WorldWideScience

Sample records for extraction-electrothermal atomic absorption

  1. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  2. Atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Haswell, S.J.

    1991-01-01

    Atomic absorption spectroscopy is now well established and widely used technique for the determination of trace and major elements in a wide range analyte types. There have been many advances in the atomic spectroscopy over the last decade and for this reason and to meet the demand, it was felt that there was a need for an updated book. Whilst interest in instrumental design has tended to dominate the minds of the spectrocopist, the analyst concerned with obtaining reliable and representative data, in diverse areas of application, has been diligently modifying and developing sample treatment and instrumental introduction techniques. Such methodology is de fundamental part of analysis and form the basis of the fourteen application chapters of this book. The text focuses in the main on AAS; however, the sample handling techniques described are in many cases equally applicable to ICP-OES and ICP-MS analysis. (author). refs.; figs.; tabs

  3. Atomic absorption spectrophotometry in perspective

    International Nuclear Information System (INIS)

    Soffiantini, V.

    1981-01-01

    Atomic absorption spectrophotometry is essentially an analytical technique used for quantitative trace metal analysis in a variety of materials. The speed and specificity of the technique is its greatest advantage over other analytical techniques. What atomic absorption spectrophotometry can and cannot do and its advantages and disadvantages are discussed, a summary of operating instructions are given, as well as a summary of analytical interferences. The applications of atomic absorption spectrophotometry are also shortly discussed

  4. Atomic absorption instrument functional description

    International Nuclear Information System (INIS)

    Bystroff, R.I.; Boyle, W.G. Jr.; Barton, G.W. Jr.

    1976-01-01

    This report describes a proposed system for automating atomic absorption analysis. The system consists of two atomic absorption instruments and an automatic sampler that can be attached to either instrument. A computer program controls the sampling and gathers data. The program then uses the data to perform bookkeeping, data processing, and report writing

  5. Absorption properties of identical atoms

    International Nuclear Information System (INIS)

    Sancho, Pedro

    2013-01-01

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions

  6. EVALUATION OF ATOMIC ABSORPTION SPECTROPHOTOMETRY ...

    African Journals Online (AJOL)

    cistvr

    Three commonly used techniques, namely atomic absorption spectrophotometry (AAS-Ashing and. AAS-Non Ashing) and titrimetry (potassium permanganate titration) have been evaluated in this study to determine the calcium content in six food samples whose calcium levels ranged from 0 to more than. 250mg/100g ...

  7. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    Science.gov (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  8. Flame emission, atomic absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Horlick, G.

    1980-01-01

    Six hundred and thirty references are cited in this review. The information in the review is divided into 12 major areas: books, reviews, and bibliographies; fundamental studies in flames; developments in instrumentation; measurement techniques and procedure; flame emission spectrometry; flame atomic absorption spectrometry; flame molecular absorption spectrometry; electrothermal atomization atomic absorption spectroscopy; hydride generation techniques; graphite furnace atomic emission spectrometry; atomic fluorescence spectrometry; and analytical comparisons

  9. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  10. X-ray absorption in atomic potassium

    International Nuclear Information System (INIS)

    Gomilsek, Jana Padeznik; Kodre, Alojz; Arcon, Iztok; Nemanic, Vincenc

    2008-01-01

    A new high-temperature absorption cell for potassium vapor is described. X-ray absorption coefficient of atomic potassium is determined in the energy interval of 600 eV above the K edge where thresholds for simultaneous excitations of 1s and outer electrons, down to [1s2p] excitation, appear. The result represents also the atomic absorption background for XAFS (X-ray absorption fine structure) structure analysis. The K ionization energy in the potassium vapor is determined and compared with theoretical data and with the value for the metal

  11. Modernization of Atomic Absorption Spectrophotometer

    International Nuclear Information System (INIS)

    Tasic, Visa; Milivojevic, Dragan; Karabasevic, Dejan

    2003-01-01

    In Copper Institute in Bor, connection has been made between absorption spectrophotometer and standard PC with the aim to make its operation more reliable and comfortable. Applied solution includes both software and hardware components. An I/O interface module has been installed in PC [1]. Software component consists of programs for measuring and interpretation of results. Paper presents details of this job realization.(Author)

  12. Spectral interferences in atomic absorption spectrometry, (5)

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro

    1979-01-01

    Spectral interferences were observed in trace element analysis of concentrated solutions by atomic absorption spectrometry. Molecular absorption and emission spectra for strontium chloride and nitrate, barium chloride and nitrate containing 12 mg/ml of metal ion in airacetylene flame were measured in the wavelength range from 200 to 700 nm. The absorption and emission spectra of SrO were centered near 364.6 nm. The absorption spectra of SrOH around 606.0, 671.0 and 682.0 nm were very strong. And, emission spectrum of BaOH in the wavelength range from 480 to 550 nm was stronger. But, the absorption of this band spectrum was very weak. In the wavelength range from 200 to 400 nm, some unknown bands of absorption were observed for strontium and barium. Absorption spectra of SrCl and BaCl were observed in the argon-hydrogen flame. Also, in the carbon tube atomizer, the absorption spectra of SrCl and BaCl were detected clearly in the wavelength range from 185 to 400 nm. (author)

  13. Determination of hafnium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yoshida, Isao; Kobayashi, Hiroshi; Ueno, Keihei.

    1977-01-01

    Optimum conditions for atomic absorption spectrophotometric determination of hafnium were investigated by use of a Jarrel-Ash AA-1 instrument which was equipped with a premixed gas burner slotted 50 mm in length and 0.4 mm in width. Absorption of hafnium, which was atomized in an nitrous oxide-acetylene flame, was measured on a resonance line at 307.29 nm. The absorption due to hafnium was enhanced in the presence of ammonium fluoride and iron(III) ion, as shown in Figs. 2 and 3, depending on their concentration. The highest absorption was attained by the addition of (0.15 -- 0.3)M ammonium fluoride, 0.07 M of iron(III) ion and 0.05 M of hydrochloric acid. An excess of the additives decreased the absorption. The presence of zirconium, which caused a significant interference in the ordinary analytical methods, did not affect the absorption due to hafnium, if the zirconium concentration is less than 0.2 M. A standard procedure was proposed; A sample containing a few mg of hafnium was dissolved in a 25-ml volumetric flask, and ammonium fluoride, ferric nitrate and hydrochloric acid were added so that the final concentrations were 0.3, 0.07 and 0.05 M, respectively. Atomic absorption was measured on the aqueous solution in a nitrous oxide-acetylene flame and the hafnium content was calculated from the absorbance. Sensitivity was as high as 12.5 μg of Hf/ml/l% absorption. The present method is especially recommendable to the direct determination of hafnium in samples containing zirconium. (auth.)

  14. A method optimization study for atomic absorption ...

    African Journals Online (AJOL)

    Sadia Ata

    2014-04-24

    Apr 24, 2014 ... The atomic absorption spectrophotometer (Hitachi model. A-1800) was used during this study. For simultaneous analysis, it consists of eight turret lamps with a wavelength range of. 190–900 nm. For analysis precision, it has D2 and self reversal background correction with a grating of 1800 gooves/mm.

  15. Simultaneous Multi-Element Electrothermal Atomic Absorption ...

    African Journals Online (AJOL)

    NICO

    Simultaneous Multi-Element Electrothermal Atomic. Absorption Determination Using a Low Resolution CCD. Spectrometer and Continuum Light Source: The Concept and Methodology. Dimitri A. Katskov* and G. Eunice Khanye. Department of Chemistry and Physics, Tshwane University of Technology, Pretoria, 0001 South ...

  16. Optimization of Flame Atomic Absorption Spectrometry for ...

    African Journals Online (AJOL)

    Optimization of Flame Atomic Absorption Spectrometry for Measurement of High Concentrations of Arsenic and Selenium. ... This procedure allowed a rapid determination of As from minimum 4.462 mg/L to higher concentrations without sample pretreatment. Besides As, this method successfully measured Se concentrations ...

  17. A method optimization study for atomic absorption ...

    African Journals Online (AJOL)

    Sadia Ata

    2014-04-24

    Apr 24, 2014 ... Abstract A sensitive, reliable and relative fast method has been developed for the determination of total zinc in insulin by atomic absorption spectrophotometer. This designed study was used to opti- mize the procedures for the existing methods. Spectrograms of both standard and sample solutions.

  18. Evaluation of atomic absorption Spectrophotometry (ashing, non ...

    African Journals Online (AJOL)

    Three commonly used techniques, namely atomic absorption spectrophotometry (AAS-Ashing and AAS-Non Ashing) and titrimetry (potassium permanganate titration) have been evaluated in this study to determine the calcium content in six food samples whose calcium levels ranged from 0 to more than 250mg/100g ...

  19. A method optimization study for atomic absorption ...

    African Journals Online (AJOL)

    A sensitive, reliable and relative fast method has been developed for the determination of total zinc in insulin by atomic absorption spectrophotometer. This designed study was used to optimize the procedures for the existing methods. Spectrograms of both standard and sample solutions of zinc were recorded by measuring ...

  20. The application of atomic absorption spectrometry to chemical analysis

    International Nuclear Information System (INIS)

    Walsh, A.

    1980-01-01

    YhThe history of the development of atomic absorption methods of elemental analysis is outlined. The theoretical basis of atomic absorption methods is discussed and the principle of modern methods of atomic absorption measurements is described. The advantages, scope and limations of these methods are discussed. Related methods based on the measurement of atomic fluorescence are also described

  1. Atomic absorption analysis of serial titanium alloys

    International Nuclear Information System (INIS)

    Gorlova, M.N.; Feofanova, N.M.; Kornyushkova, Yu.D.

    1977-01-01

    Atom-absorption technique is described, which makes it possible to rapidly and precisely determine the following alloying elements and admixtures in titanium alloys: Al (2.0 - 8.5%); Mo (0.5 - 8%); Cr (0.5 - 12%); Si (0.2 - 0.5%); Mn(0.2 - 2.5%); V(0.5 - 6%); Sn(2.0 - 3.0%); Fe(0.1 - 1.0%); Zr(2.0 - 12.0%). The atom absorption method with flame atomization of the sample provides for best results if the alloy is dissolved in a mixture HCl + HBF 4 in the ratio 2:1. In order to obtain correct results the standard solutions must contain titanium in concentrations corresponding to the weight of the sample being analyzed. Sensitivity of zirconium determination may be increased approximately twofold by adding 10 mg/ml of FeCl 3 into the solution. Being as precise, as the classic analytical methods, the atom absorption technique is about 5 times more efficient

  2. Various applications of Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Koizumi, H.

    1978-06-01

    The application of the Zeeman effect to atomic absorption spectroscopy has been studied over the past several years. This technique has a larger area of application than conventional AAS because of its high degree of selectivity. The ZAA technique can be used for organometallic species determination by interfacing with a high-pressure liquid chromatograph. Various kinds of eluents can be directly introduced in the ZAA system; even organic solvents or high-concentration salt solutions. For example, the Co atom in the functional center of Vitamin B12 molecule was separately analyzed in the presence of much larger amounts of inorganic Co. In the ZAA technique, interference caused by direct spectral overlap can also be corrected. As a typical example, the Sb line at 217.02 nm overlaps the Pb absorption line at 217.00 nm. However, 1000 ppM of Pb did not cause any interference signal in the Sb analysis by ZAA. This is especially important in the analysis of gun powder residue that is often carried out by chemists working in the forensic field. In the determination of trace elements in matrices of unknown composition, the ZAA technique achieved highly reliable results by employing the standard addition method to correct for chemical interferences, because any nonspecific absorption or emission does not give rise to interference signals with this technique

  3. [New application of atomic absorption spectrophotometer in testing technology].

    Science.gov (United States)

    Zhao, Z; Chen, H

    1998-02-01

    A simple and satisfactory method is developed for the new application of AAS. We can just rely on atomic absorption spectrophotometer without flame on place of UV-Visible spectrophotometer. The operation is very simple, and it can raise the efficiency of AAS. This experiment offers a possibility to find new applications of atomic absorption spectrophotometer.

  4. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry (GFAAS) and hydride generation atomic absorption spectrometry (HGAAS) for trace analysis of arsenic (As) in natural herbal products (NHPs). Method: Arsenic analysis in natural herbal products and standard reference ...

  5. Atomic absorption spectrometry using tungsten and molybdenum tubes as metal atomizer

    International Nuclear Information System (INIS)

    Kaneco, Satoshi; Katsumata, Hideyuki; Ohta, Kiyohisa; Suzuki, Tohru

    2007-01-01

    We have developed a metal tube atomizer for the electrothermal atomization atomic absorption spectrometry (ETA-AAS). Tungsten, molybdenum, platinum tube atomizers were used as the metal atomizer for ETA-AAS. The atomization characteristics of various metals using these metal tube atomizers were investigated. The effects of heating rate of atomizer, atomization temperature, pyrolysis temperature, argon purge gas flow rate and hydrogen addition on the atomic absorption signal were investigated for the evaluation of atomization characteristics. Moreover, ETA-AAS with metal tube atomizer has been combined with the slurry-sampling techniques. Ultrasonic slurry-sampling ETA-AAS with metal tube atomizer were effective for the determination of trace metal elements in biological materials, calcium drug samples, herbal medicine samples, vegetable samples and fish samples. Furthermore, a preconcentration method of trace metals involving adsorption on a metal wire has been applied to ETA-AAS with metal tube atomizer. (author)

  6. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian

    2011-01-01

    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  7. Heralded single-photon absorption by a single atom

    Science.gov (United States)

    Piro, N.; Rohde, F.; Schuck, C.; Almendros, M.; Huwer, J.; Ghosh, J.; Haase, A.; Hennrich, M.; Dubin, F.; Eschner, J.

    2011-01-01

    Emission and absorption of single photons by single atoms is a fundamental limit of matter-light interaction, manifesting its quantum mechanical nature. As a controlled process, it is also a key tool in quantum optical information technology . Controlled single-photon emission is well advanced ; for controlled single-photon absorption by a single atom, proposals exist but only preliminary experimental steps have been taken . Here we report the absorption of single photons by a single trapped ion: employing a photon pair source, detection of the quantum-correlated partner photon heralds the presence of the resonant photon at the atom. We find clear correlations between the detection of the herald and the absorption process in the atom; we also demonstrate polarization control of this process. Our experiment evidences previously unexplored interaction between a single absorber and a quantum light source; with improved control over the coupling, it will open up new avenues in quantum technology.

  8. Absorptive contents of optical potential parameters for pionic atoms

    International Nuclear Information System (INIS)

    Seki, Ryoichi; Masutani, Keiichi; Toki, Hiroshi.

    1989-10-01

    We present a general method to interpret the imaginary parts of a pionic-atom optical potential in terms of multi-nucleon absorption processes. The method is applied to a successful fit to all available pionic atom data recently reported by an Amsterdam group. Our method shows that it is difficult to interpret the fitted parameters in terms of multi-nucleon absorption processes. (author)

  9. Control of electrolytic refinement of silver by atomic absorption method

    International Nuclear Information System (INIS)

    Kulish, N.G.; Burylev, B.P.

    1983-01-01

    Results of atomic absorption determination of 18 elements: Fe, Cu, Zn, Cd, Bi, Ga, In, Ca, Mg, K, Na, Sb, Te, Ni, Co, Cr, Mn, Pb in silver and electrolytes are presented. When determining impurities in silver the basis has been separated by the extraction of O-isopropyl-N-ethyl thiocarbamate in the 1M HN0 3 medium. Optimum measuring conditions and the range of linear dependence between concentration and atomic absorption value are given

  10. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    Science.gov (United States)

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  11. Interferences in atomic absorption spectrophotometry and their elimination

    International Nuclear Information System (INIS)

    Roesler, E.

    1980-01-01

    Interferences in atomic absorption spectroscopy falsify the analytical results. Examples are: Chemical disturbances conditioned by anions, ionizable compounds and high amounts of excess compounds. The influence of the viscosity of the sample and the standard solution are discussed. The disturbances during the electrothermical atomization in the short-wave range because of molecular scattering are explained. (LDN)

  12. Two-dimensional atom localization via probe absorption in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhi-Ping; Ge Qiang; Ruan Yu-Hua; Yu Ben-Li

    2013-01-01

    We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization

  13. Absorption of resonant electromagnetic radiation in electron-atom collisions

    International Nuclear Information System (INIS)

    Arslanbekov, T.U.; Pazdzerskii, V.A.; Usachenko, V.I.

    1986-01-01

    Nonrelativistic quantum theory is used to study the possibility of amplification of electromagnetic radiation in forced braking scattering of an electron beam on atoms. The interaction of the atom with the electromagnetic field is considered in the resonant approximation. Cases of large and small detuning from resonance are considered. It is shown that for any orientation of the electron beam relative to the field polarization vector, absorption of radiation occurs, with the major contribution being produced by atomic electrons

  14. Absorption of femtosecond laser pulses by atomic clusters

    International Nuclear Information System (INIS)

    Lin Jingquan; Zhang Jie; Li Yingjun; Chen Liming; Lu Tiezheng; Teng Hao

    2001-01-01

    Energy absorption by Xe, Ar, He atomic clusters are investigated using laser pulses with 5 mJ energy in 150 fs duration. Experimental results show that the size of cluster and laser absorption efficiency are strongly dependent on several factors, such as the working pressure of pulse valve, atomic number Z of the gas. Absorption fraction of Xe clusters is as high as 45% at a laser intensity of 1 x 10 15 W/cm 2 with 20 x 10 5 Pa gas jet backing pressure. Absorption of the atomic clusters is greatly reduced by introducing pre-pulses. Ion energy measurements confirm that the efficient energy deposition results in a plasma with very high ion temperature

  15. Determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Usenko, S.I.; Prorok, M.M.

    1992-01-01

    A method of direct determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization was developed. Concomitant elements Si, K, Mg, Na, present in natural waters in the concentration of 0.05-100 mg/cv 3 , do not produce effect on the value of boron atomic absorption. Boron determination limit constituted 0.02 mg/cm 3 for 25 ml of solution introduced

  16. Spectrochemical analysis by atomic absorption and emission

    National Research Council Canada - National Science Library

    Lajunen, Lauri

    1992-01-01

    ... of these techniques. Inductively coupled plasma mass spectrometry (ICP-MS) has become a 'hot' analytical technique during the last few years, and is being used in many branches of science. Since the publication of my previous book 'Atomispektrometria' (in Finnish) in 1986, various techniques in analytical atomic spectroscopy have undergone significant dev...

  17. Simultaneous Multi-Element Electrothermal Atomic Absorption ...

    African Journals Online (AJOL)

    width of transmittance profile 120 pm, a linear CCD array attached to a PC and a tube atomizer furnished with a carbon fibre collector. In the experiments simultaneous determination of 18 elements was performed in the mixed solutions at the mg ...

  18. Robust parameterization of elastic and absorptive electron atomic scattering factors

    International Nuclear Information System (INIS)

    Peng, L.M.; Ren, G.; Dudarev, S.L.; Whelan, M.J.

    1996-01-01

    A robust algorithm and computer program have been developed for the parameterization of elastic and absorptive electron atomic scattering factors. The algorithm is based on a combined modified simulated-annealing and least-squares method, and the computer program works well for fitting both elastic and absorptive atomic scattering factors with five Gaussians. As an application of this program, the elastic electron atomic scattering factors have been parameterized for all neutral atoms and for s up to 6 A -1 . Error analysis shows that the present results are considerably more accurate than the previous analytical fits in terms of the mean square value of the deviation between the numerical and fitted scattering factors. Parameterization for absorptive atomic scattering factors has been made for 17 important materials with the zinc blende structure over the temperature range 1 to 1000 K, where appropriate, and for temperature ranges for which accurate Debye-Waller factors are available. For other materials, the parameterization of the absorptive electron atomic scattering factors can be made using the program by supplying the atomic number of the element, the Debye-Waller factor and the acceleration voltage. For ions or when more accurate numerical results for neutral atoms are available, the program can read in the numerical values of the elastic scattering factors and return the parameters for both the elastic and absorptive scattering factors. The computer routines developed have been tested both on computer workstations and desktop PC computers, and will be made freely available via electronic mail or on floppy disk upon request. (orig.)

  19. ANALYSIS OF UNCERTAINTY MEASUREMENT IN ATOMIC ABSORPTION SPECTROPHOTOMETER

    OpenAIRE

    NEHA S.MAHAJAN; NITIN K. MANDAVGADE; S.B. JAJU

    2012-01-01

    A spectrophotometer is a photometer that can measure intensity as a function of the light source wavelength. The important features of spectrophotometers are spectral bandwidth and linear range of absorption or reflectance measurement. Atomic absorption spectroscopy (AAS) is a very common technique for detecting chemical composition of elements in metal and its alloy. It is very reliable and simple to use. Quality of result (accuracy) depends on the uncertainty of measurement value of the tes...

  20. Theoretical calculation of saturated absorption for multilevel atoms

    International Nuclear Information System (INIS)

    O'Kane, T.J.; Scholten, R.E.; Farrell, P.M.

    1998-01-01

    We present the first theoretical saturated absorption spectra for general multi-level atoms, using a model based on extensions of the optical Bloch equations, and using Monte Carlo averaging of the absorption of individual atoms with random trajectories through a standing wave. We are for the first time able to accurately predict the merging of hyperfine and cross-over resonances due to intensity dependent phenomena such as power broadening. Results for 20-level sodium and 24-level rubidium models are presented and compared to experiment, demonstrating excellent agreement

  1. Automated atomic absorption spectrophotometer, utilizing a programmable desk calculator

    International Nuclear Information System (INIS)

    Futrell, T.L.; Morrow, R.W.

    1977-01-01

    A commercial, double-beam atomic absorption spectrophotometer has been interfaced with a sample changer and a Hewlett-Packard 9810A calculator to yield a completely automated analysis system. The interface electronics can be easily constructed and should be adaptable to any double-beam atomic absorption instrument. The calculator is easily programmed and can be used for general laboratory purposes when not operating the instrument. The automated system has been shown to perform very satisfactorily when operated unattended to analyze a large number of samples. Performance statistics agree well with a manually operated instrument

  2. Detection of atomic oxygen in flames by absorption spectroscopy

    International Nuclear Information System (INIS)

    Cheskis, S.; Kovalenko, S.A.

    1994-01-01

    The absolute concentration of atomic oxygen in an atmospheric pressure hydrogen/air flame has been measured using Intracavity Laser Spectroscopy (ICLS) based on a dye laser pumped by an argon-ion laser. Absorptions at the highly forbidden transitions at 630.030 nm and 636.380 nm were observed at an equivalent optical length of up to 10 km. The relatively low intensity of the dye laser avoids photochemical interferences that are inherent to some other methods for detecting atomic oxygen. The detection sensitivity is about 6x10 14 atom/cm 3 and can be improved with better flame and laser stabilization. (orig.)

  3. Absorption spectrum of Ca atoms attached to He4 nanodroplets

    Science.gov (United States)

    Hernando, Alberto; Barranco, Manuel; Mayol, Ricardo; Pi, Martí; Krośnicki, Marek

    2008-01-01

    Within density functional theory, we have obtained the structure of He4 droplets doped with neutral calcium atoms. These results have been used, in conjunction with newly determined ab initio Σ1 and Π1 Ca-He pair potentials, to address the 4s4pP11←4s2S01 transition of the attached Ca atom, finding a fairly good agreement with absorption experimental data. We have studied the drop structure as a function of the position of the Ca atom with respect to the center of mass of the helium moiety. The interplay between the density oscillations arising from the helium intrinsic structure and the density oscillations produced by the impurity in its neighborhood plays a role in the determination of the equilibrium state, and hence in the solvation properties of alkaline earth atoms. In a case of study, the thermal motion of the impurity within the drop surface region has been analyzed in a semiquantitative way. We have found that, although the atomic shift shows a sizable dependence on the impurity location, the thermal effect is statistically small, contributing by about 10% to the line broadening. The structure of vortices attached to the calcium atom has been also addressed, and its effect on the calcium absorption spectrum discussed. At variance with previous theoretical predictions, we conclude that spectroscopic experiments on Ca atoms attached to He4 drops will be likely unable to detect the presence of quantized vortices in helium nanodrops.

  4. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    Science.gov (United States)

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  5. determination of vanadium in foods by atomic absorption spectrometry

    African Journals Online (AJOL)

    This paper presents an assessment of the level of vanadium in foods (Plantain, Musa spp; Yam, Discorea rotundata; and Maize, Zea mays) from ten popular market places in Lagos metropolis, Nigeria. Total acid leaching digestion method was employed and determination was by Flame Atomic Absorption ...

  6. The determination of zirconium by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Rodriguez, E.R.; Cunha, M.T.C. da

    1975-01-01

    The interference of iron in the determination of zirconium by atomic absorption spectrophotometry was studied. Attempts were made to emininate this interference by complexing the iron with EDTA, ascorbic acid and hydrazine; also by the addition of ammonium fluoride to the solution. Some experiments were carried out in order to explain the results obtained [pt

  7. Atomic Absorption Spectroscopy. The Present and the Future.

    Science.gov (United States)

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  8. Precision atomic beam density characterization by diode laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Oxley, Paul; Wihbey, Joseph

    2016-01-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 −5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm −3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  9. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  10. Direct atomic absorption determination of silicon in metallic niobium

    International Nuclear Information System (INIS)

    Blinova, Eh.S.; Guzeev, I.D.; Nedler, V.V.; Khokhrin, V.M.

    1984-01-01

    Consideration is being given to realization of the basic advantage of non-flame atomizer-analysis of directly solid samples-for silicon determination in niobium for the content of the first one of less than 1x10 -3 mass %. Analysis technique is described. Diagrams of the dependences of atomic silicon absorption in graphite cells of usual type as well as lined by tungsten carbide and atomic silicon absorption on the value of niobium weighed amount are presented. It is shown that Si determination in metallic niobium according to aqueous reference solutions results in understatement of results 2.4 times. The optimal conditions for Si determination in niobium are the following: 2400 deg C temperature, absence of carbon and oxygen. Different niobium specimens with the known silicon content were used as reference samples

  11. Investigation of phosphorus atomization using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Welz, Bernhard; Heitmann, Uwe

    2007-01-01

    The atomization of phosphorus in electrothermal atomic absorption spectrometry has been investigated using a high-resolution continuum source atomic absorption spectrometer and atomization from a graphite platform as well as from a tantalum boat inserted in a graphite tube. A two-step atomization mechanism is proposed for phosphorus, where the first step is a thermal dissociation, resulting in a fast atomization signal early in the atomization stage, and the second step is a slow release of phosphorus atoms from the graphite tube surface following the adsorption of molecular phosphorus at active sites of the graphite surface. Depending on experimental conditions only one of the mechanisms or both might be active. In the absence of a modifier and with atomization from a graphite or tantalum platform the second mechanism appears to be dominant, whereas in the presence of sodium fluoride as a modifier both mechanisms are observed. Intercalation of phosphorus into the graphite platform in the condensed phase has also been observed; this phosphorus, however, appears to be permanently trapped in the structure of the graphite and does not contribute to the absorption signal

  12. Determination of cadmium in aluminium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Batistoni, D.A.; Erlijman, L.H.

    1978-12-01

    A direct method for the determination of cadmium in elemental aluminium is described. Metal samples are dissolved in diluted hydrochloric acid and cadmium is determined by atomic absorption spectrometry in an air-acetylene flame. Interference by non-specific absorption observed at the analytical wavelength incorrected for by means of a non-absorbing line emitted by the hollow-cathode lamp. Relatively large amounts of arsenic do not interfere. The minimun determinable concentration of cadmium for this procedure is 2-3 ppm, expressed on aluminium basis. (author) [es

  13. Nonresonant absorption of one photon by one atom and resonant absorption of two photons by two atoms

    International Nuclear Information System (INIS)

    Mizushima, Masataka

    1990-01-01

    When a radiation field of frequency ω 1 interacts with atoms, etch of which has a transition frequency ω ba =(E b -E a )/h, with ω 1 -ω ba =Δ≠0, nonresonant absorption can take place with probability P 1 inversely proportional to Δ 2 (a pressure broadening). When another radiation field of frequency ω 2 , such that ω 1 +ω 2 =2ω ba, interacts simultaneously with the gas a resonant two-photon absorption can take place in addition to the nonresonant absorption. The probability of this two-photon absorption process, P 2 , is found to be inversely proportional to Δ 4 . If Ω=| | is the Rabi frequency of the transition, it is found that P 2 /(P 1 (Δ)+P 1 (-Δ)) is given by 12 {Ω(-Δ)Ω(-Δ)} 2 / {Δ 2 (Ω(-Δ) 2 + Ω(Δ) 2 )}. (author)

  14. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Science.gov (United States)

    Zeng, Wei; Deng, Li; Chen, Aixi

    2018-03-01

    For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D) atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  15. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Directory of Open Access Journals (Sweden)

    Zeng Wei

    2018-03-01

    Full Text Available For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  16. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Arslan, Y.; Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan; Dědina, Jiří

    103-104, JAN-FEB (2015), s. 155-163 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : gold * volatile species generation * quartz atomizers * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  17. 21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and measure...

  18. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    Czech Academy of Sciences Publication Activity Database

    Duben, Ondřej; Boušek, J.; Dědina, Jiří; Kratzer, Jan

    2015-01-01

    Roč. 111, SEP (2015), s. 57-63 ISSN 0584-8547 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation-atomic absorption spectrometry * selenium Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  19. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    Czech Academy of Sciences Publication Activity Database

    Duben, Ondřej; Boušek, J.; Dědina, Jiří; Kratzer, Jan

    2015-01-01

    Roč. 111, SEP (2015), s. 57-63 ISSN 0584-8547 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation- atomic absorption spectrometry * selenium Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  20. In-situ trapping of bismuthine in externally heated quartz tube atomizers for atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Dědina, Jiří

    2006-01-01

    Roč. 21, č. 2 (2006), s. 208-210 ISSN 0267-9477 R&D Projects: GA AV ČR IAA400310507 Institutional research plan: CEZ:AV0Z40310501 Keywords : bismuth ine preconcentration * quartz surface * hydride generation atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.630, year: 2006

  1. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    Science.gov (United States)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  2. The determination of vanadium in brines by atomic absorption spectroscopy

    Science.gov (United States)

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  3. Application of atomic absorption in molecular analysis (spectrophotometry)

    International Nuclear Information System (INIS)

    Baliza, S.V.; Soledade, L.E.B.

    1981-01-01

    The apparatus of atomic absorption has been considered by all the experts in chemical analysis as one of the most important equipments in actual utilization in such field. Among its several applications one should emphasize direct and indirect metals analyses using flame, graphite furnace, cold vapor generator,... Besides such known applications, the authors have developed at the R and D Center of CSN a patent pendent method for the utilization of such equipment for molecular analysis, in substitution of a sophisticated and specific apparatus. (Author) [pt

  4. Determination of metals in atmospheric particulates using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Alduan, F.A.; Capdevila, C.

    1979-01-01

    Nineteen trace metals in atmospheric samples have been determined by atomic absorption spectrometry, using a graphite furnace for most elements. Paper filters have been used to collect air samples. The sample preparation procedure involves the removal of organic matter and the conversion of the metals to soluble salts by ashing the filters in an oxygen plasma at 125 deg C for 6 h. and by subsequent dissolution in HN0 3 HCl solution. The sensitivities achieved are in the range of 2,5.10 -5 and 6,3.10 -3 μg/m 3 , for an air volume of 2000 m 3 . (author)

  5. Analysis of impurities in silver matrix by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Hussain, R.; Ishaque, M.; Mohammad, D.

    1999-01-01

    A procedure for the analysis of aluminium, chromium, copper, lead, mercury, nickel and zinc mainly using flame lens atomic absorption spectrophotometry has been described. The results depict that the presence of silver does not introduce any significant interference, when standards are prepared in matching silver matrix solutions. The calibration curves obey the straight-line equations passing through the origin. Thus the separation of silver matrix from the analyte solutions is not necessary. The method has successfully been applied for the analysis of silver foils, wires, battery grade silver oxides and silver nitrate samples containing analyte elements in the concentration range 2 to 40 ppm. (author)

  6. Flow Injection and Atomic Absorption Spectrometry (FI-AAS) -

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    One of the advantages of the flow injection (FI) concept is that it is compatible with virtually all detection techniques. Being a versatile vehicle for enhancing the performance of the individual detection devices, the most spectacular results have possibly been obtained in conjunction with atomic...... absorption spectrometry (AAS). Initially with flame-AAS (fAAS) procedures, later for hydride generation (HG) techniques, and most recently in combination with electrothermal AAS (ETAAS). The common denominator for all these procedures is the inherently precise and strictly reproducible timing in FI from...

  7. Aluminium determination in U Alx using atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Dantas, E.S.K.; Pires, M.A.F.

    1994-01-01

    Available as short communication only. A method for aluminium determination in uranium-aluminium dispersions (U al x ) using atomic absorption spectrometry is presented. The sample is dissolved in nitric acid, heated, dried, and market up the volume with 0.1 N H NO 3 . The uranium is precipitated with 30% NaOH and the aluminium is determined in the solution after filtration. The determination limit achieved was 5 μg Al/mL. The method is reproducible. (author). 7 refs, 2 tabs

  8. Mercury pollution surveys in Riga by Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Gavare, Z.; Bogans, E.; Svagere, A.

    2008-01-01

    Practical sessions of mercury pollution measurements in Riga (Latvia) have been performed in several districts using an RA-915+ Zeeman atomic absorption spectrometer coupled with a global positioning system (GPS). The measurements were taken from a driving car and in different days at one particular location (the Institute of Atomic Physics and Spectroscopy) for monitoring the changes in atmospheric mercury concentration. GPS was used to relate the measurement results to particular places, which made it possible to create a digitalized database of pollution for different geographic coordinates in different time spans. The measurements have shown that the background level of mercury concentration in Riga does not exceed 5 ng/m 3 , although there are several areas of elevated mercury pollution that need particular attention. (Authors)

  9. SPECTROPHOTOMETRIC, ATOMIC ABSORPTION AND CONDUCTOMETRIC ANALYSIS OF TRAMADOL HYDROCHLORIDE

    Directory of Open Access Journals (Sweden)

    Sara M. Anis

    2011-09-01

    Full Text Available Six simple and sensitive spectroscopic and conductometric procedures (A-F were developed for the determination of tramadol hydrochloride. Methods A, B and C are based on the reaction of cobalt (II thiocyanate with tramadol to form a stable ternary complex, which could be measured by spectrophotometric (method A, atomic absorption (method B or conductometric (method C procedures. Methods D and E depend on the reaction of molybdenum thiocyanate with tramadol to form a stable ternary complex, measured by spectrophotometric means (method D or by atomic absorption procedures (method E, while method F depends on the formation of an ion pair complex between the studied drug and bromothymol blue which is extractable into methylene chloride. Tramadol hydrochloride could be assayed in the range of 80-560 and 40-–220 μg ml-1, 1-15 mg ml-1 and 2.5-22.5, 1.25-11.25 and 5-22 μg ml-1 using methods A,B,C,D,E and F, respectively. Various experimental conditions were studied. The results obtained showed good recoveries. The proposed procedures were applied successfully to the analysis of tramadol in its pharmaceutical preparations and the results were favorably comparable with the official method.

  10. Determination of molybdenum in flotation concentrates by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Ise, Kazuo

    1978-01-01

    Molybdenum was determined by atomic absorption spectrophotometry in 0.05 N ammoniacal solution after the decomposition of the concentrate with aqua regia. Negros ore from Philippines was used as a flotation feed, which contained chalcopyrites and calcium-magnesium minerals. Among the metals tested copper, iron and the alkaline earths interfered. Less than 50 ppm of copper yielded lower results for molybdenum. Higher results came out with more than 50 ppm of copper. In the presence of iron and citric acid (0.4 g/100 ml) which is a suppressor for hydroxide formation, a lower estimation resulted for molybdenum. Calcium interfered, lower results by 2 and >10% being obtained with respective 2.5 and 20 ppm of calcium. More than 20 ppm of magnesium behaved similarly. Sodium sulfate (0.5 g/100 ml) served as the suppressor for copper, iron and citric acid; 100 ppm each of copper and iron did not interfere in this way. Interferences due to calcium and magnesium (less than 60 ppm) was able to be masked by the addition of sodium silicate (200 ppm as silica). The analysis of flotation products and synthetic samples consisting of molybdenite, chalcopyrite, calcium chloride and magnesium sulfate revealed that the atomic absorption method can be applied to the analysis of the concentrates for molybdenum with an error of about 2%. (auth.)

  11. The role of atomic absorption spectrometry in geochemical exploration

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.

    1992-01-01

    In this paper we briefly describe the principles of atomic absorption spectrometry (AAS) and the basic hardware components necessary to make measurements of analyte concentrations. Then we discuss a variety of methods that have been developed for the introduction of analyte atoms into the light path of the spectrophotometer. This section deals with sample digestion, elimination of interferences, and optimum production of ground-state atoms, all critical considerations when choosing an AAS method. Other critical considerations are cost, speed, simplicity, precision, and applicability of the method to the wide range of materials sampled in geochemical exploration. We cannot attempt to review all of the AAS methods developed for geological materials but instead will restrict our discussion to some of those appropriate for geochemical exploration. Our background and familiarity are reflected in the methods we discuss, and we have no doubt overlooked many good methods. Our discussion should therefore be considered a starting point in finding the right method for the problem, rather than the end of the search. Finally, we discuss the future of AAS relative to other instrumental techniques and the promising new directions for AAS in geochemical exploration. ?? 1992.

  12. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    Science.gov (United States)

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  13. Determination of microquantities of cesium in leaching tests by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Crubellati, R.O.; Di Santo, N.R.

    1988-01-01

    An original method for cesium determinations by atomic absorption spectrometry with electrothermal atomization is described. The effect of foreign ions (alkali and earth alkaline metals) present in leaching test of glasses with incorporated radioactive wastes was studied. The effect of different mineral acids was also investigated. A comparison between the flame excitation method and the electrothermal atomization one was made. Under optimum conditions, cesium in quantities down to 700 ng in 1000 ml of sample could be determined. The calibration curve was linear in the range of 0.7 - 15 ng/mL. The fact that the proposed determinations can be performed in a short time and that a small sample volume is required are fundamental advantages of this method, compared with the flame excitation procedure. Besides, it is adaptable to be applied in hot cells and glove boxes. (Author) [es

  14. Analysis of nuclear grade uranium oxides by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Batistoni, D.A.; Erlijman, L.H.; Pazos, A.L.

    1986-01-01

    The application of atomic absorption spectrometry for the determination of five trace impurities in nuclear grade uranium oxides is described. The elements were separated from the uranium matrix by extraction chromatography and determined in 5.5 M nitric acid by electrothermal atomization using pyrolytic graphite coated tubes. Two elements, cadmium and chromium, with different volatility characteristics were employed to investigate the operating conditions. Drying and ashing conditions were studied for both elements. Ramp and constant potential (step) heating modes have also been studied and compared. Good reproducibility and a longer life of graphite tubes were obtained with ramp atomization. Detection limits (in micrograms per gram of uranium) were: Cd 0.01; Cr 0.1; Cu 0.4; Mn 0.04 and Ni 0.2. (author) [es

  15. Derivative flame atomic absorption spectrometry and its application in trace analysis

    International Nuclear Information System (INIS)

    Sun, H. W.; Li, L. Q.

    2005-01-01

    Flame atomic absorption spectrometry is an accepted and widely used method for the determination of trace elements in a great variety of samples. But its sensitivity doesn't meet the demands of trace and ultra-trace analysis for some samples. The derivative signal processing technique, with a very high capability for enhancing sensitivity, was developed for flame atomic absorption spectrometry. The signal models of conventional flame atomic absorption spectrometry are described. The equations of derivative signals are established for flame atomic absorption spectrometry, flow injection atomic absorption spectrometry (FI-FAAS) and atom trapping flame atomic absorption spectrometry (AT-FAAS). The principle and performance of the derivative atomic absorption spectrometry are evaluated. The derivative technique based on determination of variation rate of signal intensity with time (dl/dt) is different from the derivative spectrophotometry based on determination of variation rate of signal intensity with wavelength (dl/dhλ). Derivative flame atomic absorption spectrometry has higher sensitivity, lower detection limits and better accuracy. It has been applied to the direct determination of trace elements without preconcentration. If the derivative technique was combined with several preconcentration techniques, the sensitivity would be enhanced further for ultra-trace analysis with good linearity. The applications of derivative flame atomic absorption spectroscopy are reviewed for trace element analysis in biological, pharmaceutical, environmental and food samples

  16. Determination of lead in mother's milk by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Bandarchian, F.; Assadian, F

    2002-01-01

    With due attention to increasing air pollution specially the lead amount that is generated from gasoline burning in automobiles, it seems that it is necessary to control the amount of it continuously. Because Pb has an easy absorbability to body and also damages the nervous system. For this reason determination of it in mother's milk has a special importance. In this research, the milks of 15 mothers twice a day were examined and the concentration of Pb were determined by atomic absorption spectroscopy. In accordance the international organization, the permissible amount in body is 0.05 ppm. Fortunately, the obtained data was less than of it and it showed the absorbance of lead by babies is insignificant

  17. Determination of Lead in Blood by Atomic Absorption Spectrophotometry1

    Science.gov (United States)

    Selander, Stig; Cramér, Kim

    1968-01-01

    Lead in blood was determined by atomic absorption spectrophotometry, using a wet ashing procedure and a procedure in which the proteins were precipitated with trichloroacetic acid. In both methods the lead was extracted into isobutylmethylketone before measurement, using ammonium pyrrolidine dithiocarbamate as chelator. The simpler precipitation procedure was shown to give results identical with those obtained with the ashing technique. In addition, blood specimens were examined by the precipitation method and by spectral analysis, which method includes wet ashing of the samples, with good agreement. All analyses were done on blood samples from `normal' persons or from lead-exposed workers, and no additions of inorganic lead were made. The relatively simple protein precipitation technique gave accurate results and is suitable for the large-scale control of lead-exposed workers. PMID:5663425

  18. Atomic absorption spectrometric determination of mineral elements in mammalian bones

    International Nuclear Information System (INIS)

    Udoh, Anthony P.

    2000-01-01

    The phosphorus content of the major bones of male and female selected mammals was determined using the yellow vanadomolybdate colorimetric method. For each animal, the bone with the highest phosphorus content was used as pilot sample. Varying concentrations of strontium were added to solutions of the ashed pilot samples to minimize phosphorus interference in the determination of calcium and magnesium using flame atomic absorption spectrophotometry operated on the air-acetylene mode. At least 6,000 ppm (0.6%) of strontium was required to give optimum results for calcium. The amount of magnesium obtained from the analysis was not affected by the addition of strontium. With the incorporation of strontium in the sample solution, all elements of interest can be determined in the same sample solution. Based on this, a procedure is proposed for the determination of calcium and other elements in bones. Average recoveries of spiked calcium and magnesium were 97.85% and 98.16%, respectively at the 95% confidence level. The coefficients of variation obtained for replicate determinations using one of the samples were 0.00% for calcium, lead and sodium, 2.93% for magnesium, 3.27% for iron and 3.92% for zinc at the concentration levels found in that sample. Results from the proposed procedure compared well with those from classical chemical methods at the 95% confidence level. It is evident that calcium phosphorus, magnesium and sodium which are the most abundant elements in the bones are distributed in varying amounts both in the different types of bones and different animal species, although the general trend is Ca > P > Na > Mg for each bone considered. The calcium - phosphorus ratio is generally 3:1. The work set out to propose an atomic absorption spectrometric method for the multi-element analysis of mammalian bones with a single sample preparation and to study the distribution pattern of these elements in the bones. (Author)

  19. Observations of Absorption Lines from Highly Ionized Atoms

    Science.gov (United States)

    Jenkins, E. B.

    1984-01-01

    In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. fewX 0.001/cucm) existing at coronal temperatures, 5.3 or = log T or = 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity 9v or = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic uv radiation from very hot, dward stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.

  20. Determination of Lead in Urine by Atomic Absorption Spectrophotometry1

    Science.gov (United States)

    Selander, Stig; Cramé, Kim

    1968-01-01

    A method for the determination of lead in urine by means of atomic absorption spectrophotometry (AAS) is described. A combination of wet ashing and extraction with ammonium pyrrolidine dithiocarbamate into isobutylmethylketone was used. The sensitivity was about 0·02 μg./ml. for 1% absorption, and the detection limit was about 0·02 μg./ml. with an instrumental setting convenient for routine analyses of urines. Using the scale expansion technique, the detection limit was below 0·01 μg./ml., but it was found easier to determine urinary lead concentrations below 0·05 μg./ml. by concentrating the lead in the organic solvent by increasing the volume of urine or decreasing that of the solvent. The method was applied to fresh urines, stored urines, and to urines, obtained during treatment with chelating agents, of patients with lead poisoning. Urines with added inorganic lead were not used. The results agreed well with those obtained with a colorimetric dithizone extraction method (r = 0·989). The AAS method is somewhat more simple and allows the determination of smaller lead concentrations. PMID:5647975

  1. Determination of trace impurities in titanium dioxide by direct solid sampling electrothermal atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Dočekal, Bohumil; Vojtková, B.

    2007-01-01

    Roč. 62, č. 3 (2007), s. 304-308 ISSN 0584-8547. [European Furnace Symposium on Atomic Absorption Spectrometry, Electrothermal Vaporization and Atomization /7./ and Solid Sampling Colloquium with Atomic Spectrometry /12./. St. Petersburg, 02.07.2006-07.07.2006] Institutional research plan: CEZ:AV0Z40310501 Keywords : direct solid sampling * electrothermal atomic absorption spectrometry * trace element analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.957, year: 2007

  2. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    Science.gov (United States)

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  3. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Du, Yingge; Chambers, Scott A.

    2014-01-01

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  4. Theoretical experimental study of the factors that govern the molybdenum absorption signal by means of electro thermic atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Garaboto Farfan, M. A.

    1996-01-01

    The formation of molybdenum carbides in the atomizer, used in the electro thermic atomic absorption spectroscopy, is responsible for incomplete analyte removal in its analysis. This generates the apparition of the memory effect and little precision in the results. In this work, different variables that could affect the molybdenum absorption sign were investigated, as well as the influence of hydrochloric acid on the memory effect, by means of studies in the different stages: drying, calcination and atomization, and the samples deposition order in molybdenum solutions, either acidified or not acidified [es

  5. A laboratory manual for the determination of metals in water and wastewater by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Smith, R.

    1983-01-01

    This guide presents, in addition to a brief discussion of the basic principles and practical aspects of atomic absorption spectrophotometry, a scheme of analysis for the determination of 19 metals in water and wastewater, 16 by flame atomic absorption and 3 by vapour generation techniques. Simplicity, speed and accuracy were the main criteria considered in the selection of the various methods

  6. Atomic absorption spectrometry of the leaves of Newbouldia Laevis (Bignoniaceae)

    International Nuclear Information System (INIS)

    Mohammed, L.; Musa, A.; Isma'il, M. B.; Ahmed, Y. A.; Okunade, I.O.; Garba, M. A.

    2011-01-01

    In this study, fresh leaves samples of Newbouldia laevis, a medicinal plant, popularly known as African Border tree used traditionally for the treatment of a number of diseases, were collected in Dakace, (Lat. 11degree05'N Long. 7degree46'E) Zaria, Kaduna State, North-Central Nigeria, during the wet season (October to November) of 2008. The samples were digested using a tri-acid mixture (HNO 3 , HCIO 4 , and H 2 SO 4 ) in the ratio of 25:4:2 respectively. The concentrations of essential trace elements including magnesium, copper, iron, zinc, and cobalt in the samples were determined by Atomic Absorption Spectrometry (AAS). The results obtained showed that Fe has the highest mean concentration of 8.2481±3.689μg/g; whereas Co has the least mean concentration of 0.111±0.055μg/g. The study also revealed that the mean concentrations of Mg, Cu and Zn exceed the recommended limit set by FAO.

  7. Electrochemical hydride generation atomic absorption spectrometry for determination of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Arbab-Zavar, M.H. [Department of Chemistry, Faculty of Science, Ferdowsi University, Mashhad (Iran, Islamic Republic of)]. E-mail: arbab@um.ac.ir; Chamsaz, M. [Department of Chemistry, Faculty of Science, Ferdowsi University, Mashhad (Iran, Islamic Republic of); Youssefi, A. [Pare-Taavous Research Institute, Mashhad (Iran, Islamic Republic of); Aliakbari, M. [Department of Chemistry, Faculty of Science, Ferdowsi University, Mashhad (Iran, Islamic Republic of)

    2005-08-01

    An electrolytic hydride generation system for determination of another hydride forming element, cadmium, by catholyte variation electrochemical hydride generation (EcHG) atomic absorption spectrometry is described. A laboratory-made electrolytic cell with lead-tin alloy as cathode material is designed as electrolytic generator of molecular hydride. The influences of several parameters on the analytical signal have been evaluated using a Plackett-Burman experimental design. The significant parameters such as cathode surface area, electrolytic current, carrier gas flow rate and catholyte concentration have been optimized using univariate method. The analytical figures of merit of procedure developed were determined. The calibration curve was linear up to 20 ng ml{sup -1}of cadmium. The concentration detection limit (3{sigma}, n = 8) of 0.2 ng ml{sup -1} and repeatability (relative standard deviation, n = 7) of 3.1% were achieved at 10.0 ng ml{sup -1}. It was shown that interferences from major constituents at high concentrations were significant. The accuracy of method was verified using a real sample (spiked tap water) by standard addition calibration technique. Recovery of 104% was achieved for Cd in the spiked tap water sample.

  8. Atomic absorption spectrophotometry for the analysis of metal contents in tobacco samples

    Science.gov (United States)

    Iancu, O.; Schiopu, P.; Cristea, I.; Voinea, V.; Grosu, N.; Craciun, A.

    2009-01-01

    Spectroscopy is one of the most important tools for studying the structures of atoms and molecules. Paper underlines the procedures required for the determination of metal contents in tobacco samples. Sampling procedures, sample preparation, and atomic absorption instrumentation requirements are presented. Particular attention is given to the determination of metals as Pb, Cr, Li, Cu, Au, Co using atomic absorption spectroscopy. A dual-beam Atomic Absorption Spectrophotometer was used for the measurements. The concentration of these metals in five different tobacco samples is given.

  9. Feasibility of filter atomization in high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Heitmann, Uwe; Becker-Ross, Helmut; Katskov, Dmitri

    2006-01-01

    A prototype spectrometer for high-resolution continuum source atomic absorption spectrometry (HR-CS AAS), built at ISAS Berlin, Germany, was combined with a graphite filter atomizer (GFA), earlier developed at TUT, Pretoria, South Africa. The furnace and auto-sampler units from a commercial AA spectrometer, model AAS vario 6 (Analytik Jena AG, Jena, Germany), were employed in the instrument. Instead of conventional platform tube, the GFA was used to provide low measurement susceptibility to interferences and short determination cycle. The GFA was modified according to the design of the furnace unit and optimal physical parameters of its components (filter and collector) found. Afterwards, optimal GFA was replicated and tested to outline analytical performances of the HR-CS GFA AA spectrometer in view of prospects of multi-element analysis. In particular, reproducibility of performances, repeatability of analytical signals, lifetime, temperature limit and duration of the measurement cycle were examined, and elements available for determination justified. The results show that the peak area of the atomic absorption signal is reproduced in various GFA copies within ± 4% deviation range. The GFA can stand temperatures of 2800 deg. C with 6 s hold time for 55 temperature cycles, and 2700 deg. C (8 s) for about 200 cycles. Only the external tube is prone to destruction while the filter and collector do not show any sign of erosion caused by temperature or aggressive matrix. Analytical signals are affected insignificantly by tube aging. Repeatability of the peak area remains within 1.1-1.7% RSD over more than hundred determination cycles. Peak areas are proportional to the sample volume of injected organic and inorganic liquids up to at least 50 μL. The drying stage is combined with hot sampling and cut down to 15-20 s. The list of metals available for determination with full vapor release includes Al, Co, Cr, Ni, Pt as well as more volatile metals. Characteristic

  10. Analytical Absorption Cross-Section for Photon by a Hydrogen 2s Atom

    International Nuclear Information System (INIS)

    Ndinya, Boniface Otieno; Okeyo, Stephen Onyango

    2011-01-01

    We calculate the absorption cross-section for photon by a hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron atoms. With the application of the first-order term of the Baker-Hausdorf expansion, the absorption cross-section for the hydrogen 2s atom decreases to a minimum, the Cooper pair minimum, at low photon energy. Such a minimum is absent in the exact absorption cross-section for photon by a hydrogen 2s atom. We have extended the calculation for the absorption cross-section of the hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron to include the second-order term of the Baker-Hausdorf expansion and observed a great reduction in the dip associated with the Cooper pair minimum at the zero crossing. (atomic and molecular physics)

  11. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.

    Science.gov (United States)

    Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel

    2009-06-22

    Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.

  12. Determination of metallic impurities in uranium compounds of nuclear purity by atomic absorption spectrophotometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Franco, M.B.

    1986-01-01

    Atomic absorption spectrometry, with electrothermal atomization, has been used for the determination of Al, Cd, Cr, Fe, Mn and Ni in uranium oxide standards. The analysis were performed without sample dissolution and without uranium chemical separation. This technique is adequate for the qualification of uranium of nuclear purity according to the standard specifications. (Author) [pt

  13. Element selective detection of molecular species applying chromatographic techniques and diode laser atomic absorption spectrometry.

    Science.gov (United States)

    Kunze, K; Zybin, A; Koch, J; Franzke, J; Miclea, M; Niemax, K

    2004-12-01

    Tunable diode laser atomic absorption spectroscopy (DLAAS) combined with separation techniques and atomization in plasmas and flames is presented as a powerful method for analysis of molecular species. The analytical figures of merit of the technique are demonstrated by the measurement of Cr(VI) and Mn compounds, as well as molecular species including halogen atoms, hydrogen, carbon and sulfur.

  14. Determination of strontium in rocks by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Tamari, Yuzo; Tsuji, Haruo; Kusaka, Yuzuru

    1984-01-01

    Strontium in silicate rocks was determined by the following procedure. A rock powder sample prepared to pass through a 100-mesh size sieve (0.1--0.5g) was taken in a Teflon beaker, and 6ml of 46% hydrofluoric acid and 1 ml of 70% perchloric acid were added. After being allowed to stand for over one day, the mixture in the beaker was concentrated by heating on a hot plate until white fumes of the perchloric acid appeared. The content in the beaker was transferred to a glass beaker with 2ml of 61% nitric acid and 0.5ml of the perchloric acid, and concentrated until white fumes appeared. Further, 2ml of 20% hydrochloric acid was added and warmed. After cooling, the rock solution was made up to 100ml with water. To a 50-ml stoppered centrifugal tube, a 10-ml portion of the rock solution was transferred, and 1ml of 2% 8-quinolinol solution was added. Then the solution was adjusted to pH 5 with both saturated sodium acetate solution and hydrochloric acid, and made up to 15ml. The decomposed rock sample solution with 20ml of chloroform was shaken for 5min. The decomposed rock sample solution was shaken with 20ml of chloroform for 5min, and then centrifuged at 2500rpm for 5min to separate an aqueous phase from an organic one. After adding 1ml of 2% lanthanum solution into a 10ml portion of the aqueous phase, strontium was determined by atomic absorption spectrometry at 460.7nm. This method was applied to the rock reference materials, JB-1 and JG-1, issued from the Geological Survey of Japan. Analytical values of strontium in the rocks were almost consistent with their certified and recommended values. (author)

  15. Comparison of electrothermal atomization diode laser Zeeman- and wavelength-modulated atomic absorption and coherent forward scattering spectrometry

    International Nuclear Information System (INIS)

    Blecker, Carlo R.; Hermann, Gerd M.

    2009-01-01

    Atomic absorption and coherent forward scattering spectrometry by using a near-infrared diode laser with and without Zeeman and wavelength modulation were carried out with graphite furnace electrothermal atomization. Analytical curves and limits of detection were compared. The magnetic field was modulated with 50 Hz, and the wavelength of the diode laser with 10 kHz. Coherent forward scattering was measured with crossed and slightly uncrossed polarizers. The results show that the detection limits of atomic absorption spectrometry are roughly the same as those of coherent forward scattering spectrometry with crossed polarizers. According to the theory with bright flicker noise limited laser sources the detection limits and linear ranges obtained with coherent forward scattering spectrometry with slightly uncrossed polarizers are significantly better than those obtained with crossed polarizers and with atomic absorption spectrometry. This is due to the fact that employing approaches of polarization spectroscopy reduce laser intensity fluctuations to their signal carried fractions

  16. Laser stabilisation for velocity-selective atomic absorption

    NARCIS (Netherlands)

    Meijer, H.A.J.; Meulen, H.P. van der; Ditewig, F.; Wisman, C.J.; Morgenstern, R.

    1987-01-01

    A relatively simple method is described for stabilising a dye laser at a frequency ν = ν0 + νc in the vicinity of an atomic resonance frequency ν0. The Doppler effect is exploited by looking for atomic fluorescence when a laser beam is crossed with an atomic beam at certain angles αi. Absolute

  17. Measurement of the effective atomic numbers of compounds with cerium near to the absorption edge

    International Nuclear Information System (INIS)

    Polat, Recep; Icelli, Orhan

    2010-01-01

    In order to measure atomic, molecular and electronic cross-section; the effective atomic number, density of electron and absorption jump factor, we have first measured μ t values of compounds which are determined by mixture rule using transmission method. In order to measure experimentally the effective atomic number within absorption jump factors of compounds with Ce, the X-ray source used Am-241 whose gamma rays were stopped at secondary source (Sm), thus producing Kα and Kβ X-ray emission. The most crucial finding in this study is that measurement of the effective atomic number is not appropriate near to the absorption edge and the effective atomic number is affected by near to the absorption edge. The results obtained have been compared with theoretical values.

  18. Study of absorption spectra for alkali and alkaline earth metal salts in flameless atomic absorption spectrometry using a carbon tube atomizer

    International Nuclear Information System (INIS)

    Yasuda, Seiji; Kakiyama, Hitoo

    1975-01-01

    Absorption spectra of various salts such as alkali metal salts, alkaline earth dichlorides, and ammonium halides were investigated and absorptions of some molecular species produced in the carbon tube were identified. The aqueous solution (20 μl) containing 1.0 mg/ml of each salt was placed in the carbon tube atomizer and heated in a similar manner to usual flameless atomic absorption method. D 2 -lamp was used as a continuous light source and argon gas was employed as an inert sheath gas. The spectra were obtained over the range of wavelength 200 to 350 nm. When alkali halides were feeded, the absorption spectra agreed with those of alkali halide vapors. Therefore, in such cases vapors of the alkali halides were probably produced by the sublimation or vaporization in the atomizer. The spectra of alkali perchlorates were considered to be those of alkali chlorides produced by the pyrolysis of the perchlorates in the atomizer. The absorptions of alkaline earth chlorides below 250 nm were probably due to their gaseous states. Sulfur dioxide was found to be produced by the pyrolysis of alkali sulfates, bisulfates and sulfites in the atomizer, Alkali phosphates and pyrophosphates gave almost identical spectra below 300 nm. Gamma band spectrum of nitrogen monoxide was observed from 200 to 240 nm during ashing at bout 330 0 C for alkali nitrates and nitrites. Ammonia vapor was produced from ammonium halides during drying at about 170 0 C. Although the absorptions of alkali carbonates and hydroxides were almost undetectable, the same spectra as those of alkali halides were observed by the addition of ammonium halides to the solutions of alkali compounds. This shows that alkali halides are produced in the atomizer by the addition of halide ions. (auth.)

  19. Interferometric measurement of lines shift in flames in connection with interpretation of lined absorption method in atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    L'vov, B.V.; Polzik, L.K.; Katskov, D.A.; Kruglikova, L.P.

    1975-01-01

    This paper is concerned with interferometric measuring of the line shift in flames in the view of interpretation of absorption lines in the atomic absorption spectroscopy. The newly measured line shifts were compared to the known data on Lorentz broadening of the same lines obtained by methods free of the systematic errors. The resonant lines of the alkaline earth elements (Sr, Ca, Ba) were investigated. To reduce self-absorption in the flame the solutions with minimum concentrations of the elements were used. The computation scheme includes the spectrometer apparatus width and line broadening due to the self-absorption. Formulae are given for computing the values studied. Good agreement was observed between the computed and experimental results. Error analysis was performed. It was concluded that any line shifts in the hydrocarbons were correctly taken into an account in the absolute computations of absorption

  20. Non-Dispersive Atomic Absorption System for Engine Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, construct and test a first implementation of a non-dispersive technique for the measurement of atomic absorption in the plumes of liquid rocket...

  1. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    Science.gov (United States)

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  2. Anomalies in resonant absorption line profiles of atoms with large hyperfine splitting

    International Nuclear Information System (INIS)

    Parkhomenko, A.I.; Pod'yachev, S.P.; Privalov, T.I.; Shalagin, A.M.

    1997-01-01

    We examine a monochromatic absorption line in the velocity-nonselective excitation of atoms when the components of the hyperfine stricture of the electronic ground states are optically pumped. We show that the absorption lines possess unusual substructures for some values of the hyperfine splitting of the ground state (which exceed the Doppler absorption linewidth severalfold). These substructures in the absorption spectrum are most apparent if the hyperfine structure of the excited electronic state is taken into account. We calculate the absorption spectra of monochromatic light near the D 1 and D 2 lines of atomic rubidium 85,87 Rb. With real hyperfine splitting taken into account, the D 1 and D 2 lines are modeled by 4- and 6-level diagrams, respectively. Finally, we show that atomic rubidium vapor can be successfully used to observe the spectral features experimentally

  3. Quantitative determination of impurities in nuclear grade aluminum by Flame-Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Jat, J.R.; Nayak, A.K.; Balaji Rao, Y.; Ravindra, H.R.

    2013-01-01

    The paper deals with quantitative determination of impurity elements in nuclear grade aluminum, used as fin tubes in research reactors, by Flame-Atomic Absorption Spectrometry (F-AAS). The results have been compared with those obtained by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) method. Experimental conditions used in both the methods are given in the paper. (author)

  4. Selenium determination in biological material by atomic absorption spectrophotometry in graphite furnace and using vapor generation

    International Nuclear Information System (INIS)

    Carvalho Vidal, M. de F. de.

    1984-01-01

    The applicability of the atomic absorption spectrophotometry to the determination of selenium in biological material using vapor generation and electrothermal atomization in the graphite furnace was investigated. Instrumental parameters and the analytical conditions of the methods were studied. Decomposition methods for the samples were tested, and the combustion in the Wickbold apparatus was chosen. (author) [pt

  5. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas.

    Science.gov (United States)

    Moroshkin, Peter; Weller, Lars; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-08-08

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in a dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  6. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  7. Atomic absorption spectrometry and other instrumental methods for quantitative measurements of arsenic

    International Nuclear Information System (INIS)

    Brooks, R.R.; Ryan, D.E.; Zhang, H.

    1981-01-01

    Progress in instrumental methods for quantification of arsenic during the past decade is reviewed. Particular emphasis is placed on atomic absorption spectrometry, where major progress has been made in flame methods in conjunction with hydride generation procedures and in electrothermal methods with the graphite furnace. Specific materials in which arsenic is quantified by atomic absorption techniques are also listed. Progress in the application of neutron activation-γ-spectrometry, emission spectrometry, electrometric methods, X-ray procedures and atomic fluorescence spectrometry is also reviewed. The limits of detection and time requirements of all the techniques are compared. (Auth.)

  8. Direct atomic flux measurement of electron-beam evaporated yttrium with a diode-laser-based atomic absorption monitor at 668 nm

    International Nuclear Information System (INIS)

    Wang, W.; Hammond, R.H.; Fejer, M.M.; Arnason, S.; Beasley, M.R.; Bortz, M.L.; Day, T.

    1997-01-01

    A direct measurement of atomic flux in e-beam evaporated yttrium has been demonstrated with a diode-laser-based atomic absorption (AA) monitor at 668 nm. Atomic number density and velocity were measured through absorption and Doppler shift measurements to provide the atomic flux. The AA-based deposition rates were compared with independent quartz crystal monitors showing agreement between the two methods. copyright 1997 American Institute of Physics

  9. Experimental and theoretical comparison of the precision of flame atomic absorption, fluorescence, and emission measurements

    International Nuclear Information System (INIS)

    Bower, N.W.; Ingle, J.D. Jr.

    1981-01-01

    Theoretical equations and experimental evaluation procedures for the determination of the precision of flame atomic absorption, emission, and fluorescence measurements are presented. These procedures and noise power spectra are used to evaluate the precision and noise characteristics of atomic copper measurements with all three techniques under the same experimental conditions in a H 2 -air flame. At the detection limit, emission and fluorescence measurements are limited by background emission shot and flicker noise whereas absorption measurements are limited by flame transmission lamp flicker noise. Analyte flicker noise limits precision at higher analyte concentrations for all three techniques. Fluctutations in self-absorption and the inner filter effect are shown to contribute to the noise in atomic emission and fluorescence measurements

  10. [Determination of trace cobalt in human urine by graphite furnace atomic absorption spectrometr].

    Science.gov (United States)

    Zhong, L X; Ding, B M; Jiang, D; Liu, D Y; Yu, B; Zhu, B L; Ding, L

    2016-05-20

    To establish a method to determine cobalt in human urine by graphite furnace atomic absorption spectrometry. Urine with 2% nitric acid diluted two-fold, to quantify the curve, graphite furnace atomic absorption spectrometric detection. Co was linear within 2.5~40.0 ng/ml with r>0.999. Spike experiment showed that Co received good recovery rate, which was 90.8%~94.8%. Intra-assay precisions were 3.2%~5.1% for Co, inter-assay precisions were 4.4%~5.2% for Co. The method by using graphite furnace atomic absorption spectrometr to determine urine Co was fast, accurate and with low matrix effect. It could meet the requirement in GBZ/T 210.5-2008.

  11. Saturated two-photon absorption by atoms in a perturber gas

    International Nuclear Information System (INIS)

    Nienhuis, G.

    1980-01-01

    We derive a general expression for the two-photon absorption spectrum of a three-state atom excited by two mono-chromatic radiation fields. Collisional line-broadening effects are incorporated, and the result allows inclusion of profiles with a validity outside the impact limit. Results of previous work are recovered in the appropriate limits. Saturation affects the different lines in the two-photon absorption spectrum in a different fashion. (orig.)

  12. Micro determination of plasma and erythrocyte copper by atomic absorption spectrophotometry.

    Science.gov (United States)

    Blomfield, J; Macmahon, R A

    1969-03-01

    The free and total plasma copper and total erythrocyte copper levels have been determined by simple, yet sensitive and highly specific methods, using atomic absorption spectrophotometry. For total copper determination, the copper was split from its protein combination in plasma or red cells by the action of hydrochloric acid at room temperature. The liberated copper was chelated by ammonium pyrrolidine dithiocarbamate and extracted into n-butyl acetate by shaking and the organic extract was aspirated into the atomic absorption spectrophotometer flame. The entire procedure was carried out in polypropylene centrifuge tubes, capped during shaking. For the free plasma copper measurement the hydrochloric acid step was omitted. Removal of the plasma or erythrocyte proteins was found to be unnecessary, and, in addition, the presence of trichloracetic acid caused an appreciable lowering of absorption. Using a double-beam atomic absorption spectrophotometer and scale expansion x 10, micro methods have been derived for determining the total copper of plasma or erythrocytes with 0.1 ml of sample, and the free copper of plasma with 0.5 ml. The macro plasma copper method requires 2 ml of plasma and is suitable for use with single-beam atomic absorption spectrophotometers. With blood from 50 blood donors, normal ranges of plasma and erythrocyte copper have been determined.

  13. Real-time monitoring of atom vapor concentration with laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Fan Fengying; Gao Peng; Jiang Tao

    2012-01-01

    The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved. (authors)

  14. Subwavelength atom localization via amplitude and phase control of the absorption spectrum

    OpenAIRE

    Sahrai, Mostafa; Tajalli, Habib; Kapale, Kishore T.; Zubairy, M. Suhail

    2005-01-01

    We propose a scheme for subwavelength localization of an atom conditioned upon the absorption of a weak probe field at a particular frequency. Manipulating atom-field interaction on a certain transition by applying drive fields on nearby coupled transitions leads to interesting effects in the absorption spectrum of the weak probe field. We exploit this fact and employ a four-level system with three driving fields and a weak probe field, where one of the drive fields is a standing-wave field o...

  15. Direct determination of selenoproteins in polyvinylidene difluoride membranes by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Sidenius, U; Gammelgaard, Bente

    2000-01-01

    A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual...... were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well...

  16. Subwavelength atom localization via amplitude and phase control of the absorption spectrum

    International Nuclear Information System (INIS)

    Sahrai, Mostafa; Tajalli, Habib; Kapale, Kishore T.; Zubairy, M. Suhail

    2005-01-01

    We propose a scheme for subwavelength localization of an atom conditioned upon the absorption of a weak probe field at a particular frequency. Manipulating atom-field interaction on a certain transition by applying drive fields on nearby coupled transitions leads to interesting effects in the absorption spectrum of the weak probe field. We exploit this fact and employ a four-level system with three driving fields and a weak probe field, where one of the drive fields is a standing-wave field of a cavity. We show that the position of an atom along this standing wave is determined when probe-field absorption is measured. We find that absorption of the weak probe field at a certain frequency leads to subwavelength localization of the atom in either of the two half-wavelength regions of the cavity field by appropriate choice of the system parameters. We term this result as sub-half-wavelength localization to contrast it with the usual atom localization result of four peaks spread over one wavelength of the standing wave. We observe two localization peaks in either of the two half-wavelength regions along the cavity axis

  17. Evaluation of a method for the determination of chromium in urine by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Garcia, M.; Sardinas, O.; Castaneda, I.; Sanchez, R.

    1990-01-01

    A method for the determination of chromium in urine by atomic absorption spectrometry, using electrothermic atomization with pyrolytic graphite tubes, is proposed. The determinations are performed by standard addition. The method is applicable to biologic monitoring of populations with different degrees of exposition. It is also used in the analysis of chromium in sediments. Results of chromium in urine of a population group non-exposed to the metal are presented. 11 refs

  18. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    Science.gov (United States)

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  19. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: a comparative study.

    Science.gov (United States)

    Cabon, J Y; Giamarchi, P; Le Bihan, A

    2010-04-07

    Two methods available for direct determination of total Fe in seawater at low concentration level have been examined: electrothermal atomization atomic absorption spectrometry (ETAAS) and electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS). In a first part, we have optimized experimental conditions of ETAAS (electrothermal program, matrix chemical modification) for the determination of Fe in seawater by minimizing the chemical interference effects and the magnitude of the simultaneous background absorption signal. By using the best experimental conditions, a detection limit of 80 ng L(-1) (20 microL, 3sigma) for total Fe concentration was obtained by ETAAS. Using similar experimental conditions (electrothermal program, chemical modification), we have optimized experimental conditions for the determination of Fe by LEAFS. The selected experimental conditions for ETA-LEAFS: excitation wavelength (296.69 nm), noise attenuation and adequate background correction led to a detection limit (3sigma) of 3 ng L(-1) (i.e. 54 pM) for total Fe concentration with the use a 20 microL seawater sample. For the two methods, concentration values obtained for the analysis of Fe in a NASS-5 (0.2 microg L(-1)) seawater sample were in good agreement with the certified values. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: A comparative study

    International Nuclear Information System (INIS)

    Cabon, J.Y.; Giamarchi, P.; Le Bihan, A.

    2010-01-01

    Two methods available for direct determination of total Fe in seawater at low concentration level have been examined: electrothermal atomization atomic absorption spectrometry (ETAAS) and electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS). In a first part, we have optimized experimental conditions of ETAAS (electrothermal program, matrix chemical modification) for the determination of Fe in seawater by minimizing the chemical interference effects and the magnitude of the simultaneous background absorption signal. By using the best experimental conditions, a detection limit of 80 ng L -1 (20 μL, 3σ) for total Fe concentration was obtained by ETAAS. Using similar experimental conditions (electrothermal program, chemical modification), we have optimized experimental conditions for the determination of Fe by LEAFS. The selected experimental conditions for ETA-LEAFS: excitation wavelength (296.69 nm), noise attenuation and adequate background correction led to a detection limit (3σ) of 3 ng L -1 (i.e. 54 pM) for total Fe concentration with the use a 20 μL seawater sample. For the two methods, concentration values obtained for the analysis of Fe in a NASS-5 (0.2 μg L -1 ) seawater sample were in good agreement with the certified values.

  1. Saturated two-photon absorption by atoms in a perturber gas

    NARCIS (Netherlands)

    Nienhuis, G.

    We derive a general expression for the two-photon absorption spectrum of a state-atom excited by two monochromatic radiation fields. Collisional line-brodening effects are incorporated, and the result allows inclusion of profiles with a validity outside the impact limit. Results of previous work are

  2. Determination of trace impurities in titanium dioxide by direct solid sampling electrothermal atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vojtková, Blanka; Dočekal, Bohumil

    2005-01-01

    Roč. 99, S (2005), s489-s491 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.09.2005-22.09.2005] Institutional research plan: CEZ:AV0Z40310501 Keywords : solid sampling * electrothermal atomic absorption spectrometry * trace analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.445, year: 2005

  3. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    Science.gov (United States)

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  4. [Determination of chloride ion in additives of concrete by flame atomic absorption spectrometry].

    Science.gov (United States)

    Xiong, Min; Shan, Yun

    2003-06-01

    Flame atomic absorption spectrometry due to its high sensitivity and selectivity has been widely used for the determination of micro levels of metal elements in various materials. But this method can not be used for the determination of Cl- directly. In this paper the determination of Cl- in additives of concrete by flame atomic absorption spectrometry was studied. Adding superfluous standard solution of Ag+ to the sample solution, the results were obtained by determining the remanent content of Ag+ having reacted with Cl- quantitatively. The acidity of the sample solution and the precision were studied. The standard rate of recovery obtained was in the range of 96%-104%. By the determination of actual samples it was proved that the method features simple sample preparation, fast determination, and little interference, especially for those samples which contain micro levels of Cl-. The procedure is as follows: weight 0.05-2 g of sample, dissolve it in water and adjust the acidity with nitric acid, add proper standard solution of Ag+, and after 2 h, measure the remanent Ag+ content by atomic absorption spectrometry. A GBC902 atomic absorption spectrometry was employed.

  5. Rapid accurate analysis of metal (oxide)-on-silica catalysts by atomic absorption spectrometry

    NARCIS (Netherlands)

    Jütte, B.A.H.G.; Heikamp, A.; Agterdenbos, J.

    1979-01-01

    The catalysts, which contain 10–60% copper, chromium, nickel and silicon, are decomposed in sealed Teflon-lined vessels and analyzed by atomic absorption spectrometry. Matrix matching and bracketing standards are applied. The RSD of a single determination is about 1% for all components.

  6. Direct microcomputer controlled determination of zinc in human serum by flow injection atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Nielsen, Bent; Jensen, Arne

    1986-01-01

    A procedure is described for the direct determination of zinc in human serum by fully automated, microcomputer controlled flow injection atomic absorption spectrometry (Fl-AAS). The Fl system is pumpless, using the negative pressure created by the nebuliser. It only consists of a three-way valve...

  7. Chemical modifiers in electrothermal atomic absorption determination of Platinum and Palladium containing preparations in blood serum

    Directory of Open Access Journals (Sweden)

    Аntonina Alemasova

    2012-11-01

    Full Text Available The biological liquids matrixes influence on the characteristic masses and repeatability of Pt and Pd electrothermal atomic absorption spectroscopy (ETAAS determination was studied. The chemical modifiers dimethylglyoxime and ascorbic acid for matrix interferences elimination and ETAAS results repeatability improvement were proposed while bioliquids ETAAS analysis, and their action mechanism was discussed.

  8. The Use of an Air-Natural Gas Flame in Atomic Absorption.

    Science.gov (United States)

    Melucci, Robert C.

    1983-01-01

    Points out that excellent results are obtained using an air-natural gas flame in atomic absorption experiments rather than using an air-acetylene flame. Good results are obtained for alkali metals, copper, cadmium, and zinc but not for the alkaline earths since they form refractory oxides. (Author/JN)

  9. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  10. COMPREHENSIVE ANALYSIS OF BIOLOGICALLY RELEVANT ARSENICALS BY PH-SELECTIVE HYDRIDE GENERATION-ATOMIC ABSORPTION SPECTROMETRY

    Science.gov (United States)

    A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...

  11. Analysis of Dithiocarbamate Fungicides in Vegetable Matrices Using HPLC-UV Followed by Atomic Absorption Spectrometry.

    Science.gov (United States)

    Al-Alam, Josephine; Bom, Laura; Chbani, Asma; Fajloun, Ziad; Millet, Maurice

    2017-04-01

    A simple method combining ion-pair methylation, high-performance liquid chromatography (HPLC) analysis with detection at 272 nm and atomic absorption spectrometry was developed in order to determine 10 dithiocarbamate fungicides (Dazomet, Metam-sodium, Ferbam, Ziram, Zineb, Maneb, Mancozeb, Metiram, Nabam and Propineb) and distinguish ethylenbisdithiocarbamates (EBDTCs) Zineb, Maneb and Mancozeb in diverse matrices. This method associates reverse phase analysis by HPLC analysis with detection at 272 nm, with atomic absorption spectrometry in order to distinguish, with the same extraction protocol, Maneb, Mancozeb and Zineb. The limits of detection (0.4, 0.8, 0.5, 1.25 and 1.97) and quantification (1.18, 2.5, 1.52, 4.2 and 6.52) calculated in injected nanogram, respectively, for Dazomet, Metam-Na, dimethyldithiocarbamates (DMDTCs), EBDTCs and propylenebisdithiocarbamates (PBDTCs) justify the sensitivity of the method used. The coefficients of determination R2 were 0.9985, 0.9978, 0.9949, 0.988 and 0.9794, respectively, for Dazomet, Metam-Na, DMDTCs, EBDTCs and PBDTCs, and the recovery from fortified apple and leek samples was above 90%. Results obtained with the atomic absorption method in comparison with spectrophotometric analysis focus on the importance of the atomic absorption as a complementary specific method for the distinction between different EBDTCs fungicides. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Calculation of x-ray absorption in lead taking into account electron correlations in atom

    International Nuclear Information System (INIS)

    Davidovic, M.D.; Radojevic, V.

    2001-01-01

    The main characteristics of the theoretical model that enables one to take into account the influence of electron correlation in atoms of the shielding material on the efficiency of absorption of photons corresponding to x-ray radiation, are shortly described. Numerical results are presented for lead. The possibilities of the model are discussed (author)

  13. Tungsten determination in heat resistant nickel-base-alloys by the method of atomic absorption

    International Nuclear Information System (INIS)

    Gregorczyk, S.; Wycislik, A.

    1980-01-01

    A method of atomic absorption was developed. It allows for the tungsten to be determined in heatresistant nickel-base-alloys within the range 0.01 to 7%. It consists in precipitating tungsten acid in the presence of alkaloids with its following decomposition by hydrofluoric acid in the teflon bomb. (author)

  14. Sub-parts-per-quadrillion-level graphite furnace atomic absorption spectrophotometry based on laser wave mixing.

    Science.gov (United States)

    Mickadeit, Fritz K; Berniolles, Sandrine; Kemp, Helen R; Tong, William G

    2004-03-15

    Nonlinear laser wave mixing in a common graphite furnace atomizer is presented as a zeptomole-level, sub-Doppler, high-resolution atomic absorption spectrophotometric method. A nonplanar three-dimensional wave-mixing optical setup is used to generate the signal beam in its own space. Signal collection is efficient and convenient using a template-based optical alignment. The graphite furnace atomizer offers advantages including fast and convenient introduction of solid, liquid, or gas analytes, clean atomization environment, and minimum background noise. Taking advantage of the unique features of the wave-mixing optical method and those of the graphite furnace atomizer, one can obtain both excellent spectral resolution and detection sensitivity. A preliminary concentration detection limit of 0.07 parts-per-quadrillion and a preliminary mass detection limit of 0.7 ag or 8 zmol are determined for rubidium using a compact laser diode as the excitation source.

  15. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    Science.gov (United States)

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  16. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    Science.gov (United States)

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  17. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    Science.gov (United States)

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  18. Absorption of copper(II) by creosote bush (Larrea tridentata): use of atomic and x-ray absorption spectroscopy.

    Science.gov (United States)

    Gardea-Torresdey, J L; Arteaga, S; Tiemann, K J; Chianelli, R; Pingitore, N; Mackay, W

    2001-11-01

    Larrea tridentata (creosote bush), a common North American native desert shrub, exhibits the ability to take up copper(II) ions rapidly from solution. Following hydroponic studies, U.S. Environmental Protection Agency method 200.3 was used to digest the plant samples, and flame atomic absorption spectroscopy (FAAS) was used to determine the amount of copper taken up in different parts of the plant. The amount of copper(II) found within the roots, stems, and leaves was 13.8, 1.1, and 0.6 mg/g, respectively, after the creosote bush was exposed to a 63.5-ppm copper(II) solution for 48 h. When the plant was exposed to a 635-ppm copper(II) solution, the roots, stems, and leaves contained 35.0, 10.5, and 3.8 mg/g, respectively. In addition to FAAS analysis, x-ray microfluorescence (XRMF) analysis of the plant samples provided further confirmation of copper absorption by the various plant parts. X-ray absorption spectroscopy (XAS) elucidated the oxidation state of the copper absorbed by the plants. The copper(II) absorbed from solution remained as copper(II) bound to oxygen-containing ligands within the plant samples. The results of this study indicate that creosote bush may provide a useful and novel method of removing copper(II) from contaminated soils in an environmentally friendly manner.

  19. Induced absorption and stimulated emission in a driven two-level atom

    International Nuclear Information System (INIS)

    Mavroyannis, C.

    1992-01-01

    We have considered the induced processes that occur in a driven two-level atom, where a laser photon is absorbed and emitted by the ground and by the excited states of the atom, respectively. In the low-intensity limit of the laser field, the induced spectra arising when a laser photon is absorbed by the ground state of the atom consist of two peaks describing induced absorption and stimulated-emission processes, respectively, where the former prevails over the latter. Asymmetry of the spectral lines occurs at off-resonance and its extent depends on the detuning of the laser field. The physical. process where a laser photon is emitted by the excited state is the reverse of that arising from the absorption of a laser photon by the ground state of the atom. The former differs from the latter in that the emission of a laser photon by the excited state occurs in the low frequency regime and that the stimulated-emission process prevails over that of the induced absorption. In this case, amplification of ultrashort pulses is likely to occur without the need of population inversion between the optical transitions. The computed spectra are graphically presented and discussed. (author)

  20. Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry.

    Science.gov (United States)

    Donati, George L; Pharr, Kathryn E; Calloway, Clifton P; Nóbrega, Joaquim A; Jones, Bradley T

    2008-09-15

    Cadmium concentrations in human urine are typically at or below the 1 microgL(-1) level, so only a handful of techniques may be appropriate for this application. These include sophisticated methods such as graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry. While tungsten coil atomic absorption spectrometry is a simpler and less expensive technique, its practical detection limits often prohibit the detection of Cd in normal urine samples. In addition, the nature of the urine matrix often necessitates accurate background correction techniques, which would add expense and complexity to the tungsten coil instrument. This manuscript describes a cloud point extraction method that reduces matrix interference while preconcentrating Cd by a factor of 15. Ammonium pyrrolidinedithiocarbamate and Triton X-114 are used as complexing agent and surfactant, respectively, in the extraction procedure. Triton X-114 forms an extractant coacervate surfactant-rich phase that is denser than water, so the aqueous supernatant is easily removed leaving the metal-containing surfactant layer intact. A 25 microL aliquot of this preconcentrated sample is placed directly onto the tungsten coil for analysis. The cloud point extraction procedure allows for simple background correction based either on the measurement of absorption at a nearby wavelength, or measurement of absorption at a time in the atomization step immediately prior to the onset of the Cd signal. Seven human urine samples are analyzed by this technique and the results are compared to those found by the inductively coupled plasma mass spectrometry analysis of the same samples performed at a different institution. The limit of detection for Cd in urine is 5 ngL(-1) for cloud point extraction tungsten coil atomic absorption spectrometry. The accuracy of the method is determined with a standard reference material (toxic metals in freeze-dried urine) and the determined values agree with

  1. Hydride generation-atomic absorption spectrometry for determination of trace arsenic in draining waste water of uranium hydrometallurgical plant

    International Nuclear Information System (INIS)

    Sun Suqing; Sun Shiying; Xue Jingxia

    1986-01-01

    The arsenate is reduced to the arsenite by potassium iodide-sulfourea in dilute sulphuric acid. Then the arsenite is reduced to arsine by sodium borohydride. The arsine carried into silica tube atomizer by nitrogen is atomized at 920 deg C and determined by the homemade atomic absorption instrument. It is shown that the sensitivity of the mentioned method is 0.2 ng/ml (1% absorption). The recovery is 88-103% and the relative standard deviation is ≤ 10%

  2. Solvent extraction atomic absorption determination of indium in minerals and rocks

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Samchuk, A.I.

    1979-01-01

    A method of the atomic-absorption determination of indium in minerals and rocks after extraction with methyl isobutyl ketone of an indium complex with N-cinnamoylphenylhydroxylamine (CAPHA) has been developed. The characteristic indium concentration in the dispersion of the extract into the acetylene-air flame is 0.08 mcg/ml. The indium-CAPHA complex is extracted with methyl isobutyl ketone practically completely at pH 3.5-7.6, Ksub(ex)=10sup(-0.92). Consideration is given to the effect of organic solvents on the absorption of indium

  3. Measurements of sulfur compounds in CO 2 by diode laser atomic absorption spectrometry

    Science.gov (United States)

    Franzke, J.; Stancu, D. G.; Niemax, K.

    2003-07-01

    Two simple methods for the analysis of the total concentration of sulfur in CO 2 by diode laser atomic absorption spectrometry of excited, metastable sulfur atoms in a direct current discharge are presented. In the first method, the CO 2 sample gas is mixed with the plasma gas (Ar or He) while the second is based on reproducible measurements of the sulfur released from the walls in a helium discharge after being deposited as a result of operating the discharge in pure CO 2 sample gas. The detection limits obtained satisfy the requirements for the control of sulfur compounds in CO 2 used in the food and beverage industry.

  4. An indirect method for determining phosphorus in aluminium alloys by atomic-absorption spectrometry.

    Science.gov (United States)

    Bernal, J L; Del Nozal, M A; Deban, L; Aller, A J

    1981-07-01

    An indirect method is described for the determination of phosphorus in aluminium alloys. Ammonium molybdate is added to a solution of the aluminium alloy and the molybdophosphoric acid formed is selectively extracted into n-butyl acetate. The twelve molybdenum atoms associated with each phosphate ion are determined by direct atomic-absorption spectrometry with the n-butyl acetate phase in a nitrous oxide-acetylene flame, with measurement at 313.2 nm. The most suitable conditions have been established and the effect of other ions has been studied.

  5. Exploiting flow Injection and sequential injection schemes for trace metal determinations by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Determination of low or trace-level amounts of metals by electrothermal atomic absorption spectrometry (ETAAS) often requires the use of suitable preconcentration and/or separation procedures in order to attain the necessary sensitivity and selectivity. Such schemes are advantageously executed...... by superior performance and versatility. In fact, two approaches are conceivable: The analyte-loaded ion-exchange beads might either be transported directly into the graphite tube where they are pyrolized and the measurand is atomized and quantified; or the loaded beads can be eluted and the eluate forwarded...

  6. Mechanism of yttrium atom formation in electrothermal atomization from metallic and metal-carbide surfaces of a heated graphite atomizer in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wahab, H.S.; Chakrabarti, C.L.

    1981-01-01

    Mechanism of Y atom formation from pyrocoated graphite, tantalum and tungsten metal surfaces of a graphite tube atomizer has been studied and a mechanism for the formation for Y atoms is proposed for the first time. (author)

  7. Determination of metallic impurities in raw materials for radioisotope production by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Roca, M.; Alvarez, F.; Capdevila, C.

    1969-01-01

    Atomic absorption spectrometry has been used for the determination of traces of calcium in scandium oxide, copper in zinc, iron in cobalt oxide, manganese In ferric oxide, nickel in copper and zinc in gallium oxide. The influences on the sensitivities arising from the hollow cathode currents, the gas pressures and the acid concentrations have been considered. A study of the interferences from the metallic matrices has also been performed, the interference due to the absorption of the manganese radiation by the atoms of iron being the most outstanding . In order to remove the interfering elements and increase sensitivity, pre-concentration methods have been tested. The addition methods has also been used. (Author) 14 refs

  8. Indirect determination of uranium by atomic-absorption spectrophotometry using an air-acetylene flame

    International Nuclear Information System (INIS)

    Alder, J.F.; Das, B.C.

    1977-01-01

    An indirect method has been developed for the determination of uranium by atomic-absorption spectrophotometry using an air-acetylene flame. Use is made of the reduction of copper(II) by uranium(IV) followed by complex formation of the copper(I) ions so produced with neocuproine (2,9-dimethyl-1,10-phenanthroline) and finally the determination of copper in this complex by atomic-absorption spectrophotometry. The results show that the method can be recommended, provided that care is taken to ensure the complete reduction of uranium(VI) to uranium(IV). The sensitivity of the method is 4.9 μg of uranium and the upper limit 500 μg without dilution. (author)

  9. Direct determination of selenoproteins in polyvinylidene difluoride membranes by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Sidenius, U; Gammelgaard, Bente

    2000-01-01

    A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual...... introduction of membrane pieces into the graphite furnace. The proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently transferred to a polyvinylidene difluoride (PVDF) membrane by semi-dry electroblotting. After staining the membrane, the protein bands...... were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well...

  10. Atomic absorption determination of vanadium in products of metallurgical production and mineral feed stock

    International Nuclear Information System (INIS)

    Polikarpova, N.V.; Panteleeva, E.Yu.

    1983-01-01

    Rapid and selective method of atomic absorption determination of vanadium in metallurgical process products and numerical feed stock is suggested. Buffering mixture of aluminium and phosphoric acid is used to suppress the effect of sample composition on the value of vanadium atomic absorption. The concentration of buffer components can vary from 400 up to 2000 μg/ml Al and from 2 up to 5% vol. H 3 PO 4 . The suggested mixture completely eli-- minates the strong chromium effect. The developed method was used for analyzing steels, alloys based on Mo, Ni, Ti, Cr, as well as titanium magnetite ores and concentrates. The method enables to determine from 0.05 up to 10% vanadium with 0.05-0.01 relative standard deviation, respectively

  11. A sapphire tube atomizer for on-line atomization and in situ collection of bismuthine for atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Dědina, Jiří

    2013-01-01

    Roč. 28, č. 4 (2013), s. 593-600 ISSN 0267-9477 Institutional support: RVO:68081715 Keywords : hydride generation * sapphire tube atomizer * in situ collection Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.396, year: 2013

  12. Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlioglu, Ipek; Korkmaz, Deniz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2007-01-15

    The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3{sigma} limit of detection was estimated as 0.053 {mu}g l{sup -1} for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat CRM-TMDW and Metals on Soil/Sediment 4, IRM-008.

  13. Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Menemenlioglu, Ipek; Korkmaz, Deniz; Ataman, O. Yavuz

    2007-01-01

    The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3σ limit of detection was estimated as 0.053 μg l -1 for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat CRM-TMDW and Metals on Soil/Sediment 4, IRM-008

  14. Determination of five trace elements in leaves in Nanfang sweet orange by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Li Fangqing

    2006-01-01

    The five trace elements of copper, zinc, manganese, iron and cobalt in leaves of Nanfang sweet orange are determined by flame atomic absorption spectrometry. The technique is simple, precise and sensitive. The effect of the type of digesting solution (mixed acid), the ratio of mixed acid, the volume of digesting solution and the time of digesting are investigated in details. The results show that leaves of Nanfang sweet orange contain higher amount of iron and zinc. (authors)

  15. On-line Incorporation of Cloud Point Extraction in Flame Atomic Absorption Spectrometric Determination of Silver

    OpenAIRE

    DALALI, Nasser; JAVADI, Nasrin; AGRAWAL, Yadvendra KUMAR

    2008-01-01

    A cloud point extraction method was incorporated into a flow injection system, coupled with flame atomic absorption spectrometry, for determination of trace amounts of silver. The analyte in the aqueous solution was acidified with 0.2 mol L-1 sulfuric acid and complexed with dithizone. The cloud point extraction was performed using the non-ionic surfactant Triton X-114. After obtaining the cloud point, the surfactant-rich phase containing the dithizonate complex was collected in a m...

  16. An atomic-absorption programme for the Apple 2 plus computer

    International Nuclear Information System (INIS)

    Wepener, J.H.; Pearton, D.C.G.

    1982-01-01

    An interactive computer programme, the AA-PROGRAM APPLE, has been designed and written to process data obtained during routine analysis by atomic-absorption spectrophotometry. The programme is fast, convenient for the user, and was found to perform satisfactorily during routine operation in the laboratory. The computer used is an Apple II Plus with a video screen, and the language of the programme is Applesoft BASIC. Operating instructions for the computer and a printout of the programme are given in the Appendices

  17. Using a digital multimeter to capture spectral information generated by a spectrophotometer broadcast / atomic absorption

    International Nuclear Information System (INIS)

    Villalobos Chaves, Alberto E.

    2006-01-01

    Spectral analysis capability of the information generated by a spectrophotometer broadcast / shimadzu AA 640-13 atomic absorption has increased, through the capture of data, using a digital multimeter as the interface between the spectrophotometer and a computer. To facilitate the identification of analytes was created Chromulan format files for the 99 chemical elements reported in the literature, and covering the region between 200 nm and 900 nm, the subject of this study. (author) [es

  18. Introduction of Flame Atomic Absorption Spectrometry (FAAS) For River Water Samples Analysis

    International Nuclear Information System (INIS)

    Shakirah Abd Shukor; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman

    2015-01-01

    Metal contamination in water is a major component in the determination of water quality monitoring. In spite of the viability of several other metal ion analysis techniques for river water, atomic absorption spectroscopy (AAS) method is most commonly used due to the reproducibility results, short analysis time, cost effective, lower level detection and robust. Therefore, this article gives an overview on the principles, instrumentation techniques, sample preparations, instrument calibration and data analysis in a simple manner for beginner. (author)

  19. A new hydride generator for the determination of volatile elements by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Kersabiec, A.M. de

    1979-01-01

    The production of hydrides in order to use them for analysis by atomic absorption spectrophotometry depends on many parameters. A new apparatus has been designed for this specific operation. It is characterized by a reaction chamber with variable size and by appliances for regulation and control of the physical conditions of operation. Properties are both methodological studies and utilization in large scale analysis. The entire description of the apparatus is completed by an analytical study [fr

  20. ANALYSIS OF VARIOUS METAL IONS IN SOME MEDICINAL PLANTS USING ATOMIC ABSORPTION SPECTROPHOTOMETER

    OpenAIRE

    Y.L. Ramachandra*, C. Ashajyothi and Padmalatha S. Rai

    2012-01-01

    Metal ions such as iron , lead, copper, nickel, cadmium , chromium and zinc were investigated in medicinally important plants Alstonia scholaris, Tabernaemontana coronariae, Asparagus racemosus, Mimosa pudica, Leucas aspera and Adhatoda vasica applying atomic absorption spectrophotometer techniques. The purpose of this study was to standardize various metal ion Contamination in indigenous medicinal plants. Maximum concentration of lead was present in Leucas aspera and Adhatoda vasica follo...

  1. Computer programs in BASIC language for atomic absorption flame spectroscopy. Part 1. Operating instructions

    International Nuclear Information System (INIS)

    Boyle, W.G. Jr.

    1977-01-01

    These instructions describe how to use three BASIC language programs to process data from atomic absorption spectrophotometers operated in the flame mode. These programs will also control an automatic sampler if desired. The instructions cover loading the programs, responding to computer prompts, choosing among various options for processing the data, operating the automatic sampler, and producing reports. How the programs differ is also explained. Examples of computer/operator dialogue are presented for typical cases

  2. Determination of diethyllead in the urine by flameless atomic absorption spectrometry.

    OpenAIRE

    Turlakiewicz, Z; Jakubowski, M; Chmielnicka, J

    1985-01-01

    A method for the determination of diethyllead in urine by flameless atomic absorption spectrometry after chelation with glyoxal-bis (2-hydroxyanil) and extraction of the formed complex with methyl isobutyl ketone is described. The method is specific in relation to both triethyllead and inorganic lead. The limit of detection was 3.2 micrograms Pb/l and the relative standard deviation in the concentration range 20-100 micrograms Pb/l was 0.076.

  3. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  4. Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Xiong Hao; Zhang Duo

    2011-01-01

    The behavior of two-dimensional (2D) atom localization is explored by monitoring the probe absorption in a microwave-driven four-level atomic medium under the action of two orthogonal standing-wave fields. Because of the position-dependent atom-field interaction, the information about the position of the atom can be obtained via the absorption measurement of the weak probe field. It is found that the localization behavior is significantly improved due to the joint quantum interference induced by the standing-wave and microwave-driven fields. Most importantly, the atom can be localized at a particular position and the maximal probability of finding the atom in one period of the standing-wave fields reaches unity by properly adjusting the system parameters. The proposed scheme may provide a promising way to achieve high-precision and high-resolution 2D atom localization.

  5. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    Science.gov (United States)

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  6. Bismuth as a general internal standard for lead in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bechlin, Marcos A.; Fortunato, Felipe M.; Ferreira, Edilene C.; Neto, José A. Gomes; Nóbrega, Joaquim A.; Donati, George L.; Jones, Bradley T.

    2014-01-01

    Highlights: • Single internal standard is commonly proposed for definite application in AAS. • Internal standard for general use in AAS techniques is original. • Bi showed efficiency as internal standard for Pb determinations by FAAS and GFAAS. • Assorted samples were analyzed and accurate results were found. - Abstract: Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A Pb /A Bi versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52–118% (without IS) to 97–109% (IS, LS FAAS); 74–231% (without IS) to 96–109% (IS, HR-CS FAAS); and 36–125% (without IS) to 96–110% (IS, LS GFAAS). The relative standard deviations (n = 12) were reduced from 0.6–9.2% (without IS) to 0.3–4.3% (IS, LS FAAS); 0.7–7.7% (without IS) to 0.1–4.0% (IS, HR-CS FAAS); and 2.1–13% (without IS) to 0.4–5.9% (IS, LS GFAAS)

  7. Determination of platinum originated from antitumoral drugs in human urine by atomic absorption spectrometric methods.

    Science.gov (United States)

    da Costa, Anilton Coelho; Vieira, Mariana Antunes; Luna, Aderval Severino; de Campos, Reinaldo Calixto

    2010-10-15

    Cisplatin and carboplatin are the most common platinum-based drugs used in cancer treatment. Pharmacokinetic investigations, the evaluation of the body burden during the treatment, as well as baseline levels of platinum in humans have attracted great interest. Thus, accurate analytical methods for fast and easy Pt monitoring in clinical samples become necessary. In the present study atomic absorption spectrometric methods for the determination of platinum in the forms of cisplatin and carboplatin in human urine were investigated. Platinum, in these different forms, could be determined in urine, after simple sample dilution. Regarding electrothermal atomic absorption spectrometry, the optimum parameters were defined by a central composite design optimization. Multiplicative matrix effects were overcome by using a mixture of HCl and NaCl as modifier. The limit of detection (LOD) was 0.004 mgL(-1) of platinum in the original sample. For the analysis of more concentrated samples, high resolution continuous source flame atomic absorption spectrometry was also investigated. Flame conditions were optimized by a multivariate D-optimal design, using as response the sum of the analyte addition calibration slopes and their standard deviations. Matrix matched external calibration with PtCl(2) calibration solutions, was possible, and the LOD was 0.06 mgL(-1) in the original sample. The results obtained by the proposed procedures were also in good agreement with those obtained by an independent comparative procedure. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. The determination of magnesium in simulated PWR coolant by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gatford, C.; Torrance, K.

    1988-06-01

    The determination of magnesium in simulated PWR coolant has been investigated by graphite furnace atomic absorption spectrometry with atomization from a L'vov platform. The presence of boric acid in the coolant suppresses the magnesium absorption to such an extent that removal of the boron is necessary and three variations of a methyl borate volatilization technique for the in situ removal of boron from the sample platform were investigated. This work has shown that dilution of the sample with an equal volume of acidified methanol and volatilization of the methyl borate was adequate for the determination of magnesium in coolant samples containing up to 2000 mg 1 -1 of boron. In simulated coolant samples containing 25 and 4 μg 1 -1 of magnesium, positive biases of about 2 and 0.5 μg 1 -1 were measured and these errors were considered to be due to contamination. The limit of detection in the presence of 100 and 2000 mg 1 -1 boron were 0.14 and 0.93 μg 1 -1 respectively. These performance characteristics suggest the method is completely acceptable for monitoring the chemical purity of PWR coolant and associated waters containing boric acid. If, however, more precise analyses were to be required for research purposes then any significant improvement in the above figures would require increased purity of reagents, clean-room conditions to reduce contamination and a more versatile atomic absorption spectrophotometer. (author)

  9. Bismuth as a general internal standard for lead in atomic absorption spectrometry.

    Science.gov (United States)

    Bechlin, Marcos A; Fortunato, Felipe M; Ferreira, Edilene C; Gomes Neto, José A; Nóbrega, Joaquim A; Donati, George L; Jones, Bradley T

    2014-06-11

    Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A(Pb)/A(Bi)versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52-118% (without IS) to 97-109% (IS, LS FAAS); 74-231% (without IS) to 96-109% (IS, HR-CS FAAS); and 36-125% (without IS) to 96-110% (IS, LS GFAAS). The relative standard deviations (n=12) were reduced from 0.6-9.2% (without IS) to 0.3-4.3% (IS, LS FAAS); 0.7-7.7% (without IS) to 0.1-4.0% (IS, HR-CS FAAS); and 2.1-13% (without IS) to 0.4-5.9% (IS, LS GFAAS). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Absorption of electromagnetic field energy by superfluid system of atoms with electric dipole moment

    International Nuclear Information System (INIS)

    Poluektov, Yu.M.

    2014-01-01

    The modified Gross-Pitaevskii equation which takes into account relaxation and interaction with alternating electromagnetic field is used to consider the absorption of electromagnetic field energy by a superfluid system on the assumption that the atoms has intrinsic dipole moment. It is shown that the absorption may be of a resonant behavior only if the dispersion curves of the electromagnetic wave and the excitations of the superfluid system intersect. It is remarkable that such a situation is possible if the superfluid system has a branch of excitations with the energy gap at low momenta. The experiments on absorption of microwaves in superfluid helium are interpreted as evidence of existence of such gap excitations. A possible modification of the excitation spectrum of superfluid helium in the presence of excitation branch with energy gap is dis-cussed qualitatively

  11. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    Science.gov (United States)

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.

  12. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bentlin, Fabrina R.S. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Pozebon, Dirce [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil)], E-mail: dircepoz@iq.ufrgs.br; Mello, Paola A.; Flores, Erico M.M. [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900 Santa Maria, RS (Brazil)

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO{sub 3}){sub 2} was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 {mu}g g{sup -1} of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  13. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bentlin, Fabrina R.S.; Pozebon, Dirce; Mello, Paola A.; Flores, Erico M.M.

    2007-01-01

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO 3 ) 2 was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 μg g -1 of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  14. Some problems connected with boron determination by atomic absorption spectroscopy and the sensitivity improvement

    Directory of Open Access Journals (Sweden)

    JELENA J. SAVOVIC

    2001-08-01

    Full Text Available Two atomizers were compared: an N2O–C2H2 flame and a stabilized U-shaped DC arc with aerosol supply. Both the high plasma temperature and the reducing atmosphere obtained by acetylene addition to the argon stream substantially increase the sensitivity of boron determination by atomic absorption spectroscopy (AAS when the arc atomizer is used. The results were compared with those for silicon as a control element. The experimental characteristic concentrations for both elements were compared with the computed values. The experimentally obtained characteristic concentration for boron when using the arc atomizer was in better agreement with the calculated value. It was estimated that the influence of stable monoxide formation on the sensitivity for both elements was about the same, but reduction of analyte and formation of non-volatile carbide particles was more important for boron, which is the main reason for the low sensitivity of boron determination using a flame atomizer. The use of an arc atomizer suppresses this interference and significantly improves the sensitivity of the determination.

  15. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Politechn Poznanska, Poznan (Poland)

    2007-03-15

    The analytical performance of coupled hydride generation - integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H{sub 2}Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangernents (a water-cooled single silica tube, double-slotted quartz tube or an 'integrated trap') was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3{sigma}), was 0.9 ng mL{sup -1} for Te. For a 2 min in situ preconcentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% (n = 6) for Te. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  16. Manipulating absorption and diffusion of H atom on graphene by mechanical strain

    Directory of Open Access Journals (Sweden)

    Ming Yang

    2011-09-01

    Full Text Available Effects of the tensile strain on absorption and diffusion of hydrogen atoms on graphene have been studied by first-principles calculations. Our calculations suggested that there exists a barrier of 0.22 eV for H atom to diffuse from free space to graphene. The barrier originates from the transition of the hybridization of the H-binded carbon atom in graphene from sp2 to sp3, and is robust against the tensile strain. It was also found that, first, the in-plane diffusion of H atoms on graphene is unlikely to happen at low temperature due to the high barrier without or with strain, and second, the tensile strain along the armchair direction greatly decreases the out-plane diffusion barrier of H atoms, making it possible at low temperature. In particular, when the armchair strain is moderate (<10%, we found that the out-plane diffusion of H atoms likely to happen by diffusing through C-C bonds, and for relatively large armchair strain around 15%, the out-plane diffusion will happen though the center of the benzene ring.

  17. Spectrum of absorption of a weak signal by an atom in a strong field

    International Nuclear Information System (INIS)

    Bakaev, D.S.; Vdovin, Y.A.; Ermachenko, V.M.; Yakovlenko, S.I.

    1985-01-01

    An analysis is made of the spectrum of absorption of a weak probe electromagnetic field by two-level atoms in a strong resonant laser field, undergoing collision with buffer gas atoms. The analysis is made using an approach that allows for the direct influence of a strong electromagnetic field on the dynamics of an elastic collision between an active atom and a buffer gas atom. Rate equations are analyzed for a combined ''atom--strong electromagnetic field'' system (an atom ''dressed'' by the field) allowing for spontaneous and optical collisional transitions, and also for the interaction with the probe field. In the steady-state case, an expression is derived for the electric susceptibility of the medium at the small-signal frequency. This expression contains the rates of the optical collisional transitions that depend nontrivially on the parameters of the strong electromagnetic field. The phenomenological characteristics of optical collisional transitions generally used are only valid at low intensities and for small frequency detunings of the strong electromagnetic field, i.e., in the impact limit

  18. Determination of cadmium in coal by metal furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fudagawa, Noriko; Kawase, Akira

    1985-01-01

    Conditions for determination of cadmium in coal were investigated by atomic absorption spectrometry using a boat-shape tungsten furnace. For concentrating and separating cadmium from the coexisting components cadmium dithizonate-m-xylene solution and the 0.05 mol/l perchloric acid solution were examined. Ashing and atomizing temperatures, sheath gas composition, distribution of the cadmium atoms in the furnace were examined. Similar characteristics were obtained for the determination of cadmium in perchloric acid solution and the chelate m-xylene solution, except that a reduction of the peak time and FWHM (full width at half maximum) was observed for the latter solution. When the atomization temperature is near 2300 deg C, the change in the magnitude of absorbance is small in terms of the temperature. The influence of hydrogen contained in the sheath gas was complicated: Change in the thermal conductivity with increasing hydrogen content, resulted decrease of the atomization temperature but the integrated absorbance did not change so much. The concentration of cadmium atoms decreased linearily in the vertical direction of the furnace, while absorbance in the horizontal direction was almost constant. Cadmium in coal was determined by the methods (1) solvent extraction, (2) back-extraction with perchloric acid, (3) on-boat standard addition method. (author)

  19. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    Science.gov (United States)

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer.

    Science.gov (United States)

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-06-20

    Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min - 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL -1  Sb) is comparable to that observed in QTA (0.14 ng mL -1  Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ± 2% and 0.02 ng mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Investigation of chemical modifiers for phosphorus in a graphite furnace using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lepri, Fabio G.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Borges, Daniel L.G.; Welz, Bernhard; Heitmann, Uwe

    2006-01-01

    Phosphorus is not one of the elements that are typically determined by atomic absorption spectrometry, but this technique nevertheless offers several advantages that make it attractive, such as the relatively great freedom from interferences. As the main resonance lines for phosphorus are in the vacuum-ultraviolet, inaccessible by conventional atomic absorption spectrometry equipment, L'vov and Khartsyzov proposed to use the non-resonance doublet at 213.5 / 213.6 nm. Later it turned out that with conventional equipment it is necessary to use a chemical modifier in order to get reasonable sensitivity, and lanthanum was the first one suggested for that purpose. In the following years more than 30 modifiers have been proposed for the determination of this element, and there is no consensus about the best one. In this work high-resolution continuum source atomic absorption spectrometry has been used to investigate the determination of phosphorus without a modifier and with the addition of selected modifiers of very different nature, including the originally recommended lanthanum modifier, several palladium-based modifiers and sodium fluoride. As high-resolution continuum source atomic absorption spectrometry is revealing the spectral environment of the analytical line at high resolution, it became obvious that without the addition of a modifier essentially no atomic phosphorus is formed, even at 2700 deg. C . The absorption measured with line source atomic absorption spectrometry in this case is due to the PO molecule, the spectrum of which is overlapping with the atomic line. Palladium, with or without the addition of calcium or ascorbic acid, was found to be the only modifier to produce almost exclusively atomic phosphorus. Lanthanum and particularly sodium fluoride produced a mixture of P and PO, depending on the atomization temperature. This fact can explain at least some of the discrepancies found in the literature and some of the phenomena observed in the

  2. Concentration of atomic hydrogen in a dielectric barrier discharge measured by two-photon absorption fluorescence

    Science.gov (United States)

    Dvořák, P.; Talába, M.; Obrusník, A.; Kratzer, J.; Dědina, J.

    2017-08-01

    Two-photon absorption laser-induced fluorescence (TALIF) was utilized for measuring the concentration of atomic hydrogen in a volume dielectric barrier discharge (DBD) ignited in mixtures of Ar, H2 and O2 at atmospheric pressure. The method was calibrated by TALIF of krypton diluted in argon at atmospheric pressure, proving that three-body collisions had a negligible effect on quenching of excited krypton atoms. The diagnostic study was complemented with a 3D numerical model of the gas flow and a zero-dimensional model of the chemistry in order to better understand the reaction kinetics and identify the key pathways leading to the production and destruction of atomic hydrogen. It was determined that the density of atomic hydrogen in Ar-H2 mixtures was in the order of 1021 m-3 and decreased when oxygen was added into the gas mixture. Spatially resolved measurements and simulations revealed a sharply bordered region with low atomic hydrogen concentration when oxygen was added to the gas mixture. At substoichiometric oxygen/hydrogen ratios, this H-poor region is confined to an area close to the gas inlet and it is shown that the size of this region is not only influenced by the chemistry but also by the gas flow patterns. Experimentally, it was observed that a decrease in H2 concentration in the feeding Ar-H2 mixture led to an increase in H production in the DBD.

  3. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    Science.gov (United States)

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  4. Atomic Data Revisions for Improving Absorption Line Studies of the Interstellar, Circumgalactic, and Intergalactic Medium

    Science.gov (United States)

    Cashman, Frances; Kulkarni, Varsha; Kisielius, Romas; Ferland, Gary; Bogdanovich, Pavel

    2018-01-01

    Surveying and studying galaxies at different epochs is essential to understanding how galaxies evolve. Atomic spectroscopy is used to study the gas in and around galaxies by means of the absorption features in the spectra of background quasars. Element abundances derived from the measurement of observed lines in these quasar absorption systems rely on accurate atomic data such as the oscillator strength of electric dipole transitions. We have produced a compilation of recommended oscillator strengths for 576 key transitions for wavelengths longward of 911.753 Angstroms (the H I Lyman limit). This compilation focuses on the recent findings from numerous theoretical and experimental physicists for ions of astrophysical interest that have been observed in the interstellar medium (ISM), the circumgalactic medium (CGM), and the intergalactic medium (IGM), for selected elements ranging from C to Pb. Differences between the former and the newly recommended values are greater than 25% for approximately 22% of lines with updated oscillator strength values. We encourage future absorption line studies of the ISM, CGM, and IGM medium to use this compilation.This work was supported in part by NSF-AST/1108830, NASA/STScI support for HST GO-12536, and a NASA/SC Space Grant graduate fellowship.

  5. Novel atomic absorption spectrometric and rapid spectrophotometric methods for the quantitation of paracetamol in saliva: application to pharmacokinetic studies.

    Science.gov (United States)

    Issa, M M; Nejem, R M; El-Abadla, N S; Al-Kholy, M; Saleh, Akila A

    2008-01-01

    A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III) (method I); oxidation of p-aminophenol after the hydrolysis of paracetamol (method II). Iron (II) then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III) in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II) at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 mug/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 mug/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 mug/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%.

  6. The determination, by atomic-absorption spectrophotometry using electrothermal atomization, of platinum, palladium, rhodium, ruthenium, and iridium

    International Nuclear Information System (INIS)

    Haines, J.; Robert, R.V.D.

    1982-01-01

    A method that involves measurement by atomic-absorption spectrophotometry using electrothermal atomization has been developed for the determination of trace quantities of platinum, palladium, rhodium, ruthenium, and iridium in mineralogical samples. The elements are separated and concentrated by fusion, nickel sulphide being used as the collector, and the analyte elements are measured in the resulting acid solution. An organic extraction procedure was found to offer no advantages over the proposed method. Mutual interferences between the five platinum-group metals examined, as well as interferences from gold, silver, and nickel were determined. The accuracy of the measurement was established by the analysis of a platinum-ore reference material. The lower limits of determination of each of the analyte elements in a sample material are as follows: platinum 1,6μg/l, palladium 0,2μg/1, rhodium 0,5μg/l, ruthenium 3μg/l, and iridium 2,5μg/l. The relative standard deviations range from 0,05 for rhodium to 0.08 for iridium. The method, which is described in detail in the Appendix, is applicable to the determination of these elements in ores, tailings, and geological materials in which the total concentration of the noble metals is less than 1g/t

  7. Alternative set of conditions for molybdenum determination by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Edgar, R.M.

    1975-01-01

    In comparing a newly developed procedure with that recommended by Perkin--Elmer, et al., (Analytical Methods for Atomic Absorption Spectrophotometry, Perkin--Elmer Corp., Norwalk, Conn. 1973) two areas were found in which the new procedure appeared more suitable for Mo determination. If Cr is present in concentrations greater than 100 ppM, the recommended procedure results in an enhancement effect on Mo absorption. This erroneously high result is eliminated when the new procedure is followed. In the recommended procedure, when the sample has to be dissolved in hydrofluoric acid and Al is added to help eliminate interferences, the acid combines with the Al to form insoluble aluminum fluoride. The part that Al plays in eliminating interferences is lessened, because it is no longer in solution

  8. [Determination of aluminum in sediments by atomic absorption spectrophotometer without FIA spectrophotometric analysis].

    Science.gov (United States)

    Zhao, Zhen-yi; Han, Guang-xi; Song, Xi-ming; Luo, Zhi-xiong

    2008-06-01

    To search for a new method of determining, we developed a new flow injection analyzer, applied to the atomic absorption spectrophotometer, relying on it without flame in place of visible spectrophotometer, and studied the appropriate condition for the determination of aluminum in sediments, thus built up a kind of new analytical test technique. Three peak and two valley absorption values (A1, A2, A3, A4 and A5) can be continuously obtained simultaneously that all can be used for quantitative analysis, then we discussed its theory and experiment technique. Based on the additivity of absorbance (A = A1+A2+A3+A4+ A5), the sensitivity of FIA is enhanced, and its precision and linear relation are also good, raising the efficiency of AAS. The simple method has been applied to determining Al in sediments, and the results are satisfactory.

  9. Application of thermospray flame furnace atomic absorption spectrometry for investigation of silver nanoparticles.

    Science.gov (United States)

    Sirirat, Natnicha; Tetbuntad, Kornrawee; Siripinyanond, Atitaya

    2017-03-01

    Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was applied to investigate the time-dependent absorption peak profile of various forms of silver. The thermospray flame furnace was set up with a 10-cm-long nickel tube with six holes, each 2.0 mm in diameter, to allow the flame to enter, and this nickel tube acted as a furnace. A sample of 300 μL was introduced into this furnace by use of water as a carrier at a flow rate of 0.5 mL min -1 through the ceramic capillary (0.5-mm inner diameter and 2.0-mm outer diameter), which was inserted into the front hole of the nickel tube. The system was applied to examine atomization behaviors of silver nanoparticles (AgNPs) with particle sizes ranging from 10 to 100 nm. The atomization rate of AgNPs was faster than that of the dissolved silver ion. With increased amount of silver, the decay time observed from the time-dependent absorption peak profile was shortened in the case of dissolved silver ion, but it was increased in the case of AgNPs. With the particle size ranging from 10 to 100 nm, the detection sensitivity was indirectly proportional to the particle size, suggesting that TS-FF-AAS may offer insights into the particle size of AgNPs provided that the concentration of the silver is known. To obtain quantitative information on AgNPs, acid dissolution of the particles was performed before TS-FF-AAS analysis, and recoveries of 80-110% were obtained.

  10. Determination of mercury in sewage sludge by direct slurry sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Baralkiewicz, Danuta; Gramowska, Hanka; Kozka, MaIgorzata; Kanecka, Anetta

    2005-01-01

    Ultrasonic slurry sampling electrothermal atomic absorption spectrometry (ETAAS) method was elaborated to the determination of Hg in sewage sludge samples with the use of KMnO 4 +Pd modifier. The minimum sample amount required for slurry preparation with respect to sample homogeneity was evaluated by weighting masses between 3 and 30 mg directly into the autosampler cups. Validation of the proposed method was performed with the use of Certified Reference Materials of sewage sludge, CRM 007-040 and CRM 144R. Two sewage sludge samples from Poznan (Poland) city were analysed using the present direct method and a method with sample digestion, resulting in no difference within statistical error

  11. Platinum assay by neutron activation analysis and atomic absorption spectroscopy in cisplatin treated pregnant mice

    International Nuclear Information System (INIS)

    Esposito, M.; Collecchi, P.; Oddone, M.; Meloni, S.

    1987-01-01

    Cisplatin (CDDP) is an antineoplastic drug used in the treatment of a wide variety of tumors. This paper describes an investigation carried out on pregnant mice after intragastric or intraperitoneal treatment with CDDP from the 11st to 13rd day of gestation. Platinum content in different liver, kidney, placenta and brain tissues, was determined at 18. day of pregnancy. Neutron activation analysis and atomic absorption spectroscopy were used. Results of both techniques are presented and discussed in terms of precision, accuracy and sensitivity. Neutron activation analysis appears to provide better results correlated with the drug treatment. (author) 10 refs.; 4 tables

  12. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    Science.gov (United States)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  13. Determination of lead in high-purity silver. Comparison between photon activation and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Loos-Neskovic, C.; Fedoroff, M.; Revel, G.

    1978-01-01

    A chemical separation based on the fixation of silver on nickel ferrocyanide was studied. It was applied to the determination of lead in silver by photon-activation or atomic absorption spectrometry. The first method gave a detection limit of 0.1 μg. The second one could not be applied for concentration less than 50 μg/g, owing to loss by adsorption. Analytical results showed that lead is one of the major metallic impurity in high purity silver. (author)

  14. Atomic absorption determination of metals in soils using ultrasonic sample preparation

    International Nuclear Information System (INIS)

    Chmilenko, F.A.; Smityuk, N.M.; Baklanov, A.N.

    2002-01-01

    It was shown that ultrasonic treatment accelerates sample preparation of soil extracts from chernozem into different solvents by a factor of 6 to 60. These extracts are used for the atomic absorption determination of soluble species of Cd, Co, Cr, Cu, Ni, Pb, and Zn. The optimum ultrasound parameters (frequency, intensity, and treatment time) were found for preparing soil extracts containing analytes in concentrations required in agrochemical procedures. Different extractants used to extract soluble heavy metals from soils of an ordinary chernozem type in agrochemical procedures using ultrasonic treatment were classified in accordance with the element nature [ru

  15. [Determination of mercury in Boletus impolitus by flow injection-atomic absorption spectrometry].

    Science.gov (United States)

    Li, Tao; Wang, Yuan-Zhong

    2008-04-01

    Various test conditions and effect factors for the determination of mercury by flow injection-atomic absorption spectrometry were discussed, and a method for the determination of mercury in Boletus impolitus has been developed. The linear range for mercury is 0-60 microg x L(-1). The relative standard deviation is less than 3.0%, and the recovery is 96%-107%. This method is simple, rapid and has been applied to the determination of mercury in Boletus impolitus samples with satisfactory results.

  16. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fara, M.; Novak, F. [EGU Prague, PLC, Bichovice, Prague (Czechoslovakia)

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  17. Ionisation of hydrogen-like atoms by a multiphoton absorption process

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.

    1967-01-01

    The general expression for the amplitude of the probability of ionisation by a multiphoton absorption process is derived. Its non-relativistic limit is taken and the bipolar approximation is used for calculating the ionisation cross-section of hydrogen-like atoms. This latter involves the summation over intermediate virtual states by means of: a) a recursion relationship concerning angular functions, b) a particular technique which when applied to radial functions makes it possible to solve a system of inhomogeneous first-order differential equations. (authors) [fr

  18. Flow Injection and Atomic Absorption Spectrometry - An Effective and Attractive Analytical Chemical Combination

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Nielsen, Steffen

    1998-01-01

    One of the advantages of the flow injection (FI) concept is that it is compatible with virtually all detection techniques. Being a versatile vehicle for enhancing the performance of the individual detection devices, the most spectacular results have possibly been obtained in conjunction with atomic...... absorption spectrometry (AAS). Initially with flame-AAS (FAAS) procedures, later for hydride generation (HG) techniques, and most recently in combination with electrothermal AAS (ETAAS). The common denominator for all these procedures is the inherently precise and strictly reproducible timing that the sample...

  19. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    Science.gov (United States)

    Welty, Daniel E.

    1990-01-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  20. Direct determination of sodium and potassium in blood serum by flow injection and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Burguera, J.L.; Burguera, M.; Gallignani, M.

    1983-01-01

    A simple and reliable method for the measurement of sodium and potassium in blood serum without any sample dilution by using flow injection and atomic absorption spectrophotometry is described. A sample throughout of 100 measurements per hour is possible. The coefficient of variation for within-run determination was about 1,14 and 2,36% for sodium and potassium, respectively, in serum samples (n=10). The method is easily adaptable to pediatric research, because of the low required sample volume of 5ul. (Author) [pt

  1. Mercury speciation in environmental solid samples using thermal release technique with atomic absorption detection

    Energy Technology Data Exchange (ETDEWEB)

    Shuvaeva, Olga V. [Institute of Inorganic Chemistry, Academician Lavrent' ev Prospect 3, 630090 Novosbirsk (Russian Federation)], E-mail: olga@che.nsk.su; Gustaytis, Maria A.; Anoshin, Gennadii N. [Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptyug Prospect 3, 630090 Novosibirsk (Russian Federation)

    2008-07-28

    A sensitive and very simple method for determination of mercury species in solid samples has been developed involving thermal release analysis in combination with atomic absorption (AAS) detection. The method allows determination of mercury(II) chloride, methylmercury and mercury sulfide at the level of 0.70, 0.35 and 0.20 ng with a reproducibility of the results of 14, 25 and 18%, respectively. The accuracy of the developed assay has been estimated using certified reference materials and by comparison of the results with those of an independent method. The method has been applied for Hg species determination in original samples of lake sediments and plankton.

  2. Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Y.; Fernandez, P. [Centro de Control do Medio Marino, Peirao de Vilaxoan s/n, Vilagarcia de Arousa, 36611 Pontevedra (Spain); Gonzalez, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, 15706, Santiago de Compostela (Spain)

    2004-05-01

    A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 C and 2600 C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg{sup -1} (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg{sup -1} (wet weight). (orig.)

  3. Atomic-level molybdenum oxide nanorings with full-spectrum absorption and photoresponsive properties.

    Science.gov (United States)

    Yang, Yong; Yang, Yang; Chen, Shuangming; Lu, Qichen; Song, Li; Wei, Yen; Wang, Xun

    2017-11-16

    Superthin nanostructures, particularly with atomic-level thicknesses, typically display unique optical properties because of their exceptional light-matter interactions. Here, we report a facile strategy for the synthesis of sulfur-doped molybdenum oxide nanorings with an atomic-level size (thickness of 0.5 nm) and a tunable ring-in-ring architecture. These atomic-level nanorings displayed strong photo-absorption in both the visible and infrared-light ranges and acted as a photothermal agent. Under irradiation with an 808 nm laser with an intensity of 1 W/cm 2 , a composite of the nanorings embedded in polydimethylsiloxane showed an ultrafast photothermal effect, delivering a local temperature of up to 400 °C within 20 s, which to the best of our knowledge is the highest temperature by light irradiation reported to date. Meanwhile, the resulting nanorings were also employed as a photoinitiator to remotely induce a visible-light shape memory response, self-healing, reshaping performance and reversible actuation of dynamic three-dimensional structures. This study demonstrates an advancement towards controlling atomic-level-sized nanostructures and achieving greatly enhanced optical performances for optoelectronics.

  4. Investigation of artifacts caused by deuterium background correction in the determination of phosphorus by electrothermal atomization using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Borges, Daniel L.G.; Welz, Bernhard; Silva, Marcia M.; Heitmann, Uwe

    2008-01-01

    The artifacts created in the measurement of phosphorus at the 213.6-nm non-resonance line by electrothermal atomic absorption spectrometry using line source atomic absorption spectrometry (LS AAS) and deuterium lamp background correction (D 2 BC) have been investigated using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). The absorbance signals and the analytical curves obtained by LS AAS without and with D 2 BC, and with HR-CS AAS without and with automatic correction for continuous background absorption, and also with least-squares background correction for molecular absorption with rotational fine structure were compared. The molecular absorption due to the suboxide PO that exhibits pronounced fine structure could not be corrected by the D 2 BC system, causing significant overcorrection. Among the investigated chemical modifiers, NaF, La, Pd and Pd + Ca, the Pd modifier resulted in the best agreement of the results obtained with LS AAS and HR-CS AAS. However, a 15% to 100% higher sensitivity, expressed as slope of the analytical curve, was obtained for LS AAS compared to HR-CS AAS, depending on the modifier. Although no final proof could be found, the most likely explanation is that this artifact is caused by a yet unidentified phosphorus species that causes a spectrally continuous absorption, which is corrected without problems by HR-CS AAS, but which is not recognized and corrected by the D 2 BC system of LS AAS

  5. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    International Nuclear Information System (INIS)

    Katskov, Dmitri

    2015-01-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D 2 and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground water

  6. Determination of mercury, lead and cadmium in water by the CRA-atomic absorption spectrophotometry with solvent extraction

    International Nuclear Information System (INIS)

    Shim, Y.B.; Won, M.S.; Kim, C.J.

    1980-01-01

    The method of CRA-atomic absorption spectrophotometer with solvent extraction for the determination of mercury, lead and cadmium in water was studied. The optimum extracting conditions for CRA-atomic absorption spectrophotometry were the following: the complexes of mercury, lead and cadmium with dithizone were separated from the aqueous solution and concentrated into the 10 ml chloroform solution. Back extraction was performed; the concentrated mercury, lead and cadmium was extracted from the chloroform solution into the 10 ml 6-normal aqueous hydrochloric acid solution. In this case, recovery ratios were the following: mercury was 94.7%, lead 97.7% and cadmium 103.6%. The optimum operating conditions for the determination of mercury, lead and cadmium by the CRA-atomic absorption spectrophotometry also were investigated to test the dry step, ash step and atomization step for each metal. The experimental results of standard addition method were the following: the determination limit of each metal within 6% relative deviation was that lead was 0.04 ppb, and cadmium 0.01 ppb. Especially, mercury has been known impossible to determine by CRA-atomic absorption spectrophotometry until now. But in this study, mercury can be determined with CRA-atomic absorption spectrophotometer. Its determination limit was 4 ppb within 8% relative deviation. (author)

  7. Atomic and ionic density measurement by laser absorption spectroscopy of magnetized or non-magnetized plasmas

    International Nuclear Information System (INIS)

    Le Gourrierec, P.

    1989-11-01

    Laser absorption spectroscopy is an appreciated diagnostic in plasma physics to measure atomic and ionic densities. We used it here more specifically on metallic plasmas. Firstly, a uranium plasma was created in a hollow cathode. 17 levels of U.I and U.II (12 for U.I and 5 for U.II) are measured by this method. The results are compared with the calculated levels of two models (collisional-radiative and LTE). Secondly, the theory of absorption in presence of a magnetic field is recalled and checked. Then, low-density magnetized plasma produced on our ERIC experiment (acronym for Experiment of Resonance Ionic Cyclotron), have been diagnosed successfully. The use of this technique on a low density plasma has not yet been published to our knowledge. The transverse temperature and the density of a metastable atomic level of a barium plasma has been derived. The evolution of a metastable ionic level of this element is studied in terms of two source parameters (furnace temperature and injected hyperfrequency power) [fr

  8. Slurry analysis after lead collection on a sorbent and its determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Baysal, Asli; Tokman, Nilgun [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak-Istanbul (Turkey); Akman, Suleyman [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak-Istanbul (Turkey)], E-mail: akmans@itu.edu.tr; Ozeroglu, Cemal [Istanbul University, Department of Chemistry, Faculty of Engineering, 34320 Avcilar-Istanbul (Turkey)

    2008-02-11

    In this study, in order to eliminate the drawbacks of elution step and to reach higher enrichment factors, a novel preconcentration/separation technique for the slurry analysis of sorbent loaded with lead prior to its determination by electrothermal atomic absorption spectrometry was described. For this purpose, at first, lead was collected on ethylene glycol dimethacrylate methacrylic acid copolymer (EGDMA-MA) treated with ammonium pyrolidine dithiocarbamate (APDC) by conventional batch technique. After separation of liquid phase, slurry of the sorbent was prepared and directly pipetted into graphite furnace of atomic absorption spectrophotometer. Optimum conditions for quantitative sorption and preparation of the slurry were investigated. A 100-fold enrichment factor could be easily reached. The analyte element in certified sea-water and Bovine-liver samples was determined in the range of 95% confidence level. The proposed technique was fast and simple and the risks of contamination and analyte loss were low. Detection limit (3{delta}) for Pb was 1.67 {mu}g l{sup -1}.

  9. The Validation of Atomic Absorption Spectrometry (AAS) Method for the Determination of Cr, Cu and Pb

    International Nuclear Information System (INIS)

    Purwanto, A.; Supriyanto, C.; Samin P

    2007-01-01

    The validation of analytical method of atomic absorption spectrometry for the determination of Cr, Cu and Pb by using certified reference materials (CRM) have been carried out. The validation of analytical method was done by measurement of precision, accuracy, bias, % D and % RSD by analysis of chromium (Cr), Copper (Cu), and Lead (Pb) elements in CRM samples. Soil-7 is weighted and dissolved 0.3337 gram to use the bomb digester with concentrated nitric acid, perchloric acid, fluoric acid, and than solution to vinal volume is 10 mL with aquabidest. The validity of instrument atomic absorption spectrometer still valid with obtained of accuracy is 95.85 % and precision is 2.86 for Cr.; 103.32 % and 0.45 for Cu., 114.14 % and 9.89 for Pb. The validation of analytical method showed that with obtained of the content of Cr, Cu and Pb elements is 57.51, 11.37 and 68.49 μg/g., this result is still in the range concentration of certificate. (author)

  10. Analysis for lead in undiluted whole blood by tantalum ribbon atomic absorption spectrophotometry.

    Science.gov (United States)

    Therrell, B L; Drosche, J M; Dziuk, T W

    1978-07-01

    We describe a modified tantalum ribbon atomic absorption procedure for determining lead in undiluted whole blood. An instrumentation Laboratory (I.L.) Model 151 atomic absorption spectrophotometer equipped with an I.L. Model 355 Flameless Sampler was used. The Flameless Sampler was slightly modified to include three-cycle operation instead of the normal two cycles. This modified single-beam system, equipped with background correction, allows 5-microliter specimens of whole blood to be quickly and accurately analyzed. No sample preparation other than vortex mixing is involved and method reliability has been demonstrated during an extended period of successful participation in proficiency testing studies conducted by the Center for Disease Control. This tantalum ribbon methodology has further been demonstrated to be effective both as a primary screening procedure and as a confirmatory procedure, when coupled with erythrocyte protoporphyrin determinations, in screening over 300 000 clients during a three-year period of use in the Early and Periodic Screening, Diagnosis and Treatment (EPSDT) Program in Texas.

  11. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of some fluoroquinolone antibacterials using ammonium reineckate

    Science.gov (United States)

    Al-Ghannam, Sheikha M.

    2008-04-01

    Three accurate, rapid and simple atomic absorption spectrometric (AAS), conductometric and colorimetric methods were developed for the determination of gatifloxacin (GTF), moxifloxacin (MXF) and sparfloxacin (SPF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone. The optimizations of various experimental conditions were described. Optimum concentration ranges for the determination of GTF, MXF and SPF were 5.0-150, 40-440 μg mL -1 and 0.10-1.5 mg mL -1 using atomic absorption (AAS), conductometric and colorimetric methods, respectively. Detection and quantification limits are ranges from 1.5 to 2.3 μg mL -1 using AAS method or 30-45 μg mL -1 using colorimetric method. The proposed procedures have been applied successfully to the analysis of these drugs in pharmaceutical formulations and the results are favourably comparable to the reference methods.

  12. Analysis of trace metals in sodium by flameless atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Mahalingam, T.R.; Geetha, R.; Thiruvengadasamy, A.; Mathews, C.K.

    1981-01-01

    The estimation of trace metallic impurities in sodium is normally carried out by distilling off the sodium in vacuuum and analysing the residue by atomic absorption spectrophotometry (AAS). This paper describes the direct determination of the following impurities (viz.) Fe, Co, Ni, Cr, Mn, Ca, and Cu in sodium without going through the distillation step. Here sodium is simply dissolved and the solution is subjected to analysis by AAS using flameless atomisation in a graphite furnace. The method of standard additions is employed. Preliminary experiments were carried out to study the matrix effect of sodium on the atomic absorption of cobalt. It has been found that if pyrolysis is done at 1250 0 C for 20 seconds prior to atomisation, the bulk of the sodium nitrate matrix could be successfully removed. The use of the optimum pyrolysis temperatures for the various elements listed above and the matrix interference on the absorbances of these analytes are discussed in this paper. The precision and accuracy of our analytical procedure is also presented. (orig.)

  13. Determination of the Rb atomic number density in dense rubidium vapors by absorption measurements of Rb2 triplet bands

    International Nuclear Information System (INIS)

    Horvatic, Vlasta; Veza, Damir; Niemax, Kay; Vadla, Cedomil

    2008-01-01

    A simple and accurate way of determining atom number densities in dense rubidium vapors is presented. The method relies on the experimental finding that the reduced absorption coefficients of the Rb triplet satellite bands between 740 nm and 750 nm and the triplet diffuse band between 600 nm and 610 nm are not temperature dependent in the range between 600 K and 800 K. Therefore, the absolute values of the reduced absorption coefficients of these molecular bands can provide accurate information about atomic number density of the vapor. The rubidium absorption spectrum was measured by spatially resolved white-light absorption in overheated rubidium vapor generated in a heat pipe oven. The absolute values for the reduced absorption coefficients of the triplet bands were determined at lower vapor densities, by using an accurate expression for the reduced absorption coefficient in the quasistatic wing of the Rb D1 line, and measured triplet satellite bands to the resonance wing optical depth ratio. These triplet satellite band data were used to calibrate in absolute scale the reduced absorption coefficients of the triplet diffuse band at higher temperatures. The obtained values for the reduced absorption coefficient of these Rb molecular features can be used for accurate determination of rubidium atomic number densities in the range from about 5 x 10 16 cm -3 to 1 x 10 18 cm -3

  14. Use of Zeeman atomic absorption spectroscopy for the measurement of mercury in oil shale gases

    Energy Technology Data Exchange (ETDEWEB)

    Girvin, D.C.; Hadeishi, T.; Fox, J.P.

    1979-03-01

    A technique to continuously measure total mercury in a gas stream in the presence of high concentrations of organics, smoke, oil mist, and other interfering substances is described. The technique employees Zeeman atomic absorption (ZAA) spectroscopy as the mercury detector, which has been successfully used to measure mercury in oil shale offgases. The instrument consists of a light source which provides the 2537 A mercury emission line; a furnace-absorption tube assembly where the sample is vaporized and swept into the light path and a detector which converts the signal into an ac voltage for processing. Sample gas is heated to 900/sup 0/C in the furnace-absorption tube assembly aligned with the optical axis of the ZAA spectrometer. The 2537 A mercury emission line (..pi..) and a reference line (sigma) are generated by a single discharge lamp operated in a 15 kG magnetic field. The difference between the ..pi.. and sigma components is taken by a lock-in-amplifier and converted to a signal which is proportional to the amount of mercury in the gas.

  15. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Ding Chunling; Li Jiahua; Yang Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhan Zhiming [School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Liu Jibing, E-mail: clding2006@126.com, E-mail: huajia_li@163.com [Department of Physics, Hubei Normal University, Huangshi 435002 (China)

    2011-07-28

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  16. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Zhan Zhiming; Liu Jibing

    2011-01-01

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  17. Evaluation on corrosively dissolved gold induced by alkanethiol monolayer with atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Cao Zhong; Zhang Ling; Guo Chaoyan; Gong Fuchun; Long Shu; Tan Shuzhen; Xia Changbin; Xu Fen; Sun Lixian

    2009-01-01

    We have monitored a gold corrosive dissolution behavior accompanied in n-alkanethiol like n-dodecanethiol assembled process with in situ quartz crystal microbalance (QCM), and then observed it with atomic force microscopy (AFM) which showed an evident image of corrosive defects or holes produced on gold substrate, corresponding to gold dissolution induced by the alkanethiol molecules in the presence of oxygen. For detection of the dissolved gold defects during alkanethiol assembled process, an atomic absorption spectroscopy (AAS) has been carried out in this paper, and the detection limit for the dissolved gold could be evaluated to be 15.4 ng/mL. The amount of dissolved gold from the substrates of gold plates as functions of immersion time, acid media, solvents and thiol concentration has been examined in the oxygen saturated solutions. In comparison with in situ QCM method, the kinetics behavior of the long-term gold corrosion on the gold plates in 1.0 mmol/L of n-dodecanethiol solution determined with AAS method was a slow process, and its corrosion rate on gold dissolution could be evaluated to be about 4.4 x 10 -5 ng.cm -2 .s -1 , corresponding to 1.3 x 10 8 Au atoms.cm -2 .s -1 , that was much smaller than that of initial rate monitored with in situ QCM. Both kinetics equations obtained with QCM and AAS showed a consistent corrosion behavior on gold surfaces.

  18. Atomic Oxygen Abundance in Molecular Clouds: Absorption Toward Sagittarius B2

    Science.gov (United States)

    Lis, D. C.; Keene, Jocelyn; Phillips, T. G.; Schilke, P.; Werner, M. W.; Zmuidzinas, J.

    2001-01-01

    We have obtained high-resolution (approximately 35 km/s) spectra toward the molecular cloud Sgr B2 at 63 micrometers, the wavelength of the ground-state fine-structure line of atomic oxygen (O(I)), using the ISO-LWS instrument. Four separate velocity components are seen in the deconvolved spectrum, in absorption against the dust continuum emission of Sgr B2. Three of these components, corresponding to foreground clouds, are used to study the O(I) content of the cool molecular gas along the line of sight. In principle, the atomic oxygen that produces a particular velocity component could exist in any, or all, of three physically distinct regions: inside a dense molecular cloud, in the UV illuminated surface layer (PDR) of a cloud, and in an atomic (H(I)) gas halo. For each of the three foreground clouds, we estimate, and subtract from the observed O(I) column density, the oxygen content of the H(I) halo gas, by scaling from a published high-resolution 21 cm spectrum. We find that the remaining O(I) column density is correlated with the observed (13)CO column density. From the slope of this correlation, an average [O(I)]/[(13)CO] ratio of 270 +/- 120 (3-sigma) is derived, which corresponds to [O(I)]/[(13)CO] = 9 for a CO to (13)CO abundance ratio of 30. Assuming a (13)CO abundance of 1x10(exp -6) with respect to H nuclei, we derive an atomic oxygen abundance of 2.7x10(exp -4) in the dense gas phase, corresponding to a 15% oxygen depletion compared to the diffuse ISM in our Galactic neighborhood. The presence of multiple, spectrally resolved velocity components in the Sgr B2 absorption spectrum allows, for the first time, a direct determination of the PDR contribution to the O(I) column density. The PDR regions should contain O(I) but not (13)CO, and would thus be expected to produce an offset in the O(I)-(13)CO correlation. Our data do not show such an offset, suggesting that within our beam O(I) is spatially coexistent with the molecular gas, as traced by (13)CO

  19. Elemental investigation of momordica charantia linn. and syzigium jambolana linn. using atomic absorption spectrophotometer

    International Nuclear Information System (INIS)

    Kazi, T.G.

    2002-01-01

    Elemental investigation of very important medicinal plant i.e. momordica charantia linn and syzigium jambolana linn, and its decoction has been carried out using flame atomic absorption spectrophotometer. In present study fifteen essential, trace and toxic elements such as Zn, Cr, K, Mg, Ca, Na, Cu, Fe, Pb, Al, Ba, Mn, Co, Ni and Cd were determined in different parts of both plants and in its decoction. The level of essential elements was found high as compared to the level of toxic elements. Both plants are useful in the treatment of diabetes. The validation of the method was checked by employing NBS- 1570 (Spanish) as a standard reference material . The measured values of elements are in close agreement with certified values. (author)

  20. On-line determination of manganese in solid seafood samples by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yebra, M.C.; Moreno-Cid, A.

    2003-01-01

    Manganese is extracted on-line from solid seafood samples by a simple continuous ultrasound-assisted extraction system (CUES). This system is connected to an on-line manifold, which permits the flow-injection flame atomic absorption spectrometric determination of manganese. Optimisation of the continuous leaching procedure is performed by an experimental design. The proposed method allows the determination of manganese with a relative standard deviation of 0.9% for a sample containing 23.4 μg g -1 manganese (dry mass). The detection limit is 0.4 μg g -1 (dry mass) for 30 mg of sample and the sample throughput is ca. 60 samples per hour. Accurate results are obtained by measuring TORT-1 certified reference material. The procedure is finally applied to mussel, tuna, sardine and clams samples

  1. Neutron activation analysis and atomic absorption spectrophotometry for the analysis of fresh, pasteurised and powder milk

    International Nuclear Information System (INIS)

    Wasim, M.; Rehman, S.; Arif, M.; Fatima, I.; Zaidi, J.H.

    2012-01-01

    This study shows the application of semi-absolute k 0 instrumental neutron activation analysis (k 0 -INAA), epithermal neutron activation analysis (ENAA) and atomic absorption spectrophotometry (AAS) for the determination of 21 elements (Br, Ca, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sc Sr, and Zn) in different types of milk samples. The ENAA was required for the determination of iodine, AAS for Cu, Ni and Pb and the rest of the elements were measured by k 0 -INAA. Thirteen elements (Br, Ca, Cl, Cs, Cu, Fe, K, Mg, Na, P, Rb, Sr and Zn) were identified in all milk samples. Ni was detected in eleven and Pb in two samples. Concentrations of most of the elements were within the ranges of the world reported data. The data was further explored by principal component analysis to find relationships between samples and elements. (orig.)

  2. Development of mixed-waste analysis capability for graphite furnace atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Bass, D.A.; TenKate, L.B.; Wroblewski, A.

    1995-03-01

    Graphite furnace atomic absorption spectrophotometer (GFAAS) are typically configured with ventilation to capture potentially toxic and corrosive gases emitted from the vaporization of sample aliquots. When radioactive elements are present, additional concerns (such as meeting safety guidelines and ALARA principles) must be addressed. This report describes a modification to a GFAAS that provides additional containment of vaporized sample aliquots. The modification was found to increase containment by a factor of 80, given expected operating conditions. The use of the modification allows more mixed-waste samples to be analyzed, permits higher levels of radioactive samples to be analyzed, or exposes the analyst to less airborne radioactivity. The containment apparatus was attached to a Perkin-Elmer Zeeman 5000 spectrophotometer for analysis of mixed-waste samples; however, it could also be used on other systems and in other applications where greater containment of vaporized material is desired

  3. Determination of trace amounts of tin in geological materials by atomic absorption spectrometry

    Science.gov (United States)

    Welsch, E.P.; Chao, T.T.

    1976-01-01

    An atomic absorption method is described for the determination of traces of tin in rocks, soils, and stream sediments. A dried mixture of the sample and ammonium iodide is heated to volatilize tin tetraiodide -which is then dissolved in 5 % hydrochloric acid, extracted into TOPO-MIBK, and aspirated into a nitrous oxide-acetylene flame. The limit of determination is 2 p.p.m. tin and the relative standard deviation ranges from 2 to 14 %. Up to 20 % iron and 1000 p.p.m. Cu, Pb, Zn, Mn, Hg, Mo, V, or W in the sample do not interfere. As many as 50 samples can be easily analyzed per man-day. ?? 1976.

  4. Determination of cadmium in whole blood and urine by Zeeman atomic absorption spectroscopy.

    Science.gov (United States)

    Pleban, P A; Pearson, K H

    1979-12-17

    Direct determination of cadmium in whole blood and urine can be achieved using Zeeman effect flameless atomic absorption spectroscopy. Within-run precision studies for whole blood cadmium determinations gave relative standard deviations of 11.3% and 6.3% for 0.53 micrograms/l and 3.16 micrograms/l, respectively. Within-run precision studies for the urine analyses yielded relative standard deviations of 11.3% and 5.2% for 0.62 micrograms/l and 2.48 micrograms/l, respectively. The detection limit is 0.12 micrograms/l in the diluted specimens. Thus, this methodology may be used to quantitate normal and toxic cadmium levels in whole blood and urine.

  5. [Graphite furnace atomic absorption spectrometry for determination of thallium in blood].

    Science.gov (United States)

    Zhang, Q L; Gao, G

    2016-04-20

    Colloidal palladium was used as chemical modifier in the determination of blood thallium by graphite furnace atomic absorption spectrometry. Blood samples were precipitated with 5% (V/V)nitric acid, and then determined by GFAAS with colloidal palladium used as a chemical modifier. 0.2% (W/V)sodium chloride was added in the standard series to improve the matrix matching between standard solution and sample. The detection limit was 0.2 μg/L. The correlation coefficient was 0.9991. The recoveries were between 93.9% to 101.5%.The relative standard deviations were between 1.8% to 2.7%.The certified reference material of whole blood thallium was determined and the result was within the reference range Conclusion: The method is accurate, simple and sensitive, and it can meet the needs of detection thallium in blood entirely.

  6. Practical aspects of the uncertainty and traceability of spectrochemical measurement results by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duta, S.; Robouch, P.; Barbu, L.; Taylor, P.

    2007-01-01

    The determination of trace elements concentration in water by electrothermal atomic absorption spectrometry (ETAAS) is a common and well established technique in many chemical testing laboratories. However, the evaluation of measurement uncertainty results is not systematically implemented. The paper presents an easy step-by-step example leading to the evaluation of the combined standard uncertainty of copper determination in water using ETAAS. The major contributors to the overall measurement uncertainty are identified due to amount of copper in water sample that mainly depends on the absorbance measurements, due to certified reference material and due to auto-sampler volume measurements. The practical aspects how the traceability of copper concentration in water can be established and demonstrated are also pointed out

  7. Estimation of lead and zinc in human hair using atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Kazi, S.; Kazi, T.G.; Kazi, G.H.

    1993-01-01

    Trace elements analysis in hair can be useful in studying the impact of environmental and dietary factors on human in general for lead and zinc content in hair. Samples of people of different age groups, sex with varied living habits of the individual living in different areas of Sind, urban as well as rural areas were of special interest to be studied to find correlation of socioeconomic factors and the presence of these elements in hair samples. The purpose of this study was to determine whether age, sex and physiological status and environmental pollution affect composition of hair. The method of sample preparation and use of atomic absorption techniques providing unequivocal and direct estimation of metals in ppm/ppb range to arrive upon conclusion. (author)

  8. Atomic absorption determination of iron and copper impurities in rare earth compounds

    International Nuclear Information System (INIS)

    Zelyukova, Yu.V.; Kravchenko, J.B.; Kucher, A.A.

    1978-01-01

    An extraction atomic absorption method for the determination of copper and iron impurities in rare earth compounds has been developed. The extraction separation of determined elements as hydroxy quinolinates with isobuthyl alcohol was used. It increased the sensitivity of these element determination and excluded the effect of the analysed sample. Cu, Te, Zn, Bi, Sn, In, Ga, Tl and the some other elements can be determined at pH 2.0-3.0 but rare earths are remained in an aqueous phase. The condition of the flame combustion does not change during the introduction of isobutyl extract but the sensitivity of the determination of the elements increased 2-3 times. The limit of Fe determination is 0.01 mg/ml and the limit of Cu determination is 0.014 mg/ml

  9. Determination of molybdenum in silicates through atomic absorption spectrometry using pre-concentration by active carbon

    International Nuclear Information System (INIS)

    Boaventura, G.R.; Rocha Hirson, J. da; Santelli, R.E.

    1989-01-01

    An analytical procedure for molybdenum determination in geological materials through Atomic Absorption Spectrometry, after pre-concentration of the Mo-APDC complex in activated carbon, has been developed, which is needed in order to reduce the dilution effect in the sample decomposition. During the development of this method the influence of pH, the amount of APDC for complexation of Mo and the interference of Fe, Ca, Mn, Al, K, Na, Mg and Ti were tested. It was shown that none of these causes any significant effect on the Mo determination proposed. The results of the analysis at the international geochemical reference samples JB-1 (basalt) and GH (granite) were very accurate and showed that the detection limit in rocks (1,00g) is 0,6 ppm, when using sample dilution of 1 ml and microinjection techniques. (author) [pt

  10. Sensitivity and accuracy of atomic absorption spectrophotometry for trace elements in marine biological samples

    International Nuclear Information System (INIS)

    Fukai, R.; Oregioni, B.

    1976-01-01

    During the course of 1974-75 atomic absorption spectrophotometry (AAS) has been used extensively in our laboratory for measuring various trace elements in marine biological materials in order to conduct homogeneity tests on the intercalibration samples for trace metal analysis as well as to obtain baseline data for trace elements in various kinds of marine organisms collected from different locations in the Mediterranean Sea. Several series of test experiments have been conducted on the current methodology in use in our laboratory to ensure satisfactory analytical performance in measuring a number of trace elements for which analytical problems have not completely been solved. Sensitivities of the techniques used were repeatedly checked for various elements and the accuracy of the analyses were always critically evaluated by analyzing standard reference materials. The results of these test experiments have uncovered critical points relevant to the application of the AAS to routine analysis

  11. Determination of lanthanides in yttrium and praseodymium oxides by atomic absorption spectrophotometry using a graphite furnace

    International Nuclear Information System (INIS)

    Modenesi, C.R.; Abrao, A.

    1984-01-01

    The operational conditions for the graphite furnace, the instrumental parameters and the sensitivity for the determination of Pr, Nd, Sm, Eu, Y, Gd, Dy, Er, Ho, Tm, and Yb in Y 2 O 3 and Pr 2 O 3 by atomic absorption spectrophotometry are presented. The analyses were carried out into a highly pure argon atmosphere and using pyrolytic graphite tube and graphite supporting electrodes. The accuracy and precision of the method were checked through analyses of synthetic lanthanides mixtures. The concentration range of the lanthanides varied from 0,003 to 3,5% in Y 2 O 3 and from 0,001 to 3,5% in Pr 2 O 3 . (Author) [pt

  12. Determination of cadmium in bovine tissue by spectrophotometry of atomic absorption

    International Nuclear Information System (INIS)

    Gonzalez Zeledon, Mauricio

    2004-01-01

    The present work utilized the suggested method by Food Safety and Inspection Service (FSIS) for the analysis of cadmium in animal tissue, it was adapted by the Toxicology's Laboratory of MAG, where the project was organized. This method consist of a burning of sample and the instrumental analysis by means of the atomic absorption's technique. In the study there were determined parameters of carrying out of the analytical methodology, it was getting the following values: linearity : 0,020 -1,0 mg/L; homogeneity of the model: homoscedastic; limit of detection (LD) : 0,0049 mg/kg (4,9 μg/Kg); limit of quantification (LC): 0,016 μg/L (16 mg/kg); sensibility of calibration: 0,243 A * L/gm; analytical sensibility: 105 L/mg; instrumental repetitively: [es

  13. Analysis of soil reference materials for vanadium(+5) species by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mandiwana, Khakhathi L.; Panichev, Nikolay

    2010-01-01

    Solid Certified Reference Materials (CRMs) with known vanadium(+5) content are currently not commercially available. Because of this, vanadium species have been determined in solid CRMs of soil, viz. CRM023-50, CRM024-50, CRM049-50, SQC001 and SQC0012. These CRMs are certified with only total vanadium content. Vanadium(+5) was extracted from soil reference materials with 0.1 M Na 2 CO 3 . The quantification of V(+5) was carried out by electrothermal atomic absorption spectrometry (ET-AAS). The concentration of V(+5) in the analyzed CRMs was found to be ranging between 3.60 and 86.0 μg g -1 . It was also found that SQC001 contains approximately 88% of vanadium as V(+5) species. Statistical evaluation of the results of the two methods by paired t-test was in good agreement at 95% level of confidence.

  14. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    Science.gov (United States)

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions.

  15. Determination of Aluminum in Dialysis Concentrates by Atomic Absorption Spectrometry after Coprecipitation with Lanthanum Phosphate.

    Science.gov (United States)

    Selvi, Emine Kılıçkaya; Şahin, Uğur; Şahan, Serkan

    2017-01-01

    This method was developed for the determination of trace amounts of aluminum(III) in dialysis concentrates using atomic absorption spectrometry after coprecipitation with lanthanum phosphate. The analytical parameters that influenced the quantitative coprecipitation of analyte including amount of lanthanum, amount of phosfate, pH and duration time were optimized. The % recoveries of the analyte ion were in the range of 95-105 % with limit of detection (3s) of 0.5 µg l -1 . Preconcentration factor was found as 1000 and Relative Standard Deviation (RSD) % value obtained from model solutions was 2.5% for 0.02 mg L -1 . The accuracy of the method was evaluated with standard reference material (CWW-TMD Waste Water). The method was also applied to most concentrated acidic and basic dialysis concentrates with satisfactory results.

  16. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    Science.gov (United States)

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Influences of the matrix effect in the sensibility of cobalt measurement by atomic absorption

    International Nuclear Information System (INIS)

    Avila, L.A. d'.

    1977-06-01

    The interferences caused by iron, aluminium, calcium, magnesium, manganese, copper, nickel, zinc, sodium and potassium in the determination of cobalt by atomic absorption, were studied. The concentrations of cobalt were varied in the range of 1 to 800 μg/ml and the concentrations of the interferents in the proportions occuring normally in soils, rocks, sediments, geological material in general, alloys, caustic liquors etc. To study the flame composition effect, the flame region effect and also the effect of different interferent concentrations on the cobalt for each selected spectral line, an air-acetilene flame was utilized. As an application of this study the effect was shown of 'simulated soil matrices' with respect to the interference of iron on cobalt [pt

  18. Determination of tin in biological reference materials by atomic absorption spectrophotometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Chiba, M.; Iyengar, V.; Gills, T.

    1991-01-01

    Because of a lack of reliable analytical techniques for the determination of tin in biological materials, there have been no reference materials certified for this element. However, the authors' experience has shown that it is feasible to use both atomic absorption and nuclear activation techniques at least for selected matrices. Therefore, an investigation was undertaken to determine tin in several biological materials such as non-fat milk powder (NBS-SRM-1549), citrus leaves (NBS-SRM-1572), total diet (NIST-SRM-1548), mixed diet (NBS-RM-8431), and USDIET-I by atomic absorption spectrophotometry (AAS) and neutron activation analysis (NAA). AAS-ashed samples were extracted with MIBK and assayed using a Perkin Elmer model 5000 apparatus. NAA was carried out by irradiating the samples at the NIST reactor in the RT-4 facility and counting with the help of a Ge(Li) detector connected to a multichannel analyzer. The concentration of tin measured by both AAS and NAA agree well for USDIET-I, total diet, citrus leaves and non-fat milk powder (the concentration ranges for tin in these matrices were from 0.0025 to 3.8 micro g/g). However, in the case of mixed diet (RM-8431), the mean values found were 47 ± 5.6 (n = 19) by AAS and 55.5 ± 2.5 (n = 6) by INAA. Since RM-8431 is not certified it is difficult to draw conclusions. For apple and peach leaves, a distillation step was required. The results were apple leaves 0.085 ± 0.015 (n = 10) by AAS and < 0.2 (n = 3) by RNAA; for peach leaves 0.077 ± 0.02 (n = 9) by AAS and < 0.1 (n = 3) by RNAA. All concentrations are expressed in micro g/g dry weight

  19. Simultaneous determination of selenium and tellurium in native sulfur by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Arikawa, Yoshiko; Hirai, Shoji; Ozawa, Takejiro.

    1979-01-01

    A method for the determination of selenium and tellurium in native sulfur has been investigated by means of atomic absorption spectrophotometry. Native sulfur collected from around fumarole or volcanic crater is ground down into powder, a portion of which weighing 1 g is subjected to analysis. A 2.6% (w/v) sodium hydroxide solution is added by 10 ml to the sample in a teflon beaker, and the mixture is then heated on a hot plate. Sulfur is decomposed and dissolved in the form of disulfide and thiosulfate. A 30% hydrogenperoxide solution is added by 10 ml to oxidize them to sulfate. At the same time selenium and tellurium contained in the sulfur sample are also thought to be oxidized to Se(VI) and Te(VI) states. The solution is neutralized with hydrochloric acid and diluted with distilled water to 100 ml. The sample solution thus prepared is sprayed into the air-acetylene flame of the atomic absorption spectrophotometer. The absorbance is measured at 195.9 nm for selenium and 214.2 nm for tellurium. Calibration curve is prepared by measuring the absorbances of the solutions prepared as follows. One gram portions of pure sulfur (99.9999%) are decomposed as for the samples. After neutralization, standard solutions containing each same amount of selenium and tellurium (0 -- 1000 μg) are added to the sulfur solution and then diluted with water to 100 ml. The standard deviations were estimated to be 50.4 ppm for selenium at 756 ppm and 16.6 ppm for tellurium at 587 ppm. For the check of the reliability of the method, results were compared with those obtained by neutron activation analysis. Results obtained by both methods showed good agreement. (author)

  20. Free-free absorption of infrared radiation in collisions of electrons with neutral rare-gas atoms

    Science.gov (United States)

    Stallcop, J. R.

    1974-01-01

    A relationship between the inverse bremsstrahlung absorption cross section and the electron neutral momentum transfer cross section has been utilized to determine the infrared free-free continuum absorption coefficient for the negative ions of helium, neon, argon, krypton, and xenon. The values of the momentum transfer cross section for this calculation have been obtained from experimental measurements. Analytical expressions for the absorption coefficient have also been developed. From the results of this calculation, it is possible to determine the absorption coefficient per unit electron density per neutral atom for temperatures in the range from 2500 to 25,000 K. The results are compared with those from tabulations of previous calculations and those computed from theoretical values of the phase shifts for the elastic scattering of electrons by neutral atoms.

  1. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    Science.gov (United States)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  2. Observations of absorption lines from highly ionized atoms. [of interstellar medium

    Science.gov (United States)

    Jenkins, Edward B.

    1987-01-01

    In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. few x 0.001/cu cm) existing at coronal temperatures log T = 5.3 or 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity (v = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic UV radiation from very hot, dwarf stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.

  3. High-resolution continuum-source atomic absorption spectrometry: what can we expect?

    Directory of Open Access Journals (Sweden)

    Welz Bernhard

    2003-01-01

    Full Text Available A new instrumental concept has been developed for atomic absorption spectrometry (AAS, using a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator and a CCD array detector, providing a resolution of ~2 pm per pixel. Among the major advantages of the system are: i an improved signal-to-noise ratio because of the high intensity of the radiation source, resulting in improved photometric precision and detection limits; ii for the same reason, there are no more 'weak' lines, i.e. secondary lines can be used without compromises; iii new elements might be determined, for which no radiation source has been available; iv the entire spectral environment around the analytical line becomes 'visible', giving a lot more information than current AAS instruments; v the CCD array detector allows a truly simultaneous background correction close to the analytical line; vi the software is capable of storing reference spectra, e.g. of a molecular absorption with rotational fine structure, and of subtracting such spectra from the spectra recorded for a sample, using a least squares algorithm; vii although not yet realized, the system makes possible a truly simultaneous multi-element AAS measurement when an appropriate two-dimensional detector is used, as is already common practice in optical emission spectrometry; vii preliminary experiments have indicated that the instrumental concept could result in a more rugged analytical performance in the determination of trace elements in complex matrices.

  4. [Measurement of thallium content in human urine by atomic absorption spectrometry after acute poisoning].

    Science.gov (United States)

    Luzanova, I S; Pletneva, T V; Maksimova, T V; Salomatin, E M; Lutskiĭ, Ia M

    2008-01-01

    The problem of poisoning with thallium-containing substances continues to be of current concern. According to the Bureau of Forensic Medical Examination, Moscow, specimens of biological materials from more than 20 victims of such poisoning were delivered for analysis in 2006. The total number of thallium poisoning episodes during the period since 1996 exceeded 50. Materials for thallium determination in biological fluids (human blood and urine) using flame atomic absorption spectrometry were prepared by dry mineralization of accurately weighed samples; acidic solutions of the products of mineralization were used for analysis. Due to peculiar kinetic features of thallium ion absorption in the gastro-intestinal tract, blood could not be used as a biological marker of poisoning. The level of thallium in urine samples was found to vary from 1.00 to 4,600 mcg/l (with the estimation of confidence intervals in each case). Results of chemical analysis correlated with pathological symptoms derived from the patients' discharge summaries and literature reports on dose-effect relationships. Based on these findings, practically all the examined cases were characterized as severe acute poisoning.

  5. Assessing the engagement, learning, and overall experience of students operating an atomic absorption spectrophotometer with remote access technology.

    Science.gov (United States)

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of engagement, learning, and overall experience. Feedback from students suggests that the use of remote access technology is effective in teaching students the principles of chemical analysis by atomic absorption spectroscopy. © 2014 The International Union of Biochemistry and Molecular Biology.

  6. The determination, by atomic-absorption spectrophotometry, of impurities in manganese dioxide

    International Nuclear Information System (INIS)

    Balaes, G.E.E.; Robert, R.V.D.

    1981-01-01

    This report describes various methods for the determination of impurities in electrolytic manganese dioxide by atomic-absorption spectrophotometry (AAS). The sample is dissolved in a mixture of acids, any residue being ignited and retreated with acid. Several AAS methods were applied so that the analysis required to meet the specifications could be attained. These involved conventional flame AAS, AAS with electrothermal atomization (ETA), hydride generation coupled with AAS, and cold-vapour AAS. Of the elements examined, copper, iron, zinc, and lead can be determined direct with confidence with or without corrections based on recoveries obtained from spiked solutions. Nickel can be determined direct by use of the method of standard additions, and copper, nickel, and lead by ETA with the method of standard additions. Arsenic and antimony are determined by hydride generation coupled with AAS, and mercury by cold-vapour AAS. The precision of analysis (relative standard deviation) is generally less than 0,050. Values were obtained for aluminium, molybdenum, magnesium, sodium, copper, chromium, and cadmium, but the accuracy of these determinations has not been fully established

  7. Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system.

    Science.gov (United States)

    Moon, Han Seb; Noh, Heung-Ryoul

    2013-03-25

    We have experimentally and theoretically studied resonant two-photon absorption (TPA) and electromagnetically induced transparency (EIT) in the open ladder-type atomic system of the 5S(1/2) (F = 1)-5P(3/2) (F' = 0, 1, 2)-5D(5/2) (F″ = 1, 2, 3) transitions in (87)Rb atoms. As the coupling laser intensity was increased, the resonant TPA was transformed to EIT for the 5S(1/2) (F = 1)-5P(3/2) (F' = 2)-5D(5/2) (F″ = 3) transition. The transformation of resonant TPA into EIT was numerically calculated for various coupling laser intensities, considering all the degenerate magnetic sublevels of the 5S(1/2)-5P(3/2)-5D(5/2) transition. From the numerical results, the crossover from TPA to EIT could be understood by the decomposition of the spectrum into an EIT component owing to the pure two-photon coherence and a TPA component caused by the mixed term.

  8. Direct analysis of silica by means of solid sampling graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Resano, M.; Mozas, E.; Crespo, C.; Pérez, J.; García-Ruiz, E.; Belarra, M. A.

    2012-05-01

    This paper reports on the use of solid sampling-graphite furnace atomic absorption spectrometry for the direct analysis of synthetic amorphous silica. In particular, determination of hazardous elements such As, Cd, Cr, Cu, Pb and Sb is investigated, as required by regulations of the food industry. The conclusion of the work is that, after proper optimization of the working conditions, paying particular attention to the atomization temperature and the use of proper modifiers (graphite powder, HNO3 or Pd), it is possible to develop suitable procedures that rely on the use of aqueous standard solutions to construct the calibration curves for all the elements investigated. The proposed method shows important benefits for the cost-effective analysis of such difficult samples in routine labs, permitting fast screening of those elements that are very rarely present in this type of sample, but also accurate quantification of those often found, while offering low limits of detection (always below 0.1 mg g- 1) that comply well with legal requirements, and precision levels that are fit for the purpose (approx. 6-9% R.S.D.).

  9. Direct determination of Hg in polymers by solid sampling-graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Resano, M.; Briceno, J.; Belarra, M.A.

    2009-01-01

    This work explores the potential of solid sampling-graphite furnace atomic absorption spectrometry (SS-GFAAS) for the fast and direct determination of Hg in polymers. Eight certified reference materials with different composition (polyethylene-PE-, polystyrene-PS-, poly vinyl chloride-PVC- and acrylonitrile butadiene styrene-ABS-) were selected for the study, covering a wide Hg content range (from 20 to 1100 μg g - 1 ). The difficulties found in achieving a selective atomization of the analyte from these samples were partially mitigated by the maintenance of the Ar flow during the atomization step, leading to an improved signal-to-background ratio. Even then, when a line source (LS) GFAAS instrument was employed for analysis, it was only possible to develop truly accurate procedures relying on the use of aqueous standards for calibration for PE and PVC samples, and different atomization conditions (1200 deg. C and 1300 deg. C, respectively) were needed for the two types of samples. The use of high-resolution continuum source (HR-CS) GFAAS instrumentation permitted to improve this situation significantly thanks to its higher potential for the correction of high and fast changing background. With such an instrument, satisfactory results could be obtained for all the samples under study using the same atomization conditions (1200 deg. C) and aqueous standard solutions for calibration. Additionally, the HR-CS GFAAS technique presented a lower limit of detection (0.6 μg g - 1 for CS and 2.2 μg g - 1 for LS), a broader linear range (10 to 320 Hg ng for CS, and 20 to 200 ng for LS), and a somewhat improved sensitivity (approximately 0.0030 s ng - 1 for CS using the three central pixels for quantification, and approximately 0.0025 s ng - 1 for LS). Overall, the use of HR-CS GFAAS permits obtaining significant advantages for the determination of this complex analyte in plastics, such as straightforward calibration with aqueous standards, a high sample throughput (15 min

  10. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, I.; Simon, M. N. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Edwards, S. [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States); Heyer, M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Rigliaco, E. [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Hillenbrand, L. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Gorti, U.; Hollenbach, D., E-mail: pascucci@lpl.arizona.edu [SETI Institute, Mountain View, CA 94043 (United States)

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.

  11. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Pascucci, I.; Simon, M. N.; Edwards, S.; Heyer, M.; Rigliaco, E.; Hillenbrand, L.; Gorti, U.; Hollenbach, D.

    2015-01-01

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions

  12. Matrix elimination method for the determination of precious metals in ores using electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Salih, Bekir; Celikbiçak, Omür; Döker, Serhat; Doğan, Mehmet

    2007-03-28

    Poly(N-(hydroxymethyl)methacrylamide)-1-allyl-2-thiourea) hydrogels, poly(NHMMA-ATU), were synthesized by gamma radiation using (60)Co gamma source in the ternary mixture of NHMMA-ATU-H(2)O. These hydrogels were used for the specific gold, silver, platinum and palladium recovery, pre-concentration and matrix elimination from the solutions containing trace amounts of precious metal ions. Elimination of inorganic matrices such as different transition and heavy metal ions, and anions was performed by adjusting the solution pH to 0.5 that was the selective adsorption pH of the precious metal ions. Desorption of the precious metal ions was performed by using 0.8 M thiourea in 3M HCl as the most efficient desorbing agent with recovery values more than 95%. In the desorption medium, thiourea effect on the atomic signal was eliminated by selecting proper pyrolysis and atomization temperatures for all precious metal ions. Precision and the accuracy of the results were improved in the graphite furnace-atomic absorption spectrometer (GFAAS) measurements by applying the developed matrix elimination method performing the adsorption at pH 0.5. Pre-concentration factors of the studied precious metal ions were found to be at least 1000-fold. Detection limits of the precious metal ions were found to be less than 10 ng L(-1) of the all studied precious metal ions by using the proposed pre-concentration method. Determination of trace levels of the precious metals in the sea-water, anode slime, geological samples and photographic fixer solutions were performed using GFAAS clearly after applying the adsorption-desorption cycle onto the poly(NHMMA-UTU) hydrogels.

  13. Study on the application of electrothermal atomization atomic absorption spectrometry for the determination of metallic Cu, Pb, Zn, Cd traces in sea water samples

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Dung; Doan Thanh Son; Tran Thi Ngoc Diep

    2004-01-01

    The trace amount of some heavy metallic elements (Cu, Zn, Pb, Cd) in sea water samples were determined directly (without separation) and quantitatively by using Electro-Thermal Atomization Atomic Absorption Spectrometry (ETA-AAS). The effect of mainly major constituents such as Na, Mg, Ca, K, and the mutual effect of the trace elements, which were present in the matrix on the absorption intensity of each analyzed element was studied. The adding of a certain chemical modification for each trace element was also investigated in order to eliminate the overall effect of the background during the pyrolysis and atomization. The sea water sample after fitrating through a membrane with 0.45 μm-hole size was injected in to the graphite tube via an autosampler (MPE50). The absorption intensity of each element was then measured on the VARIO-6 under the optimum parameters for spectrometer such as: maximum wavelength, current of hollow cathode lamp, and that for graphite furnace such as dry temperature, pyrolysis temperature, atomization temperature, ect. The analytical procedures were set-up and applied for the determination of these above mentioned elements in the synthesized sea water sample and in the real sea water samples with high precision and accuracy. (author)

  14. Nonflame atomic absorption determination of total mercury in natural waters using an HS-3 mercury-hydride system

    Energy Technology Data Exchange (ETDEWEB)

    Evdokimova, E.V.; Solov`eva, M.Kh.; Telegin, G.F. [Institute of Problems in the Technology of Microelectronics and High-Purity Materials, Moscow (Russian Federation)

    1995-02-01

    A method for nonflame atomic absorption determination of mercury with a detection limit of 1 x 10{sup -3} {mu}g/ml in natural waters without preconcentration is described. The method can be applied successfully in analysis of the environment.

  15. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection

    Czech Academy of Sciences Publication Activity Database

    Huber, C. S.; Vale, M. G. R.; Dessuy, M. B.; Svoboda, Milan; Musil, Stanislav; Dědina, Jiří

    2017-01-01

    Roč. 175, DEC (2017), s. 406-412 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LH15174 Institutional support: RVO:68081715 Keywords : slurry sampling * methyl-substituted arsenic species * hydride generation-cryotrapping-atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.162, year: 2016

  16. Manganese dioxide causes spurious gold values in flame atomic-absorption readings from HBr-Br2 digestions

    Science.gov (United States)

    Campbell, W.L.

    1981-01-01

    False readings, apparently caused by the presence of high concentrations of manganese dioxide, have been observed in our current flame atomic-absorption procedure for the determination of gold. After a hydrobromic acid (HBr)-bromine (Br2) leach, simply heating the sample to boiling to remove excess Br2 prior to extraction with methyl-isobutyl-ketone (MIBK) eliminates these false readings. ?? 1981.

  17. Study of atmospheric aerosols in Zaire by instrumental neutron activation analysis, atomic absorption spectrophotometry and ion-exchange chromatography

    International Nuclear Information System (INIS)

    Tshiashala, M.D.; Lumu, B.M.; Matamba, K.; Ronneau, C.

    1992-01-01

    Instrumental neutron activation analysis and atomic absorption spectroscopy were applied to the determination of trace element abundances in airborne particulate matter collected throughout Kinshasa, Zaire. Statistical treatment of the resulting data was used to assess the variations between sites and to identify the sources of the pollutants. 10 refs, 5 tabs

  18. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    Science.gov (United States)

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  19. Assessing the Engagement, Learning, and Overall Experience of Students Operating an Atomic Absorption Spectrophotometer with Remote Access Technology

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of…

  20. Overcoming Matrix Effects in a Complex Sample: Analysis of Multiple Elements in Multivitamins by Atomic Absorption Spectroscopy

    Science.gov (United States)

    Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad

    2011-01-01

    A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…

  1. A COMPARISON OF A SPECTROPHOTOMETRIC (QUERCETIN) METHOD AND AN ATOMIC-ABSORPTION METHOD FOR DETERMINATION OF TIN IN FOOD

    DEFF Research Database (Denmark)

    Engberg, Å

    1973-01-01

    Procedures for the determination of tin in food, which involve a spectrophotometric method (with the quercetin-tin complex) and an atomic-absorption method, are described. The precision of the complete methods and of the individual analytical steps required is evaluated, and the parameters...

  2. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection

    Czech Academy of Sciences Publication Activity Database

    Huber, C. S.; Vale, M. G. R.; Dessuy, M. B.; Svoboda, Milan; Musil, Stanislav; Dědina, Jiří

    2017-01-01

    Roč. 175, DEC (2017), s. 406-412 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LH15174 Institutional support: RVO:68081715 Keywords : slurry sampling * methyl-substituted arsenic species * hydride generation-cryotrapping- atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.162, year: 2016

  3. On the multiphoton emission during U.V. and X-ray absorption by atoms in intense laser fields

    International Nuclear Information System (INIS)

    Miranda, L.C.M.

    1981-09-01

    A discussion of the u.v. and x-ray absorption cross section by a hydrogen atom in the presence of an intense i.r. laser field is presented, taking into account the influence of laser field on the electronic states. (Author) [pt

  4. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  5. Determination of total selenium in nutritional supplements and selenised yeast by Zeeman-effect graphite furnace atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Ekelund, J.

    1989-01-01

    -effect background corrected graphite furnace atomic absorption spectrometry. A furnace ashing step at 1100 °C was necessary in order to obtain a total recovery of selenium when present in the organic form. Palladium nitrate-magnesium nitrate was used as a matrix modifier. Independent methods were used to determine...

  6. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    International Nuclear Information System (INIS)

    Nakano, H.; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-01-01

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure

  7. [Efficiency of hemoperfusion on clearing thallium based on atomic absorption spectrometry].

    Science.gov (United States)

    Tian, Tian; Wang, Yongan; Nie, Zhiyong; Wang, Jiao; Peng, Xiaobo; Yuan, Ye; Li, Wanhua; Qiu, Zewu; Xue, Yanping; Xiong, Yiru

    2015-04-01

    To determine thallium in whole blood by atomic absorption detection method, and to investigate the eliminating effect of hemoperfusion (HP) for thallium in blood. The blood of Beagle dogs which had not exposed to thallium before were obtained for preparation of thallium nitrate ( TlNO3 )-containing solution in three concentrations according to the conversion formula based on animal weight and volume of blood. HP was performed in the simulated in vivo environment. The content of TlNO3 in blood of the next group was determined on the amount of TlNO3 for the last HP of the former dose group. Thallium quantity in different samples was measured with atomic absorption spectrometer blood samples before and after HP. Finally, the thallium concentration in blood was analyzed statistically. Thallium concentrations showed a good linear relationship in the range of 0-200 μg/L (r = 0.998 4). The intra-day precision (RSD) was lower than 4.913%, the intra-day recovery rate was 96.2%-111.9%; the inter-day precision (RSD) was lower than 7.502%, the inter-day recovery rate was 89.6%-105.2%. The concentration of thallium in blood was significantly reduced after HP per time in high, middle, and low dose groups [(453.43 ± 27.80) mg/L to (56.09 ± 14.44) mg/L in high dose group, F = 8.820, P = 0.003; (64.51 ± 13.60) mg/L to (3.19 ± 0.23) mg/L in middle dose group, F = 36.312, P = 0.000; (5.40 ± 0.98) mg/L to (0.38 ± 0.25) mg/L in low dose group, F = 46.240, P = 0.000 ]. The adsorption rate of four times of HP in high, middle and low dose group were (87.63 ± 2.48 )%, (95.06 ± 1.54 )% and (92.76 ± 4.87)%, respectively, without significant difference (F = 4.231, P = 0.070). The method for measuring thallium was established, and it shows a very stable, simple, sensitive for determination of thallium. HP can effectively remove thallium from blood. Thallium concentration can be reduced by 90% after four times of HP. HP is also effective even when thallium concentration is not high.

  8. SPECIES DETERMINATION OF ORGANOMETALLIC COMPOUNDS USING ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY WITH LIQUID CHROMATOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; Hadeishi, T.; McLaughlin, R.

    1978-01-01

    Over the past several years we have devised and expanded the capabilities of Zeeman atomic absorption spectroscopy (ZAA). Using this technique, trace elements in a complex matrix can be directly analyzed with high accuracy even when there is only one atom of interest contained in several million atoms of the host material. Quantities in the nanogram, or in some cases picogram, range can be determined within IS seconds for more than 30 elements. Because of its high selectivity and high sensitivity, ZAA can be used as a new technique for organometallic species determination by interfacing with a high pressure liquid chromatograph (HPLC). The HPLC separates various molecular species. Different kinds of mobil solvents can be directly introduced in the ZAA detection system; even organic solvents or high concentration salt solutions. Then, organometallic species in the ppb range are separately detected according to their retention times. This technique has a much larger field of application than HPLC coupled with conventional AA. The advantages of the ZAA technique are described in a recent publication. In this case, a steady magnetic field at 11 kgauss is applied to the sample vapor perpendicular to the incident light beam. The difference in absorption of the polarized constituents P{perpendicular} and P{parallel} is proportional to the atomic density, but is not affected by the various kind of spectral interferences caused by thermal decomposition of the eluants. The recently developed HPLC technique has many advantages over gas chromatography. Nonvolatile, polar, thermally unstable molecules or high molecular weight compounds can be separated. In the present system, the main requirement is that the solute be soluble in the mobile solvent. A demonstration of the operation of this system is provided by the analysis of a mixture of vitamin B12 and Co(No{sub 3}){sub 2}. As shown in Figure 1, vitamin B12 has a Co in its functional center. Sample 1 contained Co of 0

  9. Determination of lead in hair and its segmental analysis by solid sampling electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Baysal, Asli, E-mail: baysalas@itu.edu.t [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469, Maslak, Istanbul (Turkey); Akman, Suleyman, E-mail: akmans@itu.edu.t [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469, Maslak, Istanbul (Turkey)

    2010-04-15

    A rapid and practical solid sampling electrothermal atomic absorption spectrometric method was described for the determination of lead in scalp hair. Hair samples were washed once with acetone; thrice with distilled-deionized water and again once with acetone and dried at 75 deg. C. Typically 0.05 to 1.0 mg of dried samples were inserted on the platforms of solid sampling autosampler. The effects of pyrolysis temperature, atomization temperature, the amount of sample as well as addition of a modifier (Pd/Mg) and/or auxiliary digesting agents (hydrogen peroxide and nitric acid) and/or a surfactant (Triton X-100) on the recovery of lead were investigated. Hair samples were washed once with acetone; thrice with distilled-deionized water and again once with acetone and dried at 75 deg. C. Typically 0.05 to 1.0 mg of dried samples were inserted on the platforms of solid sampling autosampler. The limit of detection for lead (3sigma, N = 10) was 0.3 ng/g The addition of modifier, acids, oxidant and surfactant hardly improved the results. Due to the risk of contamination and relatively high blank values, the lead in hair were determined directly without adding any reagent(s). Finally, the method was applied for the segmental determination of lead concentrations in hair of different persons which is important to know when and how much a person was exposed to the analyte. For this purpose, 0.5 cm of pieces were cut along the one or a few close strands and analyzed by solid sampling.

  10. Determination of lead in hair and its segmental analysis by solid sampling electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Baysal, Asli; Akman, Suleyman

    2010-01-01

    A rapid and practical solid sampling electrothermal atomic absorption spectrometric method was described for the determination of lead in scalp hair. Hair samples were washed once with acetone; thrice with distilled-deionized water and again once with acetone and dried at 75 deg. C. Typically 0.05 to 1.0 mg of dried samples were inserted on the platforms of solid sampling autosampler. The effects of pyrolysis temperature, atomization temperature, the amount of sample as well as addition of a modifier (Pd/Mg) and/or auxiliary digesting agents (hydrogen peroxide and nitric acid) and/or a surfactant (Triton X-100) on the recovery of lead were investigated. Hair samples were washed once with acetone; thrice with distilled-deionized water and again once with acetone and dried at 75 deg. C. Typically 0.05 to 1.0 mg of dried samples were inserted on the platforms of solid sampling autosampler. The limit of detection for lead (3σ, N = 10) was 0.3 ng/g The addition of modifier, acids, oxidant and surfactant hardly improved the results. Due to the risk of contamination and relatively high blank values, the lead in hair were determined directly without adding any reagent(s). Finally, the method was applied for the segmental determination of lead concentrations in hair of different persons which is important to know when and how much a person was exposed to the analyte. For this purpose, 0.5 cm of pieces were cut along the one or a few close strands and analyzed by solid sampling.

  11. Direct analysis of silica by means of solid sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Resano, M.; Mozas, E.; Crespo, C.; Pérez, J.; García-Ruiz, E.; Belarra, M.A.

    2012-01-01

    This paper reports on the use of solid sampling-graphite furnace atomic absorption spectrometry for the direct analysis of synthetic amorphous silica. In particular, determination of hazardous elements such As, Cd, Cr, Cu, Pb and Sb is investigated, as required by regulations of the food industry. The conclusion of the work is that, after proper optimization of the working conditions, paying particular attention to the atomization temperature and the use of proper modifiers (graphite powder, HNO 3 or Pd), it is possible to develop suitable procedures that rely on the use of aqueous standard solutions to construct the calibration curves for all the elements investigated. The proposed method shows important benefits for the cost-effective analysis of such difficult samples in routine labs, permitting fast screening of those elements that are very rarely present in this type of sample, but also accurate quantification of those often found, while offering low limits of detection (always below 0.1 mg g −1 ) that comply well with legal requirements, and precision levels that are fit for the purpose (approx. 6–9% R.S.D.). - Highlights: ► Solid sampling GFAAS is investigated for the direct analysis of silica samples; ► a fast and simple methodology with aqueous standards for calibration is proposed; ► this method permits accurate determination of As, Cd, Cr, Cu, Pb and Sb in the samples of interest; ► LODs below 100 ng g −1 and precision values in the 6–10% RSD range are achieved.

  12. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    Science.gov (United States)

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2017-09-01

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Ultrasound assisted pseudo-digestion of street dust samples prior to determination by atomic absorption spectrometry.

    Science.gov (United States)

    Elik, Adil

    2005-05-15

    A sample preparation method based on ultrasound assisted pseudo-digestion of Pb, Cu, Zn and Ni from street dust samples under ultrasonic effect has been described. Parameters influencing pseudo-digestion, such as sonication time, sample mass, particle size and solvent system were fully optimized. Final solutions obtained upon sonication were analyzed by atomic absorption spectrometry. The best conditions for metal pseudo-digestion were as follows: a 25min sonication time, a 0.3g sample mass (in 25ml solvent), a particle size <63mum and a mixture of concentrated HNO(3)-HClO(4)-HF (2:1:1, v/v/v). Analytical results for the four metals by ultrasound assisted pseudo-digestion, acid bomb and conventional wet digestion methods showed a good agreement, thus indicating the possibility of using mild conditions for sample preparation instead of intensive treatments inherent with the digestion methods. In addition, this method reduces the time required for all treatments (pseudo-digestion or digestion, heating to dryness, cooling and separation) with acid bomb and conventional wet digestion methods approximately from 9 to 1h. The accuracy of the method was tested either by comparing obtained results with those of acid bomb and conventional wet digestion methods or by application on two standard reference materials. The average relative standard deviation of ultrasound assisted pseudo-digestion method varied between 0.9 and 1.8% for N=12, depending on the analyte.

  14. Atomic absorption spectrophotometry for the determination of metallic impurities in coal

    International Nuclear Information System (INIS)

    Silva, M.J.S.F. da.

    1983-06-01

    The Brazilian Energetic Alternative Program expects the reduction of our dependence on foreign energy sources, through replacing fuel oil by mineral coal. Its gasification by means of nuclear energy must be also considered. However, the intensive burning of coal leads to serious environmental problems. During its combustion the release, to atmosphere, of toxic elements such as As, Hg, Pb, Sb, Se, Cd, Zn and others is of great concern. Increase in atmospheric pollution will take place by burning increased amounts of coal. In addition, some of those elements are concentrated in fly ashes. The determination of impurities in coal is also important for the Figueiras Project in the Nuclebras Mineral Prospection Program. Hence, it is important to have reliable analytical methods which can monitor inorganic constituents at various stages of coal production and utilization. The atomic absorption spectrophotometry is a suitable analytical technique to determine pollutants in coal because it is sensitive, simple, economic and cover a large range of concentrations. The need of a previous treatment of the sample is overcome by using an acid attack (HNO 3 + HClO 4 + HF) which has proved to be rapid and efficient. (Author) [pt

  15. Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer

    International Nuclear Information System (INIS)

    Kazi, T.G.; Jalbani, N.; Arain, M.B.; Jamali, M.K.; Afridi, H.I.; Sarfraz, R.A.; Shah, A.Q.

    2009-01-01

    It was extensively investigated that a significant flux of toxic metals, along with other toxins, reaches the lungs through smoking. In present study toxic metals (TMs) (Al, Cd, Ni and Pb) were determined in different components of Pakistani local branded and imported cigarettes, including filler tobacco (FT), filter (before and after normal smoking by a single volunteer) and ash by electrothermal atomic absorption spectrometer (ETAAS). Microwave-assisted digestion method was employed. The validity and accuracy of methodology were checked by using certified sample of Virginia tobacco leaves (ICHTJ-cta-VTL-2). The percentages (%) of TMs in different components of cigarette were calculated with respect to their total contents in FT of all branded cigarettes before smoking, while smoke concentration has been calculated by subtracting the filter and ash contents from the filler tobacco content of each branded cigarette. The highest percentage (%) of Al was observed in ash of all cigarettes, with range 97.3-99.0%, while in the case of Cd, a reverse behaviour was observed, as a range of 15.0-31.3% of total contents were left in the ash of all branded cigarettes understudy

  16. Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, T.G. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: tgkazi@yahoo.com; Jalbani, N. [PCSIR Laboratories Karachi (Pakistan)], E-mail: nusratjalbani_21@yahoo.com; Arain, M.B. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: bilal_KU2004@yahoo.com; Jamali, M.K. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: mkhanjamali@yahoo.com; Afridi, H.I. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: hassanimranafridi@yahoo.com; Sarfraz, R.A. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: rajaadilsarfraz@gmail.com; Shah, A.Q. [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: aqshah07@yahoo.com

    2009-04-15

    It was extensively investigated that a significant flux of toxic metals, along with other toxins, reaches the lungs through smoking. In present study toxic metals (TMs) (Al, Cd, Ni and Pb) were determined in different components of Pakistani local branded and imported cigarettes, including filler tobacco (FT), filter (before and after normal smoking by a single volunteer) and ash by electrothermal atomic absorption spectrometer (ETAAS). Microwave-assisted digestion method was employed. The validity and accuracy of methodology were checked by using certified sample of Virginia tobacco leaves (ICHTJ-cta-VTL-2). The percentages (%) of TMs in different components of cigarette were calculated with respect to their total contents in FT of all branded cigarettes before smoking, while smoke concentration has been calculated by subtracting the filter and ash contents from the filler tobacco content of each branded cigarette. The highest percentage (%) of Al was observed in ash of all cigarettes, with range 97.3-99.0%, while in the case of Cd, a reverse behaviour was observed, as a range of 15.0-31.3% of total contents were left in the ash of all branded cigarettes understudy.

  17. Comparative Study of Heavy Metals in Dried and Fluid Milk in Peshawar by Atomic Absorption Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Ghosia Lutfullah

    2014-01-01

    Full Text Available Various essential and toxic heavy metals (Ca, Mg, Cu, Zn, Fe, Mn, Pb, Cd, Cr, and Ni contents in various types of dried (infant formula and powdered and fluid (fresh and processed cow milk were assessed by atomic absorption spectrophotometry. The milk samples were collected from local markets of different parts of Peshawar city, Pakistan. Heavy metal concentrations varied significantly depending upon the type of milk. The heavy metal concentrations in most of the samples were within normal and permissible ranges. It was observed that the samples contained considerable amounts of calcium, while magnesium levels were well above the required levels. The results also revealed that copper levels were slightly lower than the permissible limits. The concentration of zinc in dried milk samples was greater than the values for the liquid milk types. Infant milk formulae had higher iron levels as compared to other milk samples because of the added constituents. Significant differences were observed in the mean values of manganese and cadmium in different types of milk. The toxic metals were within the acceptable limits and did not show significant levels leading to toxicity.

  18. An indirect atomic absorption spectrometric determination of ciprofloxacin, amoxycillin and diclofenac sodium in pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    MAHMOUD MOHAMED ISSA

    2008-05-01

    Full Text Available A highly sensitive indirect atomic absorption spectrophotometric (AAS method has been developed for the determination of very low concentrations of ciprofloxacin, amoxycillin and diclofenac sodium. The method is based on the oxidation of these drugs with iron(III. The excess of iron(III was extracted into diethyl ether and then the iron(II in the aqueous layer was aspirated into an air–acetylene flame and determined by AAS. The linear concentration ranges were 25–400, 50–500 and 60–600 ng ml-1 for ciprofloxacin, amoxycillin and diclofenac sodium, respectively. The results were statistically compared with the official method using t- and f-test at p < 0.05. There were insignificant interferences from most of the excipients present. The intra- and inter-day assay coefficients of variation were less than 6.1 % and the recoveries ranged from 95 to 103 %. The method was applied for the analysis of these drug substances in their commercial pharmaceutical formulations.

  19. Fitness analysis method for magnesium in drinking water with atomic absorption using quadratic curve calibration

    Directory of Open Access Journals (Sweden)

    Esteban Pérez-López

    2014-11-01

    Full Text Available Because of the importance of quantitative chemical analysis in research, quality control, sales of services and other areas of interest , and the limiting of some instrumental analysis methods for quantification with linear calibration curve, sometimes because the short linear dynamic ranges of the analyte, and sometimes by limiting the technique itself, is that there is a need to investigate a little more about the convenience of using quadratic curves for analytical quantification, which seeks demonstrate that it is a valid calculation model for chemical analysis instruments. To this was taken as an analysis method based on the technique and atomic absorption spectroscopy in particular a determination of magnesium in a sample of drinking water Tacares sector Northern Grecia, employing a nonlinear calibration curve and a curve specific quadratic behavior, which was compared with the test results obtained for the same analysis with a linear calibration curve. The results show that the methodology is valid for the determination referred to, with all confidence, since the concentrations are very similar, and as used hypothesis testing can be considered equal.

  20. Bismuth determination in environmental samples by hydride generation-electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso-Perez, Carmen; Moreda-Pineiro, Jorge; Lopez-Mahia, Purificacion; Muniategui-Lorenzo, Soledad; Fernandez-Fernandez, Esther; Prada-Rodriguez, Dario [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira s/n, E-15071, A Coruna (Spain)

    2003-12-04

    A hydride generation procedure, via flow injection, coupled to electrothermal atomic absorption spectrometry was optimised for Bi determination in sea water and hot-spring water and acid extracts from coal, coal fly ash and slag samples. The effects of several variables such as hydrochloric acid and sodium tetrahydroborate concentrations, hydrochloric acid and sodium tetrahydroborate flow rates, reaction coil length, trapping and atomisation temperatures, trapping time and the Ar flow rate have been investigated by using a 2{sup 9}*3/128 Plackett-Burman design. From these studies, certain variables (sodium tetrahydroborate concentration and trapping time) showed up as significant, and they were optimised by a 2{sup 2}+star central composite design. In addition, a study of the bismuthine trapping and atomisation efficiency from graphite tubes (GTs) permanently treated with uranium, tantalum, lanthanum oxide, niobium, beryllium oxide, chromium oxide and tantalum carbide were investigated. The results obtained were compared with those achieved by iridium and zirconium-treated GTs. The best analytical performances, with characteristic mass of 35 pg and detection limit of 70 ng l{sup -1}, were achieved by using U-treated GTs. Accuracy were checked using several reference materials: 1643d (Trace Elements in Water), TM-24 (Reference Water), GBW-07401 (Soil) and 1632c (Trace Elements in Coal)

  1. Determination of mercury by cold vapor atomic absorption spectrophotometer in Tongkat Ali preparations obtained in Malaysia.

    Science.gov (United States)

    Ang, Hooi-Hoon; Lee, Ee-Lin; Cheang, Hui-Seong

    2004-01-01

    The DCA (Drug Control Authority), Malaysia, has implemented the phase 3 registration of traditional medicines on 1 January 1992, with special emphasis on the quality, efficacy, and safety (including the presence of heavy metals) in all pharmaceutical dosage forms of traditional medicine preparations. As such, a total of 100 products in various pharmaceutical dosage forms of a herbal preparation, containing Tongkat Ali, were analyzed for mercury content using cold vapor atomic absorption spectrophotometer. Results showed that 36% of the above products possessed 0.52 to 5.30 ppm of mercury and, therefore, do not comply with the quality requirement for traditional medicines in Malaysia. Out of these 36 products, 5 products that possessed 1.05 to 4.41 ppm of mercury were in fact have already registered with the DCA, Malaysia. However, the rest of the products that contain 0.52 to 5.30 ppm of mercury still have not registered with the DCA, Malaysia. Although this study showed that only 64% of the products complied with the quality requirement for traditional medicines in Malaysia pertaining to mercury, they cannot be assumed safe from mercury contamination because of batch-to-batch inconsistency.

  2. [Detecting Thallium in Water Samples using Dispersive Liquid Phase Microextraction-Graphite Furnace Atomic Absorption Spectroscopy].

    Science.gov (United States)

    Zhu, Jing; Li, Yan; Zheng, Bo; Tang, Wei; Chen, Xiao; Zou, Xiao-li

    2015-11-01

    To develope a method of solvent demulsification dispersive liquid phase microextraction (SD-DLPME) based on ion association reaction coupled with graphite furnace atomic absorption spectroscopy (GFAAS) for detecting thallium in water samples. Methods Thallium ion in water samples was oxidized to Tl(III) with bromine water, which reacted with Cl- to form TlCl4-. The ionic associated compound with trioctylamine was obtained and extracted. DLPME was completed with ethanol as dispersive solvent. The separation of aqueous and organic phase was achieved by injecting into demulsification solvent without centrifugation. The extractant was collected and injected into GFAAS for analysis. With palladium colloid as matrix modifier, a two step drying and ashing temperature programming process was applied for high precision and sensitivity. The linear range was 0.05-2.0 microg/L, with a detection limit of 0.011 microg/L. The relative standard derivation (RSD) for detecting Tl in spiked water sample was 9.9%. The spiked recoveries of water samples ranged from 94.0% to 103.0%. The method is simple, sensitive and suitable for batch analysis of Tl in water samples.

  3. Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination.

    Science.gov (United States)

    Tuzen, Mustafa; Citak, Demirhan; Mendil, Durali; Soylak, Mustafa

    2009-04-15

    A speciation procedure for As(III) and As(V) ions in environmental samples has been presented. As(V) was quantitatively recovered on aluminum hydroxide precipitate. After oxidation of As(III) by using dilute KMnO(4), the developed coprecipitation was applied to determination of total arsenic. Arsenic(III) was calculated as the difference between the total arsenic content and As(V) content. The determination of arsenic levels was performed by hydride generation atomic absorption spectrometry (HG-AAS). The analytical conditions for the quantitative recoveries of As(V) including pH, amount of aluminum as carrier element and sample volume, etc. on the presented coprecipitation system were investigated. The effects of some alkaline, earth alkaline, metal ions and also some anions were also examined. Preconcentration factor was calculated as 25. The detection limits (LOD) based on three times sigma of the blank (N: 21) for As(V) was 0.012 microg L(-1). The satisfactory results for the analysis of arsenic in NIST SRM 2711 Montana soil and LGC 6010 Hard drinking water certified reference materials for the validation of the method was obtained. The presented procedure was successfully applied to real samples including natural waters for arsenic speciation.

  4. Determination of iron in natural and mineral waters by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    ROLANDAS KAZLAUSKAS

    2004-05-01

    Full Text Available Simple methods for the determination of Fe in natural and mineral waters by flame atomic absorption spectrometry (AAS are suggested. The results of the investigation of selectivity of the proposed AAS method proved that this procedure is not affected by high concentrations of other metals. The calibration graph for iron was linear at levels near the detection limit up to at least 0.10 mg ml-1. For the determination of microamounts of iron in mineral waters, an extraction AAS technique was developed. Iron was retained as Fe-8-oxyquinoline complex and extracted into chloroform. The optimal conditions for the extraction of the iron complex were determined. The AAS method was applied to the determination of Fe in mineral waters and natural waters from different areas of Lithuania. The accuracy of the developed method was sufficient and evaluated in comparison with a photometric method. The obtained results demonstrated that the procedure could be successfully applied for the analysis of water samples with satisfactory accuracy.

  5. Environmental samples analysis by Atomic Absorption Spectrophotometry and Inductively Coupled Plasma-Optical Emission Spectroscopy

    International Nuclear Information System (INIS)

    Popescu, I.V.; Iordan, M.; Stihi, C.; Bancuta, A.; Busuioc, G.; Dima, G.; Ciupina, V.; Belc, M.; Vlaicu, Gh.; Marian, R.

    2002-01-01

    Biological samples are interesting from many aspects of environmental monitoring. By analyzing tree leaves conclusions can be drown regarding the metal loading in the growth medium. So that, starting from assumption that the pollution factors from environmental medium can modify the normal concentration of elements, we decided to control the presence of toxic elements and the deviation from normal state of elements in leaves of different trees from areas situated at different distances of pollution source. The aim of this work is to determine the elemental composition of tree leaves using Atomic Absorption Spectrophotometry (AAS) method and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) method. Using AAS spectrophotometer SHIMADZU we identified and determined the concentration of: Cd, Co, Cu, Zn, Mn, Cr, Fe, Se, Pb with an instrumental error less than 1% for most of the elements analyzed. The same samples were analyzed by ICP-OES spectrometer, BAIRD ICP2070-Sequential Plasma spectrometer. We identified and determined in leaves of different trees the concentration of Mg, Ca, and Sr with a precision less than 6%. (authors)

  6. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  7. [Determination of soil exchangeable base cations by using atomic absorption spectrophotometer and extraction with ammonium acetate].

    Science.gov (United States)

    Zhang, Yu-ge; Xiao, Min; Dong, Yi-hua; Jiang, Yong

    2012-08-01

    A method to determine soil exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) by using atomic absorption spectrophotometer (AAS) and extraction with ammonium acetate was developed. Results showed that the accuracy of exchangeable base cation data with AAS method fits well with the national standard referential soil data. The relative errors for parallel samples of exchangeable Ca and Mg with 66 pair samples ranged from 0.02%-3.14% and 0.06%-4.06%, and averaged to be 1.22% and 1.25%, respectively. The relative errors for exchangeable K and Na with AAS and flame photometer (FP) ranged from 0.06%-8.39% and 0.06-1.54, and averaged to be 3.72% and 0.56%, respectively. A case study showed that the determination method for exchangeable base cations by using AAS was proven to be reliable and trustable, which could reflect the real situation of soil cation exchange properties in farmlands.

  8. Determination of toxic metals in some herbal drugs through atomic absorption spectroscopy.

    Science.gov (United States)

    Hina, Bushra; Rizwani, Ghazala Hafeez; Naseem, Shahid

    2011-07-01

    This study presents a picture of occurrence of heavy metals (Pb, Cd, Cu, Cr, Co, Fe, Ni, Zn) in some selected valuable herbal drugs (G. glabra, O. bracteatum, V. odorata , F. vulgare, C. cyminum, C. sativum, and Z. officinalis) purchased from three different zones (southern, eastern, and western) of Karachi city using atomic absorption spectrophotometer. Heavy metal concentrations in these drugs were found in the range of: 3.26-30.46 for Pb, 1.6-4.91 for Cd, 0.65-120.21 for Cu, 83.74-433.76 for Zn, 1.61-186.75 for Cr, 0.48-76.97 for Ni, 5.54-77.97 for Co and 65.68-1652.89 µg/g for Fe. Percentage of heavy metals that were found beyond the permissible limits were: 71.4% for Pb, 28.51% for Cd, 14.2% for Cu, and 9.5 % for Cr. Significant difference was noticed for each heavy metal among herbal drugs as well as their zones of collection using two way ANOVA followed by least significant (LSD) test at pmetal contaminant of herbal drugs by environmental pollution, as well as to highlight the health risks associated with the use of such herbal drugs that contain high levels of toxic heavy metals.

  9. Assessment of toxic metals in raw and processed milk samples using electrothermal atomic absorption spectrophotometer.

    Science.gov (United States)

    Kazi, Tasneem Gul; Jalbani, Nusrat; Baig, Jameel Ahmed; Kandhro, Ghulam Abbas; Afridi, Hassan Imran; Arain, Mohammad Balal; Jamali, Mohammad Khan; Shah, Abdul Qadir

    2009-09-01

    Milk and dairy products have been recognized all over the world for their beneficial influence on human health. The levels of toxic metals (TMs) are an important component of safety and quality of milk. A simple and efficient microwave assisted extraction (MAE) method has been developed for the determination of TMs (Al, Cd, Ni and Pb), in raw and processed milk samples. A Plackett-Burman experimental design and 2(3)+star central composite design, were applied in order to determine the optimum conditions for MAE. Concentrations of TMs were measured by electrothermal atomic absorption spectrometry. The accuracy of the optimized procedure was evaluated by standard addition method and conventional wet acid digestion method (CDM), for comparative purpose. No significant differences were observed (P>0.05), when comparing the values obtained by the proposed MAE method and CDM (paired t-test). The average relative standard deviation of the MAE method varied between 4.3% and 7.6% based on analyte (n=6). The proposed method was successfully applied for the determination of understudy TMs in milk samples. The results of raw and processed milk indicated that environmental conditions and manufacturing processes play a key role in the distribution of toxic metals in raw and processed milk.

  10. Cadmium accumulation in the crayfish, Procambarus clarkii, using graphite furnace atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Mayans, J.; Hernandez, F.; Medina, J.; Del Ramo, J.; Torreblanca, A.

    1986-11-01

    Lake Albufera and the surrounding rice-field waters are being subject to very heavy loads of sewage and toxic industrial residues (including heavy metals and pesticides) from the many urban and wastewaters in this area. The American red crayfish Procambarus clarkii is native to the Louisiana marshes (USA). In 1978, the crayfish appeared in Lake Albufera near Valencia (Spain), and presently, without adequate sanitary controls, the crayfish is being fished commercially for human consumption. In view of this interest, it is important to have accurate information on concentrations of cadmium in natural waters and cadmium levels of tissues of freshwaters animals used as human food, as well as the accumulation rates of this metal in this animal. In the present study, the authors investigated the accumulation of cadmium in several tissues of the red crayfish, P clarkii (Girard) from Lake Albufera following cadmium exposure. Determinations of cadmium were made by flameless atomic absorption spectroscopy and the standard additions method. Digestion of samples was made by wet ashing in open flasks with concentrated HNO/sub 3/ at 80-90/sup 0/C.

  11. Column preconcentration and electrothermal atomic absorption spectrometric determination of rhodium in some food and standard samples.

    Science.gov (United States)

    Taher, Mohammad Ali; Pourmohammad, Fatemeh; Fazelirad, Hamid

    2015-12-01

    In the present work, an electrothermal atomic absorption spectrometric method has been developed for the determination of ultra-trace amounts of rhodium after adsorption of its 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol/tetraphenylborate ion associated complex at the surface of alumina. Several factors affecting the extraction efficiency such as the pH, type of eluent, sample and eluent flow rates, sorption capacity of alumina and sample volume were investigated and optimized. The relative standard deviation for eight measurements of 0.1 ng/mL of rhodium was ±6.3%. In this method, the detection limit was 0.003 ng/mL in the original solution. The sorption capacity of alumina and the linear range for Rh(III) were evaluated as 0.8 mg/g and 0.015-0.45 ng/mL in the original solution, respectively. The proposed method was successfully applied for the extraction and determination of rhodium content in some food and standard samples with high recovery values. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Determination of lithium in sodium by vacuum distillation-graphite furnace atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Xie Chun; Sun Shiping; Jia Yunteng; Wen Ximeng

    1996-12-01

    When sodium is used as a coolant in China Experimental Fast Reactor, the lithium content in sodium has an effect on the nuclear property of reactor. A method has been developed to determine the trace lithium in sodium metal at the level of less than ten parts per million. About 0.4 g sodium is placed into a high-purity tantalum crucible, then it is placed in a stainless-steel still to distill at 360 degree C under vacuum (0.01 Pa). After the sodium has been removed, the residue is dissolved by nitric acid (1:2) and analyzed with Graphite Furnace Atomic Absorption Spectroscopy at 671.0 nm wavelength. The distillation conditions, working conditions of the instrument and interferences from matrix sodium, acid and concomitant elements have been studied. Standard addition experiments are carried out with lithium chloride and lithium nitrate. The percentage recoveries are 96.8% and 97.4% respectively. The relative standard deviation is less than +- 5%. The method has been used to determine lithium content in high pure sodium and industrial grade sodium. (11 refs., 5 figs., 5 tabs.)

  13. Iron in Alzheimer's and Control Hippocampi - Moessbauer, Atomic Absorption and ELISA Studies

    International Nuclear Information System (INIS)

    Galazka-Friedman, J.; Szlachta, K.; Bauminger, E.R.; Koziorowski, D.; Friedman, A.; Tomasiuk, R.; Jaklewicz, A.; Wszolek, Z.K.; Dickson, D.; Kaplinska, K.

    2011-01-01

    Alzheimer disease is a neurodegenerative process of unknown mechanism taking place in a part of the brain - hippocampus. Oxidative stress and the role of iron in it is one of the suggested mechanisms of cells death. In this study several methods were used to assess iron and iron binding compounds in human hippocampus tissues. Moessbauer spectroscopy was used for identification of the iron binding compound and determination of total iron concentration in 12 control and one Alzheimer disease sample of hippocampus. Moessbauer parameters obtained for all samples suggest that most of the iron is ferritin-like iron. The average concentration of iron determined by Moessbauer spectroscopy in control hippocampus was 45 ± 10 ng/mg wet tissue. The average concentration of iron in 10 Alzheimer disease samples determined by atomic absorption was 66 ± 13 ng/mg wet tissue. The concentration of H and L chains of ferritin in 20 control and 10 AD hippocampi was assessed with enzyme-linked immuno-absorbent assay. The concentration of H and L ferritin was higher in Alzheimer disease compared to control (19.36 ± 1.51 vs. 5.84 ± 0.55 ng/μg protein for H, and 1.39 ± 0.25 vs. 0.55 ± 0.10 for L). This 3-fold increase of the concentration of ferritin is accompanied by a small increase of the total iron concentration. (authors)

  14. Determination of thallium in potassium chloride and electrolyte replenishers by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Nukatsuka, Isoshi; Horiguchi, Ryo; Seitoh, Hiroyuki; Ohzeki, Kunio; Miyashita, Fumihide

    2004-01-01

    Thallium in potassium chloride and electrolyte replenishers was determined by electrothermal atomic absorption spectrometry (ETAAS) with direct injection of a resin suspension. Thallium(III) was extracted on fine particles of a cellulose nitrate resin (CNR) from dilute HCl (pH 1.6) in the presence of ammonium pyrrolidine-1-carbodithioate. The CNR particles were collected on a membrane filter by filtration under suction, suspended in 1.0 mL 10mM HNO3, and then delivered directly to ETAAS as the suspension. The effects of chloride ions were thoroughly investigated. The results showed that the addition of 0.5mM NaCl to the suspension (10mM HNO3) was recommended, after CNR and a membrane filter holding the CNR were washed thoroughly with 0.025M HCl, to eliminate interference from chloride ions. No chemical modifier was required. Extraction from the solution containing up to 2M chloride ion was allowable. The proposed method gave a concentration factor of 50 for a 50 mL sample volume. The detection limit (3sigma, n = 5) was 1 ng (20 pg/mL). The relative standard deviation was 4.9% (n = 5) at 30 ng level of thallium. The content of thallium in potassium chloride was 15.7-32.8 ng/g, and in electrolyte replenishers was 0.18-4.16 ng/mL.

  15. Investigation of interference mechanism of cobalt chloride on the determination of bismuth by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tokman, Nilgun [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak, Istanbul 34469 (Turkey); Akman, Suleyman [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak, Istanbul 34469 (Turkey)]. E-mail: akmans@itu.edu.tr

    2005-03-31

    The interferences of cobalt chloride on the determination of bismuth by electrothermal atomic absorption spectrometry (ETAAS) were examined using a dual cavity platform (DCP), which allows the gas-phase and condensed phase interferences to be distinguished. Effects of pyrolysis temperature, pyrolysis time, atomization temperature, heating rate in the atomization step, gas-flow rate in the pyrolysis and atomization steps, interferent mass and atomization from wall on sensitivity as well as atomization signals were studied to explain the interference mechanisms. The mechanism proposed for each experiment was verified with other subsequent sets of experiments. Finally, modifiers pipetted on the thermally treated sample+interferent mixture and pyrolyzed at different temperatures provided very useful information for the existence of volatilization losses of analyte before the atomization step. All experiments confirmed that when low pyrolysis temperatures are applied, the main interference mechanisms are the gas-phase reaction between bismuth and decomposition products of cobalt chloride in the atomization step. On the other hand, at elevated temperatures, the removal of a volatile compound formed between analyte and matrix constituents is responsible for some temperature-dependent interferences, although gas-phase interferences still continue. The experiments performed with colloidal palladium and nickel nitrate showed that the modifier behaves as both a matrix modifier and analyte modifier, possibly delaying the vaporization of either analyte or modifier or both of them.

  16. Subwavelength atom localization via amplitude and phase control of the absorption spectrum-II

    OpenAIRE

    Kapale, Kishore T.; Zubairy, M. Suhail

    2005-01-01

    Interaction of the internal states of an atom with spatially dependent standing-wave cavity field can impart position information of the atom passing through it leading to subwavelength atom localization. We recently demonstrated a new regime of atom localization [Sahrai {\\it et al.}, Phys. Rev. A {\\bf 72}, 013820 (2005)], namely sub-half-wavelength localization through phase control of electromagnetically induced transparency. This regime corresponds to extreme localization of atoms within a...

  17. Monitoring content of cadmium, calcium, copper, iron, lead, magnesium and manganese in tea leaves by electrothermal and flame atomizer atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Prkić Ante

    2017-08-01

    Full Text Available Due to the simplicity of tea preparation (pouring hot water onto different dried herbs and its high popularity as a beverage, monitoring and developing a screening methodology for detecting the metal content is very important. The concentrations of Cd, Ca, Cu, Fe, Pb, Mg and Mn in 11 different samples of sage (Salvia officinalis L., linden (Tilia L. and chamomile (Matricaria chamomilla L. purchased at local herbal pharmacy were determined using electrothermal atomizer atomic absorption spectrometry (ETAAS and flame atomizer atomic absorption spectrometry (FAAS. The concentrations determined were: Cd (0.012 – 0.470 mg kg−1, Ca (5209 – 16340 mg kg−1, Cu (22.01 – 33.05 mg kg−1, Fe (114.2 – 440.3 mg kg−1, Pb (0.545 – 2.538 mg kg−1, Mg (2649 – 4325 mg kg−1 and Mn (34.00 – 189.6 mg kg−1. Principal Component Analysis (PCA was applied to identify factors (soil and climate influencing the content of the measured elements in herbal samples. The proposed methodology developed in this work was successfully applied to the detection of metals in herbal samples. The analysis showed that the content of toxic metals in herbal teas was below the maximum dose recommended by the World Health Organization (WHO.

  18. Temperature-controlled electrothermal atomization-atomic absorption spectrometry using a pyrometric feedback system in conjunction with a background monitoring device

    Science.gov (United States)

    Van Deijck, W.; Roelofsen, A. M.; Pieters, H. J.; Herber, R. F. M.

    The construction of a temperature-controlled feedback system for electrothermal atomization-atomic absorption spectrometry (ETA-AAS) using an optical pyrometer applied to the atomization stage is described. The system was used in conjunction with a fast-response background monitoring device. The heating rate of the furnace amounted to 1400° s -1 with a reproducibility better than 1%. The precision of the temperature control at a steady state temperature of 2000°C was 0.1%. The analytical improvements offered by the present system have been demonstrated by the determination of cadmium and lead in blood and finally by the determination of lead in serum. Both the sensitivity and the precision of the method have been improved. The accuracy of the method was checked by determining the lead content for a number of scrum samples both by ETA-AAS and differential pulse anodic stripping voltametry (DPASV) and proved to be satisfactory.

  19. [Flame atomic absorption spectrometric determination of H2O2 using (Au) core (Ag) shell nanoparticles].

    Science.gov (United States)

    Jiang, Zhi-Liang; Tang, Ya-Fang; Liang, Ai-Huiz; Gong, Qi

    2009-07-01

    The 10 nm gold nanoparticles were prepared by Frens procedure. Using tri-sodium citrate as reducer of AgNO3, and 10 nm gold nanoparticles as seed, the (Au)core(Ag)shell nanoparticles the size of about 30 nm were prepared at 90 degrees C for 10 min. Then it was separated by centrifuge at 10000 r x min(-1) for 15 min to obtain pure (Au)core(Ag)shell nanoparticles. In pH 3.8 sodium acetate-acetic acid buffer solution, hydroxyl free radical from Fenton reaction between Fe(II)-H2O2 oxidized (Au)core(Ag)shell nanoparticles to form silver ions. The silver ions in the centrifugal solutions can be measured by flame atomic absorption spectrometry at 328.1 nm. The silver ions in the centrifugal solutions increased with the H2O2 concentration increasing, and the absorption value at 328. 1 nm was enhanced linearly. The influence factors such as pH value, buffer solution volume, concentration of (Au)core(Ag)shell and Fe(II), reaction temperature and time, and centrifuging velocity and time were considered, respectively. Under the conditions of 0.20 mL pH 3.8 sodium acetate-acetic acid buffer solution, 50 microL of 2.0 mmol x L(-1) FeSO4, 60 microL of 2.94 x 10(-4) mol x L(-1) (Au)core(Ag)shell nanoparticle solution, reaction time of 20 min at 60 degrees C, and centrifugalization at 14 000 rpm for 10 min, the increased value deltaA is proportional to the H2O2 concentration (c) from 2. 64 to 42.24 micromol x L(-1), with a detection limit of 0.81 micromol x L(-1). The regress equation was deltaA = 0.014c-0.013 1, with a coefficient of 0.998 4. The effect of foreign substances such as 100-times glucose, Cu2+, Mg2+, Ca2+, 50-times urea, bovine serum albumin, Mn2+, Pb2+, and 30-times Cr3+ on the determination of 13.2 micromol x L(-1) H2O2 was examined respectively, with a relative error of +/- 10%. Results showed that there was no interference. This assay showed high sensitivity and good selectivity for quantitative determination of H2O2 in waste water samples, with satisfactory

  20. Oxygen vacancy mediated enhanced photo-absorption from ZnO(0001) nanostructures fabricated by atom beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Solanki, Vanaraj; Joshi, Shalik R.; Mishra, Indrani; Varma, Shikha, E-mail: shikha@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Kabiraj, D.; Avasthi, D. K. [Inter University Accelerator Center, New Delhi 110067 (India); Mishra, N. C. [Department of Physics, Utkal University, Bhubaneswar 751004 (India)

    2016-08-07

    The nanoscale patterns created on the ZnO(0001) surfaces during atom beam irradiation have been investigated here for their photo absorption response. Preferential sputtering, during irradiation, promotes Zn-rich zones that serve as the nucleation centers for the spontaneous creation of nanostructures. Nanostructured surfaces with bigger (78 nm) nanodots, displaying hexagonal ordering and long ranged periodic behavior, show higher photo absorption and a ∼0.09 eV reduced bandgap. These nanostructures also demonstrate higher concentration of oxygen vacancies which are crucial for these results. The enhanced photo-response, as observed here, has been achieved in the absence of any dopant elements.

  1. Modifiers and coatings in graphite furnace atomic absorption spectrometry—mechanisms of action (A tutorial review)

    Science.gov (United States)

    Ortner, H. M.; Bulska, E.; Rohr, U.; Schlemmer, G.; Weinbruch, S.; Welz, B.

    2002-12-01

    furnace atomic absorption spectrometry (GFAAS): sample application and drying; pyrolysis; atomization. Contrary to the vast amount of literature on this topic it tried to provide the analyst working with GFAAS and in an increasing number working with Solid Sampling-GFAAS with a set of most important statements. This might spare the experimentalist a lot of useless optimization procedures but should lead him to a basic understanding of the complex phenomena taking place in his instrument and during his analytical work.

  2. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Zhang Yanlin; Adeloju, Samuel B.

    2012-01-01

    Highlights: ► Successful speciation of inorganic and organic Hg with Fe 3+ , Cu 2+ and thiourea as catalysts. ► Best sensitivity enhancement and similar sensitivity for MeHg and Hg 2+ with Fe 3+ . ► Successful use of Hg 2+ as the primary standard for quantification of inorganic and total-Hg. ► Quantitative extraction of Hg and MeHg with 2 M HCl which contained thiourea. ► Integration with FIA for rapid analysis with a sample throughput of 180 h −1 . - Abstract: A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH 4 were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe 3+ , Cu 2+ and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu 2+ and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe 3+ gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg 2+ . Due to similarity of resulting sensitivity, Hg 2+ was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h −1 .

  3. Effect of organic solvents on desorption and atomic absorption determination of heavy metal ions after ion exchange concentration

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Safronova, V.G.; Zakrevskaya, L.V.

    1986-01-01

    The effect of organic solvents (acetone, methylethylketone, dioxane, ethanol) on desorption of Cu, Mn, Co, Cd, Zn, Pb, Ni from cationite KU-23 ion exchange resin and on the detection limits of their atomic absorption determination has been examined. Cobalt and cadmium can be separated quantitatively using desorption by a mixture of HCl and acetone. Addition of an organic solvent results in a higher absorbance, mainly due to a high rate and efficiency of atomization. Acetone has proved to be the best solvent: addition of 60 vol. % of this solvent to the concentrate provides 2 times lower detection limits for the heavy metas in water

  4. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    Science.gov (United States)

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  5. Determining Selenium Serum Level in Healthy Young Couples by Furnace Atomic Absorption

    Directory of Open Access Journals (Sweden)

    MH Salmani nodoushan

    2014-10-01

    Full Text Available Introduction: Metal ions are required for various vital body functions and metabolism. Selenium is an active element in selenoproteins and plays an important role in public health, though the increase of its concentration in the body can cause toxicity. Therefore, it seems essential to investigate the serum selenium status of individuals of a society. This study was conducted to determine serum level of selenium in healthy young couples. Methods: This descriptive study was done on 60 young couples who were chosen in 2013 via convenience sampling. The participants' general health was determined using a GHQ28 questionnaire and their serum selenium concentration was measured by furnace atomic absorption spectrophotometer. Data were analyzed by SPSS software utilizing descriptive statistics. Results: The participants' mean age was 23.18 ± 4.31 years. The 44.6% of subjects had university degrees, 35.7% were reported to have diploma and 19.6% were under diploma. The mean serum selenium level was obtained as 89.1 ± 24.2 µg/l in males, and 80.5 ± 20.7 µg/l in females. The data analysis revealed a statistically significant difference of the serum selenium at the 95% confidence level in regard with participants' gender and education level. Conclusion: The present study showed that the mean serum selenium of participants lay in the lower part of its normal range. Regarding the role of selenium in human health and prevention of disease, nutrition education is recommended for taking selenium-rich foods to enhance community health and to prevent disease progression

  6. PRECONCENTRATION OF CADMIUM USING AMBERLITE XAD-4 PRIOR TO ATOMIC ABSORPTION SPECTROMETERY

    Directory of Open Access Journals (Sweden)

    S. J. Shahtaheri, M. Khadem, F. Golbabaei, A. Rahimi Froushani

    2006-01-01

    Full Text Available Cadmium is an important environmental constituent widely used in industrial processes for production of synthetic materials and therefore can be released in the environment causing public exposure especially around the industrial residence area. For evaluation of human exposure to trace toxic metal of Cd (II, environmental and biological monitoring are essential processes, in which, preparation of such samples is one of the most time-consuming and error-prone aspects prior to analysis. The use of solid-phase extraction (SPE has grown and is a fertile technique of sample preparation as it provides better results than those produced by liquid-liquid extraction (LLE. To evaluate factors influencing quantitative analysis scheme of cadmium in water samples, solid phase extraction using mini columns filled with XAD-4 resin was optimized with regard to sample pH, ligand concentration, loading flow rate, elution solvent, sample volume (up to 500 ml, elution volume, amount of resins, and sample matrix interferences. Cadmium was retained on solid sorbent and eluted followed by simple determination of analytes by using flame atomic absorption spectrometery. Obtained recoveries of the metal ion were more than 92%. The amount of the analyte detected after simultaneous preconcentration was basically in agreement with the added amounts. The optimized procedure was also validated with three different pools of spiked urine samples and showed a good reproducibility over six consecutive days as well as six within-day experiments. The developed method promised to be applicable for evaluation of other metal ions present in different environmental and occupational samples as suitable results were obtained for relative standard deviation (less than 10%; therefore, it is concluded that, this optimized method can be considered to be successful in simplifying sample preparation for trace residue analysis of Cd in different matrices for evaluation of occupational and

  7. Enrichment of trace cadmium by soybean protein for the analysis by atomic absorption method

    International Nuclear Information System (INIS)

    Musha, Soichiro; Takahashi, Yoshihisa.

    1975-01-01

    A method for enrichment of the ppb level of cadmium in water by using the coagulation of soybean protein by adding acids or its complex-forming character with heavy metal ions was investigated. After adding fixed amounts of soybean milk and 2% sodium diethyldithiocarbamate(DDTC) aqueous solution and a suitable amount of delta-gluconic lactone (delta-GL) to a sample solution, the mixture was heated to boiling in order to coagulate the protein. The coagulum(soybean curd) was separated from the suspension by centrifugation and burned to ashes with a low temperature plasma asher. Then the cadmium enriched in it was determined by atomic absorption spectrometry. Various factors such as the pH of the sample solution, the amounts of soybean milk and the collection additives, and the concentration of NaCl in the sample solution on the recovery of cadmium were examined systematically. The best recovery was obtained under the following conditions: To a certain amount of sample solution were added 30 ml of 6.34% soybean milk and a 5 ml of 2% DDTC solution, and its pH was adjusted to 5.50--5.80 by adding the suitable amounts of delta-GL (0.10 g/ml, (0.40--0.80)ml). NaCl in the sample solution tended to decrease the recovery, especially at the concentration of around 10% of NaCl solution. Under the optimum conditions, the recovery of cadmium was about 98%. The proposed method was applied to the determination of cadmium at the ppb level in sample solutions such as water, 3% NaCl solution and artifical sea water. This method was also applied to the determination of cadmium in common and industrial salts. (auth.)

  8. Methods of calibration in the direct analysis of solid samples by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Berglund, M.; Baxter, D. C.

    1992-12-01

    One of the major problems involved in the direct analysis of solid samples by electrothermal atomic absorption spectrometry (ETAAS) lies in the calibration step because non-spectral interference effects are often pronounced. Three standardization techniques have been described and used in solid sampling-ETAAS: (i) standard additions method; (ii) calibration relative to a certified reference material; and (iii) calibration curve technique. However, an adequate statistical evaluation of the uncertainty in the analyte concentration in the solid sample is most frequently neglected, and reported errors may be seriously underestimated. This can be attributed directly to the complexity of the statistical expressions required to accurately account for errors in each of the calibration techniques mentioned above, and the general lack of relevant reference literature. The object of this work has been to develop a computer package which will perform the necessary statistical analyses of solid sampling-ETAAS data; the result is the program "SOLIDS" described here in the form of an electronic publication in Spectrochimica Acta Electronica, the electronic section of Spectrochimica Acta Part B. The program could also be useful in other analytical fields where similar calibration methods are used. The hard copy text, outlining the calibration models and their associated errors, is accompanied by a diskette containing the program, some data files, and a manual. Use of the program is exemplified in the text, with some of the data files discussed included on the diskette which, together with the manual, should enable the reader to become familiarized with the operation of the program, and the results generated.

  9. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-01-01

    Highlights: ► New treatments for CFL are required considering the aim of Directive 202/96/CE. ► It is shown that most of the mercury introduced into a CFL is in the phosphor powder. ► Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. ► By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 ± 0.4 ppb of mercury in the vapor phase, 204.16 ± 8.9 ppb of mercury in the phosphor powder, and 18.74 ± 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  10. Determination of molybdenum wear metal in lubricating oils by atomic absorption spectrophotometry with a particle size independent method

    International Nuclear Information System (INIS)

    Saba, C.S.; Eisentraut, K.J.

    1979-01-01

    A particle size independent procedure for the quantitative determination of molybdenum wear metal in used lubricating oils using conventional flame atomic absorption spectrophotometry is described. The oil sample containing molybdenum was treated with a mixture containing hydrofluoric and nitric acids and shaken for 2 minutes before dillution with methyl isobutyl ketone. The effect of the type and amount of acid added, sequence of acid addition with respect to diluent, shaking time, and solubility of oxidized molybdenum species were studied. Samples containing molybdenum powder as large as 200 mesh were analyzed with an accuracy of 95.5 +-2.6%. A comparison is made between the results obtained from this procedure with those of other atomic absorption and emission techniques. 6 tables

  11. Arsenic determination in gasoline by hydride generation atomic absorption spectroscopy combined with a factorial experimental design approach

    Energy Technology Data Exchange (ETDEWEB)

    Jemmla Meira Trindade; Aldalea Lopes Marques; Gisele Simone Lopes; Edmar Pereira Marques; Jiujun Zhang [Federal University of Maranhao UFMA, Sao Luis (Brazil). Department of Chemistry

    2006-10-15

    Three locally collected gasoline samples were analyzed for arsenic content using factorial experimental design (FED) with hydride generation atomic absorption spectrometry (HGAAS). Five factors (including the reduction agent flow, the acid flow, the sample flow, the reductor concentration and the acid concentration) in two levels (low and high) were used in this optimization process. In order to design the surface response, five levels of central composite with 15 central points were down-selected. The results were compared with those determined by graphite furnace atomic absorption spectrometry (GFAAS) and a 95% confidence interval (regression procedure) was obtained. The HGAAS and GFAAS measurement sensitivities determined arsenic levels of 0.02 {mu}g L{sup -1} and 0.08 {mu}g L{sup -1}, respectively. 23 refs., 6 figs., 8 tabs.

  12. Sequential determination of arsenic, selenium, antimony, and tellurium in foods via rapid hydride evolution and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fiorino, J.A.; Jones, J.W.; Capar, S.G.

    1976-01-01

    Analysis of acid digests of foods for As, Se, Sb, and Te was semiautomated. Hydrides generated by controlled addition of base stabilized NaBH 4 solution to acid digests are transported directly into a shielded, hydrogen (nitrogen diluted), entrained-air flame for atomic absorption spectrophotometric determination of the individual elements. The detection limits, based on 1 g of digested sample, are approximately 10 to 20 ng/g for all four elements. Measurement precision is 1 to 2 percent relative standard deviation for each element measured at 0.10 μg. A comparison is made of results of analysis of lyophilized fish tissues for As and Se by instrumental neutron activation (INAA), hydride generation with atomic absorption spectrometry, fluorometry, and spectrophotometry. NBS standard reference materials (orchard leaves and bovine liver) analyzed for As, Se, and Sb by this method show excellent agreement with certified values and with independent NAA values

  13. Standardization of digestion procedure for the determination of heavy metals in biological materials by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Khalid, N.; Chaudhri, S.A.

    1999-01-01

    Proper decomposition of the sample is one of the basic requirements of the atomic absorption spectroscopic analysis. In the present studies, heavy metals (Cu, Fe, Mn and Zn) were determined in biological samples by designating them in a mixture of nitric acid and perchloric acid. The quantification was made with atomic absorption spectrometry using an air-acetylene flame. The reliability of the procedure used was checked by analysing standard reference materials from NBS and IAEA, such as Rice flour (NBS-SRM-1568), Horse Kidney (IAEA H-8), Mixed Human diet(IAEA H-9), Copepod (IAEA MA-A-1) and fish flesh (IAEA MA-A-2) under identical conditions. A good agreement was observed between determined and the certified values reported by NBS and IAEA. (author)

  14. Determination of metallic elements in water by the combined preconcentration techniques of ion exchange and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Paula, M.H. de.

    1981-01-01

    Having as an aim the utilization of atomic absorption method with flame's excitement, the limits of detection in water of six metals (Ag, Co, Cr, Cu, Ni, Zn) were determined in synthetical samples through atomic absorption spectroscopy. Techniques to optimize the data have been pointed out and presented their statistical treatment. By means of the routine and the addition methods three 'real' samples have also been analysed in order to determine the contents of Cu and Zn. Aiming a pre-concentration and by utilizing the 60 Co obtained activating a sample of cobalt in the CDTN/NUCLEBRAS TRIGA MARK-I reactor, the retainement of this cobalt in ion exchange resin and the variation of the factor of elution within different concentration of HCl in water have been determined. The limits of detection are presented and so are the quantitative ones, with and without pre-concentration in an ion exchanger resin and latter elution. (Author) [pt

  15. Arsenic in marine tissues - The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Karadjova, Irina B.; Petrov, Panayot K. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria); Serafimovski, Ivan [Food Institute, Faculty of Veterinary Medicine, Sts. Cyril and Methodius University, P.O. Box 95, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Stafilov, Trajce [Institute of Chemistry, Faculty of Science, Sts. Cyril and Methodius University, P.O. Box 162, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Tsalev, Dimiter L. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria)], E-mail: tsalev@chem.uni-sofia.bg

    2007-03-15

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant (Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel (Mytilus galloprovincialis) and Brown algae (Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 deg. C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 deg. C and atomization temperature 2100 deg. C) with 1.5 {mu}g Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 {mu}mol of zirconium and then with 0.10 {mu}mol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely

  16. Arsenic in marine tissues — The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    Science.gov (United States)

    Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.

    2007-03-01

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has

  17. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sardans, Jordi, E-mail: j.sardans@creaf.uab.ca [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain); Montes, Fernando [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/ Senda del Rey 9. 28040 Madrid (Spain); Penuelas, Josep [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain)

    2010-02-15

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at mug L{sup -1} levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages

  18. Determination of trace amounts of selenium in minerals and rocks by flame less atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Alduan, F. A.; Capdevilla, C.

    1980-01-01

    The determination of trace amounts of selenium In silicate rocks and feldspar by solvent extraction and graphite furnace atomic-absorption spectrometry has been stu- died. Sodium diethyl-ditio carbamate and ammonium pyrrolidine dithiocarbamate have been tried as chelating agents. The best results are achieved when selenium is extracted Into carbon tetrachloride as the sodium diethyldithiocarbamate complex. The method allows to detect 0,75 ppm of selenium in the sample. Recoveries are about 100%. (Author) 7 refs

  19. Computer programs in BASIC language for atomic absorption flame spectroscopy. Part 2. Documentation. [SEMIAUTOMATIC, RANDOM, and BRACKET codes

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, W.G. Jr.

    1977-10-28

    There are three computer programs, written in the BASIC language, used for taking data from an atomic absorption spectrophotometer operating in the flame mode. The programs are divided into logical sections, and these have been flow-charted. The general features, the structure, the order of subroutines and functions, and the storage of data are discussed. In addition, variables are listed and defined, and a complete listing of each program with a symbol occurrence table is provided.

  20. Determination of copper and iron in the human aqueous humor by atomic absorption spectrometer with graphite furnace

    International Nuclear Information System (INIS)

    Iqbal, Z.; Mohammad, Z.; Shah, M.T.; Saeed, M.; Imdadullah

    1999-01-01

    The concentration of copper and iron was determined in human aqueous humor using atomic absorption spectrophotometer equipped with graphite furnace. The mean (+- SEM) concentrations of copper (n=16) and iron (n=14) were 0.0234 -+ 0.0045 mu g.ml/sup -1/ and 0.045 -+ 0.0092 mu.ml/sup -1/ respectively. In male and female, the concentrations of copper (p< 0.82) and iron (p<0.38) were not significantly different. (author)

  1. Determination of calcium, copper, chromium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.

    1981-01-01

    The direct determinacao of calcium, copper, chomium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry with, air-acetylene flame is proposed. Effects of fuel/oxidant ratio, burner height and water content in the samples were investigated in detail. The method allows the determition of the elements with good precision (r.s.d. -1 for the elements tested. (author) [pt

  2. Comparative studies of method for determining total mercury in fish. Dithizone and flameless atomic absorption spectrophotometry techniques

    International Nuclear Information System (INIS)

    Protasowicki, M.; Ociepa, A.; Chodyniecki, A.

    1977-01-01

    Two methods for determining total mercury in fish were compared: the dithizone and flameless atomic absorption spectrophotometry techniques. The studies involved determination of recovery when 1μg of mercury as solutions of HgCl 2 or CH 3 HgC were added to each sample of herring flesh. Mean recoveries in the dithizone method were found to be 91.4+-7.47% and 90.25+-4.73% for the two solutions respectively, while the recoveries obtained with the flameless atomic absorption spectrophotometry were 95.00+-9.13% and 98.70+-7.14%, respectively. Both techniques were used to determine the mercury content in the same herring flesh sample. The first technique showed the content of 0.050+-0.018μg Hg g -1 while the result obtained with the other one was 0.062+-0.013μg Hg g -1 . The statistical treatment of the results obtained showed no difference between the two techniques, the significance level being α=0.05. Therefore, the results obtained with the dithizone method are comparable with those obtained with the flameless atomic absorption spectrophotometry for mercury contents of the magnitude order of 0.050 ug.g -1 . (author)

  3. Application of atomic absorption spectrophotometry to determine Cd, Cu, Pb, Zn,...in vegetable samples in Dalat

    International Nuclear Information System (INIS)

    Nguyen Giang; Nguyen Thanh Tam; Le Thi Ngoc Trinh; Truong Phuong Mai; Nguyen Van Minh

    2004-01-01

    Nowadays atomic absorption spectrometry has become valuable method for trace element analysis because high specificity; low detection litmus, easy to use; easy sample preparation, low investment and running costs... atomic absorption spectrometry is generally accepted as one the most suitable method for single - element analysis of trace elements in various kinds of materiel. In 2003, we applied flame - atomic absorption spectrometry for analyzing Ca, Cd, Cu, Pb, Zn...in vegetables and their extracted juices were collected form 11 locations of Dalat, including two kinds of vegetables (goods and safety) in both the summer and winter. Average concentration of Ca = 240 mg/kg wet, Cd = 0.035 mg/kg wet, Cu = 0.67 mg/kg wet, Mg = 131 mg/kg wet, Fe = 8.1/kg wet, Mn = 3.1/kg wet, Na = 3266 mg/kg wet, Pb = 0.345 mg/kg wet and Zn = 3.3 mg wet. In their extracted juices: Ca = 89 mg/kg wet, Cd = 0.008 mg/kg wet, Cu = 0.19 mg/kg wet, Mg = 43 mg/kg wet, Fe = 2.3 mg/kg wet, Mn = 0.61 mg/kg wet, Na = 971 mg/kg wet, Pb = 0.107 mg/kg wet and Zn = 0.65 mg/kg wet. (author)

  4. [Evaluation of uncertainty for determination of tin and its compounds in air of workplace by flame atomic absorption spectrometry].

    Science.gov (United States)

    Wei, Qiuning; Wei, Yuan; Liu, Fangfang; Ding, Yalei

    2015-10-01

    To investigate the method for uncertainty evaluation of determination of tin and its compounds in the air of workplace by flame atomic absorption spectrometry. The national occupational health standards, GBZ/T160.28-2004 and JJF1059-1999, were used to build a mathematical model of determination of tin and its compounds in the air of workplace and to calculate the components of uncertainty. In determination of tin and its compounds in the air of workplace using flame atomic absorption spectrometry, the uncertainty for the concentration of the standard solution, atomic absorption spectrophotometer, sample digestion, parallel determination, least square fitting of the calibration curve, and sample collection was 0.436%, 0.13%, 1.07%, 1.65%, 3.05%, and 2.89%, respectively. The combined uncertainty was 9.3%.The concentration of tin in the test sample was 0.132 mg/m³, and the expanded uncertainty for the measurement was 0.012 mg/m³ (K=2). The dominant uncertainty for determination of tin and its compounds in the air of workplace comes from least squares fitting of the calibration curve and sample collection. Quality control should be improved in the process of calibration curve fitting and sample collection.

  5. Nonlinear Absorption-Gain Response and Population Dynamics in a Laser-Driven Four-Level Dense Atomic System

    International Nuclear Information System (INIS)

    Li Jiahua; Liu Jibing; Luo Jinming; Xie Xiaotao

    2006-01-01

    We theoretically investigate the response of nonlinear absorption and population dynamics in optically dense media of four-level atoms driven by a single-mode probe laser, via taking the density-dependent near dipole-dipole (NDD) interactions into consideration. The influence of the NDD effects on the absorption of the probe field and population dynamics is predicted via numerical calculations. It is shown that the NDD effects can reduce gradually to transient absorption with the increase of the strengths of the NDD interactions, and transient amplification can be achieved. In the steady-state limit, the probe field exhibits transparency for strong NDD interactions. Alternatively, the population entirely remains at the ground state due to the NDD effects.

  6. Sapphire: a better material for atomization and in situ collection of silver volatile species for atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Matoušek, Tomáš; Dědina, Jiří

    2015-01-01

    Roč. 108, JUN (2015), s. 61-67 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : silver * volatile species generation * sapphire tube atomizer Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  7. Resonance absorption spectroscopy for laser-ablated lanthanide atom. (1) Optimized experimental conditions for isotope-selective absorption of gadolinium (Contract research)

    International Nuclear Information System (INIS)

    Miyabe, Masabumi; Oba, Masaki; Iimura, Hideki; Akaoka, Katsuaki; Maruyama, Yoichiro; Wakaida, Ikuo; Watanabe, Kazuo

    2008-06-01

    For remote isotope analysis of low-decontaminated TRU fuel, we are developing an analytical technique on the basis of the resonance absorption spectroscopy for the laser-ablation plume. To improve isotopic selectivity and detection sensitivity of this technique, we measured absorption spectra of Gd atom with various plume production conditions (ablation laser intensity, ambient gas and its pressure) and observation conditions (transition, probe height from sample, observation timing). As a result, high resolution spectrum was obtained from the observation of slow component of the plume produced under low-pressure rare-gas ambient. The observed narrowest linewidth of about 0.85GHz was found to be close to the Doppler width estimated for Gd atom of room temperature. Furthermore, relaxation rate of higher meta-stable state was found to be higher than that of ground state, suggesting that use of the transition arising from ground state or lower meta-stable state is preferable for highly sensitive isotope analysis. (author)

  8. Dynamics of excimer laser-ablated aluminum neutral atom plume measured by dye laser resonance absorption photography

    International Nuclear Information System (INIS)

    Gilgenbach, R.M.; Ventzek, P.L.G.

    1991-01-01

    We report the first dye laser resonance absorption photographs of a single species of aluminum ground-state neutral atoms in the plume ablated from solid aluminum by KrF excimer laser radiation. Aluminum ground-state neutral atoms were diagnosed by illuminating the ablated plume with a dye laser tuned to the 3 2 P 1/2 --4 2 S 1/2 transition at 394.4 nm. Measurements have been performed in vacuum as well as in argon and air environments. Streaming velocities measured for neutral aluminum atoms in vacuum ranged from 0.5x10 6 cm/s at low excimer laser fluences of 1--2 J/cm 2 to 3.4x10 6 cm/s at high fluences of 7 J/cm 2 . Dye laser resonance absorption photography measurements of ablated aluminum in argon and air showed slower expansion at 50 and 200 Torr, while observations at 760 Torr indicate turbulent mixing of aluminum neutrals near the surface. Differences between data in argon and air may be due to oxidation of neutral aluminum atoms

  9. Role of iron modifier on boron atomization process using graphite furnace-atomic absorption spectrometry based on speciation of iron using X-ray absorption fine structure

    Science.gov (United States)

    Yamamoto, Yuhei; Tagami, Azusa; Shiarasaki, Toshihiro; Yonetani, Akira; Yamamoto, Takashi; Imai, Shoji

    2018-04-01

    The role of an Fe modifier on boron atomization process using graphite furnace-atomic absorbance spectrometry was investigated using a spectroscopic approach. The initial state of the Fe modifier in a pyrolytic graphite (PG) furnace was trivalent. With an increase in pyrolysis temperature, the Fe modifier was reduced in a stepwise manner. Fe2O3 and Fe3O4 were dominant at pyrolysis temperatures below 1300 K. From 1300 to 1500 K, FeO was dominant. At temperatures higher than 1700 K, Fe metal was dominant. After a drying step, 17.7% of the initial B remained in the PG furnace. After the pyrolysis step at 773 K, the residual fraction of B was similar to that after the drying step. After the pyrolysis step at a temperature of 1073 K, the residual fraction was 11.7%. At pyrolysis temperatures > 1738 K, the residual fraction was <3.3% (

  10. Determination of yttrium and rare-earth elements in rocks by graphite-furnace atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Sen Gupta, J.G.

    1981-01-01

    With use of synthetic solutions and several international standard reference materials a method has been developed for determining traces of Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in rocks by electrothermal atomization in a pyrolytically-coated graphite furnace. Depending on the element, the sensitivity is of the order of 10 -9 to 10 -12 g at 2500 0 . To avoid matrix interferences the lanthanides are separated from the common elements by co-precipitation with calcium and iron as carriers. The data for Canadian reference rock SY-2 (syenite), U.S.G.S. reference rocks W-2 (diabase), DNC-1 (diabase) and BIR-1 (basalt), and South African reference rock NIM-18/69 (carbonatite) obtained by graphite-furnace atomization are compared with the values obtained by flame atomic-absorption. The results are in good agreement with literature values. (author)

  11. Determination of concentration of heavy metals (Pb, Cd, Fe) in animal tissues using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    RAZAFINTSALAMA, V.T.

    2009-01-01

    Heavy metals are classified among the inorganic compounds. The latter type of metal is found in rocks, fertilizers, urban mud but may also originate from the atmospheric pollution. A particular characteristic of heavy metals is their bioaccumulation in the food chain. Therefore, lead and cadmium, which are classified as heavy metals may be easily found in animal products and can lead to food poisoning if their concentrations are higher than the maximum permissible values as requested by international agencies such as the c odex alimentarius . The values are set down and differ according to types of food for human consuption and the trading companies take action accordingly. Therefore, it is necessary to set up a quality control system through analytical laboratory measurements and testings. This study underlies the method of determination of lead, cadmium and iron in animal tissues by atomic absorption spectrometry. The results showed that the method is sensitive and reliable. For each analyte, the Z-score lies between -2 and 2, indicating that the method is working properly. The analytical results showed that: (i) only beef and chicken meats and beef liver contain lead [0,09μg.g - 1; 0,29μg.g - 1]. The limit value of 0,1μg.g - 1 is almost reached in beef and chicken meats, (ii) as far as cadmium is concerned, the five studied samples contain this analyte [0,02μg.g - 1; 0,9μg.g - 1]. Except the chicken liver of which the concentration (0,15μg.g - 1) exceeds the maximum permissible value (0,1μg.g - 1), the others are in conformity with the standards and appropriate to be consumed,(iii) iron is higher in the liver and kidney samples: beef liver 282mg.g - 1, chicken liver 250 mg.g - 1, pork kidney 247mg.g - 1. The study also showed that the calcium concentration in animal tissues is low and they can be classified as poor-calcium food. [fr

  12. Optimized determination of calcium in grape juice, wines, and other alcoholic beverages by atomic absorption spectrometry.

    Science.gov (United States)

    Olalla, Manuel; González, Maria Cruz; Cabrera, Carmen; Gimenez, Rafael; López, Maria Carmen

    2002-01-01

    This paper describes a study of the different methods of sample preparation for the determination of calcium in grape juice, wines, and other alcoholic beverages by flame atomic absorption spectrometry; results are also reported for the practical application of these methods to the analysis of commercial samples produced in Spain. The methods tested included dealcoholization, dry mineralization, and wet mineralization with heating by using different acids and/or mixtures of acids. The sensitivity, detection limit, accuracy, precision, and selectiviy of each method were established. Such research is necessary because of the better analytical indexes obtained after acid digestion of the sample, as recommended by the European Union, which advocates the direct method. In addition, although high-temperature mineralization with an HNO3-HCIO4 mixture gave the best analytical results, mineralization with nitric acid at 80 degrees C for 15 min gave the most satisfactory results in all cases, including those for wines with high levels of sugar and beverages with high alcoholic content. The results for table wines subjected to the latter treatment had an accuracy of 98.70-99.90%, a relative standard deviation of 2.46%, a detection limit of 19.0 microg/L, and a determination limit of 31.7 microg/L. The method was found to be sufficiently sensitive and selective. It was applied to the determination of Ca in grape juice, different types of wines, and beverages with high alcoholic content, all of which are produced and widely consumed in Spain. The values obtained for Ca were 90.00 +/- 20.40 mg/L in the grape juices, 82.30 +/- 23.80 mg/L in the white wines, 85.00 +/- 30.25 mg/L in the sweet wines, 84.92 +/- 23.11 mg/L in the red wines, 85.75 +/- 27.65 mg/L in the rosé wines, 9.51 +/- 6.65 mg/L in the brandies, 11.53 +/- 6.55 mg/L in the gin, 7.3 +/- 6.32 mg/L in the pacharán, and 8.41 +/- 4.85 mg/L in the anisettes. The method is therefore useful for routine analysis in the

  13. Glove box adaptation, installation and commissioning of an assembled modular type atomic absorption unit with GF atomizer

    International Nuclear Information System (INIS)

    Gupta, Santosh Kumar; Thulasidas, S.K.; Goyal, Neelam; Godbole, S.V.

    2013-09-01

    The report describes glove box adaptation of an in-house developed AAS unit with GF as atomization source for determination of trace metallic elements in Pu bearing samples. In order to replace the old Varian Techtron GF-AAS which was utilized for analysis of Pu bearing samples for the last thirty seven years, and as of late was giving too many practical problems, a new GF-AAS was designed and reassembled. The original compact flame AAS unit available with M/s. Thermo Fisher India Pvt. Ltd, Nashik, was converted into separated modular unit viz. Hollow Cathode Lamp unit, Atomizer unit and Monochromator - Detector - Readout unit. In addition, these modular units were modified with respect to their dimensions so as to enable their use with existing glove box facility developed earlier in 1980 for glove box incorporation. These units were separated from each other at their factory site so as to enable us to incorporate atomizer unit alone in the glove box. Glove box adapted GF-AAS is essential for Radiochemistry Division to provide analytical services to Chemical Quality Control of Pu bearing nuclear and related materials and also as an analytical support to the R and D activities of the Radiochemistry Division, BARC. (author)

  14. Buffer choice and effects of sample composition examined by experiment planning methods for determination of molybdenum by atomic absorption with a flame atomizer

    International Nuclear Information System (INIS)

    Zav'yalkov, P.I.; Danishehvskii, A.L.; Rakita, R.A.; Yakshinskii, A.I.

    1986-01-01

    The authors use orthogonal experiment planning to define the optimum form of buffer and to establish the effects of sample composition since there are high levels of cation and anion interference in the atomic-absorption determination of molybdenum. A spectroscopic buffer has been identified (HCLO 4 + NH 4 Cl mixture), which eliminates the interference from the elements tested and improves the analytical characteristics in determining molybdenum. A model has been formulated enabling one to estimate the buffer performance and the effects of the components on the determination of molybdenum. The model enables one to forecast the expected order of the effect without performing additional experiments

  15. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří

    2002-01-01

    Roč. 57, č. 12 (2002), s. 2069-2079 ISSN 0584-8547 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : hydride atomization * hydride generation * atomic absortion spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.695, year: 2002

  16. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization.

    Science.gov (United States)

    Yamamoto, Yuhei; Shirasaki, Toshihiro; Yonetani, Akira; Imai, Shoji

    2015-01-01

    The measurement conditions for determining boron using graphite furnace-atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L(-1) when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS.

  17. Handbook of theoretical atomic physics. Data for photon absorption, electron scattering, and vacancies decay

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, Miron [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Chernysheva, Larissa [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Yarzhemsky, Victor [Kurnakov Institute of General and Inorganic Chemistry, Moscow (Russian Federation)

    2012-07-01

    The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomic data are presented. The atomic data are useful for investigating the electronic structure and physical processes in solids and liquids, molecules and clusters, astronomical objects, solar and planet atmospheres and atomic nucleus. Deep understanding of chemical reactions and processes is reached by deep and accurate knowledge of atomic structure and processes with participation of atoms. This book is useful for theorists performing research in different domains of contemporary physics, chemistry and biology, technologists working on production of new materials and for experimentalists performing research in the field of photon and electron interaction with atoms, molecules, solid bodies and liquids.

  18. Exploiting flow injection and sequential injection for trace metal determinations in conjunction with detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Despite their excellent analytical chemical capacities, Electrothermal Atomic Absorption Spectrometry (ETAAS) and Inductively Coupled Plasma Mass Spectrometry (ICPMS), nevertheless, often require suitable pretreatment of the sample material in order to obtain the necessary sensitivity...

  19. Estimation of lead, cadmium and nickel content by means of Atomic Absorption Spectroscopy in dry fruit bodies of some macromycetes growing in Poland. II.

    Directory of Open Access Journals (Sweden)

    Jan Grzybek

    2014-08-01

    Full Text Available The content of lead, cadmium, and nickel in dry fruit bodies of 34 species of macromyoetes collected in Poland from 72 natural babitats by means of Atomic Absorption Spectroscopy (AAS was estimated.

  20. Direct sampling graphite furnace atomic absorption spectrometry - feasibility of Na and K determination in desalted crude oil

    Science.gov (United States)

    Seeger, Tassia S.; Machado, Eduarda Q.; Flores, Erico M. M.; Mello, Paola A.; Duarte, Fabio A.

    2018-03-01

    In this study, Na and K were determined in desalted crude oil by direct sampling graphite furnace atomic absorption spectrometry (DS-GF AAS), with the use of a Zeeman-effect background correction system with variable magnetic field. The analysis was performed in low and high sensitivity conditions. Sodium determination was performed in two low-sensitivity conditions: 1) main absorption line (589.0 nm), gas stop flow during the atomization step and 3-field dynamic mode (0.6-0.8 T); and 2) secondary absorption line (330.3 nm), gas stop flow during the atomization and 2-field mode (0.8 T). In K determination, some parameters, such as high-sensitivity mode, main absorption line (766.5 nm), gas stop flow during the atomization and 2-field mode (0.8 T), were used. Suitability of chemical modifiers, such as Pd and W-Ir was also evaluated. The heating program for Na and K was based on the pyrolysis and atomization curves. Calibration was performed by aqueous standards. Accuracy was evaluated by the analysis of Green Petroleum Coke (SRM NIST 2718) and Trace Elements in Fuel Oil (SRM NIST 1634c). Recovery tests were also performed and results were compared with those obtained by GF AAS after crude oil digestion by microwave-assisted digestion. The characteristic mass of Na was 17.1 pg and 0.46 ng in conditions 1 and 2, respectively, while the one of K was 1.4 pg. Limits of detection and quantification by DS-GF AAS were 30 and 40 ng g-1 for Na and 3.2 and 4.2 ng g-1 for K, respectively. Sodium and K were determined in three crude oil samples with API density ranging from 20.9 to 28.0. Sodium and K concentration ranged from 1.5 to 73 μg g-1 and from 23 to 522 ng g-1, respectively.

  1. Resonance enhancement of two photon absorption by magnetically trapped atoms in strong rf-fields

    Science.gov (United States)

    Chakraborty, A.; Mishra, S. R.

    2018-01-01

    Applying a many mode Floquet formalism for magnetically trapped atoms interacting with a polychromatic rf-field, we predict a large two photon transition probability in the atomic system of cold 87Rb atoms. The physical origin of this enormous increase in the two photon transition probability is due to the formation of avoided crossings between eigen-energy levels originating from different Floquet sub-manifolds and redistribution of population in the resonant intermediate levels to give rise to the resonance enhancement effect. Other exquisite features of the studied atom-field composite system include the splitting of the generated avoided crossings at the strong field strength limit and a periodic variation of the single and two photon transition probabilities with the mode separation frequency of the polychromatic rf-field. This work can find applications to characterize properties of cold atom clouds in the magnetic traps using rf-spectroscopy techniques.

  2. Handbook of theoretical atomic physics data for photon absorption, electron scattering, and vacancies decay

    CERN Document Server

    Amusia, Miron Ya; Yarzhemsky, Victor

    2012-01-01

    The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomi...

  3. High-resolution continuum source electrothermal atomic absorption spectrometry - An analytical and diagnostic tool for trace analysis

    International Nuclear Information System (INIS)

    Welz, Bernhard; Borges, Daniel L.G.; Lepri, Fabio G.; Vale, Maria Goreti R.; Heitmann, Uwe

    2007-01-01

    The literature about applications of high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) with electrothermal atomization is reviewed. The historic development of HR-CS AAS is briefly summarized and the main advantages of this technique, mainly the 'visibility' of the spectral environment around the analytical line at high resolution and the unequaled simultaneous background correction are discussed. Simultaneous multielement CS AAS has been realized only in a very limited number of cases. The direct analysis of solid samples appears to have gained a lot from the special features of HR-CS AAS, and the examples from the literature suggest that calibration can be carried out against aqueous standards. Low-temperature losses of nickel and vanadyl porphyrins could be detected and avoided in the analysis of crude oil due to the superior background correction system. The visibility of the spectral environment around the analytical line revealed that the absorbance signal measured for phosphorus at the 213.6 nm non-resonance line without a modifier is mostly due to the PO molecule, and not to atomic phosphorus. The future possibility to apply high-resolution continuum source molecular absorption for the determination of non-metals is discussed

  4. Interference of nitrite and nitrogen dioxide on mercury and selenium determination by chemical vapor generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lopes Nunes, Dayana; Pereira dos Santos, Eliane Pereira; Barin, Juliano Smanioto; Mortari, Sergio Roberto; Dressler, Valderi Luiz; Moraes Flores, Erico Marlon de

    2005-01-01

    In this study, a systematic investigation was performed concerning the interference of nitrogen oxides on the determination of selenium and mercury by hydride generation atomic absorption spectrometry (HG AAS) and cold vapor atomic absorption spectrometry (CV AAS). The effect of nitrate, nitrite and NO 2 dissolved in the condensed phase was evaluated. No effect of NO 3 - on Se and Hg determination was observed up to 100 mg of sodium nitrate added to the reaction vessel. The Se signal was reduced by about 80% upon the addition of 6.8 mg NO 2 - . For Hg, no interference of nitrite was observed up to 20 mg of NO 2 - . A complete suppression of the Se signal was observed when gaseous NO 2 was introduced into analytical solutions. For Hg, a signal decrease between 8 and 13% occurred. For Se, bubbling argon or heating the solution was not able to recover the original absorbance values, whereas Hg signals were recovered with these procedures. When gaseous NO 2 was passed directly into the atomizer, Se signals decreased similarly to when NO 2 was bubbled in analytical solutions. The addition of urea, hydroxylamine hydrochloride and sulfamic acid (SA) was investigated to reduce the NO 2 effect in sample digests containing residual NO 2 , but only SA was effective in reducing the interference. Based on the results, it is possible to propose the use of SA to prevent interferences in Se and Hg determinations by HG AAS and CV AAS, respectively

  5. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap.

    Science.gov (United States)

    Demirtaş, İlknur; Bakırdere, Sezgin; Ataman, O Yavuz

    2015-06-01

    Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of µg/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte is trapped on-line in SQT for few minutes using ordinary sample aspiration, followed by the introduction of a small volume of organic solvent to effect the revolatilization and atomization of analyte species resulting in a transient signal. This system is economical, commercially available and easy to use. In this study, a sensitive analytical method was developed for the determination of lead with the help of SQT atom trapping flame atomization (SQT-AT-FAAS). 574 Fold sensitivity enhancement was obtained at a sample suction rate of 3.9 mL/min for 5.0 min trapping period with respect to FAAS. Organic solvent was selected as 40 µL of methyl isobutyl ketone (MIBK). To obtain a further sensitivity enhancement inner surface of SQT was coated with several transition metals. The best sensitivity enhancement, 1650 fold enhancement, was obtained by the Ta-coated SQT-AT-FAAS. In addition, chemical nature of Pb species trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. Raman spectrometric results indicate that tantalum is coated on SQT surface in the form of Ta2O5. XPS studies revealed that the oxidation state of Pb in species trapped on both bare and Ta coated SQT surfaces is +2. For the accuracy check, the analyses of standard reference material were performed by use of SCP SCIENCE EnviroMAT Low (EU-L-2) and results for Pb were to be in good agreement with

  6. The use of atomic absorption spectroscopy to measure arsenic, selenium, molybdenum, and vanadium in water and soil samples from uranium mill tailings sites

    International Nuclear Information System (INIS)

    Hollenbach, M.H.

    1988-01-01

    The Technical Measurements Center (TMC) was established to support the environmental measurement needs of the various DOE remedial action programs. A laboratory intercomparison study conducted by the TMC, using soil and water samples from sites contaminated by uranium mill tailings, indicated large discrepancies in analytical results reported by participating laboratories for arsenic, selenium, molybdenum, and vanadium. The present study was undertaken to investigate the most commonly used analytical techniques for measuring these four elements, ascertain routine and reliable quantification, and assess problems and successes of analysts. Based on a survey of the technical literature, the analytical technique of atomic absorption spectroscopy was selected for detailed study. The application of flame atomic absorption, graphite furnace atomic absorption, and hydride generation atomic absorption to the analysis of tailings-contaminated samples is discussed. Additionally, laboratory sample preparation methods for atomic absorption spectroscopy are presented. The conclusion of this report is that atomic absorption can be used effectively for the determination of arsenic, selenium, molybdenum, and vanadium in water and soil samples if the analyst understands the measurement process and is aware of potential problems. The problem of accurate quantification of arsenic, selenium, molybdenum, and vanadium in water and soil contaminated by waste products from uranium milling operations affects all DOE remedial action programs [Surplus Facilities Management Program (SFMP), Formerly Utilized Site Remedial Action Program (FUSRAP), and Uranium Mill Tailings Remedial Action Program (UMTRAP)], since all include sites where uranium was processed. 96 refs., 9 figs

  7. On-line Zeeman atomic-absorption spectroscopy for mercury analysis in oil-shale gases. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Girvin, D.C.; Fox, J.P.

    1981-03-01

    This report describes an instrumental technique to continuously measure total mercury in gas streams on a real-time basis. The technique utilizes Zeeman atomic absorption spectroscopy (ZAA) for on-line measurement of mercury in the presence of smoke, organic vapors, and oil mist which are typically present in offgases from oil shale processing plants. The accuracy of the ZAA background correction technique enables analytical measurement of mercury with up to 95% attenuation of the 2537A analytical line by broadband uv absorption. Furnaces with optical absorption tubes of different lengths are used depending upon the mercury concentration. Between 5 and 250 ppB (nanomoles Hg/mole of gas) of mercury in an 18-cm furnace is used. The instrumental response with this furnace is characterized by a detection limit (DL) of 2 ppB, a linear response up to 100 ppB, and a precision of +- 7% or better. In the 50 ppB to 1.6 ppM range, a furnace with a 5-cm optical absorption tube yields a DL of 10 ppB, a linear response up to 800 ppB, and a precision of +- 10% or better. Sample gas flow rates can be varied between 400 and 4000 scc/min for either furnace. 35 figures, 3 tables.

  8. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    Science.gov (United States)

    Ball, J.W.; Nordstrom, D. Kirk

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of

  9. Flame and graphite furnace atomic absorption spectrometry for trace element determination in vegetable oils, margarine and butter after sample emulsification.

    Science.gov (United States)

    Ieggli, C V S; Bohrer, D; Do Nascimento, P C; De Carvalho, L M

    2011-05-01

    Trace element analysis plays an important role in oil characterisation and in the detection of oil adulteration because the quality of edible oils and fats is affected by their trace metal content. In this study, the quantification of selected metals in various oils and fats (rice oil, canola oil, sunflower oil, corn oil, soy oil, olive oil, light margarine, regular margarine and butter) was carried out using flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after sample emulsification. FAAS was used to determine the Na, K, Ca, Mg, Zn and Fe levels in the samples, while GFAAS was used for quantifying Cr, Ni, As, Pb, Cd, Cu and Mn, as these elements appeared in the samples at much lower concentrations. Tween-80 and Triton X-100 were employed as surfactants, and emulsions were prepared by a conventional method that involved heating and mixing of the constituents. Complete stabilisation was achieved through magnetic stirring for 15 min at room temperature. The evaluated figures of merit were linearity, accuracy and sensitivity, which were determined by the characteristic concentration and mass. Analysis of spiked samples demonstrated accuracy, which ranged from 90% (Na) to 112% (Fe) for FAAS and from 83% (Cd) to 121% (Pb) for GFAAS measurements. Atomic absorption spectrometry proved to be a promising approach for the analysis of metals in emulsified edible oils and fats. Additionally, under appropriate emulsification conditions (formulation, stirring time and temperature), the emulsions were homogeneous, had excellent stability, and had appropriate viscosity. The proposed method has proved to be simple, sensitive, reproducible, and economical.

  10. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  11. Determination of mercury and selenium in herbal medicines and hair by using a nanometer TiO2-coated quartz tube atomizer and hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Li, Shun-Xing; Zheng, Feng-Ying; Cai, Shu-Jie; Cai, Tian-Shou

    2011-01-01

    The nanometer TiO 2 particle was coated onto the inner wall of a T-shaped quartz tube atomizer (QTA) and then was used as a new atomizer (NT-QTA) for the determination of Hg and Se by hydride generation atomic absorption spectrometry (HGAAS). After coating 67.4 mg TiO 2 on a quartz tube, the analytical performance of NT-QTA-HGAAS was compared to conventional QTA-HGAAS and it was improved as follows: (a) the linear range of the calibration curves was expanded from 10.0-80.0 ng mL -1 to 5.0-150.0 ng mL -1 for Hg, and from 10.0-70.0 ng mL -1 to 5.0-100.0 ng mL -1 for Se; (b) the characteristic concentration of was decreased from 2.8 ng mL -1 /1% to 1.1 ng mL -1 /1% for Hg and from 1.2 ng mL -1 /1% to 0.8 ng mL -1 /1% for Se; and (c) the interference from the coexistence of As on the determination of Hg and Se could be eliminated. The achieved technique was applied for the determination of Hg and Se in herbal medicines and hair.

  12. Air quality status in Kinshasa as determined by instrumental neutron activation analysis, atomic absorption spectrometry and ion-exchange chromatography

    International Nuclear Information System (INIS)

    Lobo, K.K.

    1991-01-01

    Three independent analytical techniques - instrumental neutron activation analysis. Atomic absorption spectrometry and ion-exchange chromatography - were applied to airborne particulate collected on filters and to atmospheric acid gases collected in carbonate buffer solutions. 20 trace elements and 7 acid gases and acid aerosols were determined. Results were compared with those observed elsewhere and showed that air pollution is low in Kinshasa and does not give rise to anxieties. The main known sources of pollutants are: vehicle exhaust and aeolian process on stripped soils. (author). 13 refs, 2 figs, 6 tabs

  13. Computer programs in BASIC language for graphite furnace atomic absorption using the method of additions. Part 2. Documentation

    International Nuclear Information System (INIS)

    Boyle, W.G. Jr.; Ryan, D.P.

    1979-08-01

    There are four computer programs, written in the BASIC language, used for taking and processing data from an atomic absorption spectrophotometer using the graphite furnace and the method of additions for calibration. The programs chain to each other and are divided into logical sections that have been flow-charted. The chaining sequences, general features, structure, order of subroutines and functions, and the storage of data are discussed. In addition, variables are listed and defined, and a complete listing of each program with a symbol occurrence table is provided

  14. Arsenic speciation by hydride generation-quartz furnace atomic absorption spectrometry. Optimization of analytical parameters and application to environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Molenat, N.; Astruc, A.; Holeman, M.; Pinel, R. [Laboratoire de Chimie Analytique Bioinorganique et Environnement, Dept. de Chimie, Faculte des Sciences et Techniques, 64 - Pau (France); Maury, G. [Montpellier-2 Univ., 34 (France). Dept. de Chimie Organique Fine

    1999-11-01

    Analytical parameters of hydride generation, trapping, gas chromatography and atomic absorption spectrometry detection in a quartz cell furnace (HG/GC/QFAAS) device have been optimized in order to develop an efficient and sensitive method for arsenic compounds speciation. Good performances were obtained with absolute detection limits in the range of 0.1 - 0.5 ng for arsenite, arsenate, mono-methyl-arsonic acid (MMAA), dimethyl-arsinic acid (DMAA) and trimethyl-arsine oxide (TMAO). A pH selective reduction for inorganic arsenic speciation was successfully reported. Application to the accurate determination of arsenic compounds in different environmental samples was performed. (authors)

  15. Assessment of metal and trace element concentrations in the Cananeia estuary, Brazil, by neutron activation and atomic absorption techniques

    International Nuclear Information System (INIS)

    Amorim, E.P.; Favaro, D.I.T.; Berbel, G.B.B.; Braga, E.S.

    2008-01-01

    Twenty six bottom sediment samples were collected from the Cananeia estuary in summer and winter of 2005. Multielemental analysis was carried out by instrumental neutron activation analysis. Total mercury was determined by cold vapor atomic absorption. As, Cr, Hg and Zn concentrations were compared to the Canadian oriented values (TEL and PEL). Sample points 4 and 9 presented higher concentration for most elements and As and Cr exceeded the TEL values. Organic matter (>10%) associated with siltic and clay sediments was observed. Climatic conditions, hydrodynamic and biogeochemical processes promote differences in seasonal concentrations of elements at some points, which contribute to special distributions. (author)

  16. Graphite furnace atomic absorption spectrophotometry--a novel method to quantify blood volume in experimental models of intracerebral hemorrhage.

    Science.gov (United States)

    Kashefiolasl, Sepide; Foerch, Christian; Pfeilschifter, Waltraud

    2013-02-15

    Intracerebral hemorrhage (ICH) accounts for 10% of all strokes and has a significantly higher mortality than cerebral ischemia. For decades, ICH has been neglected by experimental stroke researchers. Recently, however, clinical trials on acute blood pressure lowering or hyperacute supplementation of coagulation factors in ICH have spurred an interest to also design and improve translational animal models of spontaneous and anticoagulant-associated ICH. Hematoma volume is a substantial outcome parameter of most experimental ICH studies. We present graphite furnace atomic absorption spectrophotometric analysis (AAS) as a suitable method to precisely quantify hematoma volumes in rodent models of ICH. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Determination of Gd, Sm, Eu and Dy in uranium compounds by atomic absorption spectrophotometry using a graphite furnace

    International Nuclear Information System (INIS)

    Modenesi, C.R.; Abrao, A.

    1984-01-01

    The separation of Gd, Sm, Eu and Dy from uranium and its determination by graphite furnace atomic absorption spectrophotometry is outlined. The lanthanides were separated by means of the percolation of the uranyl nitrate solution 0,3 M in HF (50-250g of U 3 O 8 perliter) through an Al 2 O 3 column. The lanthanides retained in the column were eluted with 1M HCl. As thorium is also retained into the column under these conditions, its interference was studied. The determination limits of the method range from 0,01 to 0,1 μg of lanthanide per gram of uranium. (Author) [pt

  18. Evaluation of emery dust on the manufacture of abrasives by neutron activation analysis and atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Granados Correa, F.

    1992-01-01

    In this work it is presented an evaluation on the degree of contamination by emery dust in a working area where abrasives are manufactured, in a factory located in the industrial area of Toluca City by neutron activation analysis and atomic absorption spectroscopy. The samples were collected on Whatman filters and attacked with hot concentrated HCl. The elements founded were: Al, Si, V, Mg, Br, Mn, Ni, Zn, Fe, Cr, Ca and Pb. They are a risk for the health of the workers. (Author)

  19. A photon counting and a squeezing measurement method by the exact absorption and dispersion spectrum of Λ-type Atoms.

    Science.gov (United States)

    Naeimi, Ghasem; Alipour, Samira; Khademi, Siamak

    2016-01-01

    Recently, the master equations for the interaction of two-mode photons with a three-level Λ-type atom are exactly solved for the coherence terms. In this paper the exact absorption spectrum is applied for the presentation of a non-demolition photon counting method, for a few number of coupling photons, and its benefits are discussed. The exact scheme is also applied where the coupling photons are squeezed and the photon counting method is also developed for the measurement of the squeezing parameter of the coupling photons.

  20. Lead preconcentration in synthetic samples with triton x-114 in the cloud point extraction and analysis by atomic absorption (EAAF)

    International Nuclear Information System (INIS)

    Zegarra Pisconti, Marixa; Cjuno Huanca, Jesus

    2015-01-01

    A methodology was developed about lead preconcentration in water samples that were added dithizone as complexing agent, previously dissolved in the nonionic surfactant Triton X-114, until the formation of the critical micelle concentration and the cloud point temperature. The centrifuged system gave a precipitate with high concentrations of Pb (II) that was measured by atomic absorption spectroscopy with flame (EAAF). The method has proved feasible to be implemented as a method of preconcentration and analysis of Pb in aqueous samples with concentrations less than 1 ppm. Several parameters were evaluated to obtain a percentage recovery of 89.8%. (author)

  1. Graphite furnace atomic absorption spectrometric determination of vanadium after cloud point extraction in the presence of graphene oxide

    Science.gov (United States)

    López-García, Ignacio; Marín-Hernández, Juan José; Hernández-Córdoba, Manuel

    2018-05-01

    Vanadium (V) and vanadium (IV) in the presence of a small concentration of graphene oxide (0.05 mg mL-1) are quantitatively transferred to the coacervate obtained with Triton X-114 in a cloud point microextraction process. The surfactant-rich phase is directly injected into the graphite atomizer of an atomic absorption spectrometer. Using a 10-mL aliquot sample and 150 μL of a 15% Triton X-114 solution, the enrichment factor for the analyte is 103, which results in a detection limit of 0.02 μg L-1 vanadium. The separation of V(V) and V(IV) using an ion-exchanger allows speciation of the element at low concentrations. Data for seven reference water samples with certified vanadium contents confirm the reliability of the procedure. Several beer samples are also analyzed, those supplied as canned drinks showing low levels of tetravalent vanadium.

  2. A New Cross-Shaped Graphite Furnace with Ballast Body for Reduction of Interferences in Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    A. A. Asweisi

    2010-01-01

    Full Text Available A new crossed graphite furnace for atomic absorption spectrometry (GFAAS was designed and installed in heated graphite atomizer (HGA500 combined with Perkin-Elmer spectrometer (AAS1100. The Tungsten ballast body was inserted inside one part of the crossed furnace in a way perpendicular to light path. The analyzed sample was injected manually on the ballast body inside the cross and pushed into the measuring zone using the original inner and additional purge gas. The sample was adsorbed strongly on the ballast and evaporated and transferred with different rates at different temperatures during the temperature program allowing the separation of analyte and matrix signals. Analysis of middle volatile element such as copper and manganese in standard urine sample (seronorm 2525 showed complete separation of analyte and background signals with good sensitivity and repeatability.

  3. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    Science.gov (United States)

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  4. Monitoring of Pd in airborne particulates by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Atilgan, Semin [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469, Maslak, Istanbul (Turkey); Akman, Suleyman, E-mail: akmans@itu.edu.tr [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469, Maslak, Istanbul (Turkey); Baysal, Asli [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469, Maslak, Istanbul (Turkey); Bakircioglu, Yasemin [Trakya University, Faculty of Science and Letters, Department of Chemistry, 22030, Edirne (Turkey); Szigeti, Tamas; Ovari, Mihaly; Zaray, Gyula [Eoetvoes Lorand University, Institute of Chemistry, Department of Analytical Chemistry, P.O. Box 32, H-1518 Budapest (Hungary)

    2012-04-15

    An analytical method has been developed for determination of palladium in PM2.5 fractions of urban airborne particulate matter by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry. For the optimization of the experimental conditions, a road dust certified reference material (BCR-723) was used. The influence of pyrolysis and atomization temperatures, the amount of sample introduced into the graphite furnace and the addition of acids, surfactants and modifiers on the analytical signal of Pd were investigated. The limit of detection, calculated based on three times the standard deviations of analytical signals obtained during the atomization of 10 blank filter pieces, was 0.07 pg/m{sup 3}. Since the amount of solid certified reference material introduced into the graphite furnace was about 50-2000 times lower than those required in order to obtain the certified value, the precision was relatively poor. This analytical method was applied for investigation of urban airborne particulate matter collected onto quartz fiber filters by high-volume aerosol samplers in the city center of Istanbul (Turkey) and Budapest (Hungary). The measured Pd concentrations changed in the range of 0.22-0.64 and 0.25-0.86 pg/m{sup 3} in Istanbul and Budapest, respectively. - Highlights: Black-Right-Pointing-Pointer Method development for palladium determination in air samples using solid sampling technique. Black-Right-Pointing-Pointer Analysis by solid sampling electrothermal atomic absorption spectrometry (HR CS ETAAS). Black-Right-Pointing-Pointer Monitoring of Pd in Istanbul and Budapest PM2.5 urban aerosols during one year. Black-Right-Pointing-Pointer Statistical analysis of results.

  5. Hydride generation - in-atomizer collection of Pb in quartz tube atomizers for atomic absorption spectrometry – a 212Pb radiotracer study

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Musil, Stanislav; Vobecký, Miloslav; Dědina, Jiří

    2013-01-01

    Roč. 28, č. 3 (2013), s. 344-353 ISSN 0267-9477 R&D Projects: GA ČR(CZ) GPP206/11/P002 Institutional support: RVO:68081715 Keywords : trap-and-atomizer device * lead determination * radiotracer study Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.396, year: 2013

  6. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer

    Czech Academy of Sciences Publication Activity Database

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-01-01

    Roč. 1010, JUN (2018), s. 11-19 ISSN 0003-2670 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * Stibane * atomization and preconcentration Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  7. Green method for ultrasensitive determination of Hg in natural waters by electrothermal-atomic absorption spectrometry following sono-induced cold vapor generation and 'in-atomizer trapping'

    International Nuclear Information System (INIS)

    Gil, Sandra; Lavilla, Isela; Bendicho, Carlos

    2007-01-01

    Sono-induced cold vapor generation (SI-CVG) has been used for the first time in combination with a graphite furnace atomizer for determination of Hg in natural waters by electrothermal-atomic absorption spectrometry after in situ trapping onto a noble metal-pretreated platform (Pd, Pt or Rh) inserted into a graphite tube. The system allows 'in-atomizer trapping' of Hg without the use of conventional reduction reactions based on sodium borohydride or tin chloride in acid medium for cold vapor generation. The sono-induced reaction is accomplished by applying ultrasound irradiation to the sample solution containing Hg(II) in the presence of an organic compound such as formic acid. As this organic acid is partly degraded upon ultrasound irradiation to yield CO, CO 2 , H 2 and H 2 O, the amount of lab wastes is minimized and a green methodology is achieved. For this purpose, experimental variables influencing the generation/trapping process are fully investigated. The limit of detection for a 10 min trapping time and 10 mL sample volume was 0.03 μg L -1 (Integrated absorbance) and the repeatability expressed as relative standard deviation was about 3%. Carbonates and chlorides at 100 mg L -1 level caused a signal depression by 20-30%. The enhanced trapping efficiency observed with the sono-induced cold vapor generation as compared with 'in-atomizer trapping' methods employing chemical vapor generation is discussed. A reaction pathway for SI-CVG is proposed on the basis of the current knowledge for synthesis of noble metal nanoparticles by ultrasound

  8. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    Science.gov (United States)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  9. Surfactant/oil/water system for the determination of selenium in eggs by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Ieggli, C. V. S.; Bohrer, D.; Noremberg, S.; do Nascimento, P. C.; de Carvalho, L. M.; Vieira, S. L.; Reis, R. N.

    2009-06-01

    An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 µg L - 1 . The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical.

  10. Surfactant/oil/water system for the determination of selenium in eggs by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ieggli, C.V.S. [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil); Bohrer, D. [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil)], E-mail: ndenise@quimica.ufsm.br; Noremberg, S.; Nascimento, P.C. do; Carvalho, L.M. de [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil); Vieira, S.L.; Reis, R.N. [Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 7712, CEP 90540-000, Porto Alegre (Brazil)

    2009-06-15

    An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 {mu}g L{sup - 1}. The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical.

  11. MERCURY QUANTIFICATION IN SOILS USING THERMAL DESORPTION AND ATOMIC ABSORPTION SPECTROMETRY: PROPOSAL FOR AN ALTERNATIVE METHOD OF ANALYSIS

    Directory of Open Access Journals (Sweden)

    Liliane Catone Soares

    2015-08-01

    Full Text Available Despite the considerable environmental importance of mercury (Hg, given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique, were used in validation of the method, which proved to be accurate and precise.

  12. Extended x-ray absorption fine structure studies of the atomic structure of nanoparticles in different metallic matrices.

    Science.gov (United States)

    Baker, S H; Roy, M; Gurman, S J; Binns, C

    2009-05-06

    It has been appreciated for some time that the novel properties of particles in the size range 1-10 nm are potentially exploitable in a range of applications. In order to ultimately produce commercial devices containing nanosized particles, it is necessary to develop controllable means of incorporating them into macroscopic samples. One way of doing this is to embed the nanoparticles in a matrix of a different material, by co-deposition for example, to form a nanocomposite film. The atomic structure of the embedded particles can be strongly influenced by the matrix. Since some of the key properties of materials, including magnetism, strongly depend on atomic structure, the ability to determine atomic structure in embedded nanoparticles is very important. This review focuses on nanoparticles, in particular magnetic nanoparticles, embedded in different metal matrices. Extended x-ray absorption fine structure (EXAFS) provides an excellent means of probing atomic structure in nanocomposite materials, and an overview of this technique is given. Its application in probing catalytic metal clusters is described briefly, before giving an account of the use of EXAFS in determining atomic structure in magnetic nanocomposite films. In particular, we focus on cluster-assembled films comprised of Fe and Co nanosized particles embedded in various metal matrices, and show how the crystal structure of the particles can be changed by appropriate choice of the matrix material. The work discussed here demonstrates that combining the results of structural and magnetic measurements, as well as theoretical calculations, can play a significant part in tailoring the properties of new magnetic cluster-assembled materials.

  13. Determination of vanadium in sea water by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Sakai, Kaoru

    1981-01-01

    The trace amount of vanadium in sea water was determined by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite. To correct the background absorption, a deuterium lamp with a higher-brilliant thermal cathode was used. The sensitivity for vanadium increased 10 -- 20 fold by the use of the tube coated with pyrolytic graphite, and the utility lifetime of the tube was greatly extended. Vanadium(V) - 4-(2-pyridylazo)resorcinol (PAR) complexes were extracted into chloroform as an ion-pair with benzyldimethyltetradecylammonium (Zephiramine) cation alternatively. The sample of sea water, which was made to 0.1 N in sulfuric acid and 0.1% in hydrogen peroxide, was loaded onto the column of Dowex 1-X 4 resin (SO 4 2- -form). Vanadium was then eluted from the resin with 1 N sulfuric acid-0.1% hydrogen peroxide or 1 N hydrochloric acid-0.1% hydrogen peroxide evaporated to dry. After dissolution of the elute in 0.2 N nitric acid, vanadium was extracted. Secondly, the sample of sea water was adjusted to pH 5.0, and loaded onto the column of Chelex-100 resin. Vanadium was eluted from the resin with 2 N ammonia. The above two methods took much time, but the coprecipitation method was not so and recommended for the determination of vanadium in sea water. Vanadium was coprecipitated with iron(III) hydroxide-hydrous titanium(IV) oxide at pH 6.0. The precipitate was digested with nitric acid-hydrogen peroxide. The solution was diluted to 50 ml with water. The resulting solutions were employed to determine the vanadium concentration by the graphite furnace atomic absorption measurement. The trace amounts of vanadium in various kinds of the coastal sea water were determined by the coprecipitation method. (author)

  14. Influence of soil composition in the determination of chromium by atomic absorption spectrometry with flame air / acetylene

    International Nuclear Information System (INIS)

    Duran Sosa, Ibis; Granda Valdes, Mayra; Pomares Alfonso, Mario Simeon

    2014-01-01

    The Air-acetylene Flame Atomic Absorption determination of chromium is a complex task, being strongly influenced by sample composition and instrumental conditions. The objective of this work was to study the influence of Al, Ca, Fe, K, Mg, and Na on the absorption of chromium in the air-acetylene flame, both separately and combined in solution, when acetylene flow and burner height vary. Dissolutions of the mixtures simulated the composition of four soils from the Quibu River Basin in Havana, Cuba. Chromium absorption first increased and then decreased with increment of acetylene flow for shorter burner heights (∼ 2-4 mm); while a continuous increase was observed for larger heights (> 4 mm). This behavior was the same in the presence and absence of interfering chemical element, mentioned above. On the other hand, the dependence of the magnitude of the interference with acetylene flow and burner height was complex and dependent on the interfering element, particularly at larger heights where the behavior of Al was remarkably different. The interference of the four mixtures of Al, Ca, K, Fe, Mg and Na decreased in comparison to individual interfering effects and was less dependent on acetylene flow and burner height. Finally, a significant reduction of interference on chromium determination in soil samples was achieved by an adequate selection of acetylene flow and burner height

  15. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  16. Simultaneous determination of rhodium and ruthenium by high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Zambrzycka-Szelewa, Elżbieta; Lulewicz, Marta; Godlewska-Żyłkiewicz, Beata

    2017-07-01

    In the present paper a fast, simple and sensitive analytical method for simultaneous determination of rhodium and ruthenium by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) was developed. Among six pairs of absorption atomic lines of Rh and Ru, which are close enough to enable their simultaneous detection, two pairs were selected for further studies. Best results were obtained for measurements of the resonance line of rhodium at 343.489 nm and the adjacent secondary line of ruthenium at 343.674 nm (23% intensity of this line). For evaluated lines, the absorbance values were obtained using three pixels. The pyrolysis and atomization temperatures were 1200 °C and 2600 °C, respectively. Under these conditions the limits of detection achieved for Rh and Ru were found to be 1.0 μg L- 1 and 1.9 μg L- 1, respectively. The characteristic mass was 12.9 pg for Rh and 71.7 pg for Ru. Repeatability of the results expressed as a relative standard deviation was typically below 6%. The trueness of the method was confirmed by analysis of the certified reference material - platinum ore (SARM 76). The recovery of Rh and Ru from the platinum ore was 93.0 ± 4.6% and 90.1 ± 2.5%, respectively. The method was successfully applied to the direct simultaneous determination of trace amounts of rhodium and ruthenium in spiked river water, road runoff, and municipal sewage. Separation of interfering matrix on cation exchange resin was required before analysis of road dust and tunnel dust (CW-7) by HR-CS GFAAS.

  17. Application of Plackett-Burman and Doehlert designs for optimization of selenium analysis in plasma with electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    El Ati-Hellal, Myriam; Hellal, Fayçal; Hedhili, Abderrazek

    2014-10-01

    The aim of this study was the optimization of selenium determination in plasma samples with electrothermal atomic absorption spectrometry using experimental design methodology. 11 variables being able to influence selenium analysis in human blood plasma by electrothermal atomic absorption spectrometry (ETAAS) were evaluated with Plackett-Burman experimental design. These factors were selected from sample preparation, furnace program and chemical modification steps. Both absorbance and background signals were chosen as responses in the screening approach. Doehlert design was used for method optimization. Results showed that only ashing temperature has a statistically significant effect on the selected responses. Optimization with Doehlert design allowed the development of a reliable method for selenium analysis with ETAAS. Samples were diluted 1/10 with 0.05% (v/v) TritonX-100+2.5% (v/v) HNO3 solution. Optimized ashing and atomization temperatures for nickel modifier were 1070°C and 2270°C, respectively. A detection limit of 2.1μgL(-1) Se was obtained. Accuracy of the method was checked by the analysis of selenium in Seronorm™ Trace element quality control serum level 1. The developed procedure was applied for the analysis of total selenium in fifteen plasma samples with standard addition method. Concentrations ranged between 24.4 and 64.6μgL(-1), with a mean of 42.6±4.9μgL(-1). The use of experimental designs allowed the development of a cheap and accurate method for selenium analysis in plasma that could be applied routinely in clinical laboratories. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  18. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Vilar Farinas, M. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Barciela Garcia, J. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Garcia Martin, S. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Pena Crecente, R. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Herrero Latorre, C. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain)]. E-mail: cherrero@lugo.usc.es

    2007-05-22

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO{sub 3}){sub 2} and (NH{sub 4})H{sub 2}PO{sub 4}-Mg(NO{sub 3}){sub 2}] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 {mu}g L{sup -1}), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged

  19. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    International Nuclear Information System (INIS)

    Vilar Farinas, M.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.; Herrero Latorre, C.

    2007-01-01

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO 3 ) 2 and (NH 4 )H 2 PO 4 -Mg(NO 3 ) 2 ] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 μg L -1 ), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged -1

  20. Nickel and strontium nitrates as modifiers for the determination of selenium in wine by Zeeman electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, J. [Inst. of Agriculture, Skopje (Yugoslavia); Stafilov, T. [Inst. of Chemistry, Faculty of Science Sts. Cyril and Methodius Univ., Skopje (Yugoslavia); Mihajlovic, D. [RZ Tehnicka Kontrola, Skopje (Yugoslavia)

    2001-08-01

    A mixed matrix modifier of nickel and strontium nitrates was used as a chemical modifier for the determination of selenium in wines by Zeeman electrothermal atomic absorption spectrometry. Wine samples were heated on a boiling water bath with small amounts of nitric acid and hydrogen peroxide. For complete elimination of interference, especially from sulfates and phosphates, selenium is complexed with ammonium pyrolidinedithiocarbamate (APDTC), extracted into methyl isobutyl ketone (MIBK), and measured by ETAAS. The graphite furnace temperature program was optimized for both aqueous and organic solutions. Pyrolysis temperatures of 1300 C and 800 C were chosen for aqueous and organic solutions, respectively; 2700 C and 2100 C were used as optimum atomization temperatures for aqueous and organic solutions, respectively. The optimum modifier mass established is markedly lower than those presented in the literature. The platform atomization ensures pretreatment stabilization up to 1100 C and 1600 C, respectively, for organic and aqueous selenium solutions. The procedure was verified by the method of standard addition. The investigated wine samples originated from the different regions of the Republic of Macedonia. The selenium concentration varied from not detectable to 0.93 {mu}g L{sup -1}. (orig.)

  1. XUV Transient Absorption Spectroscopy: Probing Laser-Perturbed Dipole Polarization in Single Atom, Macroscopic, and Molecular Regimes

    Directory of Open Access Journals (Sweden)

    Chen-Ting Liao

    2017-03-01

    Full Text Available We employ an extreme ultraviolet (XUV pulse to impulsively excite dipole polarization in atoms or molecules, which corresponds to coherently prepared superposition of excited states. A delayed near infrared (NIR pulse then perturbs the fast evolving polarization, and the resultant absorbance change is monitored in dilute helium, dense helium, and sulfur hexafluoride (SF6 molecules. We observe and quantify the time-dependence of various transient phenomena in helium atoms,includinglaser-inducedphase(LIP,time-varying(ACStarkshift,quantumpathinterference, and laser-induced continuum structure. In the case of dense helium targets, we discuss nonlinear macroscopic propagation effects pertaining to LIP and resonant pulse propagation, which accoun tfor the appearance of new spectral features in transient lineshapes. We then use tunable NIR photons to demonstrate the wavelength dependence of the transient laser induced effects. In the case of molecular polarization experiment in SF6, we show suppression of XUV photoabsorption corresponding to inter-valence transitions in the presence of a strong NIR field. In each case, the temporal evolution of transient absorption spectra allows us to observe and understand the transient laser induced modifications of the electronic structure of atoms and molecules.

  2. Heating rates in furnace atomic absorption using the L'vov platform

    Science.gov (United States)

    Koirtyohann, S.R.; Giddings, R.C.; Taylor, Howard E.

    1984-01-01

    Heating rate profiles for the furnace tube wall, the furnace atmosphere, and a L'vov platform were established for a range of conditions in a cyclically heated graphite atomizer. The tube wall profile was made by direct observation with a recording optical pyrometer. The sodium line reversal method was used to establish the heating rate of the furnace atmosphere, and appearance temperatures for a series metals of differing volatility was used to establish platform profiles. The tube wall heating rate was nearly linear at 2240??C s- until the desired temperature was reached after which the temperature remained constant. The furnace atmosphere reached a given temperature 0.2-0.4 s later than the tube wall through most of the atomize cycle. The platform lagged the tube wall 0.5-0.8 s. Under typical operating conditions the furnace atmosphere was 100-200??C cooler than the tube wall and at nearly constant temperature when the analyte vaporized from the platform. The L'vov platform causes the cyclically heated commercial furnace to approximate the behavior of a constant temperature furnace during atomization. ?? 1984.

  3. Assessment of cadmium and iron adsorption in sediment, employing a flow injection analysis system with on line filtration and detection by flame atomic absorption spectrometry and thermospray flame furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fagner Moreira de; Marchioni, Camila; Barros, Juan A. V de A. [Universidade Federal de Alfenas (UNIFAL-MG), Instituto de Química, Rua GabrielMonteiro da Silva, 714, CEP 37130-000, Alfenas-MG (Brazil); Lago, Ayla Campos do [Universidade Federal de São Carlos (UFSCar-SP), Departamento de Química, 10Rodovia Washington Luís, Km 235-SP 310, CEP 16565-905, São Carlos-SP (Brazil); Wisniewski, Célio [Universidade Federal de Alfenas (UNIFAL-MG), Instituto de Química, Rua GabrielMonteiro da Silva, 714, CEP 37130-000, Alfenas-MG (Brazil); Luccas, Pedro Orival, E-mail: pedro.luccas@unifal-mg.edu.br [Universidade Federal de Alfenas (UNIFAL-MG), Instituto de Química, Rua GabrielMonteiro da Silva, 714, CEP 37130-000, Alfenas-MG (Brazil)

    2014-01-27

    Graphical abstract: -- Highlights: •A FIA system with on-line filtration for isotherms adsorption studies was proposed. •Isotherms for iron and cadmium elements in bottom lake sediment were done. •Inferences about adsorption/desorption mechanisms were feasible. •The proposed method turns the isotherm studies fast and reliable. -- Abstract: This work presents an evaluation of iron and cadmium adsorption in sediment of the Furnas Hydroelectric Plant Reservatory located in Alfenas, Minas Gerais (Brazil). The metal determination was done employing a flow injection analysis (FIA) with an on-line filtering system. As detection techniques, flame atomic absorption spectrometry (FAAS) for iron and thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) for cadmium determinations were used. The developed methodology presented good limits of detection, being 190 μg L{sup −1} for iron and 1.36 μg L{sup −1} for cadmium, and high sampling frequency for both metals 144 and 60 readings h{sup −1} for iron and cadmium, respectively. Both metals obey the Langmuir model, with maximum adsorptive capacity of 0⋅169 mg g{sup −1} for iron and 7⋅991 mg g{sup −1} for cadmium. For iron, a pseudo-first-order kinetic model was obtained with a theoretical Q{sub e} = 9⋅8355 mg g{sup −1} (experimental Q{sub e} = 9⋅5432 mg g{sup −1}), while for cadmium, a pseudo-second-order kinetic model was obtained, with a theoretical Q{sub e} = 0.3123 mg g{sup −1} (experimental Q{sub e} = 0⋅3052 mg g{sup −1})

  4. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Direct measurement of interstellar extinction toward young stars using atomic hydrogen Lyα absorption

    Energy Technology Data Exchange (ETDEWEB)

    McJunkin, Matthew; France, Kevin; Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Schneider, P. C. [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Hillenbrand, Lynne [California Institute of Technology, Department of Astrophysics, MC105-24, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Schindhelm, Eric [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Edwards, Suzan, E-mail: matthew.mcjunkin@colorado.edu [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States)

    2014-01-10

    Interstellar reddening corrections are necessary to reconstruct the intrinsic spectral energy distributions (SEDs) of accreting protostellar systems. The stellar SED determines the heating and chemical processes that can occur in circumstellar disks. Measurement of neutral hydrogen absorption against broad Lyα emission profiles in young stars can be used to obtain the total H I column density (N(H I)) along the line of sight. We measure N(H I) with new and archival ultraviolet observations from the Hubble Space Telescope (HST) of 31 classical T Tauri and Herbig Ae/Be stars. The H I column densities range from log{sub 10}(N(H I)) ≈19.6-21.1, with corresponding visual extinctions of A{sub V} =0.02-0.72 mag, assuming an R{sub V} of 3.1. We find that the majority of the H I absorption along the line of sight likely comes from interstellar rather than circumstellar material. Extinctions derived from new HST blue-optical spectral analyses, previous IR and optical measurements, and new X-ray column densities on average overestimate the interstellar extinction toward young stars compared to the N(H I) values by ∼0.6 mag. We discuss possible explanations for this discrepancy in the context of a protoplanetary disk geometry.

  6. Modified determination of total and inorganic mercury in urine by cold vapor atomic absorption sectrometry.

    Science.gov (United States)

    Littlejohn, D; Fell, G S; Ottaway, J M

    1976-10-01

    In this procedure a single-beam spectrophotometer is used without background correction. By the method of Magos [Analyst (London) 96, 847 (1971)] mercury in undigested urine is complexed to L-cysteine in acid solution. At high pH and in the presence of stannous ions, mercury ions are reduced to elemental mercury. The mercury vapor is partitioned above the reagent solution in a specially designed chemical reduction apparatus similar in principle to that used by Kubasik et al. [Clin. Chem. 18, 1326 (1972)]. The vapor is then flushed by air through an "absorption" cell, where the absorption of the mercury line at 253.7 nm is measured. The value obtained for inorganic mercury subtracted from that for total mercury gives a value for organic mercury. CV's for the inorganic mercury procedure at 40 and 5 mug/liter concentrations were 3.1% and 7.5%, respectively. The detection limit is 0.82 mug/liter. The CV for the total-mercury procedure (20 mug/liter) was 2.6%. Mean analytical recoveries of organic and inorganic mercury were 96.5% and 101%, respectively. We investigated storage conditions for urine and compared results by the present technique with those by activation analysis. Our method is a convenient way to screen individuals who have been exposed to a mercury hazard.

  7. Flow Injection and Atomic Absorption Spectrometry - An Effective and Attractive Analytical Chemical Combination

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Nielsen, Steffen

    1998-01-01

    One of the advantages of the flow injection (FI) concept is that it is compatible with virtually all detection techniques. Being a versatile vehicle for enhancing the performance of the individual detection devices, the most spectacular results have possibly been obtained in conjunction with atomic...... for reproducible sample presentation to the AAS instrument, as a means for facilitating conversion techniques for determination of anions, for allowing on-line preconcentration procedures via incorporated column reactors or via (co)precipitation, for exploiting kinetic discrimination schemes in hydride generation...

  8. Rapid quantitative analysis of magnesium stearate in pharmaceutical powders and solid dosage forms by atomic absorption: method development and application in product manufacturing.

    Science.gov (United States)

    Sugisawa, Keiichi; Kaneko, Takashi; Sago, Tsuyoshi; Sato, Tomonobu

    2009-04-05

    The distribution of magnesium stearate (MgSt) in tablet granule has a significant impact on the compression process. A rapid quantitative method for evaluating magnesium stearate content by atomic absorption was established. The MgSt was extracted from the granule in 0.1 mol/L nitric acid and the resulting free magnesium ion quantitated by atomic absorption. The total analysis time was significantly shortened in comparison to the previously used sample ignition method. This newly established method was evaluated with several drug products and several types of blender. The analytical method was also applied to tablets with poor compression (rough tablet surface). The MgSt content in these rough surface tablets was significantly lower than in tablets with smooth surfaces from the same batch. From these results, this atomic absorption method is considered to be an accurate and useful method for evaluating MgSt distribution and can be applied to tablet manufacturing process validation.

  9. Application of the atomic absorption technical to available the concentration of silver ions incorporated in glass matrix by ionic exchange process

    International Nuclear Information System (INIS)

    Mendes, E.; Silva, K.F.; Teixeira, A.; Silva, L.; Paula, M.M.S.; Angioletto, E.; Riella, H.G.; Fiori, M. A.

    2009-01-01

    Ion specimens can be incorporated in glasses or natural clays by ionic exchange process with different concentrations dependent of matrix's type and of the ionic exchange parameters. In particular, the incorporation of silver ions presents high interest by its biocidal properties. A compound contending ion silver specimens presents bactericidal and fungicidal properties with effect proportional to ion concentration. This work presents results about application of the atomic absorption technical to determine the silver ion concentration incorporated in a glass matrix by ionic exchange process. The ionic exchange experiments were realized with different AgNO 3 concentration and constant temperature. After ionic exchange process, the glass samples were submitted to characterization by Energy Dispersive X-Ray Spectroscopy and Atomic Absorption Techniques. The comparative results between different techniques showed that atomic absorption technical is adequate to determine ion silver concentration incorporated in the glass matrix after ionic exchange process. (author)

  10. Investigations on the analysis of heavy metals in solids by direct Zeeman atomic absorption spectroscopy. Pt. 2

    International Nuclear Information System (INIS)

    Kurfuerst, U.

    1983-01-01

    The theory of the Zeeman effect and the different types of linebroadening effects are presented as the basis of a discussion about the principle of Direct ZAAS compensation (lamp in the magnetic field). The performance of the ZAA-spectrometer SM 1 and the function of the single components are described. The spectroscopic properties depending on magnetic field strength, self-absorption and atom density are demonstrated and explained. With these tools it is possible to interpret and optimise these phenomena, which are unknown in normal AAS. The ability and the limits of compensation by Direct ZAAS are shown and compared with the deuterium compensation technique. Different types of spectral interferences (continuum and structured background, line overlapping) are discussed. All considerations are directed to the direct analysis of solid samples. (orig.) [de

  11. An analysis of lead (Pb) from human hair samples (20-40 years of age) by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Gelsano, Flordeliza K.; Timing, Laurie D.

    2003-01-01

    This analysis of lead from human hair samples in five different groups namely scavengers from Payatas Quezon City, tricycle drivers, car shop workers, paint factory workers, and students from Polytechnic University of the Philippines. The people from Nagcarlan, Laguna represented as a ''base-line value'' or as a control group. The method applied was acid digestion using HNO 3 and HClO 4 then the samples were subjected to atomic absorption spectrophotometer. In terms of lead found from hair, the scavengers from Payatas Q.C. obtained high exposure of lead among the samples that were tested. The result of the analysis of concentration of lead was expressed in mg/L. (Authors)

  12. Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media.

    Science.gov (United States)

    Zhang, Yiqi; Wu, Zhenkun; Yao, Xin; Zhang, Zhaoyang; Chen, Haixia; Zhang, Huaibin; Zhang, Yanpeng

    2013-12-02

    We experimentally demonstrate dressed multi-wave mixing (MWM) and the reflection of the probe beam due to electromagnetically induced absorption (EIA) grating can coexist in a five-level atomic ensemble. The reflection is derived from the photonic band gap (PBG) of EIA grating, which is much broader than the PBG of EIT grating. Therefore, EIA-type PBG can reflect more energy from probe than EIT-type PBG does, which can effectively affect the MWM signal. The EIA-type as well as EIT-type PBG can be controlled by multiple parameters including the frequency detunings, propagation angles and powers of the involved light fields. Also, the EIA-type PBG by considering both the linear and third-order nonlinear refractive indices is also investigated. The theoretical analysis agrees well with the experimental results. This investigation has potential applications in all-optical communication and information processing.

  13. Some investigation on trace elements content of Iranian breads using neutron activation analysis and atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Gharib, A.; Fatemi, K.; Moazezi, A.; Mahmoodzadeh, A.; Koushkestani, R.

    1988-01-01

    Since bread is consumed as a principal dietary staple by the majority of Iranian communities, actual natural portion of required protein and energy are provided via bread. Therefore, with respect to this matter, a considerable amount of needed minerals must also be met through this way. Literature survey indicates some elemental deficiencies as the result of consumption of bread in Iran. On the other hand, essentiality of these elements to human which are mostly in the range of trace amounts, makes this investigation very much important and interesting from both sides, nutritionally and instrumentally. To meet the above requirements, applications of very sensitive analytical tools are unavoidable. Hence, atomic absorption spectroscopy and neutron activation analysis both RNAA and INAA are employed. Results are controversial and constructive

  14. Rapid Determination of Trace Palladium in Active Pharmaceutical Ingredients by Magnetic Solid-Phase Extraction and Flame Atomic Absorption Spectrometry

    Science.gov (United States)

    Yin, Q. H.; Zhu, D. M.; Yang, D. Z.; Hu, Q. F.; Yang, Y. L.

    2018-01-01

    Clutaraldehyde cross-linked magnetic chitosan nanoparticles were synthesized and used as an adsorbent for the dispersive solid-phase extraction of palladium in active pharmaceutical ingredients (APIs) prior to analysis by a flame atomic absorption spectrophotometer. FT-IR, X-ray diffraction, and TEM were used to characterize the adsorbent. Various parameters of experimental performance, such as adsorbent amount, pH, adsorption time, desorption solutions, coexisting ions, and adsorbent reusability, were investigated and optimized. Under the optimized conditions, good linearity was achieved in the 5.0-500 μg/L concentration range, with correlation coefficients of 0.9989. The limit of detection is 2.8 μg/L and the recoveries of spiked samples ranged from 91.7 to 97.6%. It was confirmed that the GMCNs nanocomposite was a promising adsorbing material for extraction and preconcentration of Pd in APIs.

  15. Determination of organic forms of mercury and arsenic in water and atmospheric samples by gas chromatography-atomic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Paudyn, A.; Van Loon, J.C.

    1986-10-01

    A study of the determination of dimethylmercury, methylmercury, ethylmercury, dimethylarsine and methylarsine in water and in atmospheric samples was carried out. The studied compounds were extracted from water by a benzene-toluene mixture, evaporated if necessary and analyzed by gas chromatography with atomic absorption spectrometry as a detector. A 45 cm column packed with Tenax was used. The detection limits of the procedure were: 4 ng Hg in dimethylmercury and methylmercury, 5 ng Hg in ethylmercury and 25 ng As in dimethyl and methylarsine in 1 l water. Methylmercury and ethylmercury were detected in Ontario natural waters and snow at 12-45 and 7-15 ng Hg l/sup -1/ respectively. The level of methylarsine varied from 40 to 90 ng l/sup -1/. Dimethylmercury and dimethylarsine were detected only in the Humber River.

  16. Performance of permanent iridium modifier in the presence of corrosive matrix in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Piascik, M.; Bulska, E. [Univ. of Warsaw (Poland). Dept. of Chemistry

    2001-12-01

    The influence of up to 16% HNO{sub 3}, 28% HCl, and the mixture of both acids in aqua regia on the analytical performance of electrodeposited modifiers (Ir or Ir+Pd) was evaluated and discussed. Cadmium was used as an example of volatile elements often determined by graphite furnace atomic absorption spectrometry (GF AAS). In the presence of HCl, the maximum pyrolysis temperature that could be applied was found to be 600 C. In the presence of HNO{sub 3} and aqua regia, both modifiers stabilized cadmium up to 800 C. The long-term performance of electrodeposited Ir or Ir+Pd was not influenced by mineral acids; moreover the tube lifetime was significantly prolonged compared with a non-modified tube. (orig.)

  17. Separation and enrichment of gold(III) from environmental samples prior to its flame atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Senturk, Hasan Basri; Gundogdu, Ali; Bulut, Volkan Numan; Duran, Celal; Soylak, Mustafa; Elci, Latif; Tufekci, Mehmet

    2007-01-01

    A simple and accurate method was developed for separation and enrichment of trace levels of gold in environmental samples. The method is based on the adsorption of Au(III)-diethyldithiocarbamate complex on Amberlite XAD-2000 resin prior to the analysis of gold by flame atomic absorption spectrometry after elution with 1 mol L -1 HNO 3 in acetone. Some parameters including nitric acid concentration, eluent type, matrix ions, sample volume, sample flow rate and adsorption capacity were investigated on the recovery of gold(III). The recovery values for gold(III) and detection limit of gold were greater than 95% and 16.6 μg L -1 , respectively. The preconcentration factor was 200. The relative standard deviation of the method was -1 . The validation of the presented procedure was checked by the analysis of CRM-SA-C Sandy Soil certified reference material. The presented procedure was applied to the determination of gold in some environmental samples

  18. Proton Induced X-Rays Emission (PIXE) and Atomic Absorption Spectrometry (AAS) applied in the environmental sample analysis

    International Nuclear Information System (INIS)

    Popescu, Ion V.; Iordan, M.; Stihi, C.; Bancuta, A.; Dima, G.; Busuioc, G.; Ciupina, V.; Belc, M.; Badica, T.

    2003-01-01

    The aim of this work is to determine the elemental composition of tree leaves using Proton-Induced X-Rays Emission (PIXE) and Atomic Absorption Spectrophotometry (AAS) methods. By PIXE Spectrometry we identified and determined the concentration of S, Cl, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu Zn, As, Br, Sr and by AAS method the concentration of elements: Cr, Mn, Fe, Co, Cu, Zn, Se, Cd. Pb was identified in only 2 samples from 29. For tree leave samples collected at a large distance to the polluting source the Sr concentration decreased and the Mg, Ca, Se, Zn and Fe concentrations increased. Also, we can observe a small affinity of these leaves for the environmental Pb which was detected for two samples at a small distance to polluting source. (authors)

  19. Determination of Zinc Ions in Environmental Samples by Dispersive Liquid- Liquid Micro Extraction and Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    F. Arabi

    2012-11-01

    Full Text Available In this work preconcentration of the Zn ions was investigated in water sample by Dispersive liquid- liquid micro extraction (DLLME using chloroform as an extraction solvent, methanol as a disperser solvent and 8-Hydroxyquinoline as a chelating agent. The determination of extracted ions was done by graphite furnace atomic absorption spectrometry. The influence of various analytical parameters including pH, extraction and disperser solvent type and volume and concentration of the chelating agent on the extraction efficiency of analyses was investigated. After extraction, the enrichment factor was 26 and the detection limit of the method was 0.0033 µg l-1 and the relative standard deviations (R.S.D for five determinations of 1 ng/ml Zn were 7.41%. 

  20. Study of new technique of solid combustible materials to determination of volatile elements by flame atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Campos, R.C. de.

    1988-01-01

    A new technique for direct trace element analysis of solid combustible materials is described. The samples (up to 10 mg) are weighed on a graphite platform wich is then placed in a quartz tube, at the focal point of three infrared lamps. When the lamps are turned on, the sample burns in a stream of air, and the resulting dry aerosol containing volatile elements such as Hg, Cd, Bi, Tl, Zn, Pb and Cu is carried into the mixing chamber and thence into the flame, where the atomic absorption measurement is carried out. This technique overcomes chemical sample preparation steps, avoiding contaminations of losses associated with these steps. A ''furnace in flame'' system where the aerosol is transported to a flame heated T-tube is also described. The influence of flame stoichiometry, observation height, platform material and air flux intensity was studied inorder to determine optimal analytical conditions. (author) [pt

  1. Direct determination by atomic absorption of calcium, cobalt and zinc in nuclear grade uranium oxide

    International Nuclear Information System (INIS)

    Guido, O.O.; Amaya, Carlos.

    1975-05-01

    A study has been made of the effect of flame composition (fuel: C 2 H 2 , comburent: air or N 2 O) and location of the burner on the three analytes in a nitric medium, in presence and in absence of uranium. For calcium it was necessary to use N 2 O, while for zinc and cobalt the use of air was found more adequate. The standard additions method for the quantitative determination was adopted. The absorption at the analytical wavelength not corresponding to the elements studied was determined by comparison between this method and another indirect one, using extraction with TBP, and the results were expressed as equivalent concentrations. Confidence intervals of the analytical results were evaluated statistically using a scheme of calculation adapted to the proposed method. This evaluation allowed an estimation of the detection limits (calcium: 5 ppm, cobalt: 3 ppm, zinc: 1 ppm). (author)

  2. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Nascentes, Clesia C.; Kamogawa, Marcos Y.; Fernandes, Kelly G.; Arruda, Marco A.Z.; Nogueira, Ana Rita A.; Nobrega, Joaquim A.

    2005-01-01

    In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min -1 using 0.14 mol l -1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l -1 , respectively. The relative standard deviations varied from 2.7% to 7.3% (n=8) for solutions containing the analytes in the 25-50 μg l -1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0-155 μg l -1 ; Mn: 110-348 μg l -1 , Pb: 13.0-32.9 μg l -1 , and Zn: 52.7-226 μg l -1 . Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery

  3. The rate of calcium extraction during EDTA decalcification from thin bone slices as assessed with atomic absorption spectrophotometry.

    Science.gov (United States)

    Kiviranta, I; Tammi, M; Lappalainen, R; Kuusela, T; Helminen, H J

    1980-01-01

    The rate of calcium extraction with EDTA (ethylenediamine tetraacetic acid) from thin bone slices (300 micrometer-3 mm thick) was determined by aid of an atomic absorption spectrophotometer. A 0.5 mm thick bone slice was completely decalcified with 15% (0.40 M), 8% (0.22 M), and 4% (0.11 M) EDTA in 24 h, 3 days, and 5 days, respectively (vol. 15 ml, temp. 4 degrees C, pH 7.4). At 37 and 60 degrees C the speed of demineralization was slightly increased as compared with that at 20 degrees C, while no difference was observed between 4 and 20 degrees C. Bone slices with a thickness of 0.3, 0.5, 1 and 2 mm were decalcified -- in the same order -- in 24 h, 2, 3, and 5 days (8% EDTA, 4 degrees C, pH 7.4). At pH 7.4, the decalcification rate was a little slower than at pH 5.0 and 8.5. Agitation did not affect the decalcifying velocity, nor did the volume of the agent, except when the volume was very small. The demineralization of ordinary bone, containing both compact and spongy bone, was found to be more rapid than that of homogeneous bone reported earlier. The acidic buffers and New Decalc, which served as reference substances, exerted a more vigorous decalcifying effect thatn EDTA. K formate/formic acid buffer, pH 3.15, demineralized a 1 mm thick bone slice in 24 h and 2 days was needed with Na lactate/lactic acid buffer, pH 3.70. With New Decalc, pH 0.9, the corresponding demineralization was accomplished in 1.5 h. Atomic absorption spectrophotometer proved to be a useful tool in the evaluation of calcium extraction velocity from bone slices.

  4. Comparison of two methods for blood lead analysis in cattle: graphite-furnace atomic absorption spectrometry and LeadCare(R) II system.

    Science.gov (United States)

    Bischoff, Karyn; Gaskill, Cynthia; Erb, Hollis N; Ebel, Joseph G; Hillebrandt, Joseph

    2010-09-01

    The current study compared the LeadCare(R) II test kit system with graphite-furnace atomic absorption spectrometry for blood lead (Pb) analysis in 56 cattle accidentally exposed to Pb in the field. Blood Pb concentrations were determined by LeadCare II within 4 hr of collection and after 72 hr of refrigeration. Blood Pb concentrations were determined by atomic absorption spectrometry, and samples that were coagulated (n = 12) were homogenized before analysis. There was strong rank correlation (R(2) = 0.96) between atomic absorption and LeadCare II (within 4 hr of collection), and a conversion formula was determined for values within the observed range (3-91 mcg/dl, although few had values >40 mcg/dl). Median and mean blood pb concentrations for atomic absorption were 7.7 and 15.9 mcg/dl, respectively; for LeadCare II, medians were 5.2 mcg/dl at 4 hr and 4.9 mcg/dl at 72 hr, and means were 12.4 and 11.7, respectively. LeadCare II results at 4 hr strongly correlated with 72 hr results (R(2) = 0.96), but results at 72 hr were lower (P atomic absorption. Although there have been several articles that compared LeadCare with other analytical techniques, all were for the original system, not LeadCare II. The present study indicated that LeadCare II results correlated well with atomic absorption over a wide range of blood Pb concentrations and that refrigerating samples for up to 72 hr before LeadCare II analysis was acceptable for clinical purposes.

  5. Determination of total arsenic in fish by hydride-generation atomic absorption spectrometry: method validation, traceability and uncertainty evaluation

    Science.gov (United States)

    Nugraha, W. C.; Elishian, C.; Ketrin, R.

    2017-03-01

    Fish containing arsenic compound is one of the important indicators of arsenic contamination in water monitoring. The high level of arsenic in fish is due to absorption through food chain and accumulated in their habitat. Hydride generation (HG) coupled with atomic absorption spectrometric (AAS) detection is one of the most popular techniques employed for arsenic determination in a variety of matrices including fish. This study aimed to develop a method for the determination of total arsenic in fish by HG-AAS. The method for sample preparation from American of Analytical Chemistry (AOAC) Method 999.10-2005 was adopted for acid digestion using microwave digestion system and AOAC Method 986.15 - 2005 for dry ashing. The method was developed and validated using Certified Reference Material DORM 3 Fish Protein for trace metals for ensuring the accuracy and the traceability of the results. The sources of uncertainty of the method were also evaluated. By using the method, it was found that the total arsenic concentration in the fish was 45.6 ± 1.22 mg.Kg-1 with a coverage factor of equal to 2 at 95% of confidence level. Evaluation of uncertainty was highly influenced by the calibration curve. This result was also traceable to International Standard System through analysis of Certified Reference Material DORM 3 with 97.5% of recovery. In summary, it showed that method of preparation and HG-AAS technique for total arsenic determination in fish were valid and reliable.

  6. Atomic absorption spectrophotometric determination of microamounts of beryllium in aluminum and copper using solvent extraction with acetylacetone

    International Nuclear Information System (INIS)

    Matsusaki, Koji

    1975-01-01

    A sensitive method for the determination of microamounts of beryllium in aluminum and copper by atomic absorption spectrophotometry using the methylisobutylketone (MIBK) extraction with acetylacetone (AA) was investigated. An aqueous sample solution containing (0.5--5)μg of beryllium and less than 100 mg of aluminum or less than 500 mg of copper was taken into a 100-ml separation funnel, and 2 ml of 5% AA, 20 mg of EDTA for 1 mg of aluminum or 8.8 mg of EDTA for 1 mg of copper, and 10 ml of saturated NaCl solution were added. The pH was adjusted to 5--7 with 10 ml of 2 M NaCH 3 COO-CH 3 COOH buffer, and the solution was diluted to 50 ml. After 10 minutes, the solution was shaken for 2 minutes with 10 ml of MIBK. The organic phase was introduced into a nitrous oxide-acetylene flame and the absorption measured at 234.9 nm against a reagent blank. None of metal elements interfered with the determination of beryllium, and beryllium above 0.001% in aluminum, and above 0.0002% in copper was determined. This method was successfully applied to the determination of beryllium in aluminum and copper alloys. (auth.)

  7. Simple and efficient absorption filter for single photons from a cold atom quantum memory.

    Science.gov (United States)

    Stack, Daniel T; Lee, Patricia J; Quraishi, Qudsia

    2015-03-09

    The ability to filter unwanted light signals is critical to the operation of quantum memories based on neutral atom ensembles. Here we demonstrate an efficient frequency filter which uses a vapor cell filled with (85)Rb and a buffer gas to attenuate both residual laser light and noise photons by nearly two orders of magnitude with little loss to the single photons associated with our cold (87)Rb quantum memory. This simple, passive filter provides an additional 18 dB attenuation of our pump laser and erroneous spontaneous emissions for every 1 dB loss of the single photon signal. We show that the addition of a frequency filter increases the non-classical correlations and the retrieval efficiency of our quantum memory by ≈ 35%.

  8. High gas temperature furnace for species determination of organometallic compounds with a high pressure liquid chromatograph and a Zeeman atomic absorption spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; McLaughlin, R.D.; Hadeishi, T.

    1979-03-01

    A new furnace has been constructed that allows atomic absorption detection of volatile organometallic compounds. The operation of this furnace is demonstrated by analyzing the eluent of a high pressure liquid chromatograph utilizing Zeeman atomic absorption spectrometry. The content of tetraethyllead in National Bureau of Standards gasoline standards was determined. Data are presented on the ability of this furnace to suppress interference with cadmium and lead determinations by MgCl/sub 2/, CuCl/sub 2/, and CaCl/sub 2/. It was found that two orders of magnitude more interferent can be tolerated. The determination of lead in automotive exhaust is also described. 7 figures, 4 tables.

  9. Dosage du mercure dans le gaz naturel par absorption atomique sans flammes Mercury Titration in Natural Gas by Flameless Atomic Absorption

    Directory of Open Access Journals (Sweden)

    La Villa F.

    2006-11-01

    Full Text Available Cet article présente la méthode mise au point par l'Institut Français du Pétrole pour déterminer par absorption atomique sans flamme, les traces de mercure métallique contenu dans un gaz naturel. La méthode d'analyse nécessite une extraction du mercure soit sous forme d'ion mercurique en faisant passer le gaz dans une solution oxydante, soit sous forme d'amalgame avec de l'or ou de l'argent. Le premier mode opératoire s'applique aux échantillons dont la concentration en mercure est supérieure à I ttg/Nm3, le second pour des concentrations inférieures à 5 pg/Nm3. Les seuils de détection sont respectivement 10 ng (en solution et 0,3 ng (en amalgame. La répétabilité pour 100 ng de mercure (en amalgame est de ± 7% pour une probabilité de.95 %. En conclusion, dans un échantillon de gaz naturel, compte tenu du volume des prélèvements effectués, il est possible de détecter des concentrations de l'ordre du nanogramme de mercure par mètre cube de gaz. This article describes the method developed by IFP using flameless atomic absorption to determine metallic mercury traces in a natural gas. The analyst method requires a mercury extraction either in the form of mercuric ions by making the gas pass through an oxidizing solution or in the form of an amalgam with gold or silver. The former operating method applies ta samples having a mercury concentration greater than I !ag/Nm3, and the latter for concentrations smaller than 5 (-Lg/Nm3. Detection thresholds are respectively 10 ng (in solution and 0.3 ng (in amalgam. The repeatability for 100 ng of mercury (in amalgam is ± 7 % with a probability of 95%. To conclude, in a sample of natural gas, considering the volume of the samples taken, it is possible ta detect concentrations in the vicinity of one nanogrom of mercury per cubic meter of gas.

  10. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation.

    Science.gov (United States)

    Assad, M; Lemieux, N; Rivard, C H; Yahia, L H

    1999-01-01

    The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.

  11. On-line preconcentration and determination of mercury in biological and environmental samples by cold vapor-atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ferrua, N.; Cerutti, S.; Salonia, J.A.; Olsina, R.A.; Martinez, L.D.

    2007-01-01

    An on-line procedure for the determination of traces of total mercury in environmental and biological samples is described. The present methodology combines cold vapor generation associated to atomic absorption spectrometry (CV-AAS) with preconcentration of the analyte on a minicolumn packed with activated carbon. The retained analyte was quantitatively eluted from the minicolumn with nitric acid. After that, volatile specie of mercury was generated by merging the acidified sample and sodium tetrahydroborate(III) in a continuous flow system. The gaseous analyte was subsequently introduced via a stream of Ar carrier into the atomizer device. Optimizations of both, preconcentration and mercury volatile specie generation variables were carried out using two level full factorial design (2 3 ) with 3 replicates of the central point. Considering a sample consumption of 25 mL, an enrichment factor of 13-fold was obtained. The detection limit (3σ) was 10 ng L -1 and the precision (relative standard deviation) was 3.1% (n = 10) at the 5 μg L -1 level. The calibration curve using the preconcentration system for mercury was linear with a correlation coefficient of 0.9995 at levels near the detection limit up to at least 1000 μg L -1 . Satisfactory results were obtained for the analysis of mercury in tap water and hair samples

  12. Determination of lead in flour samples directly by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Tinas, Hande; Ozbek, Nil; Akman, Suleyman

    2018-02-01

    In this study, lead concentrations in various flour samples were determined by high-resolution continuum source graphite furnace atomic absorption spectrometry with solid sampling. Since samples were analyzed directly, the risks and disadvantages of sample digestion were eliminated. Solid flour samples were dried, weighed on the platforms, Pd was added as a modifier and introduced directly into a graphite tube using a manual solid sampler. Platforms and tubes were coated with Zr. The optimized pyrolysis and atomization temperatures were 800 °C and 2200 °C, respectively. The sensitivities of lead in various flour certified reference materials (CRMs) and aqueous standards were not significantly different. Therefore, aqueous standards were safely used for calibration. The absolute limit of detection and characteristic mass were 7.2 pg and 9.0 pg of lead, respectively. The lead concentrations in different types of flour samples were found in the range of 25-52 μg kg- 1. Finally, homogeneity factors representing the heterogeneity of analyte distribution for lead in flour samples were determined.

  13. Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell.

    Science.gov (United States)

    Lee, Yoon-Seok; Moon, Han Seb

    2014-06-30

    We report the spatial transport of spontaneously transferred atomic coherence (STAC) in electromagnetically induced absorption (EIA), which resulted from moving atoms with the STAC of the 5S(1/2) (F = 2)-5P(3/2) (F' = 3) transition of (87)Rb in a paraffin-coated vapor cell. In our experiment, two channels were spatially separate; the writing channel (WC) generated STAC in the EIA configuration, and the reading channel (RC) retrieved the optical field from the spatially transported STAC. Transported between the spatially separated positions, the fast light pulse of EIA in the WC and the delayed light pulse in the RC were observed. When the laser direction of the RC was counter-propagated in the direction of the WC, we observed direction reversal of the transported light pulse in the EIA medium. Furthermore, the delay time, the magnitude, and the width of the spatially transported light pulse were investigated with respect to the distance between the two channels.

  14. Determination of arsenic in petroleum refinery streams by electrothermal atomic absorption spectrometry after multivariate optimization based on Doehlert design

    Science.gov (United States)

    Cassella, Ricardo J.; de Sant'Ana, Otoniel D.; Santelli, Ricardo E.

    2002-12-01

    This paper reports the development of a methodology for the determination of arsenic in petroleum refinery aqueous streams containing large amounts of unknown volatile organic compounds, employing electrothermal atomic absorption spectrometry with polarized Zeeman-effect background correction. In order to make the procedure applicable, the influence of chemical modification and the drying step was examined. Also, pyrolysis and atomization temperatures and the amount of nitric acid added to the sample were optimized using a multivariate approach based on Doehlert matrix. Obtained results indicate that, in this kind of sample, arsenic must be determined by standard addition procedure with a careful control of the drying step temperature and ramp pattern. In order to evaluate the accuracy of the procedure, a test was performed in six spiked samples of petroleum refinery aqueous streams and the relative errors verified in the analysis of such samples (added As between 12.5 and 190 μg l -1) ranged from -7.2 to +16.7%. The detection limit and the relative standard deviation were also calculated and the values are 68 pg and 7.5% (at 12.5 μg l -1 level), respectively.

  15. Determination of arsenic in petroleum refinery streams by electrothermal atomic absorption spectrometry after multivariate optimization based on Doehlert design

    International Nuclear Information System (INIS)

    Cassella, Ricardo J.; Sant'Ana, Otoniel D. de; Santelli, Ricardo E.

    2002-01-01

    This paper reports the development of a methodology for the determination of arsenic in petroleum refinery aqueous streams containing large amounts of unknown volatile organic compounds, employing electrothermal atomic absorption spectrometry with polarized Zeeman-effect background correction. In order to make the procedure applicable, the influence of chemical modification and the drying step was examined. Also, pyrolysis and atomization temperatures and the amount of nitric acid added to the sample were optimized using a multivariate approach based on Doehlert matrix. Obtained results indicate that, in this kind of sample, arsenic must be determined by standard addition procedure with a careful control of the drying step temperature and ramp pattern. In order to evaluate the accuracy of the procedure, a test was performed in six spiked samples of petroleum refinery aqueous streams and the relative errors verified in the analysis of such samples (added As between 12.5 and 190 μg l -1 ) ranged from -7.2 to +16.7%. The detection limit and the relative standard deviation were also calculated and the values are 68 pg and 7.5% (at 12.5 μg l -1 level), respectively

  16. On-line Zeeman atomic absorption spectroscopy for mercury analysis in oil shale gases. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Girvin, D.C.; Fox, J.P.

    1979-08-01

    The technique utilizes ZAA for on-line measurement of mercury in the presence of smoke, organic vapors, and oil mist in offgases from oil shale processing plants. The spectrometer utilizes a new flow-through stainless steel (SS) furnace maintained at 900/sup 0/C by joule heating. Corrosion of the furnace by H/sub 2/S in the sample gas is minimized by diffusion of Al into the surface of the SS. Corrosion tests with 2% (v/v) H/sub 2/S at 1093/sup 0/C gave an estimated furnace lifetime of three days. The instrumental response with this furnace is characterized by a detection limit (DL) of 2 ppB, a linear response up to 100 ppB, and a precision of +- 7% or better. In the 50 ppB to 1.6 ppM range a furnace with a 5 cm optical absorption tube yields a DL of 10 ppB, a linear response up to 800 ppB, and a precision of +- 10% or better. Sample gas flow rates can be varied between 400 and 4000 scc/min for either furance.

  17. Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Nakadi, Flávio V; Prodanov, Caroline; Boschetti, Wiliam; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2018-03-01

    Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611nm, 1 detection pixel, N 2 O/C 2 H 2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO 3 and HF. HR-CS GF AAS (T pyr = 1400°C, T atom = 2650°C) has evaluated Si in pyrolysis water and bio-oil at 251.611nm, and in peach pit biomass and ash at 221.174nm using SS, both wavelengths with 1 detection pixel. Rhodium (300μg) was applied as permanent modifier and 10μgPd + 6μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09-20mgkg -1 , and LOQ 0.3-20mgkg -1 , considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11-0.92% mm -1 , 1.1-1.7mgkg -1 , 3.3-13mgkg -1 , and 0.41-1.4%mm -1 , in biomass, bio-oil, pyrolysis water and ash, respectively

  18. Effect of chemical modification on behavior of various organic vanadium forms during analysis by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kowalewska, Zofia

    2007-01-01

    The behavior of various organic V forms dissolved in xylene during analysis by electrothermal atomic absorption spectrometry (ETAAS) was compared. The investigated analyte forms included compounds with vanadium at the oxidation state III, IV or V, as well as N, O or S atoms in molecules. Another group consisted of petroleum products containing naturally-occurring V species. Although the characteristic mass determined under different analytical conditions was in the very wide range from 11 up to 55 pg, some rules of V behavior were found. In the case of porphyrins and petroleum products, the application of Pd as a chemical modifier (xylene solution of Pd(II) acetylacetonate) seemed to be crucial. It was shown that Pd must be introduced to a furnace together with a sample. Pd injected and thermally pretreated before the sample injection was less effective for porphyrins and the petroleum products, but it increased signals of V compounds containing O as donor atom. The iodine pretreatment followed by the methyltrioctylammonium chloride (MTOACl) pretreatment was advantageous for these V forms. The air ashing in a graphite tube appeared to be important to improve decomposition of the petroleum products. No significant influence of the V oxidation state on the analytical signal was observed. The behavior of V contained in two Conostan oil standards, the single-element and the S21 multielement standard, was different in many situations. Probably, the joint action of other elements is responsible for this effect. In general, chemical modification was applied in the work for two reasons: to reduce the V volatility (in some cases losses at about 300 deg. C were observed) and to enhance the atomization efficiency. For routine analysis air ashing, modification by Pd introduced into the furnace together with the sample solution and petroleum products with known V content as standard is recommended. Using this procedure the characteristic mass varied from 16 to 19 pg for

  19. Speciation of arsenic(III)/arsenic(V) and selenium(IV)/ selenium(VI) using coupled ion chromatography - hydride generation atomic absorption spectrometry

    Science.gov (United States)

    Simple analytical methods have been developed to speciate inorganic arsenic and selenium in the ppb range using coupled ion chromatography-hydride generation atomic absorption spectrometry. Because of the differences in toxicity and adsorption behavior, determinations of the redox states arsenite A...

  20. An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption

    NARCIS (Netherlands)

    Omenetto, N.; Winefordner, J.D.; Alkemade, C.T.J.

    An expression for the effect of self-absorption on the fluorescence and thermal emission intensities is derived by taking into account stimulated emission. A simple, idealized case is considered, consisting of a two level atomic system, in a flame, homogeneous with respect to temperature and

  1. Accuracy of a method based on atomic absorption spectrometry to determine inorganic arsenic in food: Outcome of the collaborative trial IMEP-41

    DEFF Research Database (Denmark)

    Fiamegkos, I.; Cordeiro, F.; Robouch, P.

    2016-01-01

    the release of all arsenic species into solution, and (ii) subsequent extraction of the inorganic arsenic present in the acid medium using chloroform followed by back-extraction to acidic medium. The final detection and quantification is done by flow injection hydride generation atomic absorption spectrometry...

  2. Determination of bismuth by dielectric barrier discharge atomic absorption spectrometry coupled with hydride generation: Method optimization and evaluation of analytical performance

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Boušek, J.; Sturgeon, R. E.; Mester, Z.; Dědina, Jiří

    2014-01-01

    Roč. 86, č. 19 (2014), s. 9620-9625 ISSN 0003-2700 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  3. Investigations into the Role of Modifiers for Entrapment of Hydrides in Flow Injection Hydride Generation Electrothermal Atomic Absorption Spectrometry as Exemplified for the Determination of Germanium

    DEFF Research Database (Denmark)

    Hilligsøe, Bo; Andersen, Jens Enevold Thaulov; Hansen, Elo Harald

    1997-01-01

    Pd-conditioned graphite tubes, placed in the furnace of an atomic absorption spectrometry instrument, are used for entrapment of germane as generated in an associated flow injection system. Two different approaches are tested with the ultimate aim to allow multiple determinations, that is...

  4. Determination of Fe Content of Some Food Items by Flame Atomic Absorption Spectroscopy (FAAS): A Guided-Inquiry Learning Experience in Instrumental Analysis Laboratory

    Science.gov (United States)

    Fakayode, Sayo O.; King, Angela G.; Yakubu, Mamudu; Mohammed, Abdul K.; Pollard, David A.

    2012-01-01

    This article presents a guided-inquiry (GI) hands-on determination of Fe in food samples including plantains, spinach, lima beans, oatmeal, Frosted Flakes cereal (generic), tilapia fish, and chicken using flame atomic absorption spectroscopy (FAAS). The utility of the GI experiment, which is part of an instrumental analysis laboratory course,…

  5. The Use of a Microprocessor-Controlled, Video Output Atomic Absorption Spectrometer as an Educational Tool in a Two-Year Technical Curriculum.

    Science.gov (United States)

    Kerfoot, Henry B.

    Based on instructional experiences at Charles County Community College, Maryland, this report examines the pedagogical advantage of teaching atomic absorption (AA) spectroscopy with an AA spectrophotometer that is equipped with a microprocessor and video output mechanism. The report first discusses the growing importance of AA spectroscopy in…

  6. Selective Flow Injection Analysis of Ultra-trace Amounts of Cr(VI), Preconcentration of It by Solvent Extraction, and Determination by Electrothermal Atomic Absorption Spectrometry (ETAAS)

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Sturup, Stefan; Spliid, Henrik

    1999-01-01

    A rapid, robust, sensitive and selective time-based flow injection (FI) on-line solvent extraction system interfaced with electrothermal atomic absorption spectrometry (ETAAS) is described for analyzing ultra-trace amounts of Cr(VI). The sample is initially mixed on-line with isobutyl methyl ketone...

  7. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2.

    Science.gov (United States)

    Dhakal, Krishna P; Duong, Dinh Loc; Lee, Jubok; Nam, Honggi; Kim, Minsu; Kan, Min; Lee, Young Hee; Kim, Jeongyong

    2014-11-07

    We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5-3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV displayed a gradual redshift as the MoS2 film thickness increased from the monolayer, to the bilayer, to the bulk MoS2 and this shift was attributed to the reduction of the gap energy in the Brillouin zone at the K-point as the atomic thickness increased. We also performed n-type chemical doping of MoS2 films using reduced benzyl viologen (BV) and the confocal absorption spectra modified by the doping showed a strong dependence on the atomic thickness: A and B exciton peaks were greatly quenched in the monolayer MoS2 while much less effect was shown in larger thickness and the BG peak either showed very small quenching for 1 L MoS2 or remained constant for larger thicknesses. Our results indicate that confocal absorption spectral imaging can provide comprehensive information on optical transitions of microscopic size intrinsic and doped two-dimensional layered materials.

  8. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    International Nuclear Information System (INIS)

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-01-01

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N 2 /O 2 (4:1) admixtures. A maximum in the O-atom concentration of (9.1 ± 0.7)×10 20 m −3 was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 ± 0.4)×10 19 m −3 at 0.1 vol. %

  9. Determination of arsenic and cadmium in shellfish samples by graphite furnace atomic absorption spectrometry using matrix modifier

    International Nuclear Information System (INIS)

    Cortez Diaz, Mirella del Carmen

    2002-01-01

    Heavy metals are a big source of environmental contamination and are also highly toxic to humans. Since shellfish are bio-accumulators of these metals, proper techniques for quantifying them should be available. This work aims to develop an analytical method for the quantitative determination of heavy metals in biological materials (shellfish), specifically arsenic and cadmium at the trace level, using graphite furnace atomic absorption spectrometry, for which nickel and phosphate solutions were used to modify the modifiers. Prior to the analysis, the sample was diluted with nitric acid in a DAB II pressure digestion system order to destroy the organic matter. The instrument conditions were initially set (wavelength, slit, integration peaks, graphite tube, etc.), then the work range was defined for each element and the most appropriate operational parameters were studied, such as: temperature, ramp times, hold times and internal gas flow, in the different stage of the electrothermal treatment (drying, calcination, atomization) for the furnace program. Once the above mentioned conditions were set and since this was a biological sample, a matrix chemical modifier had to be used, in order to make the elements that accompany the element being studied more volatile. In this way the chemical and spectral interferences decrease together with the high background absorption of the matrix. Therefore, different matrix modifiers were studied for the definition of each analyte. The method validation was done using Certified Oyster Tissue Reference Material N o 1566a from the National Institute of Standards and Technology applying different tests in order to eliminate outliers. Repeatability, uncertainty, sensitivity, lineal range, working range, detection limit and quantification limit were evaluated for each element, and the results were compared with the values for the certified material. The Fisher and Student tests were the statistical tools used. The experimental values

  10. Selective extraction of traffic-related antimony compounds for speciation analysis by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zih-Perenyi, K., E-mail: perkat@freestart.h [L. Eoetvoes University, Institute of Chemistry, H-1518 Budapest 112, P.O. Box 32. (Hungary); Neurohr, K., E-mail: kata.neurohr@gmail.co [L. Eoetvoes University, Institute of Chemistry, H-1518 Budapest 112, P.O. Box 32. (Hungary); Nagy, G. [Semmelweis University, Faculty of Pharmacy, H-1085 Budapest, Ulloi Str. 26. (Hungary); Balla, M., E-mail: balla@reakt.bme.h [Budapest University of Technology and Economics, Institute of Nuclear Techniques, H-1111 Budapest, Muegyetem rakpart 9 (Hungary); Lasztity, A., E-mail: alasztity@gmail.co [L. Eoetvoes University, Institute of Chemistry, H-1518 Budapest 112, P.O. Box 32. (Hungary)

    2010-09-15

    Most traffic-related antimony air pollutants are derived from brake dust. Brake dust contains Sb{sub 2}S{sub 3}, used as a friction material in brake pads, and its high-temperature oxidation products, Sb{sub 2}O{sub 3} or Sb{sub 2}O{sub 4}. Systematic investigations were carried out to find the most selective leaching conditions for these substances. First, solubility experiments of the pure potential compounds mentioned above were carried out. Then, the leaching of these compounds from home-made artificial dusts previously spiked with these compounds at the trace level was investigated. A 0.5 mol L{sup -1} citric acid solution proved to leach the whole Sb{sub 2}O{sub 3} content while extracting less than 10% Sb{sub 2}S{sub 3} and no Sb{sub 2}O{sub 4} at all. It was found that Sb{sub 2}O{sub 3} and Sb{sub 2}S{sub 3} traces were soluble in a 6 mol L{sup -1} HCl solution, quantitatively and selectively. Graphite furnace atomic absorption spectrometry and hydride generation graphite furnace atomic absorption spectrometry methods were developed to determine the Sb content of the extracts. The proposed method proved to be applicable to settled dust containing traffic-related Sb compounds. The detection limits were 1.2 and 0.3 {mu}g g{sup -1} for leaching by citric acid and HCl solution, respectively, which were adequate for Sb content determination in the urban dust studied. The reproducibility of the method expressed as relative standard deviation was about 7%. The results showed that the concentration of leachable Sb was 40 {mu}g g{sup -1} in the settled dust of Budapest, about half of which corresponded to Sb{sub 2}O{sub 3}. The Sb{sub 2}O{sub 4} content calculated as the difference of total and leachable fraction was about 10% with high uncertainty.

  11. The behavior of various chemical forms of nickel in graphite furnace atomic absorption spectrometry under different chemical modification approaches

    International Nuclear Information System (INIS)

    Kowalewska, Zofia

    2012-01-01

    Various organic and inorganic Ni forms were investigated using graphite furnace atomic absorption spectrometry. Experiments without chemical modification showed a wide range of characteristic mass values for Ni (from 6.7 to 29 pg) and the importance of interaction with graphite. With the aim of achieving signal unification of organic Ni forms, different ways of chemical modification were tested. Some rules that govern the behavior of Ni were found and confirmed a significant role of the organic component of the analyte molecule in the analytical process. The application of air as an internal furnace gas in the pyrolysis phase and the Pd modifier injected with the sample solution improved the signal of porphyrins, while the application of iodine and methyltrioctylammonium chloride was required for organic compounds containing oxygen-bound Ni atoms. The Ni signal was strongly diminished when an aqueous solution containing hydrochloric acid was measured with the Pd modifier injected over the sample. Using the developed analytical methods, the range of characteristic mass values for various Ni forms totally dissolved in organic or aqueous solution was 6.5–7.9 pg. - Highlights: ► Some rules that govern behavior of organic Ni forms during GFAAS analysis were found. ► Interaction with graphite can significantly influence evaporation of porphyrins. ► Determination of Ni in form of porphyrins needs Pd organic modifier and air ashing. ► Determination of Ni in O-bound organic compounds needs pretreatment with I2+MTOACl. ► Chemical modification for GFAAS determination of Ni in HCl-containing solution.

  12. X-ray photoelectron spectroscopy study of pyrolytically coated graphite platforms submitted to simulated electrothermal atomic absorption spectrometry conditions

    International Nuclear Information System (INIS)

    Ruiz, Frine; Benzo, Zully; Quintal, Manuelita; Garaboto, Angel; Albornoz, Alberto; Brito, Joaquin L.

    2006-01-01

    The present work is part of an ongoing project aiming to a better understanding of the mechanisms of atomization on graphite furnace platforms used for electrothermal atomic absorption spectrometry (ETAAS). It reports the study of unused pyrolytic graphite coated platforms of commercial origin, as well as platforms thermally or thermo-chemically treated under simulated ETAAS analysis conditions. X-ray photoelectron spectroscopy (XPS) was employed to study the elements present at the surfaces of the platforms. New, unused platforms showed the presence of molybdenum, of unknown origin, in concentrations up to 1 at.%. Species in two different oxidations states (Mo 6+ and Mo 2+ ) were detected by analyzing the Mo 3d spectral region with high resolution XPS. The analysis of the C 1s region demonstrated the presence of several signals, one of these at 283.3 eV related to the presence of Mo carbide. The O 1s region showed also various peaks, including a signal that can be attributed to the presence of MoO 3 . Some carbon and oxygen signals were consistent with the presence of C=O and C-O- (probably C-OH) groups on the platforms surfaces. Upon thermal treatment up to 2900 deg. C, the intensity of the Mo signal decreased, but peaks due to Mo oxides (Mo 6+ and Mo 5+ ) and carbide (Mo 2+ ) were still apparent. Thermo-chemical treatment with 3 vol.% HCl solutions and heating up to 2900 deg. C resulted in further diminution of the Mo signal, with complete disappearance of Mo carbide species. Depth profiling of unused platforms by Ar + ion etching at increasing time periods demonstrated that, upon removal of several layers of carbonaceous material, the Mo signal disappears suggesting that this contamination is present only at the surface of the pyrolytic graphite platform

  13. Lead concentrations and isotope ratios in street dust determined by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Nageotte, S M; Day, J P

    1998-01-01

    A major source of environmental lead, particularly in urban areas, has been from the combustion of leaded petrol. Street dust has previously been used to assess urban lead contamination, and the dust itself can also be a potential source of lead ingestion, particularly to children. The progressive reduction of lead in petrol, in recent years, would be expected to have been reflected in a reduction of lead in urban dust. We have tested this hypothesis by repeating an earlier survey of Manchester street dust and carrying out a comparable survey in Paris. Samples were collected from streets and parks, lead was extracted by digestion with concentrated nitric acid and determined by electrothermal atomic absorption spectrometry. Lead isotope ratios were measured by inductively coupled plasma mass spectrometry. Results for Manchester show that lead concentrations have fallen by about 40% (street dust averages, 941 micrograms g-1 (ppm) in 1975 down to 569 ppm in 1997). In Paris, the lead levels in street dust are much higher and significant differences were observed between types of street (not seen in Manchester). Additionally, lead levels in parks were much lower than in Manchester. Samples collected under the Eiffel Tower had very high concentrations and lead isotope ratios showed that this was unlikely to be fallout from motor vehicles but could be due to the paint used on the tower. Isotope ratios measurements also revealed that lead additives used in France and the UK come from different sources.

  14. Graphene for separation and preconcentration of trace amounts of cobalt in water samples prior to flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Yukun Wang

    2016-09-01

    Full Text Available A new sensitive and simple method was developed for the preconcentration of trace amounts of cobalt (Co using 1-(2-pyridylazo-2-naphthol (PAN as chelating reagent prior to its determination by flame atomic absorption spectrometry. The proposed method is based on the utilization of a column packed with graphene as sorbent. Several effective parameters on the extraction and complex formation were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 5.0–240.0 μg L−1 with a detection limit of 0.36 μg L−1. The relative standard deviation for ten replicate measurements of 20.0 and 100.0 μg L−1 of Co were 3.45 and 3.18%, respectively. Comparative studies showed that graphene is superior to other adsorbents including C18 silica, graphitic carbon, and single- and multi-walled carbon nanotubes for the extraction of Co. The proposed method was successfully applied in the analysis of four real environmental water samples. Good spiked recoveries over the range of 95.8–102.6% were obtained.

  15. Determination of essential and toxic elements in commercial baby foods by instrumental neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Vallinoto, Priscila

    2013-01-01

    The World Health Organization recommends that infants should be breast fed exclusively for at least six months after birth. After this period, it is recommended to start introducing complementary foods, in order to meet the child's nutritional, mineral and energy needs. Commercial food products for infants form an important part of the diet for many babies. Thus, it is very important that such food contains sufficient amounts of minerals. Inadequate complementary feeding is a major cause of high rates of infant malnutrition in developing countries. In this study, essential elements: Ca, Cl, Co, Cr, Fe, K, Mg, Mn, Na, Se and Zn and toxic elements: As, Cd, Hg levels were determined in twenty seven different commercial infant food product samples by Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometry (AAS). In order to validate both methodologies the reference material: INCT MPH-2 Mixed Polish Herbs and NIST - SRM 1577b Bovine Liver by INAA and NIST - SRM 1548th Typical Diet and NIST - SRM 1547 Peach Leaves by AAS were analyzed. The twenty seven baby food samples were acquired from Sao Paulo city supermarkets and stores. Essential and toxic elements were determined. Most of the essential element concentrations obtained were lower than the World Health Organization requirements, while concentrations of toxic elements were below the tolerable upper limit. These low essential element concentrations in these samples indicate that infants should not be fed only with commercial complementary foods. (author)

  16. [Determination of trace elements in Lophatherum gracile brongn from different habitat by microwave digestion-atomic absorption spectroscopy].

    Science.gov (United States)

    Yuan, Ke; Xue, Yue-Qin; Gui, Ren-Yi; Sun, Su-Qin; Yin, Ming-Wen

    2010-03-01

    A method of microwave digestion technique was proposed to determine the content of Zn, Fe, Cu, Mn, K, Ca, Mg, Ni, Cd, Pb, Cr, Co, Al, Se and As in Lophatherum gracile brongn of different habitat by atomic absorption spectroscopy. The RSD of the method was between 1.23% and 3.32%, and the recovery rates obtained by standard addition method were between 95.8% and 104.20%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of metal elements in Lophatherum gracile brongn. The experimental results also indicated that different areas' Lophantherum gracile brongn had different trace elements content. The content of trace elements K, Mg, Ca, Fe and Mn beneficial to the human body was rich. The content of the heavy metal trace element Pb in Lophantherum gracile brongn of Hunan province was slightly high. The content of the heavy metal trace element Cu in Lophantherum gracile brongn of Guangdong province and Anhui province is also slightly higher. Beside, the contents of harmful trace heavy metal elements Cd, Cu, Cr, Pb and As in Lophatherum gracile brongn of different habitat are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation and National Food Sanitation Standard. These determination results provided the scientific data for further discussing the relationship between the content of trace elements in Lophantherum gracile brongn and the medicine efficacy.

  17. Determination of trace impurities of aluminium, cadmium, chromium, copper and nickel in indium phosphate by flameless atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Chruscinska, T.J.

    1990-01-01

    The sample (0.25 g) was treated with a nitric (0.9 ml) + hydrochloric (0.25 ml) acid mixture, heated to syrup under glass and then dissolved with 5 mol · 1 -1 HNO 3 (1 ml). The traces were determined in 0.2 mol · 1 -1 HNO 3 using Perkin-Elmer Model 430 Atomic Absorption Spectrometer equipped with a HGA 76B Graphite Furnace and an AS-1 Auto Sampling System. Pyrolytically coated and then tantalum treated tubes was employed. Additive errors due to contamination with, and loss of, the analyte element were controlled by estimation of the blank value and recovery. Background was corrected throughout. The background correction system efficiency was checked for the continuum background by two line method and for structured background by decreasing the slit or choosing different analytical lines. No other multiplicative (influencing the slope of the analytical curve) matrix interferences were found except for cadmium. (author). 12 refs, 4 tabs, 3 figs

  18. Determination of inorganic arsenic and its organic metabolites in urine by flow-injection hydride generation atomic absorption spectrometry.

    Science.gov (United States)

    Hanna, C P; Tyson, J F; McIntosh, S

    1993-08-01

    A method has been developed for the determination of inorganic arsenic [As(III) and As(V)] and its organic metabolites (monomethylarsenic and dimethylarsenic) in urine by flow-injection hydride generation atomic absorption spectrometry. The nontoxic seafood-derived arsenobetaine and arsenocholine species were first separated by a solid-phase extraction procedure. The remaining sample was digested with a mixture of nitric and sulfuric acids and potassium dichromate, followed by attack with hydrogen peroxide. The resulting As(V) was reduced to As(III) with potassium iodide in hydrochloric acid before injection into the flow-injection manifold. The percentage analytical recoveries (mean +/- 95% confidence interval) of various arsenic species added to a urine specimen at 250 micrograms/L were 108 +/- 2, 112 +/- 11, 104 +/- 7, and 95 +/- 5 for As(III), As(V), monomethylarsenic, and dimethylarsenic, respectively. For the determination of arsenic in Standard Reference Material 2670 (toxic metals in human urine), results agreed with the certified value (480 +/- 100 micrograms/L). Analyses of samples for the Centre de Toxicologie du Quebec, containing seafood-derived species, demonstrated the viability of the separation procedure. Detection limits were between 0.1 and 0.2 microgram/L in the solution injected into the manifold, and precision at 10 micrograms/L was between 2% and 3% (CV). These preliminary results show that the method might be applicable to determinations of arsenic in a range of clinical urine specimens.

  19. Measurement of endogenous lithium levels in serum and urine by electrothermal atomic absorption spectrometry: a method with potential clinical applications.

    Science.gov (United States)

    Miller, N L; Durr, J A; Alfrey, A C

    1989-11-01

    A highly sensitive flameless atomic absorption method has been adapted for the determination of endogenous trace lithium levels in serum and urine. With ammonium nitrate as the only matrix modifier, serum levels of Li as low as 0.03 mumol/liter are measured accurately and there is no requirement for standard additions. The need for background correction during analysis was clearly established, and tungsten and Zeeman-effect background corrections were compared. The tungsten correction offered superior sensitivity and linearity of standards. Recoveries in urine and serum average 94.8 +/- 7.7 and 95.3 +/- 6.1% (+/- SD), respectively. The endogenous serum Li levels were 0.16 +/- 0.08 mumol/liter for normal subjects dwelling in the Denver metropolitan area. The mean 24-h excretion rate was 5.24 +/- 1.4 mumol/day. The mean fractional excretion of endogenous Li (clearance Li/clearance creatinine) was 23.2 +/- 3.0%, a value similar to values published for exogenously administered Li and measured by conventional methods.

  20. Semi-automated determination of chromium in whole blood and serum by Zeeman electrothermal atomic absorption spectrophotometry.

    Science.gov (United States)

    Schermaier, A J; O'Connor, L H; Pearson, K H

    1985-10-31

    Direct determination of normal and elevated levels of chromium in whole blood and serum can be achieved using Zeeman effect electrothermal atomic absorption spectrophotometry. Whole blood and serum levels of chromium were determined for an apparently healthy population and whole blood chromium levels for renal dialysis patients. Blood and serum specimens were diluted with distilled deionized water and Triton X-100. The analyses were performed utilizing air as the alternate gas to facilitate ashing in one of the char steps. Within-run precision studies for whole blood chromium determinations gave relative SD values of 4.75 and 4.65% for 0.358 and 0.172 microgram/l, respectively. Within-run precision studies for the serum chromium analysis yield relative SD values of 5.26 and 2.67% for 0.156 and 0.300 microgram/l, respectively. Detection limits were 0.025 and 0.018 microgram/l for whole blood and serum, respectively. The mean chromium level found in whole blood and serum specimens from apparently normal individuals were 0.371 microgram/l (n = 37) and 0.130 microgram/l (n = 19), with ranges of 0.120-0.673 and 0.058-0.388 microgram/l, respectively.

  1. A method optimization study for atomic absorption spectrophotometric determination of total zinc in insulin using direct aspiration technique

    Directory of Open Access Journals (Sweden)

    Sadia Ata

    2015-03-01

    Full Text Available A sensitive, reliable and relative fast method has been developed for the determination of total zinc in insulin by atomic absorption spectrophotometer. This designed study was used to optimize the procedures for the existing methods. Spectrograms of both standard and sample solutions of zinc were recorded by measuring the absorbance at 213.9 nm for determination of total zinc. System suitability parameters were evaluated and were found to be within the limits. Linearity was evaluated through graphical representation of concentration versus absorbance. Repeatability (intra-day and intermediate precision (inter-day were assessed by analyzing working standard solutions. Accuracy and robustness were experimented from the standard procedures. The percentage recovery of zinc was found to be 99.8%, relative standard deviation RSD 1.13%, linearity of determination LOD 0.0032 μg/mL, and limit of quantization LOQ 0.0120 μg/mL. This developed and proposed method was then validated in terms of accuracy, precision, linearity and robustness which can be successfully used for the quantization of zinc in insulin.

  2. Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation

    International Nuclear Information System (INIS)

    Gil, Sandra; Fragueiro, Sandra; Lavilla, Isela; Bendicho, Carlos

    2005-01-01

    A new method is proposed for preconcentration and matrix separation of methylmercury prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Generation of methylmercury hydride (MeHgH) from a 5-ml solution is carried out in a closed vial and trapped onto an aqueous single drop (3-μl volume) containing Pd(II) or Pt(IV) (50 and 10 mg/l, respectively). The hydrogen evolved in the headspace (HS) after decomposition of sodium tetrahydroborate (III) injected for hydride generation caused the formation of finely dispersed Pd(0) or Pt(0) in the drop, which in turn, were responsible for the sequestration of MeHgH. A preconcentration factor of ca. 40 is achieved with both noble metals used as trapping agents. The limit of detection of methylmercury was 5 and 4 ng/ml (as Hg) with Pd(II) or Pt(IV) as trapping agents, and the precision expressed as relative standard deviation was about 7%. The preconcentration system was fully characterised through optimisation of the following variables: Pd(II) or Pt(IV) concentration in the drop, extraction time, pH of the medium, temperatures of both sample solution and drop, concentration of salt in the sample solution, sodium tetrahydroborate (III) concentration in the drop and stirring rate. The method has been successfully validated against two fish certified reference materials (CRM 464 tuna fish and CRM DORM-2 dogfish muscle) following selective extraction of methylmercury in 2 mol/l HCl medium

  3. Specificity of the ion exchange/atomic absorption method for free copper(II) species determination in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Sweileh, J.A.; Lucyk, D.; Kratochvil, B.; Cantwell, F.F.

    1987-02-15

    Concentrations of the free copper(II) species (Cu/sup 2 +/) measured by the ion exchange/atomic absorption (IEX) method in the presence of various concentrations of the ligands citrate, glycinate, phthalate, salicylate, chloride, and fulvate are compared to concentrations measured with a cupric ion selective electrode (ISE) and/or to concentrations calculated from known metal-ligand formation constants. The IEX method is considerably more sensitive for Cu/sup 2 +/ than the ISE method but is subject to interference from cationic and neutral copper complexes as well as from filterable colloids copper-hydroxo species at higher pH values. Accurate values of Cu/sup 2 +/ concentration are obtained by both methods in the presence of anionic copper-ligand complexes. Since fulvate, which is the principal ligand present in natural freshwaters, forms anionic copper complexes, the IEX method possesses adequate selectivity for measuring Cu/sup 2 +/ at trace levels in such waters. The complexing capacity of an acidic lake water with a very low dissolved organic carbon content was measured as 3.0 x 10/sup -8/ M by monitoring Cu/sup 2 +/ concentration by the IEX method during titration with copper nitrate.

  4. Atomic-absorption spectrometric determination of cobalt, nickel, and copper in geological materials with matrix masking and chelation-extraction

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.; Crenshaw, G.L.

    1979-01-01

    An atomic-absorption spectrometric method is reported for the determination of cobalt, nickel, and copper in a variety of geological materials including iron- and manganese-rich, and calcareous samples. The sample is decomposed with HP-HNO3 and the residue is dissolved in hydrochloric acid. Ammonium fluoride is added to mask iron and 'aluminum. After adjustment to pH 6, cobalt, nickel, and copper are chelated with sodium diethyl-dithiocarbamate and extracted into methyl isobutyl ketone. The sample is set aside for 24 h before analysis to remove interferences from manganese. For a 0.200-g sample, the limits of determination are 5-1000 ppm for Co, Ni, and Cu. As much as 50% Fe, 25% Mn or Ca, 20% Al and 10% Na, K, or Mg in the sample either individually or in various combinations do not interfere. Results obtained on five U.S. Geological Survey rock standards are in general agreement with values reported in the literature. ?? 1979.

  5. Separation and enrichment of gold(III) from environmental samples prior to its flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Senturk, Hasan Basri; Gundogdu, Ali [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Bulut, Volkan Numan [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 28049 Giresun (Turkey); Duran, Celal [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Soylak, Mustafa [Department of Chemistry, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri (Turkey)], E-mail: soylak@erciyes.edu.tr; Elci, Latif [Department of Chemistry, Faculty of Arts and Sciences, Pamukkale University, 20020 Denizli (Turkey); Tufekci, Mehmet [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2007-10-22

    A simple and accurate method was developed for separation and enrichment of trace levels of gold in environmental samples. The method is based on the adsorption of Au(III)-diethyldithiocarbamate complex on Amberlite XAD-2000 resin prior to the analysis of gold by flame atomic absorption spectrometry after elution with 1 mol L{sup -1} HNO{sub 3} in acetone. Some parameters including nitric acid concentration, eluent type, matrix ions, sample volume, sample flow rate and adsorption capacity were investigated on the recovery of gold(III). The recovery values for gold(III) and detection limit of gold were greater than 95% and 16.6 {mu}g L{sup -1}, respectively. The preconcentration factor was 200. The relative standard deviation of the method was <6%. The adsorption capacity of the resin was 12.3 mg g{sup -1}. The validation of the presented procedure was checked by the analysis of CRM-SA-C Sandy Soil certified reference material. The presented procedure was applied to the determination of gold in some environmental samples.

  6. Correlation between Soft X-ray Absorption and Emission Spectra of the Nitrogen Atoms within Imidazolium-Based Ionic Liquids.

    Science.gov (United States)

    Horikawa, Yuka; Tokushima, Takashi; Takahashi, Osamu; Hoke, Hiroshi; Takamuku, Toshiyuki

    2016-08-04

    Soft X-ray absorption spectroscopy (XAS) has been performed on the N K-edge of two imidazolium-based ionic liquids (ILs), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][TFSA]) and 1-ethyl-3-methylimidazolium bromide ([C2mim][Br]), to clarify the electronic structures of the ILs. Soft X-ray emission spectroscopy (XES) has also been applied to the ILs by excitation at various X-ray energies according to the XAS spectra. It was possible to fully associate the XAS peaks with the XES peaks. Additionally, both XAS and XES spectra of the ILs were well reproduced by the theoretical spectra for a single-molecule model on [C2mim](+) and [TFSA](-) using density functional theory. The assignments for the XAS and XES peaks of the ILs were accomplished from both experimental and theoretical approaches. The theoretical XAS and XES spectra of [C2mim](+) and [TFSA](-) did not significantly depend on the conformations of the ions. The reproducibility of the theoretical spectra for the single-molecule model suggested that the interactions between the cations and anions are very weak in the ILs, thus scarcely influencing the electronic structures of the nitrogen atoms.

  7. Sensitive determination of cadmium in water samples by room temperature ionic liquid-based preconcentration and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Martinis, Estefania M. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, C.C. 131, M 5502 IRA Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Olsina, Roberto A. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis (Argentina); Altamirano, Jorgelina C. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, C.C. 131, M 5502 IRA Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina); Wuilloud, Rodolfo G. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, C.C. 131, M 5502 IRA Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)], E-mail: rwuilloud@mendoza-conicet.gov.ar

    2008-10-17

    A sensitive preconcentration methodology for Cd determination at trace levels in water samples was developed in this work. 1-Butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}MIM][PF{sub 6}]) room temperature ionic liquid (RTIL) was successfully used for Cd preconcentration, as cadmium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex [Cd-5-Br-PADAP]. Subsequently, Cd was back-extracted from the RTIL phase with 500 {mu}L of 0.5 mol L{sup -1} nitric acid and determined by electrothermal atomic absorption spectrometry (ETAAS). A preconcentration factor of 40 was achieved with 20 mL of sample. The limit of detection (LOD) obtained under optimum conditions was 3 ng L{sup -1} and the relative standard deviation (R.S.D.) for 10 replicates at 1 {mu}g L{sup -1} Cd{sup 2+} concentration level was 3.5%, calculated at peak heights. The calibration graph was linear from concentration levels near the detection limits up to at least 5 {mu}g L{sup -1}. A correlation coefficient of 0.9997 was achieved. Validation of the methodology was performed by standard addition method and analysis of certified reference material (CRM). The method was successfully applied to the determination of Cd in river and tap water samples.

  8. Graphene oxide sheets immobilized polystyrene for column preconcentration and sensitive determination of lead by flame atomic absorption spectrometry.

    Science.gov (United States)

    Islam, Aminul; Ahmad, Hilal; Zaidi, Noushi; Kumar, Suneel

    2014-08-13

    A novel solid-phase extractant was synthesized by coupling graphene oxide (GO) on chloromethylated polystyrene through an ethylenediamine spacer unit to develop a column method for the preconcentration/separation of lead prior to its determination by flame atomic absorption spectrometry. It was characterized by Fourier transform infrared spectroscopy, far-infrared spectroscopy, thermogravimetric analysis/differential thermal analysis, scanning electron microscopy, energy-dispersive spectrometry, and transmission electron microscopy. The abundant oxygen-containing surface functional groups form a strong complex with lead, resulting in higher sorption capacity (227.92 mg g(-1)) than other nanosorbents used for sorption studies of the column method. Using the column procedure here is an alternative to the direct use of GO, which restricts irreversible aggregation of GO and its escape into the ecosystem, making it an environmentally sustainable method. The column method was optimized by varying experimental variables such as pH, flow rate for sorption/desorption, and elution condition and was observed to exhibit a high preconcentration factor (400) with a low preconcentration limit (2.5 ppb) and a high degree of tolerance for matrix ions. The accuracy of the proposed method was verified by determining the Pb content in the standard reference materials and by recovery experiments. The method showed good precision with a relative standard deviation <5%. The proposed method was successfully applied for the determination of lead in tap water, electroplating wastewater, river water, and food samples after preconcentration.

  9. Metal and trace element assessment of estuary sediments from Santos, Brazil, by neutron activation and atomic absorption techniques

    International Nuclear Information System (INIS)

    Amorim, Eduardo P.; Favaro, Deborah I.T.; Berbel, Glaucia B.B.; Braga, Elisabete S.

    2007-01-01

    In order to better understanding geochemical and environmental processes and their possible changes due to anthropogenic activities trace metal analyses and their distribution in marine sediments are commonly undertaken. The present study reports result concerning the distribution of some major, trace and rare earth elements in the Santos estuarine marine sediments. Thirteen bottom sediment samples (SV0501 to SV0513) were collected in this estuary, including regions of Sao Vicente, Santos, Cubatao, Vicente de Carvalho and Santos' Bay, in the summer of 2005. Multielemental analysis was carried out by instrumental neutron activation analysis (INAA). For total mercury determination cold vapor atomic absorption technique (CV AAS) was employed. In both cases methodology validation was performed by certified reference material analyses. The results obtained for multielemental concentrations in the sediment samples were compared with NASC (North American Shale Composite) values. The concentration values obtained for As and metals Cr, Hg and Zn in the sediment samples were compared to Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL values). In general, the samples located near the Cubatao region showed higher concentrations for all elements analyzed probably due to the high impact of industrial activities. (author)

  10. Metal and trace element assessment of estuary sediments from Santos, Brazil, by neutron activation and atomic absorption techniques

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Eduardo P.; Favaro, Deborah I.T. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: ducamorim@yahoo.com.br; defavaro@ipen.br; Berbel, Glaucia B.B.; Braga, Elisabete S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. Oceanografico. Lab. de Nutrientes, Micronutrientes e Tracos nos Oceanos - LABNUT]. E-mail: edsbraga@usp.br

    2007-07-01

    In order to better understanding geochemical and environmental processes and their possible changes due to anthropogenic activities trace metal analyses and their distribution in marine sediments are commonly undertaken. The present study reports result concerning the distribution of some major, trace and rare earth elements in the Santos estuarine marine sediments. Thirteen bottom sediment samples (SV0501 to SV0513) were collected in this estuary, including regions of Sao Vicente, Santos, Cubatao, Vicente de Carvalho and Santos' Bay, in the summer of 2005. Multielemental analysis was carried out by instrumental neutron activation analysis (INAA). For total mercury determination cold vapor atomic absorption technique (CV AAS) was employed. In both cases methodology validation was performed by certified reference material analyses. The results obtained for multielemental concentrations in the sediment samples were compared with NASC (North American Shale Composite) values. The concentration values obtained for As and metals Cr, Hg and Zn in the sediment samples were compared to Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL values). In general, the samples located near the Cubatao region showed higher concentrations for all elements analyzed probably due to the high impact of industrial activities. (author)

  11. A modified routine analysis of arsenic content in drinking-water in Bangladesh by hydride generation-atomic absorption spectrophotometry.

    Science.gov (United States)

    Wahed, M A; Chowdhury, Dulaly; Nermell, Barbro; Khan, Shafiqul Islam; Ilias, Mohammad; Rahman, Mahfuzar; Persson, Lars Ake; Vahter, Marie

    2006-03-01

    The high prevalence of elevated levels of arsenic in drinking-water in many countries, including Bangladesh, has necessitated the development of reliable and rapid methods for the determination of a wide range of arsenic concentrations in water. A simple hydride generation-atomic absorption spectrometry (HG-AAS) method for the determination of arsenic in the range of microg/L to mg/L concentrations in water is reported here. The method showed linearity over concentrations ranging from 1 to 30 microg/L, but requires dilution of samples with higher concentrations. The detection limit ranged from 0.3 to 0.5 microg/L. Evaluation of the method, using internal quality-control (QC) samples (pooled water samples) and spiked internal QC samples throughout the study, and Standard Reference Material in certain lots, showed good accuracy and precision. Analysis of duplicate water samples at another laboratory also showed good agreement. In total, 13,286 tubewell water samples from Matlab, a rural area in Bangladesh, were analyzed. Thirty-seven percent of the water samples had concentrations below 50 microg/L, 29% below the WHO guideline value of 10 microg/L, and 17% below 1 microg/L. The HG-AAS was found to be a precise, sensitive, and reasonably fast and simple method for analysis of arsenic concentrations in water samples.

  12. Analysis of trace element in intervertebral disc by Atomic Absorption Spectrometry techniques in degenerative disc disease in the Polish population

    Directory of Open Access Journals (Sweden)

    Andrzej Nowakowski

    2015-05-01

    Full Text Available Objective. Although trace elements are regarded crucial and their content has been determined in number of tissue there are only few papers addressing this problem in intervertebral disc in humans. Most of the trace elements are important substrates of enzymes influencing metabolism and senescence process. Others are markers of environmental pollution. Therefore the aim of the research was to analyzed of the trace element content in the intervertebral disc, which may be a vital argument recognizing the background of degenerative changes to be the effect of the environment or metabolic factors. Materials and methods. Material consist of 18 intervertebral disc from 15 patients, acquired in surgical procedure of due to the degenerative disease with Atomic Absorption Spectrometry content of Al, Cd, Co, Pb, Cu, Ni, Mo, Mg, Zn was evaluated. Results. Only 4 of the trace elements were detected in all samples. The correlation analysis showed significant positive age correlation with Al and negative in case of Co. Among elements significant positive correlation was observed between Al/Pb, Co/Mo, Al/Mg, Al/Zn Pb/Zn and Mg/Zn. Negative correlation was observed in Al/Co, Cd/Mg, Co/Mg, Mo/Mg, Co/Zn and Mo/Zn. Conclusions. This study is the first to our knowledge that profiles the elements in intervertebral disc in patients with degenerative changes. We have confirmed significant differences between the trace element contents in intervertebral disc and other tissue. It can be ground for further investigation.

  13. Determination of molybdenum and vanadium in seawater by carbon furnace atomic absorption spectrometry with metal chelate coprecipitation

    International Nuclear Information System (INIS)

    Fujiwara, Kitao; Morikawa, Toshiki; Fuwa, Keiichiro

    1986-01-01

    Coprecipitation with metal chelate complex formation has been studied for determining molybdenum and vanadium in seawater. As coprecipitation carriers, several pairs of metal ion and chelating agent were applied : Co(II)-ammonium pyrrolydinedithiocarbamate (APDC), Cu(II)-APDC, Cr(VI)-APDC, Co(II)-sodium diethyldithiocarbamate, AI(III)-8-quinolinol, Cu(II)-cupferron, and Ni(II)-dimethylglyoxime. The procedure was as follows : A 100 ml molybdate {Mo(VI)} and metavanadate {V(V)} sample solution was taken to which were added acetate buffer solution. After addition of the carrier metal ion, the pH of the solution was adjusted and the chelating agent was then added. After stood for 1 h, the precipitate was collected by a membrane filter(pore size 0.2 μm), and dissolved in 5 ml of nitric acid(1 mol/l). It was then analyzed by graphite furnace atomic absorption spectrometer. The coprecipitation done with Co(II)-APDC surpassed the others in recoveries of molybdenum and vanadium ; which were 94 ± 3 and 96 ± 3 %, respectively. The minimum detectable amounts in the initial solution were found to be 0.05 μg/l for molybdenum and 0.1 μg/l for vanadium. Molybdenum and vanadium were determined in seawater sampled at the Japan Trench in the North Pacific Ocean. (author)

  14. Coprecipitation with metal hydroxides for the determination of beryllium in seawater by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hiraide, M.; Ishikawa, K.; Chen, Z.S.; Kawaguchi, H.

    1994-01-01

    Coprecipitation first with magnesium hydroxide. next with tin(IV) hydroxide is developed for the determination of traces of beryllium in seawater. To a 200-ml sample is added a sodium hydroxide solution to form magnesium hydroxide at pH 11.5, on which beryllium is quantitatively coprecipitated. The precipitate is separated by centrifugation and dissolved in 2 ml of 12 mol/l hydrochloric acid. The resulting solution (ca. 10 ml) is mixed with 2 mg of tin(IV) carrier and the pH is adjusted to 5.0 to collect the beryllium on tin(IV) hydroxide, leaving magnesium ions in the solution. The tin(IV) hydroxide is centrifuged, dissolved in 0.1 ml of 5 mol/l hydrobromic acid, and then diluted to 1 ml with water. Magnesium is so added as to be 500 μg/ml for increasing the sensitivity about four times, and the beryllium in the solution is determined by graphite furnace atomic absorption spectrometry. The experiments with synthetic seawater samples showed that pg-μg amounts of beryllium can be coprecipitated on the metal hydroxides and beryllium at the low ng/l level can be determined with reasonable precision (RSD < 10%). The detection limit of the proposed method is 0.5 ng/l of beryllium in seawater. (author)

  15. The use of slurry sampling for the determination of manganese and copper in various samples by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Tokman, Nilgun

    2007-01-01

    Manganese and copper in multivitamin-mineral supplements and standard reference materials were determined by slurry sampling electrothermal atomic absorption spectrometry. Slurries were prepared in an aqueous solution containing Triton X-100. The effects of different parameters such as ratio of solid to liquid phase volume, total slurry volume and addition of Triton X-100 as a dispersant on the analytical results were investigated. The graphite furnace programs were optimized for slurry sampling depending on the analytes and their concentrations in the samples. The linear calibration method with aqueous standard solutions was used for the quantification. At optimum experimental conditions, R.S.D. values were below 5%. The analytes were determined in the limits of 95% confidence level with respect to certified values in coal and soil standard reference materials and to those found by wet-digestion in multivitamin-mineral supplements. Detection limits (3δ) for Mn and Cu were 0.10 μg L -1 and 1.82 μg L -1 for 10 μL coal standard reference material slurry, respectively

  16. Selective speciation of inorganic antimony on tetraethylenepentamine bonded silica gel column and its determination by graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Mendil, Durali; Bardak, Hilmi; Tuzen, Mustafa; Soylak, Mustafa

    2013-03-30

    A speciation system for antimony (III) and antimony (V) ions that based on solid phase extraction on tetraethylenepentamine bonded silica gel has been established. Antimony was determined by graphite furnace atomic absorption spectrometry (GF-AAS). Analytical conditions including pH, sample volume, etc., were studied for the quantitative recoveries of Sb (III) and Sb (V). Matrix effects on the recovery were also investigated. The recovery values and detection limit for antimony (III) at optimal conditions were found as >95% and 0.020 μg L(-1), respectively. Preconcentration factor was calculated as 50. The capacity of adsorption for the tetraethylenepentamine bonded silica gel was 7.9 mg g(-1). The validation was checked by analysis of NIST SRM 1573a Tomato laves and GBW 07605 Tea certified reference materials. The procedure was successfully applied to speciation of antimony in tap water, mineral water and spring water samples. Total antimony was determined in refined salt, unrefined salt, black tea, rice, tuna fish and soil samples after microwave digestion and presented enrichment method combination. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The determination of molybdenum in sea water by atomic absorption spectrophotometric method with BMPP-iso-amyl alcohol extraction

    International Nuclear Information System (INIS)

    Akama, Yoshifumi; Nakai, Toshio; Kawamura, Fumikazu

    1979-01-01

    A trace of molybdenum in sea water is determined by atomic absorption spectrophotometry using solvent extraction. Molybdenum (VI) is complexed with 4-benzoyl-3-methyl-1-phenyl-5-pyrazolone (BMPP) and extracted into iso-amyl alcohol. To find the optimum condition for the extraction of molybdenum, experiments are tried on the effects of pH, concentration of BMPP, and interference of divers ions. It is shown that extraction is complete in the pH range 1.0 - 3.0 at 0.2 w/v% BMPP concentration and that Na, K, Sr, Ca and Mg at high concentration have no effects on the extraction but in excess of 2 mg Fe(III), Cr(VI), and V(V) depress the absorbance of molybdenum markedly, probably because of complex formation or preferential extraction. One liter of sea water in which 10 ml of concentrated hydrochloric acid is added is concentrated to 200 ml by heating and then filtered using Toyo Roshi No. 3 filter paper. The solution adjusted to pH 2.5 by the addition of sodium acetate is placed in a separatory funnel, and then extracted with 10 ml of 0.2 w/v% solution of BMPP in iso-amyl alcohol by shaking for 10 min. It is found out that the sea water samples contain 7 - 11 μg Mo/liter and the results are agreed well with those that have previously been published. (author)

  18. Fitness of the analysis method of magnesium in drinking water using atomic absorption with quadratic calibration curve

    International Nuclear Information System (INIS)

    Perez-Lopez, Esteban

    2014-01-01

    The quantitative chemical analysis has been importance in research. Also, aspects like: quality control, sales of services and other areas of interest. Some instrumental analysis methods for quantification with linear calibration curve have presented limitations, because the short liner dynamic ranges of the analyte, or sometimes, by limiting the technique itself. The need has been to investigate a little more about the convenience of using quadratic calibration curves for analytical quantification, with which it has seeked demonstrate that has been a valid calculation model for chemical analysis instruments. An analysis base method is used on the technique of atomic absorption spectroscopy and in particular a determination of magnesium in a drinking water sample of the Tacares sector North of Grecia. A nonlinear calibration curve was used and specifically a curve with quadratic behavior. The same was compared with the test results obtained for the equal analysis with a linear calibration curve. The results have showed that the methodology has been valid for the determination referred with all confidence, since the concentrations have been very similar and, according to the used hypothesis testing, can be considered equal. (author) [es

  19. Trace metal characterization and speciation in geothermal effluent by multiple scanning anodic stripping voltammetry and atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, B.R.

    1979-05-25

    Recent studies have shown geothermal power plants to have a significant environmental impact on the ground water of the area. The heavy metals arsenic and mercury are special problems, as both are concentrated by flora and fauna exposed to the effluent waters. Because the toxicity of these and other metallic pollutants present in geothermal effluent depends on the chemical form, or speciation, of the particular metal, any serious study of the environmental impact of a geothermal development should include studies of trace metal speciation, in addition to trace metal concentration. This proposal details a method for determining metal speciation in dilute waters. The method is based on ion-exchange and backed by atomic absorption spectrometry and multiple scanning anodic stripping voltammetry. Special laboratory studies will be performed on mercury, arsenic and selenium speciation in synthetic geothermal water. The method will be applied to three known geothermal areas in Washington and Oregon, with emphasis on the speciation of mercury, arsenic and selenium in these waters. The computer controlled electrochemical instrumentation was built and tested. Using this instrumentation, a new experimental procedure was developed to determine the chemical form (speciation) of metal ions in very dilute solutions (ng/ml). This method was tested on model systems including Pb, Cd, and As with C1/sup -/, CO/sub 3//sup 2 -/ and glycine ligands. Finally, the speciation of lead in a geothermal water was examined and the PbC1/sup +/ complex was observed and quantified.

  20. Determination of heavy metal contents by atomic absorption spectroscopy (AAS) in some medicinal plants from Pakistani and Malaysian origin.

    Science.gov (United States)

    Akram, Sobia; Najam, Rahila; Rizwani, Ghazala H; Abbas, Syed Atif

    2015-09-01

    This study depicts a profile of existence of heavy metals (Cu, Ni, Zn, Cd, Hg, Mn, Fe, Na, Ca, and Mg) in some important herbal plants like (H. Integrifolia, D. regia, R. communis, C. equisetifolia, N. oleander, T. populnea, M. elengi, H. schizopetalus, P. pterocarpum) from Pakistan and an antidiabetic Malaysian herbal drug product containing (Punica granatum L. (Mast) Hook, Momordica charantia L., Tamarindus indica L., Lawsonia inermis L.) using atomic absorption spectrophotometer. Heavy metals in these herbal plants and Malaysian product were in the range of 0.02-0.10 ppm of Cu, 0.00-0.02 ppm of Ni, 0.02-0.29 ppm of Zn, 0.00-0.04 ppm of Cd, 0.00-1.33 ppm of Hg, 0.00-0.54 ppm of Mn, 0.22-3.16 ppm of Fe, 0.00-9.17 ppm of Na, 3.27-15.63 ppm of Ca and 1.85-2.03 ppm of Mg. All the metals under study were within the prescribed limits except mercury. Out of 10 medicinal plants/product under study 07 were beyond the limit of mercury permissible limits. Purpose of this study is to determine heavy metals contents in selected herbal plants and Malaysian product, also to highlight the health concerns related to the presence of toxic levels of heavy metals.

  1. Standard test method for graphite furnace atomic absorption spectrometric determination of lead and cadmium extracted from ceramic foodware

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers procedures for using graphite furnace atomic absorption spectroscopy (GFAAS) to quantitatively determine lead and cadmium extracted by acetic acid at room temperature from the food-contact surface of foodware. The method is applicable to food-contact surfaces composed of silicate-based materials (earthenware, glazed ceramicware, decorated ceramicware, decorated glass, and lead crystal glass) and is capable of determining lead concentrations greater than 0.005 to 0.020 g/mL and cadmium concentrations greater than 0.0005 to 0.002 g/mL, depending on instrument design. 1.2 This test method also describes quality control procedures to check for contamination and matrix interference during GFAAS analyses and a specific sequence of analytical measurements that demonstrates proper instrument operation during the time period in which sample solutions are analyzed. 1.3 Cleaning and other contamination control procedures are described in this test method. Users may modify contamination cont...

  2. Determination of Gold in Various Environment Samples by Flame Atomic Absorption Spectrometry Using Dispersive Liquid–Liquid Microextraction Sampling

    Directory of Open Access Journals (Sweden)

    Şerife Saçmacı

    2015-07-01

    Full Text Available A new dispersive liquid–liquid microextraction separation/preconcentration procedure as a rapid sample-preparation technique is proposed for detection of ultra trace amounts of Au(III in various media by flame atomic absorption spectrometry using 1,5-diphenyl-1,3,5-pentanetrione as chelating agent. Carbon tetrachloride and methanol were used as extraction and dispersive solvents, respectively. Various parameters that affect the extraction efficiency such as pH, centrifugation rate and time, chelating agent concentration and sampling volume on the recovery of Au(III were investigated. Under optimum conditions, the enhancement factor of 750, relative standard deviation of 2.7 % and calibration graphs obtained in the concentration range of 0.04–5.6 μg L−1 for gold were obtained. The limit of detection was 1.1 ng L−1. The accuracy of the method was performed by analysis of the certified reference material (CDN-PGMS-10. The developed method was applied successfully to the determination of gold in the catalytic converter, anode slime, ore and seawater samples. The results show that dispersive liquid–liquid microextraction procedure is sensitive, rapid, simple and safe for the separation/preconcentration of gold from complex sample media.

  3. Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy.

    Science.gov (United States)

    Akkaya, Erhan; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-09-20

    In this study, solidified floating organic drop microextraction (SFODME) by 1-undecanol was combined with slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) for the determination of cadmium at trace levels. Formation of a complex with 4,4'-dimethyl-2,2'-bipyridine facilitated the extraction of cadmium from aqueous solutions. Several chemical variables were optimized in order to obtain high extraction outputs. Parameters such as concentration of the ligand, pH, and amount of buffer solution were optimized to enhance the formation of cadmium complex. The SFODME method was assisted by dispersion of extractor solvent into aqueous solutions using 2-propanol. Under the optimum extraction and instrumental conditions, the limit of detection and limit of quantitation values obtained for cadmium using the combined methods (SFODME-SQT-FAAS) were found to be 0.4 and 1.3 μg L -1 , respectively. Matrix effects on the method were also examined for tap water and wastewater, and spiked recovery results were found to be very satisfactory. Graphical Abstract SFODME-SQT-FAAS system for sensitive determination of cadmium.

  4. Determining the arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillets from Vietnam.

    Science.gov (United States)

    Molognoni, Luciano; Vitali, Luciano; Ploêncio, Leandro As; Santos, Jacson N; Daguer, Heitor

    2016-07-01

    Pangasius is a fish produced on a large scale in Vietnam and exported to many countries. Since river contamination from human activities can affect the safety of this food, fish consumption can cause exposure to potentially toxic elements for humans. The aim of this study, therefore, was to assess arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillet produced in the provinces of Dong Thap and Can Tho (Vietnam) and exported to Brazil. The limits of detection were: arsenic 0.5443 µg kg(-1) , cadmium 0.0040 mg kg(-1) , chromium 0.0004 mg kg(-1) , copper 0.0037 mg kg(-1) and lead 0.0284 mg kg(-1) . Analysis of 20 samples showed results below the limit of detection for arsenic, chromium and lead, while copper average concentration was 0.0234 mg kg(-1) . Cadmium average concentration was 0.0547 mg kg(-1) , with no significant difference between the two regions studied. The samples of Pangasius had no detectable concentrations of arsenic, chromium, copper and lead, and do not represent a hazard to public health. However, cadmium analysis revealed non-compliant samples, demonstrating the importance of monitoring the quality of imported Pangasius fish. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Choleva, Tatiana G; Kappi, Foteini A; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L

    2016-05-01

    This work describes a new method for the extraction and determination of gold nanoparticles in environmental samples by means of in-situ suspended aggregate microextraction and electrothermal atomic absorption spectrometry. The method relies on the in-situ formation of a supramolecular aggregate phase through ion-association between a cationic surfactant and a benzene sulfonic acid derivative. Gold nanoparticles are physically entrapped into the aggregate phase which is separated from the bulk aqueous solution by vacuum filtration on the surface of a cellulose filter in the form of a thin film. The film is removed from the filter surface and is dissociated into an acidified methanolic solution which is used for analysis. Under the optimized experimental conditions, gold nanoparticles can be efficiently extracted from water samples with recovery rates between 81.0-93.3%, precision 5.4-12.0% and detection limits as low as 75femtomolL(-1) using only 20mL of sample volume. The satisfactory analytical features of the method along with the simplicity indicate the efficiency of this new approach to adequately collect and extract gold nanoparticle species from water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Simultaneous preconcentration of cadmium and lead in water samples with silica gel and determination by flame atomic absorption spectrometry.

    Science.gov (United States)

    Xu, Hongbo; Wu, Yun; Wang, Jian; Shang, Xuewei; Jiang, Xiaojun

    2013-12-01

    A new method that utilizes pretreated silica gel as an adsorbent has been developed for simultaneous preconcentration of trace Cd(II) and Pb(II) prior to the measurement by flame atomic absorption spectrometry. The effects of pH, the shaking time, the elution condition and the coexisting ions on the separation/preconcentration conditions of analytes were investigated. Under optimized conditions, the static adsorption capacity of Cd(II) and Pb(II) were 45.5 and 27.1mg/g, the relative standard deviations were 3.2% and 1.7% (for n = 11), and the limits of detection obtained were 4.25 and 0.60 ng/mL, respectively. The method was validated by analyzing the certified reference materials GBW 07304a (stream sediment) and successfully applied to the analysis of various treated wastewater samples with satisfactory results. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  7. Evaluation of the analytic performance of laboratories: inter-laboratorial study of the spectroscopy of atomic absorption

    International Nuclear Information System (INIS)

    Wong Wong, S. M.

    1996-01-01

    The author made an inter-laboratorial study, with the participation of 18 national laboratories, that have spectrophotometer of atomic absorption. To evaluate the methods of analysis of lead, sodium, potasium, calcium, magnesium, zinc, copper, manganese, and iron, in the ambit of mg/l. The samples, distributed in four rounds to the laboratories, were prepared from primary patterns, deionized and distilled water. The study evaluated the homogeneity and stability, and verified its concentration, using as a reference method, the spectrometry method of Inductively Coupled Plasma emission (1CP). To obtain the characteristics of analytic performance, it applied the norm ASTM E 691. To evaluated the analytic performance, it used harmonized protocol of the International Union of Pure and applied chemistry (IUPAC). The study obtained the 29% of the laboratories had a satisfactory analytic performance, 9% had a questionable performance and 62% made an unsatisfactory analytic performance, according to the IUPAC norm. The results of the values of the characteristic performance method, show that there is no intercomparability between the laboratories, which is attributed to the different methodologies of analysis. (S. Grainger)

  8. Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation

    International Nuclear Information System (INIS)

    Aleixo, Poliana Carolina; Junior, Dario Santos; Tomazelli, Andrea Cristina; Rufini, Iolanda A.; Berndt, Harald; Krug, Francisco Jose

    2004-01-01

    A simple method for cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry (BIFF-AAS) was proposed. Food slurries were prepared by transferring an exact amount of cryogenic-ground homogenized material (50-100 mg) to centrifuge tubes, followed by addition of 5 ml (up to 2.8 mol l -1 ) nitric acid solution and sonication in an ultrasonic bath during 5-10 min. Thereafter, slurries were diluted with water to 10 ml, centrifuged during 5 min at 5400 rpm and 400 μl aliquot of the supernatant was analyzed by BIFF-AAS. The detection limits based on peak height measurements were 0.03 μg g -1 Cd and 1.6 μg g -1 Pb for 2% (m/v) slurry (200 mg/10 ml). For method validation, the certified reference materials Pig Kidney (BCR 186) and Rice Flour (NIES 10) were used. Quantitative cadmium and lead recoveries were obtained and no statistical differences were found at 95% level by applying the t-test

  9. Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Fabio G. Santomauro

    2017-07-01

    Full Text Available We report on an element-selective study of the fate of charge carriers in photoexcited inorganic CsPbBr3 and CsPb(ClBr3 perovskite nanocrystals in toluene solutions using time-resolved X-ray absorption spectroscopy with 80 ps time resolution. Probing the Br K-edge, the Pb L3-edge, and the Cs L2-edge, we find that holes in the valence band are localized at Br atoms, forming small polarons, while electrons appear as delocalized in the conduction band. No signature of either electronic or structural changes is observed at the Cs L2-edge. The results at the Br and Pb edges suggest the existence of a weakly localized exciton, while the absence of signatures at the Cs edge indicates that the Cs+ cation plays no role in the charge transport, at least beyond 80 ps. This first, time-resolved element-specific study of perovskites helps understand the rather modest charge carrier mobilities in these materials.

  10. Discussion of parameters associated with the determination of arsenic by electrothermal atomic absorption spectrometry in slurried environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Vassileva, E.; Baeten, H.; Hoenig, M. [Centre for Veterinary and Agrochemical Research (CERVA), Tervuren (Belgium)

    2001-01-01

    A slurry sampling - fast program procedure has been developed for the determination of arsenic in plants, soils and sediments by electrothermal atomic absorption spectrometry. Efficiencies of various single and mixed modifiers for thermal stabilization of arsenic and for a better removal of the matrix during pyrolysis step were compared. The influence of the slurry concentration, amounts of modifier and parameters of the pyrolysis step on the As integrated absorbance signals have been studied and a comparison between fast and conventional furnace programs was also made. The ultrasonic agitation of the slurry followed by a fast electrothermal program using an Ir/Mg modifier provides the most consistent performance in terms of precision and accuracy. The reliability of the whole procedure has been compared with results obtained after application of a wet digestion method with an HF step and validated by analyzing eleven certified reference materials. Arsenic detection and quantitation limits expressed on dry sample matter were about 30 and 100 {mu}g kg{sup -1}, respectively. (orig.)

  11. Multi-elemental analysis of Ziziphora clinopodioidesfrom different regions, periods and parts using atomic absorption spectrometry and chemometric approaches

    Directory of Open Access Journals (Sweden)

    Xuejia Zhang

    Full Text Available ABSTRACTIn this study, ten trace elements in Ziziphora clinopodioidesLam., Lamiaceae, from different regions, periods and parts in Xinjiang were determined by atomic absorption spectrometry following microwave-assisted acid digestion. The decreasing sequence of elements levels was K > Ca > Mg > Fe > Cu > Zn > Na > Mn > Cd > Pb. Chemometric approaches, such as correlation analysis, principal component analysis, and hierarchical cluster analysis were applied to classify Z. clinopodioides according to its elements contents. Principal component analysis revealed 83.51% of the variance with the first four principal component variables. Hierarchical cluster analysis indicated five groups from the eighteen regions, and the result of classification can correspond to the geographical distribution for the most regions. Variation in the elements exhibited a decreasing trend, but of different types in the studied periods. Elemental contents distributed in leaves were higher than those in flowers and stems. Therefore, chemometric approaches could be used to analyze data to accurately classify Z. clinopodioides according to origins. This study provided some elemental information on chemotaxonomy, diversity, changing pattern, distribution, and metabolism of Z. clinopodioides at spatial and temporal levels, and could be used as a reference of planting and quality standards.

  12. Line strengths, A-factors and absorption cross-sections for fine structure lines in multiplets and hyperfine structure components in lines in atomic spectrometry - a user's guide

    International Nuclear Information System (INIS)

    Axner, Ove; Gustafsson, Joergen; Omenetto, Nicolo; Winefordner, James D.

    2004-01-01

    This work summarizes and elucidates a number of fundamental concepts in atomic spectrometry regarding the 'strengths' of transitions between various energy levels and states in atoms. Although several of the expressions and rules for line strengths of transitions reported here can be found, in one way or another, in various books dealing with atomic structure, atomic spectrometry or quantum mechanics, the treatment in such books can be variously complex and difficult to follow for a non-experienced reader. In addition, detailed information about transition-specific 'strengths' of transitions used to be restricted to line strengths, whereas most experiments rather need transition-specific A-factors or transition-specific absorption cross-sections. This work therefore aims at pointing out the most important aspects of the concept of 'strengths' of transitions between various energy levels and states in atoms by presenting explicit expressions for not only relative and absolute line strengths but also oscillator strengths (f-values), A-factors and absorption cross-sections, for transitions between fine structure levels within a multiplet as well as for hyperfine structure components within a line (i.e. between hyperfine structure levels), including their mutual relations, in a consistent and user-friendly manner. The work also recapitulates the most important summation rules for line strengths, oscillator strengths (f-values), A-factors and absorption cross-sections for lines within multiplets and hyperfine structure components within lines. Many of the expressions are illustrated with clear and intelligible examples. For the sake of clarity and completeness, the work also comprises a short review of the nomenclature for atomic structure and transitions

  13. Advantages of the iridium permanent modifier in fast programs applied to trace-element analysis of plant samples by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vassileva, E.; Baeten, H.; Hoenig, M. [Centre for Veterinary and Agrochemical Research (CERVA), Tervuren (Belgium)

    2001-03-01

    The application of a fast program combined with the advantages of the iridium permanent modifier is proposed for trace element analysis of plant samples by electrothermal atomic absorption spectrometry (ETAAS). For two volatile elements (Cd, Pb) and two mid-refractory elements (Cr, Ni) it was demonstrated that coating of the platform or of the tube atomization area with Ir is an efficient means of improving the accuracy and precision of results. A detailed study of interference from individual main matrix components and from composite plant matrices has confirmed the usefulness of the whole approach. The validity of the method has been confirmed by analysis of eight reference plant materials. (orig.)

  14. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of boron in plant tissues

    International Nuclear Information System (INIS)

    Resano, M.; Briceno, J.; Aramendia, M.; Belarra, M.A.

    2007-01-01

    In this work, the potential of graphite furnace atomic absorption spectrometry for the direct determination of B in plant tissues has been investigated. Three certified reference materials (NIST SRM 1570a spinach leaves, NIST SRM 1573a tomato leaves and BCR CRM 679 white cabbage) were selected for this study, the goal always being to develop a fast procedure that could be robust enough to provide a satisfactory performance for all of them, without any modifications in the conditions applied. The use of a suitable chemical modifier was found to be essential for obtaining a reproducible and sufficiently sensitive signal for boron solutions. In this regard, the performance of the combination of citric acid plus W (added as a permanent modifier) was noteworthy, resulting in well-defined signal profiles, a remarkable analyte stabilization during the pyrolysis step (up to 2100 deg. C) and minimal memory effects. This mixture of modifiers provided a good performance for the direct analysis of solid samples as well, but only if a suitable temperature program, favoring the interaction between the analyte and the modifiers, was used. Thus, such a temperature program, with two pyrolysis steps and the addition of NH 4 NO 3 in order to carry out the in situ sample microdigestion, was optimized. Under these conditions, the peak areas obtained for both solid samples and aqueous standards were comparable. Finally, the analysis of the samples was carried out. In all cases, a good agreement with the certified values was obtained, while R.S.D. values ranged between 6 and 10%. It can be concluded that the method proposed shows significant advantages for the determination of this complicated element in solid samples such as the use of aqueous standards for calibration, a high sample throughput (20 min per sample), a suitable limit of detection (0.3 μg g -1 ) and reduced risk of analyte losses and contamination

  15. Selective cloud point extraction and graphite furnace atomic absorption spectrometric determination of molybdenum (VI) ion in seawater samples

    Energy Technology Data Exchange (ETDEWEB)

    Filik, Hayati, E-mail: filik@istanbul.edu.tr [Istanbul University, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul (Turkey); Cengel, Tayfun; Apak, Resat [Istanbul University, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul (Turkey)

    2009-09-30

    A cloud point extraction process using the nonionic surfactant Triton X-114 to extract molybdenum from aqueous solutions was investigated. The method is based on the complexation reaction of Mo(VI) with 1,2,5,8-tetrahydroxyanthracene-9,10-dione (quinalizarine: QA) and micelle-mediated extraction of the complex. The enriched analyte in the surfactant-rich phase was determined by graphite furnace atomic absorption spectrometry (GFAAS). The optimal extraction and reaction conditions (e.g. pH, reagent and surfactant concentrations, temperature, incubation and centrifugation times) were evaluated and optimized. Under the optimized experimental conditions, the limit of detection (LOD) for Mo(VI) was 7.0 ng L{sup -1} with an preconcentration factor of {approx}25 when 10 mL of sample solution was preconcentrated to 0.4 mL. The proposed method (with extraction) showed linear calibration within the range 0.03-0.6 {mu}g L{sup -1}. The relative standard deviation (RSD) was found to be 3.7% (C{sub Mo(VI)} = 0.05 {mu}g L{sup -1}, n = 5) for pure standard solutions, whereas RSD for the recoveries from real samples ranged between 2 and 8% (mean RSD = 3.9%). The method was applied to the determination of Mo(VI) in seawater and tap water samples with a recovery for the spiked samples in the range of 98-103%. The interference effect of some cations and anions was also studied. In the presence of foreign ions, no significant interference was observed. In order to verify the accuracy of the method, a certified reference water sample was analysed and the results obtained were in good agreement with the certified values.

  16. Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ulusoy, Halil Ibrahim, E-mail: hiulusoy@yahoo.com [University of Cumhuriyet, Faculty of Science, Department of Chemistry, TR-58140, Sivas (Turkey); Akcay, Mehmet; Ulusoy, Songuel; Guerkan, Ramazan [University of Cumhuriyet, Faculty of Science, Department of Chemistry, TR-58140, Sivas (Turkey)

    2011-10-10

    Graphical abstract: The possible complex formation mechanism for ultra-trace As determination. Highlights: {yields} CPE/HGAAS system for arsenic determination and speciation in real samples has been applied first time until now. {yields} The proposed method has the lowest detection limit when compared with those of similar CPE studies present in literature. {yields} The linear range of the method is highly wide and suitable for its application to real samples. - Abstract: Cloud point extraction (CPE) methodology has successfully been employed for the preconcentration of ultra-trace arsenic species in aqueous samples prior to hydride generation atomic absorption spectrometry (HGAAS). As(III) has formed an ion-pairing complex with Pyronine B in presence of sodium dodecyl sulfate (SDS) at pH 10.0 and extracted into the non-ionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114). After phase separation, the surfactant-rich phase was diluted with 2 mL of 1 M HCl and 0.5 mL of 3.0% (w/v) Antifoam A. Under the optimized conditions, a preconcentration factor of 60 and a detection limit of 0.008 {mu}g L{sup -1} with a correlation coefficient of 0.9918 was obtained with a calibration curve in the range of 0.03-4.00 {mu}g L{sup -1}. The proposed preconcentration procedure was successfully applied to the determination of As(III) ions in certified standard water samples (TMDA-53.3 and NIST 1643e, a low level fortified standard for trace elements) and some real samples including natural drinking water and tap water samples.

  17. Coacervative extraction of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hagarová, Ingrid, E-mail: hagarova@fns.uniba.sk; Bujdoš, Marek; Matúš, Peter; Kubová, Jana

    2013-10-01

    In this work, a relatively simple and sensitive method for separation/preconcentration of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry has been proposed. The method is based on the extraction of Pb–dithizone chelate with coacervates made up of lauric acid in the presence of potassium ions and methanol. Several important factors affecting extraction efficiency such as pH, concentration of lauric acid and dithizone, ionic strength, incubation and centrifugation time were investigated and optimized. After separation of aqueous bulk solution from surfactant-rich phase, the final extract was redissolved by using 500 μl of methanol acidified with 0.2 mol l{sup −1} HNO{sub 3}. Under the optimized conditions (using initial sample volume of 10 ml), enrichment factor of 17.0, detection limit of 0.12 μg l{sup −1}, quantification limit of 0.38 μg l{sup −1}, relative standard deviation of 4.2% (for 2 μg l{sup −1} of Pb; n = 26), linearity of the calibration graph in the range of 0.5–4.0 μg l{sup −1} (with correlation coefficient better than 0.995) were achieved. The method was validated by the analysis of certified reference material (TMDA-61). Extraction recoveries for the CRM, spiked model solutions and spiked natural water samples were in the range of 91–96%. Finally, the method was applied to the separation/preconcentration and determination of trace lead in natural waters. - Highlights: • The potential of coacervates for the extraction of metal ions is examined. • No difficulties in coupling of ETAAS with the proposed CAE are observed. • Achieved preconcentration factor results in enhanced sensitivity. • Analytical performance is confirmed by the reliable determination of trace Pb. • The proposed CAE is ecofriendly and efficient.

  18. Determination of arsenic and cadmium in shellfish samples by graphite furnace atomic absorption spectrometry using matrix modifier

    International Nuclear Information System (INIS)

    Villalobos Aranda, Juan; Cortez Diaz, Mirella

    2003-01-01

    Serious problems of environmental contamination due to the activity of the man exist at the present time. Where the greater impact is the produced one by heavy metals that go to the sea. Where the shellfish can collect some of them, the highly toxic ones, since these are bioaccumulation of these metals. Therefore one becomes necessary to count with the reliable analytical procedures to determine these elements. The purpose of this work is to present the determination of arsenic and cadmium in shellfish, by spectroscopy of atomic absorption with graphite furnace. For each determined element, solutions of nickel and phosphate like matrix modifiers were used respectively The validation was made using a Reference Certified Material, Oyster ' Tissue 156 (National Institute of Standards and Technology). The sample previously was digested in triplicate by two consecutive days, with nitric acid in a pressure digestion system DAB 11. For each element it was evaluated: limit of detection and quantification, sensitivity, repeatability, linear, slope rank and uncertainty. In addition, the obtained results were compared with the certified values of the certified material of reference using like statistical tools the tests of Student and Fisher. In both tests the calculated values were smaller to the shown ones in table, for degrees of freedom with 95% of confidence. Thus it was verified that it does not exist significant differences between the precision and the average values of the results obtained with respect to the values of the certified material. In addition, the obtained parameters are appropriate for the determination of these trace elements in this type of environmental sample (author)

  19. Determination of inorganic and total mercury by vapor generation atomic absorption spectrometry using different temperatures of the measurement cell

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, Luiz Eduardo [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil); Goldschmidt, Fabiane [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil); Paniz, Jose Neri Gottfried [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil); Moraes Flores, Erico Marlon de [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil); Dressler, Valderi Luiz [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil)]. E-mail: valdres@quimica.ufsm.br

    2005-06-30

    A simple and inexpensive laboratory-built flow injection vapor generation system coupled to atomic absorption spectrometry (FI-VG AAS) for inorganic and total mercury determination has been developed. It is based on the vapor generation of total mercury and a selective detection of Hg{sup 2+} or total mercury by varying the temperature of the measurement cell. Only the inorganic mercury is measured when the quartz cell is at room temperature, and when the cell is heated to 650 deg. C or higher the total Hg concentration is measured. The organic Hg concentration in the sample is calculated from the difference between the total Hg and Hg{sup 2+} concentrations. Parameters such as the type of acid (HCl or HNO{sub 3}) and its concentration, reductant (NaBH{sub 4}) concentration, carrier solution (HCl) flow rate, carrier gas flow rate, sample volume and quartz cell temperature, which influence FI-VG AAS system performance, were systematically investigated. The optimized conditions for Hg{sup 2+} and total Hg determinations were: 1.0 mol l{sup -1} HCl as carrier solution, carrier flow rate of 3.5 ml min{sup -1}, 0.1% (m/v) NaBH{sub 4}, reductant flow rate of 1.0 ml min{sup -1} and carrier gas flow rate of 200 ml min{sup -1}. The relative standard deviation (RSD) is lower than 5.0% for a 1.0 {mu}g l{sup -1} Hg solution and the limit of quantification (LOQ, 10 s) is 55 ng g{sup -1}. Certified samples of dogfish muscle (DORM-1 and DORM-2) and non-certified fish samples were analyzed, using a 6.0 mol l{sup -1} HCl solution for analyte extraction. The Hg{sup 2+} and CH{sub 3}Hg{sup +} concentrations found were in agreement with certified ones.

  20. Hair in Parkinson's disease patients exhibits differences in Calcium, Iron and Zinc concentrations measured by flame atomic absorption spectrometry - FAAS.

    Science.gov (United States)

    Dos Santos, Altair B; Kohlmeier, Kristi A; Rocha, Marcelo E; Barreto, George E; Barreto, Jeferson A; de Souza, Ana Carla A; Bezerra, Marcos A

    2018-05-01

    Imbalances in metals have emerged as playing a role in the pathophysiology of Parkinson's Disease (PD). Monitoring of metal levels could serve as a biomarker of presence, or future development, of this disease. To this end, we evaluated the ability of flame atomic absorption spectrometry (FAAS) to assess the concentrations of Ca, Fe and Zn in hair of PD patients and to investigate if there was an association with age and disease duration. Hair samples were collected from 26 clinically-diagnosed PD patients, and 33 healthy individuals. Concentrations of Ca and Fe were lower in PD patients when compared to control, whereas, a higher concentration of Zn was detected in PD patients. Levels of Ca and Fe did not vary with age nor with the duration of PD. While Zn did not present variation with duration of the disease, there was a correlation with age as PD patients older than 65 years exhibited a higher concentration of Zn than controls. We conclude that FAAS is useful for detecting differences in Fe, Ca and Zn in hair samples of patients with PD. Hair samples required for this method are easy to collect, and the technique relies on a simple method of digestion of the organic matrix. The ease of use of FAAS should allow for more frequent monitoring of metallic levels in patients in a variety of small clinical situations, thereby offering the hope of allowing systematic tracking of metal levels as the disease progresses, or prior to the defining motor symptoms. Copyright © 2018 Elsevier GmbH. All rights reserved.

  1. Cloud Point Extraction and Flame Atomic Absorption Spectrometric Determination of Lead, Cadmium and Palladium in Some Food and Biological Samples

    Directory of Open Access Journals (Sweden)

    M. Soylak

    2011-12-01

    Full Text Available The proposed method is based on the complexation of the Pb2+, Cd2+ and Pd2+ ions with 3-(1-(1-H-Indol-3-Yl-3-phenylallyl-1H-indole (IPAI at pH 8.0 in the presence of Triton X-114. The phase separation occured when micellar solution was heated at 55 ◦C. The surfactant-rich phase, diluted to 0.5 mL via 1.0 mol L−1 nitric acid in methanol was directly introduced into the nebulizer of the flame atomic absorption spectrometry (FAAS. Influence of variables such as pH, amount of ligand and Triton X-114, heating time and temperature were evaluated and optimized. The optimized enhancement factors for Pb2+, Cd2+ and Pd2+ ions were 22, 33 and 23, respectively and the detection limit (DLs was between of 1.6–2.6 µgL−1. The relative standard deviation (RSD of each ion was found to be less than 4.6% at 100 µgL−1. In addition, the calibration graphs were linear in the range of 0.01-0.22 μg mL−1 for Cd2+ ion, 0.018-0.26 μg mL−1 for Pb2+ ion and 0.02-0.27 μg mL−1 for Pd2+ ion with the correlation coefficients in the range of 0.995–0.999.

  2. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Georg, E-mail: georg.hartmann@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany); Schuster, Michael, E-mail: michael.schuster@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. Black-Right-Pointing-Pointer A selective ligand (sodium thiosulphate) is introduced for species separation. Black-Right-Pointing-Pointer A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. Black-Right-Pointing-Pointer Measurement of samples with high natural organic mater content is possible. Black-Right-Pointing-Pointer Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 {+-} 0.06 (particle size 2 nm) to 0.52 {+-} 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L{sup -1} is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L{sup -1}. The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L{sup -1} is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  3. Method Comparison of Neutron Activation Analysis and Atomic Absorption Spectrometry for Determination of Zinc in Food Samples

    International Nuclear Information System (INIS)

    Endah Damastuti; Syukria Kurniawati; Natalia Adventini

    2009-01-01

    Zinc as a micro nutrient, has important roles in human metabolism system. It is required by the body in appropriate amount from food intake. Due to the very low concentration of Zinc in food, high selectivity and sensitivity analysis technique is required for the determination, such as Neutron Activation Analysis (NAA) and Atomic Absorption Spectrometry (AAS). In this experiment, both methods were compared in zinc analysis of food samples. The subject of this experiment is to examine of those methods conformity and improving the technique capability in zinc analysis in food sample. Those methods were validated by analyzing zinc in SRM NIST 1548a Typical Diet and were tested its accuracy and precision. The results of Zn concentration were 25.1 ± 2.14 mg/kg by NAA and 24.1 ± 1.40 mg/kg by AAS while the certificate value was 24.6 ± 1.80 mg/kg. Percentage of relative bias, %CV, μ-test score and HORRAT(Horwitz ratio) value given by NAA were 2%, 8.5%, 0.18 and 0.9 respectively, while %relative bias, %CV, μ-test score and HORRAT value given by AAS were 2%, 5.8 %, 0.20 and 0.6 respectively. The result obtained for Zn concentration in various food samples by NAA and AAS were varied from 13.7 – 29.3 mg/kg with mean value 19.8 mg/kg and 11.2 – 26.0 mg/kg with mean value 17.3 mg/kg (author)

  4. Determination of some heavy metal levels in soft drinks on the Ghanaian market using atomic absorption spectrometry method.

    Science.gov (United States)

    Ackah, Michael; Anim, Alfred Kwablah; Zakaria, Nafisatu; Osei, Juliet; Saah-Nyarko, Esther; Gyamfi, Eva Tabuaa; Tulasi, Delali; Enti-Brown, Sheriff; Hanson, John; Bentil, Nash Owusu

    2014-12-01

    Twenty-three soft drink samples (i.e., four pineapple-based fruit drinks, eight citrus-based fruit juices, one soya-based drink, three cola carbonated drinks, one apple-based fruit drink, and six cocktail fruit drinks) were randomly purchased from retail outlets in an urban market in Accra and analyzed for the concentrations of iron, cobalt, cadmium, zinc, lead, and copper using flame atomic absorption spectrometry. The mean concentration of iron and cadmium were 0.723 ± 0.448 mg/L and 0.032 ± 0.012 mg/L, respectively. The mean cobalt concentration was 0.071 ± 0.049 mg/L, while the mean Zn concentration in the samples was 0.060 ± 0.097 mg/L. The mean concentrations of Pb and Cu in the fruit juice samples were 0.178 ± 0.091 mg/L and 0.053 ± 0.063 mg/L respectively. About 78 % of the samples exceeded the United States Environmental Protection Agency (USEPA) maximum contaminant level of 0.3 mg/L prescribed for iron, whereas all the samples exceeded the USEPA maximum contaminant level of 0.005 mg/L prescribed for cadmium. About 91 % of the samples exceeded the EU maximum contaminant level prescribed for lead insoft drinks.

  5. Quantifying uncertainty in the measurement of arsenic in suspended particulate matter by Atomic Absorption Spectrometry with hydride generator

    Directory of Open Access Journals (Sweden)

    Ahuja Tarushee

    2011-04-01

    Full Text Available Abstract Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG. In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2.

  6. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection.

    Science.gov (United States)

    Huber, Charles S; Vale, Maria Goreti R; Dessuy, Morgana B; Svoboda, Milan; Musil, Stanislav; Dědina, Jiři

    2017-12-01

    A slurry sampling procedure for arsenic speciation analysis in baby food by arsane generation, cryogenic trapping and detection with atomic absorption spectrometry is presented. Several procedures were tested for slurry preparation, including different reagents (HNO 3 , HCl and tetramethylammonium hydroxide - TMAH) and their concentrations, water bath heating and ultrasound-assisted agitation. The best results for inorganic arsenic (iAs) and dimethylarsinate (DMA) were reached when using 3molL -1 HCl under heating and ultrasound-assisted agitation. The developed method was applied for the analysis of five porridge powder and six baby meal samples. The trueness of the method was checked with a certified reference material (CRM) of total arsenic (tAs), iAs and DMA in rice (ERM-BC211). Arsenic recoveries (mass balance) for all samples and CRM were performed by the determination of the tAs by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted digestion and its comparison against the sum of the results from the speciation analysis. The relative limits of detection were 0.44, 0.24 and 0.16µgkg -1 for iAs, methylarsonate and DMA, respectively. The concentrations of the most toxic arsenic species (iAs) in the analyzed baby food samples ranged between 4.2 and 99µgkg -1 which were below the limits of 300, 200 and 100µgkg -1 set by the Brazilian, Chinese and European legislation, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Determination of gold, indium, tellurium and thallium in the same sample digest of geological materials by atomic-absorption spectroscopy and two-step solvent extraction

    Science.gov (United States)

    Hubert, A.E.; Chao, T.T.

    1985-01-01

    A rock, soil, or stream-sediment sample is decomposed with hydrofluoric acid, aqua regia, and hydrobromic acid-bromine solution. Gold, thallium, indium and tellurium are separated and concentrated from the sample digest by a two-step MIBK extraction at two concentrations of hydrobromic add. Gold and thallium are first extracted from 0.1M hydrobromic acid medium, then indium and tellurium are extracted from 3M hydrobromic acid in the presence of ascorbic acid to eliminate iron interference. The elements are then determined by flame atomic-absorption spectrophotometry. The two-step solvent extraction can also be used in conjunction with electrothermal atomic-absorption methods to lower the detection limits for all four metals in geological materials. ?? 1985.

  8. Annealing induced atomic rearrangements on (Ga,In) (N,As) probed by hard X-ray photoelectron spectroscopy and X-ray absorption fine structure.

    Science.gov (United States)

    Ishikawa, Fumitaro; Higashi, Kotaro; Fuyuno, Satoshi; Morifuji, Masato; Kondow, Masahiko; Trampert, Achim

    2018-04-13

    We study the effects of annealing on (Ga 0.64 ,In 0.36 ) (N 0.045 ,As 0.955 ) using hard X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements. We observed surface oxidation and termination of the N-As bond defects caused by the annealing process. Specifically, we observed a characteristic chemical shift towards lower binding energies in the photoelectron spectra related to In. This phenomenon appears to be caused by the atomic arrangement, which produces increased In-N bond configurations within the matrix, as indicated by the X-ray absorption fine structure measurements. The reduction in the binding energies of group-III In, which occurs concomitantly with the atomic rearrangements of the matrix, causes the differences in the electronic properties of the system before and after annealing.

  9. Controllable Absorption and Dispersion Properties of an RF-driven Five-Level Atom in a Double-Band Photonic-Band-Gap Material

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue

    2011-01-01

    The probe absorption-dispersion spectra of a radio-frequency (RF)-driven five-level atom embedded in a photonic crystal are investigated by considering the isotropic double-band photonic-band-gap (PBG) reservoir. In the model used, the two transitions are, respectively, coupled by the upper and lower bands in such a PBG material, thus leading to some curious phenomena. Numerical simulations are performed for the optical spectra. It is found that when one transition frequency is inside the band gap and the other is outside the gap, there emerge three peaks in the absorption spectra. However, for the case that two transition frequencies lie inside or outside the band gap, the spectra display four absorption profiles. Especially, there appear two sharp peaks in the spectra when both transition frequencies exist inside the band gap. The influences of the intensity and frequency of the RF-driven field on the absorptive and dispersive response are analyzed under different band-edge positions. It is found that a transparency window appears in the absorption spectra and is accompanied by a very steep variation of the dispersion profile by adjusting system parameters. These results show that the absorption-dispersion properties of the system depend strongly on the RF-induced quantum interference and the density of states (DOS) of the PBG reservoir. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. The Utilization of Nitrogen Gas as a Carrier Gas in the Determination of Hg Ions Using Cold Vapor-Atomic Absorption Spectrophotometer (CV-AAS)

    OpenAIRE

    Panggabean, Aman Sentosa; Pasaribu, Subur P; Kristiana, Farida

    2018-01-01

    The research about utilization of nitrogen gas as a carrier gas in the determination of Hg ions by using Cold Vapor-Atomic Absorption Spectrophotometer (CV-AAS) method has been conducted. To optimize the measurement results, several parameters that affect hydride generator have been studied. Some specified important parameters are SnCl2 concentration as reductant, acid concentration, and the analytical performance such as repeatability and reproducibility (% RSD), linearity (r), limits of det...

  11. An indirect sequential determination of phosphorus and arsenic in high-purity tungsten and its compounds by atomic-absorption spectrophotometry

    International Nuclear Information System (INIS)

    Tekula-Buxbaum, P.

    1981-01-01

    An indirect atomic-absorption spectrophotometric method based on selective extraction of heteropolymolybdic acids has been developed for determination of small quantities of P and As in high-purity tungsten metal and tungsten compounds. The method is suitable for determination of 5-100 ppm of phosphorus and arsenic. The relative standard deviation is 38-5% for P and 31-3% for As, depending on the concentrations. (auth.)

  12. Application of atomic absorption spectrometry with continuous light source to analyze selected metals important for human health in different parts of oranges

    Directory of Open Access Journals (Sweden)

    Szwerc Wojciech

    2014-09-01

    Full Text Available The publication describes the application of high-resolution continuum source atomic absorption spectrometry (H-R CS AAS to determine some physiologically essential and toxic elements occurring in citrus fruits of different origins. Before analysis, the samples were mineralized using a mixture of deionized water and 69% nitric acid 3:1 (v/v in high pressure microwave digestion at 188°C during one hour.

  13. Elimination of the inter-element interferences of iron, gold, molybdenum, tin and antimony when determined in organic solvents by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Aneva, Zara; Arpadjan, Sonja

    1988-01-01

    The mutual interferences in the flame atomic absorption spectrometric determination of iron, gold, molybdenum, tin and antimony after their extraction - pre-concentration as chloride complexes from platinum solutions into isobutyl methyl ketone are investigated. It is suggested that the interferences are caused by chemical reactions in the flame and are influenced by the flame characteristics. The possibility of eliminating the interferences by addition of long-chain quaternary ammonium salts is discussed. (author)

  14. Single-laboratory evaluation of SW-846 Methods 7090/7091 determination of beryllium by flame and furnace atomic absorption spectrophotometry. Summary report January-August 1987

    International Nuclear Information System (INIS)

    Hodge, V.F.; Darby, D.A.; Thompson, W.E.; Jones, C.L.

    1988-02-01

    The results of a single-laboratory study of the Determination of Beryllium by Flame and Furnace Atomic Absorption Spectrophotometry, are described. The study examined the application of these two powerful beryllium detection methods to the analysis of selected liquid and solid samples after digestion by appropriate SW-846 methods. Method performance data including detection limits, optimum concentration ranges (linearity), spike recoveries, interferences, precision, accuracy, and optimum operating parameters are presented and discussed

  15. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    Science.gov (United States)

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  16. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    OpenAIRE

    Abdollahi Atousa; Amirkavehei Mooud; Gheisari Mohammad Mehdi; Tadayon Fariba

    2014-01-01

    A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap). The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS). The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically ...

  17. Solid phase extraction and determination of nickel in water samples by using novel thiol-containing sulfonamide polymeric resin and atomic absorption spectrophotometer.

    Science.gov (United States)

    Karaaslan, Nagihan M; Senkal, B Filiz; Er, Cigdem; Avci, Halim; Yaman, Mehmet

    2011-08-01

    Interest in preconcentration techniques for the determination of metals at ultratrace levels still continues increasingly because of some disadvantages of flameless atomic absorption spectrometry as well as the high costs of other sensitive methods in compared to flame atomic absorption spectrometry. In this study, thiol-containing sulfonamide resin was synthesized, characterized and applied as a new sorption material for solid phase extraction of nickel in drinking water samples. After preconcentration procedure, flame atomic absorption spectrometry was used for determinations. Optimum parameters were found to be pH = 3.2, contact time = 20 min and eluate volume = 3 mL. The limit of detection was found to be 0.75 ng x mL(-1). The synthesized resin exhibits the superiority in compared to the other adsorption reagents because of the fact that there is no necessity of any complexing reagent, high sorption capacity as well as the relatively fast extraction rate. The Ni concentrations in the studied 21 kind of water samples were found to be in the range of BDL-4.0 ng x mL(-1).

  18. Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions.

    Science.gov (United States)

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R

    2017-08-01

    A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL -1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL -1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    Science.gov (United States)

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Experimental design applied to the development of a copper direct determination method in gasoline samples by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Janyeid Karla Castro; Marques, Aldalea Lopes Brandes [Programa de Pos Graduacao em Quimica, Av. dos Portugueses S/N, Campus Bacanga, Universidade Federal do Maranhao, Sao Luis, MA (Brazil); Dantas, Allan Nilson de Sousa; Lopes, Gisele Simone [Departamento de Quimica Analitica e Fisico-Quimica, bloco 939, Campus do Pici, Universidade Federal do Ceara, 60.000-000, Fortaleza, CE (Brazil)

    2008-11-15

    The aim of this work was to develop an experimental design to optimize the direct determination of copper in gasoline by graphite furnace atomic absorption spectrometry. The optimization of the process was carried out firstly by evaluating the variables in the procedure (pyrolysis time and temperature, atomization temperature and sample volume) using a factorial design (2{sup 4}). The response surface was constructed and it presented pyrolysis optimal temperature on 800 C, sample volume of 30 {mu}L using the atomization temperature of 2500 C. The amount of copper in the gasoline samples from Sao Luis City (Brazil) varied from 3.65 to 16.21 {mu}g L{sup -} {sup 1}, with 0.65 and 1.9 {mu}g L{sup -} {sup 1} as detection limit and quantification limit, respectively. Accuracy was evaluated by a comparative procedure and the results proved the viability of copper direct determination in fuel samples. (author)