robustum).

    Science.gov (United States)

    Jarmusch, Alan K; Musso, Ashleigh M; Shymanovich, Tatsiana; Jarmusch, Scott A; Weavil, Miranda J; Lovin, Mary E; Ehrmann, Brandie M; Saari, Susanna; Nichols, David E; Faeth, Stanley H; Cech, Nadja B

    2016-01-05

    Ergot alkaloids are mycotoxins with an array of biological effects. With this study, we investigated for the first time the application of atmospheric pressure photoionization (APPI) as an ionization method for LC-MS analysis of ergot alkaloids, and compared its performance to that of the more established technique of electrospray ionization (ESI). Samples of the grass Achnatherum robustum infected with the ergot producing Epichloë fungus were extracted using cold methanol and subjected to reserved-phase HPLC-ESI-MS and HPLC-APPI-MS analysis. The ergot alkaloids ergonovine and lysergic acid amide were detected in these samples, and quantified via external calibration. Validation parameters were recorded in accordance with ICH guidelines. A triple quadrupole MS operated in multiple reaction monitoring yielded the lowest detection limits. The performance of APPI and ESI methods was comparable. Both methods were subject to very little matrix interference, with percent recoveries ranging from 82% to 100%. As determined with HPLC-APPI-MS quantification, lysergic acid amide and ergonovine were extracted from an A. robustum sample infected with the Epichloë fungus at concentrations of 1.143±0.051 ppm and 0.2822±0.0071 ppm, respectively. There was no statistically significant difference between these concentrations and those determined using ESI for the same samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comparison of Electrospray Ionization and Atmospheric Chemical Ionization Coupled with the Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Cholesteryl Esters

    Directory of Open Access Journals (Sweden)

    Hae-Rim Lee

    2015-01-01

    Full Text Available The approach of two different ionization techniques including electrospray ionization (ESI and atmospheric pressure chemical ionization (APCI coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS was tested for the analysis of cholesteryl esters (CEs. The retention time (RT, signal intensity, protonated ion, and product ion of CEs were compared between ESI and APCI. RT of CEs from both ionizations decreased with increasing double bonds, while it increased with longer carbon chain length. The ESI process generated strong signal intensity of precursor ions corresponding to [M+Na]+ and [M+NH4]+ regardless of the number of carbon chains and double bonds in CEs. On the other hand, the APCI process produced a protonated ion of CEs [M+H]+ with a weak signal intensity, and it is selectively sensitive to detect precursor ions of CEs with unsaturated fatty acids. The ESI technique proved to be effective in ionizing more kinds of CEs than the APCI technique.

  13. Quantification of piperazine phosphate in human plasma by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry employing precolumn derivatization with dansyl chloride.

    Science.gov (United States)

    Lin, Hui; Tian, Yuan; Zhang, Zunjian; Wu, Lili; Chen, Yun

    2010-04-01

    This paper describes a novel method that combines dansyl chloride (DNS-CL) derivatization with high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS) for the sensitive and selective determination of piperazine phosphate in human plasma. After addition of ondansetron hydrochloride as internal standard (IS), piperazine phosphate was derivatized and then extracted with ethyl acetate. After being evaporated and reconstituted, the sample was analyzed using LC-ESI/MS/MS. Separation was achieved using an Agilent ZORBAX SB-C(18) (150 mm x 2.1 mm I.D., 3.5 microm) column and isocratic elution with 10 mM ammonium acetate solution (pH 3.0)-methanol (50: 50, v/v). Detection was performed on a triple-quadrupole mass spectrometer utilizing electrospray ionization (ESI) interface operating in positive ion and selected reaction monitoring (SRM) mode with the precursor to product ion transitions m/z 320-->171 for DNS-CL-piperazine phosphate and m/z 294-->170 for the IS. The method was fully validated for its selectivity, sensitivity, linearity, precision, accuracy, recovery, matrix effect and stability. The coefficient (r) of piperazine phosphate with a linear range of 0.1-15 microg mL(-1) was 0.9974-0.9995. The limit of detection and lower limit of quantification in human plasma were 0.01 and 0.1 microg mL(-1), respectively. The validated LC-ESI/MS/MS method has been successfully applied to a bioequivalence study of piperazine phosphate trochiscus in Chinese healthy male volunteers. 2010 Elsevier B.V. All rights reserved.

  14. Fully Automated Laser Ablation Liquid Capture Sample Analysis using NanoElectrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Matthias [ORNL; Ovchinnikova, Olga S [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system. RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant

  15. Anticodeine aptamer immobilized on a Whatman cellulose paper for thin-film microextraction of codeine from urine followed by electrospray ionization ion mobility spectrometry.

    Science.gov (United States)

    Hashemian, Zahra; Khayamian, Taghi; Saraji, Mohammad

    2015-02-01

    A combination of thin-film microextaction based on an aptamer immobilized on modified Whatman cellulose paper followed by electrospray ionization ion mobility spectrometry has been developed for the analysis of codeine in urine samples. The immobilization is based on the covalent linking of an amino-modified anticodeine aptamer to aldehyde groups of the oxidized cellulose paper. The covalent bonds were examined by infrared spectroscopy and elemental analysis. The effect of the extraction parameters, including the elution conditions (solvent type and volume), extraction time, and extraction temperature, on the extraction efficiency were investigated. Under the optimized conditions, the linear dynamic range was found to be 10-300 ng/mL with a detection limit of 3.4 ng/mL for codeine in urine. The relative standard deviation was 6.8% for three replicate measurements of codeine at 100 ng/mL in urine. Furthermore, the samples were analyzed with a standard method for the analysis of codeine using high-performance liquid chromatography with ultraviolet detection. The comparison of the results validates the accuracy of the proposed method as an alternative method for the analysis of codeine in urine samples.

  16. Fast profiling of anthocyanins in wine by desorption nano-electrospray ionization mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Hartmanová, L.; Ranc, V.; Papoušková, B.; Bednář, P.; Havlíček, Vladimír; Lemr, Karel

    2010-01-01

    Roč. 1217, č. 25 (2010), s. 4223-4228 ISSN 0021-9673 R&D Projects: GA ČR GA203/07/0765 Institutional research plan: CEZ:AV0Z50200510 Keywords : Mass spectrometry * Desorption nano-electrospray * Liquid chromatography Subject RIV: CE - Biochemistry Impact factor: 4.194, year: 2010

  17. Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS).

    Science.gov (United States)

    Román, Jessica K; Walsh, Callee M; Oh, Junho; Dana, Catherine E; Hong, Sungmin; Jo, Kyoo D; Alleyne, Marianne; Miljkovic, Nenad; Cropek, Donald M

    2018-03-01

    Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical. Graphical abstract Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings.

  18. Relationships between structure, ionization profile and sensitivity of exogenous anabolic steroids under electrospray ionization and analysis in human urine using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Cha, Eunju; Kim, Sohee; Kim, Hee Won; Lee, Kang Mi; Kim, Ho Jun; Kwon, Oh-Seung; Lee, Jaeick

    2016-04-01

    The relationships between the ionization profile, sensitivity, and structures of 64 exogenous anabolic steroids (groups I-IV) was investigated under electrospray ionization (ESI) conditions. The target analytes were ionized as [M + H](+) or [M + H-nH2 O](+) in the positive mode, and these ions were used as precursor ions for selected reaction monitoring analysis. The collision energy and Q3 ions were optimized based on the sensitivity and selectivity. The limits of detection (LODs) were 0.05-20 ng/mL for the 64 steroids. The LODs for 38 compounds, 14 compounds and 12 compounds were in the range of 0.05-1, 2-5 and 10-20 ng/mL, respectively. Steroids including the conjugated keto-functional group at C3 showed good proton affinity and stability, and generated the [M + H](+) ion as the most abundant precursor ion. In addition, the LODs of steroids using the [M + H](+) ion as the precursor ion were mostly distributed at low concentrations. In contrast, steroids containing conjugated/unconjugated hydroxyl functional groups at C3 generated [M + H - H2 O](+) or [M + H - 2H2 O](+) ions, and these steroids showed relatively high LODs owing to poor stability and multiple ion formation. An LC-MS/MS method based on the present ionization profile was developed and validated for the determination of 78 steroids (groups I-V) in human urine. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Quantitative analysis of copolymers : influence of the structure of the monomer on the ionization efficiency in electrospray ionization FTMS

    NARCIS (Netherlands)

    Koster, S.; Mulder, B.; Duursma, M.C.; Boon, J.J.; Philipsen, H.J.A.; Velde, J.W.; Nielen, M.W.F.; Koster, de C.G.; Heeren, R.M.A.

    2002-01-01

    The influence of the ionization efficiency on the measured copolymer sequence distribution is presented. Large differences in ionization efficiency were observed for mixtures of homopolyesters containing dipropoxylated bisphenol A/adipic acid and dipropoxylated bisphenol A/isophthalic acid and the

  20. Determination of benzothiazole and benzotriazole derivates in tire and clothing textile samples by high performance liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Avagyan, Rozanna; Sadiktsis, Ioannis; Thorsén, Gunnar; Östman, Conny; Westerholm, Roger

    2013-09-13

    A high performance liquid chromatography-tandem mass spectrometry method utilizing electrospray ionization in positive and negative mode has been developed for the separation and detection of benzothiazole and benzotriazole derivates. Ultra-sonication assisted solvent extraction of these compounds has also been developed and the overall method demonstrated on a selected clothing textile and an automobile tire sample. Matrix effects and extraction recoveries, as well as linearity and limits of detection have been evaluated. The calibration curves spanned over more than two orders of magnitude with coefficients of correlation R(2)>0.99 and the limits of detection and the limits of quantification were in the range 1.7-58pg injected and 18-140pg/g, respectively. The extraction recoveries ranged between 69% and 102% and the matrix effects between 75% and 101%. Benzothiazole and benzotriazole derivates were determined in the textile sample and benzothiazole derivatives determined in the tire sample with good analytical performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Ballpoint pen inks: characterization by positive and negative ion-electrospray ionization mass spectrometry for the forensic examination of writing inks.

    Science.gov (United States)

    Ng, Lay-Keow; Lafontaine, Pierre; Brazeau, Luc

    2002-11-01

    A method based on profiling of dye components by electrospray ionization mass spectrometry (ESI/MS) is described for the characterization of ballpoint pen inks. The method involves benzyl alcohol (30 microL) extraction of ink from paper. The extracts of ink lines 1 and 5 mm in length are used for direct ESI/MS analysis in positive and negative modes, respectively. The instrumental analysis takes 3 min. Basic and acid dyes in the inks are detected in the positive and negative modes, respectively, with each dye yielding one or two characteristic ion peaks. The mass spectrum, which is mainly a compositional signature of the dyes in the ink, was not affected by the type of paper from which the ink was extracted, or by natural ageing of the ink on document in the absence of light. However, exposure to fluorescent illumination caused dealkylation of polyalkylated basic dyes and resulted in changes in the homologous distribution of the dyes. In this study, a total of 44 blue inks, 23 black inks, and 10 red inks have been analyzed, and the mass spectra were used to establish a searchable library. ESI/MS analysis provides a simple and fast way to compare ink specimens and in combination with on-line library search permits rapid screening of inks for forensic document investigations.

  2. Analysis of hydrolyzable tannins and other phenolic compounds in emblic leafflower (Phyllanthus emblica L.) fruits by high performance liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Yang, Baoru; Kortesniemi, Maaria; Liu, Pengzhan; Karonen, Maarit; Salminen, Juha-Pekka

    2012-09-05

    Phenolic compounds were extracted from dried emblic leafflower (Phyllanthus emblica L.) fruits with methanol and separated by Sephadex LH-20 column chromatography. The raw extracts and fractions were analyzed with HPLC coupled with diode array UV spectroscopy, electrospray ionization mass spectrometry, and tandem mass spectrometry. Mucic acid gallate, mucic acid lactone gallate, monogalloylglucose, gallic acid, digalloylglucose, putranjivain A, galloyl-HHDP-glucose, elaeocarpusin, and chebulagic acid were suggested to be the most abundant compounds in the crude methanol extracts of the fruits. In addition, 144 peaks were detected, of which 67 were tentatively identified mostly as ellagitannins, flavonoids, and simple gallic acid derivatives in the fractions. The results indicated the presence of neochebulagic acid, isomers of neochebuloyl galloylglucose, chebuloyl neochebuloyl galloylglucose, ellagic acid glycosides, quercetin glycosides, and eriodictyol coumaroyl glycosides in the fruits. The study provides a systematic report of the retention data and characteristics of UV, MS, and MS/MS spectra of the phenolic compounds in the fruits of emblic leafflower. The fruits of two varieties (Ping Dan No 1 and Fruity) from Guangxi Province differed from those of wild Tian Chuan emblic leafflower from Fujian Province in the content and profile of phenolic compounds.

  3. A simple and selective method for the measurement of azadirachtin and related azadirachtoid levels in fruits and vegetables using liquid chromatography electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Sarais, Giorgia; Caboni, Pierluigi; Sarritzu, Erika; Russo, Mariateresa; Cabras, Paolo

    2008-05-14

    Neem-based insecticides containing azadirachtin and related azadirachtoids are widely used in agriculture. Here, we report an analytical method for the rapid and accurate quantification of the insecticide azadirachtin A and B and other azadirachtoids such as salannin, nimbin, and their deacetylated analogues on tomatoes and peaches. Azadirachtoids were extracted from fruits and vegetables with acetonitrile. Using high-performance liquid chromatography/electrospray ionization tandem mass spectrometer, azadirachtoids were selectively detected monitoring the multiple reaction transitions of sodium adduct precursor ions. For azadirachtin A, calibration was linear over a working range of 1-1000 microg/L with r > 0.996. The limit of detection and limit of quantification for azadirachtin A were 0.4 and 0.8 microg/kg, respectively. The presence of interfering compounds in the peach and tomato extracts was evaluated and found to be minimal. Because of the linear behavior, it was concluded that the multiple reaction transitions of sodium adduct ions can be used for analytical purposes, that is, for the identification and quantification of azadirachtin A and B and related azadirachtoids in fruit and vegetable extracts at trace levels.

  4. Analysis of phenolic compounds from different morphological parts of Helichrysum devium by liquid chromatography with on-line UV and electrospray ionization mass spectrometric detection.

    Science.gov (United States)

    Gouveia, Sandra C; Castilho, Paula C

    2009-12-01

    A simple and rapid method has been used for the screening and identification of the main phenolic compounds from Helichrysum devium using high-performance liquid chromatography with on-line UV and electrospray ionization mass spectrometric detection (LC-DAD/ESI-MS(n)). The total aerial parts and different morphological parts of the plant, namely leaves, flowers and stems, were analyzed separately. A total of 34 compounds present in the methanolic extract from Helichrysum devium were identified or tentatively characterized based on their UV and mass spectra and retention times. Three of these compounds were positively identified by comparison with reference standards. The phenolic compounds included derivatives of quinic acid, O-glycosylated flavonoids, a caffeic acid derivative and a protocatechuic acid derivative. The characteristic loss of 206 Da from malonylcaffeoyl quinic acid was used to confirm the malonyl linkage to the caffeoyl group. This contribution presents one of the first reports on the analysis of phenolic compounds from Helichrysum devium using LC-DAD/ESI-MS(n) and highlights the prominence of quinic acid derivatives as the main group of phenolic compounds present in these extracts. We also provide evidence that the methanolic extract from the flowers was significantly more complex when compared to that of other morphological parts. Copyright 2009 John Wiley & Sons, Ltd.

  5. Determination of torasemide in human plasma and its bioequivalence study by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2016-04-01

    Full Text Available A sensitive and selective method using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC–ESI–MS to determine the concentration of torasemide in human plasma samples was developed and validated. Tolbutamide was chosen as the internal standard (IS. The chromatography was performed on a Gl Sciences Inertsil ODS-3 column (100 mm×2.1 mm i.d., 5.0 µm within 5 min, using methanol with 10 mM ammonium formate (60:40, v/v as mobile phase at a flow rate of 0.2 mL/min. The targeted compound was detected in negative ionization at m/z 347.00 for torasemide and 269.00 for IS. The linearity range of this method was found to be within the concentration range of 1–2500 ng/mL (r=0.9984 for torasemide in human plasma. The accuracy of this measurement was between 94.05% and 103.86%. The extracted recovery efficiency was from 84.20% to 86.47% at three concentration levels. This method was also successfully applied in pharmacokinetics and bioequivalence studies in Chinese volunteers.

  6. Determination of flomoxef in human plasma by liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Kravtsova, Oxana Yu; Paramonov, Sergey A; Vasilevich, Natalya I; Kazyulkin, Denis N; Vlasova, Ekaterina; Engsig, Michael

    2013-12-01

    A specific, sensitive, rapid and reproducible method for the determination of flomoxef in human plasma using high-performance liquid chromatography-tandem mass spectrometry was developed and validated. Flomoxef was detected using an electrospay ionization method operated in negative-ion mode. Chromatographic separation was performed in gradient elution mode on a Luna® C18(2) column (3 μM, 20 × 4.0 mm) at a flow rate of 1 mL/min and runtime 3.5 min. The mobile phase consisted of acetonitrile and water containing 0.1% formic acid as additive. Extraction of flomoxef from plasma and precipitation of plasma proteins was performed with acetonitrile with an absolute recovery of 86.4 ± 1.6%. The calibration curve was linear with a correlation coefficient of 0.999 over the concentration range 10-5000 ng/mL and the lower limit of quantification was 10 ng/mL. The intra- and inter-day precisions were flomoxef revealed that it could be successfully analyzed at 4 ºС over 24 h, but it was unstable in solutions at room temperature during short-term storage (4 h) and several freeze-thaw cycles. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Specific determination of 20 primary aromatic amines in aqueous food simulants by liquid chromatography-electrospray ionization-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Mortensen, Sarah Kelly; Trier, Xenia Thorsager; Foverskov, Annie

    2005-01-01

    A multi-analyte method without any pre-treatment steps using reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was developed and applied for the determination of 20 primary aromatic amines (PAA) associated with polyurethane (PUR) products or azo...

  8. Control of Strobilurin Fungicides in Wheat Using Direct Analysis in Real Time Accurate Time-of-Flight and Desorption Electrospray Ionization Linear Ion Trap Mass Spectrometry

    NARCIS (Netherlands)

    Schurek, J.; Vaclavik, L.; Hooijerink, H.; Lacina, O.; Poustka, J.; Sharman, M.; Caldow, M.; Nielen, M.W.F.; Hajslova, J.

    2008-01-01

    Ambient mass spectrometry has been used for the analysis of strobilurin residues in wheat. The use of this novel, challenging technique, employing a direct analysis in a real time (DART) ion-source coupled with a time-of-flight mass spectrometer (TOF MS) and a desorption electrospray ionization

  9. Electrospray Ionization with High-Resolution Mass Spectrometry as a Tool for Lignomics: Lignin Mass Spectrum Deconvolution

    Science.gov (United States)

    Andrianova, Anastasia A.; DiProspero, Thomas; Geib, Clayton; Smoliakova, Irina P.; Kozliak, Evguenii I.; Kubátová, Alena

    2018-05-01

    The capability to characterize lignin, lignocellulose, and their degradation products is essential for the development of new renewable feedstocks. Electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR TOF-MS) method was developed expanding the lignomics toolkit while targeting the simultaneous detection of low and high molecular weight (MW) lignin species. The effect of a broad range of electrolytes and various ionization conditions on ion formation and ionization effectiveness was studied using a suite of mono-, di-, and triarene lignin model compounds as well as kraft alkali lignin. Contrary to the previous studies, the positive ionization mode was found to be more effective for methoxy-substituted arenes and polyphenols, i.e., species of a broadly varied MW structurally similar to the native lignin. For the first time, we report an effective formation of multiply charged species of lignin with the subsequent mass spectrum deconvolution in the presence of 100 mmol L-1 formic acid in the positive ESI mode. The developed method enabled the detection of lignin species with an MW between 150 and 9000 Da or higher, depending on the mass analyzer. The obtained M n and M w values of 1500 and 2500 Da, respectively, were in good agreement with those determined by gel permeation chromatography. Furthermore, the deconvoluted ESI mass spectrum was similar to that obtained with matrix-assisted laser desorption/ionization (MALDI)-HR TOF-MS, yet featuring a higher signal-to-noise ratio. The formation of multiply charged species was confirmed with ion mobility ESI-HR Q-TOF-MS. [Figure not available: see fulltext.

  10. Direct Detection of Pharmaceuticals and Personal Care Products from Aqueous Samples with Thermally-Assisted Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Campbell, Ian S.; Ton, Alain T.; Mulligan, Christopher C.

    2011-07-01

    An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.

  11. Improved detection limits for electrospray ionization on a magnetic sector mass spectrometer by using an array detector.

    Science.gov (United States)

    Cody, R B; Tamura, J; Finch, J W; Musselman, B D

    1994-03-01

    Array detection was compared with point detection for solutions of hen egg-white lysozyme, equine myoglobin, and ubiquitin analyzed by electrospray ionization with a magnetic sector mass spectrometer. The detection limits for samples analyzed by using the array detector system were at least 10 times lower than could be achieved by using a point detector on the same mass spectrometer. The minimum detectable quantity of protein corresponded to a signal-to-background ratio of approximately 2∶1 for a 500 amol/μL solution of hen egg-white lysozyme. However, the ultimate practical sample concentrations appeared to be in the 10-100 fmol/μL range for the analysis of dilute solutions of relatively pure proteins or simple mixtures.

  12. Characterization of primaquine imidazolidin-4-ones with antimalarial activity by electrospray ionization-ion trap mass spectrometry

    Science.gov (United States)

    Vale, Nuno; Moreira, Rui; Gomes, Paula

    2008-02-01

    The extensive characterization by electrospray ionization-ion trap mass spectrometry (ESI-MSn) of 20 imidazolidin-4-ones derived from the antimalarial primaquine was well obtained. These compounds are being under investigation as potential antimalarials, as they have been previously found to be active against rodent P. berghei malaria and to be highly stable under physiological conditions. Experiments by collision-induced dissociation (CID) in the nozzle-skimmer region or by tandem-MS have shown the title compounds to be remarkably stable. Mechanisms are proposed to explain the major fragmentations observed in ESI-MSn experiments. Overall, this work represents an unprecedented contribution to a deeper insight into imidazolidin-4-one antimalarials based on a classic 8-aminoquinolinic scaffold. Data herein reported and discussed may be an useful guide for future studies on therapeutically relevant molecules possessing either the 8-aminoquinoline or the imidazolidin-4-one motifs.

  13. Salinity and solvent effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization

    International Nuclear Information System (INIS)

    Headley, J.; Peru, K.; Barrow, M.; Derrick, P.

    2010-01-01

    This study investigated the salinity and solvent effects on the characterization of naphthenic acids (NA) in oil sands. The mass spectra of NA were obtained using an electrospray ionization method combined with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The study showed that while monocarboxylic compounds (C n H 2n+z O 2 ) in the z=-4, -6, and -12 of the 2,3 and 6-ring NA in the carbon number range of 13 to 19 were prevalent in the dichloromethane and acetonitrile co-solvent systems, the addition of salt resulted in a reduction of the observed species, the complete elimination of dicarboxylic acids, and an 80 per cent reduction in O 3 species with similar carbon number range and z values. The dicarboxylic acids were also less toxic than monocarboxylic acids. Results of the study will be used to refine methods of remediating oil sands and process water contaminated soils.

  14. Identification of the Related Substances in Ampicillin Capsule by Rapid Resolution Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available Rapid Resolution Liquid Chromatography coupled with Electrospray Ionization Tandem Mass Spectrometry (RRLC-ESI-MSn was used to separate and identify related substances in ampicillin capsule. The fragmentation behaviors of related substances were used to identify their chemical structures. Finally, a total of 13 related substances in ampicillin capsule were identified, including four identified components for the first time and three groups of isomers on the basis of the exact mass, fragmentation behaviors, retention time, and chemical structures in the literature. This study avoided time-consuming and complex chemosynthesis of related substances of ampicillin and the results could be useful for the quality control of ampicillin capsule to guarantee its safety in clinic. In the meantime, it provided a good example for the rapid identification of chemical structures of related substances of drugs.

  15. Hydrophilic interaction liquid chromatography/positive ion electrospray ionization mass spectrometry method for the quantification of alprazolam and α-hydroxy-alprazolam in human plasma.

    Science.gov (United States)

    Kalogria, Eleni; Pistos, Constantinos; Panderi, Irene

    2013-12-30

    A hydrophilic interaction liquid chromatography/positive ion electrospray-mass spectrometry (HILIC-ESI/MS) has been developed and fully validated for the quantification of alprazolam and its main metabolite, α-hydroxy-alprazolam, in human plasma. The assay is based on 50μL plasma samples, following liquid-liquid extraction. All analytes and the internal standard (tiamulin) were separated by hydrophilic interaction liquid chromatography using an X-Bridge-HILIC analytical column (150.0mm×2.1mm i.d., particle size 3.5μm) under isoscratic elution. The mobile phase was composed of a 7% 10mM ammonium formate water solution in acetonitrile and pumped at a flow rate of 0.20mLmin(-1). Running in positive electrospray ionization and selected ion monitoring (SIM) the mass spectrometer was set to analyze the protonated molecules [M+H](+) at m/z 309, 325 and 494 for alprazolam, α-hydroxy-alprazolam and tiamulin (ISTD) respectively. The assay was linear over the concentration range of 2.5-250ngmL(-1) for alprazolam and 2.5-50ngmL(-1) for α-hydroxy alprazolam. Intermediate precision was less than 4.1% over the tested concentration ranges. The method is the first reported application of HILIC in the analysis benzodiazepines in human plasma. With a small sample size (50μL human plasma) and a run time less than 10.0min for each sample the method can be used to support a wide range of clinical studies concerning alprazolam quantification. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Ultra-fast liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry for the rapid phenolic profiling of red maple (Acer rubrum) leaves.

    Science.gov (United States)

    Li, Chunting; Seeram, Navindra P

    2018-03-07

    The red maple (Acer rubrum) species is economically important to North America because of its sap, which is used to produce maple syrup. In addition, various other red maple plant parts, including leaves, were used as a traditional medicine by the Native Americans. Currently, red maple leaves are being used for nutraceutical and cosmetic applications but there are no published analytical methods for comprehensive phytochemical characterization of this material. Herein, a rapid and sensitive method using liquid chromatography with electrospray ionization time-of-flight tandem mass spectrometry was developed to characterize the phenolics in a methanol extract of red maple leaves and a proprietary phenolic-enriched red maple leaves extract (Maplifa™). Time-of-flight mass spectrometry and tandem mass spectrometry experiments led to the identification of 106 phenolic compounds in red maples leaves with the vast majority of these compounds also detected in Maplifa™. The compounds included 68 gallotannins, 25 flavonoids, gallic acid, quinic acid, catechin, epicatechin, and nine other gallic acid derivatives among which 11 are potentially new and 75 are being reported from red maple for the first time. The developed method to characterize red maple leaves phenolics is rapid and highly sensitive and could aid in future standardization and quality control of this botanical ingredient. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Antioxidant activity and ultra-performance LC-electrospray ionization-quadrupole time-of-flight mass spectrometry for phenolics-based fingerprinting of Rose species: Rosa damascena, Rosa bourboniana and Rosa brunonii.

    Science.gov (United States)

    Kumar, Neeraj; Bhandari, Pamita; Singh, Bikram; Bari, Shamsher S

    2009-02-01

    Roses are one of the most important groups of ornamental plants and their fruits and flowers are used in a wide variety of food, nutritional products and different traditional medicines. The antioxidant activity of methanolic extracts from fresh flowers of three rose species (Rosa damascena, Rosa bourboniana and Rosa brunonii) was evaluated by 1,1-diphenyl-2-picryl hydrazyl (DPPH) free-radical method. The ability to scavenge DPPH radical was measured by the discoloration of the solution. The methanolic extract from R. brunonii exhibited maximum free-radical-scavenging activity (64.5+/-0.38%) followed by R. bourboniana (51.8+/-0.46%) and R. damascena (43.6+/-0.25%) at 100 microg/ml. Simultaneously, ultra-performance liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) was used to study phenolic composition in the methanolic extracts from the fresh flowers of rose species. The phenolic constituents were further investigated by direct infusion-ESI-QTOF-MS/MS in negative ion mode. Characteristic Electrospray ionization tandem mass spectrometry (ESI-MS/MS) spectra with other diagnostic fragment ions generated by retro Diels-Alder (RDA) fragmentation pathways were recorded for the flavonoids. Distinct similarities were observed in the relative distribution of polyphenolic compounds among the three species. The dominance of quercetin, kaempferol and their glycosides was observed in all the three species.

  18. Quantitative Profiling of Major Neutral Lipid Classes in Human Meibum by Direct Infusion Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Chen, Jianzhong; Green, Kari B.; Nichols, Kelly K.

    2013-01-01

    Purpose. The purpose of this investigation was to better understand lipid composition in human meibum. Methods. Intact lipids in meibum samples were detected by direct infusion electrospray ionization mass spectrometry (ESI-MS) analysis in positive detection mode using sodium iodide (NaI) as an additive. The peak intensities of all major types of lipid species, that is, wax esters (WEs), cholesteryl esters (CEs), and diesters (DEs) were corrected for peak overlapping and isotopic distribution; an additional ionization efficiency correction was performed for WEs and CEs, which was simplified by the observation that the corresponding ionization efficiency was primarily dependent on the specific lipid class and saturation degree of the lipids while independent of the carbon chain length. A set of WE and CE standards was spiked in meibum samples for ionization efficiency determination and absolute quantitation. Results. The absolute amount (μmol/mg) for each of 51 WEs and 31 CEs in meibum samples was determined. The summed masses for 51 WEs and 31 CEs accounted for 48 ± 4% and 40 ± 2%, respectively, of the total meibum lipids. The mass percentages of saturated and unsaturated species were determined to be 75 ± 2% and 25 ± 1% for CEs and 14 ± 1% and 86 ± 1% for WEs. The profiles for two types of DEs were also obtained, which include 42 α,ω Type II DEs, and 21 ω Type I-St DEs. Conclusions. Major neutral lipid classes in meibum samples were quantitatively profiled by ESI-MS analysis with NaI additive. PMID:23847307

  19. Metabolite fingerprinting of Punica granatum L. (pomegranate) polyphenols by means of high-performance liquid chromatography with diode array and electrospray ionization-mass spectrometry detection.

    Science.gov (United States)

    Brighenti, Virginia; Groothuis, Sebastiaan Frearick; Prencipe, Francesco Pio; Amir, Rachel; Benvenuti, Stefania; Pellati, Federica

    2017-01-13

    The present study was aimed at the development of a new analytical method for the comprehensive multi-component analysis of polyphenols in Punica granatum L. (pomegranate) juice and peel. While pomegranate juice was directly analysed after simple centrifugation, different extraction techniques, including maceration, heat reflux extraction, ultrasound-assisted extraction and microwave-assisted extraction, were compared in order to obtain a high yield of the target analytes from pomegranate peel. Dynamic maceration with a mixture of water and ethanol 80:20 (v/v) with 0.1% of hydrochloric acid as the extraction solvent provided the best result in terms of recovery of pomegranate secondary metabolites. The quali- and quantitative analysis of pomegranate polyphenols was performed by high-performance liquid chromatography with diode array and electrospray ionization-mass spectrometry detection. The application of fused-core column technology allowed us to obtain an improvement of the chromatographic performance in comparison with that of conventional particulate stationary phases, thus enabling a good separation of all constituents in a shorter time and with low solvent usage. The analytical method was completely validated to show compliance with the International Conference on Harmonization of Technical Requirements for the Registration of Pharmaceuticals for Human Use guidelines and successfully applied to the characterisation of commercial and experimental pomegranate samples, thus demonstrating its efficiency as a tool for the fingerprinting of this plant material. The quantitative data collected were submitted to principal component analysis, in order to highlight the possible presence of pomegranate samples with high content of secondary metabolites. From the statistical analysis, four experimental samples showed a notable content of bioactive compounds in the peels, while commercial ones still represent the best source of healthy juice. Copyright © 2016 Elsevier

  20. Fragmentation study of iridoid glucosides through positive and negative electrospray ionization, collision-induced dissociation and tandem mass spectrometry.

    Science.gov (United States)

    Es-Safi, Nour-Eddine; Kerhoas, Lucien; Ducrot, Paul-Henri

    2007-01-01

    Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds. Copyright (c) 2007 John Wiley & Sons, Ltd.

  1. Detection of Metastatic Breast and Thyroid Cancer in Lymph Nodes by Desorption Electrospray Ionization Mass Spectrometry Imaging

    Science.gov (United States)

    Zhang, Jialing; Feider, Clara L.; Nagi, Chandandeep; Yu, Wendong; Carter, Stacey A.; Suliburk, James; Cao, Hop S. Tran; Eberlin, Livia S.

    2017-06-01

    Ambient ionization mass spectrometry has been widely applied to image lipids and metabolites in primary cancer tissues with the purpose of detecting and understanding metabolic changes associated with cancer development and progression. Here, we report the use of desorption electrospray ionization mass spectrometry (DESI-MS) to image metastatic breast and thyroid cancer in human lymph node tissues. Our results show clear alterations in lipid and metabolite distributions detected in the mass spectra profiles from 42 samples of metastatic thyroid tumors, metastatic breast tumors, and normal lymph node tissues. 2D DESI-MS ion images of selected molecular species allowed discrimination and visualization of specific histologic features within tissue sections, including regions of metastatic cancer, adjacent normal lymph node, and fibrosis or adipose tissues, which strongly correlated with pathologic findings. In thyroid cancer metastasis, increased relative abundances of ceramides and glycerophosphoinisitols were observed. In breast cancer metastasis, increased relative abundances of various fatty acids and specific glycerophospholipids were seen. Trends in the alterations in fatty acyl chain composition of lipid species were also observed through detailed mass spectra evaluation and chemical identification of molecular species. The results obtained demonstrate DESI-MSI as a potential clinical tool for the detection of breast and thyroid cancer metastasis in lymph nodes, although further validation is needed. [Figure not available: see fulltext.

  2. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    Science.gov (United States)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-12-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  3. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Shariatgorji, Mohammadreza; Strittmatter, Nicole; Nilsson, Anna; Källback, Patrik; Alvarsson, Alexandra; Zhang, Xiaoqun; Vallianatou, Theodosia; Svenningsson, Per; Goodwin, Richard J A; Andren, Per E

    2016-08-01

    With neurological processes involving multiple neurotransmitters and neuromodulators, it is important to have the ability to directly map and quantify multiple signaling molecules simultaneously in a single analysis. By utilizing a molecular-specific approach, namely desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we demonstrated that the technique can be used to image multiple neurotransmitters and their metabolites (dopamine, dihydroxyphenylacetic acid, 3-methoxytyramine, serotonin, glutamate, glutamine, aspartate, γ-aminobutyric acid, adenosine) as well as neuroactive drugs (amphetamine, sibutramine, fluvoxamine) and drug metabolites in situ directly in brain tissue sections. The use of both positive and negative ionization modes increased the number of identified molecular targets. Chemical derivatization by charge-tagging the primary amines of molecules significantly increased the sensitivity, enabling the detection of low abundant neurotransmitters and other neuroactive substances previously undetectable by MSI. The sensitivity of the imaging approach of neurochemicals has a great potential in many diverse applications in fields such as neuroscience, pharmacology, drug discovery, neurochemistry, and medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Using precursor ion scan of 184 with liquid chromatography-electrospray ionization-tandem mass spectrometry for concentration normalization in cellular lipidomic studies.

    Science.gov (United States)

    Chao, Hsi-Chun; Chen, Guan-Yuan; Hsu, Lih-Ching; Liao, Hsiao-Wei; Yang, Sin-Yu; Wang, San-Yuan; Li, Yu-Liang; Tang, Sung-Chun; Tseng, Yufeng Jane; Kuo, Ching-Hua

    2017-06-08

    Cellular lipidomic studies have been favored approaches in many biomedical research areas. To provide fair comparisons of the studied cells, it is essential to perform normalization of the determined concentration before lipidomic analysis. This study proposed a cellular lipidomic normalization method by measuring the phosphatidylcholine (PC) and sphingomyelin (SM) contents in cell extracts. To provide efficient analysis of PC and SM in cell extracts, flow injection analysis-electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS) with a precursor ion scan (PIS) of m/z 184 was used, and the parameters affecting the performance of the method were optimized. Good linearity could be observed between the cell extract dilution factor and the reciprocal of the total ion chromatogram (TIC) area in the PIS of m/z 184 within the dilution range of 1- to 16-fold (R 2  = 0.998). The calibration curve could be used for concentration adjustment of the unknown concentration of a cell extract. The intraday and intermediate precisions were below 10%. The accuracy ranged from 93.0% to 105.6%. The performance of the new normalization method was evaluated using different numbers of HCT-116 cells. Sphingosine, ceramide (d18:1/18:0), SM (d18:1/18:0) and PC (16:1/18:0) were selected as the representative test lipid species, and the results showed that the peak areas of each lipid species obtained from different cell numbers were within a 20% variation after normalization. Finally, the PIS of 184 normalization method was applied to study ischemia-induced neuron injury using oxygen and glucose deprivation (OGD) on primary neuronal cultured cells. Our results showed that the PIS of 184 normalization method is an efficient and effective approach for concentration normalization in cellular lipidomic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Identification and Quantification of Flavonoids and Phenolic Acids in Burr Parsley (Caucalis platycarpos L., Using High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ana Mornar

    2009-07-01

    Full Text Available A sensitive method coupling high-performance liquid chromatography (HPLC with diode-array detector (DAD and electrospray ionization mass spectrometry (MS was optimized for the separation and identification of phenolic acids, flavonoid glycosides and flavonoid aglycones in the extract of burr parsley (Caucalis platycarpos L.. Fragmentation behavior of flavonoid glycosides and phenolic acids were investigated using ion trap mass spectrometry in negative electrospray ionization. The MS, MSn and UV data together with HPLC retention time (TR of phenolic acids and flavonoids allowed structural characterization of these compounds. Caffeoylquinic acid (CQA isomers, p-coumaroyl-quinic acids (p-CoQA, feruloylquinic acids (FQA, dicaffeoylquinic acids (diCQA, luteolin-7-O-rutinoside, apigenin-7-O-rutinoside as well as isolated chrysoeriol-7-O-rutinoside have been identified as constituents of C. platycarpos for the first time. An accurate, precise and sensitive LC-DAD method for quantification of four phenolic acids (3-O-caffeoylquinic, caffeic, p-coumaric, o-coumaric acid, four flavonoid glycosides (luteolin-7-O-glucoside, apigenin-7-O-glucoside, quercetin-3-O-galactoside, quercetin-3-O-rhamnoside, and three flavonoid aglycones (luteolin, apigenin, chrysoeriol in C. platycarpos extract was validated in terms of linearity, limit of detection, limit of quantification, precision and accuracy. 3-O-caffeoylquinic acid was the predominant phenolic acid and luteolin-7-O-glucoside was the predominant flavonoid glycoside.

  6. Simultaneous determination of carboprost methylate and its active metabolite carboprost in dog plasma by liquid chromatography-tandem mass spectrometry with positive/negative ion-switching electrospray ionization and its application to a pharmacokinetic study.

    Science.gov (United States)

    Yin, Lei; Meng, Xiangjun; Zhou, Xiaotong; Zhang, Tinglan; Sun, Heping; Yang, Zhichao; Yang, Bo; Xiao, Ning; Fawcett, J Paul; Yang, Yan; Gu, Jingkai

    2015-08-15

    A liquid chromatography-tandem mass spectrometric (LC-MS/MS) method using positive/negative electrospray ionization (ESI) switching for the simultaneous quantitation of carboprost methylate and carboprost in dog plasma has been developed and validated. After screening, the esterase inhibitor, dichlorvos was added to the whole blood at a ratio of 1:99 (v/v) to stabilize carboprost methylate during blood collection, sample storage and LLE. Indomethacin was added to plasma to inhibit prostaglandins synthesis after sampling. After liquid-liquid extraction of 500μL plasma with ethyl ether-dichloromethane (75:25, v/v), analytes and internal standard (IS), alprostadil-d4, were chromatographed on a CAPCELL PAK Phenyl column (150×2.0mm, 5μm) using acetonitrile-5mM ammonium acetate as mobile phase. Carboprost methylate was detected by positive ion electrospray ionization followed by multiple reaction monitoring (MRM) of the transition at m/z 400.5→329.3; the carboprost and IS were detected by negative ion electrospray ionization followed by MRM of the transitions at m/z 367.2→323.2, and 357.1→321.2, respectively. The method was linear for both analytes in the concentration range 0.05-30ng/mL with intra- and inter-day precisions (as relative standard deviation) of ≤6.75% and accuracy (as relative error) of ≤7.21% and limit of detection (LOD) values were 10 and 20pg/mL, respectively. The method was successfully applied to a pharmacokinetic study of the analytes in beagle dogs after intravaginal administration of a suppository containing 0.5mg carboprost methylate. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Analysis of Large Polymerases Chain Reaction Products

    International Nuclear Information System (INIS)

    Wunschel, David S.; Pasa Tolic, Ljiljana; Feng, Bingbing; Smith, Richard D.

    2000-01-01

    We have attempted to expand the size range of PCR products that can be analyzed by electroscopy ionization (ESI) Fourier transformion cyclotron resonance (FTICR) mass spectrometry. The mass measurement accuracy obtained illustrates that a signel base substitution could be identified at the size of PCR product with a 7 tesla ESI-FTICR

  8. An ultrahigh-performance liquid chromatography method with electrospray ionization tandem mass spectrometry for simultaneous quantification of five phytohormones in medicinal plant Glycyrrhiza uralensis under abscisic acid stress.

    Science.gov (United States)

    Xiang, Yu; Song, Xiaona; Qiao, Jing; Zang, Yimei; Li, Yanpeng; Liu, Yong; Liu, Chunsheng

    2015-07-01

    An efficient simplified method was developed to determine multiple classes of phytohormones simultaneously in the medicinal plant Glycyrrhiza uralensis. Ultrahigh-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC/ESI-MS/MS) with multiple reaction monitoring (MRM) in negative mode was used for quantification. The five studied phytohormones are gibberellic acid (GA3), abscisic acid (ABA), jasmonic acid (JA), indole-3-acetic acid, and salicylic acid (SA). Only 100 mg of fresh leaves was needed, with one purification step based on C18 solid-phase extraction. Cinnamic acid was chosen as the internal standard instead of isotope-labeled internal standards. Under the optimized conditions, the five phytohormones with internal standard were separated within 4 min, with good linearities and high sensitivity. The validated method was applied to monitor the spatial and temporal changes of the five phytohormones in G. uralensis under ABA stress. The levels of GA3, ABA, JA, and SA in leaves of G. uralensis were increased at different times and with different tendencies in the reported stress mode. These changes in phytohormone levels are discussed in the context of a possible feedback regulation mechanism. Understanding this mechanism will provide a good chance of revealing the mutual interplay between different biosynthetic routes, which could further help elucidate the mechanisms of effective composition accumulation in medicinal plants.

  9. Direct determination of N-methyl-2-pyrrolidone metabolites in urine by HPLC-electrospray ionization-MS/MS using deuterium-labeled compounds as internal standard.

    Science.gov (United States)

    Suzuki, Yoshihiro; Endo, Yoko; Ogawa, Masanori; Yamamoto, Shinobu; Takeuchi, Akito; Nakagawa, Tomoo; Onda, Nobuhiko

    2009-11-01

    N-methyl-2-pyrrolidone (NMP) has been used in many industries and biological monitoring of NMP exposure is preferred to atmospheric monitoring in occupational health. We developed an analytical method that did not include solid phase extraction (SPE) but utilized deuterium-labeled compounds as internal standard for high-performance liquid chromatography-electrospray ionization-mass spectrometry using a C30 column. Urinary concentrations of NMP and its known metabolites 5-hydoxy-N-methyl-2-pyrrolidone (5-HNMP), N-methyl-succinimide (MSI), and 2-hydroxy-N-methylsuccinimide (2-HMSI) were determined in a single run. The method provided baseline separation of these compounds. Their limits of detection in 10-fold diluted urine were 0.0001, 0.006, 0.008, and 0.03 mg/L, respectively. Linear calibration covered a biological exposure index (BEI) for urinary concentration. The within-run and total precisions (CV, %) were 5.6% and 9.2% for NMP, 3.4% and 4.2% for 5-HNMP, 3.7% and 6.0% for MSI, and 6.5% and 6.9% for 2-HMSI. The method was evaluated using international external quality assessment samples, and urine samples from workers exposed to NMP in an occupational area.

  10. Ultra pressure liquid chromatography-negative electrospray ionization mass spectrometry determination of twelve halobenzoquinones at ng/L levels in drinking water.

    Science.gov (United States)

    Huang, Rongfu; Wang, Wei; Qian, Yichao; Boyd, Jessica M; Zhao, Yuli; Li, Xing-Fang

    2013-05-07

    We report here the characterization of twelve halobenzoquinones (HBQs) using electrospray ionization (ESI) high resolution quadrupole time-of-flight mass spectrometry. The high resolution negative ESI spectra of the twelve HBQs formed two parent ions, [M + H(+) + 2e(-)], and the radical M(-•). The intensities of these two parent ions are dependent on their chemical structures and on instrumental parameters such as the source temperature and flow rate. The characteristic ions of the HBQs were used to develop an ultra pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. At the UPLC flow rate (400 μL/min) and under the optimized ESI conditions, eleven HBQs showed the stable and abundant transitions [M + H(+) + 2e(-)] → X(-) (X(-) representing Cl(-), Br(-), or I(-)), while dibromo-dimethyl-benzoquinone (DBDMBQ) showed only the transition of M(-•) → Br(-). The UPLC efficiently separates all HBQs including some HBQ isomers, while the MS/MS offers exquisite limits of detection (LODs) at subng/mL levels for all HBQs except DBDMBQ. Combined with solid phase extraction (SPE), the method LOD is down to ng/L. The results from analysis of authentic samples demonstrated that the SPE-UPLC-MS/MS method is reliable, fast, and sensitive for the identification and quantification of the twelve HBQs in drinking water.

  11. Direct analysis of psychoactive tryptamine and harmala alkaloids in the Amazonian botanical medicine ayahuasca by liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    McIlhenny, Ethan H; Pipkin, Kelly E; Standish, Leanna J; Wechkin, Hope A; Strassman, Rick; Barker, Steven A

    2009-12-18

    A direct injection/liquid chromatography-electrospray ionization-tandem mass spectrometry procedure has been developed for the simultaneous quantitation of 11 compounds potentially found in the increasingly popular Amazonian botanical medicine and religious sacrament ayahuasca. The method utilizes a deuterated internal standard for quantitation and affords rapid detection of the alkaloids by a simple dilution assay, requiring no extraction procedures. Further, the method demonstrates a high degree of specificity for the compounds in question, as well as low limits of detection and quantitation despite using samples for analysis that had been diluted up to 200:1. This approach also appears to eliminate potential matrix effects. Method bias for each compound, examined over a range of concentrations, was also determined as was inter- and intra-assay variation. Its application to the analysis of three different ayahuasca preparations is also described. This method should prove useful in the study of ayahuasca in clinical and ethnobotanical research as well as in forensic examinations of ayahuasca preparations.

  12. Investigation of natural phosphatidylcholine sources: separation and identification by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2) of molecular species.

    Science.gov (United States)

    Le Grandois, Julie; Marchioni, Eric; Zhao, Minjie; Giuffrida, Francesca; Ennahar, Saïd; Bindler, Françoise

    2009-07-22

    This study is a contribution to the exploration of natural phospholipid (PL) sources rich in long-chain polyunsaturated fatty acids (LC-PUFAs) with nutritional interest. Phosphatidylcholines (PCs) were purified from total lipid extracts of different food matrices, and their molecular species were separated and identified by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS(2)). Fragmentation of lithiated adducts allowed for the identification of fatty acids linked to the glycerol backbone. Soy PC was particularly rich in species containing essential fatty acids, such as (18:2-18:2)PC (34.0%), (16:0-18:2)PC (20.8%), and (18:1-18:2)PC (16.3%). PC from animal sources (ox liver and egg yolk) contained major molecular species, such as (16:0-18:2)PC, (16:0-18:1)PC, (18:0-18:2)PC, or (18:0-18:1)PC. Finally, marine source (krill oil), which was particularly rich in (16:0-20:5)PC and (16:0-22:6)PC, appeared to be an interesting potential source for food supplementation with LC-PUFA-PLs, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

  13. Characterization and identification of iridoid glucosides, flavonoids and anthraquinones in Hedyotis diffusa by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Liu, E-Hu; Zhou, Ting; Li, Guo-Bin; Li, Jing; Huang, Xiu-Ning; Pan, Feng; Gao, Ning

    2012-01-01

    The multiple bioactive constituents in Hedyotis diffusa Willd. (H. diffusa) were extracted and characterized by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS(n)). The optimized separation condition was obtained using an Agilent ZorBax SB-C18 column (4.6×150 mm, 5 μm) and gradient elution with water (containing 0.1% formic acid) and acetonitrile (containing 0.1% formic acid), under which baseline separation for the majority of compounds was achieved. Among the compounds detected, 14 iridoid glucosides, 10 flavonoids, 7 anthraquinones, 1 coumarin and 1 triterpene were unambiguously identified or tentatively characterized based on their retention times and mass spectra in comparison with the data from standards or references. The fragmentation behavior for different types of constituents was also investigated, which could contribute to the elucidation of these constituents in H. diffusa. The present study reveals that even more iridoid glycosides were found in H. diffusa than hitherto assumed. The occurrence of two iridoid glucosides and five flavonoids in particular has not yet been described. This paper marks the first report on the structural characterization of chemical compounds in H. diffusa by a developed HPLC-ESI-MS(n) method. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Efficacy of bacterial bioremediation: Demonstration of complete incorporation of hydrocarbons into membrane phospholipids from Rhodococcus hydrocarbon degrading bacteria by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, R.P.; Blumer, E.N.; Emmett, M.R.; Marshall, A.G.

    2000-02-01

    The authors present a method and example to establish complete incorporation of hydrocarbons into membrane phospholipids of putatively bioremediative bacteria. Bacteria are grown on minimal media containing a specified carbon source, either natural abundance or enriched. After extraction (but no other prior separation) of the membrane lipids, electrospray ionization yields a negative-ion FT-ICR mass spectrum containing prominent phospholipid parent ions. If {sup 13}C-enriched hydrocarbon incorporation is complete, then the mass of the parent ion will increase by n Da, in which n is the number of its constituent carbon atoms; moreover, the {sup 13}C isotopic distribution pattern will be reversed. The identities of the constituent fatty acids and polar headgroup are obtained by collisional dissociation (MS/MS), and their extent of {sup 13}C incorporation determined individually. The method is demonstrated for Rhodococcus rhodochrous (ATCC No. 53968), for which all 44 carbons of a representative phosphatidylinositol are shown to derive from the hydrocarbon source. Interestingly, although only C{sub 16} and C{sub 18} alkanes are provided in the growth medium, the bacteria synthesize uniformly enriched C16:0 and C19:0 fatty acids.

  15. Chemical characterisation of non-defective and defective green arabica and robusta coffees by electrospray ionization-mass spectrometry (ESI-MS).

    Science.gov (United States)

    Mendonça, Juliana C F; Franca, Adriana S; Oliveira, Leandro S; Nunes, Marcella

    2008-11-15

    The coffee roasted in Brazil is considered to be of low quality, due to the presence of defective coffee beans that depreciate the beverage quality. These beans, although being separated from the non-defective ones prior to roasting, are still commercialized in the coffee trading market. Thus, it was the aim of this work to verify the feasibility of employing ESI-MS to identify chemical characteristics that will allow the discrimination of Arabica and Robusta species and also of defective and non-defective coffees. Aqueous extracts of green (raw) defective and non-defective coffee beans were analyzed by direct infusion electrospray ionization mass spectrometry (ESI-MS) and this technique provided characteristic fingerprinting mass spectra that not only allowed for discrimination of species but also between defective and non-defective coffee beans. ESI-MS profiles in the positive mode (ESI(+)-MS) provided separation between defective and non-defective coffees within a given species, whereas ESI-MS profiles in the negative mode (ESI(-)-MS) provided separation between Arabica and Robusta coffees. Copyright © 2008 Elsevier Ltd. All rights reserved.

  16. Trace analysis of tiamulin in honey by liquid chromatography-diode array-electrospray ionization mass spectrometry detection.

    Science.gov (United States)

    Nozal, M J; Bernal, J L; Martín, M T; Jiménez, J J; Bernal, J; Higes, M

    2006-05-26

    A liquid chromatography with diode array or electrospray ionisation mass spectrometry detection (LC-DAD-ESI-MS) method for the determination of tiamulin residues in honey is presented. The procedure employs a solid-phase extraction (SPE) on polymeric cartridges for the isolation of tiamulin from honey samples diluted in aqueous solution of tartaric acid. Chromatographic separation of the tiamulin is performed, in isocratic mode, on a C18 column using methanol and ammonium carbonate 0.1% in water, in proportion (30:70, v/v). Average analyte recoveries were from 88 to 106% in replica sets of fortified honey samples. The LC-ESI-MS method detection limits differ from 0.5 microg kg(-1) for clear honeys to 1.2 microg kg(-1) for dark honeys. The developed method has been applied to the analysis of tiamulin residues in multifloral honey samples collected from veterinary treated beehives.

  17. The Role of Conformational Flexibility on Protein Supercharging in Native Electrospray Ionization

    Science.gov (United States)

    Sterling, Harry J.; Cassou, Catherine A.; Trnka, Michael J.; Burlingame, A. L.; Krantz, Bryan A.; Williams, Evan R.

    2012-01-01

    Effects of covalent intramolecular bonds, either native disulfide bridges or chemical crosslinks, on ESI supercharging of proteins from aqueous solutions were investigated. Chemically modifying cytochrome c with up to seven crosslinks or ubiquitin with up to two crosslinks did not affect the average or maximum charge states of these proteins in the absence of m-nitrobenzyl alcohol (m-NBA), but the extent of supercharging induced by m-NBA increased with decreasing numbers of crosslinks. For the model random coil polypeptide reduced/alkylated RNase A, a decrease in charging with increasing m-NBA concentration attributable to reduced surface tension of the ESI droplet was observed, whereas native RNase A electrosprayed from these same solutions exhibited enhanced charging. The inverse relationship between the extent of supercharging and the number of intramolecular crosslinks for folded proteins, as well as the absence of supercharging for proteins that are random coils in aqueous solution, indicate that conformational restrictions induced by the crosslinks reduce the extent of supercharging. These results provide additional evidence that protein and protein complex supercharging from aqueous solution is primarily due to partial or significant unfolding that occurs as a result of chemical and/or thermal denaturation induced by the supercharging reagent late in the ESI droplet lifetime. PMID:21399817

  18. Surrogate analyte approach for quantitation of endogenous NAD(+) in human acidified blood samples using liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Liu, Liling; Cui, Zhiyi; Deng, Yuzhong; Dean, Brian; Hop, Cornelis E C A; Liang, Xiaorong

    2016-02-01

    A high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantitative determination of NAD(+) in human whole blood using a surrogate analyte approach was developed and validated. Human whole blood was acidified using 0.5N perchloric acid at a ratio of 1:3 (v:v, blood:perchloric acid) during sample collection. 25μL of acidified blood was extracted using a protein precipitation method and the resulting extracts were analyzed using reverse-phase chromatography and positive electrospray ionization mass spectrometry. (13)C5-NAD(+) was used as the surrogate analyte for authentic analyte, NAD(+). The standard curve ranging from 0.250 to 25.0μg/mL in acidified human blood for (13)C5-NAD(+) was fitted to a 1/x(2) weighted linear regression model. The LC-MS/MS response between surrogate analyte and authentic analyte at the same concentration was obtained before and after the batch run. This response factor was not applied when determining the NAD(+) concentration from the (13)C5-NAD(+) standard curve since the percent difference was less than 5%. The precision and accuracy of the LC-MS/MS assay based on the five analytical QC levels were well within the acceptance criteria from both FDA and EMA guidance for bioanalytical method validation. Average extraction recovery of (13)C5-NAD(+) was 94.6% across the curve range. Matrix factor was 0.99 for both high and low QC indicating minimal ion suppression or enhancement. The validated assay was used to measure the baseline level of NAD(+) in 29 male and 21 female human subjects. This assay was also used to study the circadian effect of endogenous level of NAD(+) in 10 human subjects. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Simultaneous determination of dextromethorphan, dextrorphan and doxylamine in human plasma by HPLC coupled to electrospray ionization tandem mass spectrometry: application to a pharmacokinetic study.

    Science.gov (United States)

    Donato, J L; Koizumi, F; Pereira, A S; Mendes, G D; De Nucci, G

    2012-06-15

    In the present study, a fast, sensitive and robust method to quantify dextromethorphan, dextrorphan and doxylamine in human plasma using deuterated internal standards (IS) is described. The analytes and the IS were extracted from plasma by a liquid-liquid extraction (LLE) using diethyl-ether/hexane (80/20, v/v). Extracted samples were analyzed by high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Chromatographic separation was performed by pumping the mobile phase (acetonitrile/water/formic acid (90/9/1, v/v/v) during 4.0min at a flow-rate of 1.5 mL min⁻¹ into a Phenomenex Gemini® C18, 5 μm analytical column (150 × 4.6 mm i.d.). The calibration curve was linear over the range from 0.2 to 200 ng mL⁻¹ for dextromethorphan and doxylamine and 0.05 to 10 ng mL⁻¹ for dextrorphan. The intra-batch precision and accuracy (%CV) of the method ranged from 2.5 to 9.5%, and 88.9 to 105.1%, respectively. Method inter-batch precision (%CV) and accuracy ranged from 6.7 to 10.3%, and 92.2 to 107.1%, respectively. The run-time was for 4 min. The analytical procedure herein described was used to assess the pharmacokinetics of dextromethorphan, dextrorphan and doxylamine in healthy volunteers after a single oral dose of a formulation containing 30 mg of dextromethorphan hydrobromide and 12.5mg of doxylamine succinate. The method has high sensitivity, specificity and allows high throughput analysis required for a pharmacokinetic study. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Scanning electron microscopic imaging of surface effects in desorption and nano-desorption electrospray ionization

    Czech Academy of Sciences Publication Activity Database

    Kaftan, Filip; Kofroňová, Olga; Benada, Oldřich; Lemr, Karel; Havlíček, Vladimír; Cvačka, Josef; Volný, Michael

    2011-01-01

    Roč. 46, č. 3 (2011), s. 256-261 ISSN 1076-5174 R&D Projects: GA ČR GPP206/10/P018; GA MŠk LC545; GA MŠk(CZ) ME10013 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50200510 Keywords : ionization * DESI * nano-DESI * electron microscopy * mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.268, year: 2011

  1. Analysis of GAA/TTC DNA triplexes using nuclear magnetic resonance and electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mariappan, S V Santhana; Cheng, Xun; van Breemen, Richard B; Silks, Louis A; Gupta, Goutam

    2004-11-15

    The formation of a GAA/TTC DNA triplex has been implicated in Friedreich's ataxia. The destabilization of GAA/TTC DNA triplexes either by pH or by binding to appropriate ligands was analyzed by nuclear magnetic resonance (NMR) and positive-ion electrospray mass spectrometry. The triplexes and duplexes were identified by changes in the NMR chemical shifts of H8, H1, H4, 15N7, and 15N4. The lowest pH at which the duplex is detectable depends upon the overall stability and the relative number of Hoogsteen C composite function G to T composite function A basepairs. A melting pH (pHm) of 7.6 was observed for the destabilization of the (GAA)2T4(TTC)2T4(CTT)2 triplex to the corresponding Watson-Crick duplex and the T4(CTT)2 overhang. The mass spectrometric analyses of (TTC)6.(GAA)6 composite function(TTC)6 triplex detected ions due to both triplex and single-stranded oligonucleotides under acidic conditions. The triplex ions disappeared completely at alkaline pH. Duplex and single strands were detectable only at neutral and alkaline pH values. Mass spectrometric analyses also showed that minor groove-binding ligands berenil, netropsin, and distamycin and the intercalating ligand acridine orange destabilize the (TTC)6.(GAA)6 composite function (TTC)6 triplex. These NMR and mass spectrometric methods may function as screening assays for the discovery of agents that destabilize GAA/TTC triplexes and as general methods for the characterization of structure, dynamics, and stability of DNA and DNA-ligand complexes.

  2. Direct Surface and Droplet Microsampling for Electrospray Ionization Mass Spectrometry Analysis with an Integrated Dual-Probe Microfluidic Chip

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cong-Min [Institute of Microanalytical; Zhu, Ying [Institute of Microanalytical; Jin, Di-Qiong [Institute of Microanalytical; Kelly, Ryan T. [Environmental; Fang, Qun [Institute of Microanalytical

    2017-08-15

    Ambient mass spectrometry (MS) has revolutionized the way of MS analysis and broadened its application in various fields. This paper describes the use of microfluidic techniques to simplify the setup and improve the functions of ambient MS by integrating the sampling probe, electrospray emitter probe, and online mixer on a single glass microchip. Two types of sampling probes, including a parallel-channel probe and a U-shaped channel probe, were designed for dryspot and liquid-phase droplet samples, respectively. We demonstrated that the microfabrication techniques not only enhanced the capability of ambient MS methods in analysis of dry-spot samples on various surfaces, but also enabled new applications in the analysis of nanoliter-scale chemical reactions in an array of droplets. The versatility of the microchip-based ambient MS method was demonstrated in multiple different applications including evaluation of residual pesticide on fruit surfaces, sensitive analysis of low-ionizable analytes using postsampling derivatization, and high-throughput screening of Ugi-type multicomponent reactions.

  3. Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Son N.; Liyu, Andrey V.; Chu, Rosalie K.; Anderton, Christopher R.; Laskin, Julia

    2017-01-17

    A new approach for constant distance mode mass spectrometry imaging of biological samples using nanospray desorption electrospray ionization (nano-DESI MSI) was developed by integrating a shear-force probe with nano-DESI probe. The technical concept and basic instrumental setup as well as general operation of the system are described. Mechanical dampening of resonant oscillations due to the presence of shear forces between the probe and the sample surface enables constant-distance imaging mode via a computer controlled closed feedback loop. The capability of simultaneous chemical and topographic imaging of complex biological samples is demonstrated using living Bacillus Subtilis ATCC 49760 colonies on agar plates. The constant-distance mode nano-DESI MSI enabled imaging of many metabolites including non-ribosomal peptides (surfactin, plipastatin and iturin) and iron-bound heme on the surface of living bacterial colonies ranging in diameter from 10 mm to 13 mm with height variations of up to 0.8 mm above the agar plate. Co-registration of ion images to topographic images provided higher-contrast images. Constant-mode nano-DESI MSI is ideally suited for imaging biological samples of complex topography in their native state.

  4. Rapid detection of illegal colorants on traditional Chinese pastries through mass spectrometry with an interchangeable thermal desorption electrospray ionization source.

    Science.gov (United States)

    Chao, Yu-Ying; Chen, Yen-Ling; Chen, Wei-Chu; Chen, Bai-Hsiun; Huang, Yeou-Lih

    2018-06-30

    Ambient mass spectrometry using an interchangeable thermal desorption/electrospray ionization source (TD-ESI) is a relatively new technique that has had only a limited number of applications to date. Nevertheless, this direct-analysis technique has potential for wider use in analytical chemistry (e.g., in the rapid direct detection of contaminants, residues, and adulterants on and in food) when operated in dual-working mode (pretreatment-free qualitative screening and conventional quantitative confirmation) after switching to a TD-ESI source from a conventional ESI source. Herein, we describe the benefits and challenges associated with the use of a TD-ESI source to detect adulterants on traditional Chinese pastries (TCPs), as a proof-of-concept for the detection of illegal colorants. While TD-ESI can offer direct (i.e., without any sample preparation) qualitative screening analyses for TCPs with adequate sensitivity within 30 s, the use of TD-ESI for semi-quantification is applicable only for homogeneous matrices (e.g., tang yuan). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mass spectral analysis of N-oxides of Chemical Weapons Convention related aminoethanols under electrospray ionization conditions.

    Science.gov (United States)

    Sridhar, L; Karthikraj, R; Murty, M R V S; Raju, N Prasada; Vairamani, M; Prabhakar, S

    2011-02-28

    N,N'-Dialkylaminoethanols are the hydrolyzed products or precursors of chemical warfare agents such as V-agents and nitrogen mustards, and they are prone to undergo oxidation in environmental matrices or during decontamination processes. Consequently, screening of the oxidized products of aminoethanols in aqueous samples is an important task in the verification of chemical weapons convention-related chemicals. Here we report the successful characterization of the N-oxides of N,N'-dialkylaminoethanols, alkyl diethanolamines, and triethanolamine using positive ion electrospray ionization mass spectrometry. The collision-induced dissociation (CID) spectra of the [M+H](+) and [M+Na](+) ions show diagnostic product ions that enable the unambiguous identification of the studied N-oxides, including those of isomeric compounds. The proposed fragmentation pathways are supported by high-resolution mass spectrometry data and product/precursor ion spectra. The CID spectra of [M+H](+) ions included [MH-CH(4)O(2)](+) as the key product ion, in addition to a distinctive alkene loss that allowed us to recognize the alkyl group attached to the nitrogen. The [M+Na](+) ions show characteristic product ions due to the loss of groups (R) attached to nitrogen either as a radical (R) or as a molecule [R+H or (R-H)] after hydrogen migration. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Differentiation of oral bacteria in in vitro cultures and human saliva by secondary electrospray ionization - mass spectrometry

    Science.gov (United States)

    Bregy, Lukas; Müggler, Annick R.; Martinez-Lozano Sinues, Pablo; García-Gómez, Diego; Suter, Yannick; Belibasakis, Georgios N.; Kohler, Malcolm; Schmidlin, Patrick R.; Zenobi, Renato

    2015-10-01

    The detection of bacterial-specific volatile metabolites may be a valuable tool to predict infection. Here we applied a real-time mass spectrometric technique to investigate differences in volatile metabolic profiles of oral bacteria that cause periodontitis. We coupled a secondary electrospray ionization (SESI) source to a commercial high-resolution mass spectrometer to interrogate the headspace from bacterial cultures and human saliva. We identified 120 potential markers characteristic for periodontal pathogens Aggregatibacter actinomycetemcomitans (n = 13), Porphyromonas gingivalis (n = 70), Tanerella forsythia (n = 30) and Treponema denticola (n = 7) in in vitro cultures. In a second proof-of-principle phase, we found 18 (P. gingivalis, T. forsythia and T. denticola) of the 120 in vitro compounds in the saliva from a periodontitis patient with confirmed infection with P. gingivalis, T. forsythia and T. denticola with enhanced ion intensity compared to two healthy controls. In conclusion, this method has the ability to identify individual metabolites of microbial pathogens in a complex medium such as saliva.

  7. Identification of a tryptanthrin metabolite in rat liver microsomes by liquid chromatography/electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Lee, Sang Kyu; Kim, Ghee Hwan; Kim, Dong Hyeon; Kim, Dong Hyun; Jahng, Yurngdong; Jeong, Tae Cheon

    2007-10-01

    Tryptanthrin originally isolated from Isatis tinctoria L. has been characterized to have anti-inflammatory activities through the dual inhibition of cyclooxygenase-2 and 5-lipoxygenase mediated prostaglandin and leukotriene syntheses. To characterize phase I metabolite(s), tryptanthrin was incubated with rat liver microsomes in the presence of NADPH-generating system. One metabolite was identified by liquid chromatography/electrospray ionization-tandem mass spectrometry. M1 could be identified as a metabolite mono-hydroxylated on the aromatic ring of indole moiety from the MS(2) spectra of protonated tryptanthrin and M1. The structure of metabolite was confirmed as 8-hydroxytryptanthrin with a chemically synthesized authentic standard. The formation of M1 was NADPH-dependent and was inhibited by SKF-525A, a general CYP-inhibitor, indicating the cytochrome P450 (CYP)-mediated reaction. In addition, it was proposed that M1 might be formed by CYP 1A in rat liver microsomes from the experiments with enriched rat liver microsomes.

  8. Comparative analysis of Ligusticum chuanxiong and related umbelliferous medicinal plants by high performance liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Yi, Tao; Leung, Kelvin Sze-Yin; Lu, Guang-Hua; Zhang, Hao

    2007-04-01

    A highly precise and accurate method, based on high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS), was developed for the qualitative and quantitative comparison of the main constituents in the rhizome of Ligusticum chuanxiong (LC) and three related umbelliferous medicinal plants. A comprehensive validation of the developed method was conducted, and the method was highly sensitive, reproducible and accurate. The unique properties of the present method were validated by analyzing 20 related herbal samples including 5 LC samples, 5 Cnidium officinale samples (CO), 5 Angelica sinensis samples (AS) and 5 Angelica acutiloba samples (AA). Twelve compounds including phenolic constituents, alkylphthalides and phthalide dimers were identified by online ESI-MS and by comparison with literature data and standard compounds, and six of them were quantified by HPLC-DAD simultaneously. The results demonstrated that identical compound types were identified as the main constituents of LC, CO, AS and AA herbs. The results also support the alternative application of these medicinal plants in Chinese and Japanese folk medicines. In the present study, it was found that the variation in the abundance of senkyunolide A was significant in these related herbs; it is therefore feasible to choose senkyunolide A as a characteristic compound for quality evaluation and chemical authentication of these herbs.

  9. Determination of triacylglycerol regioisomers using electrospray ionization-quadrupole ion trap mass spectrometry with a kinetic method.

    Science.gov (United States)

    Leveque, Nathalie L; Acheampong, Akwasi; Heron, Sylvie; Tchapla, Alain

    2012-04-13

    The kinetic method was applied to differentiate and quantify mixtures of regioisomeric triacylglycerols (TAGs) by generating and mass selecting alkali ion bound metal dimeric clusters with a TAG chosen as reference (ref) and examining their competitive dissociations in a quadrupole ion trap mass spectrometer. This methodology readily distinguished pairs of regioisomers (AAB/ABA) such as LLO/LOL, OOP/OPO and SSP/SPS and consequently distinguished sn-1/sn-3, sn-2 substituents on the glycerol backbone. The dimeric complex ions [ref, Li, TAG((AAB and/or ABA))](+) generated by electrospray ionization mass spectrometry were subjected to collision induced dissociation causing competitive loss of either the neutral TAG reference (ref) leading to [Li(AAB and/or ABA)](+) or the neutral TAG molecule (TAG((AAB and/or ABA))) leading to [ref, Li](+). The ratio of the two competitive dissociation rates, defined by the product ion branching ratio (R(iso)), was related via the kinetic method to the regioisomeric composition of the investigated TAG mixture. In this work, a linear correlation was established between composition of the mixture of each TAG regioisomer and the logarithm of the branching ratio for competitive fragmentation. Depending on the availability of at least one TAG regioisomer as standard, the kinetic method and the standard additions method led to the quantitative analysis of natural TAG mixtures. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry

    Directory of Open Access Journals (Sweden)

    K. E. Altieri

    2009-04-01

    Full Text Available Wet deposition is an important removal mechanism for atmospheric organic matter, and a potentially important input for receiving ecosystems, yet less than 50% of rainwater organic matter is considered chemically characterized. Precipitation samples collected in New Jersey, USA, were analyzed by negative ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS. Elemental compositions of 552 unique molecular species were determined in the mass range 50–500 Da in the rainwater. Four main groups of organic compounds were identified: compounds containing carbon, hydrogen, and oxygen (CHO only, sulfur (S containing CHOS compounds, nitrogen (N containing CHON compounds, and S- and N- containing CHONS compounds. Organic acids commonly identified in precipitation were detected in the rainwater. Within the four main groups of compounds detected in the rainwater, oligomers, organosulfates, and nitrooxy-organosulfates were assigned based on elemental formula comparisons. The majority of the compounds identified are products of atmospheric reactions and are known contributors to secondary organic aerosol (SOA formed from gas phase, aerosol phase, and in-cloud reactions in the atmosphere. It is suggested that the large uncharacterized component of SOA is the main contributor to the large uncharacterized component of rainwater organic matter.

  11. Analysis of wastewater samples by direct combination of thin-film microextraction and desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Strittmatter, Nicole; Düring, Rolf-Alexander; Takáts, Zoltán

    2012-09-07

    An analysis method for aqueous samples by the direct combination of C18/SCX mixed mode thin-film microextraction (TFME) and desorption electrospray ionization mass spectrometry (DESI-MS) was developed. Both techniques make analytical workflow simpler and faster, hence the combination of the two techniques enables considerably shorter analysis time compared to the traditional liquid chromatography mass spectrometry (LC-MS) approach. The method was characterized using carbamazepine and triclosan as typical examples for pharmaceuticals and personal care product (PPCP) components which draw increasing attention as wastewater-derived environmental contaminants. Both model compounds were successfully detected in real wastewater samples and their concentrations determined using external calibration with isotope labeled standards. Effects of temperature, agitation, sample volume, and exposure time were investigated in the case of spiked aqueous samples. Results were compared to those of parallel HPLC-MS determinations and good agreement was found through a three orders of magnitude wide concentration range. Serious matrix effects were observed in treated wastewater, but lower limits of detection were still found to be in the low ng L(-1) range. Using an Orbitrap mass spectrometer, the technique was found to be ideal for screening purposes and led to the detection of various different PPCP components in wastewater treatment plant effluents, including beta-blockers, nonsteroidal anti-inflammatory drugs, and UV filters.

  12. Demise of Polymerase Chain Reaction/Electrospray Ionization-Mass Spectrometry as an Infectious Diseases Diagnostic Tool.

    Science.gov (United States)

    Özenci, Volkan; Patel, Robin; Ullberg, Måns; Strålin, Kristoffer

    2018-01-18

    Although there are several US Food and Drug Administration (FDA)-approved/cleared molecular microbiology diagnostics for direct analysis of patient samples, all are single target or panel-based tests. There is no FDA-approved/cleared diagnostic for broad microbial detection. Polymerase chain reaction (PCR)/electrospray ionization-mass spectrometry (PCR/ESI-MS), commercialized as the IRIDICA system (Abbott) and formerly PLEX-ID, had been under development for over a decade and had become CE-marked and commercially available in Europe in 2014. Capable of detecting a large number of microorganisms, it was under review at the FDA when, in April 2017, Abbott discontinued it. This turn of events represents not only the loss of a potential diagnostic tool for infectious diseases but may be a harbinger of similar situations with other emerging and expensive microbial diagnostics, especially genomic tests. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. Impact of tissue surface properties on the desorption electrospray ionization imaging of organic acids in grapevine stem.

    Science.gov (United States)

    Dong, Yonghui; Guella, Graziano; Franceschi, Pietro

    2016-03-30

    Desorption electrospray ionization (DESI) imaging is a fast analytical technique used to assess spatially resolved biological processes over unmodified sample surfaces. Although DESI profiling experiments have demonstrated that the properties of the sample surface significantly affect the outcomes of DESI analyses, the potential implications of these phenomena in imaging applications have not yet been explored extensively. The distribution of endogenous and exogenous organic acids in pith and out pith region of grapevine stems was investigated by using DESI imaging, ion chromatography and direct infusion methods. Several common normalization strategies to account for the surface effect, including TIC normalization, addition of the internal standard in the spray solvent and deposition of the standard over the sample surface, were critically evaluated. DESI imaging results show that, in our case, the measured distributions of these small organic acids are not consistent with their 'true' localizations within the tissues. Furthermore, our results indicate that the common normalization strategies are not able to completely compensate for the observed surface effect. Variations in the tissue surface properties across the tissue sample can greatly affect the semi-quantitative detection of organic acids. Attention should be paid when interpreting DESI imaging results and an independent analytical validation step is important in untargeted DESI imaging investigations. Copyright © 2016 John Wiley & Sons, Ltd.

  14. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry.

    Science.gov (United States)

    Stinson, Craig A; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. Graphical Abstract ᅟ.

  15. UV Lamp as a Facile Ozone Source for Structural Analysis of Unsaturated Lipids Via Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Stinson, Craig A.; Zhang, Wenpeng; Xia, Yu

    2018-03-01

    Ozonolysis of alkene functional groups is a type of highly specific and effective chemical reaction, which has found increasing applications in structural analysis of unsaturated lipids via coupling with mass spectrometry (MS). In this work, we utilized a low-pressure mercury lamp (6 W) to initiate ozonolysis inside electrospray ionization (ESI) sources. By placing the lamp near a nanoESI emitter that partially transmits 185 nm ultraviolet (UV) emission from the lamp, dissolved dioxygen in the spray solution was converted into ozone, which subsequently cleaved the double bonds within fatty acyls of lipids. Solvent conditions, such as presence of water and acid solution pH, were found to be critical in optimizing ozonolysis yields. Fast (on seconds time scale) and efficient (50%-100% yield) ozonolysis was achieved for model unsaturated phospholipids and fatty acids with UV lamp-induced ozonolysis incorporated on a static and an infusion nanoESI source. The method was able to differentiate double bond location isomers and identify the geometry of the double bond based on yield. The analytical utility of UV lamp-induced ozonolysis was further demonstrated by implementation on a liquid chromatography (LC)-MS platform. Ozonolysis was effected in a flow microreactor that was made from ozone permeable tubing, so that ambient ozone produced by the lamp irradiation could diffuse into the reactor and induce online ozonolysis post-LC separation and before ESI-MS. [Figure not available: see fulltext.

  16. Letter: Observation of the 16O/18O exchange during electrospray ionization.

    Science.gov (United States)

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2015-01-01

    Isotopic exchange approach coupled to high-resolution mass spectrometry has become the power analytical approach for a wide range of analytical and bioanalyticall applications. Considerable efforts have been dedicated to developing fast exchange techniques directly in the ionization source. But all such methods are limited to the hydrogen/deuterium exchange approaches. In this paper we demonstrate that certain types of oxygen atoms can also be exchanged for (18)O on the time scale of the ionization process. Using HIO(3) and NaIO(4) and by infusing the heavy water H(2)(18)O in the ESI source we have demonstrated that it is possible to obtain a high level of oxygen exchange. It was observed that the rate of this exchange depends to a large extent on the temperature of the desolvating capillary of the mass spectrometer. Several other species, such as peptides, oligonucleotides and low weight organic molecules, were subjected to in-ESI (16)O/(18)O exchange but the exchange was not observed.

  17. Ultra high performance liquid chromatography coupled with electrospray ionization/quadrupole time-of-flight mass spectrometry for the rapid analysis of constituents in the traditional Chinese medicine formula Wu Ji Bai Feng Pill.

    Science.gov (United States)

    Duan, Shengnan; Qi, Wen; Zhang, Siwen; Huang, Kunkun; Yuan, Dan

    2017-10-01

    An ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry method in both positive and negative ion modes was established in order to comprehensively investigate the major constituents in Wu Ji Bai Feng Pill. Briefly, a Waters ACQUITY UPLC HSS C 18 column was used to separate the aqueous extract of Wu Ji Bai Feng Pill. A total of 0.1% formic acid in acetonitrile and 0.1% aqueous formic acid v/v were used as the mobile phase. All analytes were determined using quadrupole time-of-flight mass spectrometry with electrospray ionization source in positive and negative ion modes. At length, a total of 173 components including flavones and their glycosides, monoterpene glycosides, triterpene saponins, phenethylalchohol glycosides, iridoid glycosides, phthalides, tanshinones, phenolic acids, sesquiterpenoids and cyclopeptides were identified or tentatively characterized in Wu Ji Bai Feng Pill in an analysis of 16.0 min based on the accurate mass and tandem mass spectrometry behaviors. The developed method is rapid and highly sensitive to characterize the chemical constituents of Wu Ji Bai Feng Pill, which could not only be used for chemical standardization and quality control of Wu Ji Bai Feng Pill, but also be helpful for further study in vivo metabolism of Wu Ji Bai Feng Pill. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Liquid chromatography/negative electrospray ionization ion trap MS(2) mass spectrometry application for the determination of microcystins occurrence in Southern Portugal water reservoirs.

    Science.gov (United States)

    Rodrigues, M A; Reis, M P; Mateus, M C

    2013-11-01

    Microcystins (MCs) are toxins produced by cyanobacteria which are common organisms in the phytoplankton of eutrophic lakes, rivers and freshwater reservoirs. In the present work, a novel method of liquid chromatography-electrospray ion trap tandem mass spectrometry (LC/ESI/Ion trap-MS/MS), operated in the negative ionization mode, was developed for the analysis of these cyanotoxins. The method was applied to determine the amounts of total microcystins-LR, -YR and -RR in two water reservoirs in Southern Portugal, namely Alqueva and Beliche. A total of 30 water samples were analysed along 2011. Solid phase extraction (SPE) was used for sample cleaning-up and analyte enrichment. The extracted toxins were separated on a C18 column with a gradient of acetonitrile/water with 0.1% formic acid. Detection of microcystins was carried out using multiple reaction monitoring (MRM) in the negative polarity mode, as this method gave a higher selectivity. The MC-RR, YR and LR quantification limits were 17.9, 31.7 and 15.8 ng/L, respectively; quite below the limits recommended by WHO guidelines for drinking water (1 μg/L). Total MC highest concentrations were found in the warm months of June, July and September in Alqueva sampling sites, with concentrations of MC LR and RR ranging 17-344 and 25-212 ng/L, respectively, showing comparable results for MC-RR and LR and slightly lower concentration of MC-YR. Detected values for Beliche reservoir were below quantification limits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Coupling of gas chromatography and electrospray ionization high resolution mass spectrometry for the analysis of anabolic steroids as trimethylsilyl derivatives in human urine.

    Science.gov (United States)

    Cha, Eunju; Jeong, Eun Sook; Cha, Sangwon; Lee, Jaeick

    2017-04-29

    In this study, gas chromatography (GC) was interfaced with high resolution mass spectrometry (HRMS) with electrospray ionization source (ESI) and the relevant parameters were investigated to enhance the ionization efficiency. In GC-ESI, the distances (x-, y- and z) and angle between the ESI needle, GC capillary column and MS orifice were set to 7 (x-distance), 4 (y-distance), and 1 mm (z-distance). The ESI spray solvent, acid modifier and nebulizer gas flow were methanol, 0.1% formic acid and 5 arbitrary units, respectively. Based on these results, analytical conditions for GC-ESI/HRMS were established. In particular, the results of spray solvent flow indicated a concentration-dependent mechanism (peak dilution effect), and other parameters also greatly influenced the ionization performance. The developed GC-ESI/HRMS was then applied to the analysis of anabolic steroids as trimethylsilyl (TMS) derivatives in human urine to demonstrate its application. The ionization profiles of TMS-derivatized steroids were investigated and compared with those of underivatized steroids obtained from gas chromatography-electrospray ionization/mass spectrometry (GC-ESI/MS) and liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI/MS). The steroids exhibited ionization profiles based on their structural characteristics, regardless of the analyte phase or derivatization. Groups I and II with conjugated or unconjugated keto functional groups at C3 generated the [M+H] + and [M+H-TMS] + ions, respectively. On the other hand, Groups III and IV gave rise to the characteristic fragment ions [M+H-TMS-H 2 O] + and [M+H-2TMS-H 2 O] + , corresponding to loss of a neutral TMS·H 2 O moiety from the protonated molecular ion by in-source dissociation. To the best of our knowledge, this is the first study to successfully ionize and analyze steroids as TMS derivatives using ESI coupled with GC. The present system has enabled the ionization of TMS derivatives under ESI conditions

  20. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Koch, Boris P.; Witt, Matthias; Engbrodt, Ralph; Dittmar, Thorsten; Kattner, Gerhard

    2005-07-01

    The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.

  1. ESIprot: a universal tool for charge state determination and molecular weight calculation of proteins from electrospray ionization mass spectrometry data.

    Science.gov (United States)

    Winkler, Robert

    2010-02-01

    Electrospray ionization (ESI) ion trap mass spectrometers with relatively low resolution are frequently used for the analysis of natural products and peptides. Although ESI spectra of multiply charged protein molecules also can be measured on this type of devices, only average spectra are produced for the majority of naturally occurring proteins. Evaluating such ESI protein spectra would provide valuable information about the native state of investigated proteins. However, no suitable and freely available software could be found which allows the charge state determination and molecular weight calculation of single proteins from average ESI-MS data. Therefore, an algorithm based on standard deviation optimization (scatter minimization) was implemented for the analysis of protein ESI-MS data. The resulting software ESIprot was tested with ESI-MS data of six intact reference proteins between 12.4 and 66.7 kDa. In all cases, the correct charge states could be determined. The obtained absolute mass errors were in a range between -0.2 and 1.2 Da, the relative errors below 30 ppm. The possible mass accuracy allows for valid conclusions about the actual condition of proteins. Moreover, the ESIprot algorithm demonstrates an extraordinary robustness and allows spectral interpretation from as little as two peaks, given sufficient quality of the provided m/z data, without the necessity for peak intensity data. ESIprot is independent from the raw data format and the computer platform, making it a versatile tool for mass spectrometrists. The program code was released under the open-source GPLv3 license to support future developments of mass spectrometry software. Copyright 2010 John Wiley & Sons, Ltd.

  2. Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations

    International Nuclear Information System (INIS)

    Shukla, Anil; Bogdanov, Bogdan

    2015-01-01

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N 2 ). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi) n Li + , (HCOOLi) n Li m m+ , (HCOOLi) n HCOO − , and (HCOOLi) n (HCOO) m m− . Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi) 3 Li + being the most abundant and stable cluster ion. Fragmentations of singly charged positive clusters proceed first by the loss of a dimer unit ((HCOOLi) 2 ) followed by the loss of monomer units (HCOOLi) although the former remains the dominant dissociation process. In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi) 3 Li + as the most abundant fragment ion at higher collision energies which then fragments further to dimer and monomer ions at lower abundances. In the negative ion mode, however, singly charged clusters dissociated via sequential loss of monomer units. Multiply charged clusters in both positive and negative ion modes dissociated mainly via Coulomb repulsion. Quantum chemical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the central lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability

  3. Monitoring Toxic Ionic Liquids in Zebrafish ( Danio rerio) with Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI)

    Science.gov (United States)

    Perez, Consuelo J.; Tata, Alessandra; de Campos, Michel L.; Peng, Chun; Ifa, Demian R.

    2017-06-01

    Ambient mass spectrometry imaging has become an increasingly powerful technique for the direct analysis of biological tissues in the open environment with minimal sample preparation and fast analysis times. In this study, we introduce desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a novel, rapid, and sensitive approach to localize the accumulation of a mildly toxic ionic liquid (IL), AMMOENG 130 in zebrafish ( Danio rerio). The work demonstrates that DESI-MSI has the potential to rapidly monitor the accumulation of IL pollutants in aquatic organisms. AMMOENG 130 is a quaternary ammonium-based IL reported to be broadly used as a surfactant in commercialized detergents. It is known to exhibit acute toxicity to zebrafish causing extensive damage to gill secondary lamellae and increasing membrane permeability. Zebrafish were exposed to the IL in a static 96-h exposure study in concentrations near the LC50 of 1.25, 2.5, and 5.0 mg/L. DESI-MS analysis of zebrafish gills demonstrated the appearance of a dealkylated AMMOENG 130 metabolite in the lowest concentration of exposure identified by a high resolution hybrid LTQ-Orbitrap mass spectrometer as the trimethylstearylammonium ion, [C21H46N]+. With DESI-MSI, the accumulation of AMMOENG 130 and its dealkylated metabolite in zebrafish tissue was found in the nervous and respiratory systems. AMMOENG 130 and the metabolite were capable of penetrating the blood brain barrier of the fish with significant accumulation in the brain. Hence, we report for the first time the simultaneous characterization, distribution, and metabolism of a toxic IL in whole body zebrafish analyzed by DESI-MSI. This ambient mass spectrometry imaging technique shows great promise for the direct analysis of biological tissues to qualitatively monitor foreign, toxic, and persistent compounds in aquatic organisms from the environment. [Figure not available: see fulltext.

  4. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen ((1)O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. (1)O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. (1)O2 concentrations in solution were linearly related to the emission intensities of airborne (1)O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an (1)O2 trapping agent. Products from (1)O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of (1)O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. (1)O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with (1)O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.

  5. Three-Dimensional Imaging of Lipids and Metabolites in Tissues by Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew; Cha, Jeeyeon; Dey, Sudhansu K.; yang, Pengxiang; Prieto, Mari; Laskin, Julia

    2015-03-01

    Abstract Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16-20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI) – an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pre-treatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition rate of >5 Hz with moderate mass resolution of 35,000 (m/Δm at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of ~150 μm in less than 4.5 hours. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine – metabolites associated with cell growth – are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2.

  6. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures – Application to the petroleomic analysis of bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Hertzog, Jasmine [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Carré, Vincent, E-mail: vincent.carre@univ-lorraine.fr [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Le Brech, Yann [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mackay, Colin Logan [SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, Scotland (United Kingdom); Dufour, Anthony [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mašek, Ondřej [UK Biochar Research Center, School of Geosciences, University of Edinburgh, Kings Buildings, Edinburgh, EH9 3JN (United Kingdom); and others

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C{sub x}H{sub y}O{sub z} with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. - Highlights: • Non-targeted mass spectrometry by combining electrospray ionization, atmospheric pressure photoionization and laser/desorption ionization. • Exhaustive description of pyrolytic bio-oil components. • Distinction of sugaric derivatives, lignin derivatives and lipids contained in a woody-based pyrolytic bio-oil.

  7. Ultrahigh-performance liquid chromatography electrospray ionization Q-Orbitrap mass spectrometry for the analysis of 451 pesticide residues in fruits and vegetables: method development and validation.

    Science.gov (United States)

    Wang, Jian; Chow, Willis; Chang, James; Wong, Jon W

    2014-10-22

    This paper presents an application of ultrahigh-performance liquid chromatography electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC/ESI Q-Orbitrap MS) for the determination of 451 pesticide residues in fruits and vegetables. Pesticides were extracted from samples using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure. UHPLC/ESI Q-Orbitrap MS in full MS scan mode acquired full MS data for quantification, and UHPLC/ESI Q-Orbitrap Full MS/dd-MS(2) (i.e., data-dependent scan mode) obtained product ion spectra for identification. UHPLC/ESI Q-Orbitrap MS quantification was achieved using matrix-matched standard calibration curves along with the use of isotopically labeled standards or a chemical analogue as internal standards to achieve optimal method accuracy. The method performance characteristics include overall recovery, intermediate precision, and measurement uncertainty evaluated according to a nested experimental design. For the 10 matrices studied, 94.5% of the pesticides in fruits and 90.7% in vegetables had recoveries between 81 and 110%; 99.3% of the pesticides in fruits and 99.1% of the pesticides in vegetables had an intermediate precision of ≤20%; and 97.8% of the pesticides in fruits and 96.4% of the pesticides in vegetables showed measurement uncertainty of ≤50%. Overall, the UHPLC/ESI Q-Orbitrap MS demonstrated acceptable performance for the quantification of pesticide residues in fruits and vegetables. The UHPLC/ESI Q-Orbitrap Full MS/dd-MS(2) along with library matching showed great potential for identification and is being investigated further for routine practice.

  8. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry

    International Nuclear Information System (INIS)

    Izumi, Yoshihiro; Okazawa, Atsushi; Bamba, Takeshi; Kobayashi, Akio; Fukusaki, Eiichiro

    2009-01-01

    In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-IT-MS/MS) under multiple-reaction monitoring (MRM) in plant hormone profiling. Unlabeled and deuterium-labeled isotopomers of four classes of plant hormones and their derivatives, auxins, cytokinins (CK), abscisic acid (ABA), and gibberellins (GA), were analyzed by this method. The optimized nanoflow-LC-ESI-IT-MS/MS method showed ca. 5-10-fold greater sensitivity than capillary-LC-ESI-IT-MS/MS, and the detection limits (S/N = 3) of several plant hormones were in the sub-fmol range. The results showed excellent linearity (R 2 values of 0.9937-1.0000) and reproducibility of elution times (relative standard deviations, RSDs, <1.1%) and peak areas (RSDs, <10.7%) for all target compounds. Further, sample purification using Oasis HLB and Oasis MCX cartridges significantly decreased the ion-suppressing effects of biological matrix as compared to the purification using only Oasis HLB cartridge. The optimized nanoflow-LC-ESI-IT-MS/MS method was successfully used to analyze endogenous plant hormones in Arabidopsis and tobacco samples. The samples used in this analysis were extracted from only 17 tobacco dry seeds (1 mg DW), indicating that the efficiency of analysis of endogenous plant hormones strongly depends on the detection sensitivity of the method. Our analytical approach will be useful for in-depth studies on complex plant hormonal metabolism.

  9. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yoshihiro; Okazawa, Atsushi; Bamba, Takeshi; Kobayashi, Akio [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Fukusaki, Eiichiro, E-mail: fukusaki@bio.eng.osaka-u.ac.jp [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2009-08-26

    In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-IT-MS/MS) under multiple-reaction monitoring (MRM) in plant hormone profiling. Unlabeled and deuterium-labeled isotopomers of four classes of plant hormones and their derivatives, auxins, cytokinins (CK), abscisic acid (ABA), and gibberellins (GA), were analyzed by this method. The optimized nanoflow-LC-ESI-IT-MS/MS method showed ca. 5-10-fold greater sensitivity than capillary-LC-ESI-IT-MS/MS, and the detection limits (S/N = 3) of several plant hormones were in the sub-fmol range. The results showed excellent linearity (R{sup 2} values of 0.9937-1.0000) and reproducibility of elution times (relative standard deviations, RSDs, <1.1%) and peak areas (RSDs, <10.7%) for all target compounds. Further, sample purification using Oasis HLB and Oasis MCX cartridges significantly decreased the ion-suppressing effects of biological matrix as compared to the purification using only Oasis HLB cartridge. The optimized nanoflow-LC-ESI-IT-MS/MS method was successfully used to analyze endogenous plant hormones in Arabidopsis and tobacco samples. The samples used in this analysis were extracted from only 17 tobacco dry seeds (1 mg DW), indicating that the efficiency of analysis of endogenous plant hormones strongly depends on the detection sensitivity of the method. Our analytical approach will be useful for in-depth studies on complex plant hormonal metabolism.

  10. Identification and quantification of glucosamine in rabbit cartilage and correlation with plasma levels by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Pastorini, Elisabetta; Vecchiotti, Stefania; Colliva, Carolina; Persiani, Stefano; Rotini, Roberto; Roatti, Giulia; Zaccarelli, Lorenzo; Rovati, Lucio Claudio; Roda, Aldo

    2011-01-01

    Graphical abstract: Highlights: → Optimization of an HPLC-ESI-MS/MS method for glucosamine in rabbit cartilage. → Application of the method to an in-vivo study. → Glucosamine presence in cartilage in physiological condition. → Significant increase of cartilage glucosamine concentration after dosing. → Good correlation between cartilage glucosamine levels and plasma concentrations. - Abstract: A new HPLC-ESI-MS/MS method for the determination of glucosamine (2-amino-2-deoxy-D-glucose) in rabbit cartilage was developed and optimized. Glucosamine was extracted from cartilage by cryogenic grinding followed by protein precipitation with trichloroacetic acid. The HPLC separation was achieved with a polymer-based amino column using a mobile phase composed of 10 mM ammonium acetate (pH 7.5)-acetonitrile (20:80%, v/v) at 0.3 mL min -1 flow rate. D-[1- 13 C]Glucosamine was used as internal standard. Selective detection was performed by tandem mass spectrometry with electrospray source, operating in positive ionization mode and in multiple reaction monitoring acquisition (m/z 180 → 72 and 181 → 73 for glucosamine and internal standard, respectively). Limit of quantification was 0.045 ng injected, corresponding to 0.25 μg g -1 in cartilage. Linearity was obtained up to 20 μg g -1 (R 2 > 0.991). Precision values (%R.S.D.) were -1 (n = 6). Glucosamine was present in cartilage in physiological condition before the treatment. After dosing, mean concentration of cartilage glucosamine significantly increased from 461 to 1040 ng g -1 . Cartilage glucosamine levels resulted to be well correlated with plasma concentrations, which therefore are useful to predict the target cartilage concentration and its pharmacological activity.

  11. Electrospray ionization mass spectrometric investigations of the complexation behavior of macrocyclic thiacrown ethers with bivalent transitional metals (Cu, Co, Ni and Zn).

    Science.gov (United States)

    Tsybizova, Alexandra; Tarábek, Ján; Buchta, Michal; Holý, Petr; Schröder, Detlef

    2012-10-15

    Heavy metals are both a problem for the environment and an important resource for industry. Their selective extraction by means of organic ligands therefore is an attractive topic. The coordination of three thiacrown ethers to late 3d-metal ions was investigated by a combination of electrospray ionization mass spectrometry (ESI-MS) and electron paramagnetic resonance (EPR). The mass spectrometric experiments were carried out in an ion trap mass spectrometer with an ESI source. Absolute binding constants were estimated by comparison with data for 18-crown-6/Na(+). EPR spectroscopy was used as a complementary method for investigating the Cu(I) /Cu(II) redox couple. The study found that thiacrown ethers preferentially bind traces of copper even at an excess of other metal ions (Co(II), Ni(II), and Zn(II)). The absolute association constants of the Cu(I) complexes were about 10(8) M(-1), and about two orders of magnitude lower for the other 3d-metal cations. The EPR spectra demonstrated that the reduction from Cu(II) to Cu(I) upon formation of the [(thiacrown)Cu](+) species takes place in solution. ESI-MS demonstrated that the three thiacrown ligands examined had high binding constants as well as good selectivities for copper(I) at low concentrations, and in the presence of other metal ions. By a combination of ESI-MS and EPR spectrometry it was shown that the reduction from Cu(II) to Cu(I) occurred in solution. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry

    Science.gov (United States)

    2013-01-01

    Background Wax esters are highly hydrophobic neutral lipids that are major constituents of the cutin and suberin layer. Moreover they have favorable properties as a commodity for industrial applications. Through transgenic expression of wax ester biosynthetic genes in oilseed crops, it is possible to achieve high level accumulation of defined wax ester compositions within the seed oil to provide a sustainable source for such high value lipids. The fatty alcohol moiety of the wax esters is formed from plant-endogenous acyl-CoAs by the action of fatty acyl reductases (FAR). In a second step the fatty alcohol is condensed with acyl-CoA by a wax synthase (WS) to form a wax ester. In order to evaluate the specificity of wax ester biosynthesis, analytical methods are needed that provide detailed wax ester profiles from complex lipid extracts. Results We present a direct infusion ESI-tandem MS method that allows the semi-quantitative determination of wax ester compositions from complex lipid mixtures covering 784 even chain molecular species. The definition of calibration prototype groups that combine wax esters according to their fragmentation behavior enables fast quantitative analysis by applying multiple reaction monitoring. This provides a tool to analyze wax layer composition or determine whether seeds accumulate a desired wax ester profile. Besides the profiling method, we provide general information on wax ester analysis by the systematic definition of wax ester prototypes according to their collision-induced dissociation spectra. We applied the developed method for wax ester profiling of the well characterized jojoba seed oil and compared the profile with wax ester-accumulating Arabidopsis thaliana expressing the wax ester biosynthetic genes MaFAR and ScWS. Conclusions We developed a fast profiling method for wax ester analysis on the molecular species level. This method is suitable to screen large numbers of transgenic plants as well as other wax ester samples

  13. Quantitative correlations between collision induced dissociation mass spectrometry coupled with electrospray ionization or atmospheric pressure chemical ionization mass spectrometry - Experiment and theory

    Science.gov (United States)

    Ivanova, Bojidarka; Spiteller, Michael

    2018-04-01

    The problematic that we consider in this paper treats the quantitative correlation model equations between experimental kinetic and thermodynamic parameters of coupled electrospray ionization (ESI) mass spectrometry (MS) or atmospheric pressure chemical ionization (APCI) mass spectrometry with collision induced dissociation mass spectrometry, accounting for the fact that the physical phenomena and mechanisms of ESI- and APCI-ion formation are completely different. There are described forty two fragment reactions of three analytes under independent ESI- and APCI-measurements. The developed new quantitative models allow us to study correlatively the reaction kinetics and thermodynamics using the methods of mass spectrometry, which complementary application with the methods of the quantum chemistry provide 3D structural information of the analytes. Both static and dynamic quantum chemical computations are carried out. The object of analyses are [2,3-dimethyl-4-(4-methyl-benzoyl)-2,3-di-p-tolyl-cyclobutyl]-p-tolyl-methanone (1) and the polycyclic aromatic hydrocarbons derivatives of dibenzoperylen (2) and tetrabenzo [a,c,fg,op]naphthacene (3), respectively. As far as (1) is known to be a product of [2π+2π] cycloaddition reactions of chalcone (1,3-di-p-tolyl-propenone), however producing cyclic derivatives with different stereo selectivity, so that the study provide crucial data about the capability of mass spectrometry to provide determine the stereo selectivity of the analytes. This work also first provides quantitative treatment of the relations '3D molecular/electronic structures'-'quantum chemical diffusion coefficient'-'mass spectrometric diffusion coefficient', thus extending the capability of the mass spectrometry for determination of the exact 3D structure of the analytes using independent measurements and computations of the diffusion coefficients. The determination of the experimental diffusion parameters is carried out within the 'current monitoring method

  14. Quantitative Determination of Bioactive Constituents in Noni Juice by High-performance Liquid Chromatography with Electrospray Ionization Triple Quadrupole Mass Spectrometry.

    Science.gov (United States)

    Yan, Yongqiu; Lu, Yu; Jiang, Shiping; Jiang, Yu; Tong, Yingpeng; Zuo, Limin; Yang, Jun; Gong, Feng; Zhang, Ling; Wang, Ping

    2018-01-01

    Noni juice has been extensively used as folk medicine for the treatment of arthritis, infections, analgesic, colds, cancers, and diabetes by Polynesians for many years. Due to the lack of standard scientific evaluation methods, various kinds of commercial Noni juice with different quality and price were available on the market. To establish a sensitive, reliable, and accurate high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry (HPLC-ESI-MS/MS) method for separation, identification, and simultaneous quantitative analysis of bioactive constituents in Noni juice. The analytes and eight batches of commercially available samples from different origins were separated and analyzed by the HPLC-ESI-MS/MS method on an Agilent ZORBAX SB-C 18 (150 mm × 4.6 mm i.d., 5 μm) column using a gradient elution of acetonitrile-methanol-0.05% glacial acetic acid in water (v/v) at a constant flow rate of 0.5 mL/min. Seven components were identification and all of the assay parameters were within the required limits. Components were within the correlation coefficient values ( R 2 ≥ 0.9993) at the concentration ranges tested. The precision of the assay method was high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometryThe presented method was successfully applied to the quality control of eight batches of commercially available samples of Noni juiceThis method is simple, sensitive, reliable, accurate, and efficient method with strong specificity, good precision, and high recovery rate and provides a reliable basis for quality control of Noni juice. Abbreviations used: HPLC-ESI-MS/MS: High-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry, LOD: Limit of detection, LOQ: Limit of quantitation, S/N: Signal-to-noise ratio, RSD: Relative standard deviations, DP: Declustering potential, CE: Collision energy, MRM: Multiple reaction monitoring, RT

  15. Accurate and rapid modeling of iron–bleomycin-induced DNA damage using tethered duplex oligonucleotides and electrospray ionization ion trap mass spectrometric analysis

    OpenAIRE

    Harsch, Andreas; Marzilli, Lisa A.; Bunt, Richard C.; Stubbe, Joanne; Vouros, Paul

    2000-01-01

    Bleomycin B2 (BLM) in the presence of iron [Fe(II)] and O2 catalyzes single-stranded (ss) and double-stranded (ds) cleavage of DNA. Electrospray ionization ion trap mass spectrometry was used to monitor these cleavage processes. Two duplex oligonucleotides containing an ethylene oxide tether between both strands were used in this investigation, allowing facile monitoring of all ss and ds cleavage events. A sequence for site-specific binding and cleavage by Fe–BLM was incorporated into each an...

  16. Analysis of selected antibiotics in surface freshwater and seawater using direct injection in liquid chromatography electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Bayen, Stéphane; Yi, Xinzhu; Segovia, Elvagris; Zhou, Zhi; Kelly, Barry C

    2014-04-18

    Emerging contaminants such as antibiotics have received recent attention as they have been detected in natural waters and health concerns over potential antibiotic resistance. With the purpose to investigate fast and high-throughput analysis, and eventually the continuous on-line analysis of emerging contaminants, this study presents results on the analysis of seven selected antibiotics (sulfadiazine, sulfamethazine, sulfamerazine, sulfamethoxazole, chloramphenicol, lincomycin, tylosin) in surface freshwater and seawater using direct injection of a small sample volume (20μL) in liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Notably, direct injection of seawater in the LC-ESI-MS/MS was made possible on account of the post-column switch on the system, which allows diversion of salt-containing solutions flushed out of the column to the waste. Mean recoveries based on the isotope dilution method average 95±14% and 96±28% amongst the compounds for spiked freshwater and seawater, respectively. Linearity across six spiking levels was assessed and the response was linear (r(2)>0.99) for all compounds. Direct injection concentrations were compared for real samples to those obtained with the conventional SPE-based analysis and both techniques concurs on the presence/absence and levels of the compounds in real samples. These results suggest direct injection is a reliable method to detect antibiotics in both freshwater and seawater. Method detection limits for the direct injection technique (37pg/L to 226ng/L in freshwater, and from 16pg/to 26ng/L in seawater) are sufficient for a number of environmental applications, for example the fast screening of water samples for ecological risk assessments. In the present study of real samples, this new method allowed for example the positive detection of some compounds (e.g. lincomycin) down to the sub ng/L range. The direct injection method appears to be relatively cheaper and faster

  17. Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    K. E. Altieri

    2012-04-01

    Full Text Available Atmospheric water soluble organic nitrogen (WSON is a subset of the complex organic matter in aerosols and rainwater, which impacts cloud condensation processes and aerosol chemical and optical properties and may play a significant role in the biogeochemical cycle of N. However, its sources, composition, connections to inorganic N, and variability are largely unknown. Rainwater samples were collected on the island of Bermuda (32.27° N, 64.87° W, which experiences both anthropogenic and marine influenced air masses. Samples were analyzed by ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to chemically characterize the WSON. Elemental compositions of 2281 N containing compounds were determined over the mass range m/z+ 50 to 500. The five compound classes with the largest number of elemental formulas identified, in order from the highest number of formulas to the lowest, contained carbon, hydrogen, oxygen, and nitrogen (CHON+, CHON compounds that contained sulfur (CHONS+, CHON compounds that contained phosphorus (CHONP+, CHON compounds that contained both sulfur and phosphorus (CHONSP+, and compounds that contained only carbon, hydrogen, and nitrogen (CHN+. Compared to rainwater collected in the continental USA, average O:C ratios of all N containing compound classes were lower in the marine samples whereas double bond equivalent values were higher, suggesting a reduced role of secondary formation mechanisms. Despite their prevalence in continental rainwater, no organonitrates or nitrooxy-organosulfates were detected, but there was an increased presence of organic S and organic P containing compounds in the marine rainwater. Cluster analysis showed a clear chemical distinction between samples collected during the cold season (October to March which have anthropogenic air mass origins and samples collected during the warm season (April to September with remote

  18. Hyphenation of capillary high-performance ion-exchange chromatography with mass spectrometry using sheath-flow electrospray ionization.

    Science.gov (United States)

    Kochmann, Sven; Matysik, Frank-Michael

    2014-12-15

    Mass spectrometry (MS) is an attractive method for extending capillary-size ion chromatography (cHPIC) to create a valuable technique for speciation analysis. For hyphenation, the aqueous effluent of cHPIC has to be transformed into a volatile mixture for MS while preserving analytical concentrations as well as peak shapes during transfer from cHPIC to MS. Finally, the approach should technically be flexible and easy-to-use. A combination of cHPIC and sheath-flow electrospray ionization (ESI)-MS offers to solve all these challenges. cHPIC/sheath-flow-ESI-TOFMS was used in this study for the speciation analysis of various arsenic model compounds. These model compounds were analyzed with different hyphenation setups and configurations of cHPIC/MS and their respective assets and drawbacks were examined and discussed. The parameters (flow rate and composition of sheath liquid) of sheath-flow ESI and their influence on the performance of the spray and the sensitivity of the detector were investigated and compared with those of sheathless ESI. Using an injection valve to couple cHPIC and MS was found to be the best method for hyphenation, since it constitutes a flexible and dead-volume-free approach. The investigation of sheath-flow ESI revealed that the flow rate of the sheath liquid has to resemble the flow rate of the IC effluent to ensure a stable spray and that a composition of 2-propanol/water/ammonia at 50:50:0.2 (v/v/v) suits most applications without unilaterally promoting the sensitivity for either organic or inorganic compounds. The optimized setup and conditions were successfully applied to the analysis of a mixture of important arsenic species and used to determine limits of detection of organic and inorganic arsenic species (3.7 µg L(-1) elemental arsenic). A method for cHPIC/sheath-flow-ESI-MS was developed. The method was shown to be a valuable tool for speciation and trace analysis. It features no dead volume, fast transfer from IC to MS, only minimal

  19. Investigation of plant hormone level changes in shoot tips of longan (Dimocarpus longan Lour.) treated with potassium chlorate by liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Susawaengsup, Chanthana; Rayanakorn, Mongkon; Wongpornchai, Sugunya; Wangkarn, Sunanta

    2011-08-15

    The endogenous levels of indole-3-acetic acid (IAA), gibberellins (GAs), abscisic acid (ABA) and cytokinins (CKs) and their changes were investigated in shoot tips of ten longan (Dimocarpus longan Lour.) trees for off-season flowering until 60 days after potassium chlorate treatment in comparison with those of ten control (untreated) longan trees. These analytes were extracted and interfering matrices removed with a single mixed-mode solid phase extraction under optimum conditions. The recoveries at three levels of concentration were in the range of 72-112%. The endogenous plant hormones were separated and quantified by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Detection limits based on the signal-to-noise ratio ranged from 10 ng mL(-1) for gibberellin A4 (GA4) to 200 ng mL(-1) for IAA. Within the first week after potassium chlorate treatment, dry weight (DW) amounts in the treated longan shoot tips of four gibberellins, namely: gibberellin A1(GA1), gibberellic acid (GA3), gibberellin A19 (GA19) and gibberellin A20 (GA20), were found to increase to approximately 25, 50, 20 and 60 ng g(-1) respectively, all of which were significantly higher than those of the controls. In contrast, gibberellin A8 (GA8) obtained from the treated longan was found to decrease to approximately 20 ng g(-1)DW while that of the control increased to around 80 ng g(-1)DW. Certain CKs which play a role in leaf bud induction, particularly isopentenyl adenine (iP), isopentenyl adenosine (iPR) and dihydrozeatin riboside (DHZR), were found to be present in amounts of approximately 20, 50 and 60 ng g(-1)DW in the shoot tips of the control longan. The analytical results obtained from the two-month off-season longan flowering period indicate that high GA1, GA3, GA19 and GA20 levels in the longan shoot tips contribute to flower bud induction while high levels of CKs, IAA and ABA in the control longan contribute more to the vegetative development. Copyright © 2011

  20. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures - Application to the petroleomic analysis of bio-oils.

    Science.gov (United States)

    Hertzog, Jasmine; Carré, Vincent; Le Brech, Yann; Mackay, Colin Logan; Dufour, Anthony; Mašek, Ondřej; Aubriet, Frédéric

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C x H y O z with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Direct profiling of phytochemicals in tulip tissues and in vivo monitoring of the change of carbohydrate content in tulip bulbs by probe electrospray ionization mass spectrometry.

    Science.gov (United States)

    Yu, Zhan; Chen, Lee Chuin; Suzuki, Hiroaki; Ariyada, Osamu; Erra-Balsells, Rosa; Nonami, Hiroshi; Hiraoka, Kenzo

    2009-12-01

    Probe electrospray ionization (PESI) is a recently developed ESI-based ionization technique which generates electrospray from the tip of a solid needle. In this study, we have applied PESI interfaced with a time of flight mass spectrometer (TOF-MS) for direct profiling of phytochemicals in a section of a tulip bulb in different regions, including basal plate, outer and inner rims of scale, flower bud and foliage leaves. Different parts of tulip petals and leaves have also been investigated. Carbohydrates, amino acids and other phytochemicals were detected. A series of in vivo PESI-MS experiments were carried out on the second outermost scales of four living tulip bulbs to monitoring the change of carbohydrate content during the first week of initial growth. The breakdown of carbohydrates was observed which was in accordance with previous reports achieved by other techniques. This study has indicated that PESI-MS can be used for rapid and direct analysis of phytochemicals in living biological systems with advantages of low sample consumption and little sample preparation. Therefore, PESI-MS can be a new choice for direct analysis/profiling of bioactive compounds or monitoring metabolic changes in living biological systems.

  2. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter

    2013-01-01

    The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for

  3. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Bert Lagrain

    Full Text Available The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS, the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC, and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%, the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and

  4. System and method for liquid extraction electrospray-assisted sample transfer to solution for chemical analysis

    Science.gov (United States)

    Kertesz, Vilmos; Van Berkel, Gary J.

    2016-07-12

    A system for sampling a surface includes a surface sampling probe comprising a solvent liquid supply conduit and a distal end, and a sample collector for suspending a sample collection liquid adjacent to the distal end of the probe. A first electrode provides a first voltage to solvent liquid at the distal end of the probe. The first voltage produces a field sufficient to generate electrospray plume at the distal end of the probe. A second electrode provides a second voltage and is positioned to produce a plume-directing field sufficient to direct the electrospray droplets and ions to the suspended sample collection liquid. The second voltage is less than the first voltage in absolute value. A voltage supply system supplies the voltages to the first electrode and the second electrode. The first electrode can apply the first voltage directly to the solvent liquid. A method for sampling for a surface is also disclosed.

  5. A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry analytical strategy for fast analysis and improved characterization of phenolic compounds in apple products.

    Science.gov (United States)

    Ramirez-Ambrosi, M; Abad-Garcia, B; Viloria-Bernal, M; Garmon-Lobato, S; Berrueta, L A; Gallo, B

    2013-11-05

    A new, rapid, selective and sensitive ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (UHPLC-DAD-ESI-Q-ToF-MS) strategy using automatic and simultaneous acquisition of exact mass at high and low collision energy, MS(E), has been developed to obtain polyphenolic profile of apples, apple pomace and apple juice from Asturian cider apples in a single run injection of 22 min. MS(E) spectral data acquisition overcomes chromatographic co-elution problems, performing simultaneous collection of precursor ions as well as other ions produced as a result of their fragmentation, which allows resolving complex spectra from mixtures of precursor ions in an unsupervised way and eases their interpretation. Using this technique, 52 phenolic compounds of five different classes were readily characterized in these apple extracts in both positive and negative ionization modes. The spectral data for phenolic compounds obtained using this acquisition mode are comparable to those obtained by conventional LC-MS/MS as exemplified in this work. Among the 52 phenolic compounds identified in this work, 2 dihydrochalcones and 3 flavonols have been tentatively identified for the first time in apple products. Moreover, 2 flavanols, 4 dihydrochalcones, 9 hydroxycinnamic acids and 4 flavonols had not been previously reported in apple by ToF analysis to our knowledge. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  7. Matrix-assisted laser desorption/ionization time-of-flight and nano-electrospray ionization ion trap mass spectrometric characterization of 1-cyano-2-substituted-benz[f]isoindole derivatives of peptides for fluorescence detection

    DEFF Research Database (Denmark)

    Linnemayr, K; Brückner, A; Körner, R

    1999-01-01

    A series of hexa- to decapeptides (molecular mass range 800-1200) were labeled with naphthalene-2,3-dicarboxaldehyde, which preferentially reacts with the primary amino groups of a peptide. A highly stable peptide conjugate is formed, which allows selective analysis by fluorescence at excitation...... and emission wavelengths of 420 and 490 nm, respectively. After removal of unreacted compounds, the peptide conjugates were characterized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight and nano-electrospray ionization (ESI) ion trap mass spectrometry. They readily form both [M + H]+ ions...... by MALDI and both [M + H]+ and [M + 2H]2+ ions by ESI. Furthermore, the fragmentation behavior of the N-terminally tagged peptides, exhibiting an uncharged N-terminus, was investigated applying post-source decay fragmentation with a curved field reflector and collision-induced dissociation...

  8. Characterization of Ni(II) complexes of Schiff bases of amino acids and (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide using ion trap and QqTOF electrospray ionization tandem mass spectrometry

    NARCIS (Netherlands)

    Jirasko, Robert; Holcapek, Michal; Kolarova, Lenka; Nadvornik, Milan; Popkov, Alexander

    This work demonstrates the application of electrospray ionization mass spectrometry (ESI-MS) using two different mass analyzers, ion trap and hybrid quadrupole time-of-flight (QqTOF) mass analyzer, for the structural characterization of Ni(II) complexes of Schiff bases of

  9. Low-molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time-of-flight mass spectrometry.

    Science.gov (United States)

    Koc, Anna; Cañuelo, Ana; Garcia-Reyes, Juan F; Molina-Diaz, Antonio; Trojanowicz, Marek

    2012-06-01

    In this work, the use of liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC-TOFMS) has been evaluated for the profiling of relatively low-molecular weight protein species in both genetically modified (GM) and non-GM maize. The proposed approach consisted of a straightforward sample fractionation with different water and ethanol-based buffer solutions followed by separation and detection of the protein species using liquid chromatography with a small particle size (1.8 μm) C(18) column and electrospray-time-of-flight mass spectrometry detection in the positive ionization mode. The fractionation of maize reference material containing different content of transgenic material (from 0 to 5% GM) led to five different fractions (albumins, globulins, zeins, zein-like glutelins, and glutelins), all of them containing different protein species (from 2 to 52 different species in each fraction). Some relevant differences in the quantity and types of protein species were observed in the different fractions of the reference material (with different GM contents) tested, thus revealing the potential use of the proposed approach for fast protein profiling and to detect tentative GMO markers in maize. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Detection of chlorinated and brominated byproducts of drinking water disinfection using electrospray ionization-high-field asymmetric waveform ion mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Ells, B; Barnett, D A; Froese, K; Purves, R W; Hrudey, S; Guevremont, R

    1999-10-15

    The lower limit of detection for low molecular weight polar and ionic analytes using electrospray ionization-mass spectrometry (ESI-MS) is often severely compromised by an intense background that obscures ions of trace components in solution. Recently, a new technique, referred to as high-field asymmetric waveform ion mobility spectrometry (FAIMS), has been shown to separate gas-phase ions at atmospheric pressure and room temperature. A FAIMS instrument is an ion filter that may be tuned, by control of electrical voltages, to continuously transmit selected ions from a complex mixture. This capability offers significant advantages when FAIMS is coupled with ESI, a source that generates a wide variety of ions, including solvent clusters and salt adducts. In this report, the tandem arrangement of ESI-FAIMS-MS is used for the analysis of haloacetic acids, a class of disinfection byproducts regulated by the US EPA. FAIMS is shown to effectively discriminate against background ions resulting from the electrospray of tap water solutions containing the haloacetic acids. Consequently, mass spectra are simplified, the selectivity of the method is improved, and the limits of detection are lowered compared with conventional ESI-MS. The detection limits of ESI-FAIMS-MS for six haloacetic acids ranged between 0.5 and 4 ng/mL in 9:1 methanol/tap water (5 and 40 ng/mL in the original tap water samples) with no preconcentration, derivatization, or chromatographic separation prior to analysis.

  11. 26kDa endochitinase from barley seeds: real-time monitoring of the enzymatic reaction and substrate binding experiments using electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Dennhart, Nicole; Weigang, Linda M M; Fujiwara, Maho

    2009-01-01

    A 26 kDa endochitinase from barley seeds was enzymatically characterized exclusively by electrospray ionization mass spectrometry (ESI-MS). At first, oligosaccharide hydrolysis catalyzed by the barley chitinase was monitored in real-time by ESI-MS. The reaction time-course obtained by ESI......-MS monitoring was found to be consistent with the data obtained earlier by HPLC, and the quantitative profile was successfully simulated by kinetic modeling of the enzymatic hydrolysis. It is obvious that the real-time monitoring method by ESI-MS allows a faster and cheaper determination of the chitinase...... of the enzymatic activity in E67Q is definitely caused by a point mutation of Glu67 but not due to partial unfolding of the mutated enzyme. Finally, association constants of enzyme-oligosaccharide complexes were calculated from Scatchard plots obtained by mass spectra. The binding free energy values obtained for E...

  12. Negative ion electrospray ionization mass spectrometry of nucleoside phosphoramidate monoesters: elucidation of novel rearrangement mechanisms by multistage mass spectrometry incorporating in-source deuterium labelling.

    Science.gov (United States)

    Xu, Peng-Xiang; Hu, An-Fu; Hu, Dan; Gao, Xiang; Zhao, Yu-Fen

    2008-10-01

    Several O-2',3'-isopropylideneuridine-O-5'-phosphoramidate monoesters were synthesized and analyzed by negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)). Two kinds of novel rearrangement reactions were observed due to the difference in the amino acid in the nucleoside phosphoramidate monoesters, and possible mechanisms were proposed. One involves a five-membered cyclic transition state. The other is formation of a stable five-membered ring intermediate by Michael addition. Results were confirmed by tandem mass spectrometry and isotopically labeled hydrogen atoms. Furthermore, the internal hydrogen exchange between active hydrogen and methyl acrylate in the heated capillary of the mass spectrometer was found. The characteristic fragmentation behavior in ESI-MS may be used to monitor this kind of compounds in the biological metabolism.

  13. Cryo-sectioning of mice for whole-body imaging of drugs and metabolites with desorption electrospray ionization mass spectrometry imaging - a simplified approach

    DEFF Research Database (Denmark)

    Okutan, Seda; Hansen, Harald S; Janfelt, Christian

    2016-01-01

    A method is presented for whole-body imaging of drugs and metabolites in mice with desorption electrospray ionization mass spectrometry imaging (DESI-MSI). Unlike most previous approaches to whole-body imaging which are based on cryo-sectioning using a cryo-macrotome, the presented approach...... to simple, sensitive and highly selective whole-body imaging in drug distribution and metabolism studies....... is based on use of the cryo-microtome which is found in any histology lab. The tissue sections are collected on tape which is analyzed directly by DESI-MSI. The method is demonstrated on mice which have been dosed intraperitoneally with the antidepressive drug amitriptyline. By combining full...

  14. Regiospecific analysis of neutral ether lipids by liquid chromatography/electrospray ionization/single quadrupole mass spectrometry: validation with synthetic compounds

    DEFF Research Database (Denmark)

    Hartvigsen, Karsten; Ravandi, A.; Bukhave, Klaus

    2001-01-01

    A reversed-phase high-performance liquid chromatography (HPLC) method with on-line electrospray ionization/collision-induced dissociation/mass spectrometry (ESI/CID/MS) is presented for the regiospecific analysis of synthetic reference compounds of neutral ether lipids. The reference compounds were...... characterized by chromatographic retention times, full mass spectra, and fragmentation patterns as an aid to clarify the regiospecificity of ether lipids from natural sources. The results clearly show that single quadrupole mass spectroscopic analysis may elucidate the regiospecific structure of neutral ether...... + H - H2O](+), whereas the reverse situation characterized the sn-3 species. Furthermore, corresponding sn-2 and sn-3 species were separated by the chromatographic system. However, loss of water was promoted as fatty acid unsaturation was raised, which may complicate interpretation of the mass spectra...

  15. Rapid Screening and Characterization of Acetylcholinesterase Inhibitors from Yinhuang Oral Liquid Using Ultrafiltration-liquid Chromatography-electrospray Ionization Tandem Mass Spectrometry.

    Science.gov (United States)

    Zhang, Haomin; Guo, Yinan; Meng, Lingwen; Sun, Hui; Yang, Yinping; Gao, Ying; Sun, Jiaming

    2018-01-01

    At present, approximately 17-25 million people in the world suffer from Alzheimer's disease (AD). The most efficacious and acceptable therapeutic drug clinically are the acetylcholinesterase inhibitors (AChEIs). Yinhuang oral liquid is a Chinese medicine preparation which contains AChEIs according to the literatures. However, no strategy has been presented for rapid screening and identification of AChEIs from Yinhuang oral liquid. To develop a method for rapid screening and identification of AChEIs from Yinhuang oral liquid using ultrafiltration-liquid chromatography-electrospray ionization tandem mass spectrometry (UF-LC-ESI-MS/MS). In this study, UF incubation conditions such as enzyme concentration, incubation time, and incubation temperature were optimized so as to get better screening results. The AChEIs from Yinhuang oral liquid were identified by high-performance liquid chromatography-ESI-MS and the improved Ellman method was used for the AChE inhibitory activity test in vitro . The results showed that Yinhuang oral liquid can inhibit the activity of AChE. We screened and identified seven compounds with potential AChE inhibitory activity from Yinhuang oral liquid, which provided experimental basis for the treatment and prevention of AD. The current technique was used to directly screen the active ingredients with acetylcholinesterase inhibition from complex traditional Chinese medicine, which was simple, rapid, accurate, and suitable for high-throughput screening of AChEI from complex systems. A UF-LC-ESI-MS/MS method for rapid screening and identification of AChEIs from Yinhuang oral liquid was developedSeven compounds were screened and identified with potential AChE inhibitory activity from Yinhuang oral liquidIt provided experimental basis of Yinhuang oral liquid for the treating and preventing AD. Abbreviations used: (AD): Alzheimer's disease; (UF-LC-ESI-MS/MS): ultrafiltration-liquid chromatography-electrospray ionization tandem mass spectrometry; (ACh

  16. Rapid Screening and Characterization of Acetylcholinesterase Inhibitors from Yinhuang Oral Liquid Using Ultrafiltration-liquid Chromatography-electrospray Ionization Tandem Mass Spectrometry

    Science.gov (United States)

    Zhang, Haomin; Guo, Yinan; Meng, Lingwen; Sun, Hui; Yang, Yinping; Gao, Ying; Sun, Jiaming

    2018-01-01

    Background: At present, approximately 17–25 million people in the world suffer from Alzheimer's disease (AD). The most efficacious and acceptable therapeutic drug clinically are the acetylcholinesterase inhibitors (AChEIs). Yinhuang oral liquid is a Chinese medicine preparation which contains AChEIs according to the literatures. However, no strategy has been presented for rapid screening and identification of AChEIs from Yinhuang oral liquid. Objective: To develop a method for rapid screening and identification of AChEIs from Yinhuang oral liquid using ultrafiltration–liquid chromatography–electrospray ionization tandem mass spectrometry (UF-LC-ESI-MS/MS). Materials and Methods: In this study, UF incubation conditions such as enzyme concentration, incubation time, and incubation temperature were optimized so as to get better screening results. The AChEIs from Yinhuang oral liquid were identified by high-performance liquid chromatography-ESI-MS and the improved Ellman method was used for the AChE inhibitory activity test in vitro. Results: The results showed that Yinhuang oral liquid can inhibit the activity of AChE. We screened and identified seven compounds with potential AChE inhibitory activity from Yinhuang oral liquid, which provided experimental basis for the treatment and prevention of AD. Conclusion: The current technique was used to directly screen the active ingredients with acetylcholinesterase inhibition from complex traditional Chinese medicine, which was simple, rapid, accurate, and suitable for high-throughput screening of AChEI from complex systems. SUMMARY A UF-LC-ESI-MS/MS method for rapid screening and identification of AChEIs from Yinhuang oral liquid was developedSeven compounds were screened and identified with potential AChE inhibitory activity from Yinhuang oral liquidIt provided experimental basis of Yinhuang oral liquid for the treating and preventing AD. Abbreviations used: (AD): Alzheimer's disease; (UF

  17. Specificity enhancement by electrospray ionization multistage mass spectrometry--a valuable tool for differentiation and identification of 'V'-type chemical warfare agents.

    Science.gov (United States)

    Weissberg, Avi; Tzanani, Nitzan; Dagan, Shai

    2013-12-01

    The use of chemical warfare agents has become an issue of emerging concern. One of the challenges in analytical monitoring of the extremely toxic 'V'-type chemical weapons [O-alkyl S-(2-dialkylamino)ethyl alkylphosphonothiolates] is to distinguish and identify compounds of similar structure. MS analysis of these compounds reveals mostly fragment/product ions representing the amine-containing residue. Hence, isomers or derivatives with the same amine residue exhibit similar mass spectral patterns in both classical EI/MS and electrospray ionization-MS, leading to unavoidable ambiguity in the identification of the phosphonate moiety. A set of five 'V'-type agents, including O-ethyl S-(2-diisopropylamino)ethyl methylphosphonothiolate (VX), O-isobutyl S-(2-diethylamino)ethyl methylphosphonothiolate (RVX) and O-ethyl S-(2-diethylamino)ethyl methylphosphonothiolate (VM) were studied by liquid chromatography/electrospray ionization/MS, utilizing a QTRAP mass detector. MS/MS enhanced product ion scans and multistage MS(3) experiments were carried out. Based on the results, possible fragmentation pathways were proposed, and a method for the differentiation and identification of structural isomers and derivatives of 'V'-type chemical warfare agents was obtained. MS/MS enhanced product ion scans at various collision energies provided information-rich spectra, although many of the product ions obtained were at low abundance. Employing MS(3) experiments enhanced the selectivity for those low abundance product ions and provided spectra indicative of the different phosphonate groups. Study of the fragmentation pathways, revealing some less expected structures, was carried out and allowed the formulation of mechanistic rules and the determination of sets of ions typical of specific groups, for example, methylphosphonothiolates versus ethylphosphonothiolates. The new group-specific ions elucidated in this work are also useful for screening unknown 'V'-type agents and related

  18. Ions generated from uranyl nitrate solutions by electrospray ionization (ESI) and detected with Fourier transform ion-cyclotron resonance (FT-ICR) mass spectrometry.

    Science.gov (United States)

    Pasilis, Sofie; Somogyi, Arpád; Herrmann, Kristin; Pemberton, Jeanne E

    2006-02-01

    Electrospray ionization (ESI) of uranyl nitrate solutions generates a wide variety of positively and negatively charged ions, including complex adducts of uranyl ions with methoxy, hydroxy, and nitrate ligands. In the positive ion mode, ions detected by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry are sensitive to instrumental tuning parameters such as quadrupole operating frequency and trapping time. Positive ions correspond to oligomeric uranyl nitrate species that can be characterized as having a general formula of [(UO(2))(n)(A)(m)(CH(3)OH)(s)](+) or [(UO(2))(n)(O)(A)(m)(CH(3)OH)(s)](+) with n = 1-4, m = 1-7, s = 0 or 1, and A = OH, NO(3), CH(3)O or a combination of these, although the formation of NO(3)-containing species is preferred. In the negative ion mode, complexes of the form [(UO(2))(NO(3))(m)](-) (m = 1-3) are detected, although the formation of the oxo-containing ions [(UO(2))(O)(n)(NO(3))(m)](-) (n = 1-2, m = 1-2) and the hydroxy-containing ions [(UO(2))(OH)(n)(NO(3))(m)](-) (n = 1-2, m = 0-1) are also observed. The extent of coordinative unsaturation of both positive and negative ions can be determined by ligand association/exchange and H/D exchange experiments using D(2)O and CD(3)OD as neutral reaction partners in the gas-phase. Positive ions are of varying stability and reactivity and may fragment extensively upon collision with D(2)O, CD(3)OD and N(2) in sustained off-resonance irradiation/collision-induced dissociation (SORI-CID) experiments. Electron-transfer reactions, presumably occurring during electrospray ionization but also in SORI-CID, can result in reduction of U(VI) to U(V) and perhaps even U(IV).

  19. Chemical Profiling of Re-Du-Ning Injection by Ultra-Performance Liquid Chromatography Coupled with Electrospray Ionization Tandem Quadrupole Time-of-Flight Mass Spectrometry through the Screening of Diagnostic Ions in MSE Mode

    Science.gov (United States)

    Wang, Zhenzhong; Geng, Jianliang; Dai, Yi; Xiao, Wei; Yao, Xinsheng

    2015-01-01

    The broad applications and mechanism explorations of traditional Chinese medicine prescriptions (TCMPs) require a clear understanding of TCMP chemical constituents. In the present study, we describe an efficient and universally applicable analytical approach based on ultra-performance liquid chromatography coupled to electrospray ionization tandem quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q/TOF-MS) with the MSE (E denotes collision energy) data acquisition mode, which allowed the rapid separation and reliable determination of TCMP chemical constituents. By monitoring diagnostic ions in the high energy function of MSE, target peaks of analogous compounds in TCMPs could be rapidly screened and identified. “Re-Du-Ning” injection (RDN), a eutherapeutic traditional Chinese medicine injection (TCMI) that has been widely used to reduce fever caused by viral infections in clinical practice, was studied as an example. In total, 90 compounds, including five new iridoids and one new sesquiterpene, were identified or tentatively characterized by accurate mass measurements within 5 ppm error. This analysis was accompanied by MS fragmentation and reference standard comparison analyses. Furthermore, the herbal sources of these compounds were unambiguously confirmed by comparing the extracted ion chromatograms (EICs) of RDN and ingredient herbal extracts. Our work provides a certain foundation for further studies of RDN. Moreover, the analytical approach developed herein has proven to be generally applicable for profiling the chemical constituents in TCMPs and other complicated mixtures. PMID:25875968

  20. Liquid Chromatography with Post-Column Reagent Addition of Ammonia in Methanol Coupled to Negative Ion Electrospray Ionization Tandem Mass Spectrometry for Determination of Phenoxyacid Herbicides and their Degradation Products in Surface Water

    Directory of Open Access Journals (Sweden)

    Michele L. Etter

    2010-02-01

    Full Text Available A new liquid chromatography (LC-negative ion electrospray ionization (ESI–tandem mass spectrometry (MS/MS method with post-column addition of ammonia in methanol has been developed for the analysis of acid herbicides: 2,4-dichlorophenoxy ace- tic acid, 4-chloro-o-tolyloxyacetic acid, 2-(2-methyl-4-chlorophenoxybutyric acid, mecoprop, dichlorprop, 4-(2,4-dichlorophenoxy butyric acid, 2,4,5-trichlorophenoxy propionic acid, dicamba and bromoxynil, along with their degradation products: 4-chloro-2- methylphenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol and 3,5-dibromo-4-hydroxybenzoic acid. The samples were extracted from the surface water matrix using solid-phase extraction (SPE with a polymeric sorbent and analyzed with LC ESI- with selected reaction monitoring (SRM using a three-point confirmation approach. Chromatography was performed on a Zorbax Eclipse XDB-C18 (50 × 4.6 mm i.d., 1.8 µm with a gradient elution using water-methanol with 2 mM ammonium acetate mobile phase at a flow rate of 0.15 mL/min. Ammonia in methanol (0.8 M was added post-column at a flow rate of 0.05 mL/min to enhance ionization of the deg- radation products in the MS source. One SRM transition was used for quantitative analysis while the second SRM along with the ratio of SRM1/SRM2 within the relative standard deviation determined by standards for each individual pesticide and retention time match were used for confirmation. The standard deviation of ratio of SRM1/SRM2 obtained from standards run on the day of analysis for different phenoxyacid herbicides ranged from 3.9 to 18.5%. Limits of detection (LOD were between 1 and 15 ng L-1 and method detection limits (MDL with strict criteria requiring

  1. Chemical vapor deposition of aminopropyl silanes in microfluidic channels for highly efficient microchip capillary electrophoresis-electrospray ionization-mass spectrometry.

    Science.gov (United States)

    Batz, Nicholas G; Mellors, J Scott; Alarie, Jean Pierre; Ramsey, J Michael

    2014-04-01

    We describe a chemical vapor deposition (CVD) method for the surface modification of glass microfluidic devices designed to perform electrophoretic separations of cationic species. The microfluidic channel surfaces were modified using aminopropyl silane reagents. Coating homogeneity was inferred by precise measurement of the separation efficiency and electroosmotic mobility for multiple microfluidic devices. Devices coated with (3-aminopropyl)di-isopropylethoxysilane (APDIPES) yielded near diffusion-limited separations and exhibited little change in electroosmotic mobility between pH 2.8 and pH 7.5. We further evaluated the temporal stability of both APDIPES and (3-aminopropyl)triethoxysilane (APTES) coatings when stored for a total of 1 week under vacuum at 4 °C or filled with pH 2.8 background electrolyte at room temperature. Measurements of electroosmotic flow (EOF) and separation efficiency during this time confirmed that both coatings were stable under both conditions. Microfluidic devices with a 23 cm long, serpentine electrophoretic separation channel and integrated nanoelectrospray ionization emitter were CVD coated with APDIPES and used for capillary electrophoresis (CE)-electrospray ionization (ESI)-mass spectrometry (MS) of peptides and proteins. Peptide separations were fast and highly efficient, yielding theoretical plate counts over 600,000 and a peak capacity of 64 in less than 90 s. Intact protein separations using these devices yielded Gaussian peak profiles with separation efficiencies between 100,000 and 400,000 theoretical plates.

  2. A simple and selective method for determination of phthalate biomarkers in vegetable samples by high pressure liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Zhou, Xi; Cui, Kunyan; Zeng, Feng; Li, Shoucong; Zeng, Zunxiang

    2016-06-01

    In the present study, solid-phase extraction cartridges including silica reversed-phase Isolute C18, polymeric reversed-phase Oasis HLB and mixed-mode anion-exchange Oasis MAX, and liquid-liquid extractions with ethyl acetate, n-hexane, dichloromethane and its mixtures were compared for clean-up of phthalate monoesters from vegetable samples. Best recoveries and minimised matrix effects were achieved using ethyl acetate/n-hexane liquid-liquid extraction for these target compounds. A simple and selective method, based on sample preparation by ultrasonic extraction and liquid-liquid extraction clean-up, for the determination of phthalate monoesters in vegetable samples by liquid chromatography/electrospray ionisation-tandem mass spectrometry was developed. The method detection limits for phthalate monoesters ranged from 0.013 to 0.120 ng g(-1). Good linearity (r(2)>0.991) between MQLs and 1000× MQLs was achieved. The intra- and inter-day relative standard deviation values were less than 11.8%. The method was successfully used to determine phthalate monoester metabolites in the vegetable samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Identification of Three Kinds of Citri Reticulatae Pericarpium Based on Deoxyribonucleic Acid Barcoding and High-performance Liquid Chromatography-diode Array Detection-electrospray Ionization/Mass Spectrometry/Mass Spectrometry Combined with Chemometric Analysis

    Science.gov (United States)

    Yu, Xiaoxue; Zhang, Yafeng; Wang, Dongmei; Jiang, Lin; Xu, Xinjun

    2018-01-01

    Background: Citri Reticulatae Pericarpium is the dried mature pericarp of Citrus reticulata Blanco which can be divided into “Chenpi” and “Guangchenpi.” “Guangchenpi” is the genuine Chinese medicinal material in Xinhui, Guangdong province; based on the greatest quality and least amount, it is most expensive among others. Hesperidin is used as the marker to identify Citri Reticulatae Pericarpium described in the Chinese Pharmacopoeia 2010. However, both “Chenpi” and “Guangchenpi” contain hesperidin so that it is impossible to differentiate them by measuring hesperidin. Objective: Our study aims to develop an efficient and accurate method to separate and identify “Guangchenpi” from other Citri Reticulatae Pericarpium. Materials and Methods: The genomic deoxyribonucleic acid (DNA) of all the materials was extracted and then the internal transcribed spacer 2 was amplified, sequenced, aligned, and analyzed. The secondary structures were created in terms of the database and website established by Jörg Schultz et al. High-performance liquid chromatography-diode array detection-electrospray Ionization/mass spectrometry (HPLC-DAD-ESI-MS)/MS coupled with chemometric analysis was applied to compare the differences in chemical profiles of the three kinds of Citri Reticulatae Pericarpium. Results: A total of 22 samples were classified into three groups. The results of DNA barcoding were in accordance with principal component analysis and hierarchical cluster analysis. Eight compounds were deduced from HPLC-DAD-ESI-MS/MS. Conclusions: This method is a reliable and effective tool to differentiate the three Citri Reticulatae Pericarpium. SUMMARY The internal transcribed spacer 2 regions and the secondary structure among three kinds of Citri Reticulatae Pericarpium varied considerablyAll the 22 samples were analyzed by high-performance liquid chromatography (HPLC) to obtain the chemical profilesPrincipal component analysis and hierarchical cluster analysis

  4. Determination of drug residues in urine of dogs receiving anti-cancer chemotherapy by liquid chromatography-electrospray ionization- tandem mass spectrometry: is there an environmental or occupational risk?

    Science.gov (United States)

    Hamscher, Gerd; Mohring, Siegrun A I; Knobloch, Anna; Eberle, Nina; Nau, Heinz; Nolte, Ingo; Simon, Daniela

    2010-04-01

    Cytotoxic drugs, previously used only in human medicine, are increasingly utilized for cancer treatment in veterinary practice. We developed and validated a liquid chromatography (LC)-electrospray ionization-tandem mass spectrometry (MS-MS) method to determine vincristine, vinblastine, cyclophosphamide, and doxorubicin in canine urine. Sample pretreatment consisted of liquid-liquid extraction, and LC separation was carried out on an RP C(18) column employing a 0.5% formic acid/methanol gradient system. The analytes were detected in positive ion mode using the MS-MS scan mode. The mean recoveries in six different urine samples were between 64.2% and 86.9%. Limits of quantitation were 0.5 microg/L for vincristine and vinblastine, 1 microg/L for cyclophosphamide, and 5 microg/L for doxorubicin; limits of detection were approximately 0.25 microg/L for vincristine, vinblastine, and cyclophosphamide and 0.5 microg/L for doxorubicin. It could be demonstrated that all investigated drugs are found in urine of dogs undergoing chemotherapy. In samples from day 1 after chemotherapy, as much as 63 microg/L vincristine, 111 microg/L vinblastine, and 762 microg/L doxorubicin could be detected. Cyclophosphamide showed only minor concentrations on day 1, but up to 2583 microg/L could be found directly after chemotherapy. These initial data show that there might be a potential contamination risk when administering cytotoxics in veterinary medicine.

  5. Robust method for investigating nitrogen metabolism of 15N labeled amino acids using AccQ•Tag ultra performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry: application to a parasitic plant-plant interaction.

    Science.gov (United States)

    Gaudin, Zachary; Cerveau, Delphine; Marnet, Nathalie; Bouchereau, Alain; Delavault, Philippe; Simier, Philippe; Pouvreau, Jean-Bernard

    2014-01-21

    An AccQ•Tag ultra performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry (AccQ•Tag-UPLC-PDA-ESI-MS) method is presented here for the fast, robust, and sensitive quantification of (15)N isotopologue enrichment of amino acids in biological samples, as for example in the special biotic interaction between the cultivated specie Brassica napus (rapeseed) and the parasitic weed Phelipanche ramosa (broomrape). This method was developed and validated using amino acid standard solutions containing (15)N amino acid isotopologues and/or biological unlabeled extracts. Apparatus optimization, limits of detection and quantification, quantification reproducibility, and calculation method of (15)N isotopologue enrichment are presented. Using this method, we could demonstrate that young parasite tubercles assimilate inorganic nitrogen as (15)N-ammonium when supplied directly through batch incubation but not when supplied by translocation from host root phloem, contrary to (15)N2-glutamine. (15)N2-glutamine mobility from host roots to parasite tubercles followed by its low metabolism in tubercles suggests that the host-derived glutamine acts as an important nitrogen containing storage compound in the young tubercle of Phelipanche ramosa.

  6. Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC/ESI-MS/MS) Study for the Identification and Characterization of In Vivo Metabolites of Cisplatin in Rat Kidney Cancer Tissues: Online Hydrogen/Deuterium (H/D) Exchange Study.

    Science.gov (United States)

    Bandu, Raju; Ahn, Hyun Soo; Lee, Joon Won; Kim, Yong Woo; Choi, Seon Hee; Kim, Hak Jin; Kim, Kwang Pyo

    2015-01-01

    In vivo rat kidney tissue metabolites of an anticancer drug, cisplatin (cis-diamminedichloroplatinum [II]) (CP) which is used for the treatment of testicular, ovarian, bladder, cervical, esophageal, small cell lung, head and neck cancers, have been identified and characterized by using liquid chromatography positive ion electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) in combination with on line hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, kidney tissues were collected after intravenous administration of CP to adult male Sprague-Dawley rats (n = 3 per group). The tissue samples were homogenized and extracted using newly optimized metabolite extraction procedure which involves liquid extraction with phosphate buffer containing ethyl acetate and protein precipitation with mixed solvents of methanol-water-chloroform followed by solid-phase clean-up procedure on Oasis HLB 3cc cartridges and then subjected to LC/ESI-HRMS analysis. A total of thirty one unknown in vivo metabolites have been identified and the structures of metabolites were elucidated using LC-MS/MS experiments combined with accurate mass measurements. Online HDX experiments have been used to further support the structural characterization of metabolites. The results showed that CP undergoes a series of ligand exchange biotransformation reactions with water and other nucleophiles like thio groups of methionine, cysteine, acetylcysteine, glutathione and thioether. This is the first research approach focused on the structure elucidation of biotransformation products of CP in rats, and the identification of metabolites provides essential information for further pharmacological and clinical studies of CP, and may also be useful to develop various effective new anticancer agents.

  7. Antioxidant activity and identification of bioactive compounds from leaves of Anthocephalus cadamba by ultra-performance liquid chromatography/electrospray ionization quadrupole time of flight mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Madhu Chandel; Upendra Sharma; Neeraj Kumar; Bikram Singh; Satwinderjeet Kaur

    2012-01-01

    Objective: To evaluate the antioxidant potential of different extract/fractions of Anthocephalus cadamba (A. cadamba) (Roxb.) Miq. (Rubiaceae) and study the tentative identification of their active constituents. Methods: The extract/fractions were screened for antioxidant activity using various in vitro assays viz. DPPH assay, ABTS assay, superoxide anion radical scavenging assay, reducing power assay and plasmid DNA nicking assay. Total phenolic content of extract/fractions was determined by colorimetric method. An ultra-performance LC-electrospray-quadrupole-time of flight mass spectrometry method was used to analyse the active constituents of extract/fractions of A. cadamba. Results: The ethyl acetate fraction was found to be most active fraction in all the assays as compared to other extract/fractions. The IC50 value of ethyl acetate fraction (ETAC fraction) was 21.24 μg/mL, 1.12 μg/mL, 9.68 μg/mL and 57.81 μg/mL in DPPH assay, ABTS assay, reducing power assay and superoxide scavenging assay respectively. All the extract/fractions also showed the potential to protect the plasmid DNA (pBR322) against the attack of hydroxyl radicals generated by Fenton’s reagent. The bioactive compounds were identified by UPLC-ESI-QTOF-MS, by comparing the mass and λmax with literature values. Conclusions: The potential of the extract/fractions to scavenge different free radicals in different systems indicated that they may be useful therapeutic agents for treating radical-related pathologic damage.

  8. Analysis of monomeric and oligomeric organophosphorus flame retardants in fish muscle tissues using liquid chromatography–electrospray ionization tandem mass spectrometry: Application to Nile tilapia (Oreochromis niloticus) from an e-waste processing area in northern Vietnam

    OpenAIRE

    Matsukami, Hidenori; Suzuki, Go; Tue, Nguyen Minh; Tuyen, Le Huu; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke; Takigami, Hidetaka

    2016-01-01

    Using electrospray ionization tandem mass spectrometry combined with liquid chromatography (LC), a novel analytical method was developed to quantify eight monomeric organophosphorus flame retardants (m-PFRs) and three oligomeric organophosphorus flame retardants (o-PFRs) in fish muscle samples. The optimization and validation experiments indicate that the developed method can determine accurately the concentrations of analytes in fish muscle samples. The recoveries of analytes in fish muscle ...

  9. Analysis of the Extracts of Isatis tinctoria by New Analytical ...

    African Journals Online (AJOL)

    The methods of extraction, separation and analysis of alkaloids and indole glucosinolates (GLs) of Isatis tinctoria were reviewed. Different analytical approaches such as High-pressure Liquid Chromatography (HPLC), Liquid Chromatography with Electrospray Ionization Mass Spectrometry (LC/ESI/MS), Electrospray ...

  10. High-performance ion mobility spectrometry with direct electrospray ionization (ESI-HPIMS) for the detection of additives and contaminants in food

    Energy Technology Data Exchange (ETDEWEB)

    Midey, Anthony J., E-mail: anthony.midey@excellims.com; Camacho, Amanda; Sampathkumaran, Jayanthi; Krueger, Clinton A.; Osgood, Mark A.; Wu, Ching

    2013-12-04

    Graphical abstract: -- Highlights: •A new ESI source was built for direct ionization from syringe. •Phthalates, food dyes, and sweeteners detected with high-performance IMS. •Phthalates directly detected in cola, soy bubble tea matrices with simple treatment. -- Abstract: High-performance ion mobility spectrometry (HPIMS) with an electrospray ionization (ESI) source detected a series of food contaminants and additive compounds identified as critical to monitoring the safety of food samples. These compounds included twelve phthalate plasticizers, legal and illegal food and cosmetic dyes, and artificial sweeteners that were all denoted as detection priorities. HPIMS separated and detected the range of compounds with a resolving power better than 60 in both positive and negative ion modes, comparable to the commonly used high-performance liquid chromatography (HPLC) methods, but with most acquisition times under a minute. The reduced mobilities, K{sub 0}, have been determined, as have the linear response ranges for ESI-HPIMS, which are 1.5–2 orders of magnitude for concentrations down to sub-ng μL{sup −1} levels. At least one unique mobility peak was seen for two subsets of the phthalates grouped by the country where they were banned. Furthermore, ESI-HPIMS successfully detected low nanogram levels of a phthalate at up to 30 times lower concentration than international detection levels in both a cola matrix and a soy-based bubble tea beverage using only a simplified sample treatment. A newly developed direct ESI source (Directspray) was combined with HPIMS to detect food-grade dyes and industrial dye adulterants, as well as the sweeteners sodium saccharin and sodium cyclamate, with the same good performance as with the phthalates. However, the Directspray method eliminated sources of carryover and decreased the time between sample runs. Limits-of-detection (LOD) for the analyte standards were estimated to be sub-ng μL{sup −1} levels without extensive

  11. High-performance ion mobility spectrometry with direct electrospray ionization (ESI-HPIMS) for the detection of additives and contaminants in food

    International Nuclear Information System (INIS)

    Midey, Anthony J.; Camacho, Amanda; Sampathkumaran, Jayanthi; Krueger, Clinton A.; Osgood, Mark A.; Wu, Ching

    2013-01-01

    Graphical abstract: -- Highlights: •A new ESI source was built for direct ionization from syringe. •Phthalates, food dyes, and sweeteners detected with high-performance IMS. •Phthalates directly detected in cola, soy bubble tea matrices with simple treatment. -- Abstract: High-performance ion mobility spectrometry (HPIMS) with an electrospray ionization (ESI) source detected a series of food contaminants and additive compounds identified as critical to monitoring the safety of food samples. These compounds included twelve phthalate plasticizers, legal and illegal food and cosmetic dyes, and artificial sweeteners that were all denoted as detection priorities. HPIMS separated and detected the range of compounds with a resolving power better than 60 in both positive and negative ion modes, comparable to the commonly used high-performance liquid chromatography (HPLC) methods, but with most acquisition times under a minute. The reduced mobilities, K 0 , have been determined, as have the linear response ranges for ESI-HPIMS, which are 1.5–2 orders of magnitude for concentrations down to sub-ng μL −1 levels. At least one unique mobility peak was seen for two subsets of the phthalates grouped by the country where they were banned. Furthermore, ESI-HPIMS successfully detected low nanogram levels of a phthalate at up to 30 times lower concentration than international detection levels in both a cola matrix and a soy-based bubble tea beverage using only a simplified sample treatment. A newly developed direct ESI source (Directspray) was combined with HPIMS to detect food-grade dyes and industrial dye adulterants, as well as the sweeteners sodium saccharin and sodium cyclamate, with the same good performance as with the phthalates. However, the Directspray method eliminated sources of carryover and decreased the time between sample runs. Limits-of-detection (LOD) for the analyte standards were estimated to be sub-ng μL −1 levels without extensive sample handling

  12. Pharmacokinetic Study of a Diclofenac Sodium Capsule Filled with Enteric-coated Pellets in Healthy Chinese Volunteers by Liquid Chromatography-electrospray Ionization-tandem Mass Spectrometry.

    Science.gov (United States)

    Ma, J-Y; Liu, M; Yang, M; Zhao, H; Tong, Y; Zhang, Y; Deng, M; Liu, H

    2016-05-01

    The pharmacokinetic study of a diclofenac sodium capsule filled with enteric-coated pellets (abbreviated as CAPSULE) in healthy Chinese subjects was evaluated using liquid chromatography-electrospray ionization-tandem mass spectrometry with simple sample preparation. In a cross-over study, 12 healthy male volunteers were given 50 mg CAPSULE and diclofenac sodium enteric-coated tablet (abbreviated as TABLET, used as a control dosage form) at fasting. The Cmax, AUC0-t, and Tmax of CAPSULE were 1.01±0.52 μg/mL, 1.54±0.18 μg·h/mL, and 1.50±1.31 h, respectively. When compared with TABLET, the pharmacokinetic study showed that although this CAPSULE exhibited similar AUC (only 10% lower), it presented lower maximum plasma concentration, faster absorption and shorter time to reach maximum concentration. When compared with the previous study in Germany, obvious variations on Tmax were found in Chinese subjects taking CAPSULE, but not TABLET. The results indicated that individual difference should be paid attention when prescribing CAPSULE to Chinese patients. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Improved detection of drugs of abuse using high-performance ion mobility spectrometry with electrospray ionization (ESI-HPIMS) for urine matrices.

    Science.gov (United States)

    Midey, Anthony J; Patel, Aesha; Moraff, Carol; Krueger, Clinton A; Wu, Ching

    2013-11-15

    High-performance ion mobility spectrometry (HPIMS) with electrospray ionization (ESI) has been used to separate drugs of abuse compounds as a function of drift time (ion mobility), which is based on their size, structural shape, and mass-to-charge. HPIMS has also been used to directly detect and identify a variety of the most commonly encountered illegal drugs, as well as a mixture of opiates in a urine matrix without extra sample pretreatment. HPIMS has shown resolving power greater than 65 comparable to that of high-performance liquid chromatography (HPLC) with only 1 mL of solvent and sample required using air as the IMS separation medium. The HPIMS method can achieve two-order of magnitude linear response, precise drift times, and high peak area precision with percent relative standard deviations (%RSD) less than 3% for sample quantitation. The reduced mobilities measured agree very well with other IMS measurements, allowing a simple "dilute-and-shoot" method to be used to detect a mixture of codeine and morphine in urine matrix. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. DMSO Assisted Electrospray Ionization for the Detection of Small Peptide Hormones in Urine by Dilute-and-Shoot-Liquid-Chromatography-High Resolution Mass Spectrometry

    Science.gov (United States)

    Judák, Péter; Grainger, Janelle; Goebel, Catrin; Van Eenoo, Peter; Deventer, Koen

    2017-08-01

    The mobile phase additive (DMSO) has been described as a useful tool to enhance electrospray ionization (ESI) of peptides and proteins. So far, this technique has mainly been used in proteomic/peptide research, and its applicability in a routine clinical laboratory setting (i.e., doping control analysis) has not been described yet. This work provides a simple, easy to implement screening method for the detection of doping relevant small peptides (GHRPs, GnRHs, GHS, and vasopressin-analogues) with molecular weight less than 2 kDa applying DMSO in the mobile phase. The gain in sensitivity was sufficient to inject the urine samples after a 2-fold dilution step omitting a time consuming sample preparation. The employed analytical procedure was validated for the qualitative determination of 36 compounds, including 13 metabolites. The detection limits (LODs) ranged between 50 and 1000 pg/mL and were compliant with the 2 ng/mL minimum detection level required by the World Anti-Doping Agency (WADA) for all the target peptides. To demonstrate the feasibility of the work, urine samples obtained from patients who have been treated with desmopressin or leuprolide and urine samples that have been declared as adverse analytical findings were analyzed.

  15. Structure revision of hupehensis saponin F and G and characterization of new trace triterpenoid saponins from Anemone hupehensis by tandem electrospray ionization mass spectrometry.

    Science.gov (United States)

    Li, Fu; Liu, Xin; Tang, Minghai; Chen, Bin; Ding, Lisheng; Chen, Lijuan; Wang, Mingkui

    2012-05-15

    Electrospray ionization ion-trap tandem mass spectrometry (ESI-MS(n)) was first employed for reinvestigating the structures of hupehensis saponin F and G previously isolated from Anemone hupehensis in our lab. Hupehensis saponin G was determined to contain one more trisaccharide unit (Rha-(1→4)-Glc-(1→6)-Glc-), not a glucose residue, than saponin F based on their molecular weights deduced from their [M+Na](+) ions in ESI-MS spectra. The (2,4)A(4α)-ion at m/z 551.3 formed by retro-Diels-Alder (RDA) rearrangement in positive mode illustrated that the C-28 sugar chains of the two saponins were composed of trisaccharide repeating moieties with (1→4) linkages rather than (1→3) linkages. The interpretation of 2D-NMR spectra of the two compounds also confirmed the results obtained by ESI-MS(n). Moreover, from the water soluble part of A. hupehensis, two novel triterpene saponins were tentatively characterized to contain 4 and 5 (1→4)-linked above trisaccharide repeating moieties at C-28 position according to their ESI-MS(n) behaviors, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Chemical speciation analysis for bromine in tap water by ion chromatography/inductively coupled plasma-mass spectrometry and electrospray ionization-mass spectrometry

    International Nuclear Information System (INIS)

    Kurata, Keigo; Suzuki, Yoshinari; Furuta, Naoki

    2010-01-01

    Bromide compounds in tap water were measured by using a hyphenated technique of ion chromatography coupled with inductively coupled plasma - mass spectrometry (IC/ICP-MS) and electrospray ionization mass spectrometry (ESI-MS). We identified bromide ion (Br - ), bromate ion (BrO 3 - ), bromochloroacetic acid (BCAA), dibromoacetic acid (DBAA) and bromodichloroacetic acid (BDCAA) by standard addition methods with IC/ICP-MS. Moreover, we identified BCAA and BDCAA by ESI-MS after separation with IC. Br - , BrO 3 - , BCAA, DBAA and BDCAA in tap water collected from around Tokyo area were quantified by IC/ICP-MS. The maximum concentration of BrO 3 - (1.8 ng mL -1 ) was observed in tap water collected from Bunkyo-ku, although this concentration was lower than 10 ng mL -1 , which is the regulated concentration in Japan. DBAA, which is regulated by United States Environmental Protection Agency, was detected in tap water collected from all sites, except for Ome. However, since BrO 3 - and DBAA are toxic, it is necessary to continue monitoring bromide compounds in tap water. (author)

  17. Petroleomics by electrospray ionization FT-ICR mass spectrometry coupled to partial least squares with variable selection methods: prediction of the total acid number of crude oils.

    Science.gov (United States)

    Terra, Luciana A; Filgueiras, Paulo R; Tose, Lílian V; Romão, Wanderson; de Souza, Douglas D; de Castro, Eustáquio V R; de Oliveira, Mirela S L; Dias, Júlio C M; Poppi, Ronei J

    2014-10-07

    Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.

  18. Chemical analysis of raw and processed Fructus arctii by high-performance liquid chromatography/diode array detection-electrospray ionization-mass spectrometry

    Science.gov (United States)

    Qin, Kunming; Liu, Qidi; Cai, Hao; Cao, Gang; Lu, Tulin; Shen, Baojia; Shu, Yachun; Cai, Baochang

    2014-01-01

    Background: In traditional Chinese medicine (TCM), raw and processed herbs are used to treat the different diseases. Fructus Arctii, the dried fruits of Arctium lappa l. (Compositae), is widely used in the TCM. Stir-frying is the most common processing method, which might modify the chemical compositions in Fructus Arctii. Materials and Methods: To test this hypothesis, we focused on analysis and identification of the main chemical constituents in raw and processed Fructus Arctii (PFA) by high-performance liquid chromatography/diode array detection-electrospray ionization-mass spectrometry. Results: The results indicated that there was less arctiin in stir-fried materials than in raw materials. however, there were higher levels of arctigenin in stir-fried materials than in raw materials. Conclusion: We suggest that arctiin reduced significantly following the thermal conversion of arctiin to arctigenin. In conclusion, this finding may shed some light on understanding the differences in the therapeutic values of raw versus PFA in TCM. PMID:25422559

  19. Ultra high performance liquid chromatography-electrospray ionization-tandem mass spectrometry screening method for direct analysis of designer drugs, "spice" and stimulants in oral fluid.

    Science.gov (United States)

    Strano-Rossi, Sabina; Anzillotti, Luca; Castrignanò, Erika; Romolo, Francesco Saverio; Chiarotti, Marcello

    2012-10-05

    An ultra high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) screening method for the direct analysis in oral fluid (OF) of 24 drugs, including new synthetic cannabinoids and so-called "smart" designer drugs, in a single chromatographic run was set up. Benzylpiperazine, methylone, 5,6-methylenedioxy-2-aminoindane (MDAI), fenproporex, 4-fluoroamphetamine (4-FA), 4-methyl-N-ethylcathinone (4-MEC), 4-methylamphetamine (4-MA), methylbenzodioxolylbutanamine (MBDB), mephedrone, methylthioamphetamine (MTA), methylenedioxypyrovalerone (MDPV), mefenorex, nabilone, furfenorex, clobenzorex, JWH-200, AM 694, JWH-250, JWH-073, JWH-018, JWH-019, JWH-122, HU 210 and CP 47497 were determined in a chromatographic run of 9 min only with no sample pre-treatment, after addition of ISs and dilution in mobile phase A. This method is designed to be applied to 250 μL of OF sample, anyway is suitable to be used on smaller volumes (till 100 μL). LODs vary from 1ng/mL to 20 ng/mL. No interfering peaks were observed due to similar analytes, common therapeutic drugs or endogenous compounds. Matrix effect, although present especially for mephedrone, is acceptable, allowing the detection of the compounds at the LODs described. The developed method was applied on 400 real OF samples from on-site tests performed by police officers. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  1. Accurate and rapid modeling of iron-bleomycin-induced DNA damage using tethered duplex oligonucleotides and electrospray ionization ion trap mass spectrometric analysis.

    Science.gov (United States)

    Harsch, A; Marzilli, L A; Bunt, R C; Stubbe, J; Vouros, P

    2000-05-01

    Bleomycin B(2)(BLM) in the presence of iron [Fe(II)] and O(2)catalyzes single-stranded (ss) and double-stranded (ds) cleavage of DNA. Electrospray ionization ion trap mass spectrometry was used to monitor these cleavage processes. Two duplex oligonucleotides containing an ethylene oxide tether between both strands were used in this investigation, allowing facile monitoring of all ss and ds cleavage events. A sequence for site-specific binding and cleavage by Fe-BLM was incorporated into each analyte. One of these core sequences, GTAC, is a known hot-spot for ds cleavage, while the other sequence, GGCC, is a hot-spot for ss cleavage. Incubation of each oligo-nucleotide under anaerobic conditions with Fe(II)-BLM allowed detection of the non-covalent ternary Fe-BLM/oligonucleotide complex in the gas phase. Cleavage studies were then performed utilizing O(2)-activated Fe(II)-BLM. No work-up or separation steps were required and direct MS and MS/MS analyses of the crude reaction mixtures confirmed sequence-specific Fe-BLM-induced cleavage. Comparison of the cleavage patterns for both oligonucleotides revealed sequence-dependent preferences for ss and ds cleavages in accordance with previously established gel electrophoresis analysis of hairpin oligonucleotides. This novel methodology allowed direct, rapid and accurate determination of cleavage profiles of model duplex oligonucleotides after exposure to activated Fe-BLM.

  2. Online quench-flow electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for elucidating kinetic and chemical enzymatic reaction mechanisms.

    Science.gov (United States)

    Clarke, David J; Stokes, Adam A; Langridge-Smith, Pat; Mackay, C Logan

    2010-03-01

    We have developed an automated quench-flow microreactor which interfaces directly to an electrospray ionization (ESI) mass spectrometer. We have used this device in conjunction with ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to demonstrate the potential of this approach for studying the mechanistic details of enzyme reactions. For the model system chosen to test this device, namely, the pre-steady-state hydrolysis of p-nitrophenyl acetate by the enzyme chymotrypsin, the kinetic parameters obtained are in good agreement with those in the literature. To our knowledge, this is the first reported use of online quench-flow coupled with FTICR MS. Furthermore, we have exploited the power of FTICR MS to interrogate the quenched covalently bound enzyme intermediate using top-down fragmentation. The accurate mass capabilities of FTICR MS permitted the nature of the intermediate to be assigned with high confidence. Electron capture dissociation (ECD) fragmentation allowed us to locate the intermediate to a five amino acid section of the protein--which includes the known catalytic residue, Ser(195). This experimental approach, which uniquely can provide both kinetic and chemical details of enzyme mechanisms, is a potentially powerful tool for studies of enzyme catalysis.

  3. Quantitative analysis of the eight major compounds in the Samsoeum using a high-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometer

    Science.gov (United States)

    Weon, Jin Bae; Yang, Hye Jin; Lee, Bohyoung; Ma, Jin Yeul; Ma, Choong Je

    2015-01-01

    Background: Samsoeum was traditionally used for treatment of a respiratory disease. Objective: The simultaneous determination of eight major compounds, ginsenoside Rg3, caffeic acid, puerarin, costunolide, hesperidin, naringin, glycyrrhizin, and 6-gingerol in the Samsoeum using a high-performance liquid chromatography (HPLC) coupled with diode array detection (DAD) and an electrospray ionization mass spectrometer was developed for an accurate and reliable quality assessment. Materials and Methods: Eight compounds were qualitative identified based on their mass spectra and by comparing with standard compounds and quantitative analyzed by HPLC-DAD. Separation of eight compounds was carried out on a LUNA C18 column (S-5 μm, 4.6 mm i.d. ×250 mm) with gradient elution composed of acetonitrile and 0.1% trifluoroacetic acid. Results: The data showed good linearity (R2 > 0.9996). The limits of detection and the limits of quantification were <0.53 μg and 1.62 μg, respectively. Inter- and Intra-day precisions (expressed as relative standard deviation values) were within 1.94% and 1.91%, respectively. The recovery of the method was in the range of 94.24–107.90%. Conclusion: The established method is effective and could be applied to quality control of Samsoeum. PMID:25829771

  4. High performance liquid chromatography (HPLC fingerprints and primary structure identification of corn peptides by HPLC-diode array detection and HPLC-electrospray ionization tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Chi Wang

    2016-01-01

    Full Text Available Corn peptides (CPs are reported to have many biological functions, such as facilitating alcohol metabolism, antioxidation, antitumor, antihypertension, and hepatoprotection. To develop a method for quality control, the high-performance liquid chromatography (HPLC system was applied. Twenty-eight common peaks were found in all the CPs of corn samples from Enshi, China, based on which, a fingerprinting chromatogram was established for use in quality control in future research. Subsequently, the major chemical constituents of these common peaks were identified respectively using the HPLC-diode-array detection electrospray ionization tandem mass spectrometry (DAD-ESI-MS/MS system, and 48 peptide fractions were determined ultimately. This was the first time for the majority of these peptides to be reported, and many of them contained amino acids of glutamine (Q, L and A, which might play an important role in the exhibition of the bioactivities of CPs. Many peptides had a similar primary structure to the peptides which had been proven to be bioactive such as facilitating alcohol metabolism, scavenging free radicals, and inhibiting lipid peroxidation. This systematical analysis of the primary structure of CPs facilitated subsequent studies on the relationship between the structures and functions, and could accelerate holistic research on CPs.

  5. Mass measurements of neutron-rich strontium and rubidium isotopes in the region $A \\approx 100$ and development of an electrospray ionization ion source

    CERN Document Server

    de Roubin, Antoine

    An extension of the atomic mass surface in the region $A \\approx 100$ is performed via mass measurements of the $^{100−102}$Sr and $^{100−102}$Rb isotopes with the ion-trap mass spectrometer ISOLTRAP at CERN-ISOLDE. The first direct mass measurements of $^{102}$Sr and $^{101,102}$Rb are reported here. These measurements confirm the continuation of the region of nuclear deformation with the increase of neutron number, at least as far as $N = 65$. In order to interpret the deformation in the strontium isotopic chain and to determine whether an onset of deformation is present in heavier krypton isotopes, a comparison is made between experimental values and theoretical calculations available in the literature. To complete this comparison, Hartree-Fock-Bogoliubov calculations for even and odd isotopes are also presented, illustrating the competition of nuclear shapes in the region. The development of an electrospray ionization ion source is presented. This source can deliver a large range of isobaric masses ...

  6. Occupancy of a C2-C2 type 'zinc-finger' protein domain by copper. Direct observation by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Hutchens, T W; Allen, M H; Li, C M; Yip, T T

    1992-09-07

    The metal ion specificity of most 'zinc-finger' metal binding domains is unknown. The human estrogen receptor protein contains two different C2-C2 type 'zinc-finger' sequences within its DNA-binding domain (ERDBD). Copper inhibits the function of this protein by mechanisms which remain unclear. We have used electrospray ionization mass spectrometry to evaluate directly the 71-residue ERDBD (K180-M250) in the absence and presence of Cu(II) ions. The ERDBD showed a high affinity for Cu and was completely occupied with 4 Cu bound; each Cu ion was evidently bound to only two ligand residues (net loss of only 2 Da per bound Cu). The Cu binding stoichiometry was confirmed by atomic absorption. These results (i) provide the first direct physical evidence for the ability of the estrogen receptor DNA-binding domain to bind Cu and (ii) document a twofold difference in the Zn- and Cu-binding capacity. Differences in the ERDBD domain structure with bound Zn and Cu are predicted. Given the relative intracellular contents of Zn and Cu, our findings demonstrate the need to investigate further the Cu occupancy of this and other zinc-finger domains both in vitro and in vivo.

  7. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry

    International Nuclear Information System (INIS)

    Xu Weihai; Zhang Gan; Zou Shichun; Li Xiangdong; Liu Yuchun

    2007-01-01

    Nine selected antibiotics in the Victoria Harbour of Hong Kong and the Pearl River at Guangzhou, South China, were analyzed using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. The results showed that the concentrations of antibiotics were mainly below the limit of quantification (LOQ) in the marine water of Victoria Harbour. However, except for amoxicillin, all of the antibiotics were detected in the Pearl River during high and low water seasons with the median concentrations ranging from 11 to 67 ng/L, and from 66 to 460 ng/L, respectively; and the concentrations in early spring were about 2-15 times higher than that in summer with clearer diurnal variations. It was suggested that the concentrations of antibiotics in the high water season were more affected by wastewater production cycles due to quick refreshing rate, while those in the low water season may be more sensitive to the water column dynamics controlled by tidal processes in the river. - Antibiotics were found at high concentrations in an urban reach of Pearl River in southern China with contrast diurnal variations between the high and low water seasons

  8. Comprehensive analysis of pyrimidine metabolism in 450 children with unspecific neurological symptoms using high-pressure liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Schmidt, C; Hofmann, U; Kohlmüller, D; Mürdter, T; Zanger, U M; Schwab, M; Hoffmann, G F

    2005-01-01

    To evaluate the significance of inborn metabolic disorders of the pyrimidine degradation pathway, 450 children with unspecific neurological symptoms were comprehensively studied; 200 healthy children were recruited as controls. Uracil and thymine as well as their degradation products in urine were determined with an improved method based on reversed-phase HPLC coupled with electrospray ionization tandem mass spectrometry and detection by multiple-reaction monitoring using stable-isotope-labelled reference compounds as internal standards. From the results of the control group we established age-related reference ranges of all pyrimidine degradation products. In the patient group, two children with dihydropyrimidine dehydrogenase (DPYD) deficiency were identified; one of these was homozygous for the exon 14-skipping mutation of the DPYD gene. In addition, two patients with high uracil, dihydrouracil and beta-ureidopropionate were found to have ornithine transcarbamylase deficiency. In the urine of 9 patients, beta-alanine was markedly elevated owing to treatment with vigabatrin, an irreversible inhibitor of GABA transaminase, which interferes with beta-alanine breakdown. Four patients had exclusively high levels of beta-aminoisobutyrate (beta-AIB) due to a low activity of the D-beta-AIB-pyruvate aminotransferase, probably without clinical significance. In conclusion, quantitative investigation of pyrimidine metabolites in children with unexplained neurological symptoms, particularly epileptic seizures with or without psychomotor retardation, can be recommended as a helpful tool for diagnosis in clinical practice. Sensitive methods and age-related reference ranges enable the detection of partial enzyme deficiencies.

  9. Liquid chromatography-electrospray ionization tandem mass spectrometry and dynamic multiple reaction monitoring method for determining multiple pesticide residues in tomato.

    Science.gov (United States)

    Andrade, G C R M; Monteiro, S H; Francisco, J G; Figueiredo, L A; Botelho, R G; Tornisielo, V L

    2015-05-15

    A quick and sensitive liquid chromatography-electrospray ionization tandem mass spectrometry method, using dynamic multiple reaction monitoring and a 1.8-μm particle size analytical column, was developed to determine 57 pesticides in tomato in a 13-min run. QuEChERS (quick, easy, cheap, effective, rugged, and safe) method for samples preparations and validations was carried out in compliance with EU SANCO guidelines. The method was applied to 58 tomato samples. More than 84% of the compounds investigated showed limits of detection equal to or lower than 5 mg kg(-1). A mild (50%) matrix effect was observed for 72%, 25%, and 3% of the pesticides studied, respectively. Eighty-one percent of the pesticides showed recoveries ranging between 70% and 120%. Twelve pesticides were detected in 35 samples, all below the maximum residue levels permitted in the Brazilian legislation; 15 samples exceeded the maximum residue levels established by the EU legislation for methamidophos; and 10 exceeded limits for acephate and four for bromuconazole. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Cryo-sectioning of mice for whole-body imaging of drugs and metabolites with desorption electrospray ionization mass spectrometry imaging - a simplified approach.

    Science.gov (United States)

    Okutan, Seda; Hansen, Harald S; Janfelt, Christian

    2016-06-01

    A method is presented for whole-body imaging of drugs and metabolites in mice with desorption electrospray ionization mass spectrometry imaging (DESI-MSI). Unlike most previous approaches to whole-body imaging which are based on cryo-sectioning using a cryo-macrotome, the presented approach is based on use of the cryo-microtome which is found in any histology lab. The tissue sections are collected on tape which is analyzed directly by DESI-MSI. The method is demonstrated on mice which have been dosed intraperitoneally with the antidepressive drug amitriptyline. By combining full-scan detection with the more selective and sensitive MS/MS detection, a number of endogenous compounds (lipids) were imaged simultaneously with the drug and one of its metabolites. The sensitivity of this approach allowed for imaging of drug and the metabolite in a mouse dosed with 2.7 mg amitriptyline per kg bodyweight which is comparable to the normal prescribed human dose. The simultaneous imaging of endogenous and exogenous compounds facilitates registration of the drug images to certain organs in the body by colored-overlay of the two types of images. The method represents a relatively low-cost approach to simple, sensitive and highly selective whole-body imaging in drug distribution and metabolism studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Determination of Phenolic Content in Different Barley Varieties and Corresponding Malts by Liquid Chromatography-diode Array Detection-Electrospray Ionization Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Daniel O. Carvalho

    2015-08-01

    Full Text Available A simple and reliable method for the simultaneous determination of nine phenolic compounds in barley and malted barley was established, using liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry (HPLC-DAD-ESI-MS/MS. The phenolic compounds can be easily detected with both systems, despite significant differences in sensitivity. Concentrations approximately 180-fold lower could be achieved by mass spectrometry analysis compared to diode array detection, especially for the flavan-3-ols (+-catechin and (−-epicatechin, which have poor absorptivity in the UV region. Malt samples were characterized by higher phenolic content comparing to corresponding barley varieties, revealing a significant increase of the levels of (+-catechin and (−-epicatechin during the malting process. Moreover, the industrial malting is responsible for modification on the phenolic profile from barley to malt, namely on the synthesis or release of sinapinic acid and epicatechin. Accordingly, the selection of the malting parameters, as well as the barley variety plays an important role when considering the quality and antioxidant stability of beer.

  12. Spatially resolved investigation of systemic and contact pesticides in plant material by desorption electrospray ionization mass spectrometry imaging (DESI-MSI).

    Science.gov (United States)

    Gerbig, Stefanie; Brunn, Hubertus E; Spengler, Bernhard; Schulz, Sabine

    2015-09-01

    Distribution of pesticides both on the surface of leaves and in cross sections of plant stem and leaves was investigated using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) with a spatial resolution of 50-100 μm. Two commercially available insecticide sprays containing different contact pesticides were applied onto leaves of Cotoneaster horizontalis, and the distributions of all active ingredients were directly analyzed. The first spray contained pyrethrins and rapeseed oil, both known as natural insecticides. Each component showed an inhomogeneous spreading throughout the leaf, based on substance polarity and solubility. The second spray contained the synthetic insecticides imidacloprid and methiocarb. Imidacloprid accumulated on the border of the leaf, while methiocarb was distributed more homogenously. In order to investigate the incorporation of a systemically acting pesticide into Kalanchoe blossfeldiana, a commercially available insecticide tablet containing dimethoate was spiked to the soil of the plant. Cross sections of the stem and leaf were obtained 25 and 60 days after application. Dimethoate was mainly detected in the transport system of the plant after 25 days, while it was found to be homogenously distributed in a leaf section after 60 days.

  13. Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Osago, Harumi; Shibata, Tomoko; Hara, Nobumasa; Kuwata, Suguru; Kono, Michihaya; Uchio, Yuji; Tsuchiya, Mikako

    2014-12-15

    We developed a method using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with a selected reaction monitoring (SRM) mode for simultaneous quantitative analysis of glycosaminoglycans (GAGs). Using one-shot analysis with our MS/MS method, we demonstrated the simultaneous quantification of a total of 23 variously sulfated disaccharides of four GAG classes (8 chondroitin/dermatan sulfates, 1 hyaluronic acid, 12 heparan sulfates, and 2 keratan sulfates) with a sensitivity of less than 0.5 pmol within 20 min. We showed the differences in the composition of GAG classes and the sulfation patterns between porcine articular cartilage and yellow ligament. In addition to the internal disaccharides described above, some saccharides derived from the nonreducing terminal were detected simultaneously. The simultaneous quantification of both internal and nonreducing terminal saccharides could be useful to estimate the chain length of GAGs. This method would help to establish comprehensive "GAGomic" analysis of biological tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Supercritical fluid chromatography-photodiode array detection-electrospray ionization mass spectrometry as a framework for impurity fate mapping in the development and manufacture of drug substances.

    Science.gov (United States)

    Pirrone, Gregory F; Mathew, Rose M; Makarov, Alexey A; Bernardoni, Frank; Klapars, Artis; Hartman, Robert; Limanto, John; Regalado, Erik L

    2018-03-30

    Impurity fate and purge studies are critical in order to establish an effective impurity control strategy for approval of the commercial filing application of new medicines. Reversed phase liquid chromatography-diode array-mass spectrometry (RPLC-DAD-MS) has traditionally been the preferred tool for impurity fate mapping. However, separation of some reaction mixtures by LC can be very problematic requiring combination LC-UV for area % analysis and a different LC-MS method for peak identification. In addition, some synthetic intermediates might be chemically susceptible to the aqueous conditions used in RPLC separations. In this study, the use of supercritical fluid chromatography-photodiode array-electrospray ionization mass spectrometry (SFC-PDA-ESIMS) for fate and purge of two specified impurities in the 1-uridine starting material from the synthesis of a bis-piv 2'keto-uridine, an intermediate in the synthesis of uprifosbuvir, a treatment under investigation for chronic hepatitis C infection. Readily available SFC instrumentation with a Chiralpak IC column (4.6 × 150 mm, 3 μm) and ethanol: carbon dioxide based mobile phase eluent enabled the separation of closely related components from complex reaction mixtures where RLPC failed to deliver optimal chromatographic performance. These results illustrate how SFC combined with PDA and ESI-MS detection can become a powerful tool for direct impurity fate mapping across multiple reaction steps. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Cleavage reactions of the complex ions derived from self-complementary deoxydinucleotides and alkali-metal ions using positive ion electrospray ionization with tandem mass spectrometry.

    Science.gov (United States)

    Xiang, Yun; Abliz, Zeper; Takayama, Mitsuo

    2004-05-01

    The dissociation reactions of the adduct ions derived from the four self-complementary deoxydinucleotides, d(ApT), d(TpA), d(CpG), d(GpC), and alkali-metal ions were studied in detail by positive ion electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)). For the [M + H](+) ions of the four deoxydinucleotides, elimination of 5'-terminus base or loss of both of 5'-terminus base and a deoxyribose were the major dissociation pathway. The ESI-MS(n) spectra showed that Li(+), Na(+), and Cs(+) bind to deoxydinucleotides mainly by substituting the H(+) of phosphate group, and these alkali-metal ions preferred to bind to pyrimidine bases rather than purine bases. For a given deoxydinucleotide, the dissociation pathway of [M + K](+) ions differed clearly from that of [M + Li](+), [M + Na](+), and [M + Cs](+) ions. Some interesting and characteristic cleavage reactions were observed in the product-ion spectra of [M + K](+) ions, including direct elimination of deoxyribose and HPO(3) from molecular ions. The fragmentation behavior of the [M + K](+) and [M + W](+) (W = Li, Na, Cs) adduct ions depend upon the sequence of bases, the interaction between alkali-metal ions and nucleobases, and the steric hindrance caused by bases.

  16. Simultaneous measurement of proline and related compounds in oak leaves by high-performance ligand-exchange chromatography and electrospray ionization mass spectrometry for environmental stress studies.

    Science.gov (United States)

    Oufir, Mouhssin; Schulz, Nadine; Sha Vallikhan, Patan Shaik; Wilhelm, Eva; Burg, Kornel; Hausman, Jean-Francois; Hoffmann, Lucien; Guignard, Cedric

    2009-02-13

    A mass spectrometer was coupled to high-performance ligand-exchange liquid chromatography (HPLEC) for simultaneous analysis of stress associated solutes such as proline, hydroxyproline, methylproline, glycine betaine and trigonelline extracted from leaves of drought stressed oaks and an internal standard namely N-acetylproline. Methanol/chloroform/water extracts were analyzed using an Aminex HPX-87C column and specifically quantified by the positive ion mode of an electrospray ionisation-mass spectrometry (ESI-MS) in single ion monitoring (SIM) mode. The recovery of N-acetyl proline added to oak leaf extracts ranged from 85.2 to 122.1% for an intra-day study. Standard calibration curves showed good linearity in the measured range from 0.3125 to 10micromolL(-1) with the lowest correlation coefficient of 0.99961 for trigonelline. The advantages of this alternative procedure, compared to previously published methods using fluorescence or amperometric detections, are the simultaneous and direct detection of osmoprotectants in a single chromatographic run, a minimal sample preparation, a good specificity and reduced limits of quantification, ranging from 0.1 to 0.6micromolL(-1). Fifty-six days of water deficit exposure resulted in increased foliar free proline levels (2.4-fold, P<0.001, 155micromolg(-1) FW) and glycine betaine contents (2.5-fold, P<0.05, 175micromolg(-1) FW) of drought stressed oak compared to control.

  17. Liquid Chromatography with Post-Column Reagent Addition of Ammonia in Methanol Coupled to Negative Ion Electrospray Ionization Tandem Mass Spectrometry for Determination of Phenoxyacid Herbicides and their Degradation Products in Surface Water

    Directory of Open Access Journals (Sweden)

    Renata Raina

    2010-01-01

    Full Text Available A new liquid chromatography (LC-negative ion electrospray ionization (ESI − –tandem mass spectrometry (MS/MS method with post-column addition of ammonia in methanol has been developed for the analysis of acid herbicides: 2,4-dichlorophenoxy acetic acid, 4-chloro-o-tolyloxyacetic acid, 2-(2-methyl-4-chlorophenoxybutyric acid, mecoprop, dichlorprop, 4-(2,4-dichlorophenoxy butyric acid, 2,4,5-trichlorophenoxy propionic acid, dicamba and bromoxynil, along with their degradation products: 4-chloro-2-methylphenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol and 3,5-dibromo-4-hydroxybenzoic acid. The samples were extracted from the surface water matrix using solid-phase extraction (SPE with a polymeric sorbent and analyzed with LC ESI − with selected reaction monitoring (SRM using a three-point confirmation approach. Chromatography was performed on a Zorbax Eclipse XDB-C18 (50 × 4.6 mm i.d., 1.8 μm with a gradient elution using water-methanol with 2 mM ammonium acetate mobile phase at a flow rate of 0.15 mL/min. Ammonia in methanol (0.8 M was added post-column at a flow rate of 0.05 mL/min to enhance ionization of the degradation products in the MS source. One SRM transition was used for quantitative analysis while the second SRM along with the ratio of SRM1/SRM2 within the relative standard deviation determined by standards for each individual pesticide and retention time match were used for confirmation. The standard deviation of ratio of SRM1/SRM2 obtained from standards run on the day of analysis for different phenoxyacid herbicides ranged from 3.9 to 18.5%. Limits of detection (LOD were between 1 and 15 ng L −1 and method detection limits (MDL with strict criteria requiring <25% deviation of peak area from best-fit line for both SRM1 and SRM2 ranged from 5 to 10 ng L −1 for acid ingredients (except dicamba at 30 ng L −1 and from 2 to 30 ng L −1 for degradation products. The SPE-LC-ESI − MS/MS method permitted low nanogram

  18. Charge Enhancement of Single-Stranded DNA in Negative Electrospray Ionization Using the Supercharging Reagent Meta-nitrobenzyl Alcohol

    Science.gov (United States)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B.; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  19. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Milic, Ivana; Hoffmann, Ralf; Fedorova, Maria

    2013-01-02

    Reactive oxygen species (ROS) and other oxidative agents such as free radicals can oxidize polyunsaturated fatty acids (PUFA) as well as PUFA in lipids. The oxidation products can undergo consecutive reactions including oxidative cleavages to yield a chemically diverse group of products, such as lipid peroxidation products (LPP). Among them are aldehydes and ketones ("reactive carbonyls") that are strong electrophiles and thus can readily react with nucleophilic side chains of proteins, which can alter the protein structure, function, cellular distribution, and antigenicity. Here, we report a novel technique to specifically derivatize both low molecular and high molecular weight carbonylated LPP with 7-(diethylamino)coumarin-3-carbohydrazide (CHH) and analyze all compounds by electrospray ionization-mass spectrometry (ESI-MS) in positive ion mode. CHH-derivatized compounds were identified by specific neutral losses or fragment ions. The fragment ion spectra displayed additional signals that allowed unambiguous identification of the lipid, fatty acids, cleavage sites, and oxidative modifications. Oxidation of docosahexaenoic (DHA, 22:6), arachidonic (AA, 20:4), linoleic (LA, 18:2), and oleic acids (OA, 18:1) yielded 69 aliphatic carbonyls, whose structures were all deduced from the tandem mass spectra. When four phosphatidylcholine (PC) vesicles containing the aforementioned unsaturated fatty acids were oxidized, we were able to deduce the structures of 122 carbonylated compounds from the tandem mass spectra of a single shotgun analysis acquired within 15 min. The high sensitivity (LOD ∼ 1 nmol/L for 4-hydroxy-2-nonenal, HNE) and a linear range of more than 3 orders of magnitude (10 nmol/L to 10 μmol/L for HNE) will allow further studies on complex biological samples including plasma.

  20. Automated Gain Control and Internal Calibration With External Ion Accumulation Capillary liquid chromatography-electrospray ionization-fourier transform ion cyclotron resonance.

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Mikhail E.(VISITORS); Zhang, Rui (BATTELLE (PACIFIC NW LAB)); Strittmatter, Eric F.(BATTELLE (PACIFIC NW LAB)); Prior, David C.(BATTELLE (PACIFIC NW LAB)); Tang, Keqi (BATTELLE (PACIFIC NW LAB)); Smith, Richard D.(BATTELLE (PACIFIC NW LAB))

    2003-08-15

    When combined with capillary LC separations, Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FTICR MS) has increasingly been applied for advanced characterization of proteolytic digests. Incorporation of external (to the ICR cell) ion accumulation multipoles with FTICR for ion pre selection and accumulation has enhanced the dynamic range, sensitivity and duty cycle of measurements. However, the highly variable ion production rate from an LC separation can result in overfilling of the external trap, resulting in m/z discrimination and fragmentation of peptide ions. An excessive space charge trapped in the ICR cell causes significant shifts in the detected ion cyclotron frequencies, reducing the achievable mass measurement accuracy (MMA) for protein identification. To eliminate m/z discrimination in the external ion trap, further increase the duty cycle and improve MMA, we developed a capability for data-dependent adjustment of ion accumulation times in the course of an LC separation, referred to as Automated Gain Control (AGC), in combination with low kinetic energy gated ion trapping and internal calibration using a dual-channel electrodynamic ion funnel. The system was initially evaluated in the analysis of a 0.5 mg/mL tryptic digest of bovine serum albumin. The implementation of LC/ESI/AGC/FTICR with internal calibration gave rise to a {approx} 10-fold increase in the number of identified tryptic peptides within mass measurement accuracy of 2 ppm as compared to that detected during the conventional LC/FTICR run with a fixed ion accumulation time and external calibration.

  1. Using positive-ion electrospray ionization mass spectrometry and H/D exchange study phosphoryl group transfer reactions involved in amino acid ester isopropyl phosphoramidates of Brefeldin A

    International Nuclear Information System (INIS)

    Fang, Mei-Juan; Zhang, He; Liao, Chao; Qiu, Ying-Kun; Fang, Hua; Zheng, Zhen-Yu; Gao, Xiang; Zhao, Yu-Fen; Wu, Zhen

    2015-01-01

    Highlights: • ESI-MS n , HRMS and H/D exchange were used. • The fragmentation pathways of NPAAE-BFA in ESI-MS n were described. • Fragment ions involved in phosphorus group’s rearrangement reactions were observed. • Two rearrangement mechanisms about phosphorylation–dephosphorylation were proposed. - Abstract: As mini-chemical models, amino acid ester isopropyl phosphoramidates of Brefeldin A (compounds 2a–2d) were synthesized and investigated by electrospray ionization tandem mass spectrometry in combination with H/D exchange. To further confirm the fragments’s structures, off-line Fourier transform resonance tandem mass spectrometry (FT-ICR-MS/MS) was also performed. The fragmentation rules of compounds 2a–2d have been summarized and the plausible schemes for the fragmentation pathways were proposed. In this study, one dephosphorylated ion and two phosphorylated ions were observed in ESI-MS 2 spectra of [M + Na] + ions for compounds 2a–2d. The possible mechanisms about phosphorylation and dephosphorylation were proposed and confirmed by H/D exchange. For the “dephosphorylation” rearrangement, a nitrogen atom was migrated from the phosphoryl group to the carbon atom of Brefeldin A’s backbone with losing a molecule of C 3 H 7 PO 3 (122 Da). For the “phosphorylation” rearrangement, an oxygen atom of one phosphoryl group attacked the sideward phosphorus atom to form a nine-member ring intermediate, then two steps of C-H covalent bond cleavage with consecutive migration of hydrogen atom to lose a molecule of C 16 H 20 O 2 (244 Da). The two proposed rearrangement mechanisms about phosphoryl group transfer might be valuable for the structure analysis of other analogs and provide insights into elucidating the dynamic process of the phosphorylation–dephosphorylation of proteins

  2. Characterization of Nα-Fmoc-protected dipeptide isomers by electrospray ionization tandem mass spectrometry (ESI-MS(n)): effect of protecting group on fragmentation of dipeptides.

    Science.gov (United States)

    Ramesh, M; Raju, B; Srinivas, R; Sureshbabu, V V; Vishwanatha, T M; Hemantha, H P

    2011-07-30

    A series of positional isomeric pairs of Fmoc-protected dipeptides, Fmoc-Gly-Xxx-OY/Fmoc-Xxx-Gly-OY (Xxx=Ala, Val, Leu, Phe) and Fmoc-Ala-Xxx-OY/Fmoc-Xxx-Ala-OY (Xxx=Leu, Phe) (Fmoc=[(9-fluorenylmethyl)oxy]carbonyl) and Y=CH(3)/H), have been characterized and differentiated by both positive and negative ion electrospray ionization ion-trap tandem mass spectrometry (ESI-IT-MS(n)). In contrast to the behavior of reported unprotected dipeptide isomers which mainly produce y(1)(+) and/or a(1)(+) ions, the protonated Fmoc-Xxx-Gly-OY, Fmoc-Ala-Xxx-OY and Fmoc-Xxx-Ala-OY yield significant b(1)(+) ions. These ions are formed, presumably with stable protonated aziridinone structures. However, the peptides with Gly- at the N-terminus do not form b(1)(+) ions. The [M+H](+) ions of all the peptides undergo a McLafferty-type rearrangement followed by loss of CO(2) to form [M+H-Fmoc+H](+). The MS(3) collision-induced dissociation (CID) of these ions helps distinguish the pairs of isomeric dipeptides studied in this work. Further, negative ion MS(3) CID has also been found to be useful for differentiating these isomeric peptide acids. The MS(3) of [M-H-Fmoc+H](-) of isomeric peptide acids produce c(1)(-), z(1)(-) and y(1)(-) ions. Thus the present study of Fmoc-protected peptides provides additional information on mass spectral characterization of the dipeptides and distinguishes the positional isomers. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Using positive-ion electrospray ionization mass spectrometry and H/D exchange study phosphoryl group transfer reactions involved in amino acid ester isopropyl phosphoramidates of Brefeldin A

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Mei-Juan; Zhang, He; Liao, Chao; Qiu, Ying-Kun [School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiang-An South Road, Xiamen 361102 (China); Fang, Hua [The Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005 (China); Zheng, Zhen-Yu [College of Chemistry and Chemical Engineering, Department of Chemistry, Xiamen University, Xiamen 361005 (China); Gao, Xiang [School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiang-An South Road, Xiamen 361102 (China); Zhao, Yu-Fen [School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiang-An South Road, Xiamen 361102 (China); College of Chemistry and Chemical Engineering, Department of Chemistry, Xiamen University, Xiamen 361005 (China); Wu, Zhen, E-mail: wuzhen@xmu.edu.cn [School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiang-An South Road, Xiamen 361102 (China)

    2015-01-01

    Highlights: • ESI-MS{sup n}, HRMS and H/D exchange were used. • The fragmentation pathways of NPAAE-BFA in ESI-MS{sup n} were described. • Fragment ions involved in phosphorus group’s rearrangement reactions were observed. • Two rearrangement mechanisms about phosphorylation–dephosphorylation were proposed. - Abstract: As mini-chemical models, amino acid ester isopropyl phosphoramidates of Brefeldin A (compounds 2a–2d) were synthesized and investigated by electrospray ionization tandem mass spectrometry in combination with H/D exchange. To further confirm the fragments’s structures, off-line Fourier transform resonance tandem mass spectrometry (FT-ICR-MS/MS) was also performed. The fragmentation rules of compounds 2a–2d have been summarized and the plausible schemes for the fragmentation pathways were proposed. In this study, one dephosphorylated ion and two phosphorylated ions were observed in ESI-MS{sup 2} spectra of [M + Na]{sup +} ions for compounds 2a–2d. The possible mechanisms about phosphorylation and dephosphorylation were proposed and confirmed by H/D exchange. For the “dephosphorylation” rearrangement, a nitrogen atom was migrated from the phosphoryl group to the carbon atom of Brefeldin A’s backbone with losing a molecule of C{sub 3}H{sub 7}PO{sub 3} (122 Da). For the “phosphorylation” rearrangement, an oxygen atom of one phosphoryl group attacked the sideward phosphorus atom to form a nine-member ring intermediate, then two steps of C-H covalent bond cleavage with consecutive migration of hydrogen atom to lose a molecule of C{sub 16}H{sub 20}O{sub 2} (244 Da). The two proposed rearrangement mechanisms about phosphoryl group transfer might be valuable for the structure analysis of other analogs and provide insights into elucidating the dynamic process of the phosphorylation–dephosphorylation of proteins.

  4. Broad-Range PCR Coupled with Electrospray Ionization Time of Flight Mass Spectrometry for Detection of Bacteremia and Fungemia in Patients with Neutropenic Fever

    Science.gov (United States)

    Maertens, J.; Bueselinck, K.; Lagrou, K.

    2016-01-01

    Infection is an important complication in patients with hematologic malignancies or solid tumors undergoing intensive cytotoxic chemotherapy. In only 20 to 30% of the febrile neutropenic episodes, an infectious agent is detected by conventional cultures. In this prospective study, the performance of broad-range PCR coupled with electrospray ionization time of flight mass spectrometry (PCR/ESI-MS) technology was compared to conventional blood cultures (BC) in a consecutive series of samples from high-risk hematology patients. In 74 patients, BC and a whole-blood sample for PCR/ESI-MS (Iridica BAC BSI; Abbott, Carlsbad, CA, USA) were collected at the start of each febrile neutropenic episode and, in case of persistent fever, also at day 5. During 100 different febrile episodes, 105 blood samples were collected and analyzed by PCR/ESI-MS. There was evidence of a bloodstream infection (BSI) in 36/105 cases (34%), based on 14 cases with both PCR/ESI-MS and BC positivity, 17 cases with BC positivity only, and 5 cases with PCR/ESI-MS positivity only. The sensitivity of PCR/ESI-MS was 45%, specificity was 93%, and the negative predictive value was 80% compared to blood culture. PCR/ESI-MS detected definite pathogens (Fusobacterium nucleatum and Streptococcus pneumoniae) missed by BC, whereas it missed both Gram-negative and Gram-positive organisms detected by BC. PCR/ESI-MS testing detected additional microorganisms but showed a low sensitivity (45%) compared to BC in neutropenic patients. Our results indicate a lower concordance between BC and PCR/ESI-MS in the neutropenic population than what has been previously reported in other patient groups with normal white blood cell distribution, and a lower sensitivity than other PCR-based methods. PMID:27440820

  5. Online Simultaneous Hydrogen/Deuterium Exchange of Multitarget Gas-Phase Molecules by Electrospray Ionization Mass Spectrometry Coupled with Gas Chromatography.

    Science.gov (United States)

    Jeong, Eun Sook; Cha, Eunju; Cha, Sangwon; Kim, Sunghwan; Oh, Han Bin; Kwon, Oh-Seung; Lee, Jaeick

    2017-11-21

    In this study, a hydrogen/deuterium (H/D) exchange method using gas chromatography-electrospray ionization/mass spectrometry (GC-ESI/MS) was first investigated as a novel tool for online H/D exchange of multitarget analytes. The GC and ESI source were combined with a homemade heated column transfer line. GC-ESI/MS-based H/D exchange occurs in an atmospheric pressure ion source as a result of reacting the gas-phase analyte eluted from GC with charged droplets of deuterium oxide infused as the ESI spray solvent. The consumption of the deuterated solvent at a flow rate of 2 μL min -1 was more economical than that in online H/D exchange methods reported to date. In-ESI-source H/D exchange by GC-ESI/MS was applied to 11 stimulants with secondary amino or hydroxyl groups. After H/D exchange, the spectra of the stimulants showed unexchanged, partially exchanged, and fully exchanged ions showing various degrees of exchange. The relative abundances corrected for naturally occurring isotopes of the fully exchanged ions of stimulants, except for etamivan, were in the range 24.3-85.5%. Methylephedrine and cyclazodone showed low H/D exchange efficiency under acidic, neutral, and basic spray solvent conditions and nonexchange for etamivan with an acidic phenolic OH group. The in-ESI-source H/D exchange efficiency by GC-ESI/MS was sufficient to determine the number of hydrogen by elucidation of fragmentation from the spectrum. Therefore, this online H/D exchange technique using GC-ESI/MS has potential as an alternative method for simultaneous H/D exchange of multitarget analytes.

  6. Method Development for Binding Media Analysis in Painting Cross-Sections by Desorption Electrospray Ionization-Mass Spectrometry (DESI-MS).

    Science.gov (United States)

    Watts, Kristen; Lagalante, Anthony

    2018-06-06

    Art conservation science is in need of a relatively nondestructive way of rapidly identifying the binding media within a painting cross-section and isolating binding media to specific layers within the cross-section. Knowledge of the stratigraphy of cross-sections can be helpful for removing possible unoriginal paint layers on the artistic work. Desorption electrospray ionization-mass spectrometry (DESI-MS) was used in ambient mode to study cross-sections from mock-up layered paint samples and samples from a 17th century baroque painting. The DESI spray was raster scanned perpendicular to the cross-section layers to maximize lateral resolution then analyzed with a triple quadrupole mass analyzer in linear ion trap mode. From these scans, isobaric mass maps were created to map the locations of masses indicative of particular binding media onto the cross-sections. Line paint-outs of pigments in different binding media showed specific and unique ions to distinguish between the modern acrylic media and the lipid containing binding media. This included: OP (EO) 9 surfactant in positive ESI for acrylic (m/z 621), and oleic (m/z 281), stearic (m/z 283), and azelaic (m/z 187) acids in negative ESI for oil and egg tempera. DESI-MS maps of mock-up cross-sections of layered pigmented binding media showed correlation between these ions and the layers with a spatial resolution of 100 μm. DESI-MS is effective in monitoring binding media within an intact painting cross-section via mass spectrometric methods. This includes distinguishing between lipid-containing and modern binding materials present in a known mockup cross section matrix as well as identifying lipid binding media in a 17th century baroque era painting. This article is protected by copyright. All rights reserved.

  7. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    Science.gov (United States)

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH 2 O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Fan, Ruo-Jing; Guan, Qing; Zhang, Fang; Leng, Jia-Peng; Sun, Tuan-Qi; Guo, Yin-Long

    2016-01-01

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, L-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (L-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. - Highlights: • A common reagent, benzil-d0/d5 was employed to label the GCs and UCs through BRSIL. • The benzil-d0/d5 labeling improved the retention behavior in RPLC and increased the sensitivity by ESI MS detection. • BRSIL coupled with LC-ESI MS was applied to the qualitation and quantitation of GCs and UCs in thyroid tissues.

  9. Simultaneous determination of 14 active constituents of Shengjiang Xiexin decoction using ultrafast liquid chromatography coupled with electrospray ionization tandem mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Gang Peng; Huanyu Guan; Xiaoming Wang; Yue Shi

    2017-01-01

    An effective herbal medicinal prescription of Shengjiang Xiexin decoction (SXD) was used in treating the inflammatory bowel disease in clinic.In this study,an ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method was developed to separate and to simultaneously determine 14 major active ingredients in SXD.Chromatographic separation was successfully accomplished on an Acquity BEH C18 (100 mm × 2.1 mm,1.7 μm) column using gradient elution with 0.1% (v/v) formic acid water (A) and 0.1% (v/v) formic acid in methanol (B).Negative and positive electrospray ionization tandem mass spectrometry was used to detect the 14 analytes using its selective reaction monitoring (SRM) mode.A good linear regression relationship for each analyte was obtained over the range from 3.88 ng/mL to 4080 ng/mL.The precision was evaluated by intra-and inter-day assays with a relative standard deviation (RSD) of less than 6.25%.The recovery measured at three concentration levels varied from 98.72% to 103.47%.The overall limits of quantification (LOQ) ranged from 2.05 ng/mL to 4.72 ng/mL.The method was successfully implemented in the qualitative and quantitative analyses of the 14 chemical constituents in SXD.The results showed that the developed UFLC-MS/MS method was linear and accurate.The method could be used reliably as a quality control method for SXD.

  10. Simultaneous determination of 14 active constituents of Shengjiang Xiexin decoction using ultrafast liquid chromatography coupled with electrospray ionization tandem mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Gang Peng; Huanyu Guan; Xiaoming Wang; Yue Shi

    2017-01-01

    An effective herbal medicinal prescription of Shengjiang Xiexin decoction(SXD) was used in treating the inflammatory bowel disease in clinic.In this study,an ultrafast liquid chromatography-tandem mass spectrometry(UFLC-MS/MS) method was developed to separate and to simultaneously determine14 major active ingredients in SXD.Chromatographic separation was successfully accomplished on an Acquity BEH C18(100 mm × 2.1 mm,1.7 μm) column using gradient elution with 0.1%(v/v) formic acid water(A) and 0.1%(v/v) formic acid in methanol(B).Negative and positive electrospray ionization tandem mass spectrometry was used to detect the 14 analytes using its selective reaction monitoring(SRM) mode.A good linear regression relationship for each analyte was obtained over the range from3.88 ng/mL to 4080 ng/mL.The precision was evaluated by intra-and inter-day assays with a relative standard deviation(RSD) of less than 6.25%.The recovery measured at three concentration levels varied from 98.72%to 103.47%.The overall limits of quantification(LOQ) ranged from 2.05 ng/mL to4.72 ng/mL.The method was successfully implemented in the qualitative and quantitative analyses of the14 chemical constituents in SXD.The results showed that the developed UFLC-MS/MS method was linear and accurate.The method could be used reliably as a quality control method for SXD.

  11. Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. M. Dickhut

    2008-09-01

    Full Text Available Despite the acknowledged relevance of aerosol-derived water-soluble organic carbon (WSOC to climate and biogeochemical cycling, characterization of aerosol WSOC has been limited. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS was utilized in this study to provide detailed molecular level characterization of the high molecular weight (HMW; m/z>223 component of aerosol-derived WSOC collected from rural sites in Virginia and New York, USA. More than 3000 peaks were detected by ESI FT-ICR MS within a m/z range of 223–600 for each sample. Approximately 86% (Virginia and 78% (New York of these peaks were assigned molecular formulas using only carbon (C, hydrogen (H, oxygen (O, nitrogen (N, and sulfur (S as elemental constituents. H/C and O/C molar ratios were plotted on van Krevelen diagrams and indicated a strong contribution of lignin-like and lipid-like compounds to the aerosol-derived WSOC samples. Approximately 1–4% of the peaks in the aerosol-derived WSOC mass spectra were classified as black carbon (BC on the basis of double bond equivalents calculated from the assigned molecular formulas. In addition, several high-magnitude peaks in the mass spectra of samples from both sites corresponded to molecular formulas proposed in previous secondary organic aerosol (SOA laboratory investigations indicating that SOAs are important constituents of the WSOC. Overall, ESI FT-ICR MS provides a level of resolution adequate for detailed compositional and source information of the HMW constituents of aerosol-derived WSOC.

  12. Analysis of trichloroethylene-induced global DNA hypomethylation in hepatic L-02 cells by liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Hang; Hong, Wen-Xu; Ye, Jinbo; Yang, Xifei; Ren, Xiaohu; Huang, Aibo; Yang, Linqing; Zhou, Li; Huang, Haiyan; Wu, Desheng; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun

    2014-04-04

    Trichloroethylene (TCE), a major occupational and environmental pollutant, has been recently associated with aberrant epigenetic changes in experimental animals and cultured cells. TCE is known to cause severe hepatotoxicity; however, the association between epigenetic alterations and TCE-induced hepatotoxicity are not yet well explored. DNA methylation, catalyzed by enzymes known as DNA methyltransferases (DNMT), is a major epigenetic modification that plays a critical role in regulating many cellular processes. In this study, we analyzed the TCE-induced effect on global DNA methylation and DNMT enzymatic activity in human hepatic L-02 cells. A sensitive and quantitative method combined with liquid chromatography and electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was validated and utilized for assessing the altered DNA methylation in TCE-induced L-02 cells. Quantification was accomplished in multiple reaction monitoring (MRM) mode by monitoring a transition pair of m/z 242.1 (molecular ion)/126.3 (fragment ion) for 5-mdC and m/z 268.1/152.3 for dG. The correlation coefficient of calibration curves between 5-mdC and dG was higher than 0.9990. The intra-day and inter-day relative standard derivation values (RSD) were on the range of 0.53-7.09% and 0.40-2.83%, respectively. We found that TCE exposure was able to significantly decrease the DNA methylation and inhibit DNMT activity in L-02 cells. Our results not only reveal the association between TCE exposure and epigenetic alterations, but also provide an alternative mass spectrometry-based method for rapid and accurate assessment of chemical-induced altered DNA methylation in mammal cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ruo-Jing [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Zhang, Fang, E-mail: fzhang@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Leng, Jia-Peng [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Sun, Tuan-Qi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Guo, Yin-Long, E-mail: ylguo@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China)

    2016-02-18

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, L-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (L-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. - Highlights: • A common reagent, benzil-d0/d5 was employed to label the GCs and UCs through BRSIL. • The benzil-d0/d5 labeling improved the retention behavior in RPLC and increased the sensitivity by ESI MS detection. • BRSIL coupled with LC-ESI MS was applied to the qualitation and quantitation of GCs and UCs in thyroid tissues.

  14. Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography.

    Science.gov (United States)

    Kertesz, Vilmos; Van Berkel, Gary J; Vavrek, Marissa; Koeplinger, Kenneth A; Schneider, Bradley B; Covey, Thomas R

    2008-07-01

    Desorption electrospray ionization tandem mass spectrometry (DESI-MS/MS) and whole-body autoradiography (WBA) were used for chemical imaging of whole-body thin tissue sections of mice intravenously dosed with propranolol (7.5 mg/kg). DESI-MS/MS imaging utilized selected reaction monitoring detection performed on an AB/MDS SCIEX 4000 QTRAP mass spectrometer equipped with a prototype extended length particle discriminator interface. Propranolol images of the tissue sections using DESI-MS/MS were obtained at surface scan rates of 0.1, 0.5, 2, and 7 mm/s. Although signal decreased with increasing scan rate, useful whole-body images for propranolol were obtained from the tissues even at 7 mm/s, which required just 79 min of analysis time. Attempts to detect and image the distribution of the known propranolol metabolites were unsuccessful. Regions of the tissue sections showing the most radioactivity from WBA sections were excised and analyzed by high-performance liquid chromatography (HPLC) with radiochemical detection to determine relative levels of propranolol and metabolites present. Comparison of the DESI-MS/MS signal for propranolol and the radioactivity attributed to propranolol from WBA sections indicated nominal agreement between the two techniques for the amount of propranolol in the brain, lung, and liver. Data from the kidney showed an unexplained disparity between the two techniques. The results of this study show the feasibility of using DESI-MS/MS to obtain useful chemical images of a drug in whole-body thin tissue sections following drug administration at a pharmacologically relevant level. Further optimization to improve sensitivity and enable detection of the drug metabolites will be among the requirements necessary to move DESI-MS/MS chemical imaging forward as a practical tool in drug discovery.

  15. Novel product ions of 2-aminoanilide and benzimidazole Ag(I) complexes using electrospray ionization with multi-stage tandem mass spectrometry.

    Science.gov (United States)

    Johnson, Byron S; Burinsky, David J; Burova, Svetlana A; Davis, Roman; Fitzgerald, Russ N; Matsuoka, Richard T

    2012-05-15

    The 2-aminoaniline scaffold is of significant value to the pharmaceutical industry and is embedded in a number of pharmacophores including 2-aminoanilides and benzimidazoles. A novel application of coordination ion spray mass spectrometry (CIS-MS) for interrogating the silver ion (Ag(+)) complexes of a homologous series of these compounds using multi-stage tandem mass spectrometry is described. Unlike the ubiquitous alkali metal ion complexes, Ag(+) complexes of 2-aminoanilides and benzimidazoles were found to yield [M - H](+) ions in significant abundance via gas-phase elimination of the metal hydride (AgH) resulting in unique product ion cascades. Sample introduction was by liquid chromatography with mass spectrometry analysis performed on a hybrid linear ion trap/orbitrap instrument capable of high-resolution measurements. Rigorous structural characterization by multi-stage tandem mass spectrometry using [M +  H](+), [M - H](-) and [M - H](+) precursor ions derived from ESI and CIS experiments was performed for the homologous series of 2-aminoanilide and benzimidazole compounds. A full tabular comparison of structural information resulting from these product ion cascades was produced. Multi-stage tandem mass spectrometry of [M - H](+) ions resulting from Ag(+) complexes of 2-aminoanilides and benzimidazoles in CIS-MS experiments produced unique product ion cascades that exhibited complementary structural information to that obtained from tandem mass spectrometry of [M  +  H](+) and [M - H](-) ions by electrospray ionization (ESI). These observations may be broadly applicable to other compounds that are observed to form Ag(+) complexes and eliminate AgH. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Protocol for an electrospray ionization tandem mass spectral product ion library: development and application for identification of 240 pesticides in foods.

    Science.gov (United States)

    Zhang, Kai; Wong, Jon W; Yang, Paul; Hayward, Douglas G; Sakuma, Takeo; Zou, Yunyun; Schreiber, André; Borton, Christopher; Nguyen, Tung-Vi; Kaushik, Banerjee; Oulkar, Dasharath

    2012-07-03

    Modern determination techniques for pesticides must yield identification quickly with high confidence for timely enforcement of tolerances. A protocol for the collection of liquid chromatography (LC) electrospray ionization (ESI)-quadruple linear ion trap (Q-LIT) mass spectrometry (MS) library spectra was developed. Following the protocol, an enhanced product ion (EPI) library of 240 pesticides was developed by use of spectra collected from two laboratories. A LC-Q-LIT-MS workflow using scheduled multiple reaction monitoring (sMRM) survey scan, information-dependent acquisition (IDA) triggered collection of EPI spectra, and library search was developed and tested to identify the 240 target pesticides in one single LC-Q-LIT MS analysis. By use of LC retention time, one sMRM survey scan transition, and a library search, 75-87% of the 240 pesticides were identified in a single LC/MS analysis at fortified concentrations of 10 ng/g in 18 different foods. A conventional approach with LC-MS/MS using two MRM transitions produced the same identifications and comparable quantitative results with the same incurred foods as the LC-Q-LIT using EPI library search, finding 1.2-49 ng/g of either carbaryl, carbendazim, fenbuconazole, propiconazole, or pyridaben in peaches; carbendazim, imazalil, terbutryn, and thiabendazole in oranges; terbutryn in salmon; and azoxystrobin in ginseng. Incurred broccoli, cabbage, and kale were screened with the same EPI library using three LC-Q-LIT and a LC-quadruple time-of-flight (Q-TOF) instruments. The library search identified azoxystrobin, cyprodinil, fludioxinil, imidacloprid, metalaxyl, spinosyn A, D, and J, amd spirotetramat with each instrument. The approach has a broad application in LC-MS/MS type targeted screening in food analysis.

  17. Seasonal variations in the profile of main phospholipids in Mytilus galloprovincialis mussels: A study by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry.

    Science.gov (United States)

    Facchini, Laura; Losito, Ilario; Cataldi, Tommaso R I; Palmisano, Francesco

    2018-01-01

    A systematic characterization of phosphatidylcholines and phosphatidylethanolamines in mussels of sp Mytilus galloprovincialis was performed by high-efficiency hydrophilic interaction liquid chromatography combined with electrospray ionization and Fourier transform mass spectrometry (FTMS), based on a quadrupole-Orbitrap hybrid spectrometer. The FTMS/MS experiments under high collisional energy dissociation conditions, complemented by low-energy collisionally induced dissociation MS n (n = 2,3) experiments, performed in a linear ion trap mass spectrometer, were exploited for structural elucidation purposes. The described approach led to an unprecedented characterization of the mussel phospholipidome, with 185 phosphatidylcholines and 131 phosphatidylethanolamines species recognized, distributed among diacylic, plasmanylic, and plasmenylic forms. This was the starting point for the evaluation of the effects of season (in particular, of sea temperature) on the profile of those phospholipids. To this aim, a set of mussel samples retrieved from commercial sources in different periods of the year was considered. Principal component analysis revealed a clear separation between samples collected in periods characterized by cold, intermediate, or warm sea temperatures, respectively. In particular, an enrichment in phospholipids containing unsaturated side chains was observed in mussels collected from cold seawaters (winter-early spring), thus confirming the general model previously elaborated to explain the adaptation of marine invertebrates, including some bivalve molluscs, to low temperatures. On the other hand, relevant levels of plasma(e)nylic and acylic phospholipids bearing either saturated or non-methylene-interrupted side chains were found in mussels collected in warm seawaters (typical of summer and early autumn, at Italian latitudes). This finding opened interesting perspectives towards the development of strategies able to prevent global warming-related mussel

  18. Power of Ultra Performance Liquid Chromatography/Electrospray Ionization-MS Reconstructed Ion Chromatograms in the Characterization of Small Differences in Polymer Microstructure.

    Science.gov (United States)

    Epping, Ruben; Panne, Ulrich; Falkenhagen, Jana

    2018-03-06

    From simple homopolymers to functionalized, 3-dimensional structured copolymers, the complexity of polymeric materials has become more and more sophisticated. With new applications, for instance, in the semiconductor or pharmaceutical industry, the requirements for the characterization have risen with the complexity of the used polymers. For each additional distribution, an additional dimension in analysis is needed. Small, often isomeric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector but affect the properties of materials significantly. For a drug delivery system, for example, the degree of branching and branching distribution is crucial for the formation of micelles. Instead of a complicated, time-consuming, and/or expensive 2D-chromatography or ion mobility spectrometry (IMS) method, that also has its limitations, in this work, a simple approach using size exclusion chromatography (SEC) coupled with electrospray ionization (ESI) mass spectrometry is proposed. The online coupling allows the analysis of reconstructed ion chromatograms (RICs) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities. Although some microstructural heterogeneities like short chain branching can for large polymers be characterized with methods such as light scattering, for oligomers where the heterogeneities just start to form and their influence is at the maximum, they are inaccessible with these methods. It is also shown that with a proper calibration even quantitative information can be obtained. This method is suitable to detect small differences in, e.g., branching, 3D-structure, monomer sequence, or tacticity and could potentially be used in routine analysis to quickly determine deviations.

  19. Laser-ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia

    Energy Technology Data Exchange (ETDEWEB)

    Stopka, Sylwia A.; Agtuca, Beverly J.; Koppenaal, David W.; Pasa Tolic, Ljiljana; Stacey, Gary; Vertes, Akos; Anderton, Christopher R.

    2017-05-23

    Technologies enabling in situ metabolic profiling of living plant systems are invaluable for understanding physiological processes and could be used for rapid phenotypic screening (e.g., to produce plants with superior biological nitrogen fixing ability). The symbiotic interaction between legumes and nitrogen-fixing soil bacteria results in a specialized plant organ (i.e., root nodule), where the exchange of nutrients between host and endosymbiont occurs. Laser ablation electrospray ionization mass spectrometry (LAESI-MS) is a method that can be performed under ambient conditions requiring minimal sample preparation. Here, we employed LAESI-MS to explore the well-characterized symbiosis between soybean (Glycine max L. Merr.) and its compatible symbiont, Bradyrhizobium japonicum. The utilization of ion mobility separation (IMS) improved the molecular coverage, selectivity, and identification of the detected biomolecules. Specifically, incorporation of IMS resulted in an increase of 153 detected metabolites in the nodule samples. The data presented demonstrates the advantages of using LAESI-IMS-MS for the rapid analysis of intact root nodules, uninfected root segments, and free-living rhizobia. Untargeted pathway analysis revealed several metabolic processes within the nodule (e.g., zeatin, riboflavin, and purine synthesis). Compounds specific to the uninfected root and bacteria were also detected. Lastly, we performed depth-profiling of intact nodules to reveal the location of metabolites to the cortex and inside the infected region, and lateral profiling of sectioned nodules confirmed these molecular distributions. Our results established the feasibility of LAESI-IMS-MS for the analysis and spatial mapping of plant tissues, with its specific demonstration to improve our understanding of the soybean-rhizobial symbiosis.

  20. Liquid extraction surface analysis (LESA) of food surfaces employing chip-based nano-electrospray mass spectrometry.

    Science.gov (United States)

    Eikel, Daniel; Henion, Jack

    2011-08-30

    An automated surface-sampling technique called liquid extraction surface analysis (LESA), coupled with infusion nano-electrospray high-resolution mass spectrometry and tandem mass spectrometry (MS/MS), is described and applied to the qualitative determination of surface chemical residues resulting from the artificial spraying of selected fresh fruits and vegetables with representative pesticides. Each of the targeted pesticides was readily detected with both high-resolution and full-scan collision-induced dissociation (CID) mass spectra. In the case of simazine and sevin, a mass resolution of 100,000 was insufficient to distinguish the isobaric protonated molecules for these compounds. When the surface of a spinach leaf was analyzed by LESA, trace levels of diazinon were readily detected on the spinach purchased directly from a supermarket before they were sprayed with the five-pesticide mixture. A 30 s rinse under hot running tap water appeared to quantitatively remove all remaining residues of this pesticide. Diazinon was readily detected by LESA analysis on the skin of the artificially sprayed spinach. Finally, incurred pyrimethanil at a level of 169 ppb in a batch slurry of homogenized apples was analyzed by LESA and this pesticide was readily detected by both high-resolution mass spectrometry and full-scan CID mass spectrometry, thus showing that pesticides may also be detected in whole fruit homogenized samples. This report shows that representative pesticides on fruit and vegetable surfaces present at levels 20-fold below generally allowed EPA tolerance levels are readily detected and confirmed by the title technologies making LESA-MS as interesting screening method for food safety purposes. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Simultaneous determination of antiretroviral drugs in human hair with liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Wu, Yan; Yang, Jin; Duan, Cailing; Chu, Liuxi; Chen, Shenghuo; Qiao, Shan; Li, Xiaoming; Deng, Huihua

    2018-04-15

    The determination of the concentrations of antiretroviral drugs in hair is believed to be an important means for the assessment of the long-term adherence to highly active antiretroviral therapy. At present, the combination of tenofovir, lamivudine and nevirapine is widely used in China. However, there was no research reporting simultaneous determination of the three drugs in hair. The present study aimed to develop a sensitive method for simultaneous determination of the three drugs in 2-mg and 10-mg natural hair (Method 1 and Method 2). Hair samples were incubated in methanol at 37 °C for 16 h after being rinsed with methanol twice. The analysis was performed on high performance liquid chromatography tandem mass spectrometry with electronic spray ionization in positive mode and multiple reactions monitoring. Method 1 and Method 2 showed the limits of detection at 160 and 30 pg/mg for tenofovir, at 5 and 6 pg/mg for lamivudine and at 15 and 3 pg/mg for nevirapine. The two methods showed good linearity with the square of correlation coefficient >0.99 at the ranges of 416-5000 and 77-5000 pg/mg for tenofovir, 12-5000 and 15-5000 pg/mg for lamivudine and 39-50,000 and 6-50,000 pg/mg for nevirapine. They gave intra-day and inter-day coefficient of variation <15% and the recoveries ranging from 80.6 to 122.3% and from 83.1 to 114.4%. Method 2 showed LOD and LOQ better than Method 1 for tenofovir and nevirapine and matched Method 1 for lamivudine, but there was high consistency between them in the determination of the three drugs in hair. The population analysis with Method 2 revealed that the concentrations in hair were decreased with the distance of hair segment away from the scalp for the three antiretroviral drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Determination of acrylamide in Chinese traditional carbohydrate-rich foods using gas chromatography with micro-electron capture detector and isotope dilution liquid chromatography combined with electrospray ionization tandem mass spectrometry

    International Nuclear Information System (INIS)

    Zhang Yu; Ren Yiping; Zhao Hangmei; Zhang Ying

    2007-01-01

    The present study developed two analytical methods for quantification of acrylamide in complex food matrixes, such as Chinese traditional carbohydrate-rich foods. One is based on derivatization with potassium bromate and potassium bromide without clean-up prior to gas chromatography with micro-electron capture detector (GC-MECD). Alternatively, the underivatized acrylamide was detected by high-performance liquid chromatography coupled to quadrupole tandem mass spectrometry (HPLC-MS/MS) in the positive electrospray ionization mode. For both methods, the Chinese carbohydrate-rich samples were homogenized, defatted with petroleum ether and extracted with aqueous solution of sodium chloride. Recovery rates for acrylamide from spiked Chinese style foods with the spiking level of 50, 500 and 1000 μg kg -1 were in the range of 79-93% for the GC-MECD including derivatization and 84-97% for the HPLC-MS/MS method. Typical quantification limits of the HPLC-MSMS method were 4 μg kg -1 for acrylamide. The GC-MECD method achieved quantification limits of 10 μg kg -1 in Chinese style foods. Thirty-eight Chinese traditional foods purchased from different manufacturers were analyzed and compared with four Western style foods. Acrylamide contaminant was found in all of samples at the concentration up to 771.1 and 734.5 μg kg -1 detected by the GC and HPLC method, respectively. The concentrations determined with the two different quantitative methods corresponded well with each other. A convenient and fast pretreatment procedure will be optimized in order to satisfy further investigation of hundreds of samples

  3. Validation of a Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry Method for Determination of All-Trans Retinoic Acid in Human Plasma and Its Application to a Bioequivalence Study

    Directory of Open Access Journals (Sweden)

    Jing-Bo Peng

    2014-01-01

    Full Text Available A sensitive, reliable and specific LC-MS-MS method was developed and validated for the identification and quantitation of all-trans retinoic acid (ATRA in human plasma. Acitretin was used as the internal standard (IS. After liquid-liquid extraction of 500 μL plasma with methyl tert-butyl ether (MTBE, ATRA and the IS were chromatographed on a HyPURITY C18 column (150 mm × 2.1 mm, 5 μm with the column temperature set at 40 °C. The mobile phase was consisted of 40% phase A (MTBE–methanol–acetic acid, 50:50:0.5, v/v and 60% phase B (water–methanol–acetic acid, 50:50:0.5, v/v with a flow rate of 0.3 mL/min. The API 4000 triple quadrupole mass spectrometer was operated in multiple reaction monitoring (MRM mode via the positive electrospray ionization interface using the transition m/z 301.4 → 123.1 for ATRA and m/z 326.9 → 177.1 for IS, respectively. The calibration curve was linear over the range of 0.45–217.00 ng/mL (r ≥ 0.999 with a lower limit of quantitation (LLOQ of 0.45 ng/mL. The intra- and inter-day precisions values were below 8% relative standard deviation and the accuracy was from 98.98% to 106.19% in terms of relative error. The validated method was successfully applied in a bioequivalence study of ATRA in Chinese healthy volunteers.

  4. Fate and behavior of oil sands naphthenic acids in a pilot-scale treatment wetland as characterized by negative-ion electrospray ionization Orbitrap mass spectrometry.

    Science.gov (United States)

    Ajaero, Chukwuemeka; Peru, Kerry M; Simair, Monique; Friesen, Vanessa; O'Sullivan, Gwen; Hughes, Sarah A; McMartin, Dena W; Headley, John V

    2018-08-01

    Large volumes of oil sands process-affected water (OSPW) are generated during the extraction of bitumen from oil sands in the Athabasca region of northeastern Alberta, Canada. As part of the development of treatment technologies, molecular characterization of naphthenic acids (NAs) and naphthenic acid fraction compounds (NAFC) in wetlands is a topic of research to better understand their fate and behavior in aquatic environments. Reported here is the application of high-resolution negative-ion electrospray Orbitrap-mass spectrometry for molecular characterization of NAs and NAFCs in a non-aerated constructed treatment wetland. The effectiveness of the wetlands to remove OSPW-NAs and NAFCs was evaluated by monitoring the changes in distributions of NAFC compounds in the untreated sample and non-aerated treatment system. After correction for measured evapotranspiration, the removal rate of the classical NAs followed approximately first-order kinetics, with higher rates observed for structures with relatively higher number of carbon atoms. These findings indicate that constructed wetland treatment is a viable method for removal of classical NAs in OSPW. Work is underway to evaluate the effects of wetland design on water quality improvement, preferential removal of different NAFC species, and reduction in toxicity. Copyright © 2018. Published by Elsevier B.V.

  5. Determination of chlorpyrifos and its metabolites in cells and culture media by liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Yang, Xiangkun; Wu, Xian; Brown, Kyle A; Le, Thao; Stice, Steven L; Bartlett, Michael G

    2017-09-15

    A sensitive method to simultaneously quantitate chlorpyrifos, chlorpyrifos oxon and the detoxified product 3,5,6-trichloro-2-pyridinol (TCP) was developed using either liquid-liquid extraction for culture media samples, or protein precipitation for cell samples. Multiple reaction monitoring in positive ion mode was applied for the detection of chlorpyrifos and chlorpyrifos oxon, and selected ion recording in negative mode was applied to detect TCP. The method provided linear ranges from 5 to 500, 0.2-20 and 20-2000ng/mL for media samples and from 0.5-50, 0.02-2 and 2-200ng/million cells for CPF, CPO and TCP, respectively. The method was validated using selectivity, linearity, precision, accuracy, recovery, stability and dilution tests. All relative standard deviations (RSDs) and relative errors (REs) for QC samples were within 15% (except for LLOQ, within 20%). This method has been successfully applied to study the neurotoxicity and metabolism of chlorpyrifos in a human neuronal model. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Study of ion suppression for phenolic compounds in medicinal plant extracts using liquid chromatography-electrospray tandem mass spectrometry.

    Science.gov (United States)

    Faccin, H; Viana, C; do Nascimento, P C; Bohrer, D; de Carvalho, L M

    2016-01-04

    A systematic study on the various sources of ion suppression in UHPLC-MS-MS analysis was carried out for 24 phenolic antioxidants in 6 different extracts of medicinal plants from Amazonia. The contributions of matrix effects, mobile-phase additives, analyte co-elution and electric charge competition during ionization to the global ion suppression were evaluated. Herein, the influence of mobile-phase additives on the ionization efficiency was found to be very pronounced, where ion suppression of approximately 90% and ion enhancement effects greater than 400% could be observed. The negative effect caused by the wrong choice of internal standard (IS) on quantitative studies was also evaluated and discussed from the perspective of ion suppression. This work also shows the importance of performing studies with this approach even for very similar matrices, such as varieties of medicinal plants from the same species, because different effects were observed for the same analyte. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Qualitative and quantitative two-dimensional thin-layer chromatography/high performance liquid chromatography/diode-array/electrospray-ionization-time-of-flight mass spectrometry of cholinesterase inhibitors.

    Science.gov (United States)

    Mroczek, Tomasz

    2016-09-10

    Recently launched thin-layer chromatography-mass spectrometry (TLC-MS) interface enabling extraction of compounds directly from TLC plates into MS ion source was unusually extended into two-dimensional thin-layer chromatography/high performance liquid chromatography (2D, TLC/HPLC) system by its a direct connection to a rapid resolution 50×2.1mm, I.D. C18 column compartment followed by detection by diode array (DAD) and electrospray ionisation time-of-flight mass spectrometry (ESI-TOF-MS). In this way, even not separated bands of complicated mixtures of natural compounds could be analysed structurally, only within 1-2min after development of TLC plates. In comparison to typically applied TLC-MS interface, no ion suppression for acidic mobile phases was observed. Also, substantial increase in ESI-TOF-MS sensitivities and quality of spectra, were noticed. It has been utilised in combination with TLC- based bioautographic approaches of acetylcholinesterase (AChE) inhibitors, However, it can be also applied in any other procedures related to bioactivity (e.g. 2,2-Diphenyl-1-picryl-hydrazyl-DPPH screen test for radicals). This system has been also used for determination of half maximal inhibitory concentration (IC50 values) of the active inhibitor-galanthamine, as an example. Moreover, AChE inhibitory potencies of some of purified plant extracts, never studied before, have been quantitatively measured. This is first report of usage such the 2D TLC/HPLC/MS system both for qualitative and quantitative evaluation of cholinesterase inhibitors in biological matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Application of liquid chromatography/electrospray ionization ion trap tandem mass spectrometry for the evaluation of global nucleic acids: methylation in garden cress under exposure to CuO nanoparticles.

    Science.gov (United States)

    Alcazar Magana, Armando; Wrobel, Kazimierz; Corrales Escobosa, Alma Rosa; Wrobel, Katarzyna

    2016-01-15

    A full understanding of the biological impact of nanomaterials demands analytical procedures suitable for the detection/quantification of epigenetic changes that occur in the exposed organisms. Here, the effect of CuO nanoparticles (NPs) on global methylation of nucleic acids in Lepidium sativum was evaluated by liquid chromatography/ion trap mass spectrometry. Enhanced selectivity toward cytosine-containing nucleosides was achieved by using their proton-bound dimers formed in positive electrospray ionization (ESI(+)) as precursor ions for multiple reaction monitoring (MRM) quantification based on one or two ion transitions. Plants were exposed to CuO NPs (0-1000 mg L(-1)); nucleic acid extracts were washed with bathocuproine disulfate; nucleosides were separated on a Luna C18 column coupled via ESI(+) to an AmaZon SL mass spectrometer (Bruker Daltonics). Cytidine, 2´-deoxycytidine, 5-methylcytidine, 5-methyl-2´-deoxycytidine and 5-hydroxymethyl-2´-deoxycytidine were quantified by MRM based on MS(3) ([2M+H](+)/[M+H](+)/[M+H-132](+) or [M+H-116](+)) and MS(2) ([2M+H](+)/[M+H](+) ). Bathocuproine disulfate, added as Cu(I) complexing agent, allowed for elimination of [2M+Cu](+) adducts from the mass spectra. Poorer instrumental detection limits were obtained for MS(3) (20-120 fmol) as compared to MS(2) (9.0-41 fmol); however, two ion transitions helped to eliminate matrix effects in plant extracts. The procedure was tested by analyzing salmon sperm DNA (Sigma) and applied for the evaluation of DNA and RNA methylation in plants; in the absence of NPs, 13.03% and 0.92% methylated cytosines were found in DNA and RNA, respectively; for NPs concentration >50 mg L(-1), DNA hypomethylation was observed with respect to unexposed plants. RNA methylation did not present significant changes upon plant exposure; 5-hydroxymethyl-2´-deoxycytidine was not detected in any sample. The MRM quantification proposed here of cytosine-containing nucleosides using their proton-bound homo

  9. Can Riboflavin Penetrate Stroma Without Disrupting Integrity of Corneal Epithelium in Rabbits? Iontophoresis and Ultraperformance Liquid Chromatography With Electrospray Ionization Tandem Mass Spectrometry.

    Science.gov (United States)

    Novruzlu, Şahin; Türkcü, Ümmühani Özel; Kvrak, İbrahim; Kvrak, Şeyda; Yüksel, Erdem; Deniz, Nuriye Gökçen; Bilgihan, Ayşe; Bilgihan, Kamil

    2015-08-01

    To examine riboflavin concentrations in corneas and aqueous humor from rabbits with standard and transepithelial methods and iontophoresis without disrupting the integrity of the corneal epithelium before corneal collagen cross-linking. Twenty-four eyes of 12 adult New Zealand rabbits were used. They were assigned to 4 groups, each including 6 eyes. Group 1 was exposed to the standard method and given riboflavin 0.1% after epithelial debridement. Group 2 was exposed to the transepithelial method and given benzalkonium chloride (BAC), ethylenediaminetetraacetic acid (EDTA), trometamol (TRIS), hydroxypropylmethylcellulose (HPMC), and riboflavin 0.2% 3 times at 1.5-minute intervals followed by riboflavin 0.2%. Group 3 was given riboflavin 0.1% by using 1-mA electric current for 10 minutes with the help of iontophoresis without using substances disrupting the integrity of the corneal epithelium. Group 4 received the same treatment as did group 3, except that it was given riboflavin 0.2%. Following these treatments, riboflavin concentrations in aqueous humor and corneas were measured with ultraperformance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS). Riboflavin concentrations in the cornea and aqueous humor were higher in group 1 (42.4 ± 5.4 μg/g) than in the other groups. They were significantly higher in group 4 (34.2 ± 6.6 μg/g) than in group 2 (24.4 ± 1.2 μg/g) (P = 0.009) and group 3 (23.6 ± 6.1 μg/g) (P = 0.026). There was not a significant difference in corneal riboflavin concentrations between group 2 and group 3 (P = 0.937). Intrastromal and aqueous riboflavin concentrations after administration of riboflavin 0.2% through iontophoresis without disrupting the integrity of the corneal epithelium were lower than those after the standard method, but higher than those after the transepithelial method. In this study, in which riboflavin concentrations were measured with a very sensitive method

  10. Quantitation of 13 heterocyclic aromatic amines in cooked beef, pork, and chicken by liquid chromatography-electrospray ionization/tandem mass spectrometry.

    Science.gov (United States)

    Ni, Weijuan; McNaughton, Lynn; LeMaster, David M; Sinha, Rashmi; Turesky, Robert J

    2008-01-09

    The concentrations of heterocyclic aromatic amines (HAAs) were determined, by liquid chromatography-electrospray ionization/tandem mass spectrometry (LC-ESI-MS/MS), in 26 samples of beef, pork, and chicken cooked to various levels of doneness. The HAAs identified were 2-amino-3-methylimidazo[4,5- f]quinoline, 2-amino-1-methylimidazo[4,5- b]quinoline, 2-amino-1-methylimidazo[4,5- g]quinoxaline (I gQx), 2-amino-3-methylimidazo[4,5- f]quinoxaline, 2-amino-1,7-dimethylimidazo[4,5- g]quinoxaline (7-MeI gQx), 2-amino-3,8-dimethylimidazo[4,5- f]quinoxaline, 2-amino-1,6-dimethyl-furo[3,2- e]imidazo[4,5- b]pyridine, 2-amino-1,6,7-trimethylimidazo[4,5- g]quinoxaline, 2-amino-3,4,8-trimethylimidazo[4,5- f]quinoxaline, 2-amino-1,7,9-trimethylimidazo[4,5- g]quinoxaline, 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP), 2-amino-9 H-pyrido[2,3- b]indole, and 2-amino-3-methyl-9 H-pyrido[2,3- b]indole. The concentrations of these compounds ranged from chicken (up to 305 microg/kg), broiled bacon (16 microg/kg), and pan-fried bacon (4.9 microg/kg). 7-MeI gQx was the most abundant HAA formed in very well done pan-fried beef and steak, and in beef gravy, at concentrations up to 30 microg/kg. Several other linear tricyclic ring HAAs containing the I gQx skeleton are formed at concentrations in cooked meats that are relatively high in comparison to the concentrations of their angular tricyclic ring isomers, the latter of which are known experimental animal carcinogens and potential human carcinogens. The toxicological properties of these recently discovered I gQx derivatives warrant further investigation and assessment.

  11. Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Tsutsui, Haruhito; Maeda, Toshio; Min, Jun Zhe; Inagaki, Shinsuke; Higashi, Tatsuya; Kagawa, Yoshiyuki; Toyo'oka, Toshimasa

    2011-05-12

    The number of diabetic patients has recently been increasing worldwide. Diabetes is a multifactorial disorder based on environmental factors and genetic background. In many cases, diabetes is asymptomatic for a long period and the patient is not aware of the disease. Therefore, the potential biomarker(s), leading to the early detection and/or prevention of diabetes mellitus, are strongly required. However, the diagnosis of the prediabetic state in humans is a very difficult issue, because the lifestyle is variable in each person. Although the development of a diagnosis method in humans is the goal of our research, the extraction and structural identification of biomarker candidates in several biological specimens (i.e., plasma, hair, liver and kidney) of ddY strain mice, which undergo naturally occurring diabetes along with aging, were carried out based upon a metabolite profiling study. The low-molecular-mass compounds including metabolites in the biological specimens of diabetic mice (ddY-H) and normal mice (ddY-L) were globally separated by ultra-performance liquid chromatography (UPLC) using different reversed-phase columns (i.e., T3-C18 and HS-F5) and detected by electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). The biomarker candidates related to diabetes mellitus were extracted from a multivariate statistical analysis, such as an orthogonal partial least-squares-discriminant analysis (OPLS-DA), followed by a database search, such as ChemSpider, KEGG and HMDB. Many metabolites and unknown compounds in each biological specimen were detected as the biomarker candidates related to diabetic mellitus. Among them, the elucidation of the chemical structures of several possible metabolites, including more than two biological specimens, was carried out along with the comparison of the tandem MS/MS analyses using authentic compounds. One metabolite was clearly identified as N-acetyl-L-leucine based upon the MS/MS spectra and the retention time on

  12. Ionizable polyethers as specific metal ion carriers in liquid-liquid extraction and liquid membrane separations

    International Nuclear Information System (INIS)

    Walkowiak, W.; Charewicz, W.A.; Bartsch, R.A.; Ndip, G.M.

    1988-01-01

    Consideration is given to results of investigations into competitive extraction and penetration through a liquid membrane of alkali and alkaline earth cations from aqueous solutions by a series of lipophilic and ionizable acyclic polyethers of various molecular structure. It is shown that specificity and selectiviy of cation carriers in liquid-liquid extraction and liquid membrane separation depend on molecular structure of acyclic polyethers

  13. Extraction and comparison of proteins from natural rubber latex by conventional and ionizing radiation methods

    International Nuclear Information System (INIS)

    Rogero, Sizue O.; Spencer, Patrick J.; Campos, Vania E.; Lusvarghi, Fabio M.; Higa, Olga Z.

    1997-01-01

    Several proteins in natural rubber latex (NRL) have been assigned to be significant allergens. It is known that proteins submitted to ionizing radiation suffer denaturation and immunochemical modification resulting in low antigenic reactivity. The aim of this study was to extract and compare water extractable proteins from NRL films vulcanized by conventional and by ionizing radiation methods. SDS-polyacrylamide gel electrophoresis (SDS--PAGE) and high pressure liquid chromatography (HPLC) showed a diffuse protein band of about 14 KDa, which we believe is rubber elongation factor (REF), in both eluates, but smaller in latex film vulcanized by ionizing radiation. REF has been suggested to be a major latex allergen. These data suggest that ionizing radiation vulcanization could be an useful method for the production of NRL goods with low antigenicity. (author). 8 refs., 2 figs., 1 tab

  14. Structural analysis and differentiation of reducing and nonreducing neutral model starch oligosaccharides by negative-ion electrospray ionization ion-trap mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Čmelík, Richard; Chmelík, Josef

    2010-01-01

    Roč. 291, 1-2 (2010), s. 33-40 ISSN 1387-3806 R&D Projects: GA MŠk 2B06037 Institutional research plan: CEZ:AV0Z40310501 Keywords : structural analysis * oligosaccharides * electrospray mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.009, year: 2010

  15. Derivatization for LC-Electrospray Ionization-MS: A Tool for Improving Reversed-Phase Separation and ESI Responses of Bases, Ribosides, and Intact Nucleotides

    Czech Academy of Sciences Publication Activity Database

    Nordström, A.; Tarkowski, Petr; Tarkowská, Danuše; Doležal, Karel; Astot, C.; Sandberg, G.; Moritz, T.

    2004-01-01

    Roč. 76, č. 10 (2004), s. 2869-2877 ISSN 0003-2700 R&D Projects: GA ČR GA203/04/1168 Institutional research plan: CEZ:AV0Z5038910 Keywords : Arabidopsis thaliana * LC-Electrospray * AMP, ADP, and ATP Subject RIV: CA - Inorganic Chemistry Impact factor: 5.450, year: 2004

  16. Ionization

    International Nuclear Information System (INIS)

    2002-01-01

    This document reprints the text of the French by-law from January 8, 2002 relative to the approval and to the controls and verifications of facilities devoted to the ionizing of food products for human beings and animals. The by-law imposes the operators of such facilities to perform measurements and dosimetric verifications all along the ionization process. (J.S.)

  17. Separation of 90Y from 90Sr by solvent extraction with ionizable crown ethers

    International Nuclear Information System (INIS)

    Wood, D.J.; Elshani, S.; Du, H.S.; Natale, N.R.; Wai, C.M.

    1993-01-01

    Sym-Dibenzo-16-crown-5-oxyacetic acid and its analogues are selective for the extraction of Y 3+ over Sr 2+ from aqueous solutions into chloroform. The selectivity and the pH range of extraction are influenced by the structure of the ligand. The size of the macrocyclic cavity, the tether length of the lariat, the attachment of alkyl functional groups to the lariat, and the identity of the ionizable group can affect selectivity and extraction efficiency. When the carboxylic acid at the terminal end of the lariat is replaced by a hydroxamic acid, the selectivity for Y 3+ over Sr 2+ is significantly increased. Using these ionizable crown ethers as extractants, 90 Y fractions of greater than 99.9% purity can be obtained in a single solvent extraction step from solutions of 90 Sr. 11 refs., 5 figs., 2 tabs

  18. Developing a Vacuum Electrospray Source To Implement Efficient Atmospheric Sampling for Miniature Ion Trap Mass Spectrometer.

    Science.gov (United States)

    Yu, Quan; Zhang, Qian; Lu, Xinqiong; Qian, Xiang; Ni, Kai; Wang, Xiaohao

    2017-12-05

    The performance of a miniature mass spectrometer in atmospheric analysis is closely related to the design of its sampling system. In this study, a simplified vacuum electrospray ionization (VESI) source was developed based on a combination of several techniques, including the discontinuous atmospheric pressure interface, direct capillary sampling, and pneumatic-assisted electrospray. Pulsed air was used as a vital factor to facilitate the operation of electrospray ionization in the vacuum chamber. This VESI device can be used as an efficient atmospheric sampling interface when coupled with a miniature rectilinear ion trap (RIT) mass spectrometer. The developed VESI-RIT instrument enables regular ESI analysis of liquid, and its qualitative and quantitative capabilities have been characterized by using various solution samples. A limit of detection of 8 ppb could be attained for arginine in a methanol solution. In addition, extractive electrospray ionization of organic compounds can be implemented by using the same VESI device, as long as the gas analytes are injected with the pulsed auxiliary air. This methodology can extend the use of the proposed VESI technique to rapid and online analysis of gaseous and volatile samples.

  19. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) in toxicological analysis. Studies on the detection of clobenzorex and its metabolites within a systematic toxicological analysis procedure by GC-MS and by immunoassay and studies on the detection of alpha- and beta-amanitin in urine by atmospheric pressure ionization electrospray LC-MS.

    Science.gov (United States)

    Maurer, H H; Kraemer, T; Ledvinka, O; Schmitt, C J; Weber, A A

    1997-02-07

    GC-MS is the method of choice for toxicological analysis of toxicants volatile in GC while non-volatile and/or thermally labile toxicants need LC-MS for their determination. Studies are presented on the toxicological detection of the amphetamine-like anorectic clobenzorex in urine by GC-MS after acid hydrolysis, extraction and acetylation and by fluorescence polarization immunoassay (FPIA, TDx (meth)amphetamine II). After ingestion of 60 mg of clobenzorex, the parent compound and/or its metabolites could be detected by GC-MS for up to 84 h or by FPIA for up to 60 h. Since clobenzorex shows no cross-reactivity with the used immunoassay, the N-dealkylated metabolite amphetamine is responsible for the positive TDx results. The intake of clobenzorex instead of amphetamine can be differentiated by GC-MS detection of hydroxyclobenzorex which is detectable for at least as long as amphetamine. In addition, the described GC-MS procedure allows the simultaneous detection of most of the toxicologically relevant drugs. Furthermore, studies are described on the atmospheric pressure ionization electrospray LC-MS detection of alpha- and beta-amanitin, toxic peptides of amanita mushrooms, in urine after solid-phase extraction on RP-18 columns. Using the single ion monitoring mode with the ions m/z 919 and 920 the amanitins could be detected down to 10 ng/ml of urine which allows us to diagnose intoxications with amanita mushrooms.

  20. Determination of crenolanib in human serum and cerebrospinal fluid by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS).

    Science.gov (United States)

    Roberts, Michael S; Turner, David C; Owens, Thandranese S; Ramachandran, Abhijit; Wetmore, Cynthia; Throm, Stacy L; Stewart, Clinton F

    2013-06-15

    A LC-ESI-MS/MS method for the determination of crenolanib (CP-868,596) in human serum was developed and validated employing d4-CP-868,596 as an internal standard (ISTD). In addition to human serum, the method was also partially validated for crenolanib determination in human cerebrospinal fluid (CSF) samples. Sample aliquots (50μl of serum or CSF) were prepared for analysis using liquid-liquid extraction (LLE) with tert-butyl methyl ether. Chromatography was performed using a phenomenex Gemini C18 column (3μm, 100mm×4.6mm I.D.) in a column heater set at 50°C and an isocratic mobile phase (methanol/water/formic acid at a volume ratio of 25/25/0.15, v/v/v). The flow rate was 0.45mL/min, and the retention time for both analyte and ISTD was less than 3.5min. Samples were analyzed with an API-5500 LC-MS/MS system (ESI) in positive ionization mode coupled to a Shimadzu HPLC system. The ion transitions monitored were m/z 444.4→373.1 and m/z 448.2→374.2 for crenolanib and ISTD, respectively. The method was linear over the range of 5-1000ng/mL for serum and 0.5-1000ng/mL for CSF. For human serum, both intra-day and inter-day precision were <4%, while intra-day and inter-day accuracy were within 8% of nominal values. Recovery was greater than 50% for both the analyte and ISTD. For CSF samples, both intra-day and inter-day precision were <9% except at the lower limit of quantification (LLOQ) which was <17%. The intra-day and inter-day accuracy were within 11% of the nominal CSF concentrations. After validation, this method was successfully applied to the analysis of serial pharmacokinetic samples obtained from a child treated with oral crenolanib. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Capillary filling of miniaturized sources for electrospray mass spectrometry

    International Nuclear Information System (INIS)

    Arscott, Steve; Gaudet, Matthieu; Brinkmann, Martin; Ashcroft, Alison E; Blossey, Ralf

    2006-01-01

    Capillary slot-based emitter tips are a novel tool for use in electrospray ionization-mass spectrometry of large biomolecules. We have performed a combined theoretical and experimental study of capillary filling in micron-sized slots with the aim of developing a rational design procedure for miniaturized electrospray sources, ultimately enabling the integration of ESI into laboratory-on-a-chip devices

  2. Investigation of Uranyl Nitrate Ion Pairs Complexed with Amide Ligands using Electrospray Ionization Ion Trap Mass Spectrometry and Density Functional Theory

    International Nuclear Information System (INIS)

    Groenewold, Gary S.; Dinescu, Adriana; Benson, Michael T.; Gresham, Garold L.; van Stipdonk, Michael J.

    2011-01-01

    Ion populations formed from electrospray of uranyl nitrate solutions containing different amides vary depending on ligand nucleophilicity and steric crowding at the metal center. The most abundant species were ion pair complexes having the general formula (UO2(NO3)(amide)n=2,3)+, and complexes containing the amide conjugate base, reduced uranyl UO2+, and a 2+ charge were also formed. The formamide experiment produced the greatest diversity of species that stems from weaker amide binding leading to dissociation and subsequent solvent coordination or metal reduction. Experiments using methyl formamide, dimethyl formamide, acetamide, and methyl acetamide produced ion pair and doubly charged complexes that were more abundant, and less abundant complexes containing solvent or reduced uranyl. This pattern is reversed in the dimethylacetamide experiment, which displayed reduced doubly charged complexes and augmented reduced uranyl complexes. DFT investigations of the tris-amide ion pair complexes showed that inter-ligand repulsion distorts the amide ligands out of the uranyl equatorial plane, and that complex stabilities do not increase with increasing amide nucleophilicity. Elimination of an amide ligand largely relieves the interligand repulsion, and the remaining amide ligands become closely aligned with the equatorial plane in the structures of the bis-amide ligands. The studies show that the phenomenological distribution of coordination complexes in a metal-ligand electrospray experiment is a function of both ligand nucleophilicity and interligand repulsion, and that the latter factor begins exerting influence even in the case of relatively small ligands like the substituted methyl-formamide and methyl-acetamide ligands.

  3. Hyphenating size‐exclusion chromatography with electrospray mass spectrometry; using on‐line liquid‐liquid extraction to study the lipid composition of lipoprotein particles

    Science.gov (United States)

    Osei, Michael; Griffin, Julian L.

    2015-01-01

    Rationale Lipoproteins belong to the most commonly measured clinical biochemical parameters. Lipidomics is an orthogonal approach and aims to profile the individual lipid molecules that jointly form the lipoprotein particles. However, in the first step of the extraction of lipid molecules from serum, an organic solvent is used leading to dissociation of the lipoproteins. Thus far it has been impossible to combine lipidomics and lipoprotein analysis in one analytical system. Methods Human plasma was diluted in phosphate‐buffered saline (PBS) and injected onto a Superose 6 PC 3.2 column with PBS as a mobile phase to separate lipoproteins. The eluent was led to a Syrris FLLEX module, which also received CHCl3/MeOH (3:1). The two phases were mixed and subsequently separated using a Teflon membrane in an especially designed pressurized flow chamber. The organic phase was led to a standard electrospray source of an Orbitrap mass spectrometer. Results Size‐exclusion chromatography (SEC) has been commonly applied to separate lipoproteins and is considered a practical alternative to ultracentrifugation. Through the on‐line liquid‐liquid extraction method it becomes possible to obtained detailed mass spectra of lipids across different lipoprotein fractions. The extracted ion chromatograms of specific lipid signals showed their distribution against the size of lipoprotein particles. Conclusions The application of on‐line liquid‐liquid extraction allows for the continuous electrospray‐based mass spectral analysis of SEC eluent, providing the detailed lipid composition of lipoprotein particles separated by size. This approach provides new possibilities for the study of the biochemistry of lipoproteins. © 2015 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:26443395

  4. An Atmospheric Pressure Chemical Ionization MS/MS Assay Using Online Extraction for the Analysis of 11 Cannabinoids and Metabolites in Human Plasma and Urine.

    Science.gov (United States)

    Klawitter, Jelena; Sempio, Cristina; Mörlein, Sophie; De Bloois, Erik; Klepacki, Jacek; Henthorn, Thomas; Leehey, Maureen A; Hoffenberg, Edward J; Knupp, Kelly; Wang, George S; Hopfer, Christian; Kinney, Greg; Bowler, Russell; Foreman, Nicholas; Galinkin, Jeffrey; Christians, Uwe; Klawitter, Jost

    2017-10-01

    Although, especially in the United States, there has been a recent surge of legalized cannabis for either recreational or medicinal purposes, surprisingly little is known about clinical dose-response relationships, pharmacodynamic and toxicodynamic effects of cannabinoids such as Δ9-tetrahydrocannabinol (THC). Even less is known about other active cannabinoids. To address this knowledge gap, an online extraction, high-performance liquid chromatography coupled with tandem mass spectrometry method for simultaneous quantification of 11 cannabinoids and metabolites including THC, 11-hydroxy-Δ9-tetrahydrocannabinol, 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid, 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid glucuronide (THC-C-gluc), cannabinol, cannabidiol, cannabigerol, cannabidivarin, Δ9-tetrahydrocannabivarin (THCV), and 11-nor-9-carboxy-Δ9-tetrahydrocannabivarin (THCV-COOH) was developed and validated in human urine and plasma. In contrast to atmospheric pressure chemical ionization, electrospray ionization was associated with extensive ion suppression in plasma and urine samples. Thus, the atmospheric pressure chemical ionization assay was validated showing a lower limit of quantification ranging from 0.39 to 3.91 ng/mL depending on study compound and matrix. The upper limit of quantification was 400 ng/mL except for THC-C-gluc with an upper limit of quantification of 2000 ng/mL. The linearity was r > 0.99 for all analyzed calibration curves. Acceptance criteria for intrabatch and interbatch accuracy (85%-115%) and imprecision (<15%) were met for all compounds. In plasma, the only exceptions were THCV (75.3%-121.2% interbatch accuracy) and cannabidivarin (interbatch imprecision, 15.7%-17.2%). In urine, THCV did not meet predefined acceptance criteria for intrabatch accuracy. This assay allows for monitoring not only THC and its major metabolites but also major cannabinoids that are of interest for marijuana research and clinical practice.

  5. Electrospray ion source with reduced analyte electrochemistry

    Science.gov (United States)

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-08-23

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  6. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    International Nuclear Information System (INIS)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli; Ostman, Pekka; Ojanperae, Ilkka; Kotiaho, Tapio; Kauppila, Tiina J.; Kostiainen, Risto

    2011-01-01

    Highlights: → DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. → DAPPI-MS has better urine matrix tolerance over DESI-MS. → Urine matrix can affect the ionization mechanism in DAPPI. → DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 μg mL -1 ) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  7. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Ostman, Pekka; Ojanperae, Ilkka [Hjelt Institute, Department of Forensic Medicine, University of Helsinki, P.O. Box 40, Helsinki FI-00014 (Finland); Kotiaho, Tapio [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Kauppila, Tiina J. [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Kostiainen, Risto, E-mail: risto.kostiainen@helsinki.fi [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland)

    2011-08-05

    Highlights: {yields} DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. {yields} DAPPI-MS has better urine matrix tolerance over DESI-MS. {yields} Urine matrix can affect the ionization mechanism in DAPPI. {yields} DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 {mu}g mL{sup -1}) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  8. Xanthium strumarium L. antimicrobial activity and carboxyatractyloside analysis through electrospray ionization mass spectrometry Atividade antimicrobiana e análise de carboxiatractilosideo por espectrometria de massas com ionização por electrospray de Xanthium strumarium L

    Directory of Open Access Journals (Sweden)

    R. Scherer

    2009-01-01

    Full Text Available The aim of this work was to evaluate the antimicrobial activity of Xanthium strumarium L. leaf extracts against Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa and Clostridium perfringens, as well as to investigate the presence of the toxic compound carboxyatractyloside in different plant parts. S. aureus and C. perfringens were more sensitive to non-polar than to polar fractions, and there was no difference between extracts for the remaining bacteria. All extracts had strong antimicrobial activity against the evaluated microorganisms. Carboxyatractyloside was found in cotyledons and seeds but not in adult leaves and burrs. Thus, only Xanthium strumarium leaves in adult stage can be used for medicinal purposes.O objetivo do presente trabalho foi avaliar a atividade antimicrobiana de extratos de folhas de Xanthium strumarium L. sobre os microrganismos Staphylococcus aureus, Escherichia coli, Salmonella thyphimurium, Pseudomonas aeruginosa e Clostridium perfringens, bem como verificar a presença do composto tóxico carboxiatractilosideo em diferentes partes da planta. As bactérias S. aureus e C. perfringens foram mais sensíveis às frações não polares do que as polares, sendo que para as outras bactérias não foi verificada diferença entre os extratos. Todos os extratos apresentaram uma forte ação antimicrobiana sobre os microrganismos avaliados. O carboxiatractilosideo foi encontrado nos cotilédones e nas sementes da planta, entretanto, não foi encontrado nas folhas em estádio adulto e na carapaça espinhosa que envolve a semente. Portanto, somente as folhas de Xanthium strumarium na fase adulta podem ser utilizadas para o uso medicinal.

  9. Non disturbing characterization and quantification of natural organic matter (NOM) contained in clay rock pore water by mass spectrometry using electro-spray and atmospheric pressure chemical ionization modes

    International Nuclear Information System (INIS)

    Huclier-Markai, S.; Landesman, C.; Grambow, B.; Rogniaux, H.; Monteau, F.; Vinsot, A.

    2010-01-01

    formation is of great importance. In this context, establishing accurate sequencing of structural units for the DOM shall be attempted. The present work is focused on small organic molecules that are present in the COx formation and that could also play a key role in the migration processes. It would be valuable to develop rapid analytical methods that require only a small sample volume and minimal pretreatment. Of particular importance is the ability to analyze bulk pore water samples as opposed to samples subjected to specific extraction techniques, fractionation, and/or concentration. Mass Spectrometry with either the Electro-Spray or the Atmospheric Pressure Chemical Ionization modes has been proved to be a powerful tool for aquatic humic substances since it allows the determination of the molecular weight distribution and the access to the different molecular weights. In this study, we have employed ESI-MS and APCI-MS to identify the chemical composition of NOM contained in the pore water from the argillite clay rock. Due to the very small quantities of COx pore water available from boreholes, these techniques are thus very suitable. The DOM in pore water has never been characterized on a well preserved pore water sample. The following aspects were considered in the present work: (1) the use of either ESI or APCI to select the most appropriated mode of ionization for providing the best information depending on the class of compound examined (2) a unique and original experimental process developed to get pore water from a core sample (3) the determination of concentration of dissolved organic matter and the evaluation of the organic matter maturity by Excitation-Emission Matrix (EEM) spectroscopy and (4) the application of the proposed instrumental methods for the characterization of organic components from natural pore waters. For the first time to our knowledge, a quite exhaustive inventory of the small organic compounds presents is given without proceeding to any

  10. [Analysis of saponins from panax notoginseng using pressurized solvent extraction coupled with liquid chromatography-electrospray mass spectrum].

    Science.gov (United States)

    Wan, Jianbo; Li, Changming; Li, Shaopin; Kong, Lingyi; Wang, Yitao

    2005-10-01

    To establish a method for qualitative analysis of saponins from Panax notoginseng using pressurized solvent extraction coupled with LC-ESI-MS. The PSE technology was applied to the process of extraction for Panax notoginseng, and the negative ion detection and multiple reaction monitoring model were used. The saponins were investigated based on total ion chromatogram (TIC) and MRM chromatogram. According to the fragment character of saponins, the molecular weight and their structures could be identified. The method can be used for qualitative analysis of saponins from Panax notoginseng.

  11. Ion concentration in micro and nanoscale electrospray emitters.

    Science.gov (United States)

    Yuill, Elizabeth M; Baker, Lane A

    2018-06-01

    Solution-phase ion transport during electrospray has been characterized for nanopipettes, or glass capillaries pulled to nanoscale tip dimensions, and micron-sized electrospray ionization emitters. Direct visualization of charged fluorophores during the electrospray process is used to evaluate impacts of emitter size, ionic strength, analyte size, and pressure-driven flow on heterogeneous ion transport during electrospray. Mass spectrometric measurements of positively- and negatively-charged proteins were taken for micron-sized and nanopipette emitters under low ionic strength conditions to further illustrate a discrepancy in solution-driven transport of charged analytes. A fundamental understanding of analyte electromigration during electrospray, which is not always considered, is expected to provide control over selective analyte depletion and enrichment, and can be harnessed for sample cleanup. Graphical abstract Fluorescence micrographs of ion migration in nanoscale pipettes while solution is electrosprayed.

  12. Optimising the Use of TRIzol-extracted Proteins in Surface Enhanced Laser Desorption/ Ionization (SELDI Analysis

    Directory of Open Access Journals (Sweden)

    Perlaky Laszlo

    2006-03-01

    Full Text Available Abstract Background Research with clinical specimens is always hampered by the limited availability of relevant samples, necessitating the use of a single sample for multiple assays. TRIzol is a common reagent for RNA extraction, but DNA and protein fractions can also be used for other studies. However, little is known about using TRIzol-extracted proteins in proteomic research, partly because proteins extracted from TRIzol are very resistant to solubilization. Results To facilitate the use of TRIzol-extracted proteins, we first compared the ability of four different common solubilizing reagents to solubilize the TRIzol-extracted proteins from an osteosarcoma cell line, U2-OS. Then we analyzed the solubilized proteins by Surface Enhanced Laser Desorption/ Ionization technique (SELDI. The results showed that solubilization of TRIzol-extracted proteins with 9.5 M Urea and 2% CHAPS ([3-[(3-cholamidopropyl-dimethylammonio]propanesulfonate] (UREA-CHAPS was significantly better than the standard 1% SDS in terms of solubilization efficiency and the number of detectable ion peaks. Using three different types of SELDI arrays (CM10, H50, and IMAC-Cu, we demonstrated that peak detection with proteins solubilized by UREA-CHAPS was reproducible (r > 0.9. Further SELDI analysis indicated that the number of ion peaks detected in TRIzol-extracted proteins was comparable to a direct extraction method, suggesting many proteins still remain in the TRIzol protein fraction. Conclusion Our results suggest that UREA-CHAPS performed very well in solubilizing TRIzol-extracted proteins for SELDI applications. Protein fractions left over after TRIzol RNA extraction could be a valuable but neglected source for proteomic or biochemical analysis when additional samples are not available.

  13. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle

    Science.gov (United States)

    Verma, Savita; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar

    2010-01-01

    The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 µg/ml) and superoxide radicals (up to 95% at 80 µg/ml), chelated metal ions (up to 83% at 50 µg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 µg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation

  14. Development of a liquid chromatography-electrospray chemical ionization tandem mass spectrometry analytical method for analysis of eleven hydroxylated polybrominated diphenyl ethers.

    Science.gov (United States)

    Feo, Maria Luisa; Barón, Enrique; Aga, Diana S; Eljarrat, Ethel; Barceló, Damià

    2013-08-02

    Recently, hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have emerged as environmentally relevant pollutants due to recent reports of their natural production and metabolism. Recent mechanistic studies in human and rats have shown that some OH-PBDEs are more potent than parent compounds (PBDEs) and may contribute substantially to neurodevelopmental disorders by direct neurotoxicity, or indirectly through altered thyroid disruption. However, analytical methodologies for determination of OH-PBDEs are currently limited. In this study a robust liquid chromatography-electrospray tandem triple quadrupole-linear ion trap mass spectrometer (LC-ESI-QqLIT-MS-MS) in negative mode method was developed for the determination of eleven OH-tri- to OH-hexa-PBDEs. Two different columns were tested and compared for chromatographic separation: a C18 BetaBasic and a Purospher STAR RP 18, working at pH 8 and 10, respectively. Mobile phase (acetonitrile:water) was optimized by changing the pH of the aqueous phase and the concentration of the organic modifier (methanol). The MS-MS parameters (declustering potential (DP), collision energy (CE) and cell exit potential (CXP)) were optimized. Selected reaction monitoring (SRM) was used in order to increase sensitivity. Two SRM transitions ([M-H](-)>[Br](-)) were selected for each OH-PBDE, one for quantification and the second one for confirmation. Under the optimized conditions, the instrumental limits of detection were between 0.17 and 0.72injectedpg. The method provided good linearity (r>0.99 for a concentration range of 0.30-100ng/mL), accuracy and precision (%Dev and %RSD≤20% for intra- and inter-assays). Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Simultaneous quantification of acetaminophen and five acetaminophen metabolites in human plasma and urine by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: Method validation and application to a neonatal pharmacokinetic study.

    Science.gov (United States)

    Cook, Sarah F; King, Amber D; van den Anker, John N; Wilkins, Diana G

    2015-12-15

    Drug metabolism plays a key role in acetaminophen (paracetamol)-induced hepatotoxicity, and quantification of acetaminophen metabolites provides critical information about factors influencing susceptibility to acetaminophen-induced hepatotoxicity in clinical and experimental settings. The aims of this study were to develop, validate, and apply high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) methods for simultaneous quantification of acetaminophen, acetaminophen-glucuronide, acetaminophen-sulfate, acetaminophen-glutathione, acetaminophen-cysteine, and acetaminophen-N-acetylcysteine in small volumes of human plasma and urine. In the reported procedures, acetaminophen-d4 and acetaminophen-d3-sulfate were utilized as internal standards (IS). Analytes and IS were recovered from human plasma (10μL) by protein precipitation with acetonitrile. Human urine (10μL) was prepared by fortification with IS followed only by sample dilution. Calibration concentration ranges were tailored to literature values for each analyte in each biological matrix. Prepared samples from plasma and urine were analyzed under the same HPLC-ESI-MS/MS conditions, and chromatographic separation was achieved through use of an Agilent Poroshell 120 EC-C18 column with a 20-min run time per injected sample. The analytes could be accurately and precisely quantified over 2.0-3.5 orders of magnitude. Across both matrices, mean intra- and inter-assay accuracies ranged from 85% to 112%, and intra- and inter-assay imprecision did not exceed 15%. Validation experiments included tests for specificity, recovery and ionization efficiency, inter-individual variability in matrix effects, stock solution stability, and sample stability under a variety of storage and handling conditions (room temperature, freezer, freeze-thaw, and post-preparative). The utility and suitability of the reported procedures were illustrated by analysis of pharmacokinetic samples

  16. Methodology of analysis of very weak acids by isotachophoresis with electrospray-ionization mass-spectrometric detection: Anionic electrolyte systems for the medium-alkaline pH range.

    Science.gov (United States)

    Malá, Zdena; Gebauer, Petr

    2018-01-15

    This work describes for the first time a functional electrolyte system setup for anionic isotachophoresis (ITP) with electrospray-ionization mass-spectrometric (ESI-MS) detection in the neutral to medium-alkaline pH range. So far no application was published on the analysis of very weak acids by anionic ITP-MS although there is a broad spectrum of potential analytes with pK a values in the range 5-10, where application of this technique promises interesting gains in both sensitivity and specificity. The problem so far was the lack of anionic ESI-compatible ITP systems in the mentioned pH range as all typical volatile anionic system components are fully ionized at neutral and alkaline pH and thus too fast to suit as terminators. We propose an original solution of the problem based on the combination of two ITP methods: (i) use of the hydroxyl ion as a natural and ESI-compatible terminator, and (ii) use of configurations based on moving-boundary ITP. The former method ensures effective stacking of analytes by an alkaline terminator of sufficiently low mobility and the latter offers increased flexibility for tuning of the separation window and selectivity according to actual needs. A theoretical description of the proposed model is presented and applied to the design of very simple functional electrolyte configurations. The properties of example systems are demonstrated by both computer simulation and experiments with a group of model analytes. Potential effects of carbon dioxide present in the solutions are demonstrated for particular systems. Experimental results confirm that the proposed methodology is well capable of performing sensitive and selective ITP-MS analyses of very weak acidic analytes (e.g. sulfonamides or chlorophenols). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Isolation and identification of phenolic compounds from rum aged in oak barrels by high-speed countercurrent chromatography/high-performance liquid chromatography-diode array detection-electrospray ionization mass spectrometry and screening for antioxidant activity.

    Science.gov (United States)

    Regalado, Erik L; Tolle, Sebastian; Pino, Jorge A; Winterhalter, Peter; Menendez, Roberto; Morales, Ana R; Rodríguez, José L

    2011-10-14

    Beverages, especially wines are well-known to contain a variety of health-beneficial bioactive substances, mainly of phenolic nature which frequently exhibit antioxidant activity. Significant information is available about the separation and identification of polyphenols from some beverages by chromatographic and spectroscopic techniques, but considerably poor is chemical data related to the polyphenolic content in rums. In this paper, a method involving the all-liquid chromatographic technique of high-speed countercurrent chromatography (HSCCC) combined with high-performance liquid chromatography coupled with diode-array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS(n)) has been successfully applied for separation and identification of phenolic compounds in an aged rum. Besides, the phenolic fraction (PF) was assayed for its antioxidant effects using three different free radical in vitro assays (DPPH·, RO(2)· and spontaneous lipid peroxidation (LPO) on brain homogenates) and on ferric reducing antioxidant power (FRAP). Results showed that PF potently scavenged DPPH and strongly scavenged peroxyl radicals compared to ascorbic acid and butylated hydroxytoluene (BHT); and almost equally inhibited LPO on brain homogenates subjected to spontaneous LPO when compared to quercetin. Moreover, PF also exhibited strong reducing power. This chemical analysis illustrates the rich array of phenols in the aged rum and represents a rapid and suitable method for the isolation and identification of phenolic compounds from mixtures of considerable complexity, achieving high purity and reproducibility with the use of two separation steps. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Fingerprint analysis and quality consistency evaluation of flavonoid compounds for fermented Guava leaf by combining high-performance liquid chromatography time-of-flight electrospray ionization mass spectrometry and chemometric methods.

    Science.gov (United States)

    Wang, Lu; Tian, Xiaofei; Wei, Wenhao; Chen, Gong; Wu, Zhenqiang

    2016-10-01

    Guava leaves are used in traditional herbal teas as antidiabetic therapies. Flavonoids are the main active of Guava leaves and have many physiological functions. However, the flavonoid compositions and activities of Guava leaves could change due to microbial fermentation. A high-performance liquid chromatography time-of-flight electrospray ionization mass spectrometry method was applied to identify the varieties of the flavonoids in Guava leaves before and after fermentation. High-performance liquid chromatography, hierarchical cluster analysis and principal component analysis were used to quantitatively determine the changes in flavonoid compositions and evaluate the consistency and quality of Guava leaves. Monascus anka Saccharomyces cerevisiae fermented Guava leaves contained 2.32- and 4.06-fold more total flavonoids and quercetin, respectively, than natural Guava leaves. The flavonoid compounds of the natural Guava leaves had similarities ranging from 0.837 to 0.927. The flavonoid compounds from the Monascus anka S. cerevisiae fermented Guava leaves had similarities higher than 0.993. This indicated that the quality consistency of the fermented Guava leaves was better than that of the natural Guava leaves. High-performance liquid chromatography fingerprinting and chemometric analysis are promising methods for evaluating the degree of fermentation of Guava leaves based on quality consistency, which could be used in assessing flavonoid compounds for the production of fermented Guava leaves. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High-Performance Liquid Chromatography with Diode Array Detector and Electrospray Ionization Ion Trap Time-of-Flight Tandem Mass Spectrometry to Evaluate Ginseng Roots and Rhizomes from Different Regions.

    Science.gov (United States)

    Wang, Hong-Ping; Zhang, You-Bo; Yang, Xiu-Wei; Yang, Xin-Bao; Xu, Wei; Xu, Feng; Cai, Shao-Qing; Wang, Ying-Ping; Xu, Yong-Hua; Zhang, Lian-Xue

    2016-05-09

    Ginseng, Panax ginseng C. A. Meyer, is an industrial crop in China and Korea. The functional components in ginseng roots and rhizomes are characteristic ginsenosides. This work developed a new high-performance liquid chromatography coupled with electrospray ionization ion trap time-of-flight multistage mass spectrometry (LC-ESI-IT-TOF-MS(n)) method to identify the triterpenoids. Sixty compounds (1-60) including 58 triterpenoids were identified from the ginseng cultivated in China. Substances 1, 2, 7, 15-20, 35, 39, 45-47, 49, 55-57, 59, and 60 were identified for the first time. To evaluate the quality of ginseng cultivated in Northeast China, this paper developed a practical liquid chromatography-diode array detection (LC-DAD) method to simultaneously quantify 14 interesting ginsenosides in ginseng collected from 66 different producing areas for the first time. The results showed the quality of ginseng roots and rhizomes from different sources was different due to growing environment, cultivation technology, and so on. The developed LC-ESI-IT-TOF-MS(n) method can be used to identify many more ginsenosides and the LC-DAD method can be used not only to assess the quality of ginseng, but also to optimize the cultivation conditions for the production of ginsenosides.

  20. Use of liquid chromatography/electrospray ionization tandem mass spectrometry to study the degradation pathways of terbuthylazine (TER) by Typha latifolia in constructed wetlands: identification of a new TER metabolite.

    Science.gov (United States)

    Gikas, Evagelos; Papadopoulos, Nikolaos G; Bazoti, Fotini N; Zalidis, Georgios; Tsarbopoulos, Anthony

    2012-01-30

    S-Triazines are used worldwide as herbicides for agricultural and non-agricultural purposes. Although terbuthylazine (TER) is the second most frequently used S-triazine, there is limited information on its metabolism. For this reason, an analytical method based on liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) has been developed aiming at the identification of TER and its five major metabolites (desisopropyl-hydroxy-atrazine, desethyl-hydroxy-terbuthylazine, desisopropyl-atrazine, hydroxy-terbuthylazine and desethyl-terbuthylazine) in constructed wetland water samples. The separation of TER and its major metabolites was performed by reversed-phase high-performance liquid chromatography (HPLC) on a C(8) column using a gradient elution of aqueous acetic acid 1% (solvent A) and acetonitrile (solvent B), followed by MS/MS analysis on a triple quadrupole mass spectrometer. The data-depended analysis (DDA) scan approach has been employed and the main degradation pathways of both hydroxyl and chloro (dealkylated and alkylated) metabolites are elucidated through the tandem mass spectral (MS/MS) interpretation of triazine fragments under CID conditions. In addition, another major metabolite of TER, namely N2-tert-butyl-N4-ethyl-6-methoxy-1,3,5-triazine-2,4-diamine, has been identified. This methodology can be further employed in biodegradation studies of TER, thus assisting the assessment of its environmental impact. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Analysis of monomeric and oligomeric organophosphorus flame retardants in fish muscle tissues using liquid chromatography–electrospray ionization tandem mass spectrometry: Application to Nile tilapia (Oreochromis niloticus from an e-waste processing area in northern Vietnam

    Directory of Open Access Journals (Sweden)

    Hidenori Matsukami

    2016-06-01

    Full Text Available Using electrospray ionization tandem mass spectrometry combined with liquid chromatography (LC, a novel analytical method was developed to quantify eight monomeric organophosphorus flame retardants (m-PFRs and three oligomeric organophosphorus flame retardants (o-PFRs in fish muscle samples. The optimization and validation experiments indicate that the developed method can determine accurately the concentrations of analytes in fish muscle samples. The recoveries of analytes in fish muscle samples were in the range of 74–105%. The coefficients of variation of the concentrations of analytes in fish muscle samples were 0.6–8.9%. The concentrations of analytes in procedural blanks were below the limit of quantification (LOQ values. Furthermore, the developed method was applied to the analysis of m-PFRs and o-PFRs in the muscle samples of tilapias collected from an electronic waste (e-waste processing area in northern Vietnam. The concentrations of m-PFRs such as tris(2-chloroethyl phosphate (TCEP, tris(2-chloroisopropyl phosphate (TCIPP, and triphenyl phosphate (TPHP were dominant among the investigated m-PFRs. The respective concentrations of TCEP, TCIPP, and TPHP were up to 160, 300, and 230 ng g−1 lipid weight, respectively, whereas those of o-PFRs were up to 10 ng g−1 lipid weight. The results of this study indicate lower accumulation potential of o-PFRs compared with m-PFRs for the first time.

  2. Metabolites identification of harmane in vitro/in vivo in rats by ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Li, Shuping; Liu, Wei; Teng, Liang; Cheng, Xuemei; Wang, Zhengtao; Wang, Changhong

    2014-04-01

    Harmane, a β-carboline alkaloid with a wide spectrum of pharmacological activities, is naturally present in the human diet, in numerous foodstuffs and in hallucinogenic plants such as Peganum harmala, Banisteriopsis caapi and Tribulus terrestris. However, the precise metabolic fate of harmane remains unknown. In order to know whether harmane is extensively metabolized, a rapid and sensitive method using ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC/ESI-QTOF-MS) was used to analyze the metabolic profile of harmane in vitro and in vivo in rats. A total of 21 metabolites were identified from the rat liver microsomes and rat liver S9 (9), rat urine (11), feces (16), bile (16), and plasma (10) after a single oral administration of harmane using MetaboLynx™ and MassFragment ™ software tools. It indicated that the biliary and faecal clearance were the major excretion routes for harmane as well as its metabolites. The specific CLogP values combined with different acidic and alkaline mobile phase were helpful and useful for distinguishing N-oxidation and monohydroxylation metabolites. The metabolic transformation pathways of harmane included monohydroxylation, dihydroxylation, N-oxidation, O-glucuronide conjugation, O-sulphate conjugation, and glutathione conjugation. In conclusion, this study showed an insight into the metabolism of harmane. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Determination of Noncovalent Binding Using a Continuous Stirred Tank Reactor as a Flow Injection Device Coupled to Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Santos, Inês C.; Waybright, Veronica B.; Fan, Hui; Ramirez, Sabra; Mesquita, Raquel B. R.; Rangel, António O. S. S.; Fryčák, Petr; Schug, Kevin A.

    2015-07-01

    Described is a new method based on the concept of controlled band dispersion, achieved by hyphenating flow injection analysis with ESI-MS for noncovalent binding determinations. A continuous stirred tank reactor (CSTR) was used as a FIA device for exponential dilution of an equimolar host-guest solution over time. The data obtained was treated for the noncovalent binding determination using an equimolar binding model. Dissociation constants between vancomycin and Ac-Lys(Ac)-Ala-Ala-OH peptide stereoisomers were determined using both the positive and negative ionization modes. The results obtained for Ac- L-Lys(Ac)- D-Ala- D-Ala (a model for a Gram-positive bacterial cell wall) binding were in reasonable agreement with literature values made by other mass spectrometry binding determination techniques. Also, the developed method allowed the determination of dissociation constants for vancomycin with Ac- L-Lys(Ac)- D-Ala- L-Ala, Ac- L-Lys(Ac)- L-Ala- D-Ala, and Ac- L-Lys(Ac)- L-Ala- L-Ala. Although some differences in measured binding affinities were noted using different ionization modes, the results of each determination were generally consistent. Differences are likely attributable to the influence of a pseudo-physiological ammonium acetate buffer solution on the formation of positively- and negatively-charged ionic complexes.

  4. Gas-phase behaviour of Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands by electrospray ionization mass spectrometry: fragmentation pathways and energetics.

    Science.gov (United States)

    Madeira, Paulo J Amorim; Morais, Tânia S; Silva, Tiago J L; Florindo, Pedro; Garcia, M Helena

    2012-08-15

    The gas-phase behaviour of six Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands, compounds with antitumor activities against several cancer lines, was studied. This was performed with the intent of establishing fragmentation pathways and to determine the Ru-L(N) and Ru-L(P) ligand bond dissociation energies. Such knowledge can be an important tool for the postulation of the mechanisms of action of these anticancer drugs. Two types of instruments equipped with electrospray ionisation were used (ion trap and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer). The dissociation energies were determined using energy-variable collision-induced dissociation measurements in the ion trap. The FTICR instrument was used to perform MS(n) experiments on one of the compounds and to obtain accurate mass measurements. Theoretical calculations were performed at the density functional theory (DFT) level using two different functionals (B3LYP and M06L) to estimate the dissociation energies of the complexes under study. The influence of the L(N) on the bond dissociation energy (D) of RuCp compounds with different nitrogen ligands was studied. The lability order of L(N) was: imidazole<1-butylimidazole<5-phenyl-1H-tetrazole<1-benzylimidazole. Both the functionals used gave the following ligand lability order: imidazole<1-benzylimidazole<5-phenyl-1H-tetrazole<1-butylimidazole. It is clear that there is an inversion between 1-benzylimidazole and 1-butylimidazole for the experimental and theoretical lability orders. The M06L functional afforded values of D closer to the experimental values. The type of phosphane (L(P) ) influenced the dissociation energies, with values of D being higher for Ru-L(N) with 1-butylimidazole when the phosphane was 1,2-bis(diphenylphosphino)ethane. The Ru-L(P) bond dissociation energy for triphenylphosphane was independent of the type of complex. The D values of Ru-L(N) and Ru-L(P) were determined for all six compounds and

  5. Determination of low levels of perchlorate in lettuce and spinach using ion chromatography-electrospray ionization mass spectrometry (IC-ESI-MS).

    Science.gov (United States)

    Seyfferth, Angelia L; Parker, David R

    2006-03-22

    A sample preparation method was developed to quantify environmentally relevant (low micrograms per liter) concentrations of perchlorate (ClO4(-)) in leafy vegetables using IC-ESI-MS. Lettuce and spinach were macerated, centrifuged, and filtered, and the aqueous extracts were rendered water-clear using a one-step solid-phase extraction method. Total time for extraction and sample preparation was 6 h. Ion suppression was demonstrated and was likely due to unknown organics still present in the extract solution after cleanup. However, this interference was readily eliminated using a Cl(18)O4(-) internal standard at 1 microg/L in all standards and samples. Hydroponically grown perchlorate-free butterhead lettuce was spiked to either 10.3 or 37.7 microg/kg of fresh weight (FW), and recoveries were between 91 and 98% and between 93 and 101%, respectively. Five types of lettuce and spinach from a local grocery store were then analyzed; they contained from 0.6 to 6.4 microg/kg of FW. Spike recoveries using the store-bought samples ranged from 89 to 100%. The method detection limit for perchlorate in plant extracts is 40 ng/L, and the corresponding minimum reporting limit is 200 ng/L or 0.8 microg/kg of FW.

  6. Use of Electro-spray Ionization Mass Spectrometry (ESI-MS) for the characterization of complexes 'ligand - metallic cations' in solution

    Energy Technology Data Exchange (ETDEWEB)

    Berthon, Laurence; Zorz, Nicole; Lagrave, Stephanie; Gannaz, Benoit; Hill, Clement [CEA-Marcoule DEN-DRCP-SCPS-LCSE, BP 17171, 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    In the framework of nuclear waste reprocessing, separation processes of minor actinides from fission products are developed by Cea. In order to understand the mechanisms involved in the extraction processes, the 'ligand/metallic cation' complexes, formed in the organic phases are characterized by electro-spray-mass-spectrometry (ESI-MS). This paper deals with the extraction of lanthanides (III) and americium (III) cations by an organic phase composed of a malonamide or / and a dialkyl phosphoric acid, diluted in an aliphatic diluent. For the dialkyl phosphoric acid, Ln(DEHP){sub 3}(HDEHP){sub 3} complexes are observed and in the presence of a large excess of Ln(NO{sub 3}){sub 3}, dinuclear species are also observed. For the malonamide extractant, it appears that the complexes formed in the organic phase are of the Nd(NO{sub 3}){sub 3}D{sub x} type, with 2 {<=} x {<=} 4: their distributions depend on the ratio [Ln]/[DMDOHEMA]. When the two extractants are present in the organic phase, mixed 'Ln-malonamide-dialkyl phosphoric acid' species are observed. The influence of several parameters, such as extractant concentration, solute concentration, aqueous acidity and the nature of the cations (lanthanides or americium) are studied. (authors)

  7. Determination of Bile Acids in Piglet Bile by Solid Phase Extraction and Liquid Chromatography-Electrospray Tandem Mass Spectrometry.

    Science.gov (United States)

    Mi, Si; Lim, David W; Turner, Justine M; Wales, Paul W; Curtis, Jonathan M

    2016-03-01

    An LC/MS/MS-based method was developed for the determination of individual bile acids (BA) and their conjugates in porcine bile samples. The C18-based solid-phase extraction (SPE) procedure was optimized so that all 19 target BA and their glycine and taurine conjugates were collected with high recoveries for standards (89.1-100.2%). Following this, all 19 compounds were separated and quantified in a single 12 min chromatographic run. The method was validated in terms of linearity, sensitivity, accuracy, precision, and recovery. An LOD in the low ppb range with measured precisions in the range of 0.5-9.3% was achieved. The recoveries for all of the 19 analytes in bile samples were all >80%. The validated method was successfully applied to the profiling of BA and their conjugates in the bile from piglets treated with exogenous glucagon-like peptide-2 (GLP-2) in a preclinical model of neonatal parenteral nutrition-associated liver disease (PNALD). The method developed is rapid and could be easily implemented for routine analysis of BA and their conjugates in other biofluids or tissues.

  8. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of polyphenolic composition of four cultivars of Fragaria vesca L. berries and their comparative evaluation.

    Science.gov (United States)

    Del Bubba, Massimo; Checchini, Leonardo; Chiuminatto, Ugo; Doumett, Saer; Fibbi, Donatella; Giordani, Edgardo

    2012-09-01

    High-performance liquid chromatography coupled with ion spray mass spectrometry in the tandem mode with both negative and positive ionization was used for investigating a variety of polyphenolic compounds in four genotypes of Fragaria vesca berries. About 60 phenolic compounds belonging to the compound classes of phenolic acids, ellagitannins, ellagic acid derivatives, flavonols, monomeric and oligomeric flavanols, dihydrochalcones and anthocyanins were reported, providing for the first time a quite complete picture of polyphenolic composition of F. vesca berries. Some of the polyphenols herein investigated, such as a tris-galloyl-hexahydroxydiphenoyl-hexose, two castalagin/vescalagin-like isomers and peonidin-malonylglucoside, were described for the first time. Principal component analysis applied on original HPLC-MS/MS data, acquired in multiple reaction monitoring mode, successfully discriminated the four investigated cultivars on the basis of their polyphenolic composition, highlighting the fundamental role of mass spectrometry for food characterization. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Effect of ionizing radiation on the physiological activities of ethanol extract from hizikia fusiformis cooking drips

    International Nuclear Information System (INIS)

    Kim, Hyun-Joo; Choi, Jong-il; Kim, Duk-Jin; Kim, Jae-Hun; Soo Chun, Byeong; Hyun Ahn, Dong; Sun Yook, Hong; Byun, Myung-Woo; Kim, Mi-Jung; Shin, Myung-Gon; Lee, Ju-Woon

    2009-01-01

    Although the byproduct from Hizikia fusiformis industry had many nutrients, it is being wasted. In this study, the physiological activities of cooking drip extracts from H. fusiformis (CDHF) were determined to investigate the effect of a gamma and an electron beam irradiations. DPPH radical scavenging activity and tyrosinase and ACE inhibition effects of the gamma and electron beam irradiated CDHF extracts were increased with increasing irradiation dose. These were reasoned by the increase in the content of the total polyphenolic compound of CDHF by the gamma and electron beam irradiation. There were no differences for the radiation types. These results show that ionizing radiation could be used for enhancing the functional activity of CDHF which is a major by-product in Hizikia fusiformis processing, in various applications.

  10. Characterization of steroidal saponins from Dioscorea villosa and D Cayennensis using ultrahigh performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry

    Science.gov (United States)

    Steroidal saponins were reported to be the major physiologically active constituents in yams. The structural characteristics of steroidal saponins in methanolic extracts from dried rhizomes of two Dioscorea species (D. villosa L. and D. cayenensis Lam.) and dietary supplements have analyzed using U...

  11. Liquid Chromatography-Electrospray Ionization Mass Spectrometry Analysis of Limonoids and Flavonoids in Seeds of Grapefruits, Other Citrus Species, and Dietary Supplements.

    Science.gov (United States)

    Avula, Bharathi; Sagi, Satyanarayanaraju; Wang, Yan-Hong; Wang, Mei; Gafner, Stefan; Manthey, John A; Khan, Ikhlas A

    2016-07-01

    A selective UHPLC-DAD-QToF-MS method was developed to screen grapefruit seeds, and the seeds of other Citrus species for limonoid aglycones, acids, glucosides, and flavonoids. These classes of compounds were identified in positive and negative ion modes over a mass-to-charge range from 100-1500. Accurate mass values, elution times, and fragmentation patterns obtained by QToF-mass spectrometry were used to identify or tentatively characterize the compounds detected in the sample of this study. Limonin was the major limonoid in most of the seeds of Citrus species, followed by nomilin. This analytical method was successfully applied for the analysis of commercial extracts and dietary supplements claiming to contain grapefruit seed extract, or extracts made from the seed and other fruit parts such as the peel or pulp. Many commercial products contained large numbers of flavonoids, indicating the use of peel, pulp, or seed coat. This method also permitted detection of synthetic preservatives such as benzethonium chloride, methylparaben, and triclosan in commercial grapefruit seed extract products. Out of the 17 commercial products analyzed, two contained the synthetic antimicrobial agent benzethonium chloride. Georg Thieme Verlag KG Stuttgart · New York.

  12. Improving methodological aspects of the analysis of five regulated haloacetic acids in water samples by solid-phase extraction, ion-pair liquid chromatography and electrospray tandem mass spectrometry.

    Science.gov (United States)

    Prieto-Blanco, M C; Alpendurada, M F; López-Mahía, P; Muniategui-Lorenzo, S; Prada-Rodríguez, D; Machado, S; Gonçalves, C

    2012-05-30

    Haloacetic acids (HAAs) are organic pollutants originated from the drinking water disinfection process, which ought to be controlled and minimized. In this work a method for monitoring haloacetic acids (HAAs) in water samples is proposed, which can be used in quality control laboratories using the techniques most frequently available. Among its main advantages we may highlight its automated character, including minimal steps of sample preparation, and above all, its improved selectivity and sensitivity in the analysis of real samples. Five haloacetic acids (HAA5) were analyzed using solid-phase extraction (SPE) combined with ion-pair liquid chromatography and tandem mass spectrometry. For the optimization of the chromatographic separation, two amines (triethylamine, TEA and dibutylamine, DBA) as ion pair reagents were compared, and a better selectivity and sensitivity was obtained using DBA, especially for monohaloacetic acids. SPE conditions were optimized using different polymeric adsorbents. The electrospray source parameters were studied for maximum precursor ion accumulation, while the collision cell energy of the triple quadrupole mass spectrometer was adjusted for optimum fragmentation. Precursor ions detected were deprotonated, dimeric and decarboxylated ions. The major product ions formed were: ionized halogen atom (chloride and bromide) and decarboxylated ions. After enrichment of the HAAs in Lichrolut EN adsorbent, the limits of detection obtained by LC-MS/MS analysis (between 0.04 and 0.3 ng mL(-1)) were comparable to those obtained by GC-MS after derivatization. Linearity with good correlation coefficients was obtained over two orders of magnitude irrespective of the compound. Adequate recoveries were achieved (60-102%), and the repeatability and intermediate precision were in the range of 2.4-6.6% and 3.8-14.8%, respectively. In order to demonstrate the usefulness of the method for routine HAAs monitoring, different types of water samples were

  13. Liquid chromatographic/electrospray ionization quadrupole/time of flight tandem mass spectrometric study of polyphenolic composition of different Vaccinium berry species and their comparative evaluation.

    Science.gov (United States)

    Ancillotti, Claudia; Ciofi, Lorenzo; Rossini, Daniele; Chiuminatto, Ugo; Stahl-Zeng, Jianru; Orlandini, Serena; Furlanetto, Sandra; Del Bubba, Massimo

    2017-02-01

    Ultra-high-performance liquid chromatography coupled with high-resolution quadrupole-time of flight mass spectrometry with both negative and positive ionization was used for comprehensively investigating the phenolic and polyphenolic compounds in berries from three spontaneous or cultivated Vaccinium species (i.e., Vaccinium myrtillus, Vaccinium uliginosum subsp. gaultherioides, and Vaccinium corymbosum). More than 200 analytes, among phenolic and polyphenolic compounds belonging to the classes of anthocyanins, monomeric and oligomeric flavonols, flavanols, dihydrochalcones, phenolic acids, together with other polyphenolic compounds of mixed structural characteristics, were identified. Some of the polyphenols herein investigated, such as anthocyanidin glucuronides and malvidin-feruloyl-hexosides in V. myrtillus, or anthocyanindin aldopentosides and coumaroyl-hexosides in V. uliginosum subsp. gaultherioides and a large number of proanthocyanidins with high molecular weight in all species, were described for the first time in these berries. Principal component analysis applied on original LC-TOF data, acquired in survey scan mode, successfully discriminated the three Vaccinium berry species investigated, on the basis of their polyphenolic composition, underlying one more time the fundamental role of mass spectrometry for food characterization.

  14. Electrospray and MALDI mass spectrometry in the identification of spermicides in criminal investigations.

    Science.gov (United States)

    Hollenbeck, T P; Siuzdak, G; Blackledge, R D

    1999-07-01

    Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry have been used to examine evidence in a sexual assault investigation. Because condoms are being used increasingly by sexual assailants and some condom brands include the spermicide nonoxynol-9 (nonylphenoxy polyethoxyethanol) in the lubricant formulation, the recovery, and identification of nonoxynol-9 from evidence items may assist in proving corpus delicti. A method was developed for the recovery of nonoxynol-9 from internal vaginal swabs and for its identification by reverse phase liquid chromatography/electrospray ionization mass spectrometry (LC ESI-MS), nanoelectrospray ionization (nanoESI) mass spectrometry, and high resolution MALDI Fourier transform mass spectrometry (MALDI-FTMS). The method was tested on extracts from precoitus, immediate postcoitus, and four-hours postcoitus vaginal swabs provided by a volunteer whose partner does not normally use condoms, but for this trial used a condom having a water-soluble gel-type lubricant that includes 5% nonoxynol-9 in its formulation. Subsequently, LC ESI-MS was used to identify traces of nonoxynol-9 from the internal vaginal swab of a victim of a sexual assault.

  15. Characterization of Steroidal Saponins from Dioscorea villosa and D. cayenensis Using Ultrahigh Performance Liquid Chromatography/Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Avula, Bharathi; Wang, Yan-Hong; Wang, Mei; Ali, Zulfiqar; Smillie, Troy J.; Zweigenbaum, Jerry; Khan, Ikhlas A.

    2017-01-01

    Yam (Dioscorea spp.) is an important edible tuber plant used for medicinal purposes to promote health and longevity in Chinese tradition. Steroidal saponins were reported to be the major physiologically active constituents in yams. In this current work, the structural characteristics of steroidal saponins in methanolic extracts from dried rhizomes of two Dioscorea species (D. villosa L. and D. cayenensis Lam.) and dietary supplements have been identified and analyzed using UHPLC/QTOF-MS in both negative and positive ion modes. The fragmentation patterns of reference standards were determined and the steroidal saponins in the extracts were identified or tentatively characterized from their retention times and mass spectra. The fragments produced by collision-induced dissociation (CID) revealed the characteristic cleavage of glycosidic bonds, and the fragmentation pattern provided structural information about the sugars. Twenty-one saponins, including four tentatively identified compounds, were detected in the crude extracts of two Dioscorea species. These saponins can be used to distinguish D. villosa from D. cayenensis. For example, asperin and gracillin are found only in D. cayenensis, and dioscoreavilloside A and B and parvifloside are only found in D. villosa. This can be used to determine the presence or absence of D. villosa in commercial products, which may help determine the spiking of plant material, and/or prevent the use of potentially mislabeled or misidentified “Dioscorea” material. The analytical method also provided an alternative, fast method for quality control of Dioscorea species in dietary supplements. Principal component analysis showed that Dioscorea species and commercial products were easily distinguished. From this a partial least squares model was constructed to determine what species are in different products. PMID:24510365

  16. Sensitive determination of thiols in wine samples by a stable isotope-coded derivatization reagent d0/d4-acridone-10-ethyl-N-maleimide coupled with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis.

    Science.gov (United States)

    Lv, Zhengxian; You, Jinmao; Lu, Shuaimin; Sun, Weidi; Ji, Zhongyin; Sun, Zhiwei; Song, Cuihua; Chen, Guang; Li, Guoliang; Hu, Na; Zhou, Wu; Suo, Yourui

    2017-03-31

    As the key aroma compounds, varietal thiols are the crucial odorants responsible for the flavor of wines. Quantitative analysis of thiols can provide crucial information for the aroma profiles of different wine styles. In this study, a rapid and sensitive method for the simultaneous determination of six thiols in wine using d 0 /d 4 -acridone-10-ethyl-N-maleimide (d 0 /d 4 -AENM) as stable isotope-coded derivatization reagent (SICD) by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) has been developed. Quantification of thiols was performed by using d 4 -AENM labeled thiols as the internal standards (IS), followed by stable isotope dilution HPLC-ESI-MS/MS analysis. The AENM derivatization combined with multiple reactions monitoring (MRM) not only allowed trace analysis of thiols due to the extremely high sensitivity, but also efficiently corrected the matrix effects during HPLC-MS/MS and the fluctuation in MS/MS signal intensity due to instrument. The obtained internal standard calibration curves for six thiols were linear over the range of 25-10,000pmol/L (R 2 ≥0.9961). Detection limits (LODs) for most of analytes were below 6.3pmol/L. The proposed method was successfully applied for the simultaneous determination of six kinds of thiols in wine samples with precisions ≤3.5% and recoveries ≥78.1%. In conclusion, the developed method is expected to be a promising tool for detection of trace thiols in wine and also in other complex matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry

    Science.gov (United States)

    Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A

    2014-01-01

    A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(–)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three-and two-aromatic ring products. The structurally similar four-and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(–)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. PMID:24325265

  18. Validation of an online dual-loop cleanup device with an electrospray ionization tandem mass spectrometry-based system for simultaneous quantitative analysis of urinary benzene exposure biomarkers trans, trans-muconic acid and S-phenylmercapturic acid

    International Nuclear Information System (INIS)

    Lin, L.-C.; Chiung, Y.-M.; Shih, J.-F.; Shih, T.-S.G; Liao, P.-C.

    2006-01-01

    The aim of this study is to validate isotope-dilution electrospray ionization tandem mass spectrometry (ESI-MS-MS) method with a dual-loop cleanup device for simultaneous quantitation of two benzene metabolites, trans, trans-muconic acid (ttMA) and S-phenylmercapturic acid (SPMA), in human urine. In this study, a pooled blank urine matrix from rural residents was adopted for validation of the analytical method. The calibration curve, detection limit, recovery, precision, accuracy and the stability of sample storage for the system have been characterized. Calibration plots of ttMA and SPMA standards spiked into two kinds of urine matrixes over a wide concentration range, 1/32-8-fold biological exposure indices (BEIs) values, showed good linearity (R > 0.9992). The detection limits in pooled urine matrix for ttMA and SPMA were 1.27 and 0.042 μg g -1 creatinine, respectively. For both of ttMA and SPMA, the intra- and inter-day precision values were considered acceptable well below 25% at the various spiked concentrations. The intra- and inter-day apparent recovery values were also considered acceptable (apparent recovery >90%). The ttMA accuracy was estimated by urinary standard reference material (SRM). The accuracy reported in terms of relative error (RE) was 5.0 ± 2.0% (n = 3). The stability of sample storage at 4 or -20 deg. C were assessed. Urinary ttMA and SPMA were found to be stable for at least 8 weeks when stored at 4 or -20 deg. C. In addition, urine samples from different benzene exposure groups were collected and measured in this system. Without tedious manual sample preparation procedure, the analytical system was able to quantify simultaneously ttMA and SPMA in less than 20 min

  19. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A

    2014-03-01

    A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(-)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three- and two-aromatic ring products. The structurally similar four- and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(-)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Study on the reactive transient α-λ3-iodanyl-acetophenone complex in the iodine(III)/PhI(I) catalytic cycle of iodobenzene-catalyzed α-acetoxylation reaction of acetophenone by electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Wang, Hao-Yang; Zhou, Juan; Guo, Yin-Long

    2012-03-30

    Hypervalent iodine compounds are important and widely used oxidants in organic chemistry. In 2005, Ochiai reported the PhI-catalyzed α-acetoxylation reaction of acetophenone by the oxidation of PhI with m-chloroperbenzoic acid (m-CPBA) in acetic acid. However, until now, the most critical reactive α-λ(3)-iodine alkyl acetophenone intermediate (3) had not been isolated or directly detected. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to intercept and characterize the transient reactive α-λ(3)-iodine alkyl acetophenone intermediate in the reaction solution. The trivalent iodine species was detected when PhI and m-CPBA in acetic acid were mixed, which indicated the facile oxidation of a catalytic amount of PhI(I) to the iodine(III) species by m-CPBA. Most importantly, 3·H(+) was observed at m/z 383 from the reaction solution and this ion gave the protonated α-acetoxylation product 4·H(+) at m/z 179 in MS/MS by an intramolecular reductive elimination of PhI. These ESI-MS/MS studies showed the existence of the reactive α-λ(3)-iodine alkyl acetophenone intermediate 3 in the catalytic cycle. Moreover, the gas-phase reactivity of 3·H(+) was consistent with the proposed solution-phase reactivity of the α-λ(3)-iodine alkyl acetophenone intermediate 3, thus confirming the reaction mechanism proposed by Ochiai. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Liquid chromatography-electrospray ionization tandem mass spectrometry for on-line characterization, monitoring and isotopic profiling of the main selenium-metabolite in human urine after consumption of Se-rich and Se-enriched food

    International Nuclear Information System (INIS)

    Dumont, Emmie; Ogra, Yasumitsu; Suzuki, Kazuo T.; Vanhaecke, Frank; Cornelis, Rita

    2006-01-01

    The metabolism of selenium (Se) in the human body has yet not completely been unravelled and hence, an efficient method for characterization and on-line monitoring of the main Se-compound in human urine after consumption of Se-rich food was developed. Total Se-concentration in human urine after consumption of several Se-rich products was measured with inductively coupled plasma mass spectrometry (ICP-MS). The highest Se concentration in urine was observed after 4-10 h. The urine samples were brought onto a reversed phase column and the Se was detected by ICP-MS. Parameters for liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) measurements were optimized by using commercially available sugars, because it is known that some of the urinary metabolites contain a sugar moiety. In order to characterize the predominant Se-metabolite, it was necessary to extensively clean-up the sample and preconcentrate the species. The main metabolite was measured on its precursor ion on three different m/z according to three isotopes of Se. Relative peak surfaces matched the relative abundances of the isotopes. The product ions could be measured in a human urine sample in accordance to the product ions of the commercially available sugars. Moreover, the evidence of a selenosugar was demonstrated by the use of the Se-isotopes when measuring the product ions. LC-ESI-MS-MS was proven to be very efficient for the characterization of the main urinary Se-metabolite and can be used for on-line monitoring of the compound in urine samples. The method can be extended for clinical screening after consumption of Se-(en)rich(ed) food by use of the Se-isotopic profile and/or of the typical product ions of (methyl)-N-acetyl-hexosamines

  2. Determination of interglycosidic linkages in O-glycosyl flavones by high-performance liquid chromatography/photodiode-array detection coupled to electrospray ionization ion trap mass spectrometry. Its application to Tetragonula carbonaria honey from Australia.

    Science.gov (United States)

    Truchado, Pilar; Vit, Patricia; Heard, Tim A; Tomás-Barberán, Francisco A; Ferreres, Federico

    2015-05-30

    Tetragonula carbonaria pot-honeys are highly valued as a food source and for their biological activities in Australia, and there is a growing interest to know its composition. Phenolic metabolites, which could be related to their beneficial properties, have not been studied in depth yet. Mass spectrometry (MS) coupled to liquid chromatography (LC) is an advanced technique for the study of complex flavonoids present in difficult food matrices that hampers their isolation and purification. This allows the tentative characterization of diglycosides/triglycosides establishing the position of the O-glycosylation on the sugar moiety by the study of the MS data in T. carbonaria pot-honeys from Australia. Their spectra obtained by high-performance liquid chromatography/photodiode-array detection/electrospray ionization ion trap mass spectrometry (HPLC/DAD/ESI-MS(n) ) revealed for the first time 19 quercetin, kaempferol and isorhamnetin O-glycosides. These compounds were clustered in flavonoid triglycosides, diglycosides and monoglycosides. The first cluster contained one flavonoid trihexoside, two -3-O-(2-hexosyl, 6-rhamnosyl)hexosides and their isomers and two -3-O-(2,6-di-rhamnosyl)hexosides. In the second cluster, eleven flavonoid diglycosides such as three -3-O-(2-hexosyl)hexosides, four -3-O-(2-rhamnosyl)hexosides and one -3-O-(6-rhamnosyl)hexoside as well as two -3-O-(2-pentosyl)hexosides and one tentative -3-O-(3-pentosyl)hexoside were detected. In the monoglycoside group, only one flavonoid -3-O-hexoside was identified. The occurrence of this large number of flavonoid glycosides could be due to the low glucosidase activity previously reported in stingless bee honey. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Simultaneous determination of phentermine and topiramate in human plasma by liquid chromatography-tandem mass spectrometry with positive/negative ion-switching electrospray ionization and its application in pharmacokinetic study.

    Science.gov (United States)

    Ni, Yang; Zhou, Ying; Xu, Mingzhen; He, Xiaomeng; Li, Huqun; Haseeb, Satter; Chen, Hui; Li, Weiyong

    2015-03-25

    A new method for simultaneous determination of phentermine and topiramate by liquid chromatography/electrospray tandem mass spectrometry (LC/MS/MS) operated in positive and negative ionization switching modes was developed and validated. Protein precipitation with acetonitrile was selected for sample preparation. Analyses were performed on a liquid chromatography system employing a Kromasil 60-5CN column (2.1 mm × 100 mm, 5 μm) and an isocratic elution with mixed solution of acetonitrile-20mM ammonium formate containing 0.3% formic acid (40:60, v/v), at a flow rate of 0.35 mL/min. Doxazosin mesylate and pioglitazone were used as the internal standard (IS) respectively for quantification. The determination was carried out on an API 4000 triple-quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode using the following transitions monitored simultaneously: positive m/z 150.0/91.0 for phentermine, m/z 452.1/344.3 for doxazosin, and negative m/z 338.3/77.9 for topiramate, m/z 355.0/41.9 for pioglitazone. The method was validated to be linear over the concentration range of 1-800 ng mL(-1) for phentermine, 1-1000 ng mL(-1) for topiramate. Within- and between-day accuracy and precision of the validated method at three different concentration levels were within the acceptable limits of <15% at all concentrations. Blood samples were collected into heparinized tubes before and after administration. The simple and robust LC/MS/MS method was successfully applied for the simultaneous determination of phentermine and topiramate in a pharmacokinetic study in healthy male Chinese volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry.

    Science.gov (United States)

    Schmidt, Susanne; Zietz, Michaela; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W; Krumbein, Angelika

    2010-07-30

    Kale is a member of the Brassicaceae family and has a complex profile of flavonoid glycosides. Therefore, kale is a suitable matrix to discuss in a comprehensive study the different fragmentation patterns of flavonoid glycosides. The wide variety of glycosylation and acylation patterns determines the health-promoting effects of these glycosides. The aim of this study is to investigate the naturally occurring flavonoids in kale. A total of 71 flavonoid glycosides of quercetin, kaempferol and isorhamnetin were identified using a high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry (HPLC-DAD/ESI-MS(n)) method. Of these 71 flavonol glycosides, 27 were non-acylated, 30 were monoacylated and 14 were diacylated. Non-acylated flavonol glycosides were present as mono-, di-, tri- and tetraglycosides. This is the first time that the occurrence of four different fragmentation patterns of non-acylated flavonol triglycosides has been reported in one matrix simultaneously. In addition, 44 flavonol glycosides were acylated with p-coumaric, caffeic, ferulic, hydroxyferulic or sinapic acid. While monoacylated glycosides existed as di-, tri- and tetraglycosides, diacylated glycosides occurred as tetra- and pentaglycosides. To the best of our knowledge, 28 compounds in kale are reported here for the first time. These include three acylated isorhamnetin glycosides (isorhamnetin-3-O-sinapoyl-sophoroside-7-O-D-glucoside, isorhamnetin-3-O-feruloyl-sophoroside-7-O-diglucoside and isorhamnetin-3-O-disinapoyl-triglucoside-7-O-diglucoside) and seven non-acylated isorhamnetin glycosides. Copyright 2010 John Wiley & Sons, Ltd.

  5. Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application.

    Science.gov (United States)

    Abu-Reidah, I M; Contreras, M M; Arráez-Román, D; Segura-Carretero, A; Fernández-Gutiérrez, A

    2013-10-25

    Lettuce (Lactuca sativa), a leafy vegetal widely consumed worldwide, fresh cut or minimally processed, constitutes a major dietary source of natural antioxidants and bioactive compounds. In this study, reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry (ESI-QTOF-MS) was applied for the comprehensive profiling of polar and semi-polar metabolites from three lettuce cultivars (baby, romaine, and iceberg). The UHPLC systems allowed the use of a small-particle-size C18 column (1.8 μm), with very fine resolution for the separation of up to seven isomers, and the QTOF mass analyzer enabled sensitive detection with high mass resolution and accuracy in full scan. Thus, a total of 171 compounds were tentatively identified by matching their accurate mass signals and suggested molecular formula with those previously reported in family Asteraceae. Afterwards, their structures were also corroborated by the MS/MS data provided by the QTOF analyzer. Well-known amino acids, organic acids, sesquiterpene lactones, phenolic acids and flavonoids were characterized, e.g. lactucin, lactucopicrin, caftaric acid, chlorogenic acid, caffeoylmalic acid, chicoric acid, isochlorogenic acid A, luteolin, and quercetin glycosides. For this plant species, this is the first available report of several isomeric forms of the latter polyphenols and other types of components such as nucleosides, peptides, and tryptophan-derived alkaloids. Remarkably, 10 novel structures formed by the conjugation of known amino acids and sesquiterpene lactones were also proposed. Thus, the methodology applied is a useful option to develop an exhaustive metabolic profiling of plants that helps to explain their potential biological activities and folk uses. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd) by a liquid chromatography-diode array detection-electrospray ionization-time-of-flight mass spectrometry methodology.

    Science.gov (United States)

    Gómez-Caravaca, Ana María; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Caboni, Maria Fiorenza

    2011-10-26

    A new liquid chromatography methodology coupled to a diode array detector and a time-of-flight mass spectrometer has been developed for the simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd). This method has allowed the simultaneous determination of these two families of compounds with the same analytical method for the first time. A fused-core column C18 has been used, and the analysis has been performed in less than 27 min. Both chromatographic and electrospray ionization time-of-flight mass spectrometry parameters have been optimized to improve the sensitivity and to maximize the number of compounds detected. A validation of the method has also been carried out, and free and bound polar fractions of quinoa have been studied. Twenty-five compounds have been tentatively identified and quantified in the free polar fraction, while five compounds have been tentatively identified and quantified in the bound polar fraction. It is important to highlight that 1-O-galloyl-β-D-glucoside, acacetin, protocatechuic acid 4-O-glucoside, penstebioside, ethyl-m-digallate, (epi)-gallocatechin, and canthoside have been tentatively identified for the first time in quinoa. Free phenolic compounds have been found to be in the range of 2.746-3.803 g/kg of quinoa, while bound phenolic compounds were present in a concentration that varies from 0.139 and 0.164 g/kg. Indeed, saponins have been found to be in a concentration that ranged from 5.6 to 7.5% of the total composition of whole quinoa flour.

  7. Utilization of circular dichroism and electrospray ionization mass spectrometry to understand the formation and conversion of G-quadruplex DNA at the human c-myb proto-oncogene.

    Science.gov (United States)

    Fu, Hengqing; Yang, Pengfei; Hai, Jinhui; Li, Huihui

    2018-10-05

    G-quadruplex DNAs are involved in a number of key biological processes, including gene expression, transcription, and apoptosis. The c-myb oncogene contains a number of GGA repeats in its promoter which forms G-quadruplex, thus it could be used as a target in cancer therapeutics. Several in-vitro studies have used Circular Dichroism (CD) spectroscopy or electrospray ionization mass spectrometry (ESI-MS) to demonstrate formation and stability of G-quadruplex DNA structure in the promoter region of human c-myb oncogene. The factors affecting the c-myb G-quadruplex structures were investigated, such as cations (i.e. K + , NH 4 + and Na + ) and co-solutes (methanol and polyethylene glycol). The results indicated that the presence of cations and co-solutes could change the G-quadruplex structural population and promote its thermodynamic stabilization as indicated by CD melting curves. It indicated that the co-solutes preferentially stabilize the c-myb G-quadruplex structure containing both homo- and hetero-stacking. In addition, protopine was demonstrated as a binder of c-myb G-quadruplex as screened from a library of natural alkaloids using ESI-MS method. CD spectra showed that it could selectively stabilize the c-myb G-quadruplex structure compared to other six G-quadruplexes from tumor-related G-rich sequences and the duplex DNAs (both long and short-chain ones). The binding of protopine could induce the change in the G-quadruplex structural populations. Therefore, protopine with its high binding specificity could be considered as a precursor for the design of drugs to target and regulate c-myb oncogene transcription. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Sensitive measurement of vinorelbine in dog plasma by liquid chromatography-electrospray ionization tandem mass spectrometry utilizing transitions from double-charged precursor ions.

    Science.gov (United States)

    Niwa, Makoto; Kawashiro, Takashi

    2011-04-01

    A sensitive high-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for measuring vinorelbine was developed. A 100 µL aliquot of plasma was spiked with deuterium-labeled internal standard and subjected to solid-phase extraction using an Oasis HLB μ-elution plate. Two microliters of the extracted samples was directly injected into LC/MS/MS. Chromatographic separation was achieved on a Capcell Pak C18 UG column (2 × 75 mm) with a gradient elution of methanol (mobile phase B) against 0.05% formic acid in aqueous 10 mm ammonium formate (mobile phase A). The LC flow rate was set to 0.28 mL/min and the gradient (solvent B concentration) was processed from 40 to 90%. In mass spectrometric detection, observation of the reaction from a double-charged precursor ion [M + 2H](2+) (m/z 390) to product ion m/z 122 provided very high sensitivity. The method was validated with a lower limit of detection of 0.2 ng/mL with 0.1 mL of plasma, and the method was used to determine the plasma pharmacokinetics of vinorelbine in dogs. Copyright © 2010 John Wiley & Sons, Ltd.

  9. Simultaneous determination of vitamins D2 and D3 by electrospray ionization LC/MS/MS in infant formula and adult nutritionals: First Action 2012.11.

    Science.gov (United States)

    Gilliland, Donald L; Black, Charles K; Denison, James E; Seipelt, Charles T; Baugh, Steve

    2013-01-01

    A method was developed for the analysis of vitamins D2 and D3 in a variety of nutritional products. To extract vitamins D2 and D3 from products containing substantial amounts of fat, a saponification with alcoholic potassium hydroxide is required to release the vitamin D. Trideuterium-labeled vitamin D is added to the sample prior to saponification, and quantitation is achieved using linear regression of the ratio of peak response for 2H3-D and vitamin D. Acceptable linearity was achieved between 0.6 and 27 microg/100 g with a correlation requirement of >0.999. The method detection limit of 0.02 microg/100 g was verified by spiking placebo products carried through the saponification and extraction steps of the method. At the quantitation limit (0.12 microg/100 g), the signal was easily distinguished from the background. Vitamin D3 spike recoveries ranged from 107 to 119% at the low level and 104 to 116% at the high-level spike. Vitamin D2 recoveries were 105 to 116% and 91 to 110% for the low- and high-level spikes, respectively. SRM 1849a has a certified concentration of 11.1 +/- 1.7 microg/100 g; using this standard reference material, the range of 9.4 to 12.8 microg/100 g was met on each of the 6 days. Method repeatability, determined in 12 vitamin D3 product matrixes over 6 days, ranged from 3.9 to 48%. The adult nutrition-milk protein sample was the most notable; it failed within-day, as well as day-to-day, precision requirements. There was no attempt to optimize the sample preparation to accommodate any problem matrix.

  10. Identification of bradykinin: related peptides from Phyllomedusa nordestina skin secretion using electrospray ionization tandem mass spectrometry after a single-step liquid chromatography

    Directory of Open Access Journals (Sweden)

    K Conceição

    2009-01-01

    Full Text Available Amphibian skin secretions are a source of potential new drugs with medical and biotechnological applications. Rich in peptides produced by holocrine-type serous glands in the integument, these secretions play different roles, either in the regulation of physiological skin functions or in the defense against predators or microorganisms. The aim of the present work was to identify novel peptides with bradykinin-like structure and/or activity present in the skin of Phyllomedusa nordestina. In order to achieve this goal, the crude skin secretion of this frog was pre-fractionated by solid phase extraction and separated by reversed-phase chromatography. The fractions were screened for low-molecular-mass peptides and sequenced by mass spectrometry. It was possible to identify three novel bradykinin-related peptides, namely: KPLWRL-NH2 (Pnor 3, RPLSWLPK (Pnor 5 and VPPKGVSM (Pnor 7 presenting vascular activities as assessed by intravital microscopy. Pnor 3 and Pnor 7 were able to induce vasodilation. On the other hand, Pnor 5 was a potent vasoconstrictor. These effects were reproduced by their synthetic analogues.

  11. Validation of a liquid chromatography-electrospray ionization tandem mass spectrometric method to determine six polyether ionophores in raw, UHT, pasteurized and powdered milk.

    Science.gov (United States)

    Pereira, Mararlene Ulberg; Spisso, Bernardete Ferraz; Jacob, Silvana do Couto; Monteiro, Mychelle Alves; Ferreira, Rosana Gomes; Carlos, Betânia de Souza; da Nóbrega, Armi Wanderley

    2016-04-01

    This study aimed to validate a method developed for the determination of six antibiotics from the polyether ionophore class (lasalocid, maduramicin, monensin, narasin, salinomycin and semduramicin) at residue levels in raw, UHT, pasteurized and powdered milk using QuEChERS extraction and high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). The validation was conducted under an in-house laboratory protocol that is primarily based on 2002/657/EC Decision, but takes in account the variability of matrix sources. Overall recoveries between 93% and 113% with relative standard deviations up to 16% were obtained under intermediate precision conditions. CCα calculated values did not exceed 20% the Maximum Residue Limit for monensin and 25% the Maximum Levels for all other substances. The method showed to be simple, fast and suitable for verifying the compliance of raw and processed milk samples regarding the limits recommended by Codex Alimentarius and those adopted in European Community for polyether ionophores. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Validation and application of a liquid chromatography-electrospray ionization mass spectrometric method for determination of mazindol in human plasma and urine.

    Science.gov (United States)

    de Oliveira, Marcella Herbstrith; Ferreira, Pâmela Cristina Lukasewicz; Carlos, Graciela; Salazar, Fernanda Rodrigues; Bergold, Ana Maria; Pechansky, Flavio; Limberger, Renata Pereira; Fröehlich, Pedro Eduardo

    2016-01-01

    Even after removal of some stimulants, like fenproporex, amfepramone and mazindol, from Brazilian market, the use of these substances is still high, especially by drivers. Mazindol is the second most used anorectic agent in the world acting as an indirect sympathomimetic agonist, having stimulatory action on central nervous system. Plasma is a good matrix to monitor since it reflects the psychomotor effects of these drugs, but unlike urine has an invasive collection; drug levels and detection time are quite low. The method involved a liquid-liquid extraction of the samples and a LC-MS analysis was fully validated. Method was used to analyze samples of urine and plasma collected from health volunteers in a period of 24h. Metabolite of mazindol was synthesized using alkaline conditions. After validation the method proved to be adequate to analyze samples collected from health volunteers. Method was linear in the concentration range of 0.1-10ng/mL (r=0.9982) for plasma and 5-50ng/mL (r=0.9973) for urine. Analysis of the samples showed that mazindol can be detected after 1h of administration and that concentration levels in urine were always higher than in plasma. Mazindol metabolite was detected only in urine. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Direct injection liquid chromatography/electrospray ionization mass spectrometric horse urine analysis for the quantification and confirmation of threshold substances for doping control. II. Determination of theobromine.

    Science.gov (United States)

    Vonaparti, A; Lyris, E; Panderi, I; Koupparis, M; Georgakopoulos, C

    2009-04-01

    In equine sport, theobromine is prohibited with a threshold level of 2 microg mL(-1) in urine, hence doping control laboratories have to establish quantitative and qualitative methods for its determination. Two simple liquid chromatography/mass spectrometry (LC/MS) methods for the identification and quantification of theobromine were developed and validated using the same sample preparation procedure but different mass spectrometric systems: ion trap mass spectrometry (ITMS) and time-of-flight mass spectrometry (TOFMS). Particle-free diluted urine samples were directly injected into the LC/MS systems, avoiding the time-consuming extraction step. 3-Propylxanthine was used as the internal standard. The tested linear range was 0.75-15 microg mL(-1). Matrix effects were evaluated analyzing calibration curves in water and different fortified horse urine samples. A great variation in the signal of theobromine and the internal standard was observed in different matrices. To overcome matrix effects, a standard additions calibration method was applied. The relative standard deviations of intra- and inter-day analysis were lower than 8.6 and 7.2%, respectively, for the LC/ITMS method and lower than 5.7 and 5.8%, respectively, for the LC/TOFMS method. The bias was less than 8.7% for both methods. The methods were applied to two case samples, demonstrating simplicity, accuracy and selectivity. Copyright (c) 2009 John Wiley & Sons, Ltd.

  14. Determination of vandetanib in human plasma and cerebrospinal fluid by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS).

    Science.gov (United States)

    Bai, Feng; Johnson, Jennifer; Wang, Fan; Yang, Lei; Broniscer, Alberto; Stewart, Clinton F

    2011-09-01

    A sensitive and precise LC-ESI-MS/MS method for the determination of vandetanib (ZD6474) in human plasma and cerebrospinal fluid (CSF) using [(13)C,d(3)]-ZD6474 as an internal standard (ISTD) was developed and validated. Sample preparation consisted of a simple liquid-liquid extraction with tert-butyl methyl ether containing 0.1% or 0.5% ammonium hydroxide. ZD6474 and ISTD were separated on a Kinetex C18 column (2.6 μm, 50 mm × 2.1 mm) at ambient temperature with an isocratic mobile phase (acetonitrile/10mM ammonium formate=50/50, v/v, at pH 5.0) delivered at 0.11 mL/min. The retention time of both compounds was at 1.60 min in a runtime of three min. Detection was achieved by an API-3200 LC-MS/MS system, monitoring m/z 475.1/112.1 and m/z 479.1/116.2 for vandetanib and ISTD, respectively. The method was linear in the range of 0.25-50 ng/mL (R(2) ≥ 0.990) for the CSF curve and from 1.0 to 3000 ng/mL (R(2) ≥ 0.992) for the plasma curve. The mean recovery for vandetanib was 80%. Within-day and between-day precisions were ≤ 8.8% and ≤ 5.9% for CSF and plasma, respectively. Within-day and between-day accuracies ranged from 95.0 to 98.5% for CSF, and from 104.0 to 108.5% for plasma. Analysis of plasma from six different sources showed no matrix effect for vandetanib (MF=0.98, %CV ≤ 4.97, n=6). This method was successfully applied to the analysis of pharmacokinetic samples from children with brain tumors treated with oral vandetanib. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Dispersive solid phase extraction combined with ion-pair ultra high-performance liquid chromatography tandem mass spectrometry for quantification of nucleotides in Lactococcus lactis

    DEFF Research Database (Denmark)

    Magdenoska, Olivera; Martinussen, Jan; Thykær, Jette

    2013-01-01

    solid phase extraction with charcoal and subsequent analysis with ion-pair liquid chromatography coupled with electrospray ionization tandem mass spectrometry was established for quantification of intracellular pools of the 28 most important nucleotides. The method can handle extracts where cells leak...

  16. Supercritical carbon dioxide extraction of electrolyte from spent lithium ion batteries and its characterization by gas chromatography with chemical ionization

    Science.gov (United States)

    Mönnighoff, Xaver; Friesen, Alex; Konersmann, Benedikt; Horsthemke, Fabian; Grützke, Martin; Winter, Martin; Nowak, Sascha

    2017-06-01

    The aging products of the electrolyte from a commercially available state-of-the-art 18650-type cell were investigated. During long term cycling a huge difference in their performance and lifetime at different temperatures was observed. By interpretation of a strong capacity fading of cells cycled at 20 °C compared to cells cycled at 45 °C a temperature depending aging mechanism was determined. To investigate the influence of the electrolyte on this fading, the electrolyte was extracted by supercritical fluid extraction (SFE) and then analyzed by gas chromatography (GC) with electron impact (EI) ionization and mass selective detection. To obtain more information with regard to the identification of unknown decomposition products further analysis with positive chemical ionization (PCI) and negative chemical ionization (NCI) was performed. 17 different volatile organic aging products were detected and identified. So far, seven of them were not yet known in literature and several formation pathways were postulated taking previously published literature into account.

  17. Theory of the Protein Equilibrium Population Snapshot by H/D Exchange Electrospray Ionization Mass Spectrometry (PEPS-HDX-ESI-MS) Method used to obtain Protein Folding Energies/Rates and Selected Supporting Experimental Evidence.

    Science.gov (United States)

    Liyanage, Rohana; Devarapalli, Nagarjuna; Pyland, Derek B; Puckett, Latisha M; Phan, N H; Starch, Joel A; Okimoto, Mark R; Gidden, Jennifer; Stites, Wesley E; Lay, Jackson O

    2012-12-15

    Protein equilibrium snapshot by hydrogen/deuterium exchange electrospray ionization mass spectrometry (PEPS-HDX-ESI-MS or PEPS) is a method recently introduced for estimating protein folding energies and rates. Herein we describe the basis for this method using both theory and new experiments. Benchmark experiments were conducted using ubiquitin because of the availability of reference data for folding and unfolding rates from NMR studies. A second set of experiments was also conducted to illustrate the surprising resilience of the PEPS to changes in HDX time, using staphylococcal nuclease and time frames ranging from a few seconds to several minutes. Theory suggests that PEPS experiments should be conducted at relatively high denaturant concentrations, where the protein folding/unfolding rates are slow with respect to HDX and the life times of both the closed and open states are long enough to be sampled experimentally. Upon deliberate denaturation, changes in folding/unfolding are correlated with associated changes in the ESI-MS signal upon fast HDX. When experiments are done quickly, typically within a few seconds, ESI-MS signals, corresponding to the equilibrium population of the native (closed) and denatured (open) states can both be detected. The interior of folded proteins remains largely un-exchanged. Amongst MS methods, the simultaneous detection of both states in the spectrum is unique to PEPS and provides a "snapshot" of these populations. The associated ion intensities are used to estimate the protein folding equilibrium constant (or the free energy change, ΔG). Linear extrapolation method (LEM) plots of derived ΔG values for each denaturant concentration can then be used to calculate ΔG in the absence of denaturant, ΔG(H(2)O). In accordance with the requirement for detection of signals for both the folded and unfolded states, this theoretical framework predicts that PEPS experiments work best at the middle of the denaturation curve where natured

  18. Role of neuropeptide Y in the regulation of gonadotropin releasing hormone system in the forebrain of Clarias batrachus (Linn.): immunocytochemistry and high performance liquid chromatography-electrospray ionization-mass spectrometric analysis.

    Science.gov (United States)

    Gaikwad, A; Biju, K C; Muthal, P L; Saha, S; Subhedar, N

    2005-01-01

    Although the importance of neuropeptide Y (NPY) in the regulation of gonadotropin releasing hormone (GnRH) and reproduction has been highlighted in recent years, the neuroanatomical substrate within which these substances might interact has not been fully elucidated. Present work was undertaken with a view to define the anatomical-physiological correlates underlying the role exercised by NPY in the regulation of GnRH in the forebrain of the teleost Clarias batrachus. Application of double immunocytochemistry revealed close associations as well as colocalizations of the two peptides in the olfactory receptor neurons (ORNs), olfactory nerve fibers and their terminals in the glomeruli, ganglion cells of nervus terminalis, medial olfactory tract, fibers in the area ventralis telencephali/pars supracommissuralis and cells as well as fibers in the pituitary. NPY containing axons were found to terminate in the vicinity of GnRH cells in the pituitary with light as well as electron microscopy. Double immunoelectron microscopy demonstrated gold particles for NPY and GnRH colocalized on the membrane and in dense core of the secretory granules in the cells distributed in all components of the pituitary gland. To assess the physiological implication of these observations, NPY was injected via the intracranial route and the response of GnRH immunoreactive system was evaluated by relative quantitative morphometry as well as high performance liquid chromatography (HPLC) analysis. Two hours following NPY (20 ng/g body weight) administration, a dramatic increase was observed in the GnRH immunoreactivity in the ORNs, in the fibers of the olfactory bulb (163%) and medial olfactory tract (351%). High performance liquid chromatography-electrospray ionization-mass spectrometric analysis confirmed the immunocytochemical data. Significant rise in the salmon GnRH (sGnRH)-like peptide content was observed in the olfactory organ (194.23%), olfactory bulb (146.64%), telencephalon+preoptic area

  19. Simultaneous determination of asperosaponin VI and its active metabolite hederagenin in rat plasma by liquid chromatography-tandem mass spectrometry with positive/negative ion-switching electrospray ionization and its application in pharmacokinetic study.

    Science.gov (United States)

    Zhu, He; Ding, Li; Shakya, Shailendra; Qi, Xiemin; Hu, Linlin; Yang, Xiaolin; Yang, Zhonglin

    2011-11-15

    A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method operated in the positive/negative electrospray ionization (ESI) switching mode has been developed and validated for the simultaneous determination of asperosaponin VI and its active metabolite hederagenin in rat plasma. After addition of internal standards diazepam (for asperosaponin VI) and glycyrrhetic acid (for hederagenin), the plasma sample was deproteinized with acetonitrile, and separated on a reversed phase C18 column with a mobile phase of methanol (solvent A)-0.05% glacial acetic acid containing 10 mM ammonium acetate and 30 μM sodium acetate (solvent B) using gradient elution. The detection of target compounds was done in multiple reaction monitoring (MRM) mode using a tandem mass spectrometry equipped with positive/negative ion-switching ESI source. At the first segment, the MRM detection was operated in the positive ESI mode using the transitions of m/z 951.5 ([M+Na](+))→347.1 for asperosaponin VI and m/z 285.1 ([M+H](+))→193.1 for diazepam for 4 min, then switched to the negative ESI mode using the transitions of m/z 471.3 ([M-H](-))→471.3 for hederagenin and m/z 469.4 ([M-H](-))→425.4 for glycyrrhetic acid, respectively. The sodiated molecular ion [M+Na](+) at m/z 951.5 was selected as the precursor ion for asperosaponin VI, since it provided better sensitivity compared to the deprotonated and protonated molecular ions. Sodium acetate was added to the mobile phase to make sure that abundant amount of the sodiated molecular ion of asperosaponin VI could be produced, and more stable and intensive mass response of the product ion could be obtained. For the detection of hederagenin, since all of the mass responses of the fragment ions were very weak, the deprotonated molecular ion [M-H](-)m/z 471.3 was employed as both the precursor ion and the product ion. But the collision energy was still used for the MRM, in order to eliminate the influences induced by the interference

  20. Salt removal from microliter sample volumes by multiple phase microelectromembrane extractions across free liquid membranes

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel

    2017-01-01

    Roč. 89, č. 16 (2017), s. 8476-8483 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : desalting * microelectromembrane extraction * electrospray ionization-mass spectrometry Subject RIV: CB - Analytical Chemistry , Separation OBOR OECD: Analytical chemistry Impact factor: 6.320, year: 2016

  1. Salt removal from microliter sample volumes by multiple phase microelectromembrane extractions across free liquid membranes

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel

    2017-01-01

    Roč. 89, č. 16 (2017), s. 8476-8483 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : desalting * microelectromembrane extraction * electrospray ionization-mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 6.320, year: 2016

  2. Determination of four major saponins in the seeds of Aesculus chinensis Bunge using accelerated solvent extraction followed by high-performance liquid chromatography and electrospray-time of flight mass spectrometry.

    Science.gov (United States)

    Chen, Junhui; Li, Wenlong; Yang, Baijuan; Guo, Xiuchun; Lee, Frank Sen-Chun; Wang, Xiaoru

    2007-07-23

    A new method based on accelerated solvent extraction (ASE) followed by a reliable high-performance liquid chromatography-diode array detector (HPLC-DAD) and positive ion electrospray-time of flight mass spectrometry (ESI-TOF/MS) analysis has been developed for the characterization and quantification of four major saponins in extracts of the seeds of Aesculus chinensis Bunge (semen aesculi). The saponins escin Ia, escin Ib, isoescin Ia and isoescin Ib were extracted from seeds of A. chinesis Bunge via ASE, and the operational parameters of ASE were optimized, such as extraction solvent, extraction temperature, static extraction time and extraction cycles. The optimized procedure employed 70% MeOH as extraction solvent, 120 degrees C of extraction temperature, 7 min of static extraction time, 60% flush volume and the extraction recoveries of the four compounds were nearly to 100% for two cycles. The HPLC conditions are as follows: SinoChrom ODS BP C18 (4.6 mm x 200 mm, 5 microm) column, acetonitrile and 0.10% phosphoric acid solution as mobile phase, flow rate is 1.0 mL min(-1), detection length of UV is 203 nm, injection volume is 10 microL. The results indicated that the developed HPLC method is simple, sensitive and reliable for the determination of four major saponins in seeds of A. chinesis Bunge with a good linearity (r2 > 0.9994), precision (relative standard deviation (R.S.D.) < 1.5%) and the recovery ranges of 95.2-97.3%. The limits of detection (LOD) of the four compounds were in the range of 0.40-0.75 microg mL(-1). This assay can be readily utilized as a quality control method for semen aesculi and other related medicinal plants.

  3. Role of an extract from kiwi fruits in reduction genetic consequences of influence ionization of radiation

    International Nuclear Information System (INIS)

    Akperova, G.A.

    2002-01-01

    Full text: Researches of plants extracts as perspective means of reduction of consequences of influence mutagenian factors of an environment gets the increasing urgency. The search of the proof-readers of the mutation of the process allowing to adjust stability organisms to increase of a radiating background in a usual ecological situation, has revealed presence of biologically active substances in crates of plants having anti-mutagenian properties. Proceeding from above-stated, purpose of the present research was the study of interrelation gene protection of action water-alcohol of an extract from kiwi fruits (EKF) with its influence on induction process free - radical and peroxide of oxidation lipids. The experiments are executed on white bread less mature rats with average weight 160 10 g. The circuit of experiments provided application EKF (0,2-0,5 mg/100 g) before influence of a gamma-irradiation (3 Gr). Alongside with the analysis of frequency induction of structural reorganizations chromosomes in cells bones of a brain thigh bones of rats, on variants of experiments registered the quantitative contents in mitochondrial of a fraction of a liver of an intermediate product free - radical and peroxide of reactions - malon dialdehid (MDA), being the indicator of speed of the given processes. Controls served intact and subjected to influence ionization of radiation. As a result of experiments is established, that the irradiation increases frequency induction chromosomes aberration in crates bones brain on a background of increase of the quantitative contents MDA in a liver of animals. It testifies to interrelation of occurrence of structural reorganizations chromosomes with intensity of formed processes of free - radical oxidation lipids. So, at influence ionization of radiation the frequency of structural reorganizations grows with 1,92 0,48 up to 15,10 1,21, contents MDA - with 2,23 0,20 up to 6,61 0,56 nmol/mg a protein . The introduction in the circuit of

  4. Comparison of extraction techniques and mass spectrometric ionization modes in the analysis of wine volatile carbonyls

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Julian; Mateo-Vivaracho, Laura; Cacho, Juan [Laboratory for Flavor Analysis and Enology, Institute of Engineering of Aragon, I3A, Department of Analytical Chemistry, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza (Spain); Ferreira, Vicente, E-mail: vferre@unizar.es [Laboratory for Flavor Analysis and Enology, Institute of Engineering of Aragon, I3A, Department of Analytical Chemistry, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza (Spain)

    2010-02-15

    This work presents a comparative study of the analytical characteristics of two methods for the analysis of carbonyl compounds in wine, both based on the derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA). In the first method derivatives are formed in the solid phase extraction (SPE) cartridge in which the analytes have been previously isolated, while in the second method derivatives are formed in a solid phase microextraction (SPME) fibre saturated with vapors of the reagent and exposed to the sample headspace. In both cases detection has been carried out by electron impact (EI) or negative chemical ionization (NCI) mass spectrometry. The possibility of determining haloanisols simultaneously has been also considered. The method based on SPE presents, in general, better analytical properties than the SPME one. Although linearity was satisfactory for both methods (R{sup 2} > 0.99), repeatability of the SPE method (RSD < 10%) was better than that obtained with SPME (9% < RSD < 20%). Detection limits obtained with EI are better for the SPE method except for trihaloanisols, while with NCI detection limits for both strategies are comparable, although the SPME strategy presents worse results for ketones and methional. Detection limits are always lower with NCI, being the improvement most notable for SPME. Recovery experiments show that in the case of SPE, uncertainties are lower than 12% in all cases, while with the SPME method the imprecision plus the existence of matrix effects make the global uncertainty to be higher than 15%.

  5. Comparison of extraction techniques and mass spectrometric ionization modes in the analysis of wine volatile carbonyls

    International Nuclear Information System (INIS)

    Zapata, Julian; Mateo-Vivaracho, Laura; Cacho, Juan; Ferreira, Vicente

    2010-01-01

    This work presents a comparative study of the analytical characteristics of two methods for the analysis of carbonyl compounds in wine, both based on the derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA). In the first method derivatives are formed in the solid phase extraction (SPE) cartridge in which the analytes have been previously isolated, while in the second method derivatives are formed in a solid phase microextraction (SPME) fibre saturated with vapors of the reagent and exposed to the sample headspace. In both cases detection has been carried out by electron impact (EI) or negative chemical ionization (NCI) mass spectrometry. The possibility of determining haloanisols simultaneously has been also considered. The method based on SPE presents, in general, better analytical properties than the SPME one. Although linearity was satisfactory for both methods (R 2 > 0.99), repeatability of the SPE method (RSD < 10%) was better than that obtained with SPME (9% < RSD < 20%). Detection limits obtained with EI are better for the SPE method except for trihaloanisols, while with NCI detection limits for both strategies are comparable, although the SPME strategy presents worse results for ketones and methional. Detection limits are always lower with NCI, being the improvement most notable for SPME. Recovery experiments show that in the case of SPE, uncertainties are lower than 12% in all cases, while with the SPME method the imprecision plus the existence of matrix effects make the global uncertainty to be higher than 15%.

  6. Radioprotective effect of the extract of Ziziphus joazeiro and Anacardium occidentale on embryos of Biomphalaria glabrata submitted to ionizing radiation

    International Nuclear Information System (INIS)

    Siqueira, Williams N.; Silva, Luanna R.S.; Silva, Edvane B.; Silva, Ronaldo C.; Lacerda, Laila B.N.; Silva, Hianna A.M.F.; Santos, Mariana L.O.; Sa, Jose L.F.; Melo, Ana M.M.A.

    2011-01-01

    Electromagnetic radiations are energies that can be classified as non-ionizing and ionizing. This type of energy is propagated by a material medium and the vacuum. The important characteristic of ionizing radiation is the localized release of large amounts of energy. The biological effects of radiation result principally from damage to DNA, which is the critical target. Given these harmful effects caused by radiation highlights the importance of acquiring knowledge about the radioprotective substance, because they act to protect the living tissue, decreasing the damage he caused by the effects of radiation. In this study we investigated the radioprotective effect of extract hydroalcoholic of Ziziphus joazeiro and Anacardium occidentale on embryos of Biomphalaria glabrata. The embryos of Biomphalaria glabrata pigmented were divided into 18 groups of 100 specimens. The experimental groups were exposed to the extracts at a concentration of 200 ppm and then irradiated. For irradiation, we used a source of 60 Co (Gammacell of Radionics Labs. Dose rate = 4.359 Gy/h). The viability of the embryos was examined using a stereoscopic microscope and statistical analysis was performed using the test Student-Newman-Keuls and χ 2 . Our results showed that the extracts of hydroalcoholic Ziziphus joazeiro showed radioprotective effect and that the aqueous extract of the bark of Anacardium occidentale exhibited a reduction in its embryotoxic effect. (author)

  7. Radioprotective effect of the extract of Ziziphus joazeiro and Anacardium occidentale on embryos of Biomphalaria glabrata submitted to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Williams N.; Silva, Luanna R.S.; Silva, Edvane B. [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia; Silva, Ronaldo C. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica; Lacerda, Laila B.N.; Silva, Hianna A.M.F.; Santos, Mariana L.O.; Sa, Jose L.F.; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de de Biofisica e Radiobiologia. Lab. de Radiobiologia

    2011-07-01

    Electromagnetic radiations are energies that can be classified as non-ionizing and ionizing. This type of energy is propagated by a material medium and the vacuum. The important characteristic of ionizing radiation is the localized release of large amounts of energy. The biological effects of radiation result principally from damage to DNA, which is the critical target. Given these harmful effects caused by radiation highlights the importance of acquiring knowledge about the radioprotective substance, because they act to protect the living tissue, decreasing the damage he caused by the effects of radiation. In this study we investigated the radioprotective effect of extract hydroalcoholic of Ziziphus joazeiro and Anacardium occidentale on embryos of Biomphalaria glabrata. The embryos of Biomphalaria glabrata pigmented were divided into 18 groups of 100 specimens. The experimental groups were exposed to the extracts at a concentration of 200 ppm and then irradiated. For irradiation, we used a source of {sup 60}Co (Gammacell of Radionics Labs. Dose rate = 4.359 Gy/h). The viability of the embryos was examined using a stereoscopic microscope and statistical analysis was performed using the test Student-Newman-Keuls and {chi}{sup 2}. Our results showed that the extracts of hydroalcoholic Ziziphus joazeiro showed radioprotective effect and that the aqueous extract of the bark of Anacardium occidentale exhibited a reduction in its embryotoxic effect. (author)

  8. Quantitative profiling of O-glycans by electrospray ionization- and matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry after in-gel derivatization with isotope-coded 1-phenyl-3-methyl-5-pyrazolone

    International Nuclear Information System (INIS)

    Sić, Siniša; Maier, Norbert M.; Rizzi, Andreas M.

    2016-01-01

    The potential and benefits of isotope-coded labeling in the context of MS-based glycan profiling are evaluated focusing on the analysis of O-glycans. For this purpose, a derivatization strategy using d_0/d_5-1-phenyl-3-methyl-5-pyrazolone (PMP) is employed, allowing O-glycan release and derivatization to be achieved in one single step. The paper demonstrates that this release and derivatization reaction can be carried out also in-gel with only marginal loss in sensitivity compared to in-solution derivatization. Such an effective in-gel reaction allows one to extend this release/labeling method also to glycoprotein/glycoform samples pre-separated by gel-electrophoresis without the need of extracting the proteins/digested peptides from the gel. With highly O-glycosylated proteins (e.g. mucins) LODs in the range of 0.4 μg glycoprotein (100 fmol) loaded onto the electrophoresis gel can be attained, with minor glycosylated proteins (like IgAs, FVII, FIX) the LODs were in the range of 80–100 μg (250 pmol–1.5 nmol) glycoprotein loaded onto the gel. As second aspect, the potential of isotope coded labeling as internal standardization strategy for the reliable determination of quantitative glycan profiles via MALDI-MS is investigated. Towards this goal, a number of established and emerging MALDI matrices were tested for PMP-glycan quantitation, and their performance is compared with that of ESI-based measurements. The crystalline matrix 2,6-dihydroxyacetophenone (DHAP) and the ionic liquid matrix N,N-diisopropyl-ethyl-ammonium 2,4,6-trihydroxyacetophenone (DIEA-THAP) showed potential for MALDI-based quantitation of PMP-labeled O-glycans. We also provide a comprehensive overview on the performance of MS-based glycan quantitation approaches by comparing sensitivity, LOD, accuracy and repeatability data obtained with RP-HPLC-ESI-MS, stand-alone nano-ESI-MS with a spray-nozzle chip, and MALDI-MS. Finally, the suitability of the isotope-coded PMP labeling strategy for

  9. Quantitative profiling of O-glycans by electrospray ionization- and matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry after in-gel derivatization with isotope-coded 1-phenyl-3-methyl-5-pyrazolone

    Energy Technology Data Exchange (ETDEWEB)

    Sić, Siniša; Maier, Norbert M.; Rizzi, Andreas M., E-mail: Andreas.Rizzi@univie.ac.at

    2016-09-07

    The potential and benefits of isotope-coded labeling in the context of MS-based glycan profiling are evaluated focusing on the analysis of O-glycans. For this purpose, a derivatization strategy using d{sub 0}/d{sub 5}-1-phenyl-3-methyl-5-pyrazolone (PMP) is employed, allowing O-glycan release and derivatization to be achieved in one single step. The paper demonstrates that this release and derivatization reaction can be carried out also in-gel with only marginal loss in sensitivity compared to in-solution derivatization. Such an effective in-gel reaction allows one to extend this release/labeling method also to glycoprotein/glycoform samples pre-separated by gel-electrophoresis without the need of extracting the proteins/digested peptides from the gel. With highly O-glycosylated proteins (e.g. mucins) LODs in the range of 0.4 μg glycoprotein (100 fmol) loaded onto the electrophoresis gel can be attained, with minor glycosylated proteins (like IgAs, FVII, FIX) the LODs were in the range of 80–100 μg (250 pmol–1.5 nmol) glycoprotein loaded onto the gel. As second aspect, the potential of isotope coded labeling as internal standardization strategy for the reliable determination of quantitative glycan profiles via MALDI-MS is investigated. Towards this goal, a number of established and emerging MALDI matrices were tested for PMP-glycan quantitation, and their performance is compared with that of ESI-based measurements. The crystalline matrix 2,6-dihydroxyacetophenone (DHAP) and the ionic liquid matrix N,N-diisopropyl-ethyl-ammonium 2,4,6-trihydroxyacetophenone (DIEA-THAP) showed potential for MALDI-based quantitation of PMP-labeled O-glycans. We also provide a comprehensive overview on the performance of MS-based glycan quantitation approaches by comparing sensitivity, LOD, accuracy and repeatability data obtained with RP-HPLC-ESI-MS, stand-alone nano-ESI-MS with a spray-nozzle chip, and MALDI-MS. Finally, the suitability of the isotope-coded PMP labeling

  10. Origanum vulgare leaf extract protects mice bone marrow cells against ionizing radiation

    Directory of Open Access Journals (Sweden)

    Reza Ghasemnezhad Targhi

    2016-11-01

    Full Text Available Objective: Ionizing radiation produces free radicals which induce DNA damage and cell death. Origanum vulgare leaf extract (OVLE is a natural compound and its capability of scavenging free radicals and its antioxidant activity have been demonstrated by many researchers. In this study, using micronucleus assay, radioprotective effect of OVLE against clastogenic and cytotoxic effect of gamma irradiation has been investigated in mice bone marrow cells. Materials and Methods: OVLE was injected intraperitoneally to the BALB/c mice 1hr prior to gamma irradiation (3Gy at the doses of 100 and 200 mg/kg. Twenty four hours after irradiation or treatment, animals were killed and smears were prepared from the bone marrow cells. The slides were stained with May Grunwald–Giemsa method and analyzed microscopically. The frequency of micronucleated polychromatic erythrocytes (MnPCEs, micronucleated normochromatic erythrocyte (MnNCEs and cell proliferation ratio PCE/PCE+NCE (polychromatic erythrocyte/polychromatic erythrocyte + normochromatic erythrocyte were calculated. Results: The results showed that gamma irradiation (3Gy increased the frequency of MnPCEs, MnNCEs and  reduced the PCE/PCE+NCE ratio in mice bone marrow compared to the non-irradiated control group (p< 0.0001. Injection of OVLE significantly reduced the frequency of MnPCEs (p< 0.0001 and MnNCEs (p< 0.05 and increased the PCE/PCE+NCE ratio as compared to the irradiated control group (p< 0.05. Conclusion: It seems that OVLE with its antioxidant properties and its capability of scavenging free radicals and reactive oxygen species can reduce the cytotoxic effects of gamma irradiation in mice bone marrow cells.

  11. Determination of polycyclic aromatic hydrocarbons in palm oil mill effluent by soxhlet extraction and gas chromatography-flame ionization detector

    International Nuclear Information System (INIS)

    Nor Fairolzukry Ahmad Rasdy; Mohd Marsin Sanagi; Wan Aini Wan Ibrahim; Ahmedy Abu Naim

    2008-01-01

    A method has been developed for the determination of polycyclic aromatic hydrocarbons (PAHs) from palm oil mill effluent based on gas chromatography-flame ionization detection. Extraction of spiked PAHs (napthalene, fluorene phenanthrene, fluoranthene and pyrene) in palm oil waste was carried out by Soxhlet extraction using hexane-dichloromethane (60:40 v/v) as the solvent. Excellent separations were achieved using temperature programmed GC on Ultra-1 fused-silica capillary column (30 m x 250 μm ID), carrier gas helium at a flow rate of 1 mL/ min. (author)

  12. 高效液相色谱-串联质谱法测定人尿液中5种酚类内分泌干扰物%Determination of Phenolic Endocrine Disrupting Chemicals in Human Urine by High Performance Liquid Chromatography Tandem Electrospray Ionization Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    夏同伟; 刘良坡; 张文静; 申河清

    2013-01-01

    采用通用电喷雾离子源的高效液相色谱-串联质谱(HPLC-ESI MS/MS)分析技术,通过丹磺酰氯衍生化处理,建立了同时测定人尿液中双酚A(BPA)、三氯生(TCS)、炔雌酮(EE2)、雌酮(E1)、雌二醇(E2)5种酚类内分泌干扰物的高灵敏方法.5种酚类化合物在0.2~ 100 μg/L质量浓度范围内线性关系良好,相关系数(r2)均在0.99以上,检出限(LOD)在0.02 ~0.27 μg/L之间.在5、10、50 μg/L加标水平下,平均回收率为85%~125%,相对标准偏差(RSD,n=3)为0.53%~14.4%.该方法灵敏度高、重现性好、回收率高、操作简单,可作为人尿液中酚类内分泌干扰物暴露分析的备选方法之一.%A high performance liquid chromatography tandem electrospray ionization mass spectrometry ( HPLC - ESI MS/MS ) method was developed and validated for the determination of phenolic endocrine disrupting chemicals (EDCs), including bisphenol A ( BPA), triclosan ( TCS), 17α-ethynylestradiol (EE2), estrone(E1) and 17 β-estradiol (E2) in human urine. The samples were purified by liquid -liquid extraction, derivertized with dansyl chloride, and detected by HPLC - ESI MS/MS. The target compounds were quantified by the stable isotope dilution technique. The calibration curve were linear in the range of 0. 2 - 100 μg/L for the 5 EDCs with correlation coefficients more than 0. 99. The limits of detection of 5 EDCs were in the range of 0. 02 -0. 27 μg/L. The matrix recoveries of the method for 5 EDCs at three spiked levels of 5, 10 and 50 μg/L ranged from 85% to 125% . The relative standard deviations(RSDs, n = 3) were between 0. 53% and 14.4% . The method was successfully applied in the analysis of 5 EDCs in human urine with its sensitivity and accurancy .

  13. Ultrasound extraction and thin layer chromatography-flame ionization detection analysis of the lipid fraction in marine mucilage samples.

    Science.gov (United States)

    Mecozzi, M; Amici, M; Romanelli, G; Pietrantonio, E; Deluca, A

    2002-07-19

    This paper reports an analytical procedure based on ultrasound to extract lipids in marine mucilage samples. The experimental conditions of the ultrasound procedure (solvent and time) were identified by a FT-IR study performed on different standard samples of lipids and of a standard humic sample, before and after the sonication treatment. This study showed that diethyl ether was a more suitable solvent than methanol for the ultrasonic extraction of lipids from environmental samples because it allowed to minimize the possible oxidative modifications of lipids due to the acoustic cavitation phenomena. The optimized conditions were applied to the extraction of total lipid amount in marine mucilage samples and TLC-flame ionization detection analysis was used to identify the relevant lipid sub-fractions present in samples.

  14. High-throughput analysis of drugs in biological fluids by desorption electrospray ionization mass spectrometry coupled with thin liquid membrane extraction

    DEFF Research Database (Denmark)

    Rosting, Cecilie; Pedersen-Bjergaard, Stig; Hansen, Steen Honore'

    2013-01-01

    into the method, methadone was detected in urine in full-scan mode with an LOD of 4 ng mL(-1), while amitriptyline, nortriptyline and pethidine showed LODs of 17 ng mL(-1). Quantification was possible for several basic drugs using one common internal standard, providing relative accuracies in the range of 10......-30%. A reliability test was performed on 20 samples with methadone, amitriptyline, nortriptyline and pethidine in urine, showing that none of the samples having concentrations above the LOD were missed and no false positives were found. Diphenhydramine and one of its metabolites were detected in authentic samples...

  15. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers

    International Nuclear Information System (INIS)

    Du, H.S.; Wood, D.J.; Elshani, Sadik; Wai, C.M.

    1993-01-01

    Thorium and the lanthanides are extracted by α-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed. (author)

  16. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers.

    Science.gov (United States)

    Du, H S; Wood, D J; Elshani, S; Wai, C M

    1993-02-01

    Thorium and the lanthanides are extracted by alpha-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed.

  17. Determination of phenyl-N-methylcarbamates and their hydrolysis products in water, using solid-phase extraction and reversed-phase liquid chromatography with UV and electrospray mass spectrometric detection

    International Nuclear Information System (INIS)

    El Atrache, L.L.; Sabbah, S.

    2003-01-01

    In this study, eight phenyl-N-methylcarbamates (PNMCs) were considered. Reversed-phase LC was set up for UV and mass spectrometry (MS) detection mode. Gradient elution was used, and the mobile phase was composed of acetonitrile and water. UV-vis was performed at 220 nm. The method was tested with different reversed-phase columns. Comparison between chromatographic parameters: retention time (t R ), resolution (R S ), and selectivity (α) was established. Hydrolysis kinetics of three of the PNMCs were reported. The major hydrolysis products were determined by LC-UV, and the effect of pH on hydrolysis was also studied. Also, chromatographic separation of a mixture of PNMCs and four of their hydrolysis products was carried out. The preconcentration of 12 studied solutes was realized by solid-phase extraction. C18 extraction cartridges of 1 g were used to extract solutes from a 100 mL volume of tap and surface water spiked at 10 μg/L. The recoveries were, respectively, between 68-86% and 62-83% with relative a standard deviation of less than 11%. Limits of detection (LODs) and limits of quantitation (LOQs) ranged, respectively, from 1-4 μg/L and from 4-10 μg/L. Since standard UV detection does not provide adequate selectivity for water samples, an electrospray (ES)-MS instrument equipped with a triple quadrupole mass filter was used. MS data acquisition was performed by a time-scheduled, selected-ion monitoring (SIM) program. Limits of quantitation gave values between 0.1-0.5 μg/L. (author)

  18. Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Pan, Chensong; Xu, Songyun; Zou, Hanfa; Guo, Zhong; Zhang, Yu; Guo, Baochuan

    2005-02-01

    A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 microL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized.

  19. High-throughput method for macrolides and lincosamides antibiotics residues analysis in milk and muscle using a simple liquid-liquid extraction technique and liquid chromatography-electrospray-tandem mass spectrometry analysis (LC-MS/MS).

    Science.gov (United States)

    Jank, Louise; Martins, Magda Targa; Arsand, Juliana Bazzan; Campos Motta, Tanara Magalhães; Hoff, Rodrigo Barcellos; Barreto, Fabiano; Pizzolato, Tânia Mara

    2015-11-01

    A fast and simple method for residue analysis of the antibiotics classes of macrolides (erythromycin, azithromycin, tylosin, tilmicosin and spiramycin) and lincosamides (lincomycin and clindamycin) was developed and validated for cattle, swine and chicken muscle and for bovine milk. Sample preparation consists in a liquid-liquid extraction (LLE) with acetonitrile, followed by liquid chromatography-electrospray-tandem mass spectrometry analysis (LC-ESI-MS/MS), without the need of any additional clean-up steps. Chromatographic separation was achieved using a C18 column and a mobile phase composed by acidified acetonitrile and water. The method was fully validated according the criteria of the Commission Decision 2002/657/EC. Validation parameters such as limit of detection, limit of quantification, linearity, accuracy, repeatability, specificity, reproducibility, decision limit (CCα) and detection capability (CCβ) were evaluated. All calculated values met the established criteria. Reproducibility values, expressed as coefficient of variation, were all lower than 19.1%. Recoveries range from 60% to 107%. Limits of detection were from 5 to 25 µg kg(-1).The present method is able to be applied in routine analysis, with adequate time of analysis, low cost and a simple sample preparation protocol. Copyright © 2015. Published by Elsevier B.V.

  20. Ring magnetron ionizer

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1986-01-01

    A ring magnetron D - charge exchange ionizer has been built and tested. An H - current of 500 μA was extracted with an estimated H 0 density in the ionizer of 10 12 cm -3 . This exceeds the performance of ionizers presently in use on polarized H - sources. The ionizer will soon be tested with a polarized atomic beam

  1. Increasing Protein Charge State When Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Flanigan, Paul M.; Perez, Johnny J.; Archer, Jieutonne J.; Levis, Robert J.

    2015-05-01

    Femtosecond (fs) laser vaporization is used to transfer cytochrome c, myoglobin, lysozyme, and ubiquitin from the condensed phase into an electrospray (ES) plume consisting of a mixture of a supercharging reagent, m-nitrobenzyl alcohol ( m-NBA), and trifluoroacetic acid (TFA), acetic acid (AA), or formic acid (FA). Interaction of acid-sensitive proteins like cytochrome c and myoglobin with the highly charged ES droplets resulted in a shift to higher charge states in comparison with acid-stable proteins like lysozyme and ubiquitin. Laser electrospray mass spectrometry (LEMS) measurements showed an increase in both the average charge states (Zavg) and the charge state with maximum intensity (Zmode) for acid-sensitive proteins compared with conventional electrospray ionization mass spectrometry (ESI-MS) under equivalent solvent conditions. A marked increase in ion abundance of higher charge states was observed for LEMS in comparison with conventional electrospray for cytochrome c (ranging from 19+ to 21+ versus 13+ to 16+) and myoglobin (ranging from 19+ to 26+ versus 18+ to 21+) using an ES solution containing m-NBA and TFA. LEMS measurements as a function of electrospray flow rate yielded increasing charge states with decreasing flow rates for cytochrome c and myoglobin.

  2. C18-coated stir bar sorptive extraction combined with high performance liquid chromatography-electrospray tandem mass spectrometry for the analysis of sulfonamides in milk and milk powder.

    Science.gov (United States)

    Yu, Chunhe; Hu, Bin

    2012-02-15

    A simple, rapid, sensitive, inexpensive and less sample consuming method of C(18)-stir bar sorptive extraction (SBSE)-high performance liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) was proposed for the determination of six sulfonamides in milk and milk powder samples. C(18) silica particles coated stir bar was prepared by adhesion method, and two kinds of adhesive glue, polydimethylsiloxane (PDMS) sol and epoxy glue were tried. It was found that the C(18)-coated stir bar prepared by PDMS sol as adhesive glue is more robust than that prepared by epoxy glue when liquid desorption was employed, in terms of both lifetime and organic solvent tolerance. The preparation of C(18) stir bar was simple with good mechanic strength and the stir bar could be reused for more than 20 times. Granular coating has relatively high specific surface area and is propitious to sorptive extraction based process. Compared to conventional PDMS SBSE coating, C(18) coating shows good affinity to the target polar/weak polar sulfonamides. To achieve optimum SBSE extraction performance, several parameters including extraction and desorption time, ionic strength, sample pH and stirring speed were investigated. The detection limits of the proposed method for six sulfonamides were in the range of 0.9-10.5 μg/L for milk and 2.7-31.5 μg/kg for milk powder. Good linearities were obtained for sulfonamides with the correlation coefficients (R) above 0.9922. Finally, the proposed method was successfully applied to the determination of sulfonamides in milk and milk powder samples and satisfied recoveries of spiked target compounds in real samples were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. An Investigation of Chemical Landscapes in Aqueous Electrosprays by Tracking Oligomerization of Isoprene

    KAUST Repository

    Junior, Adair Gallo

    2017-12-01

    Electrospray ionization mass spectrometry (ESIMS) is widely used to characterize neutral and ionic species in solvents. Typically, electrical, thermal, and pneumatic potentials are applied to create electrosprays from which charged ionic species are ejected for downstream analysis by mass spectrometry. Most recently, ESIMS has been exploited to investigate ambient proton transfer reactions at air-water interfaces in real time. We assessed the validity of these experiments via complementary laboratory experiments. Specifically, we characterized the products of two reaction scenarios via ESIMS and proton nuclear magnetic resonance (1H-NMR): (i) emulsions of pH-adjusted water and isoprene (C5H8) that were mechanically agitated, and (ii) electrosprays of pH-adjusted water that were collided with gas-phase isoprene. Our experiments unambiguously demonstrate that, while isoprene does not oligomerize in emulsions, it does undergo protonation and oligomerization in electrosprays, both with and without pH-adjusted water, confirming that C-C bonds form along myriad high-energy pathways during electrospray ionization. We also compared our experimental results with some quantum mechanics simulations of isoprene molecules interacting with hydronium at different hydration levels (gas versus liquid phase). In agreement with our experiments, the kinetic barriers to protonation and oligomerization of isoprene were inaccessible under ambient conditions. Rather, the gas-phase chemistries during electrospray ionization drove the oligomerization of isoprene. Therefore, we consider that ESIMS could induce artifacts in interfacial reactions. These findings warrant a reassessment of previous reports on tracking chemistries under ambient conditions at liquid-vapor interfaces via ESIMS. Further, we took some high-speed images of electrosprays where it was possible to observe the main characteristics of the phenomena, i.e. Taylor cone, charge separation, and Coulomb fission. Finally, we took

  4. Quantitation of iothalamate in urine and plasma using liquid chromatography electrospray tandem mass spectrometry (HPLC-ESI-MS/MS).

    Science.gov (United States)

    Molinaro, Ross J; Ritchie, James C

    2010-01-01

    The following chapter describes a method to measure iothalamate in plasma and urine samples using high performance liquid chromatography combined with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Methanol and water are spiked with the internal standard (IS) iohexol. Iothalamate is isolated from plasma after IS spiked methanol extraction and from urine by IS spiked water addition and quick-spin filtration. The plasma extractions are dried under a stream of nitrogen. The residue is reconstituted in ammonium acetate-formic acid-water. The reconstituted plasma and filtered urine are injected into the HPLC-ESI-MS/MS. Iothalamate and iohexol show similar retention times in plasma and urine. Quantification of iothalamate in the samples is made by multiple reaction monitoring using the hydrogen adduct mass transitions, from a five-point calibration curve.

  5. Classification of terverticillate Penicillia by electrospray mass spectrometric profiling

    DEFF Research Database (Denmark)

    Smedsgaard, Jørn; Hansen, Michael Edberg; Frisvad, Jens Christian

    2004-01-01

    429 isolates of 58 species belonging to Penicillium subgenus Penicillium are classified from direct infusion electrospray mass spectrometry (diMS) analysis of crude extracts by automated data processing. The study shows that about 70% of the species can be classified correctly into species using...

  6. Anti-ulcerogenic Activity of Extract and Some Isolated Flavonoids from Desmostachia bipinnata (L.) Stapf

    OpenAIRE

    Amani, S. Awaad; Nawal H. Mohamed; Derek. J. Maitland; Gamal A. Soliman

    2008-01-01

    Five main flavonoid glycosides were isolated, for the first time, from the ethanol extract of Desmostachia bipinnata (L.)Stapf ( Gramineae ). They were identified as kaempferol(1), quercetin(2), quercetin-3-glucoside(3), trycin(4) and trycin-7-glucoside(5). The structure elucidation was based on UV, Electrospray ionization mass spectrometry (ESIMS), 1H and 13C NMR, proton- proton correlation spectroscopy ( 1H- 1H Cosy), distortionless enhancement by polarization transfer (DEPT), heteronuclear...

  7. Fischer Indole Synthesis in the Gas Phase, the Solution Phase, and at the Electrospray Droplet Interface.

    Science.gov (United States)

    Bain, Ryan M; Ayrton, Stephen T; Cooks, R Graham

    2017-07-01

    Previous reports have shown that reactions occurring in the microdroplets formed during electrospray ionization can, under the right conditions, exhibit significantly greater rates than the corresponding bulk solution-phase reactions. The observed acceleration under electrospray ionization could result from a solution-phase, a gas-phase, or an interfacial reaction. This study shows that a gas-phase ion/molecule (or ion/ion) reaction is not responsible for the observed rate enhancement in the particular case of the Fischer indole synthesis. The results show that the accelerated reaction proceeds in the microdroplets, and evidence is provided that an interfacial process is involved. Graphical Abstract GRAPHICAL ABSTRACT TEXT HERE] -->.

  8. Amelioration of ionizing radiation induced lipid peroxidation in mouse liver by Moringa oleifera Lam. leaf extract

    International Nuclear Information System (INIS)

    Sinha, Mahuya; Das, Dipesh Kr; Dey, Sanjit; Datta, Sanjukta; Ghosh, Santinath

    2012-01-01

    Protective effect of Moringa oleifera leaf extract (MoLE) against radiation-induced lipid peroxidation has been investigated. Swiss albino mice, selected from an inbred colony, were administered with MoLE (300 mg/kg body wt) for 15 days before exposing to a single dose of 5 Gy 60 Co-gamma radiation. After treatments, animals were necropsied at different post irradiation intervals (days 1, 7 and 15) and hepatic lipid peroxidation and reduced glutathione (GSH) contents were estimated to observe the relative changes due to irradiation and its possible amelioration by MoLE. It was observed that, MoLE treatment restored GSH in liver and prevented radiation induced augmentation in hepatic lipid peroxidation. Phytochemical analysis showed that MoLE possess various phytochemicals such as ascorbic acid, phenolics (catechin, epicatechin, ferulic acid, ellagic acid, myricetin) etc., which may play the key role in prevention of hepatic lipid peroxidation by scavenging radiation induced free radicals. (author)

  9. Punica granatum peel extract protects against ionizing radiation-induced enteritis and leukocyte apoptosis in rats

    International Nuclear Information System (INIS)

    Toklu, H.Z.; Sehirli, O.; Ozyurt, H.

    2009-01-01

    Radiation-induced enteritis is a well-recognized sequel of therapeutic irradiation. Therefore we examined the radioprotective properties of Punica granatum peel extract (PPE) on the oxidative damage in the ileum. Rats were exposed to a single whole-body X-ray irradiation of 800 cGy. Irradiated rats were pretreated orally with saline or PPE (50 mg/kg/day) for 10 days before irradiation and the following 10 days, while control rats received saline or PPE but no irradiation. Then plasma and ileum samples were obtained. Irradiation caused a decrease in glutathione and total antioxidant capacity, which was accompanied by increases in malondialdehyde levels, myeloperoxidase activity, collagen content of the tissue with a concomitant increase 8-hydroxy-2'-deoxyguanosine (an index of oxidative DNA damage). Similarly, pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and lactate dehydrogenase were elevated in irradiated groups as compared to control. PPE treatment reversed all these biochemical indices, as well as histopathological alterations induced by irradiation. Furthermore, flow cytometric measurements revealed that leukocyte apoptosis and cell death were increased in irradiated animals, while PPE reversed these effects. PPE supplementation reduced oxidative damage in the ileal tissues, probably by a mechanism that is associated with the decreased production of reactive oxygen metabolites and enhancement of antioxidant mechanisms. Adjuvant therapy of PPE may have a potential to support a successful radiotherapy by protecting against radiation-induced enteritis. (author)

  10. Effect of ionizing energy on extracts of Quillaja saponaria to be used as an antimicrobial agent on irradiated edible coating for fresh strawberries

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga, G.E., E-mail: gustavo.zuniga@usach.cl [Universidad de Santiago de Chile (USACH), Facultad de Quimica y Biologia, Depto. de Biologia, Alameda 3363, Estacion Central, Santiago (Chile); Junqueira-Goncalves, M.P., E-mail: mpaula.junqueira@usach.cl [Universidad de Santiago de Chile (USACH), Facultad Tecnologica, Depto. de Ciencia y Tecnologia de Alimentos, Ecuador 3769, Estacion Central, Santiago (Chile); Pizarro, M.; Contreras, R. [Universidad de Santiago de Chile (USACH), Facultad de Quimica y Biologia, Depto. de Biologia, Alameda 3363, Estacion Central, Santiago (Chile); Tapia, A. [Universidad de Santiago de Chile (USACH), Facultad Tecnologica, Depto. de Ciencia y Tecnologia de Alimentos, Ecuador 3769, Estacion Central, Santiago (Chile); Silva, S. [Comision Chilena de Energia Nuclear, Depto. de Aplicaciones Nucleares, Seccion Salud y Alimentos, La Reina, Santiago (Chile)

    2012-01-15

    Incorporating antimicrobial compounds into edible films or coatings provides a novel way to improve the safety and shelf life of ready-to-eat foods. Diverse studies with Quillaja saponaria Mol. (popularly named quillay) extracts have demonstrated their potential as antifungal agents against phytopathogenic fungi. Crosslinking induced by ionizing radiation is an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on milk proteins. However there are few reports about the effects of {gamma}-radiation on plant extracts. The aim of this work was to evaluate the effect of ionizing radiation (0, 5, 10, 15, 20, 25 and 35 kGy) on extracts prepared from in vitro plants of Q. saponaria to be used as antimicrobial agent in irradiated edible coating based on calcium caseinate and whey protein isolated, and also to establish the concentration of Q. saponaria extract to be added as an antifungal agent in the coating. Gamma irradiation since 15 kGy affects negatively the antimicrobial activity and metabolites composition of extract of Q. saponaria by reducing compounds of phenolic nature. Otherwise no effect on saponins profile was observed even at higher doses. It was possible to conclude that the antifungal activity of Q. saponaria extract is mainly related to phenolic compounds content. In addition, our work also shows that to obtain an efficient antifungal protection is necessary to add a minimum concentration of 6% of the extract after the coating irradiation. - Highlights: > Antimicrobial compounds into edible coatings improve food' safety and shelf life. > Q. saponaria extract is an antifungal agent against phytopathogenic fungi. > Crosslinking induced by {gamma}-radiation over 30 kGy improves properties of the coatings. > {gamma}-radiation since 15 kGy affects the antimicrobial activity of Q. saponaria extract. > This extract should be added after the coating radiation, at a minimum of 6%.

  11. Effect of ionizing energy on extracts of Quillaja saponaria to be used as an antimicrobial agent on irradiated edible coating for fresh strawberries

    International Nuclear Information System (INIS)

    Zuniga, G.E.; Junqueira-Goncalves, M.P.; Pizarro, M.; Contreras, R.; Tapia, A.; Silva, S.

    2012-01-01

    Incorporating antimicrobial compounds into edible films or coatings provides a novel way to improve the safety and shelf life of ready-to-eat foods. Diverse studies with Quillaja saponaria Mol. (popularly named quillay) extracts have demonstrated their potential as antifungal agents against phytopathogenic fungi. Crosslinking induced by ionizing radiation is an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on milk proteins. However there are few reports about the effects of γ-radiation on plant extracts. The aim of this work was to evaluate the effect of ionizing radiation (0, 5, 10, 15, 20, 25 and 35 kGy) on extracts prepared from in vitro plants of Q. saponaria to be used as antimicrobial agent in irradiated edible coating based on calcium caseinate and whey protein isolated, and also to establish the concentration of Q. saponaria extract to be added as an antifungal agent in the coating. Gamma irradiation since 15 kGy affects negatively the antimicrobial activity and metabolites composition of extract of Q. saponaria by reducing compounds of phenolic nature. Otherwise no effect on saponins profile was observed even at higher doses. It was possible to conclude that the antifungal activity of Q. saponaria extract is mainly related to phenolic compounds content. In addition, our work also shows that to obtain an efficient antifungal protection is necessary to add a minimum concentration of 6% of the extract after the coating irradiation. - Highlights: → Antimicrobial compounds into edible coatings improve food' safety and shelf life. → Q. saponaria extract is an antifungal agent against phytopathogenic fungi. → Crosslinking induced by γ-radiation over 30 kGy improves properties of the coatings. → γ-radiation since 15 kGy affects the antimicrobial activity of Q. saponaria extract. → This extract should be added after the coating radiation, at a minimum of 6%.

  12. Quantitation of repaglinide and metabolites in mouse whole-body thin tissue sections using droplet-based liquid microjunction surface sampling-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J; Kertesz, Vilmos; Gan, Jinping

    2016-03-25

    Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites were studied. Major organs (brain, lung, liver, kidney and muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed the same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. In addition, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Analysis of the extracts of Isatis tinctoria by new analytical approaches of HPLC, MS and NMR.

    Science.gov (United States)

    Zhou, Jue; Qu, Fan

    2011-01-01

    The methods of extraction, separation and analysis of alkaloids and indole glucosinolates (GLs) ofIsatis tinctoria were reviewed. Different analytical approaches such as High-pressure Liquid Chromatography (HPLC), Liquid Chromatography with Electrospray Ionization Mass Spectrometry (LC/ESI/MS), Electrospray Ionization Time-Of-Flight Mass Spectrometry (ESI-TOF-MS), and Nuclear Magnetic Resonance (NMR) were used to validate and identity of these constituents. These methods provide rapid separation, identification and quantitative measurements of alkaloids and GLs of Isatis tinctoria. By connection with different detectors to HPLC such as PDA, ELSD, ESI- and APCI-MS in positive and negative ion modes, complicated compounds could be detected with at least two independent detection modes. The molecular formula can be derived in a second step of ESI-TOF-MS data. But for some constituents, UV and MS cannot provide sufficient structure identification. After peak purification, NMR by semi-preparative HPLC can be used as a complementary method.

  14. Analysis of vitamin K-1 in fruits and vegetables using accelerated solvent extraction and liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization

    DEFF Research Database (Denmark)

    Jäpelt, Rie Bak; Jakobsen, Jette

    2016-01-01

    The objective of this study was to develop a rapid, sensitive, and specific analytical method to study vitamin K-1 in fruits and vegetables. Accelerated solvent extraction and solid phase extraction was used for sample preparation. Quantification was done by liquid chromatography tandem mass...... spectrometry with atmospheric pressure chemical ionization in selected reaction monitoring mode with deuterium-labeled vitamin K1 as an internal standard. The precision was estimated as the pooled estimate of three replicates performed on three different days for spinach, peas, apples, banana, and beetroot...

  15. Screening of acetylcholinesterase inhibitors in snake venom by electrospray mass spectrometry

    NARCIS (Netherlands)

    Liesener, A.; Perchuc, Anna-Maria; Schöni, Reto; Schebb, Nils Helge; Wilmer, Marianne; Karst, U.

    2007-01-01

    An electrospray ionization/mass spectrometry (ESI/MS)-based assay for the determination of acetylcholinesterase (AChE)-inhibiting activity in snake venom was developed. It allows the direct monitoring of the natural AChE substrate acetylcholine (AC) and the respective product choline. The assay

  16. Ultra(high)-pressure liquid chromatography-electrospray ionization-time-of-flight-ion mobility-high definition mass spectrometry for the rapid identification and structural characterization of flavonoid glycosides from cauliflower waste.

    Science.gov (United States)

    Gonzales, Gerard Bryan; Raes, Katleen; Coelus, Sofie; Struijs, Karin; Smagghe, Guy; Van Camp, John

    2014-01-03

    In this paper, a strategy for the detection and structural elucidation of flavonoid glycosides from a complex matrix in a single chromatographic run using U(H)PLC-ESI-IMS-HDMS/MS(E) is presented. This system operates using alternative low and high energy voltages that is able to perform the task of conventional MS/MS in a data-independent way without re-injection of the sample, which saves analytical time. Also, ion mobility separation (IMS) was employed as an additional separation technique for compounds that are co-eluting after U(H)PLC separation. First, the fragmentation of flavonoid standards were analyzed and criteria was set for structural elucidation of flavonoids in a plant extract. Based on retention times, UV spectra, exact mass, and MS fragment characteristics, such as abundances of daughter ions and the presence of radical ions ([Y0-H](-)), a total 19 flavonoid glycosides, of which 8 non-acylated and 11 acylated, were detected and structurally characterized in a cauliflower waste extract. Kaempferol and quercetin were the main aglycones detected while sinapic and ferulic acid were the main phenolic acids. C-glycosides were also found although their structure could not be elucidated. The proposed method can be used as a rapid screening test for flavonoid identification and for routine analysis of plant extracts, such as these derived from cauliflower waste. The study also confirms that agroindustrial wastes, such as cauliflower leaves, could be seen as a valuable source of different bioactive phenolic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Detection of over 100 selenium metabolites in selenized yeast by liquid chromatography electrospray time-of-flight mass spectrometry.

    Science.gov (United States)

    Gilbert-López, Bienvenida; Dernovics, Mihaly; Moreno-González, David; Molina-Díaz, Antonio; García-Reyes, Juan F

    2017-08-15

    The characterization of the selenometabolome of Selenized(Se)-yeast, that is the fraction of water soluble low-molecular weight Se-metabolites produced in Se-yeast is of paramount interest to expand the knowledge on the composition of this food supplement. In this work, we have applied liquid chromatography electrospray time-of-flight mass spectrometry (LC-TOFMS) to search for Se-species from the low molecular weight range fraction of the selenized yeast used for food supplements. Prior to LC-TOFMS, sample treatment consisted of ultrasound assisted water extraction followed by size exclusion fractionation assisted with off-line inductively coupled plasma mass spectrometry detection of isotope 82 Se. The fraction corresponding to low-molecular weight species was subjected to LC-TOFMS using electrospray ionization in the positive ion mode. The detection of the suspected selenized species has been based on the information obtained from accurate mass measurements of both the protonated molecules and fragments from in-source CID fragmentation; along with the characteristic isotope pattern exhibited by the presence of Se. The approach enables the detection of 103 selenized species, most of them not previously reported, in the range from ca. 300-650Da. Besides the detection of selenium species, related sulphur derivate metabolites were detected based on the accurate mass shift due to the substitution of sulphur and selenium. Copyright © 2017. Published by Elsevier B.V.

  18. Graphene oxide membrane as an efficient extraction and ionization substrate for spray-mass spectrometric analysis of malachite green and its metabolite in fish samples.

    Science.gov (United States)

    Wei, Shih-Chun; Fan, Shen; Lien, Chia-Wen; Unnikrishnan, Binesh; Wang, Yi-Sheng; Chu, Han-Wei; Huang, Chih-Ching; Hsu, Pang-Hung; Chang, Huan-Tsung

    2018-03-20

    A graphene oxide (GO) nanosheet-modified N + -nylon membrane (GOM) has been prepared and used as an