WorldWideScience

Sample records for extracting fuzzy rules

  1. Measuring uncertainty by extracting fuzzy rules using rough sets and extracting fuzzy rules under uncertainty and measuring definability using rough sets

    Science.gov (United States)

    Worm, Jeffrey A.; Culas, Donald E.

    1991-01-01

    Computers are not designed to handle terms where uncertainty is present. To deal with uncertainty, techniques other than classical logic must be developed. This paper examines the concepts of statistical analysis, the Dempster-Shafer theory, rough set theory, and fuzzy set theory to solve this problem. The fundamentals of these theories are combined to provide the possible optimal solution. By incorporating principles from these theories, a decision-making process may be simulated by extracting two sets of fuzzy rules: certain rules and possible rules. From these rules a corresponding measure of how much we believe these rules is constructed. From this, the idea of how much a fuzzy diagnosis is definable in terms of its fuzzy attributes is studied.

  2. Extraction of rules for faulty bearing classification by a Neuro-Fuzzy approach

    Science.gov (United States)

    Marichal, G. N.; Artés, Mariano; García Prada, J. C.; Casanova, O.

    2011-08-01

    In this paper, a classification system of faulty bearings based on a Neuro-Fuzzy approach is presented. The vibration signals in the frequency domain produced by the faulty bearings will be taken as the inputs to the classification system. In this sense, it is an essential characteristic for the used Neuro-Fuzzy approach, the possibility of taking a great number of inputs. The system consists of several Neuro-Fuzzy systems for determining different bearing status, along with a measurement equipment of the vibration spectral data. In this paper, a special attention is focused on the analysis of the rules obtained by the final Neuro-Fuzzy system. In fact, a rule extraction process and an interpretation rule process is discussed. Several trials have been carried out, taking into account the vibration spectral data collected by the measurement equipment, where satisfactory results have been achieved.

  3. Extracting fuzzy rules under uncertainty and measuring definability using rough sets

    Science.gov (United States)

    Culas, Donald E.

    1991-01-01

    Although computers have come a long way since their invention, they are basically able to handle only crisp values at the hardware level. Unfortunately, the world we live in consists of problems which fail to fall into this category, i.e., uncertainty is all too common. A problem is looked at which involves uncertainty. To be specific, attributes are dealt with which are fuzzy sets. Under this condition, knowledge is acquired by looking at examples. In each example, a condition as well as a decision is made available. Based on the examples given, two sets of rules are extracted, certain and possible. Furthermore, measures are constructed of how much these rules are believed in, and finally, the decisions are defined as a function of the terms used in the conditions.

  4. Extraction Fuzzy Linguistic Rules from Neural Networks for Maximizing Tool Life in High-speed Milling Process

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhigang; HE Ning; LI Liang

    2009-01-01

    In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent of high-speed milling(HSM) pro cess, lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters. It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism. In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN) so as to have the most effective knowledge-base for given set of data. Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters. A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed. After training process, raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules. The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rules.

  5. Performance Analysis of Extracted Rule-Base Multivariable Type-2 Self-Organizing Fuzzy Logic Controller Applied to Anesthesia

    Science.gov (United States)

    Fan, Shou-Zen; Shieh, Jiann-Shing

    2014-01-01

    We compare type-1 and type-2 self-organizing fuzzy logic controller (SOFLC) using expert initialized and pretrained extracted rule-bases applied to automatic control of anaesthesia during surgery. We perform experimental simulations using a nonfixed patient model and signal noise to account for environmental and patient drug interaction uncertainties. The simulations evaluate the performance of the SOFLCs in their ability to control anesthetic delivery rates for maintaining desired physiological set points for muscle relaxation and blood pressure during a multistage surgical procedure. The performances of the SOFLCs are evaluated by measuring the steady state errors and control stabilities which indicate the accuracy and precision of control task. Two sets of comparisons based on using expert derived and extracted rule-bases are implemented as Wilcoxon signed-rank tests. Results indicate that type-2 SOFLCs outperform type-1 SOFLC while handling the various sources of uncertainties. SOFLCs using the extracted rules are also shown to outperform those using expert derived rules in terms of improved control stability. PMID:25587533

  6. An Automatic KANSEI Fuzzy Rule Creating System Using Thesaurus

    Science.gov (United States)

    Hotta, Hajime; Hagiwara, Masafumi

    In this paper, we propose an automatic Kansei fuzzy rule creating system using thesaurus. In general, there are a lot of words that express impressions. However, conventional approaches of Kansei engineering are not suitable to use many impression words because it is difficult to collect enough data. The proposed system is an enhanced algorithm of the conventional method that the authors proposed before. The proposed system extracts fuzzy rules for many words defined in the thesaurus dictionary while the conventional one can extract rules of specified words which user defined. The flow of the system consists of 3 steps: (1) construction of thesaurus networks; (2) data collection by web questionnaire sheets; (3) Extraction of fuzzy rules. In order to extract Kansei fuzzy rules, the system employs enhanced GRNN(general regression neural network) which can treat relative words of the thesaurus network. Using a Japanese thesaurus dictionary in the experiments, the sets of fuzzy rules for 1,195 impression words are extracted, and the fuzzy rules extracted by the proposed system obtained higher accuracy than those extracted by the conventional one.

  7. Fuzzy Rule Base System for Software Classification

    Directory of Open Access Journals (Sweden)

    Adnan Shaout

    2013-07-01

    Full Text Available Given the central role that software development plays in the delivery and application of informationtechnology, managers have been focusing on process improvement in the software development area. Thisimprovement has increased the demand for software measures, or metrics to manage the process. Thismetrics provide a quantitative basis for the development and validation of models during the softwaredevelopment process. In this paper a fuzzy rule-based system will be developed to classify java applicationsusing object oriented metrics. The system will contain the following features:Automated method to extract the OO metrics from the source code,Default/base set of rules that can be easily configured via XML file so companies, developers, teamleaders,etc, can modify the set of rules according to their needs,Implementation of a framework so new metrics, fuzzy sets and fuzzy rules can be added or removeddepending on the needs of the end user,General classification of the software application and fine-grained classification of the java classesbased on OO metrics, andTwo interfaces are provided for the system: GUI and command.

  8. Fuzzy rule-based support vector regression system

    Institute of Scientific and Technical Information of China (English)

    Ling WANG; Zhichun MU; Hui GUO

    2005-01-01

    In this paper,we design a fuzzy rule-based support vector regression system.The proposed system utilizes the advantages of fuzzy model and support vector regression to extract support vectors to generate fuzzy if-then rules from the training data set.Based on the first-order linear Tagaki-Sugeno (TS) model,the structure of rules is identified by the support vector regression and then the consequent parameters of rules are tuned by the global least squares method.Our model is applied to the real world regression task.The simulation results gives promising performances in terms of a set of fuzzy rules,which can be easily interpreted by humans.

  9. 基于相容模糊概念的规则提取方法%Research on rule extraction method based on compatibility fuzzy concept

    Institute of Scientific and Technical Information of China (English)

    胡小康; 王俊红

    2016-01-01

    概念格是具有严格数学模型的数据分析与规则提取的一种有效工具,大部分情况下是在完备的精确形式背景即二值背景下进行研究,然而在现实生活中遇到的大多数情况是不完备的模糊形式背景,不完备模糊形式背景中包含许多不确定的信息,其上的知识表示与完备形式背景下的知识表示既有区别又有联系。为了研究两者的内在联系,本文定义了相似模糊概念和相容模糊概念,构建了相似模糊概念格和建立了在不完备模糊形式背景下相容模糊概念之间的偏序关系,进而设计出面向不完备模糊形式背景下的关联规则挖掘算法。最后通过实验验证了该方法的有效性和可行性。%The concept lattice is an effective data analysis and rule extraction tool with a strict mathematical model. In most instances, studies are carried out in a complete formal context, i.e., a two-value context. However, in real life, an incomplete fuzzy formal context is frequently experienced. Incomplete fuzzy contexts contain a lot of uncer⁃tain information. There are both distinctions and relationships that can be identified between the forms of knowledge representation in the incomplete fuzzy formal and complete formal contexts. To study their internal relationship, in this paper, we define approximate fuzzy and compatible fuzzy concepts, establish an approximate fuzzy concept lat⁃tice, and identify a partial ordering relationship between compatible fuzzy concepts in an incomplete fuzzy formal context. We extend the design of an association rules mining algorithm to address the background of the incomplete fuzzy formal context, and conduct an experiment to demonstrate the feasibility and effectiveness of the proposed method.

  10. The majority rule in a fuzzy environment.

    OpenAIRE

    Montero, Javier

    1986-01-01

    In this paper, an axiomatic approach to rational decision making in a fuzzy environment is studied. In particular, the majority rule is proposed as a rational way for aggregating fuzzy opinions in a group, when such agroup is defined as a fuzzy set.

  11. Generating Fuzzy Rule-based Systems from Examples Based on Robust Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    JIA Jiong; ZHANG Hao-ran

    2006-01-01

    This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR,then uses the SVR to extract fuzzy rules and designs fuzzy rule-based system. Simulations show that fuzzy rule-based system technique based on robust SVR achieves superior performance to the conventional fuzzy inference method, the proposed method provides satisfactory performance with excellent approximation and generalization property than the existing algorithm.

  12. Optical Generation of Fuzzy-Based Rules

    Science.gov (United States)

    Gur, Eran; Mendlovic, David; Zalevsky, Zeev

    2002-08-01

    In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.

  13. Clustering Association Rules with Fuzzy Concepts

    Science.gov (United States)

    Steinbrecher, Matthias; Kruse, Rudolf

    Association rules constitute a widely accepted technique to identify frequent patterns inside huge volumes of data. Practitioners prefer the straightforward interpretability of rules, however, depending on the nature of the underlying data the number of induced rules can be intractable large. Even reasonably sized result sets may contain a large amount of rules that are uninteresting to the user because they are too general, are already known or do not match other user-related intuitive criteria. We allow the user to model his conception of interestingness by means of linguistic expressions on rule evaluation measures and compound propositions of higher order (i.e., temporal changes of rule properties). Multiple such linguistic concepts can be considered a set of fuzzy patterns (Fuzzy Sets and Systems 28(3):313-331, 1988) and allow for the partition of the initial rule set into fuzzy fragments that contain rules of similar membership to a user’s concept (Höppner et al., Fuzzy Clustering, Wiley, Chichester, 1999; Computational Statistics and Data Analysis 51(1):192-214, 2006; Advances in Fuzzy Clustering and Its Applications, chap. 1, pp. 3-30, Wiley, New York, 2007). With appropriate visualization methods that extent previous rule set visualizations (Foundations of Fuzzy Logic and Soft Computing, Lecture Notes in Computer Science, vol. 4529, pp. 295-303, Springer, Berlin, 2007) we allow the user to instantly assess the matching of his concepts against the rule set.

  14. Refining Linear Fuzzy Rules by Reinforcement Learning

    Science.gov (United States)

    Berenji, Hamid R.; Khedkar, Pratap S.; Malkani, Anil

    1996-01-01

    Linear fuzzy rules are increasingly being used in the development of fuzzy logic systems. Radial basis functions have also been used in the antecedents of the rules for clustering in product space which can automatically generate a set of linear fuzzy rules from an input/output data set. Manual methods are usually used in refining these rules. This paper presents a method for refining the parameters of these rules using reinforcement learning which can be applied in domains where supervised input-output data is not available and reinforcements are received only after a long sequence of actions. This is shown for a generalization of radial basis functions. The formation of fuzzy rules from data and their automatic refinement is an important step in closing the gap between the application of reinforcement learning methods in the domains where only some limited input-output data is available.

  15. Incorporating Fuzzy Inference in Active Database Rules

    Institute of Scientific and Technical Information of China (English)

    郭海英; 台立钢; 钟廷修

    2003-01-01

    Active databases react to stimulation, or event from inside or outside the system without user or application interference through Events Conditions Actions(ECA) rules (triggers). ECA rule is defined as: ON event IF condition THEN action, which means when an event happens, if the condition is satisfied then the corresponding action is executed. The nature of ECA rule makes it an appropriate means to model dynamic character of systems, as gained much studies during recent years. Traditional ECA rule is crisp, which means their events, condition (s) and action(s) are accurate. As indicate that ECA rules can only represent precise knowledge. But knowledge is usually fuzzy in engineering. A concept of fuzzy ECA rules characterized with fuzzy event, fuzzy condition and fuzzy action is proposed in this article.The realization avenues of fuzzy triggers are discussed. The work we have done blazes a way in representing approximate syntax in active database application systems. At last a case of "overheating alarm" is given to illustrate the approach.

  16. Fuzzy evaluation method using fuzzy rule approach in multicriteria analysis

    Directory of Open Access Journals (Sweden)

    Othman Mahmod

    2008-01-01

    Full Text Available A multicriteria analysis in ranking the quality of teaching using fuzzy rule is proposed. The proposed method uses the application of fuzzy sets and approximate reasoning in deciding the ranking of the quality of teaching in several courses. The proposed method introduces normalizing data which dampen the extreme value that exists in the data. The use of the model is suitable in evaluating situations that involve subjectivity, vagueness and imprecise information. Experimental results are comparable and the method performs better in some domains. .

  17. The Application of Fuzzy Logic to Collocation Extraction

    CERN Document Server

    Bisht, Raj Kishor

    2008-01-01

    Collocations are important for many tasks of Natural language processing such as information retrieval, machine translation, computational lexicography etc. So far many statistical methods have been used for collocation extraction. Almost all the methods form a classical crisp set of collocation. We propose a fuzzy logic approach of collocation extraction to form a fuzzy set of collocations in which each word combination has a certain grade of membership for being collocation. Fuzzy logic provides an easy way to express natural language into fuzzy logic rules. Two existing methods; Mutual information and t-test have been utilized for the input of the fuzzy inference system. The resulting membership function could be easily seen and demonstrated. To show the utility of the fuzzy logic some word pairs have been examined as an example. The working data has been based on a corpus of about one million words contained in different novels constituting project Gutenberg available on www.gutenberg.org. The proposed me...

  18. An Intelligent Trading System with Fuzzy Rules and Fuzzy Capital Management

    OpenAIRE

    Naranjo, Rodrigo; Meco, Albert; Arroyo Gallardo, Javier; Santos Peñas, Matilde

    2015-01-01

    In this work we are proposing a trading system where fuzzy logic is applied not only for defining the trading rules, but also for managing the capital to invest. In fact, two fuzzy decision support systems are developed. The first one uses fuzzy logic to design the trading rules and to apply the stock market technical indicators. The second one enhances this fuzzy trading system adding a fuzzy strategy to manage the capital to trade. Additionally, a new technical market indicator that produce...

  19. Parallel mining and application of fuzzy association rules

    Institute of Scientific and Technical Information of China (English)

    LU Jian-jiang; XU Bao-wen; ZOU Xiao-feng; KANG Da-zhou; LI Yan-hui; ZHOU Jin

    2006-01-01

    Quantitative attributes are partitioned into several fuzzy sets by using fuzzy c-means algorithm.Fuzzy c-means algorithm can embody the actual distribution of the data,and fuzzy sets can soften the partition boundary.Then,we improve the search technology of apriori algorithm and present the algorithm for mining fuzzy association rules.As the database size becomes larger and larger,a better way is to mine fuzzy association rules in parallel.In the parallel mining algorithm,quantitative attributes are partitioned into several fuzzy sets by using parallel fuzzy c-means algorithm.Boolean parallel algorithm is improved to discover frequent fuzzy attribute set,and the fuzzy association rules with at least a minimum confidence are generated on all processors.The experiment results implemented on the distributed linked PC/workstation show that the parallel mining algorithm has fine scaleup,sizeup and speedup.Last,we discuss the application of fuzzy association rules in the classification.The example shows that the accuracy of classification systems of the fuzzy association rules is better than that of the two popular classification methods:C4.5 and CBA.

  20. Distributed intrusion detection system based on fuzzy rules

    Science.gov (United States)

    Qiao, Peili; Su, Jie; Liu, Yahui

    2006-04-01

    Computational Intelligence is the theory and method solving problems by simulating the intelligence of human using computer and it is the development of Artificial Intelligence. Fuzzy Technique is one of the most important theories of computational Intelligence. Genetic Fuzzy Technique and Neuro-Fuzzy Technique are the combination of Fuzzy Technique and novel techniques. This paper gives a distributed intrusion detection system based on fuzzy rules that has the characters of distributed parallel processing, self-organization, self-learning and self-adaptation by the using of Neuro-Fuzzy Technique and Genetic Fuzzy Technique. Specially, fuzzy decision technique can be used to reduce false detection. The results of the simulation experiment show that this intrusion detection system model has the characteristics of distributed, error tolerance, dynamic learning, and adaptation. It solves the problem of low identifying rate to new attacks and hidden attacks. The false detection rate is low. This approach is efficient to the distributed intrusion detection.

  1. Discovering Fuzzy Censored Classification Rules (Fccrs: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Renu Bala

    2012-08-01

    Full Text Available Classification Rules (CRs are often discovered in the form of ‘If-Then’ Production Rules (PRs. PRs, beinghigh level symbolic rules, are comprehensible and easy to implement. However, they are not capable ofdealing with cognitive uncertainties like vagueness and ambiguity imperative to real word decision makingsituations. Fuzzy Classification Rules (FCRs based on fuzzy logic provide a framework for a flexiblehuman like reasoning involving linguistic variables. Moreover, a classification system consisting of simple‘If-Then’ rules is not competent in handling exceptional circumstances. In this paper, we propose aGenetic Algorithm approach to discover Fuzzy Censored Classification Rules (FCCRs. A FCCR is aFuzzy Classification Rule (FCRs augmented with censors. Here, censors are exceptional conditions inwhich the behaviour of a rule gets modified. The proposed algorithm works in two phases. In the firstphase, the Genetic Algorithm discovers Fuzzy Classification Rules. Subsequently, these FuzzyClassification Rules are mutated to produce FCCRs in the second phase. The appropriate encodingscheme, fitness function and genetic operators are designed for the discovery of FCCRs. The proposedapproach for discovering FCCRs is then illustrated on a synthetic dataset.

  2. An intelligent temporal pattern classification system using fuzzy temporal rules and particle swarm optimization

    Indian Academy of Sciences (India)

    S Ganapathy; R Sethukkarasi; P Yogesh; P Vijayakumar; A Kannan

    2014-04-01

    In this paper, we propose a new pattern classification system by combining Temporal features with Fuzzy Min–Max (TFMM) neural network based classifier for effective decision support in medical diagnosis. Moreover, a Particle Swarm Optimization (PSO) algorithm based rule extractor is also proposed in this work for improving the detection accuracy. Intelligent fuzzy rules are extracted from the temporal features with Fuzzy Min–Max neural network based classifier, and then PSO rule extractor is used to minimize the number of features in the extracted rules. We empirically evaluated the effectiveness of the proposed TFMM-PSO system using the UCI Machine Learning Repository Data Set. The results are analysed and compared with other published results. In addition, the detection accuracy is validated by using the ten-fold cross validation.

  3. An Algorithm for Mining Multidimensional Fuzzy Association Rules

    CERN Document Server

    Khare, Neelu; Pardasani, K R

    2009-01-01

    Multidimensional association rule mining searches for interesting relationship among the values from different dimensions or attributes in a relational database. In this method the correlation is among set of dimensions i.e., the items forming a rule come from different dimensions. Therefore each dimension should be partitioned at the fuzzy set level. This paper proposes a new algorithm for generating multidimensional association rules by utilizing fuzzy sets. A database consisting of fuzzy transactions, the Apriory property is employed to prune the useless candidates, itemsets.

  4. Image Edge Extraction via Fuzzy Reasoning

    Science.gov (United States)

    Dominquez, Jesus A. (Inventor); Klinko, Steve (Inventor)

    2008-01-01

    A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree.

  5. A fuzzy rule based framework for noise annoyance modeling.

    Science.gov (United States)

    Botteldooren, Dick; Verkeyn, Andy; Lercher, Peter

    2003-09-01

    Predicting the effect of noise on individual people and small groups is an extremely difficult task due to the influence of a multitude of factors that vary from person to person and from context to context. Moreover, noise annoyance is inherently a vague concept. That is why, in this paper, it is argued that noise annoyance models should identify a fuzzy set of possible effects rather than seek a very accurate crisp prediction. Fuzzy rule based models seem ideal candidates for this task. This paper provides the theoretical background for building these models. Existing empirical knowledge is used to extract a few typical rules that allow making the model more specific for small groups of individuals. The resulting model is tested on two large-scale social surveys augmented with exposure simulations. The testing demonstrates how this new way of thinking about noise effect modeling can be used in practice both in management support as a "noise annoyance adviser" and in social science for testing hypotheses such as the effect of noise sensitivity or the degree of urbanization.

  6. Fuzzy Sets-based Control Rules for Terminating Algorithms

    Directory of Open Access Journals (Sweden)

    Jose L. VERDEGAY

    2002-01-01

    Full Text Available In this paper some problems arising in the interface between two different areas, Decision Support Systems and Fuzzy Sets and Systems, are considered. The Model-Base Management System of a Decision Support System which involves some fuzziness is considered, and in that context the questions on the management of the fuzziness in some optimisation models, and then of using fuzzy rules for terminating conventional algorithms are presented, discussed and analyzed. Finally, for the concrete case of the Travelling Salesman Problem, and as an illustration of determination, management and using the fuzzy rules, a new algorithm easy to implement in the Model-Base Management System of any oriented Decision Support System is shown.

  7. Rule weights in a neuro-fuzzy system with a hierarchical domain partition

    National Research Council Canada - National Science Library

    Krzysztof Siminski

    2010-01-01

      Rule weights in a neuro-fuzzy system with a hierarchical domain partition The paper discusses the problem of rule weight tuning in neuro-fuzzy systems with parameterized consequences in which rule...

  8. Fuzzy C-means Rule Generation for Fuzzy Entry Temperature Prediction in a Hot Strip Mill

    Institute of Scientific and Technical Information of China (English)

    JosAngel BARRIOS; Csar VILLANUEVA; Alberto CAVAZOS; Rafael COLS

    2016-01-01

    Variable estimation for finishing mill set-up in hot rolling is greatly affected by measurement uncertainties, variations in the incoming bar conditions and product changes.The fuzzy C-means algorithm was evaluated for rule-base generation for fuzzy and fuzzy grey-box temperature estimation.Experimental data were collected from a real-life mill and three different sets were randomly drawn.The first set was used for rule-generation,the second set was used for training those systems with learning capabilities,while the third one was used for validation.The perform-ance of the developed systems was evaluated by five performance measures applied over the prediction error with the validation set and was compared with that of the empirical rule-base fuzzy systems and the physical model used in plant.The results show that the fuzzy C-means generated rule-bases improve temperature estimation;however,the best results are obtained when fuzzy C-means algorithm,grey-box modeling and learning functions are combined. Application of fuzzy C-means rule generation brings improvement on performance of up to 72%.

  9. Designing Fuzzy Rule Based Expert System for Cyber Security

    OpenAIRE

    Goztepe, Kerim

    2016-01-01

    The state of cyber security has begun to attract more attention and interest outside the community of computer security experts. Cyber security is not a single problem, but rather a group of highly different problems involving different sets of threats. Fuzzy Rule based system for cyber security is a system consists of a rule depository and a mechanism for accessing and running the rules. The depository is usually constructed with a collection of related rule sets. The aim of this study is to...

  10. Fuzzy Rule Extraction by Fusing SOM and Wang-Mendel Method%融合自组织映射与Wang-Mendel方法的模糊规则提取

    Institute of Scientific and Technical Information of China (English)

    於东军; 谌贻华; 于海瑛

    2011-01-01

    To solve the problem that too many fuzzy rules may be extracted by the classic Wang-Mendel method,a novel rule extraction method which combines self-organizing map (SOM) and Wang-Mendel method is presented. Original samples are firstly learned by the SOM,and rules are further extracted from the codebook vectors of the learned SOM by the Wang-Mendel method. The proposed method decreases the number of the extracted rules and the time consumption because the codebook vectors of the learned SOM achieves the pattern distribution knowledge of the original samples and the number of the codebook vectors is far less than that of the original samples. Experimental results on chaotic time series prediction demonstrate the effectiveness of the proposed method.%为解决经典Wang-Mendel方法提取模糊规则时得到的规则数目较多的问题,该文提出一个融合自组织映射(SOM)网络和Wang-Mendel方法的规则提取方案.利用SOM对原始样本进行学习,再使用Wang-Mendel方法从SOM的原型向量中提取规则.因为SOM的原型向量学习得到了原始样本的模式分布规律,并且原型向量的数量远小于原始学习样本的数量,所以该方法降低了提取的规则数目及耗费时间.有关混沌时间序列预测的实验结果表明了该文方法的有效性.

  11. Fuzzy rule-based seizure prediction based on correlation dimension changes in intracranial EEG.

    Science.gov (United States)

    Rabbi, Ahmed F; Aarabi, Ardalan; Fazel-Rezai, Reza

    2010-01-01

    In this paper, we present a method for epileptic seizure prediction from intracranial EEG recordings. We applied correlation dimension, a nonlinear dynamics based univariate characteristic measure for extracting features from EEG segments. Finally, we designed a fuzzy rule-based system for seizure prediction. The system is primarily designed based on expert's knowledge and reasoning. A spatial-temporal filtering method was used in accordance with the fuzzy rule-based inference system for issuing forecasting alarms. The system was evaluated on EEG data from 10 patients having 15 seizures.

  12. Fast generation method of fuzzy rules and its application to flux optimization in process of matter converting

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A fast generation method of fuzzy rules for flux optimization decision-making was proposed in order to extract the linguistic knowledge from numerical data in the process of matter converting. The fuzzy if-then rules with consequent real number were extracted from numerical data, and a linguistic representation method for deriving linguistic rules from fuzzy if-then rules with consequent real numbers was developed. The linguistic representation consisted of two linguistic variables with the degree of certainty and the storage structure of rule base was described.The simulation results show that the method involves neither the time-consuming iterative learning procedure nor the complicated rule generation mechanisms, and can approximate complex system. The method was applied to determine the flux amount of copper converting furnace in the process of matter converting. The real result shows that the mass fraction of Cu in slag is reduced by 0.5%.

  13. Active structural control by fuzzy logic rules: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Y.

    1995-07-01

    An introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single-degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  14. Active structural control by fuzzy logic rules: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yu [Argonne National Lab., IL (United States). Reactor Engineering Div.; Wu, Kung C. [Texas Univ., El Paso, TX (United States). Dept. of Mechanical and Industrial Engineering

    1996-12-31

    A zeroth level introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single- degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  15. Using Fuzzy Association Rules to Design E-commerce Personalized Recommendation System

    OpenAIRE

    Guofang Kuang; Yuanchen Li

    2013-01-01

    In order to improve the efficiency of fuzzy association rule mining, the paper defines the redundant fuzzy association rules, and strong fuzzy association rules redundant nature. As much as possible for more information in the e-commerce environment, and in the right form is a prerequisite for personalized recommendation. Personalized recommendation technology is a core issue of e-commerce automated recommendation system. Higher complexity than ordinary association rules algorithm fuzzy assoc...

  16. Uncertain rule-based fuzzy systems introduction and new directions

    CERN Document Server

    Mendel, Jerry M

    2017-01-01

    The second edition of this textbook provides a fully updated approach to fuzzy sets and systems that can model uncertainty — i.e., “type-2” fuzzy sets and systems. The author demonstrates how to overcome the limitations of classical fuzzy sets and systems, enabling a wide range of applications from time-series forecasting to knowledge mining to control. In this new edition, a bottom-up approach is presented that begins by introducing classical (type-1) fuzzy sets and systems, and then explains how they can be modified to handle uncertainty. The author covers fuzzy rule-based systems – from type-1 to interval type-2 to general type-2 – in one volume. For hands-on experience, the book provides information on accessing MatLab and Java software to complement the content. The book features a full suite of classroom material. Presents fully updated material on new breakthroughs in human-inspired rule-based techniques for handling real-world uncertainties; Allows those already familiar with type-1 fuzzy se...

  17. Gain ratio based fuzzy weighted association rule mining classifier for medical diagnostic interface

    Indian Academy of Sciences (India)

    N S Nithya; K Duraiswamy

    2014-02-01

    The health care environment still needs knowledge based discovery for handling wealth of data. Extraction of the potential causes of the diseases is the most important factor for medical data mining. Fuzzy association rule mining is wellperformed better than traditional classifiers but it suffers from the exponential growth of the rules produced. In the past, we have proposed an information gain based fuzzy association rule mining algorithm for extracting both association rules and membership functions of medical data to reduce the rules. It used a ranking based weight value to identify the potential attribute. When we take a large number of distinct values, the computation of information gain value is not feasible. In this paper, an enhanced approach, called gain ratio based fuzzy weighted association rule mining, is thus proposed for distinct diseases and also increase the learning time of the previous one. Experimental results show that there is a marginal improvement in the attribute selection process and also improvement in the classifier accuracy. The system has been implemented in Java platform and verified by using benchmark data from the UCI machine learning repository.

  18. Causal association rule mining methods based on fuzzy state description

    Institute of Scientific and Technical Information of China (English)

    Liang Kaijian; Liang Quan; Yang Bingru

    2006-01-01

    Aiming at the research that using more new knowledge to develope knowledge system with dynamic accordance, and under the background of using Fuzzy language field and Fuzzy language values structure as description framework, the generalized cell Automation that can synthetically process fuzzy indeterminacy and random indeterminacy and generalized inductive logic causal model is brought forward. On this basis, a kind of the new method that can discover causal association rules is provded. According to the causal information of standard sample space and commonly sample space,through constructing its state (abnormality) relation matrix, causal association rules can be gained by using inductive reasoning mechanism. The estimate of this algorithm complexity is given,and its validity is proved through case.

  19. AN ALGORITHM FOR GENERATING SINGLE DIMENSIONAL FUZZY ASSOCIATION RULE MINING

    Directory of Open Access Journals (Sweden)

    Rolly Intan

    2006-01-01

    Full Text Available Association rule mining searches for interesting relationship among items in a large data set. Market basket analysis, a typical example of association rule mining, analyzes buying habit of customers by finding association between the different items that customers put in their shopping cart (basket. Apriori algorithm is an influential algorithm for mining frequent itemset for generating association rules. For some reasons, Apriori algorithm is not based on human intuitive. To provide a more human-based concept, this paper proposes an alternative algorithm for generating the association rule by utilizing fuzzy sets in the market basket analysis.

  20. Evolving fuzzy rules for relaxed-criteria negotiation.

    Science.gov (United States)

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  1. Rule based fuzzy logic approach for classification of fibromyalgia syndrome.

    Science.gov (United States)

    Arslan, Evren; Yildiz, Sedat; Albayrak, Yalcin; Koklukaya, Etem

    2016-06-01

    Fibromyalgia syndrome (FMS) is a chronic muscle and skeletal system disease observed generally in women, manifesting itself with a widespread pain and impairing the individual's quality of life. FMS diagnosis is made based on the American College of Rheumatology (ACR) criteria. However, recently the employability and sufficiency of ACR criteria are under debate. In this context, several evaluation methods, including clinical evaluation methods were proposed by researchers. Accordingly, ACR had to update their criteria announced back in 1990, 2010 and 2011. Proposed rule based fuzzy logic method aims to evaluate FMS at a different angle as well. This method contains a rule base derived from the 1990 ACR criteria and the individual experiences of specialists. The study was conducted using the data collected from 60 inpatient and 30 healthy volunteers. Several tests and physical examination were administered to the participants. The fuzzy logic rule base was structured using the parameters of tender point count, chronic widespread pain period, pain severity, fatigue severity and sleep disturbance level, which were deemed important in FMS diagnosis. It has been observed that generally fuzzy predictor was 95.56 % consistent with at least of the specialists, who are not a creator of the fuzzy rule base. Thus, in diagnosis classification where the severity of FMS was classified as well, consistent findings were obtained from the comparison of interpretations and experiences of specialists and the fuzzy logic approach. The study proposes a rule base, which could eliminate the shortcomings of 1990 ACR criteria during the FMS evaluation process. Furthermore, the proposed method presents a classification on the severity of the disease, which was not available with the ACR criteria. The study was not limited to only disease classification but at the same time the probability of occurrence and severity was classified. In addition, those who were not suffering from FMS were

  2. Rule-bases construction through self-learning for a table-based Sugeno-Takagi fuzzy logic control system

    Directory of Open Access Journals (Sweden)

    C. Boldisor

    2009-12-01

    Full Text Available A self-learning based methodology for building the rule-base of a fuzzy logic controller (FLC is presented and verified, aiming to engage intelligent characteristics to a fuzzy logic control systems. The methodology is a simplified version of those presented in today literature. Some aspects are intentionally ignored since it rarely appears in control system engineering and a SISO process is considered here. The fuzzy inference system obtained is a table-based Sugeno-Takagi type. System’s desired performance is defined by a reference model and rules are extracted from recorded data, after the correct control actions are learned. The presented algorithm is tested in constructing the rule-base of a fuzzy controller for a DC drive application. System’s performances and method’s viability are analyzed.

  3. The Optimized Disign of the Fuzzy Controller(Ⅰ)--The predigested disquisition of rules of fuzzy control

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so that it can predigest the process of disigns and realize the methods without influencing the idiocratic control,which are on the base of the domain flexing.

  4. Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot system for automated vehicles.

    Science.gov (United States)

    Pasquier, M; Quek, C; Toh, M

    2001-10-01

    This paper presents part of our research work concerned with the realisation of an Intelligent Vehicle and the technologies required for its routing, navigation, and control. An automated driver prototype has been developed using a self-organising fuzzy rule-based system (POPFNN-CRI(S)) to model and subsequently emulate human driving expertise. The ability of fuzzy logic to represent vague information using linguistic variables makes it a powerful tool to develop rule-based control systems when an exact working model is not available, as is the case of any vehicle-driving task. Designing a fuzzy system, however, is a complex endeavour, due to the need to define the variables and their associated fuzzy sets, and determine a suitable rule base. Many efforts have thus been devoted to automating this process, yielding the development of learning and optimisation techniques. One of them is the family of POP-FNNs, or Pseudo-Outer Product Fuzzy Neural Networks (TVR, AARS(S), AARS(NS), CRI, Yager). These generic self-organising neural networks developed at the Intelligent Systems Laboratory (ISL/NTU) are based on formal fuzzy mathematical theory and are able to objectively extract a fuzzy rule base from training data. In this application, a driving simulator has been developed, that integrates a detailed model of the car dynamics, complete with engine characteristics and environmental parameters, and an OpenGL-based 3D-simulation interface coupled with driving wheel and accelerator/ brake pedals. The simulator has been used on various road scenarios to record from a human pilot driving data consisting of steering and speed control actions associated to road features. Specifically, the POPFNN-CRI(S) system is used to cluster the data and extract a fuzzy rule base modelling the human driving behaviour. Finally, the effectiveness of the generated rule base has been validated using the simulator in autopilot mode.

  5. Detection of Stator Winding Fault in Induction Motor Using Fuzzy Logic with Optimal Rules

    Directory of Open Access Journals (Sweden)

    Hamid Fekri Azgomi

    2013-04-01

    Full Text Available Induction motors are critical components in many industrial processes. Therefore, swift, precise and reliable monitoring and fault detection systems are required to prevent any further damages. The online monitoring of induction motors has been becoming increasingly important. The main difficulty in this task is the lack of an accurate analytical model to describe a faulty motor. A fuzzy logic approach may help to diagnose traction motor faults. This paper presents a simple method for the detection of stator winding faults (which make up 38% of induction motor failures based on monitoring the line/terminal current amplitudes. In this method, fuzzy logic is used to make decisions about the stator motor condition. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. The motor condition is described using linguistic variables. Fuzzy subsets and the corresponding membership functions describe stator current amplitudes. A knowledge base, comprising rule and data bases, is built to support the fuzzy inference. Simulation results are presented to verify the accuracy of motor’s fault detection and knowledge extraction feasibility. The preliminary results show that the proposed fuzzy approach can be used for accurate stator fault diagnosis.

  6. Evaluation of Rule Extraction Algorithms

    Directory of Open Access Journals (Sweden)

    Tiruveedula GopiKrishna

    2014-05-01

    Full Text Available For the data mining domain, the lack of explanation facilities seems to be a serious drawback for techniques based on Artificial Neural Networks, or, for that matter, any technique producing opaque models In particular, the ability to generate even limited explanations is absolutely crucial for user acceptance of such systems. Since the purpose of most data mining systems is to support decision making,the need for explanation facilities in these systems is apparent. The task for the data miner is thus to identify the complex but general relationships that are likely to carry over to production data and the explanation facility makes this easier. Also focused the quality of the extracted rules; i.e. how well the required explanation is performed. In this research some important rule extraction algorithms are discussed and identified the algorithmic complexity; i.e. how efficient the underlying rule extraction algorithm is

  7. Fuzzy Rules for Ant Based Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Amira Hamdi

    2016-01-01

    Full Text Available This paper provides a new intelligent technique for semisupervised data clustering problem that combines the Ant System (AS algorithm with the fuzzy c-means (FCM clustering algorithm. Our proposed approach, called F-ASClass algorithm, is a distributed algorithm inspired by foraging behavior observed in ant colonyT. The ability of ants to find the shortest path forms the basis of our proposed approach. In the first step, several colonies of cooperating entities, called artificial ants, are used to find shortest paths in a complete graph that we called graph-data. The number of colonies used in F-ASClass is equal to the number of clusters in dataset. Hence, the partition matrix of dataset founded by artificial ants is given in the second step, to the fuzzy c-means technique in order to assign unclassified objects generated in the first step. The proposed approach is tested on artificial and real datasets, and its performance is compared with those of K-means, K-medoid, and FCM algorithms. Experimental section shows that F-ASClass performs better according to the error rate classification, accuracy, and separation index.

  8. Applications of fuzzy sets to rule-based expert system development

    Science.gov (United States)

    Lea, Robert N.

    1989-01-01

    Problems of implementing rule-based expert systems using fuzzy sets are considered. A fuzzy logic software development shell is used that allows inclusion of both crisp and fuzzy rules in decision making and process control problems. Results are given that compare this type of expert system to a human expert in some specific applications. Advantages and disadvantages of such systems are discussed.

  9. Using Fuzzy Association Rules to Design E-commerce Personalized Recommendation System

    Directory of Open Access Journals (Sweden)

    Guofang Kuang

    2013-09-01

    Full Text Available In order to improve the efficiency of fuzzy association rule mining, the paper defines the redundant fuzzy association rules, and strong fuzzy association rules redundant nature. As much as possible for more information in the e-commerce environment, and in the right form is a prerequisite for personalized recommendation. Personalized recommendation technology is a core issue of e-commerce automated recommendation system. Higher complexity than ordinary association rules algorithm fuzzy association rules, the low efficiency become a bottleneck in the practical application of fuzzy association rules algorithm. The paper presents using fuzzy association rules to design E-commerce personalized recommendation system. The experimental results show that the new algorithm to improve the efficiency of the implementation.

  10. A Fuzzy Rule-Based Expert System for Evaluating Intellectual Capital

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Fazel Zarandi

    2012-01-01

    Full Text Available A fuzzy rule-based expert system is developed for evaluating intellectual capital. A fuzzy linguistic approach assists managers to understand and evaluate the level of each intellectual capital item. The proposed fuzzy rule-based expert system applies fuzzy linguistic variables to express the level of qualitative evaluation and criteria of experts. Feasibility of the proposed model is demonstrated by the result of intellectual capital performance evaluation for a sample company.

  11. A Robustness Study of Fuzzy Control Rules

    DEFF Research Database (Denmark)

    Jantzen, Jan

    1997-01-01

    This simulation study investigates how different types of rule bases affect the control of different types of plant. In Simulink three nonlinear control surfaces have been tested and compared to a linear surface. It is recommended to be aware of the shape of the control surface, and carefully sel...

  12. Reinforcement-Based Fuzzy Neural Network ontrol with Automatic Rule Generation

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A reinforcemen-based fuzzy neural network control with automatic rule generation RBFNNC) is pro-posed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based onthe state variables of object system. RBFNNC was applied to a cart-pole balancing system and simulation resultshows significant improvements on the rule generation.

  13. Propagation of Evidence Through Fuzzy Rules

    Science.gov (United States)

    1993-09-01

    the position, slowing rate, and turn signal refer to the car ahead of the taxi: IF the left-hand turn signal is on, AND the car is in the left-hand...DETECT LEFT-HAND TURN RULE IF THE LEFT-HAND TURN SIGNAL IS ON AND THE CAR IS IN THE LEFT-HAND LANE AND THE CAR HAS HIGH DECELERATION .Z I THEN THE CAR... TURN SIGNAL IS ON CONCLUSION AND THE CAR IS IN THE LEFT-HAND LANE [OA,0 6] AND THE CAR HAS HIGH DECELERATION THEN THE CAR IS TURNING LEFT 0 TRUTH

  14. Rainfall events prediction using rule-based fuzzy inference system

    Science.gov (United States)

    Asklany, Somia A.; Elhelow, Khaled; Youssef, I. K.; Abd El-wahab, M.

    2011-07-01

    We are interested in rainfall events prediction by applying rule-based reasoning and fuzzy logic. Five parameters: relative humidity, total cloud cover, wind direction, temperature and surface pressure are the input variables for our model, each has three membership functions. The data used is twenty years METAR data for Cairo airport station (HECA) [1972-1992] 30° 3' 29″ N, 31° 13' 44″ E. and five years METAR data for Mersa Matruh station (HEMM) 31° 20' 0″ N, 27° 13' 0″ E. Different models for each station were constructed depending on the available data sets. Among the overall 243 possibilities we have based our models on one hundred eighteen fuzzy IF-THEN rules and fuzzy reasoning. The output variable which has four membership functions, takes values from zero to one hundred corresponding to the percentage for rainfall events given for every hourly data. We used two skill scores to verify our results, the Brier score and the Friction score. The results are in high agreements with the recorded data for the stations with increasing in output values towards the real time rain events. All implementation are done with MATLAB 7.9.

  15. Rules Extraction with an Immune Algorithm

    Directory of Open Access Journals (Sweden)

    Deqin Yan

    2007-12-01

    Full Text Available In this paper, a method of extracting rules with immune algorithms from information systems is proposed. Designing an immune algorithm is based on a sharing mechanism to extract rules. The principle of sharing and competing resources in the sharing mechanism is consistent with the relationship of sharing and rivalry among rules. In order to extract rules efficiently, a new concept of flexible confidence and rule measurement is introduced. Experiments demonstrate that the proposed method is effective.

  16. Extraction of Robot Primitive Control Rules from Natural Language Instructions

    Institute of Scientific and Technical Information of China (English)

    Guang-Hong Wang; Ping Jiang; Zu-Ren Feng

    2006-01-01

    A support vector rule based method is investigated for the construction of motion controllers via natural language training. It is a two-phase process including motion control information collection from natural language instructions, and motion information condensation with the aid of support vector machine (SVM) theory. Self-organizing fuzzy neural networks are utilized for the collection of control rules, from which support vector rules are extracted to form a final controller to achieve any given control accuracy. In this way, the number of control rules is reduced, and the structure of the controller tidied, making a controller constructed using natural language training more appropriate in practice, and providing a fundamental rule base for high-level robot behavior control. Simulations and experiments on a wheeled robot are carried out to illustrate the effectiveness of the method.

  17. On the fusion of tuning parameters of fuzzy rules and neural network

    Science.gov (United States)

    Mamuda, Mamman; Sathasivam, Saratha

    2017-08-01

    Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.

  18. Sensor-based navigation of a mobile robot using automatically constructed fuzzy rules

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y.; Pin, F.G.

    1993-10-01

    A system for automatic generation of fuzzy rules is proposed which is based on a new approach, called ``Fuzzy Behaviorist,`` and on its associated formalism for rule base development in behavior-based robot control systems. The automated generator of fuzzy rules automatically constructs the set of rules and the associated membership functions that implement reasoning schemes that have been expressed in qualitative terms. The system also checks for completeness of the rule base and independence and/or redundancy of the rules to ensure that the requirements of the formalism are satisfied. Examples of the automatic generation of fuzzy rules for cases involving suppression and/or inhibition of fuzzy behaviors are given and discussed. Experimental results obtained with the automated fuzzy rule generator applied to the domain of sensor-based navigation in a priori unknown environments using one of our autonomous test-bed robots are then presented and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using our proposed ``Fuzzy Behaviorist`` approach.

  19. Automatic generation of fuzzy rules for the sensor-based navigation of a mobile robot

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.; Watanabe, Y.

    1994-10-01

    A system for automatic generation of fuzzy rules is proposed which is based on a new approach, called {open_quotes}Fuzzy Behaviorist,{close_quotes} and on its associated formalism for rule base development in behavior-based robot control systems. The automated generator of fuzzy rules automatically constructs the set of rules and the associated membership functions that implement reasoning schemes that have been expressed in qualitative terms. The system also checks for completeness of the rule base and independence and/or redundancy of the rules to ensure that the requirements of the formalism are satisfied. Examples of the automatic generation of fuzzy rules for cases involving suppression and/or inhibition of fuzzy behaviors are given and discussed. Experimental results obtained with the automated fuzzy rule generator applied to the domain of sensor-based navigation in a priori unknown environments using one of our autonomous test-bed robots are then presented and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using our proposed {open_quotes}Fuzzy Behaviorist{close_quotes} approach.

  20. Idioms-based Business Rule Extraction

    NARCIS (Netherlands)

    Smit, R

    2011-01-01

    This thesis studies the extraction of embedded business rules, using the idioms of the used framework to identify them. Embedded business rules exist as source code in the software system and knowledge about them may get lost. Extraction of those business rules could make them accessible and managea

  1. Optimizing Fuzzy Rule Base for Illumination Compensation in Face Recognition using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Bima Sena Bayu Dewantara

    2014-12-01

    Full Text Available Fuzzy rule optimization is a challenging step in the development of a fuzzy model. A simple two inputs fuzzy model may have thousands of combination of fuzzy rules when it deals with large number of input variations. Intuitively and trial‐error determination of fuzzy rule is very difficult. This paper addresses the problem of optimizing Fuzzy rule using Genetic Algorithm to compensate illumination effect in face recognition. Since uneven illumination contributes negative effects to the performance of face recognition, those effects must be compensated. We have developed a novel algorithmbased on a reflectance model to compensate the effect of illumination for human face recognition. We build a pair of model from a single image and reason those modelsusing Fuzzy.Fuzzy rule, then, is optimized using Genetic Algorithm. This approachspendsless computation cost by still keepinga high performance. Based on the experimental result, we can show that our algorithm is feasiblefor recognizing desired person under variable lighting conditions with faster computation time. Keywords: Face recognition, harsh illumination, reflectance model, fuzzy, genetic algorithm

  2. Certain and possible rules for decision making using rough set theory extended to fuzzy sets

    Science.gov (United States)

    Dekorvin, Andre; Shipley, Margaret F.

    1993-01-01

    Uncertainty may be caused by the ambiguity in the terms used to describe a specific situation. It may also be caused by skepticism of rules used to describe a course of action or by missing and/or erroneous data. To deal with uncertainty, techniques other than classical logic need to be developed. Although, statistics may be the best tool available for handling likelihood, it is not always adequate for dealing with knowledge acquisition under uncertainty. Inadequacies caused by estimating probabilities in statistical processes can be alleviated through use of the Dempster-Shafer theory of evidence. Fuzzy set theory is another tool used to deal with uncertainty where ambiguous terms are present. Other methods include rough sets, the theory of endorsements and nonmonotonic logic. J. Grzymala-Busse has defined the concept of lower and upper approximation of a (crisp) set and has used that concept to extract rules from a set of examples. We will define the fuzzy analogs of lower and upper approximations and use these to obtain certain and possible rules from a set of examples where the data is fuzzy. Central to these concepts will be the idea of the degree to which a fuzzy set A is contained in another fuzzy set B, and the degree of intersection of a set A with set B. These concepts will also give meaning to the statement; A implies B. The two meanings will be: (1) if x is certainly in A then it is certainly in B, and (2) if x is possibly in A then it is possibly in B. Next, classification will be looked at and it will be shown that if a classification will be looked at and it will be shown that if a classification is well externally definable then it is well internally definable, and if it is poorly externally definable then it is poorly internally definable, thus generalizing a result of Grzymala-Busse. Finally, some ideas of how to define consensus and group options to form clusters of rules will be given.

  3. Robust Design Rule with Definite Purpose Character Based on Fuzzy Probability and Study of its Characteristics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Long-ting; HE Zhe-ming; GUO Hui-xin

    2003-01-01

    The design target with definite purpose character of product quality was described in a real fuzzy number ( named fury target for short in this paper), and its membership functions in common use were given. According to the fury probability theory and the robust design principle, the robust design rule based on fuzzy probability (named fuzzy robust design rule for short) was put forward and its validity and practicability were analyzed and tested with a design example. The theoretical analysis and the design examples make clear that, while the fuzzy robust design rule was used, the fine design effect can be obtained and the fury robust design rule can be very suitable for the choice of the membership function of the fuzzy target; so it has a particular advantage.

  4. RSPOP: rough set-based pseudo outer-product fuzzy rule identification algorithm.

    Science.gov (United States)

    Ang, Kai Keng; Quek, Chai

    2005-01-01

    System modeling with neuro-fuzzy systems involves two contradictory requirements: interpretability verses accuracy. The pseudo outer-product (POP) rule identification algorithm used in the family of pseudo outer-product-based fuzzy neural networks (POPFNN) suffered from an exponential increase in the number of identified fuzzy rules and computational complexity arising from high-dimensional data. This decreases the interpretability of the POPFNN in linguistic fuzzy modeling. This article proposes a novel rough set-based pseudo outer-product (RSPOP) algorithm that integrates the sound concept of knowledge reduction from rough set theory with the POP algorithm. The proposed algorithm not only performs feature selection through the reduction of attributes but also extends the reduction to rules without redundant attributes. As many possible reducts exist in a given rule set, an objective measure is developed for POPFNN to correctly identify the reducts that improve the inferred consequence. Experimental results are presented using published data sets and real-world application involving highway traffic flow prediction to evaluate the effectiveness of using the proposed algorithm to identify fuzzy rules in the POPFNN using compositional rule of inference and singleton fuzzifier (POPFNN-CRI(S)) architecture. Results showed that the proposed rough set-based pseudo outer-product algorithm reduces computational complexity, improves the interpretability of neuro-fuzzy systems by identifying significantly fewer fuzzy rules, and improves the accuracy of the POPFNN.

  5. Fuzzy-Rule-Based Object Identification Methodology for NAVI System

    Directory of Open Access Journals (Sweden)

    Rosalyn R. Porle

    2005-08-01

    Full Text Available We present an object identification methodology applied in a navigation assistance for visually impaired (NAVI system. The NAVI has a single board processing system (SBPS, a digital video camera mounted headgear, and a pair of stereo earphones. The captured image from the camera is processed by the SBPS to generate a specially structured stereo sound suitable for vision impaired people in understanding the presence of objects/obstacles in front of them. The image processing stage is designed to identify the objects in the captured image. Edge detection and edge-linking procedures are applied in the processing of image. A concept of object preference is included in the image processing scheme and this concept is realized using a fuzzy-rule base. The blind users are trained with the stereo sound produced by NAVI for achieving a collision-free autonomous navigation.

  6. A rule based fuzzy model for the prediction of petrophysical rock parameters

    Energy Technology Data Exchange (ETDEWEB)

    Finol, J.; Jing, X.D. [T.H. Huxley School of Environment, Earth Sciences and Engineering, Imperial College, Prince Consort Road, SW7 2BP London (United Kingdom); Ke Guo, Y. [Fujitsu Parallel Computing Centre, Department of Computing, Imperial College, SW7 2BZ London (United Kingdom)

    2001-04-01

    A new approach for the prediction of petrophysical rock parameters based on a rule-based fuzzy model is presented. The rule-based fuzzy model corresponds to the Takagi-Sugeno-Kang method of fuzzy reasoning proposed by Sugeno and his co-authors. This fuzzy model is defined by a set of fuzzy implications with linear consequent parts, each of which establishes a local linear input-output relationship between the variables of the model. In this approach, a fuzzy clustering algorithm is combined with the least-square approximation method to identify the structure and parameters of the fuzzy model from sets of numerical data. To verify the effectiveness of the proposed fuzzy modeling method, two examples are developed using core and electrical log data from three oil wells in Ceuta Field, Lake Maracaibo Basin. The numerical results of the fuzzy modelling method are compared with the results of a conventional linear regression model. It is shown that the fuzzy modeling approach is not only more accurate than the conventional regression approach but also provides some qualitative information about the underlying complexities of the porous system.

  7. Distinguishing the Noise and image structures for detecting the correction term and filtering the noise by using fuzzy rules

    Directory of Open Access Journals (Sweden)

    Sridevi.Ravada,

    2011-07-01

    Full Text Available A fuzzy filter is constructed from a set of fuzzy IF-THEN rules, these fuzzy rules come either from human experts or by matching input-output pairs .in this paper we propose a new fuzzy filter for the noise reduction of images corrupted with additive noise. here in this approach ,initially fuzzy derivatives for all eight directions that is N,E,W,S, NE,NW,SE,SW are calculated using “fuzzy IF-THEN rules “ and membership functions . Further the fuzzy derivative values obtained are used in the fuzzy smoothing for determining the correction term. Finally correction term can be added to the processed pixel value. Iteratively apply the fuzzy filter to reduce the noise and at each and every iteration membership function iscalculated based on the remaining noise level. A statistical model for the noise distribution can be incorporated to relate the homogeneity to the adaptation scheme of the membership functions.

  8. Extraction in Dutch with Lexical Rules

    CERN Document Server

    Rentier, G

    1994-01-01

    Unbounded dependencies are often modelled by ``traces'' (and ``gap threading'') in unification-based grammars. Pollard and Sag, however, suggest an analysis of extraction based on lexical rules, which excludes the notion of traces (P&S 1994, Chapter 9). In parsing, it suggests a trade of indeterminism for lexical ambiguity. This paper provides a short introduction to this approach to extraction with lexical rules, and illustrates the linguistic power of the approach by applying it to particularly idiosyncratic Dutch extraction data.

  9. Achieving of Fuzzy Automata for Processing Fuzzy Logic

    Institute of Scientific and Technical Information of China (English)

    SHU Lan; WU Qing-e

    2005-01-01

    At present, there has been an increasing interest in neuron-fuzzy systems, the combinations of artificial neural networks with fuzzy logic. In this paper, a definition of fuzzy finite state automata (FFA) is introduced and fuzzy knowledge equivalence representations between neural networks, fuzzy systems and models of automata are discussed. Once the network has been trained, we develop a method to extract a representation of the FFA encoded in the recurrent neural network that recognizes the training rules.

  10. Portable Rule Extraction Method for Neural Network Decisions Reasoning

    Directory of Open Access Journals (Sweden)

    Darius PLIKYNAS

    2005-08-01

    Full Text Available Neural network (NN methods are sometimes useless in practical applications, because they are not properly tailored to the particular market's needs. We focus thereinafter specifically on financial market applications. NNs have not gained full acceptance here yet. One of the main reasons is the "Black Box" problem (lack of the NN decisions explanatory power. There are though some NN decisions rule extraction methods like decompositional, pedagogical or eclectic, but they suffer from low portability of the rule extraction technique across various neural net architectures, high level of granularity, algorithmic sophistication of the rule extraction technique etc. The authors propose to eliminate some known drawbacks using an innovative extension of the pedagogical approach. The idea is exposed by the use of a widespread MLP neural net (as a common tool in the financial problems' domain and SOM (input data space clusterization. The feedback of both nets' performance is related and targeted through the iteration cycle by achievement of the best matching between the decision space fragments and input data space clusters. Three sets of rules are generated algorithmically or by fuzzy membership functions. Empirical validation of the common financial benchmark problems is conducted with an appropriately prepared software solution.

  11. Design High Efficiency-Minimum Rule Base PID Like Fuzzy Computed Torque Controller

    Directory of Open Access Journals (Sweden)

    Alireza Khalilian

    2014-06-01

    Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy Computed Torque Controller is presented in this research. The popularity of PID Fuzzy Computed Torque Controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy Computed Torque Controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 343 rules. It is too much work to write 343 rules. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a PI controller to have the minimum rule base. However computed torque controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters of each link, this controller is work based on manipulator dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear robot manipulator’s dynamic equation. This research is used to reduce or eliminate the computed torque controller problem based on minimum rule base fuzzy logic theory to control of flexible robot manipulator system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.

  12. FUZZY RULE-BASED SYSTEM FOR AVENUE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    S. Prakash

    2014-01-01

    Full Text Available Mutual Funds are becoming effective way for investors to participate in financial markets. An investor must learn to analyze and measure the risk and return of the portfolio. The performance of funds is mainly affected by characteristics such as asset size, turnover and fee structure. Investors’ highest priority lies in understanding the relation between fund performance and above properties. Currently the investors depend upon advisors for their financial planning and further no customized tools are available for investment decision. In this work, a fund planner tool called Techno-Portfolio Advisor is proposed which helps the investors to understand the critical relations and support mutual funds selection across the Asset Management Companies (AMCs in India. The Techno-Portfolio Advisor is designed based on the fuzzy inference rules by considering the investor preferences like investment amount, age, future goal and return rate. Further, the optimal funds for achieving the investor goal are evaluated based on the quantitative data available from the historical NAV from SEBI/AMFI/AMCs. Thus the Techno-Portfolio Advisor creates awareness among the investor community in choosing the optimal mutual fund scheme as well as to achieve their investment goals.

  13. Finding optimal step of fuzzy Newton-Cotes integration rules by using the CESTAC method

    Directory of Open Access Journals (Sweden)

    Samad Noeiaghdam

    2017-08-01

    Full Text Available The aim of this work, is to evaluate the value of a fuzzy integral by applying the Newton-Cotes integration rules via a reliable scheme. In order to perform the numerical examples, the CADNA (Control of Accuracy and Debugging for Numerical Applications library and the CESTAC (Controle et Estimation Stochastique des Arrondis de Calculs method are applied based on the stochastic arithmetic. By using this method, the optimal number of points in the fuzzy numerical integration rules and the optimal approximate solution are obtained. Also, the accuracy of the fuzzy quadrature rules are discussed. An algorithm is given to illustrate the implementation of the method. In this case, the termination criterion is considered as the Hausdorff distance between two sequential results to be an informatical zero. Two sample fuzzy integrals are evaluated based on the proposed algorithm to show the importance and advantage of using the stochastic arithmetic in place of the floating-point arithmetic.

  14. Anchor person shot detection for news video indexing based on graph-theoretical clustering and fuzzy if-then rules

    Science.gov (United States)

    Gao, Xinbo; Li, Qi; Li, Jie

    2003-09-01

    Anchorperson shot detection is of significance for video shot semantic parsing and indexing clues extraction in content-based news video indexing and retrieval system. This paper presents a model-free anchorperson shot detection scheme based on the graph-theoretical clustering and fuzzy interference. First, a news video is segmented into video shots with any an effective video syntactic parsing algorithm. For each shot, one frame is extracted from the frame sequence as a representative key frame. Then the graph-theoretical clustering algorithm is performed on the key frames to identify the anchorperson frames. The anchorperson frames are further refined based on face detection and fuzzy interference with if-then rules. The proposed scheme achieves a precision of 98.40% and a recall of over 97.69% in the anchorperson shot detection experiment.

  15. Interval Type-II Fuzzy Rule-Based STATCOM for Voltage Regulation in the Power System

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2015-08-01

    Full Text Available The static synchronous compensator (STATCOM has recently received much attention owing to its ability to stabilize power systems and mitigate voltage variations. This paper investigates a novel interval type-II fuzzy rule-based PID (proportional-integral-derivative controller for the STATCOM to mitigate bus voltage variations caused by large changes in load and the intermittent generation of photovoltaic (PV arrays. The proposed interval type-II fuzzy rule base utilizes the output of the PID controller to tune the signal applied to the STATCOM. The rules involve upper and lower membership functions that ensure the stable responses of the controlled system. The proposed method is implemented using the NEPLAN software package and MATLAB/Simulink with co-simulation. A six-bus system is used to show the effectiveness of the proposed method. Comparative studies show that the proposed method is superior to traditional PID and type-I fuzzy rule-based methods.

  16. Fuzzy-Rule-Based Approach for Modeling Sensory Acceptabitity of Food Products

    Directory of Open Access Journals (Sweden)

    Olusegun Folorunso

    2009-04-01

    Full Text Available The prediction of product acceptability is often an additive effect of individual fuzzy impressions developed by a consumer on certain underlying attributes characteristic of the product. In this paper, we present the development of a data-driven fuzzy-rule-based approach for predicting the overall sensory acceptability of food products, in this case composite cassava-wheat bread. The model was formulated using the Takagi-Sugeno and Kang (TSK fuzzy modeling approach. Experiments with the model derived from sampled data were simulated on Windows 2000XP running on Intel 2Gh environment. The fuzzy membership function for the sensory scores is implemented in MATLAB 6.0 using the fuzzy logic toolkit, and weights of each linguistic attribute were obtained using a Correlation Coefficient formula. The results obtained are compared to those of human judgments. Overall assessments suggest that, if implemented, this approach will facilitate a better acceptability of cassava bread as well as nutritionally improved food.

  17. Fuzzy rule-based models for decision support in ecosystem management.

    Science.gov (United States)

    Adriaenssens, Veronique; De Baets, Bernard; Goethals, Peter L M; De Pauw, Niels

    2004-02-05

    To facilitate decision support in the ecosystem management, ecological expertise and site-specific data need to be integrated. Fuzzy logic can deal with highly variable, linguistic, vague and uncertain data or knowledge and, therefore, has the ability to allow for a logical, reliable and transparent information stream from data collection down to data usage in decision-making. Several environmental applications already implicate the use of fuzzy logic. Most of these applications have been set up by trial and error and are mainly limited to the domain of environmental assessment. In this article, applications of fuzzy logic for decision support in ecosystem management are reviewed and assessed, with an emphasis on rule-based models. In particular, the identification, optimisation, validation, the interpretability and uncertainty aspects of fuzzy rule-based models for decision support in ecosystem management are discussed.

  18. Online elicitation of Mamdani-type fuzzy rules via TSK-based generalized predictive control.

    Science.gov (United States)

    Mahfouf, M; Abbod, M F; Linkens, D A

    2003-01-01

    Many synergies have been proposed between soft-computing techniques, such as neural networks (NNs), fuzzy logic (FL), and genetic algorithms (GAs), which have shown that such hybrid structures can work well and also add more robustness to the control system design. In this paper, a new control architecture is proposed whereby the on-line generated fuzzy rules relating to the self-organizing fuzzy logic controller (SOFLC) are obtained via integration with the popular generalized predictive control (GPC) algorithm using a Takagi-Sugeno-Kang (TSK)-based controlled autoregressive integrated moving average (CARIMA) model structure. In this approach, GPC replaces the performance index (PI) table which, as an incremental model, is traditionally used to discover, amend, and delete the rules. Because the GPC sequence is computed using predicted future outputs, the new hybrid approach rewards the time-delay very well. The new generic approach, named generalized predictive self-organizing fuzzy logic control (GPSOFLC), is simulated on a well-known nonlinear chemical process, the distillation column, and is shown to produce an effective fuzzy rule-base in both qualitative (minimum number of generated rules) and quantitative (good rules) terms.

  19. PENERAPAN FUZZY IF-THEN RULES UNTUK PENINGKATAN KONTRAS PADA CITRA HASIL MAMMOGRAFI

    Directory of Open Access Journals (Sweden)

    Helmy Thendean

    2008-01-01

    Full Text Available In medical area, the quality of an image which is acquired from mammography often has a poor contrast. The poor quality image leads a difficulty for a radiologist to analyze the image. The problem becomes bigger when the image contains a cancer or tumor. There are some methods in image processing technique to increase the contrast quality of an image. This paper presents Fuzzy IF-THEN Rules method which has four knowledge base approaches to increase the contrast quality of the image, especially breast images from mammography. To determine the success rate, this experiment tries to compare this method with a standard contrast improvement such as histogram equalization. The quantity parameters to compare these methods are linier index of fuzziness and fuzzy entropy. The result shows that Fuzzy IF-THEN Rules offers better result to improve the contrast quality than standard method. The result of this experiment is validated by an expert from radiology department from Husada Hospital, Jakarta. Abstract in Bahasa Indonesia : Citra hasil dari mammografi dalam dunia kedokteran sering memiliki kualitas yang buruk dari sisi kontras. Hal ini mengakibatkan kesulitan bagi seorang radiolog untuk menganalisis citra tersebut. Tingkat kesulitan bertambah apabila citra yang harus dianalisis tersebut mengandung kanker atau tumor. Terdapat beberapa metode untuk peningkatan kualitas kontras sebuah citra. Penelitian ini menggunakan metode Fuzzy IF-THEN Rules dengan empat pendekatan basis pengetahuan untuk meningkatkan kualitas kontras citra, khususnya citra payudara yang diperoleh dari hasil mammografi. Untuk menentukan tingkat keberha-silannya, metode tersebut akan dibandingkan dengan metode standar untuk peningkatan kontras seperti Histogram Equalization. Parameter yang digunakan untuk membandingkan setiap metode tersebut adalah linier index of fuzziness dan fuzzy entropy. Hasil percobaan menunjukkan bahwa Fuzzy IF-THEN Rules mampu menghasilkan hasil peningkatan

  20. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    OpenAIRE

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y. -F.; Chang, F.-J.

    2011-01-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy infere...

  1. Reduced rule base self-tuning fuzzy PI controller for TCSC

    Energy Technology Data Exchange (ETDEWEB)

    Hameed, Salman; Das, Biswarup; Pant, Vinay [Department of Electrical Engineering, Indian Institute of Technology, Roorkee, Roorkee - 247 667, Uttarakhand (India)

    2010-11-15

    In this paper, a reduced rule base self-tuning fuzzy PI controller (STFPIC) for thyristor controlled series capacitor (TCSC) is proposed. Essentially, a STFPIC consists of two fuzzy logic controllers (FLC). In this work, for each FLC, 49 rules have been used and as a result, the overall complexity of the STFPIC increases substantially. To reduce this complexity, application of singular value decomposition (SVD) based rule reduction technique is also proposed in this paper. By applying this methodology, the number of rules in each FLC has been reduced from 49 to 9. Therefore, the proposed rule base reduction technique reduces the total number of rules in the STFPIC by almost 80% (from 49 x 2 = 98 to 9 x 2 = 18), thereby reducing the complexity of the STFPIC significantly. The feasibility of the proposed algorithm has been tested on 2-area 4-machine power system and 10-machine 39-bus system through detailed digital simulation using MATLAB/SIMULINK. (author)

  2. Extracting Symbolic Rules for Medical Diagnosis Problem

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    Neural networks (NNs) have been successfully applied to solve a variety of application problems involving classification and function approximation. Although backpropagation NNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained NNs for the users to gain a better understanding of how the networks solve the problems. An algorithm is proposed and implemented to extract symbolic rules for medical diagnosis problem. Empirical study on three benchmarks classification problems, such as breast cancer, diabetes, and lenses demonstrates that the proposed algorithm generates high quality rules from NNs comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy.

  3. Assessment of the Degree of Consistency of the System of Fuzzy Rules

    Directory of Open Access Journals (Sweden)

    Pospelova Lyudmila Yakovlevna

    2013-12-01

    Full Text Available The article analyses recent achievements and publications and shows that difficulties of explaining the nature of fuzziness and equivocation arise in socio-economic models that use the traditional paradigm of classical rationalism (computational, agent and econometric models. The accumulated collective experience of development of optimal models confirms prospectiveness of application of the fuzzy set approach in modelling the society. The article justifies the necessity of study of the nature of inconsistency in fuzzy knowledge bases both on the generalised ontology level and on pragmatic functional level of the logical inference. The article offers the method of search for logical and conceptual contradictions in the form of a combination of the abduction and modus ponens. It discusses the key issue of the proposed method: what properties should have the membership function of the secondary fuzzy set, which describes in fuzzy inference models such a resulting state of the object of management, which combines empirically incompatible properties with high probability. The degree of membership of the object of management in several incompatible classes with respect to the fuzzy output variable is the degree of fuzziness of the “Intersection of all results of the fuzzy inference of the set, applied at some input of rules, is an empty set” statement. The article describes an algorithm of assessment of the degree of consistency. It provides an example of the step-by-step detection of contradictions in statistical fuzzy knowledge bases at the pragmatic functional level of the logical output. The obtained results of testing in the form of sets of incompatible facts, output chains, sets of non-crossing intervals and computed degrees of inconsistency allow experts timely elimination of inadmissible contradictions and, at the same time, increase of quality of recommendations and assessment of fuzzy expert systems.

  4. The Algorithm for Rule-base Refinement on Fuzzy Set

    Institute of Scientific and Technical Information of China (English)

    LI Feng; WU Cui-hong; DING Xiang-wu

    2006-01-01

    In the course of running an artificial intelligent system many redundant rules are often produced. To refine the knowledge base, viz. to remove the redundant rules, can accelerate the reasoning and shrink the rule base. The purpose of the paper is to present the thinking on the topic and design the algorithm to remove the redundant rules from the rule base.The "abstraction" of "state variable", redundant rules and the least rule base are discussed in the paper. The algorithm on refining knowledge base is also presented.

  5. A fuzzy rule based genetic algorithm and its application in FMS

    Institute of Scientific and Technical Information of China (English)

    Li Shugang; Wu Zhiming; Pang Xiaohong

    2005-01-01

    Most of the FMS (flexible manufacturing systems) problems belong to NP-hard (non-polynomial hard) problems. The facility layout problem and job-shop schedule problem are such examples. GA (genetic algorithm) is applied to get an optimal solution. However, traditional GAs are usually of low efficiency because of their early convergence. In order to overcome the shortcoming of the GA a fuzzy rule based GA is proposed, in which a fuzzy logical controller is introduced to adjust the value of crossover probability, mutation probability and crossover length. The HGA (hybrid genetic algorithm), which is integrated with a fuzzy logic controller, can avoid premature convergence, and improve the efficiency greatly. Finally, simulation results of the facility layout problem and job-shop schedule problem are given. The results show that the new genetic algorithm integrated with fuzzy logic controller is excellent in searching efficiency.

  6. Fuzzy knowledge management for the semantic web

    CERN Document Server

    Ma, Zongmin; Yan, Li; Cheng, Jingwei

    2014-01-01

    This book goes to great depth concerning the fast growing topic of technologies and approaches of fuzzy logic in the Semantic Web. The topics of this book include fuzzy description logics and fuzzy ontologies, queries of fuzzy description logics and fuzzy ontology knowledge bases, extraction of fuzzy description logics and ontologies from fuzzy data models, storage of fuzzy ontology knowledge bases in fuzzy databases, fuzzy Semantic Web ontology mapping, and fuzzy rules and their interchange in the Semantic Web. The book aims to provide a single record of current research in the fuzzy knowledge representation and reasoning for the Semantic Web. The objective of the book is to provide the state of the art information to researchers, practitioners and graduate students of the Web intelligence and at the same time serve the knowledge and data engineering professional faced with non-traditional applications that make the application of conventional approaches difficult or impossible.

  7. Rule Extraction:Using Neural Networks or for Neural Networks?

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Zhou

    2004-01-01

    In the research of rule extraction from neural networks, fidelity describes how well the rules mimic the behavior of a neural network while accuracy describes how well the rules can be generalized. This paper identifies the fidelity-accuracy dilemma. It argues to distinguish rule extraction using neural networks and rule extraction for neural networks according to their different goals, where fidelity and accuracy should be excluded from the rule quality evaluation framework, respectively.

  8. Determining rules for closing customer service centers: A public utility company's fuzzy decision

    Science.gov (United States)

    Dekorvin, Andre; Shipley, Margaret F.; Lea, Robert N.

    1992-01-01

    In the present work, we consider the general problem of knowledge acquisition under uncertainty. Simply stated, the problem reduces to the following: how can we capture the knowledge of an expert when the expert is unable to clearly formulate how he or she arrives at a decision? A commonly used method is to learn by examples. We observe how the expert solves specific cases and from this infer some rules by which the decision may have been made. Unique to our work is the fuzzy set representation of the conditions or attributes upon which the expert may possibly base his fuzzy decision. From our examples, we infer certain and possible fuzzy rules for closing a customer service center and illustrate the importance of having the decision closely relate to the conditions under consideration.

  9. Sleep promotes the extraction of grammatical rules.

    Directory of Open Access Journals (Sweden)

    Ingrid L C Nieuwenhuis

    Full Text Available Grammar acquisition is a high level cognitive function that requires the extraction of complex rules. While it has been proposed that offline time might benefit this type of rule extraction, this remains to be tested. Here, we addressed this question using an artificial grammar learning paradigm. During a short-term memory cover task, eighty-one human participants were exposed to letter sequences generated according to an unknown artificial grammar. Following a time delay of 15 min, 12 h (wake or sleep or 24 h, participants classified novel test sequences as Grammatical or Non-Grammatical. Previous behavioral and functional neuroimaging work has shown that classification can be guided by two distinct underlying processes: (1 the holistic abstraction of the underlying grammar rules and (2 the detection of sequence chunks that appear at varying frequencies during exposure. Here, we show that classification performance improved after sleep. Moreover, this improvement was due to an enhancement of rule abstraction, while the effect of chunk frequency was unaltered by sleep. These findings suggest that sleep plays a critical role in extracting complex structure from separate but related items during integrative memory processing. Our findings stress the importance of alternating periods of learning with sleep in settings in which complex information must be acquired.

  10. Fuzzy rule-based macroinvertebrate habitat suitability models for running waters

    NARCIS (Netherlands)

    Broekhoven, Van E.; Adriaenssens, V.; Baets, De B.; Verdonschot, P.F.M.

    2006-01-01

    A fuzzy rule-based approach was applied to a macroinvertebrate habitat suitability modelling problem. The model design was based on a knowledge base summarising the preferences and tolerances of 86 macroinvertebrate species for four variables describing river sites in springs up to small rivers in t

  11. Comparison principles for viscosity solutions of elliptic equations via fuzzy sum rule

    Science.gov (United States)

    Luo, Yousong; Eberhard, Andrew

    2005-07-01

    A comparison principle for viscosity sub- and super-solutions of second order elliptic partial differential equations is derived using the "fuzzy sum rule" of non-smooth calculus. This method allows us to weaken the assumptions made on the function F when the equation F(x,u,=u,=2u)=0 is under consideration.

  12. Prediction on carbon dioxide emissions based on fuzzy rules

    Science.gov (United States)

    Pauzi, Herrini; Abdullah, Lazim

    2014-06-01

    There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.

  13. Quantified moving average strategy of crude oil futures market based on fuzzy logic rules and genetic algorithms

    Science.gov (United States)

    Liu, Xiaojia; An, Haizhong; Wang, Lijun; Guan, Qing

    2017-09-01

    The moving average strategy is a technical indicator that can generate trading signals to assist investment. While the trading signals tell the traders timing to buy or sell, the moving average cannot tell the trading volume, which is a crucial factor for investment. This paper proposes a fuzzy moving average strategy, in which the fuzzy logic rule is used to determine the strength of trading signals, i.e., the trading volume. To compose one fuzzy logic rule, we use four types of moving averages, the length of the moving average period, the fuzzy extent, and the recommend value. Ten fuzzy logic rules form a fuzzy set, which generates a rating level that decides the trading volume. In this process, we apply genetic algorithms to identify an optimal fuzzy logic rule set and utilize crude oil futures prices from the New York Mercantile Exchange (NYMEX) as the experiment data. Each experiment is repeated for 20 times. The results show that firstly the fuzzy moving average strategy can obtain a more stable rate of return than the moving average strategies. Secondly, holding amounts series is highly sensitive to price series. Thirdly, simple moving average methods are more efficient. Lastly, the fuzzy extents of extremely low, high, and very high are more popular. These results are helpful in investment decisions.

  14. Incorporation of negative rules and evolution of a fuzzy controller for yeast fermentation process.

    Science.gov (United States)

    Birle, Stephan; Hussein, Mohamed Ahmed; Becker, Thomas

    2016-08-01

    The control of bioprocesses can be very challenging due to the fact that these kinds of processes are highly affected by various sources of uncertainty like the intrinsic behavior of the used microorganisms. Due to the reason that these kinds of process uncertainties are not directly measureable in most cases, the overall control is either done manually because of the experience of the operator or intelligent expert systems are applied, e.g., on the basis of fuzzy logic theory. In the latter case, however, the control concept is mainly represented by using merely positive rules, e.g., "If A then do B". As this is not straightforward with respect to the semantics of the human decision-making process that also includes negative experience in form of constraints or prohibitions, the incorporation of negative rules for process control based on fuzzy logic is emphasized. In this work, an approach of fuzzy logic control of the yeast propagation process based on a combination of positive and negative rules is presented. The process is guided along a reference trajectory for yeast cell concentration by alternating the process temperature. The incorporation of negative rules leads to a much more stable and accurate control of the process as the root mean squared error of reference trajectory and system response could be reduced by an average of 62.8 % compared to the controller using only positive rules.

  15. A Novel Approach for Discovery Quantitative Fuzzy Multi-Level Association Rules Mining Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Saad M. Darwish

    2016-10-01

    Full Text Available Quantitative multilevel association rules mining is a central field to realize motivating associations among data components with multiple levels abstractions. The problem of expanding procedures to handle quantitative data has been attracting the attention of many researchers. The algorithms regularly discretize the attribute fields into sharp intervals, and then implement uncomplicated algorithms established for Boolean attributes. Fuzzy association rules mining approaches are intended to defeat such shortcomings based on the fuzzy set theory. Furthermore, most of the current algorithms in the direction of this topic are based on very tiring search methods to govern the ideal support and confidence thresholds that agonize from risky computational cost in searching association rules. To accelerate quantitative multilevel association rules searching and escape the extreme computation, in this paper, we propose a new genetic-based method with significant innovation to determine threshold values for frequent item sets. In this approach, a sophisticated coding method is settled, and the qualified confidence is employed as the fitness function. With the genetic algorithm, a comprehensive search can be achieved and system automation is applied, because our model does not need the user-specified threshold of minimum support. Experiment results indicate that the recommended algorithm can powerfully generate non-redundant fuzzy multilevel association rules.

  16. Quadrature Rules and Iterative Method for Numerical Solution of Two-Dimensional Fuzzy Integral Equations

    Directory of Open Access Journals (Sweden)

    S. M. Sadatrasoul

    2014-01-01

    Full Text Available We introduce some generalized quadrature rules to approximate two-dimensional, Henstock integral of fuzzy-number-valued functions. We also give error bounds for mappings of bounded variation in terms of uniform modulus of continuity. Moreover, we propose an iterative procedure based on quadrature formula to solve two-dimensional linear fuzzy Fredholm integral equations of the second kind (2DFFLIE2, and we present the error estimation of the proposed method. Finally, some numerical experiments confirm the theoretical results and illustrate the accuracy of the method.

  17. A Fuzzy Rule-Base Model for Classification of Spirometric FVC Graphs in Chronical Obstructive Pulmonary Diseases

    Science.gov (United States)

    2007-11-02

    of distinguishing COPD group diseases (chronic bronchitis, emphysema and asthma ) by using fuzzy theory and to put into practice a “fuzzy rule-base...FVC Plots”. Keywords - asthma , chronic bronchitis, COPD (Chronic Obstructive Pulmonary Disease), emphysema , expert systems, FVC (forced vital...the group of chronic bronchitis, emphysema and asthma because of these reasons [4-7]. Additionally, similar symptoms may cause fuzziness in

  18. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    Science.gov (United States)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2011-01-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  19. Very High Resolution Satellite Image Classification Using Fuzzy Rule-Based Systems

    Directory of Open Access Journals (Sweden)

    Yun Zhang

    2013-11-01

    Full Text Available The aim of this research is to present a detailed step-by-step method for classification of very high resolution urban satellite images (VHRSI into specific classes such as road, building, vegetation, etc., using fuzzy logic. In this study, object-based image analysis is used for image classification. The main problems in high resolution image classification are the uncertainties in the position of object borders in satellite images and also multiplex resemblance of the segments to different classes. In order to solve this problem, fuzzy logic is used for image classification, since it provides the possibility of image analysis using multiple parameters without requiring inclusion of certain thresholds in the class assignment process. In this study, an inclusive semi-automatic method for image classification is offered, which presents the configuration of the related fuzzy functions as well as fuzzy rules. The produced results are compared to the results of a normal classification using the same parameters, but with crisp rules. The overall accuracies and kappa coefficients of the presented method stand higher than the check projects.

  20. Extraction of Symbolic Rules from Artificial Neural Networks

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification ...

  1. Rule Extraction using Artificial Neural Networks

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can gain a better understanding of the solution. This paper presents an efficient algorithm to extract rules from artificial neural networks. We use two-phase training algorithm for backpropagation learning. In the first phase, the number of hidden nodes of the network is determined automatically in a constructive fashion by adding nodes one after another based on the performance of the network on training data. In the second phase, the number of relevant input units of the network is determined using pruning algorithm. The ...

  2. Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control.

    Science.gov (United States)

    Farivar, Faezeh; Shoorehdeli, Mahdi Aliyari

    2012-01-01

    In this paper, fault tolerant synchronization of chaotic gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control is investigated. Taking the general nature of faults in the slave system into account, a new synchronization scheme, namely, fault tolerant synchronization, is proposed, by which the synchronization can be achieved no matter whether the faults and disturbances occur or not. By making use of a slave observer and a Lyapunov rule-based fuzzy control, fault tolerant synchronization can be achieved. Two techniques are considered as control methods: classic Lyapunov-based control and Lyapunov rule-based fuzzy control. On the basis of Lyapunov stability theory and fuzzy rules, the nonlinear controller and some generic sufficient conditions for global asymptotic synchronization are obtained. The fuzzy rules are directly constructed subject to a common Lyapunov function such that the error dynamics of two identical chaotic motions of symmetric gyros satisfy stability in the Lyapunov sense. Two proposed methods are compared. The Lyapunov rule-based fuzzy control can compensate for the actuator faults and disturbances occurring in the slave system. Numerical simulation results demonstrate the validity and feasibility of the proposed method for fault tolerant synchronization.

  3. Fuzzy rule-based prediction of lovastatin productivity in continuous mode using pellets of Aspergillus terreus in an airlift reactor

    Directory of Open Access Journals (Sweden)

    Kamakshi Gupta

    2009-12-01

    Full Text Available Lovastatin production using pellets of Aspergillus terreus was investigated in an airlift reactor. A fuzzy system has been developed for predicting the lovastatin productivity. Analysis of the effect of dilution rate and biomass concentration on the productivity of lovastatin was carried out and hence these were taken as inputs for the fuzzy system. The rule base has been developed using the conceptions of developmental processes in lovastatin production. The fuzzy system has been constructed on the basis of experimental results and operator’s knowledge. The values predicted for lovastatin productivity by the fuzzy system has been compared with the experimental data. The R squared value and mean squared error has been calculated to evaluate the quality of the fuzzy system. The performance measures show that the rule-based results of the fuzzy system is in accordance with the experimental results. The utilization of fuzzy system aided in the increase of lovastatin productivity by about 1.3 times when compared to previous empirical experimental results. Keywords: Lovastatin, airlift reactor, fuzzy rule-based system, Aspergillus terreus, continuous fermentation, pellets. Received: 27 November 2009 / Received in revised form: 18 January 2010, Accepted: 11 February 2010, Published online: 23 March 2010

  4. Recursive neural network rule extraction for data with mixed attributes.

    Science.gov (United States)

    Setiono, R; Baesens, B; Mues, C

    2008-02-01

    In this paper, we present a recursive algorithm for extracting classification rules from feedforward neural networks (NNs) that have been trained on data sets having both discrete and continuous attributes. The novelty of this algorithm lies in the conditions of the extracted rules: the rule conditions involving discrete attributes are disjoint from those involving continuous attributes. The algorithm starts by first generating rules with discrete attributes only to explain the classification process of the NN. If the accuracy of a rule with only discrete attributes is not satisfactory, the algorithm refines this rule by recursively generating more rules with discrete attributes not already present in the rule condition, or by generating a hyperplane involving only the continuous attributes. We show that for three real-life credit scoring data sets, the algorithm generates rules that are not only more accurate but also more comprehensible than those generated by other NN rule extraction methods.

  5. Rule Extraction in Transient Stability Study Using Linear Decision Trees

    Institute of Scientific and Technical Information of China (English)

    SUN Hongbin; WANG Kang; ZHANG Boming; ZHAO Feng

    2011-01-01

    Traditional operation rules depend on human experience, which are relatively fixed and difficult to fulfill the new demand of the modern power grid. In order to formulate suitable and quickly refreshed operation rules, a method of linear decision tree based on support samples is proposed for rule extraction in this paper. The operation rules extracted by this method have advantages of refinement and intelligence, which helps the dispatching center meet the requirement of smart grid construction.

  6. Fuzzy-rule-based Adaptive Resource Control for Information Sharing in P2P Networks

    Science.gov (United States)

    Wu, Zhengping; Wu, Hao

    With more and more peer-to-peer (P2P) technologies available for online collaboration and information sharing, people can launch more and more collaborative work in online social networks with friends, colleagues, and even strangers. Without face-to-face interactions, the question of who can be trusted and then share information with becomes a big concern of a user in these online social networks. This paper introduces an adaptive control service using fuzzy logic in preference definition for P2P information sharing control, and designs a novel decision-making mechanism using formal fuzzy rules and reasoning mechanisms adjusting P2P information sharing status following individual users' preferences. Applications of this adaptive control service into different information sharing environments show that this service can provide a convenient and accurate P2P information sharing control for individual users in P2P networks.

  7. Fuzzy Rule-based Analysis of Promotional Efficiency in Vietnam’s Tourism Industry

    Directory of Open Access Journals (Sweden)

    Nguyen Quang VINH

    2015-06-01

    Full Text Available This study aims to determine an effective method of measuring the efficiency of promotional strategies for tourist destinations. Complicating factors that influence promotional efficiency (PE, such as promotional activities (PA, destination attribute (DA, and destination image (DI, make it difficult to evaluate the effectiveness of PE. This study develops a rule-based decision support mechanism using fuzzy set theory and the Analytic Hierarchy Process (AHP to evaluate the effectiveness of promotional strategies. Additionally, a statistical analysis is conducted using SPSS (Statistics Package for Social Science to confirm the results of the fuzzy AHP analysis. This study finds that government policy is the most important factor for PE and that service staff (internal beauty is more important than tourism infrastructure (external beauty in terms of customer satisfaction and long-term strategy in PE. With respect to DI, experts are concerned first with tourist perceived value, second with tourist satisfaction and finally with tourist loyalty.

  8. RGANN: An Efficient Algorithm to Extract Rules from ANNs

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    This paper describes an efficient rule generation algorithm, called rule generation from artificial neural networks (RGANN) to generate symbolic rules from ANNs. Classification rules are sought in many areas from automatic knowledge acquisition to data mining and ANN rule extraction. This is because classification rules possess some attractive features. They are explicit, understandable and verifiable by domain experts, and can be modified, extended and passed on as modular knowledge. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Comparing them to the symbolic rules generated by other methods supports explicitness of the generated rules. Generated rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, including breast cancer, wine, season, golf-playing, and ...

  9. A new intuitionistic fuzzy rule-based decision-making system for an operating system process scheduler.

    Science.gov (United States)

    Butt, Muhammad Arif; Akram, Muhammad

    2016-01-01

    We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.

  10. Learning Fuzzy {\\beta}-Certain and {\\beta}-Possible rules from incomplete quantitative data by rough sets

    CERN Document Server

    Mohammadi, Ali Soltan; Rezaee, D D

    2012-01-01

    The rough-set theory proposed by Pawlak, has been widely used in dealing with data classification problems. The original rough-set model is, however, quite sensitive to noisy data. Tzung thus proposed deals with the problem of producing a set of fuzzy certain and fuzzy possible rules from quantitative data with a predefined tolerance degree of uncertainty and misclassification. This model allowed, which combines the variable precision rough-set model and the fuzzy set theory, is thus proposed to solve this problem. This paper thus deals with the problem of producing a set of fuzzy certain and fuzzy possible rules from incomplete quantitative data with a predefined tolerance degree of uncertainty and misclassification. A new method, incomplete quantitative data for rough-set model and the fuzzy set theory, is thus proposed to solve this problem. It first transforms each quantitative value into a fuzzy set of linguistic terms using membership functions and then finding incomplete quantitative data with lower an...

  11. Reduction of Data Sparsity in Collaborative Filtering based on Fuzzy Inference Rules

    Directory of Open Access Journals (Sweden)

    Atisha Sachan

    2013-06-01

    Full Text Available Collaborative filtering Recommender system plays a very demanding and significance role in this era of internet information and of course e commerce age. Collaborative filtering predicts user preferences from past user behaviour or user-item relationships. Though it has many advantages it also has some limitations such as sparsity, scalability, accuracy, cold start problem etc. In this paper we proposed a method that helps in reducing sparsity to enhance recommendation accuracy. We developed fuzzy inference rules which is easily to implement and also gives better result. A comparison experiment is also performing with two previous methods, Traditional Collaborative Filtering (TCF and Hybrid User Model Technique (HUMCF.

  12. An Object Extraction Model Using Association Rules and Dependence Analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Extracting objects from legacy systems is a basic step insystem's obje ct-orientation to improve the maintainability and understandability of the syst e ms. A new object extraction model using association rules an d dependence analysis is proposed. In this model data are classified by associat ion rules and the corresponding operations are partitioned by dependence analysis.

  13. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    Directory of Open Access Journals (Sweden)

    Y.-M. Chiang

    2010-09-01

    Full Text Available Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS and counterpropagatiom fuzzy neural network (CFNN for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  14. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    Directory of Open Access Journals (Sweden)

    Y.-M. Chiang

    2011-01-01

    Full Text Available Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  15. Intrusion detection: a novel approach that combines boosting genetic fuzzy classifier and data mining techniques

    Science.gov (United States)

    Ozyer, Tansel; Alhajj, Reda; Barker, Ken

    2005-03-01

    This paper proposes an intelligent intrusion detection system (IDS) which is an integrated approach that employs fuzziness and two of the well-known data mining techniques: namely classification and association rule mining. By using these two techniques, we adopted the idea of using an iterative rule learning that extracts out rules from the data set. Our final intention is to predict different behaviors in networked computers. To achieve this, we propose to use a fuzzy rule based genetic classifier. Our approach has two main stages. First, fuzzy association rule mining is applied and a large number of candidate rules are generated for each class. Then the rules pass through pre-screening mechanism in order to reduce the fuzzy rule search space. Candidate rules obtained after pre-screening are used in genetic fuzzy classifier to generate rules for the specified classes. Classes are defined as Normal, PRB-probe, DOS-denial of service, U2R-user to root and R2L- remote to local. Second, an iterative rule learning mechanism is employed for each class to find its fuzzy rules required to classify data each time a fuzzy rule is extracted and included in the system. A Boosting mechanism evaluates the weight of each data item in order to help the rule extraction mechanism focus more on data having relatively higher weight. Finally, extracted fuzzy rules having the corresponding weight values are aggregated on class basis to find the vote of each class label for each data item.

  16. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

    2000-01-01

    A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  17. 加权模糊关联规则的研究%Research on Weighted Fuzzy Association Rules

    Institute of Scientific and Technical Information of China (English)

    陆建江

    2003-01-01

    Algorithms for mining quantitative association rules consider each attribute equally, but the attributes usu-ally have different importance. Two kinds of algorithms for mining the weighted fuzzy association rules are providedwith respect to two kinds of database. The first algorithm can effectively consider the importance of quantitative at-tributes, and considers that the importance of association rule is not increased with the amount of attributes in therule. The second algorithm not only considers the importance of quantitative attributes, but also considers that theimportance of association rule is increased with the amount of attributes in the rule.

  18. Robust and Adaptive OMR System Including Fuzzy Modeling, Fusion of Musical Rules, and Possible Error Detection

    Directory of Open Access Journals (Sweden)

    Isabelle Bloch

    2007-01-01

    Full Text Available This paper describes a system for optical music recognition (OMR in case of monophonic typeset scores. After clarifying the difficulties specific to this domain, we propose appropriate solutions at both image analysis level and high-level interpretation. Thus, a recognition and segmentation method is designed, that allows dealing with common printing defects and numerous symbol interconnections. Then, musical rules are modeled and integrated, in order to make a consistent decision. This high-level interpretation step relies on the fuzzy sets and possibility framework, since it allows dealing with symbol variability, flexibility, and imprecision of music rules, and merging all these heterogeneous pieces of information. Other innovative features are the indication of potential errors and the possibility of applying learning procedures, in order to gain in robustness. Experiments conducted on a large data base show that the proposed method constitutes an interesting contribution to OMR.

  19. Robust and Adaptive OMR System Including Fuzzy Modeling, Fusion of Musical Rules, and Possible Error Detection

    Science.gov (United States)

    Rossant, Florence; Bloch, Isabelle

    2006-12-01

    This paper describes a system for optical music recognition (OMR) in case of monophonic typeset scores. After clarifying the difficulties specific to this domain, we propose appropriate solutions at both image analysis level and high-level interpretation. Thus, a recognition and segmentation method is designed, that allows dealing with common printing defects and numerous symbol interconnections. Then, musical rules are modeled and integrated, in order to make a consistent decision. This high-level interpretation step relies on the fuzzy sets and possibility framework, since it allows dealing with symbol variability, flexibility, and imprecision of music rules, and merging all these heterogeneous pieces of information. Other innovative features are the indication of potential errors and the possibility of applying learning procedures, in order to gain in robustness. Experiments conducted on a large data base show that the proposed method constitutes an interesting contribution to OMR.

  20. AN QUALITY BASED ENHANCEMENT OF USER DATA PROTECTION VIA FUZZY RULE BASED SYSTEMS IN CLOUD ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    R Poorva Devi

    2016-04-01

    Full Text Available So far, in cloud computing distinct customer is accessed and consumed enormous amount of services through web, offered by cloud service provider (CSP. However cloud is providing one of the services is, security-as-a-service to its clients, still people are terrified to use the service from cloud vendor. Number of solutions, security components and measurements are coming with the new scope for the cloud security issue, but 79.2% security outcome only obtained from the different scientists, researchers and other cloud based academy community. To overcome the problem of cloud security the proposed model that is, “Quality based Enhancing the user data protection via fuzzy rule based systems in cloud environment”, will helps to the cloud clients by the way of accessing the cloud resources through remote monitoring management (RMMM and what are all the services are currently requesting and consuming by the cloud users that can be well analyzed with Managed service provider (MSP rather than a traditional CSP. Normally, people are trying to secure their own private data by applying some key management and cryptographic based computations again it will direct to the security problem. In order to provide good quality of security target result by making use of fuzzy rule based systems (Constraint & Conclusion segments in cloud environment. By using this technique, users may obtain an efficient security outcome through the cloud simulation tool of Apache cloud stack simulator.

  1. Hierarchical rule-based monitoring and fuzzy logic control for neuromuscular block.

    Science.gov (United States)

    Shieh, J S; Fan, S Z; Chang, L W; Liu, C C

    2000-01-01

    The important task for anaesthetists is to provide an adequate degree of neuromuscular block during surgical operations, so that it should not be difficult to antagonize at the end of surgery. Therefore, this study examined the application of a simple technique (i.e., fuzzy logic) to an almost ideal muscle relaxant (i.e., rocuronium) at general anaesthesia in order to control the system more easily, efficiently, intelligently and safely during an operation. The characteristics of neuromuscular blockade induced by rocuronium were studied in 10 ASA I or II adult patients anaesthetized with inhalational (i.e., isoflurane) anaesthesia. A Datex Relaxograph was used to monitor neuromuscular block. And, ulnar nerve was stimulated supramaximally with repeated train-of-four via surface electrodes at the wrist. Initially a notebook personal computer was linked to a Datex Relaxograph to monitor electromyogram (EMG) signals which had been pruned by a three-level hierarchical structure of filters in order to design a controller for administering muscle relaxants. Furthermore, a four-level hierarchical fuzzy logic controller using the fuzzy logic and rule of thumb concept has been incorporated into the system. The Student's test was used to compare the variance between the groups. p control of muscle relaxation with a mean T1% error of -0.19 (SD 0.66) % accommodating a range in mean infusion rate (MIR) of 0.21-0.49 mg x kg(-1) x h(-1). When these results were compared with our previous ones using the same hierarchical structure applied to mivacurium, less variation in the T1% error (p controller activity of these two drugs showed no significant difference (p > 0.5). However, the consistent medium coefficient variance (CV) of the MIR of both rocuronium (i.e., 36.13 (SD 9.35) %) and mivacurium (i.e., 34.03 (SD 10.76) %) indicated a good controller activity. The results showed that a hierarchical rule-based monitoring and fuzzy logic control architecture can provide stable control

  2. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    Science.gov (United States)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  3. An Expert System for Diagnosis of Sleep Disorder Using Fuzzy Rule-Based Classification Systems

    Science.gov (United States)

    Septem Riza, Lala; Pradini, Mila; Fitrajaya Rahman, Eka; Rasim

    2017-03-01

    Sleep disorder is an anomaly that could cause problems for someone’ sleeping pattern. Nowadays, it becomes an issue since people are getting busy with their own business and have no time to visit the doctors. Therefore, this research aims to develop a system used for diagnosis of sleep disorder using Fuzzy Rule-Based Classification System (FRBCS). FRBCS is a method based on the fuzzy set concepts. It consists of two steps: (i) constructing a model/knowledge involving rulebase and database, and (ii) prediction over new data. In this case, the knowledge is obtained from experts whereas in the prediction stage, we perform fuzzification, inference, and classification. Then, a platform implementing the method is built with a combination between PHP and the R programming language using the “Shiny” package. To validate the system that has been made, some experiments have been done using data from a psychiatric hospital in West Java, Indonesia. Accuracy of the result and computation time are 84.85% and 0.0133 seconds, respectively.

  4. Derived operating rules for a reservoir operation system: Comparison of decision trees, neural decision trees and fuzzy decision trees

    Science.gov (United States)

    Wei, Chih-Chiang; Hsu, Nien-Sheng

    2008-02-01

    This article compares the decision-tree algorithm (C5.0), neural decision-tree algorithm (NDT) and fuzzy decision-tree algorithm (FIDs) for addressing reservoir operations regarding water supply during normal periods. The conventional decision-tree algorithm, such as ID3 and C5.0, executes rapidly and can easily be translated into if-then-else rules. However, the C5.0 algorithm cannot discover dependencies among attributes and cannot treat the non-axis-parallel class boundaries of data. The basic concepts of the two algorithms presented are: (1) NDT algorithm combines the neural network technologies and conventional decision-tree algorithm capabilities, and (2) FIDs algorithm extends to apply fuzzy sets for all attributes with membership function grades and generates a fuzzy decision tree. In order to obtain higher classification rates in FIDs, the flexible trapezoid fuzzy sets are employed to define membership functions. Furthermore, an intelligent genetic algorithm is utilized to optimize the large number of variables in fuzzy decision-tree design. The applicability of the presented algorithms is demonstrated through a case study of the Shihmen Reservoir system. A network flow optimization model for analyzing long-term supply demand is employed to generate the input-output patterns. Findings show superior performance of the FIDs model in contrast with C5.0, NDT and current reservoir operating rules.

  5. Approximate Reasoning with Fuzzy Booleans

    NARCIS (Netherlands)

    Broek, van den P.M.; Noppen, J.A.R.

    2004-01-01

    This paper introduces, in analogy to the concept of fuzzy numbers, the concept of fuzzy booleans, and examines approximate reasoning with the compositional rule of inference using fuzzy booleans. It is shown that each set of fuzzy rules is equivalent to a set of fuzzy rules with singleton crisp ante

  6. Optimal operating rules definition in complex water resource systems combining fuzzy logic, expert criteria and stochastic programming

    Science.gov (United States)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2016-04-01

    This contribution presents a methodology for defining optimal seasonal operating rules in multireservoir systems coupling expert criteria and stochastic optimization. Both sources of information are combined using fuzzy logic. The structure of the operating rules is defined based on expert criteria, via a joint expert-technician framework consisting in a series of meetings, workshops and surveys carried out between reservoir managers and modelers. As a result, the decision-making process used by managers can be assessed and expressed using fuzzy logic: fuzzy rule-based systems are employed to represent the operating rules and fuzzy regression procedures are used for forecasting future inflows. Once done that, a stochastic optimization algorithm can be used to define optimal decisions and transform them into fuzzy rules. Finally, the optimal fuzzy rules and the inflow prediction scheme are combined into a Decision Support System for making seasonal forecasts and simulate the effect of different alternatives in response to the initial system state and the foreseen inflows. The approach presented has been applied to the Jucar River Basin (Spain). Reservoir managers explained how the system is operated, taking into account the reservoirs' states at the beginning of the irrigation season and the inflows previewed during that season. According to the information given by them, the Jucar River Basin operating policies were expressed via two fuzzy rule-based (FRB) systems that estimate the amount of water to be allocated to the users and how the reservoir storages should be balanced to guarantee those deliveries. A stochastic optimization model using Stochastic Dual Dynamic Programming (SDDP) was developed to define optimal decisions, which are transformed into optimal operating rules embedding them into the two FRBs previously created. As a benchmark, historical records are used to develop alternative operating rules. A fuzzy linear regression procedure was employed to

  7. Eclectic Extraction of Propositional Rules from Neural Networks

    CERN Document Server

    Iqbal, Ridwan Al

    2011-01-01

    Artificial Neural Network is among the most popular algorithm for supervised learning. However, Neural Networks have a well-known drawback of being a "Black Box" learner that is not comprehensible to the Users. This lack of transparency makes it unsuitable for many high risk tasks such as medical diagnosis that requires a rational justification for making a decision. Rule Extraction methods attempt to curb this limitation by extracting comprehensible rules from a trained Network. Many such extraction algorithms have been developed over the years with their respective strengths and weaknesses. They have been broadly categorized into three types based on their approach to use internal model of the Network. Eclectic Methods are hybrid algorithms that combine the other approaches to attain more performance. In this paper, we present an Eclectic method called HERETIC. Our algorithm uses Inductive Decision Tree learning combined with information of the neural network structure for extracting logical rules. Experime...

  8. Control of the Coagulation Process in a Paper-mill Wastewater Treatment Process Using a Fuzzy Neural Network

    OpenAIRE

    Wan, J.-Q.; Huang, M.-Z.; Ma, Y.-W.; Guo, W. J.; Y. Wang; Zhang, H.-P.

    2010-01-01

    In this paper, an integrated neural-fuzzy process controller was developed to study the coagulation of wastewater treatment in a paper mill. In order to improve the fuzzy neural network performance, the self-learning ability embedded in the fuzzy neural network model was emphasized for improving the rule extraction performance. It proves the fuzzy neural network more effective in modeling the coagulation performance than artificial neural networks (ANN). For comparing between the fuzzy neural...

  9. Rule Extraction using Artificial Neural Networks

    OpenAIRE

    2010-01-01

    Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can...

  10. Validity of association rules extracted by healthcare-data-mining.

    Science.gov (United States)

    Takeuchi, Hiroshi; Kodama, Naoki

    2014-01-01

    A personal healthcare system used with cloud computing has been developed. It enables a daily time-series of personal health and lifestyle data to be stored in the cloud through mobile devices. The cloud automatically extracts personally useful information, such as rules and patterns concerning the user's lifestyle and health condition embedded in their personal big data, by using healthcare-data-mining. This study has verified that the extracted rules on the basis of a daily time-series data stored during a half- year by volunteer users of this system are valid.

  11. Fuzzy Evidence in Identification, Forecasting and Diagnosis

    CERN Document Server

    Rotshtein, Alexander P

    2012-01-01

    The purpose of this book is to present a methodology for designing and tuning fuzzy expert systems in order to identify nonlinear objects; that is, to build input-output models using expert and experimental information. The results of these identifications are used for direct and inverse fuzzy evidence in forecasting and diagnosis problem solving. The book is organised as follows: Chapter 1 presents the basic knowledge about fuzzy sets, genetic algorithms and neural nets necessary for a clear understanding of the rest of this book. Chapter 2 analyzes direct fuzzy inference based on fuzzy if-then rules. Chapter 3 is devoted to the tuning of fuzzy rules for direct inference using genetic algorithms and neural nets. Chapter 4 presents models and algorithms for extracting fuzzy rules from experimental data. Chapter 5 describes a method for solving fuzzy logic equations necessary for the inverse fuzzy inference in diagnostic systems. Chapters 6 and 7 are devoted to inverse fuzzy inference based on fu...

  12. Terahertz time-domain spectroscopy combined with fuzzy rule-building expert system and fuzzy optimal associative memory applied to diagnosis of cervical carcinoma.

    Science.gov (United States)

    Qi, Na; Zhang, Zhuoyong; Xiang, Yuhong; Yang, Yuping; Harrington, Peter de B

    2015-01-01

    Combined with terahertz time-domain spectroscopy, the feasibility of fast and reliable diagnosis of cervical carcinoma by a fuzzy rule-building expert system (FuRES) and a fuzzy optimal associative memory (FOAM) had been studied. The terahertz spectra of 52 specimens of cervix were collected in the work. The original data of samples were preprocessed by Savitzky-Golay first derivative (χderivative), principal component orthogonal signal correction (PC-OSC) and emphatic orthogonal signal correction to improve the performance of FuRES and FOAM models. The effect of the different pretreating methods to improve prediction accuracy was evaluated. The FuRES and FOAM models were validated using bootstrapped Latin-partition method. The obtained results showed that the FuRES and FOAM model optimized with the combination S-G first derivative and PC-OSC method had the better predictive ability with classification rates of 92.9 ± 0.4 and 92.5 ± 0.4 %, respectively. The proposed procedure proved that terahertz spectroscopy combined with fuzzy classifiers could supply a technology which has potential for diagnosis of cancerous tissue.

  13. Control of Angra 1' PZR by a fuzzy rule base build through genetic programming; Controle do PZR de Angra 1 por meio de uma base de regras nebulosas construidas atraves de programacao genetica

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, Gustavo Henrique Flores; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    There is an optimum pressure for the normal operation of nuclear power plant reactors and thresholds that must be respected during transients, what make the pressurizer an important control mechanism. Inside a pressurizer there are heaters and a shower. From their actuation levels, they control the vapor pressure inside the pressurizer and, consequently, inside the primary circuit. Therefore, the control of the pressurizer consists in controlling the actuation levels of the heaters and of the shower. In the present work this function is implemented through a fuzzy controller. Besides the efficient way of exerting control, this approach presents the possibility of extracting knowledge of how this control is been made. A fuzzy controller consists basically in an inference machine and a rule base, the later been constructed with specialized knowledge. In some circumstances, however, this knowledge is not accurate, and may lead to non-efficient results. With the development of artificial intelligence techniques, there wore found methods to substitute specialists, simulating its knowledge. Genetic programming is an evolutionary algorithm particularly efficient in manipulating rule base structures. In this work genetic programming was used as a substitute for the specialist. The goal is to test if an irrational object, a computer, is capable, by it self, to find out a rule base reproducing a pre-established actuation levels profile. The result is positive, with the discovery of a fuzzy rule base presenting an insignificant error. A remarkable result that proves the efficiency of the approach. (author)

  14. Evolution of Collective Behaviour in an Artificial World Using Linguistic Fuzzy Rule-Based Systems.

    Science.gov (United States)

    Demšar, Jure; Lebar Bajec, Iztok

    2017-01-01

    Collective behaviour is a fascinating and easily observable phenomenon, attractive to a wide range of researchers. In biology, computational models have been extensively used to investigate various properties of collective behaviour, such as: transfer of information across the group, benefits of grouping (defence against predation, foraging), group decision-making process, and group behaviour types. The question 'why,' however remains largely unanswered. Here the interest goes into which pressures led to the evolution of such behaviour, and evolutionary computational models have already been used to test various biological hypotheses. Most of these models use genetic algorithms to tune the parameters of previously presented non-evolutionary models, but very few attempt to evolve collective behaviour from scratch. Of these last, the successful attempts display clumping or swarming behaviour. Empirical evidence suggests that in fish schools there exist three classes of behaviour; swarming, milling and polarized. In this paper we present a novel, artificial life-like evolutionary model, where individual agents are governed by linguistic fuzzy rule-based systems, which is capable of evolving all three classes of behaviour.

  15. Handling Web and Database Requests Using Fuzzy Rules for Anomaly Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Selvamani Kadirvelu

    2011-01-01

    Full Text Available Problem statement: It is necessary to propose suitable detection and prevention mechanisms to provide security for the information contents used by the web application. Many prevention mechanisms which are currently available are not able to classify anomalous, random and normal request. This leads to the problem of false positives which is classifying a normal request as anomalous and denying access to information. Approach: In this study, we propose an anomaly detection system which will act as a Web based anomaly detector called intelligent SQL Anomaly detector and it uses decision tree algorithm and a feedback mechanism for effective classification. Results: This newly proposed and implemented technique has higher probability for reducing false positives which are the drawbacks in the earlier systems. Hence, our system proves that it detects all anomalies and shows better results when compared with the existing system. Conclusion: A refreshing technique to improve the detection rate of web-based intrusion detection systems by serially framing a web request anomaly detector using fuzzy rules has been proposed and implemented and this system proves to be more efficient then the existing earlier system when compared with the obtained results.

  16. An Integrated Model for Optimization Oriented Decision Aiding and Rule Based Decision Making in Fuzzy Environment

    OpenAIRE

    A. Yousefli; M. Ghazanfari; M. B. Abiri

    2014-01-01

    In this paper a fuzzy decision aid system is developed base on new concepts that presented in the field of fuzzy decision making in fuzzy environment (FDMFE). This framework aids decision makers to understand different circumstances of an uncertain problem that may occur in the future. Also, to keep decision maker from the optimization problem complexities, a decision support system, which can be replaced by optimization problem, is presented to make optimum or near optimum decisions without ...

  17. EMG signals characterization in three states of contraction by fuzzy network and feature extraction

    CERN Document Server

    Mokhlesabadifarahani, Bita

    2015-01-01

    Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used.

  18. Critical Evaluation of Validation Rules Automated Extraction from Data

    Directory of Open Access Journals (Sweden)

    David Pejcoch

    2014-10-01

    Full Text Available The goal of this article is to critically evaluate a possibility of automatic extraction of such kind of rules which could be later used within a Data Quality Management process for validation of records newly incoming to Information System. For practical demonstration the 4FT-Miner procedure implemented in LISpMiner System was chosen. A motivation for this task is the potential simplification of projects focused on Data Quality Management. Initially, this article is going to critically evaluate a possibility of fully automated extraction with the aim to identify strengths and weaknesses of this approach in comparison to its alternative, when at least some a priori knowledge is available. As a result of practical implementation, this article provides design of recommended process which would be used as a guideline for future projects. Also the question of how to store and maintain extracted rules and how to integrate them with existing tools supporting Data Quality Management is discussed

  19. A Fuzzy Rule Based Forensic Analysis of DDoS Attack in MANET

    Directory of Open Access Journals (Sweden)

    Ms. S. M. Nirkhi

    2013-07-01

    Full Text Available Mobile Ad Hoc Network (MANET is a mobile distributed wireless networks. In MANET each node are self capable that support routing functionality in an ad hoc scenario, forwarding of data or exchange of topology information using wireless communications. These characteristic specifies a better scalability of network. But this advantage leads to the scope of security compromising. One of the easy ways of security compromise is denial of services (DoS form of attack, this attack may paralyze a node or the entire network and when coordinated by group of attackers is considered as distributed denial of services (DDoS attack. A typical, DoS attack is flooding excessive volume of traffic to deplete key resources of the target network. In MANET flooding can be done at routing. Ad Hoc nature of MANET calls for dynamic route management. In flat ad hoc routing categories there falls the reactive protocols sub category, in which one of the most prominent member of this subcategory is dynamic source routing (DSR which works well for smaller number of nodes and low mobility situations. DSR allows on demand route discovery, for this they broadcast a route request message (RREQ. Intelligently flooding RREQ message there forth causing DoS or DDoS attack, making targeted network paralyzed for a small duration of time is not very difficult to launch and have potential of loss to the network. After an attack on the target system is successful enough to crash or disrupt MANET for some period of time, this event of breach triggers for investigation. Investigation and forensically analyzing attack scenario provides the source of digital proof against attacker. In this paper, the parameters for RREQ flooding are pointed, on basis of these parameters fuzzy logic based rules are deduced and described for both DoS and DDoS. We implemented a fuzzy forensic tool to determine the flooding RREQ attack of the form DoS and DDoS. For this implementation various experiments and

  20. The fuzzy Hough Transform-feature extraction in medical images

    Energy Technology Data Exchange (ETDEWEB)

    Philip, K.P.; Dove, E.L.; Stanford, W.; Chandran, K.B. (Univ. of Iowa, Iowa City, IA (United States)); McPherson, D.D.; Gotteiner, N.L. (Northwestern Univ., Chicago, IL (United States). Dept. of Internal Medicine)

    1994-06-01

    Identification of anatomical features is a necessary step for medical image analysis. Automatic methods for feature identification using conventional pattern recognition techniques typically classify an object as a member of a predefined class of objects, but do not attempt to recover the exact or approximate shape of that object. For this reason, such techniques are usually not sufficient to identify the borders of organs when individual geometry varies in local detail, even though the general geometrical shape is similar. The authors present an algorithm that detects features in an image based on approximate geometrical models. The algorithm is based on the traditional and generalized Hough Transforms but includes notions from fuzzy set theory. The authors use the new algorithm to roughly estimate the actual locations of boundaries of an internal organ, and from this estimate, to determine a region of interest around the organ. Based on this rough estimate of the border location, and the derived region of interest, the authors find the final estimate of the true borders with other image processing techniques. The authors present results that demonstrate that the algorithm was successfully used to estimate the approximate location of the chest wall in humans, and of the left ventricular contours of a dog heart obtained from cine-computed tomographic images. The authors use this fuzzy Hough Transform algorithm as part of a larger procedures to automatically identify the myocardial contours of the heart. This algorithm may also allow for more rapid image processing and clinical decision making in other medical imaging applications.

  1. Using Fuzzy Logic in Evaluating User Tabled Correlation Rules for COMINT

    Science.gov (United States)

    2007-11-02

    detect plagiarism . Although each variable may have a unique set of thresholds, each is transformed to a constant scale by the application of a simple...1973. Academic Press, London. Page 123. [3].Klir G. J. and B. Yuan. Fuzzy Sets and Fuzzy Logic, Theory and Applications. 1995. Prentice Hall, New

  2. The fuzzy Hough transform-feature extraction in medical images.

    Science.gov (United States)

    Philip, K P; Dove, E L; McPherson, D D; Gotteiner, N L; Stanford, W; Chandran, K B

    1994-01-01

    Identification of anatomical features is a necessary step for medical image analysis. Automatic methods for feature identification using conventional pattern recognition techniques typically classify an object as a member of a predefined class of objects, but do not attempt to recover the exact or approximate shape of that object. For this reason, such techniques are usually not sufficient to identify the borders of organs when individual geometry varies in local detail, even though the general geometrical shape is similar. The authors present an algorithm that detects features in an image based on approximate geometrical models. The algorithm is based on the traditional and generalized Hough Transforms but includes notions from fuzzy set theory. The authors use the new algorithm to roughly estimate the actual locations of boundaries of an internal organ, and from this estimate, to determine a region of interest around the organ. Based on this rough estimate of the border location, and the derived region of interest, the authors find the final (improved) estimate of the true borders with other (subsequently used) image processing techniques. They present results that demonstrate that the algorithm was successfully used to estimate the approximate location of the chest wall in humans, and of the left ventricular contours of a dog heart obtained from cine-computed tomographic images. The authors use this fuzzy Hough transform algorithm as part of a larger procedure to automatically identify the myocardial contours of the heart. This algorithm may also allow for more rapid image processing and clinical decision making in other medical imaging applications.

  3. Optimization of multi-reservoir operation with a new hedging rule: application of fuzzy set theory and NSGA-II

    Science.gov (United States)

    Ahmadianfar, Iman; Adib, Arash; Taghian, Mehrdad

    2016-06-01

    The reservoir hedging rule curves are used to avoid severe water shortage during drought periods. In this method reservoir storage is divided into several zones, wherein the rationing factors are changed immediately when water storage level moves from one zone to another. In the present study, a hedging rule with fuzzy rationing factors was applied for creating a transition zone in up and down each rule curve, and then the rationing factor will be changed in this zone gradually. For this propose, a monthly simulation model was developed and linked to the non-dominated sorting genetic algorithm for calculation of the modified shortage index of two objective functions involving water supply of minimum flow and agriculture demands in a long-term simulation period. Zohre multi-reservoir system in south Iran has been considered as a case study. The results of the proposed hedging rule have improved the long-term system performance from 10 till 27 percent in comparison with the simple hedging rule, where these results demonstrate that the fuzzification of hedging factors increase the applicability and the efficiency of the new hedging rule in comparison to the conventional rule curve for mitigating the water shortage problem.

  4. FUMET: A fuzzy network module extraction technique for gene expression data

    Indian Academy of Sciences (India)

    Priyakshi Mahanta; Hasin Afzal Ahmed; Dhruba Kumar Bhattacharyya; Ashish Ghosh

    2014-06-01

    Construction of co-expression network and extraction of network modules have been an appealing area of bioinformatics research. This article presents a co-expression network construction and a biologically relevant network module extraction technique based on fuzzy set theoretic approach. The technique is able to handle both positive and negative correlations among genes. The constructed network for some benchmark gene expression datasets have been validated using topological internal and external measures. The effectiveness of network module extraction technique has been established in terms of well-known p-value, Q-value and topological statistics.

  5. Different neurophysiological mechanisms underlying word and rule extraction from speech.

    Science.gov (United States)

    De Diego Balaguer, Ruth; Toro, Juan Manuel; Rodriguez-Fornells, Antoni; Bachoud-Lévi, Anne-Catherine

    2007-11-14

    The initial process of identifying words from spoken language and the detection of more subtle regularities underlying their structure are mandatory processes for language acquisition. Little is known about the cognitive mechanisms that allow us to extract these two types of information and their specific time-course of acquisition following initial contact with a new language. We report time-related electrophysiological changes that occurred while participants learned an artificial language. These changes strongly correlated with the discovery of the structural rules embedded in the words. These changes were clearly different from those related to word learning and occurred during the first minutes of exposition. There is a functional distinction in the nature of the electrophysiological signals during acquisition: an increase in negativity (N400) in the central electrodes is related to word-learning and development of a frontal positivity (P2) is related to rule-learning. In addition, the results of an online implicit and a post-learning test indicate that, once the rules of the language have been acquired, new words following the rule are processed as words of the language. By contrast, new words violating the rule induce syntax-related electrophysiological responses when inserted online in the stream (an early frontal negativity followed by a late posterior positivity) and clear lexical effects when presented in isolation (N400 modulation). The present study provides direct evidence suggesting that the mechanisms to extract words and structural dependencies from continuous speech are functionally segregated. When these mechanisms are engaged, the electrophysiological marker associated with rule-learning appears very quickly, during the earliest phases of exposition to a new language.

  6. Different neurophysiological mechanisms underlying word and rule extraction from speech.

    Directory of Open Access Journals (Sweden)

    Ruth De Diego Balaguer

    Full Text Available The initial process of identifying words from spoken language and the detection of more subtle regularities underlying their structure are mandatory processes for language acquisition. Little is known about the cognitive mechanisms that allow us to extract these two types of information and their specific time-course of acquisition following initial contact with a new language. We report time-related electrophysiological changes that occurred while participants learned an artificial language. These changes strongly correlated with the discovery of the structural rules embedded in the words. These changes were clearly different from those related to word learning and occurred during the first minutes of exposition. There is a functional distinction in the nature of the electrophysiological signals during acquisition: an increase in negativity (N400 in the central electrodes is related to word-learning and development of a frontal positivity (P2 is related to rule-learning. In addition, the results of an online implicit and a post-learning test indicate that, once the rules of the language have been acquired, new words following the rule are processed as words of the language. By contrast, new words violating the rule induce syntax-related electrophysiological responses when inserted online in the stream (an early frontal negativity followed by a late posterior positivity and clear lexical effects when presented in isolation (N400 modulation. The present study provides direct evidence suggesting that the mechanisms to extract words and structural dependencies from continuous speech are functionally segregated. When these mechanisms are engaged, the electrophysiological marker associated with rule-learning appears very quickly, during the earliest phases of exposition to a new language.

  7. Fetal ECG extraction via Type-2 adaptive neuro-fuzzy inference systems.

    Science.gov (United States)

    Ahmadieh, Hajar; Asl, Babak Mohammadzadeh

    2017-04-01

    We proposed a noninvasive method for separating the fetal ECG (FECG) from maternal ECG (MECG) by using Type-2 adaptive neuro-fuzzy inference systems. The method can extract FECG components from abdominal signal by using one abdominal channel, including maternal and fetal cardiac signals and other environmental noise signals, and one chest channel. The proposed algorithm detects the nonlinear dynamics of the mother's body. So, the components of the MECG are estimated from the abdominal signal. By subtracting estimated mother cardiac signal from abdominal signal, fetal cardiac signal can be extracted. This algorithm was applied on synthetic ECG signals generated based on the models developed by McSharry et al. and Behar et al. and also on DaISy real database. In environments with high uncertainty, our method performs better than the Type-1 fuzzy method. Specifically, in evaluation of the algorithm with the synthetic data based on McSharry model, for input signals with SNR of -5dB, the SNR of the extracted FECG was improved by 38.38% in comparison with the Type-1 fuzzy method. Also, the results show that increasing the uncertainty or decreasing the input SNR leads to increasing the percentage of the improvement in SNR of the extracted FECG. For instance, when the SNR of the input signal decreases to -30dB, our proposed algorithm improves the SNR of the extracted FECG by 71.06% with respect to the Type-1 fuzzy method. The same results were obtained on synthetic data based on Behar model. Our results on real database reflect the success of the proposed method to separate the maternal and fetal heart signals even if their waves overlap in time. Moreover, the proposed algorithm was applied to the simulated fetal ECG with ectopic beats and achieved good results in separating FECG from MECG. The results show the superiority of the proposed Type-2 neuro-fuzzy inference method over the Type-1 neuro-fuzzy inference and the polynomial networks methods, which is due to its

  8. Rule Extraction Algorithm for Deep Neural Networks: A Review

    OpenAIRE

    Hailesilassie, Tameru

    2016-01-01

    Despite the highest classification accuracy in wide varieties of application areas, artificial neural network has one disadvantage. The way this Network comes to a decision is not easily comprehensible. The lack of explanation ability reduces the acceptability of neural network in data mining and decision system. This drawback is the reason why researchers have proposed many rule extraction algorithms to solve the problem. Recently, Deep Neural Network (DNN) is achieving a profound result ove...

  9. Active suspension control of a one-wheel car model using single input rule modules fuzzy reasoning and a disturbance observer

    Institute of Scientific and Technical Information of China (English)

    YOSHIMURA Toshio; TERAMURA Itaru

    2005-01-01

    This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model.

  10. An Integrated Model for Optimization Oriented Decision Aiding and Rule Based Decision Making in Fuzzy Environment

    Directory of Open Access Journals (Sweden)

    A. Yousefli

    2014-01-01

    Full Text Available In this paper a fuzzy decision aid system is developed base on new concepts that presented in the field of fuzzy decision making in fuzzy environment (FDMFE. This framework aids decision makers to understand different circumstances of an uncertain problem that may occur in the future. Also, to keep decision maker from the optimization problem complexities, a decision support system, which can be replaced by optimization problem, is presented to make optimum or near optimum decisions without solving optimization problem directly. An application of the developed decision aid model and the decision support system is presented in the field of inventory models.

  11. Semi-automatic extraction of supra-glacial features using fuzzy logic approach for object-oriented classification on WorldView-2 imagery

    Science.gov (United States)

    Jawak, Shridhar D.; Palanivel, Yogesh V.; Alvarinho, Luis J.

    2016-04-01

    High resolution satellite data provide high spatial, spectral and contextual information. Spatial and contextual information of image objects are in demand to extract the information from high resolution satellite data. The supraglacial environment includes several features that are present on the surface of the glacier. The extraction of features from supraglacial environment is quite challenging using pixel-based image analysis. To overcome this, objectoriented approach is implemented. This paper aims at the extraction of geo-information from the supraglacial environment from high resolution satellite image by object-oriented image analysis using the fuzzy logic approach. The object-oriented image analysis involves the multiresolution segmentation for the creation of objects followed by the classification of objects using the fuzzy logic approach. The multiresolution segmentation is executed on the pixel level initially which merges pixels for the creation of objects thus minimizing their heterogeneity. This is followed by the development of rule sets for the classification of various features such as blue ice, debris, snow from the supraglacial environment in WorldView-2 data. The area of extracted feature is compared with the reference data and misclassified area of each feature using various bands is determined. The present object oriented classification achieved an overall accuracy of ≈ 92% for classifying supraglacial features. Finally, it is suggested that Red band is quite effective in the extraction of blue ice and snow, while NIR1 band is effective in debris extraction.

  12. Conditioning of high voltage radio frequency cavities by using fuzzy logic in connection with rule based programming

    CERN Document Server

    Perréard, S

    1993-01-01

    Many processes are controlled by experts using some kind of mental model to decide actions and make conclusions. This model, based on heuristic knowledge, can often be conveniently represented in rules and has not to be particularly accurate. This is the case for the problem of conditioning high voltage radio-frequency cavities: the expert has to decide, by observing some criteria, if he can increase or if he has to decrease the voltage and by how much. A program has been implemented which can be applied to a class of similar problems. The kernel of the program is a small rule base, which is independent of the kind of cavity. To model a specific cavity, we use fuzzy logic which is implemented as a separate routine called by the rule base. We use fuzzy logic to translate from numeric to symbolic information. The example we chose for applying this kind of technique can be implemented by sequential programming. The two versions exist for comparison. However, we believe that this kind of programming can be powerf...

  13. Multicriteria analysis of the hybrid systems with biogas: fuzzy set and rules; Analise multicriterio de sistemas hibridos com biogas: conjuntos e regras fuzzy

    Energy Technology Data Exchange (ETDEWEB)

    Barin, A.; Canha, L.; Abaide, A.; Magnago, K. [Federal University of Santa Maria (UFSM), RS (Brazil)], E-mail: chbarin@gmail.com; Machado, R. [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia], E-mail: rquadros@sel.eesc.usp.br

    2009-07-01

    A multicriteria analysis to manage de renewable sources of energy is presented, identifying the most appropriate hybrid system to be used as distributed generation of electric energy using biogas. In this methodology, fuzzy sets and rules are defined simulated in the software MATLAB, where the main characteristics of the operation and application of hybrid systems of electric power generation are considered. The main generation system, that can use the biogas, as micro turbines and fuel cells, are evaluated. Afterwards, the systems of energy storage are analyzed: flywheel, H{sub 2} storage and conventional and redox batteries. For the development of the proposed methodology, it was considered the following criteria: efficiency, costs, technological maturity, environmental impacts, the amplitude of the system action (power range), useful life, co-generation possibility and operation temperature. A classification, by priority order, for the use of the sources and storages associated to the environment and cost scenarios is also presented.

  14. An approach for environmental risk assessment of engineered nanomaterials using Analytical Hierarchy Process (AHP) and fuzzy inference rules.

    Science.gov (United States)

    Topuz, Emel; van Gestel, Cornelis A M

    2016-01-01

    The usage of Engineered Nanoparticles (ENPs) in consumer products is relatively new and there is a need to conduct environmental risk assessment (ERA) to evaluate their impacts on the environment. However, alternative approaches are required for ERA of ENPs because of the huge gap in data and knowledge compared to conventional pollutants and their unique properties that make it difficult to apply existing approaches. This study aims to propose an ERA approach for ENPs by integrating Analytical Hierarchy Process (AHP) and fuzzy inference models which provide a systematic evaluation of risk factors and reducing uncertainty about the data and information, respectively. Risk is assumed to be the combination of occurrence likelihood, exposure potential and toxic effects in the environment. A hierarchy was established to evaluate the sub factors of these components. Evaluation was made with fuzzy numbers to reduce uncertainty and incorporate the expert judgements. Overall score of each component was combined with fuzzy inference rules by using expert judgements. Proposed approach reports the risk class and its membership degree such as Minor (0.7). Therefore, results are precise and helpful to determine the risk management strategies. Moreover, priority weights calculated by comparing the risk factors based on their importance for the risk enable users to understand which factor is effective on the risk. Proposed approach was applied for Ag (two nanoparticles with different coating) and TiO2 nanoparticles for different case studies. Results verified the proposed benefits of the approach.

  15. Fuzzy logic

    Science.gov (United States)

    Zadeh, Lofti A.

    1988-01-01

    The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.

  16. Analysis of Aircraft Control Performance using a Fuzzy Rule Base Representation of the Cooper-Harper Aircraft Handling Quality Rating

    Science.gov (United States)

    Tseng, Chris; Gupta, Pramod; Schumann, Johann

    2006-01-01

    The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under

  17. Design and Implementation of Fuzzy Rule Based Expert System for Employees Performance Appraisal in IT Organizations

    Directory of Open Access Journals (Sweden)

    Ashima Aggarwal

    2014-07-01

    Full Text Available Performance Appraisal of employees plays a very critical role towards the growth of any organization. It has always been a tough task for any industry or organization as there is no unanimous scientific modus operandi for that. Performance Appraisal system is used to assess the capabilities and productiveness of the employees. In assessing employee performance, performance appraisal commonly includes assigning numerical values or linguistic labels to employees performance. However, the employee performance appraisal may include judgments which are based on imprecise data particularly when one employee tries to interpret another employee’s performance. Thus, the values assigned by the appraiser are only approximations and there is inherent vagueness in the evaluation. By fuzzy logic perspective, the performance of the appraisee includes the evaluation of his/her work ability, skills and adaptability which are absolutely fuzzy concepts that needs to be define in fuzzy terms. Hence, fuzzy approach can be used to examine these imprecise and uncertainty information. Consequently, the performance appraisal of employees can be accomplished by fuzzy logic approach and different defuzzification techniques are applied to rank the employees according to their performance, which shows inconsequential deviation in the rankings and hence proves the robustness of the system.

  18. Rule-Based Mamdani-Type Fuzzy Modeling of Perceived Stress, And Cortisol Responses to Awakening

    Directory of Open Access Journals (Sweden)

    P. Senthil Kumar

    2014-08-01

    Full Text Available In this paper, Two Mamdani type fuzzy models (four inputs–one output and two inputs–one output were developed to test the hypothesis that high job demands and low job control (job strain are associated with elevated free cortisol levels early in the working day and with reduced variability across the day and to evaluate the contribution of anger expression to this pattern. The models were derived from multiple data sources including One hundred five school teachers (41 men and 64 women classified 12 months earlier as high (N = 48 or low (N = 57 in job strain according to the demand/control model sampled saliva at 2-hour intervals from 8:00 to 8:30 hours to 22:00 to 22:30 hours on a working day. The quality of the model was determined by comparing predicted and actual fuzzy classification and defuzzification of the predicted outputs to get crisp values for correlating estimates with published values. A modified form of the Hamming distance measure is proposed to compare predicted and actual fuzzy classification. An entropy measure is used to describe the ambiguity associated with the predicted fuzzy outputs. The four input model predicted over 70% of the test data within one-half of a fuzzy class of the published data. The two input model predicted over 40% of the test data within one-half of a fuzzy class of the published data. Comparison of the models show that the four input model exhibited less entropy than the two input model.

  19. Design of operating rules in complex water resources systems using historical records, expert criteria and fuzzy logic

    Science.gov (United States)

    Pulido-Velazquez, Manuel; Macian-Sorribes, Hector; María Benlliure-Moreno, Jose; Fullana-Montoro, Juan

    2015-04-01

    Water resources systems in areas with a strong tradition in water use are complex to manage by the high amount of constraints that overlap in time and space, creating a complicated framework in which past, present and future collide between them. In addition, it is usual to find "hidden constraints" in system operations, which condition operation decisions being unnoticed by anyone but the river managers and users. Being aware of those hidden constraints requires usually years of experience and a degree of involvement in that system's management operations normally beyond the possibilities of technicians. However, their impact in the management decisions is strongly imprinted in the historical data records available. The purpose of this contribution is to present a methodology capable of assessing operating rules in complex water resources systems combining historical records and expert criteria. Both sources are coupled using fuzzy logic. The procedure stages are: 1) organize expert-technicians preliminary meetings to let the first explain how they manage the system; 2) set up a fuzzy rule-based system (FRB) structure according to the way the system is managed; 3) use the historical records available to estimate the inputs' fuzzy numbers, to assign preliminary output values to the FRB rules and to train and validate these rules; 4) organize expert-technician meetings to discuss the rule structure and the input's quantification, returning if required to the second stage; 5) once the FRB structure is accepted, its output values must be refined and completed with the aid of the experts by using meetings, workshops or surveys; 6) combine the FRB with a Decision Support System (DSS) to simulate the effect of those management decisions; 7) compare its results with the ones offered by the historical records and/or simulation or optimization models; and 8) discuss with the stakeholders the model performance returning, if it's required, to the fifth or the second stage

  20. FACE RECOGNITION USING FEATURE EXTRACTION AND NEURO-FUZZY TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Ritesh Vyas

    2012-09-01

    Full Text Available Face is a primary focus of attention in social intercourse, playing a major role in conveying identity and emotion. The human ability to recognize faces is remarkable. People can recognize thousands of faces learned throughout their lifetime and identify familiar faces at a glance even after years of separation. This skill is quite robust, despite large changes in the visual stimulus due to viewing conditions, expression, aging, and distractions such as glasses, beards or changes in hair style. In this work, a system is designed to recognize human faces depending on their facial features. Also to reveal the outline of the face, eyes and nose, edge detection technique has been used. Facial features are extracted in the form of distance between important feature points. After normalization, these feature vectors are learned by artificial neural network and used to recognize facial image.

  1. A Neuro-Fuzzy System for Extracting Environment Features Based on Ultrasonic Sensors

    Directory of Open Access Journals (Sweden)

    Evelio José González

    2009-12-01

    Full Text Available In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case.

  2. Developing an Intelligent Automatic Appendix Extraction Method from Ultrasonography Based on Fuzzy ART and Image Processing

    Directory of Open Access Journals (Sweden)

    Kwang Baek Kim

    2015-01-01

    Full Text Available Ultrasound examination (US does a key role in the diagnosis and management of the patients with clinically suspected appendicitis which is the most common abdominal surgical emergency. Among the various sonographic findings of appendicitis, outer diameter of the appendix is most important. Therefore, clear delineation of the appendix on US images is essential. In this paper, we propose a new intelligent method to extract appendix automatically from abdominal sonographic images as a basic building block of developing such an intelligent tool for medical practitioners. Knowing that the appendix is located at the lower organ area below the bottom fascia line, we conduct a series of image processing techniques to find the fascia line correctly. And then we apply fuzzy ART learning algorithm to the organ area in order to extract appendix accurately. The experiment verifies that the proposed method is highly accurate (successful in 38 out of 40 cases in extracting appendix.

  3. Feature selection of gas chromatography/mass spectrometry chemical profiles of basil plants using a bootstrapped fuzzy rule-building expert system.

    Science.gov (United States)

    Wang, Zhengfang; Harrington, Peter de B

    2013-11-01

    A bootstrapped fuzzy rule-building expert system (FuRES) and a bootstrapped t-statistical weight feature selection method were individually used to select informative features from gas chromatography/mass spectrometry (GC/MS) chemical profiles of basil plants cultivated by organic and conventional farming practices. Feature subsets were selected from two-way GC/MS data objects, total ion chromatograms, and total mass spectra, separately. Four economic classifiers based on the bootstrapped FuRES approach, i.e., fuzzy optimal associative memory (e-FOAM), e-FuRES, partial least-squares-discriminant analysis (e-PLS-DA), and soft independent modeling by class analogy (e-SIMCA), and four economic classifiers based on the bootstrapped t-weight approach, i.e., e-PLS-DA-t, e-FOAM-t, e-FuRES-t, and e-SIMCA-t, were constructed thereafter to be compared with full-size classifiers obtained from the entire GC/MS data objects (i.e., FOAM, FuRES, PLS-DA, and SIMCA). By using three features selected from two-way data objects, the average classification rates with e-FOAM, e-FuRES, e-PLS-DA, and e-SIMCA were 95.3 ± 0.5%, 100%, 100%, and 91.8 ± 0.2%, respectively. The established economic classifiers were used to classify a new validation set collected 2.5 months later with no parametric change to experimental procedure. Classification rates with e-FOAM, e-FuRES, e-PLS-DA, and e-SIMCA were 96.7%, 100%, 100%, and 96.7%, respectively. Characteristic components in basil extracts corresponding to highest-ranked useful features were putatively identified. The feature subset may prove valuable as a rapid approach for organic basil authentication.

  4. Fuzzy Hybrid Deliberative/Reactive Paradigm (FHDRP)

    Science.gov (United States)

    Sarmadi, Hengameth

    2004-01-01

    This work aims to introduce a new concept for incorporating fuzzy sets in hybrid deliberative/reactive paradigm. After a brief review on basic issues of hybrid paradigm the definition of agent-based fuzzy hybrid paradigm, which enables the agents to proceed and extract their behavior through quantitative numerical and qualitative knowledge and to impose their decision making procedure via fuzzy rule bank, is discussed. Next an example performs a more applied platform for the developed approach and finally an overview of the corresponding agents architecture enhances agents logical framework.

  5. Rule-based Mamdani-type fuzzy modelling of thermal performance of fintube evaporator under frost conditions

    Directory of Open Access Journals (Sweden)

    Ozen Dilek Nur

    2016-01-01

    Full Text Available Frost formation brings about insulating effects over the surface of a heat exchanger and thereby deteriorating total heat transfer of the heat exchanger. In this study, a fin-tube evaporator is modeled by making use of Rule-based Mamdani-Type Fuzzy (RBMTF logic where total heat transfer, air inlet temperature of 2 °C to 7 °C and four different fluid speed groups (ua1=1; 1.44; 1.88 m s-1, ua2=2.32; 2.76 m s-1, ua3=3.2; 3.64 m s-1, ua4=4.08; 4.52; 4.96 m s-1 for the evaporator were taken into consideration. In the developed RBMTF system, outlet parameter UA was determined using inlet parameters Ta and ua. The RBMTF was trained and tested by using MATLAB® fuzzy logic toolbox. R2 (% for the training data and test data were found to be 99.91%. With this study, it has been shown that RBMTF model can be reliably used in determination of a total heat transfer of a fin-tube evaporator.

  6. Invasion Rule Generation Based on Fuzzy Decision Tree%基于模糊决策树的入侵规则生成技术

    Institute of Scientific and Technical Information of China (English)

    郭洪荣

    2013-01-01

      计算机免疫系统模型GECISM中的类MC Agent,可有效的利用模糊决策树Fuzzy-Id3算法,将应用程序中系统调用视为数据集构造决策树,便会生成计算机免疫系统中入侵检测规则,并分析对比试验结束后的结果,利用Fuzzy-Id3算法所生成的规则对于未知数据的收集进行分类,具有低误报率、低漏报率。%Class MC Agent of computer immune system model GECISM can effectively use fuzzy decision-making tree Fuzzy-Id3 algorithm, consider the system call in application program as data set constructed decision-making tree, generate the invasion detection rules of computer immune system, and analyze comparison test results, use rules generated by Fuzzy-Id3 algorithm to classify for unknown data of collection, has low errors reported rate, and low omitted rate.

  7. A noninvasive method for coronary artery diseases diagnosis using a clinically-interpretable fuzzy rule-based system

    Directory of Open Access Journals (Sweden)

    Hamid Reza Marateb

    2015-01-01

    Full Text Available Background: Coronary heart diseases/coronary artery diseases (CHDs/CAD, the most common form of cardiovascular disease (CVD, are a major cause for death and disability in developing/developed countries. CAD risk factors could be detected by physicians to prevent the CAD occurrence in the near future. Invasive coronary angiography, a current diagnosis method, is costly and associated with morbidity and mortality in CAD patients. The aim of this study was to design a computer-based noninvasive CAD diagnosis system with clinically interpretable rules. Materials and Methods: In this study, the Cleveland CAD dataset from the University of California UCI (Irvine was used. The interval-scale variables were discretized, with cut points taken from the literature. A fuzzy rule-based system was then formulated based on a neuro-fuzzy classifier (NFC whose learning procedure was speeded up by the scaled conjugate gradient algorithm. Two feature selection (FS methods, multiple logistic regression (MLR and sequential FS, were used to reduce the required attributes. The performance of the NFC (without/with FS was then assessed in a hold-out validation framework. Further cross-validation was performed on the best classifier. Results: In this dataset, 16 complete attributes along with the binary CHD diagnosis (gold standard for 272 subjects (68% male were analyzed. MLR + NFC showed the best performance. Its overall sensitivity, specificity, accuracy, type I error (α and statistical power were 79%, 89%, 84%, 0.1 and 79%, respectively. The selected features were "age and ST/heart rate slope categories," "exercise-induced angina status," fluoroscopy, and thallium-201 stress scintigraphy results. Conclusion: The proposed method showed "substantial agreement" with the gold standard. This algorithm is thus, a promising tool for screening CAD patients.

  8. Multiple Adaptive Neuro-Fuzzy Inference System with Automatic Features Extraction Algorithm for Cervical Cancer Recognition

    Directory of Open Access Journals (Sweden)

    Mohammad Subhi Al-batah

    2014-01-01

    Full Text Available To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL and high-grade squamous intraepithelial lesion (HSIL. The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy.

  9. Fuzzy nonlinear proximal support vector machine for land extraction based on remote sensing image.

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhong

    Full Text Available Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM by basing on ETM(+ remote sensing image. This algorithm is applied to extract various types of lands of the city Da'an in northern China. Two multi-category strategies, namely "one-against-one" and "one-against-rest" for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient, stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC, back propagation neural network (BPN, and the proximal support vector machine (PSVM under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments.

  10. Fuzzy Models to Deal with Sensory Data in Food Industry

    Institute of Scientific and Technical Information of China (English)

    Serge Guillaume; Brigitte Charnomordic

    2004-01-01

    Sensory data are, due to the lack of an absolute reference, imprecise and uncertain data. Fuzzy logic can handle uncertainty and can be used in approximate reasoning. Automatic learning procedures allow to generate fuzzy reasoning rules from data including numerical and symbolic or sensory variables. We briefly present an induction method that was developed to extract qualitative knowledge from data samples. The induction process is run under interpretability constraints to ensure the fuzzy rules have a meaning for the human expert. We then study two applied problems in the food industry: sensory evaluation and process modeling.

  11. Expert and stakeholder perception: Extracting value from survey data using fuzzy logic

    Energy Technology Data Exchange (ETDEWEB)

    Waters, D.; Grindrod, P.; Yousaf, F. [QuantiSci Ltd., Thames (United Kingdom)

    1996-12-31

    The assessment of stakeholder perception and quantitative understanding of respondent data concerning radiological risks is very important for the success of many radioactive waste management programmes. The traditional approach often relies on expert opinions and the use of standard statistical techniques to post process survey results. Such techniques require a number of underlying assumptions (e.g. independence, correlation) to ensure the application of the method is appropriate. The human perception process does not always allow attribute exchangeability, often permitted in statistical approaches. Hence, such snapshots are of limited use for predictive purposes. The most robust procedure is to assess the perceptions and attitudes from a range of respondents including: nuclear safety experts, scientists, public, public in close proximity to potential nuclear sites, and pressure groups. This should be done in a way that identifies whether any underlying logic (inferential rules, linking attributes to response) is exhibited, which could be anticipated or managed in the future. This will ensure all impacting views are incorporated and so lead to a focused information dissemination and communication strategy that will promote positive stakeholder response. The authors propose to analyse the process by which individuals formulate their response to perceived risks. Two sample data sets will be discussed to illustrate how inferential rules can be sought by applying AI techniques based on fuzzy logic. This framework is suited to the subjective, context-dependent, non-unique, classification of attributes and concepts involved in a cognitive approach to perception. Inferences are represented by memberships in hierarchical fuzzy sets. Such a hierarchy is inferred from the relative strengths of different attributes. The objective is to investigate individual evaluation and response to risks within and across different focus groups.

  12. Extraction of Coastlines with Fuzzy Approach Using SENTINEL-1 SAR Image

    Science.gov (United States)

    Demir, N.; Kaynarca, M.; Oy, S.

    2016-06-01

    Coastlines are important features for water resources, sea products, energy resources etc. Coastlines are changed dynamically, thus automated methods are necessary for analysing and detecting the changes along the coastlines. In this study, Sentinel-1 C band SAR image has been used to extract the coastline with fuzzy logic approach. The used SAR image has VH polarisation and 10x10m. spatial resolution, covers 57 sqkm area from the south-east of Puerto-Rico. Additionally, radiometric calibration is applied to reduce atmospheric and orbit error, and speckle filter is used to reduce the noise. Then the image is terrain-corrected using SRTM digital surface model. Classification of SAR image is a challenging task since SAR and optical sensors have very different properties. Even between different bands of the SAR sensors, the images look very different. So, the classification of SAR image is difficult with the traditional unsupervised methods. In this study, a fuzzy approach has been applied to distinguish the coastal pixels than the land surface pixels. The standard deviation and the mean, median values are calculated to use as parameters in fuzzy approach. The Mean-standard-deviation (MS) Large membership function is used because the large amounts of land and ocean pixels dominate the SAR image with large mean and standard deviation values. The pixel values are multiplied with 1000 to easify the calculations. The mean is calculated as 23 and the standard deviation is calculated as 12 for the whole image. The multiplier parameters are selected as a: 0.58, b: 0.05 to maximize the land surface membership. The result is evaluated using airborne LIDAR data, only for the areas where LIDAR dataset is available and secondly manually digitized coastline. The laser points which are below 0,5 m are classified as the ocean points. The 3D alpha-shapes algorithm is used to detect the coastline points from LIDAR data. Minimum distances are calculated between the LIDAR points of

  13. Fuzzy rule-based model for optimum orientation of solar panels using satellite image processing

    Science.gov (United States)

    Zaher, A.; N'goran, Y.; Thiery, F.; Grieu, S.; Traoré, A.

    2017-01-01

    In solar energy converting systems, a particular attention is paid to the orientation of solar collectors in order to optimize the overall system efficiency. In this context, the collectors can be fixed or oriented by a continuous solar tracking system. The proposed approach is based on METEOSAT images processing in order to detect the cloud coverage and its duration. These two parameters are treated by a fuzzy inference system deciding the optimal position of the solar panel. In fact, three weather cases can be considered: clear, partly covered or overcast sky. In the first case, the direct sunlight is more important than the diffuse radiation, thus the panel is always pointed towards the sun. In the overcast case, the solar beam is close to zero and the panel is placed horizontally to receive the diffuse radiation. Under partly covered conditions, the fuzzy inference system decides which of the previous positions is more efficient. The proposed approach is implemented using experimental prototype located in Perpignan (France). On a period of 17 months, the results are very satisfactory, with power gains of up to 23 % compared to the collectors oriented by a continuous solar tracking.

  14. Development of Real Time Implementation of 5/5 Rule based Fuzzy Logic Controller Shunt Active Power Filter for Power Quality Improvement

    Science.gov (United States)

    Puhan, Pratap Sekhar; Ray, Pravat Kumar; Panda, Gayadhar

    2016-12-01

    This paper presents the effectiveness of 5/5 Fuzzy rule implementation in Fuzzy Logic Controller conjunction with indirect control technique to enhance the power quality in single phase system, An indirect current controller in conjunction with Fuzzy Logic Controller is applied to the proposed shunt active power filter to estimate the peak reference current and capacitor voltage. Current Controller based pulse width modulation (CCPWM) is used to generate the switching signals of voltage source inverter. Various simulation results are presented to verify the good behaviour of the Shunt active Power Filter (SAPF) with proposed two levels Hysteresis Current Controller (HCC). For verification of Shunt Active Power Filter in real time, the proposed control algorithm has been implemented in laboratory developed setup in dSPACE platform.

  15. Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG

    Directory of Open Access Journals (Sweden)

    Ming-ai Li

    2017-01-01

    Full Text Available Electroencephalography (EEG is considered the output of a brain and it is a bioelectrical signal with multiscale and nonlinear properties. Motor Imagery EEG (MI-EEG not only has a close correlation with the human imagination and movement intention but also contains a large amount of physiological or disease information. As a result, it has been fully studied in the field of rehabilitation. To correctly interpret and accurately extract the features of MI-EEG signals, many nonlinear dynamic methods based on entropy, such as Approximate Entropy (ApEn, Sample Entropy (SampEn, Fuzzy Entropy (FE, and Permutation Entropy (PE, have been proposed and exploited continuously in recent years. However, these entropy-based methods can only measure the complexity of MI-EEG based on a single scale and therefore fail to account for the multiscale property inherent in MI-EEG. To solve this problem, Multiscale Sample Entropy (MSE, Multiscale Permutation Entropy (MPE, and Multiscale Fuzzy Entropy (MFE are developed by introducing scale factor. However, MFE has not been widely used in analysis of MI-EEG, and the same parameter values are employed when the MFE method is used to calculate the fuzzy entropy values on multiple scales. Actually, each coarse-grained MI-EEG carries the characteristic information of the original signal on different scale factors. It is necessary to optimize MFE parameters to discover more feature information. In this paper, the parameters of MFE are optimized independently for each scale factor, and the improved MFE (IMFE is applied to the feature extraction of MI-EEG. Based on the event-related desynchronization (ERD/event-related synchronization (ERS phenomenon, IMFE features from multi channels are fused organically to construct the feature vector. Experiments are conducted on a public dataset by using Support Vector Machine (SVM as a classifier. The experiment results of 10-fold cross-validation show that the proposed method yields

  16. Hidden Web Data Extraction Using Dynamic Rule Generation

    Directory of Open Access Journals (Sweden)

    Anuradha

    2011-08-01

    Full Text Available World Wide Web is a global information medium of interlinked hypertext documents accessed via computers connected to the internet. Most of the users rely on traditional search engines to search theinformation on the web. These search engines deal with the Surface Web which is a set of Web pages directly accessible through hyperlinks and ignores a large part of the Web called Hidden Web which is hidden to present-day search engines. It lies behind search forms and this part of the web containing an almost endless amount of sources providing high quality information stored in specialized databases can be found in the depths of the WWW. A large amount of this Hidden web is structured i.e Hidden websites contain the information in the form of lists and tables. However visiting dozens of these sites and analyzing the results is very much time consuming task for user. Hence, it is desirable to build a prototype which will minimize user’s effort and give him high quality information in integrated form. This paper proposes a novel method that extracts the data records from the lists and tables of various hidden web sites of same domain using dynamic rule generation and forms a repository which is used for later searching. By searching the data from this repository, user will find the desired data at one place. It reduces the user’s effort to look at various result pages of different hidden websites.

  17. Knowledge-based systems as decision support tools in an ecosystem approach to fisheries: Comparing a fuzzy-logic and rule-based approach

    DEFF Research Database (Denmark)

    Jarre, Astrid; Paterson, B.; Moloney, C.L.

    2008-01-01

    In an ecosystem approach to fisheries (EAF), management must draw on information of widely different types, and information addressing various scales. Knowledge-based systems assist in the decision-making process by summarising this information in a logical, transparent and reproducible way. Both...... decision support tools in our evaluation of the two approaches. With respect to the model objectives, no method clearly outperformed the other. The advantages of numerically processing continuous variables, and interpreting the final output. as in fuzzy-logic models, can be weighed up against...... the advantages of using a few, qualitative, easy-to-understand categories as in rule-based models. The natural language used in rule-based implementations is easily understood by, and communicated among, users of these systems. Users unfamiliar with fuzzy-set theory must "trust" the logic of the model. Graphical...

  18. Using Fuzzy Logical Rule to Control the rooms Temperature%用模糊智能规律控制房间温度

    Institute of Scientific and Technical Information of China (English)

    王凌云; 徐菱虹

    2000-01-01

    叙述了房间温度控制器的重要性,分析了传统控制方法的特性和缺点。提出了房间温度模糊智能控制的方法,并给出了模糊智能规则的具体构造和仿真结果。%This paper narrates the importance of the room temperature controller,analyzes the characteristics and the defect of traditional temperature control methodsPut forward a method using fuzzy logical rule to control the room temperature,and give out the rule of fuzzy inference and a sample of computer emulation

  19. Membership Functions for Fuzzy Focal Elements

    Directory of Open Access Journals (Sweden)

    Porębski Sebastian

    2016-09-01

    Full Text Available The paper presents a study on data-driven diagnostic rules, which are easy to interpret by human experts. To this end, the Dempster-Shafer theory extended for fuzzy focal elements is used. Premises of the rules (fuzzy focal elements are provided by membership functions which shapes are changing according to input symptoms. The main aim of the present study is to evaluate common membership function shapes and to introduce a rule elimination algorithm. Proposed methods are first illustrated with the popular Iris data set. Next experiments with five medical benchmark databases are performed. Results of the experiments show that various membership function shapes provide different inference efficiency but the extracted rule sets are close to each other. Thus indications for determining rules with possible heuristic interpretation can be formulated.

  20. A fuzzy-based approach for open-transistor fault diagnosis in voltage-source inverter induction motor drives

    Science.gov (United States)

    Zhang, Jianghan; Luo, Hui; Zhao, Jin; Wu, Feng

    2015-02-01

    This paper develops a novel method for the detection and isolation of open-transistor faults in voltage-source inverters feeding induction motors. Based on analyzing the load currents trajectories after Concordia transformation, six diagnostic signals each of which indicates a certain switch are extracted and a fuzzy rule base is designed to perform fuzzy reasoning in order to detect and isolate 21 fault modes including single- and double-transistor faults. In addition, the fuzzy rules are rearranged and each of them is set to a reasonable value representing the fault modes. The simulation and experiment are carried out to demonstrate the effectiveness of the proposed fuzzy approach.

  1. Control of Flexible Joint Manipulator via Variable Structure Rule-Based Fuzzy Control and Chaos Anti-Control with Experimental Validation

    Directory of Open Access Journals (Sweden)

    Mojtaba Rostami Kandroodi

    2014-03-01

    Full Text Available This paper presents a variable structure rule-based fuzzy control for trajectory tracking and vibration control of a flexible joint manipulator by using chaotic anti-control. Based on Lyapunov stability theory for variable structure control and fuzzy rules, the nonlinear controller and some generic sufficient conditions for global asymptotic control are attained. The fuzzy rules are directly constructed subject to a Lyapunov function obtained from variable structure surfaces such that the error dynamics of control problem satisfy stability in the Lyapunov sense. Also in this study, the anti-control is applied to reduce the deflection angle of flexible joint system. To achieve this goal, the chaos dynamic must be created in the flexible joint system. So, the flexible joint system has been synchronized to chaotic gyroscope system. In this study, control and anti-control concepts are applied to achieve the high quality performance of flexible joint system. It is tried to design a controller which is capable to satisfy the control and anti- control aims. The performances of the proposed control are examined in terms of input tracking capability, level of vibration reduction and time response specifications. Finally, the efficacy of the proposed method is validated through experimentation on QUANSER’s flexible-joint manipulator.

  2. Object Boundary Detection Using Active Contour Model via Multiswarm PSO with Fuzzy-Rule Based Adaptation of Inertia Factor

    Directory of Open Access Journals (Sweden)

    Ajay Khunteta

    2016-01-01

    Full Text Available Active contour models, colloquially known as snakes, are quite popular for several applications such as object boundary detection, image segmentation, object tracking, and classification via energy minimization. While energy minimization may be accomplished using traditional optimization methods, approaches based on nature-inspired evolutionary algorithms have been developed in recent years. One such evolutionary algorithm that has been used extensively in active contours is the particle swarm optimization (PSO. However, conventional PSO converges slowly and gets trapped in local minimum easily which results in inaccurate detection of concavities in the object boundary. This is taken care of by using proposed multiswarm PSO in which a swarm is set for every control point in the snake and then all the swarms search for their best points simultaneously through information sharing among them. The performance of the multiswarm PSO-based search process is further enhanced by using dynamic adaptation of the inertia factor. In this paper, we propose using a set of fuzzy rules to adjust the inertia weight on the basis of the current normalized snake energy and the current value of inertia. Experimental results demonstrate the effectiveness of the proposed method compared to conventional approaches.

  3. Predicting a Containership's Arrival Punctuality in Liner Operations by Using a Fuzzy Rule-Based Bayesian Network (FRBBN

    Directory of Open Access Journals (Sweden)

    Nurul Haqimin Mohd Salleh

    2017-07-01

    Full Text Available One of the biggest concerns in liner operations is punctuality of containerships. Managing the time factor has become a crucial issue in today's liner shipping operations. A statistic in 2015 showed that the overall punctuality for containerships only reached an on-time performance of 73%. However, vessel punctuality is affected by many factors such as the port and vessel conditions and knock-on effects of delays. As a result, this paper develops a model for analyzing and predicting the arrival punctuality of a liner vessel at ports of call under uncertain environments by using a hybrid decision-making technique, the Fuzzy Rule-Based Bayesian Network (FRBBN. In order to ensure the practicability of the model, two container vessels have been tested by using the proposed model. The results have shown that the differences between prediction values and real arrival times are only 4.2% and 6.6%, which can be considered as reasonable. This model is capable of helping liner shipping operators (LSOs to predict the arrival punctuality of their vessel at a particular port of call.

  4. Fuzzy Controlled Parallel PSO to Solving Large Practical Economic Dispatch

    OpenAIRE

    Mahdad, Belkacem; Srairi, Kamel; BOUKTIR, Tarek; Benbouzid, Mohamed

    2010-01-01

    International audience; This paper proposes a version of fuzzy controlled parallel particle swarm optimization approach based decomposed network (FCP-PSO) to solve large nonconvex economic dispatch problems. The proposed approach combines practical experience extracted from global database formulated in fuzzy rules to adjust dynamically the three parameters associated to PSO mechanism search. The adaptive PSO executed in parallel based in decomposed network procedure as a local search to expl...

  5. EXTRACTION OF COASTLINES WITH FUZZY APPROACH USING SENTINEL-1 SAR IMAGE

    Directory of Open Access Journals (Sweden)

    N. Demir

    2016-06-01

    Full Text Available Coastlines are important features for water resources, sea products, energy resources etc. Coastlines are changed dynamically, thus automated methods are necessary for analysing and detecting the changes along the coastlines. In this study, Sentinel-1 C band SAR image has been used to extract the coastline with fuzzy logic approach. The used SAR image has VH polarisation and 10x10m. spatial resolution, covers 57 sqkm area from the south-east of Puerto-Rico. Additionally, radiometric calibration is applied to reduce atmospheric and orbit error, and speckle filter is used to reduce the noise. Then the image is terrain-corrected using SRTM digital surface model. Classification of SAR image is a challenging task since SAR and optical sensors have very different properties. Even between different bands of the SAR sensors, the images look very different. So, the classification of SAR image is difficult with the traditional unsupervised methods. In this study, a fuzzy approach has been applied to distinguish the coastal pixels than the land surface pixels. The standard deviation and the mean, median values are calculated to use as parameters in fuzzy approach. The Mean-standard-deviation (MS Large membership function is used because the large amounts of land and ocean pixels dominate the SAR image with large mean and standard deviation values. The pixel values are multiplied with 1000 to easify the calculations. The mean is calculated as 23 and the standard deviation is calculated as 12 for the whole image. The multiplier parameters are selected as a: 0.58, b: 0.05 to maximize the land surface membership. The result is evaluated using airborne LIDAR data, only for the areas where LIDAR dataset is available and secondly manually digitized coastline. The laser points which are below 0,5 m are classified as the ocean points. The 3D alpha-shapes algorithm is used to detect the coastline points from LIDAR data. Minimum distances are calculated between the

  6. Dynamic compensatory pattern matching in a fuzzy rule-based control system

    Science.gov (United States)

    Sun, Chuen-Tsai

    1991-01-01

    A dynamic compensatory matching procedure is suggested as a method to generate an aggregated measure for evaluating the appropriateness of rules for control systems. It is a dynamic weighted matching technique which takes into account incomplete information under real-time requirements. The initial weights of importance of variables are generated with a generalized neural network architecture and a gradient descent algorithm. An intuitive compensatory scheme based on correlations among input variables of training data is adopted so that the system is coherent to a noisy environment.

  7. Fuzzy Boundary and Fuzzy Semiboundary

    OpenAIRE

    Athar, M.; Ahmad, B.

    2008-01-01

    We present several properties of fuzzy boundary and fuzzy semiboundary which have been supported by examples. Properties of fuzzy semi-interior, fuzzy semiclosure, fuzzy boundary, and fuzzy semiboundary have been obtained in product-related spaces. We give necessary conditions for fuzzy continuous (resp., fuzzy semicontinuous, fuzzy irresolute) functions. Moreover, fuzzy continuous (resp., fuzzy semicontinuous, fuzzy irresolute) functions have been characterized via fuzzy-derived (resp., fuzz...

  8. An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination.

    Science.gov (United States)

    Lin, Chin-Teng; Pal, Nikhil R; Wu, Shang-Lin; Liu, Yu-Ting; Lin, Yang-Yin

    2015-07-01

    We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance.

  9. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines.

    Science.gov (United States)

    Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B

    2010-11-01

    Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

  10. Attentional effects on rule extraction and consolidation from speech

    Science.gov (United States)

    López-Barroso, Diana; Cucurell, David; Rodríguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2016-01-01

    Incidental learning plays a crucial role in the initial phases of language acquisition. However the knowledge derived from implicit learning, which is based on prediction-based mechanisms, may become explicit. The role that attention plays in the formation of implicit and explicit knowledge of the learned material is unclear. In the present study, we investigated the role that attention plays in the acquisition of non-adjacent rule learning from speech. In addition, we also tested whether the amount of attention during learning changes the representation of the learned material after a 24 h delay containing sleep. For that, we developed an experiment run on two consecutive days consisting on the exposure to an artificial language that contained non-adjacent dependencies (rules) between words whereas different conditions were established to manipulate the amount of attention given to the rules (target and non-target conditions). Furthermore, we used both indirect and direct measures of learning that are more sensitive to implicit and explicit knowledge, respectively. Whereas the indirect measures indicated that learning of the rules occurred regardless of attention, more explicit judgments after learning showed differences in the type of learning reached under the two attention conditions. 24 hours later, indirect measures showed no further improvements during additional language exposure and explicit judgments indicated that only the information more robustly learned in the previous day, was consolidated. PMID:27031495

  11. Predictive fuzzy reasoning method for time series stock market data mining

    Science.gov (United States)

    Khokhar, Rashid H.; Md Sap, Mohd Noor

    2005-03-01

    Data mining is able to uncover hidden patterns and predict future trends and behaviors in financial markets. In this research we approach quantitative time series stock selection as a data mining problem. We present another modification of extraction of weighted fuzzy production rules (WFPRs) from fuzzy decision tree by using proposed similarity-based fuzzy reasoning method called predictive reasoning (PR) method. In proposed predictive reasoning method weight parameter can be assigned to each proposition in the antecedent of a fuzzy production rule (FPR) and certainty factor (CF) to each rule. Certainty factors are calculated by using some important variables like effect of other companies, effect of other local stock market, effect of overall world situation, and effect of political situation from stock market. The predictive FDT has been tested using three data sets including KLSE, NYSE and LSE. The experimental results show that WFPRs rules have high learning accuracy and also better predictive accuracy of stock market time series data.

  12. Navigating a Mobile Robot Across Terrain Using Fuzzy Logic

    Science.gov (United States)

    Seraji, Homayoun; Howard, Ayanna; Bon, Bruce

    2003-01-01

    A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.

  13. Fuzzy Logic-Based Audio Pattern Recognition

    Science.gov (United States)

    Malcangi, M.

    2008-11-01

    Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.

  14. A methodology for extracting knowledge rules from artificial neural networks applied to forecast demand for electric power; Uma metodologia para extracao de regras de conhecimento a partir de redes neurais artificiais aplicadas para previsao de demanda por energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Steinmetz, Tarcisio; Souza, Glauber; Ferreira, Sandro; Santos, Jose V. Canto dos; Valiati, Joao [Universidade do Vale do Rio dos Sinos (PIPCA/UNISINOS), Sao Leopoldo, RS (Brazil). Programa de Pos-Graduacao em Computacao Aplicada], Emails: trsteinmetz@unisinos.br, gsouza@unisinos.br, sferreira, jvcanto@unisinos.br, jfvaliati@unisinos.br

    2009-07-01

    We present a methodology for the extraction of rules from Artificial Neural Networks (ANN) trained to forecast the electric load demand. The rules have the ability to express the knowledge regarding the behavior of load demand acquired by the ANN during the training process. The rules are presented to the user in an easy to read format, such as IF premise THEN consequence. Where premise relates to the input data submitted to the ANN (mapped as fuzzy sets), and consequence appears as a linear equation describing the output to be presented by the ANN, should the premise part holds true. Experimentation demonstrates the method's capacity for acquiring and presenting high quality rules from neural networks trained to forecast electric load demand for several amounts of time in the future. (author)

  15. Fuzzy Logic Engine

    Science.gov (United States)

    Howard, Ayanna

    2005-01-01

    The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.

  16. 基于公理化模糊集语义图像层次关联规则分类器%Semantic image classifier based on hierarchical association rule with axiomatic fuzzy set

    Institute of Scientific and Technical Information of China (English)

    韦容; 申希兵; 杨毅

    2016-01-01

    In order to improve the performance of semantic image classification, the semantic image classifier based on hierarchical association rule with axiomatic fuzzy set is proposed. Firstly, in order to improve the accuracy of the algorithm, the image data set for feature extraction is constructed based on the axiomatic theory(AFS)to realize AFS image sets fuzzy concept expression, which improves the image set attribute recognition. Secondly, in order to improve the computa-tional efficiency of the algorithm, the hierarchical structure association rules are considered, and it constructs the semantic image classifier, which uses the ontology information to improve the ability of parallel classification. Finally, through the comparison of the algorithm parameters and the horizontal contrast, the results show that the proposed algorithm has high accuracy and computational efficiency.%为提高语义图像分类器性能,提出一种基于公理化模糊集的语义图像层次关联规则分类器。首先,为提高算法精度,在对图像数据集进行特征提取基础上,采用公理化理论(AFS)构建图像集模糊概念的AFS属性表达,提高图像集属性辨识度;其次,为提高算法计算效率,考虑采用层次结构关联规则,构建语义图像分类器,利用概念之间的本体信息,提高并行分类能力;最后,通过对算法参数及横向对比实验,显示所提算法具有较高的计算精度和计算效率。

  17. A fuzzy logic system for seizure onset detection in intracranial EEG.

    Science.gov (United States)

    Rabbi, Ahmed Fazle; Fazel-Rezai, Reza

    2012-01-01

    We present a multistage fuzzy rule-based algorithm for epileptic seizure onset detection. Amplitude, frequency, and entropy-based features were extracted from intracranial electroencephalogram (iEEG) recordings and considered as the inputs for a fuzzy system. These features extracted from multichannel iEEG signals were combined using fuzzy algorithms both in feature domain and in spatial domain. Fuzzy rules were derived based on experts' knowledge and reasoning. An adaptive fuzzy subsystem was used for combining characteristics features extracted from iEEG. For the spatial combination, three channels from epileptogenic zone and one from remote zone were considered into another fuzzy subsystem. Finally, a threshold procedure was applied to the fuzzy output derived from the final fuzzy subsystem. The method was evaluated on iEEG datasets selected from Freiburg Seizure Prediction EEG (FSPEEG) database. A total of 112.45 hours of intracranial EEG recordings was selected from 20 patients having 56 seizures was used for the system performance evaluation. The overall sensitivity of 95.8% with false detection rate of 0.26 per hour and average detection latency of 15.8 seconds was achieved.

  18. Rule set transferability for object-based feature extraction

    NARCIS (Netherlands)

    Anders, N.S.; Seijmonsbergen, Arie C.; Bouten, Willem

    2015-01-01

    Cirques are complex landforms resulting from glacial erosion and can be used to estimate Equilibrium Line Altitudes and infer climate history. Automated extraction of cirques may help research on glacial geomorphology and climate change. Our objective was to test the transferability of an object-

  19. Rule set transferability for object-based feature extraction

    NARCIS (Netherlands)

    Anders, N.S.; Seijmonsbergen, Arie C.; Bouten, Willem

    2015-01-01

    Cirques are complex landforms resulting from glacial erosion and can be used to estimate Equilibrium Line Altitudes and infer climate history. Automated extraction of cirques may help research on glacial geomorphology and climate change. Our objective was to test the transferability of an

  20. Fuzzy social choice theory

    CERN Document Server

    B Gibilisco, Michael; E Albert, Karen; N Mordeson, John; J Wierman, Mark; D Clark, Terry

    2014-01-01

    This book offers a comprehensive analysis of the social choice literature and shows, by applying fuzzy sets, how the use of fuzzy preferences, rather than that of strict ones, may affect the social choice theorems. To do this, the book explores the presupposition of rationality within the fuzzy framework and shows that the two conditions for rationality, completeness and transitivity, do exist with fuzzy preferences. Specifically, this book examines: the conditions under which a maximal set exists; the Arrow’s theorem;  the Gibbard-Satterthwaite theorem; and the median voter theorem.  After showing that a non-empty maximal set does exists for fuzzy preference relations, this book goes on to demonstrating the existence of a fuzzy aggregation rule satisfying all five Arrowian conditions, including non-dictatorship. While the Gibbard-Satterthwaite theorem only considers individual fuzzy preferences, this work shows that both individuals and groups can choose alternatives to various degrees, resulting in a so...

  1. Fuzzy Control Tutorial

    DEFF Research Database (Denmark)

    Dotoli, M.; Jantzen, Jan

    1999-01-01

    The tutorial concerns automatic control of an inverted pendulum, especially rule based control by means of fuzzy logic. A ball balancer, implemented in a software simulator in Matlab, is used as a practical case study. The objectives of the tutorial are to teach the basics of fuzzy control......, and to show how to apply fuzzy logic in automatic control. The tutorial is distance learning, where students interact one-to-one with the teacher using e-mail....

  2. Fuzzy Control Tutorial

    DEFF Research Database (Denmark)

    Dotoli, M.; Jantzen, Jan

    1999-01-01

    The tutorial concerns automatic control of an inverted pendulum, especially rule based control by means of fuzzy logic. A ball balancer, implemented in a software simulator in Matlab, is used as a practical case study. The objectives of the tutorial are to teach the basics of fuzzy control, and t......, and to show how to apply fuzzy logic in automatic control. The tutorial is distance learning, where students interact one-to-one with the teacher using e-mail....

  3. Design of Fuzzy Controllers

    DEFF Research Database (Denmark)

    Jantzen, Jan

    1998-01-01

    Design of a fuzzy controller requires more design decisions than usual, for example regarding rule base, inference engine, defuzzification, and data pre- and post processing. This tutorial paper identifies and describes the design choices related to single-loop fuzzy control, based...... on an international standard which is underway. The paper contains also a design approach, which uses a PID controller as a starting point. A design engineer can view the paper as an introduction to fuzzy controller design....

  4. FAULT DIAGNOSIS OF ROTATING MACHINERY USING KNOWLEDGE-BASED FUZZY NEURAL NETWORK

    Institute of Scientific and Technical Information of China (English)

    LI Ru-qiang; CHEN Jin; WU Xing

    2006-01-01

    A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery.Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.

  5. Extracting multistage screening rules from online dating activity data.

    Science.gov (United States)

    Bruch, Elizabeth; Feinberg, Fred; Lee, Kee Yeun

    2016-09-20

    This paper presents a statistical framework for harnessing online activity data to better understand how people make decisions. Building on insights from cognitive science and decision theory, we develop a discrete choice model that allows for exploratory behavior and multiple stages of decision making, with different rules enacted at each stage. Critically, the approach can identify if and when people invoke noncompensatory screeners that eliminate large swaths of alternatives from detailed consideration. The model is estimated using deidentified activity data on 1.1 million browsing and writing decisions observed on an online dating site. We find that mate seekers enact screeners ("deal breakers") that encode acceptability cutoffs. A nonparametric account of heterogeneity reveals that, even after controlling for a host of observable attributes, mate evaluation differs across decision stages as well as across identified groupings of men and women. Our statistical framework can be widely applied in analyzing large-scale data on multistage choices, which typify searches for "big ticket" items.

  6. Extract Rules by Using Rough Set and Knowledge—Based NN

    Institute of Scientific and Technical Information of China (English)

    王士同; E.Scott; 等

    1998-01-01

    In this paper,rough set theory is used to extract roughly-correct inference rules from information systems.Based on this idea,the learning algorithm ERCR is presented.In order to refine the learned roughly-correct inference rules,the knowledge-based neural network is used.The method presented here sufficiently combines the advantages of rough set theory and neural network.

  7. Tutorial On Fuzzy Logic

    DEFF Research Database (Denmark)

    Jantzen, Jan

    1998-01-01

    A logic based on the two truth values True and False is sometimes inadequate when describing human reasoning. Fuzzy logic uses the whole interval between 0 (False) and 1 (True) to describe human reasoning. As a result, fuzzy logic is being applied in rule based automatic controllers, and this paper...

  8. Incorporation of expert variability into breast cancer treatment recommendation in designing clinical protocol guided fuzzy rule system models.

    Science.gov (United States)

    Garibaldi, Jonathan M; Zhou, Shang-Ming; Wang, Xiao-Ying; John, Robert I; Ellis, Ian O

    2012-06-01

    It has been often demonstrated that clinicians exhibit both inter-expert and intra-expert variability when making difficult decisions. In contrast, the vast majority of computerized models that aim to provide automated support for such decisions do not explicitly recognize or replicate this variability. Furthermore, the perfect consistency of computerized models is often presented as a de facto benefit. In this paper, we describe a novel approach to incorporate variability within a fuzzy inference system using non-stationary fuzzy sets in order to replicate human variability. We apply our approach to a decision problem concerning the recommendation of post-operative breast cancer treatment; specifically, whether or not to administer chemotherapy based on assessment of five clinical variables: NPI (the Nottingham Prognostic Index), estrogen receptor status, vascular invasion, age and lymph node status. In doing so, we explore whether such explicit modeling of variability provides any performance advantage over a more conventional fuzzy approach, when tested on a set of 1310 unselected cases collected over a fourteen year period at the Nottingham University Hospitals NHS Trust, UK. The experimental results show that the standard fuzzy inference system (that does not model variability) achieves overall agreement to clinical practice around 84.6% (95% CI: 84.1-84.9%), while the non-stationary fuzzy model can significantly increase performance to around 88.1% (95% CI: 88.0-88.2%), p<0.001. We conclude that non-stationary fuzzy models provide a valuable new approach that may be applied to clinical decision support systems in any application domain.

  9. Ant-based extraction of rules in simple decision systems over ontological graphs

    Directory of Open Access Journals (Sweden)

    Pancerz Krzysztof

    2015-06-01

    Full Text Available In the paper, the problem of extraction of complex decision rules in simple decision systems over ontological graphs is considered. The extracted rules are consistent with the dominance principle similar to that applied in the dominancebased rough set approach (DRSA. In our study, we propose to use a heuristic algorithm, utilizing the ant-based clustering approach, searching the semantic spaces of concepts presented by means of ontological graphs. Concepts included in the semantic spaces are values of attributes describing objects in simple decision systems

  10. STATISTICS OF FUZZY DATA

    Directory of Open Access Journals (Sweden)

    Orlov A. I.

    2016-05-01

    Full Text Available Fuzzy sets are the special form of objects of nonnumeric nature. Therefore, in the processing of the sample, the elements of which are fuzzy sets, a variety of methods for the analysis of statistical data of any nature can be used - the calculation of the average, non-parametric density estimators, construction of diagnostic rules, etc. We have told about the development of our work on the theory of fuzziness (1975 - 2015. In the first of our work on fuzzy sets (1975, the theory of random sets is regarded as a generalization of the theory of fuzzy sets. In non-fiction series "Mathematics. Cybernetics" (publishing house "Knowledge" in 1980 the first book by a Soviet author fuzzy sets is published - our brochure "Optimization problems and fuzzy variables". This book is essentially a "squeeze" our research of 70-ies, ie, the research on the theory of stability and in particular on the statistics of objects of non-numeric nature, with a bias in the methodology. The book includes the main results of the fuzzy theory and its note to the random set theory, as well as new results (first publication! of statistics of fuzzy sets. On the basis of further experience, you can expect that the theory of fuzzy sets will be more actively applied in organizational and economic modeling of industry management processes. We discuss the concept of the average value of a fuzzy set. We have considered a number of statements of problems of testing statistical hypotheses on fuzzy sets. We have also proposed and justified some algorithms for restore relationships between fuzzy variables; we have given the representation of various variants of fuzzy cluster analysis of data and variables and described some methods of collection and description of fuzzy data

  11. Recognition of Handwritten Arabic words using a neuro-fuzzy network

    Science.gov (United States)

    Boukharouba, Abdelhak; Bennia, Abdelhak

    2008-06-01

    We present a new method for the recognition of handwritten Arabic words based on neuro-fuzzy hybrid network. As a first step, connected components (CCs) of black pixels are detected. Then the system determines which CCs are sub-words and which are stress marks. The stress marks are then isolated and identified separately and the sub-words are segmented into graphemes. Each grapheme is described by topological and statistical features. Fuzzy rules are extracted from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data using a fuzzy c-means, and rule parameter tuning phase using gradient descent learning. After learning, the network encodes in its topology the essential design parameters of a fuzzy inference system. The contribution of this technique is shown through the significant tests performed on a handwritten Arabic words database.

  12. Design New Robust Self Tuning Fuzzy Backstopping Methodology

    OpenAIRE

    Omid Avatefipour; Farzin Piltan; Mahmoud Reza Safaei Nasrabad; Ghasem Sahamijoo; Alireza Khalilian

    2014-01-01

    This research is focused on proposed Proportional-Integral (PI) like fuzzy adaptive backstopping fuzzy algorithms based on Proportional-Derivative (PD) fuzzy rule base with the adaptation laws derived in the Lyapunov sense. Adaptive SISO PI like fuzzy adaptive backstopping fuzzy method has two main objectives; the first objective is design a SISO fuzzy system to compensate for the model uncertainties of the system, and the second objective is focused on the design PI like fuzzy controller bas...

  13. AUV fuzzy neural BDI

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The typical BDI (belief desire intention) model of agent is not efficiently computable and the strict logic expression is not easily applicable to the AUV (autonomous underwater vehicle) domain with uncertainties. In this paper, an AUV fuzzy neural BDI model is proposed. The model is a fuzzy neural network composed of five layers: input ( beliefs and desires) , fuzzification, commitment, fuzzy intention, and defuzzification layer. In the model, the fuzzy commitment rules and neural network are combined to form intentions from beliefs and desires. The model is demonstrated by solving PEG (pursuit-evasion game), and the simulation result is satisfactory.

  14. How to combine probabilistic and fuzzy uncertainties in fuzzy control

    Science.gov (United States)

    Nguyen, Hung T.; Kreinovich, Vladik YA.; Lea, Robert

    1991-01-01

    Fuzzy control is a methodology that translates natural-language rules, formulated by expert controllers, into the actual control strategy that can be implemented in an automated controller. In many cases, in addition to the experts' rules, additional statistical information about the system is known. It is explained how to use this additional information in fuzzy control methodology.

  15. Logic minimization and rule extraction for identification of functional sites in molecular sequences

    Directory of Open Access Journals (Sweden)

    Cruz-Cano Raul

    2012-08-01

    Full Text Available Abstract Background Logic minimization is the application of algebraic axioms to a binary dataset with the purpose of reducing the number of digital variables and/or rules needed to express it. Although logic minimization techniques have been applied to bioinformatics datasets before, they have not been used in classification and rule discovery problems. In this paper, we propose a method based on logic minimization to extract predictive rules for two bioinformatics problems involving the identification of functional sites in molecular sequences: transcription factor binding sites (TFBS in DNA and O-glycosylation sites in proteins. TFBS are important in various developmental processes and glycosylation is a posttranslational modification critical to protein functions. Methods In the present study, we first transformed the original biological dataset into a suitable binary form. Logic minimization was then applied to generate sets of simple rules to describe the transformed dataset. These rules were used to predict TFBS and O-glycosylation sites. The TFBS dataset is obtained from the TRANSFAC database, while the glycosylation dataset was compiled using information from OGLYCBASE and the Swiss-Prot Database. We performed the same predictions using two standard classification techniques, Artificial Neural Networks (ANN and Support Vector Machines (SVM, and used their sensitivities and positive predictive values as benchmarks for the performance of our proposed algorithm. SVM were also used to reduce the number of variables included in the logic minimization approach. Results For both TFBS and O-glycosylation sites, the prediction performance of the proposed logic minimization method was generally comparable and, in some cases, superior to the standard ANN and SVM classification methods with the advantage of providing intelligible rules to describe the datasets. In TFBS prediction, logic minimization produced a very small set of simple rules. In

  16. An Algorithm to Extract Rules from Artificial Neural Networks for Medical Diagnosis Problems

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    Artificial neural networks (ANNs) have been successfully applied to solve a variety of classification and function approximation problems. Although ANNs can generally predict better than decision trees for pattern classification problems, ANNs are often regarded as black boxes since their predictions cannot be explained clearly like those of decision trees. This paper presents a new algorithm, called rule extraction from ANNs (REANN), to extract rules from trained ANNs for medical diagnosis problems. A standard three-layer feedforward ANN with four-phase training is the basis of the proposed algorithm. In the first phase, the number of hidden nodes in ANNs is determined automatically by a constructive algorithm. In the second phase, irrelevant connections and input nodes are removed from trained ANNs without sacrificing the predictive accuracy of ANNs. The continuous activation values of the hidden nodes are discretized by using an efficient heuristic clustering algorithm in the third phase. Finally, rules ar...

  17. A neural fuzzy controller learning by fuzzy error propagation

    Science.gov (United States)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  18. Maximum Energy Extraction Control for Wind Power Generation Systems Based on the Fuzzy Controller

    Science.gov (United States)

    Kamal, Elkhatib; Aitouche, Abdel; Mohammed, Walaa; Sobaih, Abdel Azim

    2016-10-01

    This paper presents a robust controller for a variable speed wind turbine with a squirrel cage induction generator (SCIG). For variable speed wind energy conversion system, the maximum power point tracking (MPPT) is a very important requirement in order to maximize the efficiency. The system is nonlinear with parametric uncertainty and subject to large disturbances. A Takagi-Sugeno (TS) fuzzy logic is used to model the system dynamics. Based on the TS fuzzy model, a controller is developed for MPPT in the presence of disturbances and parametric uncertainties. The proposed technique ensures that the maximum power point (MPP) is determined, the generator speed is controlled and the closed loop system is stable. Robustness of the controller is tested via the variation of model's parameters. Simulation studies clearly indicate the robustness and efficiency of the proposed control scheme compared to other techniques.

  19. 基于模糊规则提升理论的马病辅助诊断专家系统%Equine diseases auxiliary diagnosis expert system based on fuzzy rule promotion theory

    Institute of Scientific and Technical Information of China (English)

    秦宏宇; 李建新; 高翔; 王欢; 肖建华; 王洪斌

    2016-01-01

    approach for providing the intelligence in the system for diagnosis of the equine diseases. This experiment was conducted to develop a remote auxiliary equine diseases diagnosis expert system. By collecting and analyzing the experiences of diagnosis and treatment from experts on equine disease, the numerical expression of the equine diseases diagnosis knowledge was developed. The knowledge of equine diseases was represented with the method called object-attribute-value triples act (referred as O-A-V act) that combined with the generative formula. As such, it was easy to extract knowledge rules and these rules were used for inference mechanism. Using the confidence factor, multi-valued logic was used to represent the rules of confidence level. In this paper, we suggested a new inference method which was based on use of a fuzzy rule promotion theory. This approach can enhance the intelligence of the disease diagnosis system. If a rule was repeatedly used in corrective diagnostic results, it was then promoted to a higher confidence factor by the rule promotion factor (PCF), and the PCF was the original confidence factor in the next diagnosis session. In short, the dynamic PCF which was generated in the past dialogue was used instead of static CF in the final decision making process. The dynamically promoted rules were derived from those diagnosis sessions, which resulted in successful decisions. This enabled more efficient decision making in the future sessions. With this approach, it was not only decreasing the number of interactive between the system and the users, but also leading to acceptable diagnostic results. Based on the research of knowledge representation and inference mechanism, an auxiliary diagnostic expert system of equine diseases based on Microsoft.Net and SQL Server 2008 was designed and developed. It provided online help to equine farmers and extension workers in China. For the inference engine of system, we used the fuzzy rule promotion methodology that

  20. Fuzzy contractibility

    OpenAIRE

    GÜNER, Erdal

    2007-01-01

    Abstract. In this paper, .rstly some fundamental concepts are included re- lating to fuzzy topological spaces. Secondly, the fuzzy connected set is intro- duced. Finally, de.ning fuzzy contractible space, it is shown that X is a fuzzy contractible space if and only if X is fuzzy homotopic equivalent with a fuzzy single-point space.

  1. A Synergistic Effect in the Measurement of Neuro-Fuzzy System

    Directory of Open Access Journals (Sweden)

    Gorbachev Sergey

    2016-01-01

    Full Text Available We consider a new type of hybrid neuro-fuzzy system based on fuzzy and neural computing in hierarchical sequential structure, the total effect exceeds the effect of each component separately. The proposed system can be applied to multi-criteria analysis, automatic classification on signs and obtain evidence-based estimates of the efficiency of scientific and technical solutions and technologies, engineering and robotics. An example of a neuro-fuzzy system measuring the intensity of the emotions of a robot, with the extraction of diagnostic decision rules “If & then”.

  2. Tuning of Fuzzy PID Controllers

    DEFF Research Database (Denmark)

    Jantzen, Jan

    1998-01-01

    Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains compared to proportional-integral-derivative (PID) controllers. This research paper proposes a design procedure and a tuning procedure that carries tuning rules from the PID domain over to fuzzy single......-loop controllers. The idea is to start with a tuned, conventional PID controller, replace it with an equivalent linear fuzzy controller, make the fuzzy controller nonlinear, and eventually fine-tune the nonlinear fuzzy controller. This is relevant whenever a PID controller is possible or already implemented....

  3. Genetic Programming for the Generation of Crisp and Fuzzy Rule Bases in Classification and Diagnosis of Medical Data

    DEFF Research Database (Denmark)

    Dounias, George; Tsakonas, Athanasios; Jantzen, Jan

    2002-01-01

    This paper demonstrates two methodologies for the construction of rule-based systems in medical decision making. The first approach consists of a method combining genetic programming and heuristic hierarchical rule-base construction. The second model is composed by a strongly-typed genetic progra...

  4. Domain XML semantic integration based on extraction rules and ontology mapping

    Directory of Open Access Journals (Sweden)

    Huayu LI

    2016-08-01

    Full Text Available A plenty of XML documents exist in petroleum engineering field, but traditional XML integration solution can’t provide semantic query, which leads to low data use efficiency. In light of WeXML(oil&gas well XML data semantic integration and query requirement, this paper proposes a semantic integration method based on extraction rules and ontology mapping. The method firstly defines a series of extraction rules with which elements and properties of WeXML Schema are mapped to classes and properties in WeOWL ontology, respectively; secondly, an algorithm is used to transform WeXML documents into WeOWL instances. Because WeOWL provides limited semantics, ontology mappings between two ontologies are then built to explain class and property of global ontology with terms of WeOWL, and semantic query based on global domain concepts model is provided. By constructing a WeXML data semantic integration prototype system, the proposed transformational rule, the transfer algorithm and the mapping rule are tested.

  5. Rule Extraction from Trained Artificial Neural Network Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-jian; ZHANG Li-xia

    2002-01-01

    This paper discusses how to extract symbolic rules from trained artificial neural network (ANN) in domains involving classification using genetic algorithms (GA). Previous methods based on an exhaustive analysis of network connections and output values have already been demonstrated to be intractable in that the scale-up factor increases with the number of nodes and connections in the network.Some experiments explaining effectiveness of the presented method are given as well.

  6. FUZZY ARITHMETIC AND SOLVING OF THE STATIC GOVERNING EQUATIONS OF FUZZY FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    郭书祥; 吕震宙; 冯立富

    2002-01-01

    The key component of finite element analysis of structures with fuzzy parameters,which is associated with handling of some fuzzy information and arithmetic relation of fuzzy variables, was the solving of the governing equations of fuzzy finite element method. Based on a given interval representation of fuzzy numbers, some arithmetic rules of fuzzy numbers and fuzzy variables were developed in terms of the properties of interval arithmetic.According to the rules and by the theory of interval finite element method, procedures for solving the static governing equations of fuzzy finite element method of structures were presented. By the proposed procedure, the possibility distributions of responses of fuzzy structures can be generated in terms of the membership functions of the input fuzzy numbers.It is shown by a numerical example that the computational burden of the presented procedures is low and easy to implement. The effectiveness and usefulness of the presented procedures are also illustrated.

  7. A new algorithm to extract hidden rules of gastric cancer data based on ontology.

    Science.gov (United States)

    Mahmoodi, Seyed Abbas; Mirzaie, Kamal; Mahmoudi, Seyed Mostafa

    2016-01-01

    Cancer is the leading cause of death in economically developed countries and the second leading cause of death in developing countries. Gastric cancers are among the most devastating and incurable forms of cancer and their treatment may be excessively complex and costly. Data mining, a technology that is used to produce analytically useful information, has been employed successfully with medical data. Although the use of traditional data mining techniques such as association rules helps to extract knowledge from large data sets, sometimes the results obtained from a data set are so large that it is a major problem. In fact, one of the disadvantages of this technique is a lot of nonsense and redundant rules due to the lack of attention to the concept and meaning of items or the samples. This paper presents a new method to discover association rules using ontology to solve the expressed problems. This paper reports a data mining based on ontology on a medical database containing clinical data on patients referring to the Imam Reza Hospital at Tabriz. The data set used in this paper is gathered from 490 random visitors to the Imam Reza Hospital at Tabriz, who had been suspicions of having gastric cancer. The proposed data mining algorithm based on ontology makes rules more intuitive, appealing and understandable, eliminates waste and useless rules, and as a minor result, significantly reduces Apriori algorithm running time. The experimental results confirm the efficiency and advantages of this algorithm.

  8. Adaptive fuzzy controllers based on variable universe

    Institute of Scientific and Technical Information of China (English)

    李洪兴

    1999-01-01

    Adaptive fuzzy controllers by means of variable universe are proposed based on interpolation forms of fuzzy control. First, monotonicity of control rules is defined, and it is proved that the monotonicity of interpolation functions of fuzzy control is equivalent to the monotonicity of control rules. This means that there is not any contradiction among the control rules under the condition for the control rules being monotonic. Then structure of the contraction-expansion factor is discussed. At last, three models of adaptive fuzzy control based on variable universe are given which are adaptive fuzzy control model with potential heredity, adaptive fuzzy control model with obvious heredity and adaptive fuzzy control model with successively obvious heredity.

  9. Genetic Programming for the Generation of Crisp and Fuzzy Rule Bases in Classification and Diagnosis of Medical Data

    DEFF Research Database (Denmark)

    Dounias, George; Tsakonas, Athanasios; Jantzen, Jan;

    2002-01-01

    This paper demonstrates two methodologies for the construction of rule-based systems in medical decision making. The first approach consists of a method combining genetic programming and heuristic hierarchical rule-base construction. The second model is composed by a strongly-typed genetic progra...... systems. Comparisons on the system's comprehensibility and the transparency are included. These comparisons include for the Aphasia domain, previous work consisted of two neural network models....

  10. Prediction of ground water quality index to assess suitability for drinking purposes using fuzzy rule-based approach

    Science.gov (United States)

    Gorai, A. K.; Hasni, S. A.; Iqbal, Jawed

    2016-11-01

    Groundwater is the most important natural resource for drinking water to many people around the world, especially in rural areas where the supply of treated water is not available. Drinking water resources cannot be optimally used and sustained unless the quality of water is properly assessed. To this end, an attempt has been made to develop a suitable methodology for the assessment of drinking water quality on the basis of 11 physico-chemical parameters. The present study aims to select the fuzzy aggregation approach for estimation of the water quality index of a sample to check the suitability for drinking purposes. Based on expert's opinion and author's judgement, 11 water quality (pollutant) variables (Alkalinity, Dissolved Solids (DS), Hardness, pH, Ca, Mg, Fe, Fluoride, As, Sulphate, Nitrates) are selected for the quality assessment. The output results of proposed methodology are compared with the output obtained from widely used deterministic method (weighted arithmetic mean aggregation) for the suitability of the developed methodology.

  11. Decomposed fuzzy systems and their application in direct adaptive fuzzy control.

    Science.gov (United States)

    Hsueh, Yao-Chu; Su, Shun-Feng; Chen, Ming-Chang

    2014-10-01

    In this paper, a novel fuzzy structure termed as the decomposed fuzzy system (DFS) is proposed to act as the fuzzy approximator for adaptive fuzzy control systems. The proposed structure is to decompose each fuzzy variable into layers of fuzzy systems, and each layer is to characterize one traditional fuzzy set. Similar to forming fuzzy rules in traditional fuzzy systems, layers from different variables form the so-called component fuzzy systems. DFS is proposed to provide more adjustable parameters to facilitate possible adaptation in fuzzy rules, but without introducing a learning burden. It is because those component fuzzy systems are independent so that it can facilitate minimum distribution learning effects among component fuzzy systems. It can be seen from our experiments that even when the rule number increases, the learning time in terms of cycles is still almost constant. It can also be found that the function approximation capability and learning efficiency of the DFS are much better than that of the traditional fuzzy systems when employed in adaptive fuzzy control systems. Besides, in order to further reduce the computational burden, a simplified DFS is proposed in this paper to satisfy possible real time constraints required in many applications. From our simulation results, it can be seen that the simplified DFS can perform fairly with a more concise decomposition structure.

  12. Rule-based Approach on Extraction of Malay Compound Nouns in Standard Malay Document

    Science.gov (United States)

    Abu Bakar, Zamri; Kamal Ismail, Normaly; Rawi, Mohd Izani Mohamed

    2017-08-01

    Malay compound noun is defined as a form of words that exists when two or more words are combined into a single syntax and it gives a specific meaning. Compound noun acts as one unit and it is spelled separately unless an established compound noun is written closely from two words. The basic characteristics of compound noun can be seen in the Malay sentences which are the frequency of that word in the text itself. Thus, this extraction of compound nouns is significant for the following research which is text summarization, grammar checker, sentiments analysis, machine translation and word categorization. There are many research efforts that have been proposed in extracting Malay compound noun using linguistic approaches. Most of the existing methods were done on the extraction of bi-gram noun+noun compound. However, the result still produces some problems as to give a better result. This paper explores a linguistic method for extracting compound Noun from stand Malay corpus. A standard dataset are used to provide a common platform for evaluating research on the recognition of compound Nouns in Malay sentences. Therefore, an improvement for the effectiveness of the compound noun extraction is needed because the result can be compromised. Thus, this study proposed a modification of linguistic approach in order to enhance the extraction of compound nouns processing. Several pre-processing steps are involved including normalization, tokenization and tagging. The first step that uses the linguistic approach in this study is Part-of-Speech (POS) tagging. Finally, we describe several rules-based and modify the rules to get the most relevant relation between the first word and the second word in order to assist us in solving of the problems. The effectiveness of the relations used in our study can be measured using recall, precision and F1-score techniques. The comparison of the baseline values is very essential because it can provide whether there has been an improvement

  13. Fuzzy-Based Segmentation for Variable Font-Sized Text Extraction from Images/Videos

    Directory of Open Access Journals (Sweden)

    Samabia Tehsin

    2014-01-01

    Full Text Available Textual information embedded in multimedia can provide a vital tool for indexing and retrieval. A lot of work is done in the field of text localization and detection because of its very fundamental importance. One of the biggest challenges of text detection is to deal with variation in font sizes and image resolution. This problem gets elevated due to the undersegmentation or oversegmentation of the regions in an image. The paper addresses this problem by proposing a solution using novel fuzzy-based method. This paper advocates postprocessing segmentation method that can solve the problem of variation in text sizes and image resolution. The methodology is tested on ICDAR 2011 Robust Reading Challenge dataset which amply proves the strength of the recommended method.

  14. Design of interpretable fuzzy systems

    CERN Document Server

    Cpałka, Krzysztof

    2017-01-01

    This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.

  15. Orthogonal search-based rule extraction for modelling the decision to transfuse.

    Science.gov (United States)

    Etchells, T A; Harrison, M J

    2006-04-01

    Data from an audit relating to transfusion decisions during intermediate or major surgery were analysed to determine the strengths of certain factors in the decision making process. The analysis, using orthogonal search-based rule extraction (OSRE) from a trained neural network, demonstrated that the risk of tissue hypoxia (ROTH) assessed using a 100-mm visual analogue scale, the haemoglobin value (Hb) and the presence or absence of on-going haemorrhage (OGH) were able to reproduce the transfusion decisions with a joint specificity of 0.96 and sensitivity of 0.93 and a positive predictive value of 0.9. The rules indicating transfusion were: 1. ROTH > 32 mm and Hb 13 mm and Hb 38 mm, Hb < 102 g x l(-1) and OGH; 4. Hb < 78 g x l(-1).

  16. fuzzy control technique fuzzy control technique applied to modified ...

    African Journals Online (AJOL)

    eobe

    ABSTRACT. In this paper, fuzzy control technique is applied to the modified mathematical model for malaria control presented ... be devised for rule-based systems that deals with continuous ... necessary to use fuzzy logic as it is not easy to follow a particular .... point movement and control is realized and designed. (e.g. α1 ...

  17. An efficient algorithm for automatically generating multivariable fuzzy systems by Fourier series method.

    Science.gov (United States)

    Chen, Liang; Tokuda, N

    2002-01-01

    By exploiting the Fourier series expansion, we have developed a new constructive method of automatically generating a multivariable fuzzy inference system from any given sample set with the resulting multivariable function being constructed within any specified precision to the original sample set. The given sample sets are first decomposed into a cluster of simpler sample sets such that a single input fuzzy system is constructed readily for a sample set extracted directly from the cluster independent of the other variables. Once the relevant fuzzy rules and membership functions are constructed for each of the variables completely independent of the other variables, the resulting decomposed fuzzy rules and membership functions are integrated back into the fuzzy system appropriate for the original sample set requiring only a moderate cost of computation in the required decomposition and composition processes. After proving two basic theorems which we need to ensure the validity of the decomposition and composition processes of the system construction, we have demonstrated a constructive algorithm of a multivariable fuzzy system. Exploiting an implicit error bound analysis available at each of the construction steps, the present Fourier method is capable of implementing a more stable fuzzy system than the power series expansion method of ParNeuFuz and PolyNeuFuz, covering and implementing a wider range of more robust applications.

  18. CTSS: A Tool for Efficient Information Extraction with Soft Matching Rules for Text Mining

    Directory of Open Access Journals (Sweden)

    A. Christy

    2008-01-01

    Full Text Available The abundance of information available digitally in modern world had made a demand for structured information. The problem of text mining which dealt with discovering useful information from unstructured text had attracted the attention of researchers. The role of Information Extraction (IE software was to identify relevant information from texts, extracting information from a variety of sources and aggregating it to create a single view. Information extraction systems depended on particular corpora and were poor in recall values. Therefore, developing the system as domain-independent as well as improving the recall was an important challenge for IE. In this research, the authors proposed a domain-independent algorithm for information extraction, called SOFTRULEMINING for extracting the aim, methodology and conclusion from technical abstracts. The algorithm was implemented by combining trigram model with softmatching rules. A tool CTSS was constructed using SOFTRULEMINING and was tested with technical abstracts of www.computer.org and www.ansinet.org and found that the tool had improved its recall value and therefore the precision value in comparison with other search engines.

  19. Efficient adaptive fuzzy control scheme

    NARCIS (Netherlands)

    Papp, Z.; Driessen, B.J.F.

    1995-01-01

    The paper presents an adaptive nonlinear (state-) feedback control structure, where the nonlinearities are implemented as smooth fuzzy mappings defined as rule sets. The fine tuning and adaption of the controller is realized by an indirect adaptive scheme, which modifies the parameters of the fuzzy

  20. Estimating the crowding level with a neuro-fuzzy classifier

    Science.gov (United States)

    Boninsegna, Massimo; Coianiz, Tarcisio; Trentin, Edmondo

    1997-07-01

    This paper introduces a neuro-fuzzy system for the estimation of the crowding level in a scene. Monitoring the number of people present in a given indoor environment is a requirement in a variety of surveillance applications. In the present work, crowding has to be estimated from the image processing of visual scenes collected via a TV camera. A suitable preprocessing of the images, along with an ad hoc feature extraction process, is discussed. Estimation of the crowding level in the feature space is described in terms of a fuzzy decision rule, which relies on the membership of input patterns to a set of partially overlapping crowding classes, comprehensive of doubt classifications and outliers. A society of neural networks, either multilayer perceptrons or hyper radial basis functions, is trained to model individual class-membership functions. Integration of the neural nets within the fuzzy decision rule results in an overall neuro-fuzzy classifier. Important topics concerning the generalization ability, the robustness, the adaptivity and the performance evaluation of the system are explored. Experiments with real-world data were accomplished, comparing the present approach with statistical pattern recognition techniques, namely linear discriminant analysis and nearest neighbor. Experimental results validate the neuro-fuzzy approach to a large extent. The system is currently working successfully as a part of a monitoring system in the Dinegro underground station in Genoa, Italy.

  1. Extraction of ABCD rule features from skin lesions images with smartphone.

    Science.gov (United States)

    Rosado, Luís; Castro, Rui; Ferreira, Liliana; Ferreira, Márcia

    2012-01-01

    One of the greatest challenges in dermatology today is the early detection of melanoma since the success rates of curing this type of cancer are very high if detected during the early stages of its development. The main objective of the work presented in this paper is to create a prototype of a patient-oriented system for skin lesion analysis using a smartphone. This work aims at implementing a self-monitoring system that collects, processes, and stores information of skin lesions through the automatic extraction of specific visual features. The selection of the features was based on the ABCD rule, which considers 4 visual criteria considered highly relevant for the detection of malignant melanoma. The algorithms used to extract these features are briefly described and the results achieved using images taken from the smartphone camera are discussed.

  2. Z Number Based Fuzzy Inference System for Dynamic Plant Control

    Directory of Open Access Journals (Sweden)

    Rahib H. Abiyev

    2016-01-01

    Full Text Available Frequently the reliabilities of the linguistic values of the variables in the rule base are becoming important in the modeling of fuzzy systems. Taking into consideration the reliability degree of the fuzzy values of variables of the rules the design of inference mechanism acquires importance. For this purpose, Z number based fuzzy rules that include constraint and reliability degrees of information are constructed. Fuzzy rule interpolation is presented for designing of an inference engine of fuzzy rule-based system. The mathematical background of the fuzzy inference system based on interpolative mechanism is developed. Based on interpolative inference process Z number based fuzzy controller for control of dynamic plant has been designed. The transient response characteristic of designed controller is compared with the transient response characteristic of the conventional fuzzy controller. The obtained comparative results demonstrate the suitability of designed system in control of dynamic plants.

  3. The Selection of the Best Control Rule for a Multiple-Load AGV System Using Simulation and Fuzzy MADM in a Flexible Manufacturing System

    Directory of Open Access Journals (Sweden)

    Parham Azimi

    2010-01-01

    Full Text Available Pick up-dispatching problem together with delivery-dispatching problem of a multiple-load automated guided vehicle (AGV system have been studied. By mixing different pick up-dispatching rules, several control strategies (alternatives have been generated and the best control strategy has been determined considering some important criteria such as System Throughput (ST, Mean Flow Time of Parts (MFTP, Mean Tardiness of Parts (MFTP, AGV Idle Time (AGVIT, AGV Travel Full (AGVTF, AGV Travel Empty (AGVTE, AGV Load Time (AGVLT, AGV Unload Time (AGVUT, Mean Queue Length (MQL and Mean Queue Waiting (MQW. For ranking the control strategies, a new framework based on MADM methods including fuzzy MADM and TOPSIS method were developed. Then several simulation experiments which had been based on a flow path layout to find the results were conducted. Finally, by using TOPSIS method, the control strategies were ranked. Furthermore, a similar approach was used for determining the optimal fleet size. The main contribution of this paper is developing a new approach combining the top managers' views in selecting the best control strategy for AGV systems while trying to optimize the fleet size at the mean time by combining MADM, MCDM and simulation methods.

  4. Fuzzy Based composition Control of Distillation Column

    Directory of Open Access Journals (Sweden)

    Guru.R

    2013-04-01

    Full Text Available This paper proposed a control scheme based on fuzzy logic for a methanol - water system of bubble cap distillation column. Fuzzy rule base and Inference System of fuzzy (FIS is planned to regulatethe reflux ratio (manipulated variable to obtain the preferred product composition (methanol for a distillation column. Comparisons are made with conventional controller and the results confirmed the potentials of the proposed strategy of fuzzy control.

  5. Fuzzy logic algorithm to extract specific interaction forces from atomic force microscopy data

    Science.gov (United States)

    Kasas, Sandor; Riederer, Beat M.; Catsicas, Stefan; Cappella, Brunero; Dietler, Giovanni

    2000-05-01

    The atomic force microscope is not only a very convenient tool for studying the topography of different samples, but it can also be used to measure specific binding forces between molecules. For this purpose, one type of molecule is attached to the tip and the other one to the substrate. Approaching the tip to the substrate allows the molecules to bind together. Retracting the tip breaks the newly formed bond. The rupture of a specific bond appears in the force-distance curves as a spike from which the binding force can be deduced. In this article we present an algorithm to automatically process force-distance curves in order to obtain bond strength histograms. The algorithm is based on a fuzzy logic approach that permits an evaluation of "quality" for every event and makes the detection procedure much faster compared to a manual selection. In this article, the software has been applied to measure the binding strength between tubuline and microtubuline associated proteins.

  6. Fault detection thermal storage system by expert system using fuzzy abduction

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Koichi [Yamatake-Honeywell Co., Ltd, Yokohama (Japan). Advanced Technology Center; Kamimura, Kazuyuki [Yamatake-Honeywell Co., Ltd., Tokyo (Japan). Building Systems Div.

    1996-12-31

    Fuzzy abduction is a procedure for deriving fuzzy sets of hypotheses which explain a given fuzzy set of events using a set of rules with a truth value. The derived fuzzy sets of hypotheses are called fuzzy explanations. This presentation starts with discussion about diagnosis using conventional expert systems and that using fuzzy relational equations. Then, it proposes a new approach using a fuzzy abduction, and applies the technique to fault detection of a thermal storage system. (orig.)

  7. Automating the Extraction of Metadata from Archaeological Data Using iRods Rules

    Directory of Open Access Journals (Sweden)

    David Walling

    2011-10-01

    Full Text Available The Texas Advanced Computing Center and the Institute for Classical Archaeology at the University of Texas at Austin developed a method that uses iRods rules and a Jython script to automate the extraction of metadata from digital archaeological data. The first step was to create a record-keeping system to classify the data. The record-keeping system employs file and directory hierarchy naming conventions designed specifically to maintain the relationship between the data objects and map the archaeological documentation process. The metadata implicit in the record-keeping system is automatically extracted upon ingest, combined with additional sources of metadata, and stored alongside the data in the iRods preservation environment. This method enables a more organized workflow for the researchers, helps them archive their data close to the moment of data creation, and avoids error prone manual metadata input. We describe the types of metadata extracted and provide technical details of the extraction process and storage of the data and metadata.

  8. Design and implementation of the tree-based fuzzy logic controller.

    Science.gov (United States)

    Liu, B D; Huang, C Y

    1997-01-01

    In this paper, a tree-based approach is proposed to design the fuzzy logic controller. Based on the proposed methodology, the fuzzy logic controller has the following merits: the fuzzy control rule can be extracted automatically from the input-output data of the system and the extraction process can be done in one-pass; owing to the fuzzy tree inference structure, the search spaces of the fuzzy inference process are largely reduced; the operation of the inference process can be simplified as a one-dimensional matrix operation because of the fuzzy tree approach; and the controller has regular and modular properties, so it is easy to be implemented by hardware. Furthermore, the proposed fuzzy tree approach has been applied to design the color reproduction system for verifying the proposed methodology. The color reproduction system is mainly used to obtain a color image through the printer that is identical to the original one. In addition to the software simulation, an FPGA is used to implement the prototype hardware system for real-time application. Experimental results show that the effect of color correction is quite good and that the prototype hardware system can operate correctly under the condition of 30 MHz clock rate.

  9. Genetic Algorithm Optimization for Determining Fuzzy Measures from Fuzzy Data

    Directory of Open Access Journals (Sweden)

    Chen Li

    2013-01-01

    Full Text Available Fuzzy measures and fuzzy integrals have been successfully used in many real applications. How to determine fuzzy measures is a very difficult problem in these applications. Though there have existed some methodologies for solving this problem, such as genetic algorithms, gradient descent algorithms, neural networks, and particle swarm algorithm, it is hard to say which one is more appropriate and more feasible. Each method has its advantages. Most of the existed works can only deal with the data consisting of classic numbers which may arise limitations in practical applications. It is not reasonable to assume that all data are real data before we elicit them from practical data. Sometimes, fuzzy data may exist, such as in pharmacological, financial and sociological applications. Thus, we make an attempt to determine a more generalized type of general fuzzy measures from fuzzy data by means of genetic algorithms and Choquet integrals. In this paper, we make the first effort to define the σ-λ rules. Furthermore we define and characterize the Choquet integrals of interval-valued functions and fuzzy-number-valued functions based on σ-λ rules. In addition, we design a special genetic algorithm to determine a type of general fuzzy measures from fuzzy data.

  10. Hierarchical type-2 fuzzy aggregation of fuzzy controllers

    CERN Document Server

    Cervantes, Leticia

    2016-01-01

    This book focuses on the fields of fuzzy logic, granular computing and also considering the control area. These areas can work together to solve various control problems, the idea is that this combination of areas would enable even more complex problem solving and better results. In this book we test the proposed method using two benchmark problems: the total flight control and the problem of water level control for a 3 tank system. When fuzzy logic is used it make it easy to performed the simulations, these fuzzy systems help to model the behavior of a real systems, using the fuzzy systems fuzzy rules are generated and with this can generate the behavior of any variable depending on the inputs and linguistic value. For this reason this work considers the proposed architecture using fuzzy systems and with this improve the behavior of the complex control problems.

  11. Neuro-fuzzy system modeling based on automatic fuzzy clustering

    Institute of Scientific and Technical Information of China (English)

    Yuangang TANG; Fuchun SUN; Zengqi SUN

    2005-01-01

    A neuro-fuzzy system model based on automatic fuzzy clustering is proposed.A hybrid model identification algorithm is also developed to decide the model structure and model parameters.The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM),which is applied to generate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which the complexity of system design is reducesd greatly at the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.

  12. Reinforcement Based Fuzzy Neural Network Control with Automatic Rule Generation%基于增强型算法并能自动生成规则的模糊神经网络控制器

    Institute of Scientific and Technical Information of China (English)

    吴耿锋; 傅忠谦

    2001-01-01

    A reinforcement based fuzzy neural network controller (RBFNNC) is proposed. A set of optimised fuzzy control rules can be automatically generated through reinforcement learning based on the state variables of object system. RBFNNC was applied to a cart-pole balancing system and shows significant improvements on the rule generation.%给出了一种基于增强型算法并能自动生成控制规则的模糊神经网络控制器RBFNNC(reinforcements based fuzzy neural network controller).该控制器能根据被控对象的状态通过增强型学习自动生成模糊控制规则.RBFNNC用于倒立摆小车平衡系统控制的仿真实验表明了该系统的结构及增强型学习算法是有效和成功的.

  13. Fuzzy logic particle tracking velocimetry

    Science.gov (United States)

    Wernet, Mark P.

    1993-01-01

    Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

  14. Fuzzy Set Field and Fuzzy Metric

    OpenAIRE

    Gebru Gebray; B. Krishna Reddy

    2014-01-01

    The notation of fuzzy set field is introduced. A fuzzy metric is redefined on fuzzy set field and on arbitrary fuzzy set in a field. The metric redefined is between fuzzy points and constitutes both fuzziness and crisp property of vector. In addition, a fuzzy magnitude of a fuzzy point in a field is defined.

  15. Fuzzy Clustering Methods and their Application to Fuzzy Modeling

    DEFF Research Database (Denmark)

    Kroszynski, Uri; Zhou, Jianjun

    1999-01-01

    Fuzzy modeling techniques based upon the analysis of measured input/output data sets result in a set of rules that allow to predict system outputs from given inputs. Fuzzy clustering methods for system modeling and identification result in relatively small rule-bases, allowing fast, yet accurate...... prediction of outputs. This article presents an overview of some of the most popular clustering methods, namely Fuzzy Cluster-Means (FCM) and its generalizations to Fuzzy C-Lines and Elliptotypes. The algorithms for computing cluster centers and principal directions from a training data-set are described....... A method to obtain an optimized number of clusters is outlined. Based upon the cluster's characteristics, a behavioural model is formulated in terms of a rule-base and an inference engine. The article reviews several variants for the model formulation. Some limitations of the methods are listed...

  16. Fuzzy Multiresolution Neural Networks

    Science.gov (United States)

    Ying, Li; Qigang, Shang; Na, Lei

    A fuzzy multi-resolution neural network (FMRANN) based on particle swarm algorithm is proposed to approximate arbitrary nonlinear function. The active function of the FMRANN consists of not only the wavelet functions, but also the scaling functions, whose translation parameters and dilation parameters are adjustable. A set of fuzzy rules are involved in the FMRANN. Each rule either corresponding to a subset consists of scaling functions, or corresponding to a sub-wavelet neural network consists of wavelets with same dilation parameters. Incorporating the time-frequency localization and multi-resolution properties of wavelets with the ability of self-learning of fuzzy neural network, the approximation ability of FMRANN can be remarkable improved. A particle swarm algorithm is adopted to learn the translation and dilation parameters of the wavelets and adjusting the shape of membership functions. Simulation examples are presented to validate the effectiveness of FMRANN.

  17. Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding

    Energy Technology Data Exchange (ETDEWEB)

    Ozekes, Serhat; Osman, Onur; Ucan, N. [Istanbul Commerce University, Ragip Gumuspala Cad. No: 84 34378 Eminonu, Istanbul (Turkmenistan)

    2008-02-15

    The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computer aided detection of lung nodules.

  18. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.

    Science.gov (United States)

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot.

  19. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    Science.gov (United States)

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  20. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Jong-Wook Park

    2016-01-01

    Full Text Available An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot.

  1. Intrusion Detection in Computer Networks using a Fuzzy-Heuristic Data Mining Technique

    Directory of Open Access Journals (Sweden)

    Hamid Saadi

    2015-12-01

    Full Text Available In this article the use of Simulated Annealing (SA algorithm for creating a consistent intrusion detection system is presented. The ability of fuzzy systems to solve different types of problems has been demonstrated in several previous studies. Simulated Annealing based Fuzzy Intrusion Detection System (SAF-IDS crosses the estimated cognitive method of fuzzy systems with the learning capability of SA. The objective of this paper is to prove the ability of SAF-IDS to deal with intrusion detection classification problem as a new real-world application area which is not previously undertook with SA-based fuzzy system. Here, the use of SA is an effort to efficiently explore and exploit the large examines space usually related with the intrusion detection problem, and finds the optimum set of fuzzy if-then rules. The proposed SAF-IDS would be capable of extracting precise fuzzy classification rules from network traffic data and relates them to detect normal and invasive actions in computer networks. Tests were performed with KDD-Cup99 intrusion detection benchmark which is widely used to calculate intrusion detection algorithms. Results indicate that SAF-IDS provides more accurate intrusion detection system than several well-known and new classification algorithms.

  2. Fabric Wrinkle Grade Assessment Based on Fuzzy Pattern Recognition

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-bo

    2006-01-01

    The basic principle of fuzzy pattern recognition is brief introduced firstly in this paper, which mainly includes fuzzy rules and fuzzy inference system. Then, the algorithm procedure of fuzzy pattern recognition is proposed. Finally,the application of Mamdani fuzzy model is introduced to evaluate fabric wrinkle grade in detail, and used the correlation coefficient between subject and object evaluation to verify the reliability of fuzzy pattern recognition. It shows the method of fuzzy pattern recognition needs not a large number of testing data and the accuracy of evaluation is up to 97.38%.

  3. Extraction of spatial-temporal rules from mesoscale eddies in the South China Sea Based on rough set theory

    Directory of Open Access Journals (Sweden)

    Y. Du

    2011-06-01

    Full Text Available In this paper, a rough set theory is introduced to represent spatial-temporal relationships and extract the corresponding rules from typical mesoscale-eddy states in the South China Sea (SCS. Three decision attributes are adopted in this study, which make the approach flexible in retrieving spatial-temporal rules with different features. Spatial-temporal rules of typical states in the SCS are extracted as three decision attributes, which then are confirmed by the previous works. The results demonstrate that this approach is effective in extracting spatial-temporal rules from typical mesoscale-eddy states, and therefore provides a powerful approach to forecasts in the future. Spatial-temporal rules in the SCS indicate that warm eddies following the rules are generally in the southeastern and central SCS around 2000 m isobaths in winter. Their intensity and vorticity are weaker than those of cold eddies. They usually move a shorter distance. By contrast, cold eddies are in 2000 m-deeper regions of the southwestern and northeastern SCS in spring and fall. Their intensity and vorticity are strong. Usually they move a long distance. In winter, a few rules are followed by cold eddies in the northern tip of the basin and southwest of Taiwan Island rather than warm eddies, indicating cold eddies may be well-regulated in the region. Several warm-eddy rules are achieved west of Luzon Island, indicating warm eddies may be well-regulated in the region as well. Otherwise, warm and cold eddies are distributed not only in the jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also in the northern shallow water, which should be a focus of future study.

  4. PHONETIC CLASSIFICATION BY ADAPTIVE NETWORK BASED FUZZY INFERENCE SYSTEM AND SUBTRACTIVE CLUSTERING

    Directory of Open Access Journals (Sweden)

    Samiya Silarbi

    2014-09-01

    Full Text Available This paper presents the application of Adaptive Network Based Fuzzy Inference System ANFIS on speech recognition. The primary tasks of fuzzy modeling are structure identification and parameter optimization, the former determines the numbers of membership functions and fuzzy if-then rules while the latter identifies a feasible set of parameters under the given structure. However, the increase of input dimension, rule numbers will have an exponential growth and there will cause problem of “rule disaster”. Thus, determination of an appropriate structure becomes an important issue where subtractive clustering is applied to define an optimal initial structure and obtain small number of rules. The appropriate learning algorithm is performed on TIMIT speech database supervised type, a pre-processing of the acoustic signal and extracting the coefficients MFCCs parameters relevant to the recognition system. Finally, hybrid learning combines the gradient decent and least square estimation LSE of parameters network. The results obtained show the effectiveness of the method in terms of recognition rate and number of fuzzy rules generated.

  5. Application of Adaptive Fuzzy PID Leveling Controller

    Directory of Open Access Journals (Sweden)

    Ke Zhang

    2013-05-01

    Full Text Available Aiming at the levelling precision, speed and stability of suspended access platform, this paper put forward a new adaptive fuzzy PID control levelling algorithm by fuzzy theory. The method is aided design by using the SIMULINK toolbox of MATLAB, and setting the membership function and the fuzzy-PID control rule. The levelling algorithm can real-time adjust the three parameters of PID according to the fuzzy rules due to the current state. It is experimented, which is verified the algorithm have better stability and dynamic performance.

  6. Simulation of Fuzzy Inductance Motor using PI Control Application

    Directory of Open Access Journals (Sweden)

    S.V.Halse

    2013-06-01

    Full Text Available Fuzzy control has been widely used in industrial controls, particularly in situations where conventional control design techniques have been difficult to apply. Number of fuzzy rules is very important for real time fuzzy control applications. This study is motivated by the increasing need in the industry to design highly reliable, efficiency and low complexity controllers. The proposed fuzzy controller is constructed by several fuzzy controllers with less fuzzy rules to carry out control tasks. Performances of the proposed fuzzy controller are investigated and compared to those obtained from the conventional fuzzy controller. Fuzzy logic control method has the ability to handle errors in control operation with system nonlinearity and its performance is less affected by system parameter variations.

  7. Fuzzy Linguistic Knowledge Based Behavior Extraction for Building Energy Management Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dumidu Wijayasekara; Milos Manic

    2013-08-01

    Significant portion of world energy production is consumed by building Heating, Ventilation and Air Conditioning (HVAC) units. Thus along with occupant comfort, energy efficiency is also an important factor in HVAC control. Modern buildings use advanced Multiple Input Multiple Output (MIMO) control schemes to realize these goals. However, since the performance of HVAC units is dependent on many criteria including uncertainties in weather, number of occupants, and thermal state, the performance of current state of the art systems are sub-optimal. Furthermore, because of the large number of sensors in buildings, and the high frequency of data collection, large amount of information is available. Therefore, important behavior of buildings that compromise energy efficiency or occupant comfort is difficult to identify. This paper presents an easy to use and understandable framework for identifying such behavior. The presented framework uses human understandable knowledge-base to extract important behavior of buildings and present it to users via a graphical user interface. The presented framework was tested on a building in the Pacific Northwest and was shown to be able to identify important behavior that relates to energy efficiency and occupant comfort.

  8. Neuro-fuzzy quantification of personal perceptions of facial images based on a limited data set.

    Science.gov (United States)

    Diago, Luis; Kitaoka, Tetsuko; Hagiwara, Ichiro; Kambayashi, Toshiki

    2011-12-01

    Artificial neural networks are nonlinear techniques which typically provide one of the most accurate predictive models perceiving faces in terms of the social impressions they make on people. However, they are often not suitable to be used in many practical application domains because of their lack of transparency and comprehensibility. This paper proposes a new neuro-fuzzy method to investigate the characteristics of the facial images perceived as Iyashi by one hundred and fourteen subjects. Iyashi is a Japanese word used to describe a peculiar phenomenon that is mentally soothing, but is yet to be clearly defined. In order to gain a clear insight into the reasoning made by the nonlinear prediction models such as holographic neural networks (HNN) in the classification of Iyashi expressions, the interpretability of the proposed fuzzy-quantized HNN (FQHNN) is improved by reducing the number of input parameters, creating membership functions and extracting fuzzy rules from the responses provided by the subjects about a limited dataset of 20 facial images. The experimental results show that the proposed FQHNN achieves 2-8% increase in the prediction accuracy compared with traditional neuro-fuzzy classifiers while it extracts 35 fuzzy rules explaining what characteristics a facial image should have in order to be classified as Iyashi-stimulus for 87 subjects.

  9. Linguistic Valued Association Rules

    Institute of Scientific and Technical Information of China (English)

    LU Jian-jiang; QIAN Zuo-ping

    2002-01-01

    Association rules discovering and prediction with data mining method are two topics in the field of information processing. In this paper, the records in database are divided into many linguistic values expressed with normal fuzzy numbers by fuzzy c-means algorithm, and a series of linguistic valued association rules are generated. Then the records in database are mapped onto the linguistic values according to largest subject principle, and the support and confidence definitions of linguistic valued association rules are also provided. The discovering and prediction methods of the linguistic valued association rules are discussed through a weather example last.

  10. Fuzzy Deterrence

    Science.gov (United States)

    2010-05-01

    the world of logic than friction in mechanics. — Charles Sanders Peirce 1 Rational deterrence theory rests on the foundation that...4 Kosko, Fuzzy Thinking, 4-17. 5 Daniel McNeill and Paul Freiberger, Fuzzy Logic: The Revolutionary Computer Technology That Is Changing Our...1 McNeill and Freiberger, Fuzzy Logic, 174. 2 Yarger, Little Book on Big Strategy, 16. 3 Mukaidono, Fuzzy Logic for

  11. Extraction of events and rules of land use/cover change from the policy text

    Science.gov (United States)

    Lin, Guangfa; Xia, Beicheng; Huang, Wangli; Jiang, Huixian; Chen, Youfei

    2007-06-01

    The database of recording the snapshots of land parcels history is the foundation for the most of the models on simulating land use/cover change (LUCC) process. But the sequences of temporal snapshots are not sufficient to deduce and describe the mechanism of LUCC process. The temporal relationship between scenarios of LUCC we recorded could not be transfer into causal relationship categorically, which was regarded as a key factor in spatial-temporal reasoning. The proprietor of land parcels adapted themselves to the policies from governments and the change of production market, and then made decisions in this or that way. The occurrence of each change of a land parcel in an urban area was often related with one or more decision texts when it was investigated on the local scale with high resolution of the background scene. These decision texts may come from different sections of a hierarchical government system on different levels, such as villages or communities, towns or counties, cities, provinces or even the paramount. All these texts were balance results between advantages and disadvantages of different interest groups. They are the essential forces of LUCC in human dimension. Up to now, a methodology is still wanted for on how to express these forces in a simulation system using GIS as a language. The presented paper was part of our initial research on this topic. The term "Event" is a very important concept in the frame of "Object-Oriented" theory in computer science. While in the domain of temporal GIS, the concept of event was developed in another category. The definitions of the event and their transformation relationship were discussed in this paper on three modeling levels as real world level, conceptual level and programming level. In this context, with a case study of LUCC in recent 30 years in Xiamen city of Fujian province, P. R. China, the paper focused on how to extract information of events and rules from the policy files collected and integrate

  12. Multi-agent-based modeling for extracting relevant association rules using a multi-criteria analysis approach

    Directory of Open Access Journals (Sweden)

    Addi Ait-Mlouk

    2016-06-01

    Full Text Available Abstract Recently, association rule mining plays a vital role in knowledge discovery in database. In fact, in most cases, the real datasets lead to a very large number of rules, which do not allow users to make their own selection of the most relevant. The difficult task is mining useful and non-redundant rules. Several approaches have been proposed, such as rule clustering, informative cover method and quality measurements. Another way to selecting relevant association rules, we believe that it is necessary to integrate a decisional approach within the knowledge discovery process. Therefore, in this paper, we propose an approach to discover a category of relevant association rules based on multi-criteria analysis. In other side, the general process of association rules extraction becomes more and more complex, to solve such problem, we also proposed a multi-agent system for modeling the different process of our proposed approach. Therefore, we conclude our work by an empirical study applied to a set of banking data to illustrate the performance of our approach.

  13. Weighted Fuzzy Interpolative Reasoning Based on the Slopes of Fuzzy Sets and Particle Swarm Optimization Techniques.

    Science.gov (United States)

    Chen, Shyi-Ming; Hsin, Wen-Chyuan

    2015-07-01

    In this paper, we propose a new weighted fuzzy interpolative reasoning method for sparse fuzzy rule-based systems based on the slopes of fuzzy sets. We also propose a particle swarm optimization (PSO)-based weights-learning algorithm to automatically learn the optimal weights of the antecedent variables of fuzzy rules for weighted fuzzy interpolative reasoning. We apply the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm to deal with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems. The experimental results show that the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm outperforms the existing methods for dealing with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems.

  14. Association Rule Extraction from XML Stream Data for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Juryon Paik

    2014-07-01

    Full Text Available With the advances of wireless sensor networks, they yield massive volumes of disparate, dynamic and geographically-distributed and heterogeneous data. The data mining community has attempted to extract knowledge from the huge amount of data that they generate. However, previous mining work in WSNs has focused on supporting simple relational data structures, like one table per network, while there is a need for more complex data structures. This deficiency motivates XML, which is the current de facto format for the data exchange and modeling of a wide variety of data sources over the web, to be used in WSNs in order to encourage the interchangeability of heterogeneous types of sensors and systems. However, mining XML data for WSNs has two challenging issues: one is the endless data flow; and the other is the complex tree structure. In this paper, we present several new definitions and techniques related to association rule mining over XML data streams in WSNs. To the best of our knowledge, this work provides the first approach to mining XML stream data that generates frequent tree items without any redundancy.

  15. Fuzzy Cores and Fuzzy Balancedness

    NARCIS (Netherlands)

    van Gulick, G.; Norde, H.W.

    2011-01-01

    We study the relation between the fuzzy core and balancedness for fuzzy games. For regular games, this relation has been studied by Bondareva (1963) and Shapley (1967). First, we gain insight in this relation when we analyse situations where the fuzzy game is continuous. Our main result shows that a

  16. Fuzzy Cores and Fuzzy Balancedness

    NARCIS (Netherlands)

    van Gulick, G.; Norde, H.W.

    2011-01-01

    We study the relation between the fuzzy core and balancedness for fuzzy games. For regular games, this relation has been studied by Bondareva (1963) and Shapley (1967). First, we gain insight in this relation when we analyse situations where the fuzzy game is continuous. Our main result shows that

  17. Terrorism Event Classification Using Fuzzy Inference Systems

    CERN Document Server

    Inyaem, Uraiwan; Meesad, Phayung; Tran, Dat

    2010-01-01

    Terrorism has led to many problems in Thai societies, not only property damage but also civilian casualties. Predicting terrorism activities in advance can help prepare and manage risk from sabotage by these activities. This paper proposes a framework focusing on event classification in terrorism domain using fuzzy inference systems (FISs). Each FIS is a decision-making model combining fuzzy logic and approximate reasoning. It is generated in five main parts: the input interface, the fuzzification interface, knowledge base unit, decision making unit and output defuzzification interface. Adaptive neuro-fuzzy inference system (ANFIS) is a FIS model adapted by combining the fuzzy logic and neural network. The ANFIS utilizes automatic identification of fuzzy logic rules and adjustment of membership function (MF). Moreover, neural network can directly learn from data set to construct fuzzy logic rules and MF implemented in various applications. FIS settings are evaluated based on two comparisons. The first evaluat...

  18. On Controllability and Observability of Fuzzy Dynamical Matrix Lyapunov Systems

    Directory of Open Access Journals (Sweden)

    M. S. N. Murty

    2008-04-01

    Full Text Available We provide a way to combine matrix Lyapunov systems with fuzzy rules to form a new fuzzy system called fuzzy dynamical matrix Lyapunov system, which can be regarded as a new approach to intelligent control. First, we study the controllability property of the fuzzy dynamical matrix Lyapunov system and provide a sufficient condition for its controllability with the use of fuzzy rule base. The significance of our result is that given a deterministic system and a fuzzy state with rule base, we can determine the rule base for the control. Further, we discuss the concept of observability and give a sufficient condition for the system to be observable. The advantage of our result is that we can determine the rule base for the initial value without solving the system.

  19. MINIMAL FUZZY MICROCONTROLLER IMPLEMENTATION FOR DIDACTIC APPLICATIONS

    OpenAIRE

    F. Lara-Rojo; E. N. Sánchez; D. Zaldívar-Navarro

    2003-01-01

    Fuzzy techniques have been successfully used in control in several fields, and engineers and researchers are today considering fuzzy logic algorithms in order to implement intelligent functions in embedded systems. We have started to develop a set of teaching tools to support our courses on intelligent control. Low cost implementations of didactic systems are particularly important in developing countries. In this paper we present the implementation of a minimal PD fuzzy four-rule algorithm i...

  20. Terminology and concepts of control and Fuzzy Logic

    Science.gov (United States)

    Aldridge, Jack; Lea, Robert; Jani, Yashvant; Weiss, Jonathan

    1990-01-01

    Viewgraphs on terminology and concepts of control and fuzzy logic are presented. Topics covered include: control systems; issues in the design of a control system; state space control for inverted pendulum; proportional-integral-derivative (PID) controller; fuzzy controller; and fuzzy rule processing.

  1. Multiple Fuzzy Classification Systems

    CERN Document Server

    Scherer, Rafał

    2012-01-01

    Fuzzy classifiers are important tools in exploratory data analysis, which is a vital set of methods used in various engineering, scientific and business applications. Fuzzy classifiers use fuzzy rules and do not require assumptions common to statistical classification. Rough set theory is useful when data sets are incomplete. It defines a formal approximation of crisp sets by providing the lower and the upper approximation of the original set. Systems based on rough sets have natural ability to work on such data and incomplete vectors do not have to be preprocessed before classification. To achieve better performance than existing machine learning systems, fuzzy classifiers and rough sets can be combined in ensembles. Such ensembles consist of a finite set of learning models, usually weak learners. The present book discusses the three aforementioned fields – fuzzy systems, rough sets and ensemble techniques. As the trained ensemble should represent a single hypothesis, a lot of attention is placed o...

  2. Fuzzy Ideals and Fuzzy Distributive Lattices%Fuzzy Ideals and Fuzzy Distributive Lattices*

    Institute of Scientific and Technical Information of China (English)

    S.H.Dhanani; Y. S. Pawar

    2011-01-01

    Our main objective is to study properties of a fuzzy ideals (fuzzy dual ideals). A study of special types of fuzzy ideals (fuzzy dual ideals) is also furnished. Some properties of a fuzzy ideals (fuzzy dual ideals) are furnished. Properties of a fuzzy lattice homomorphism are discussed. Fuzzy ideal lattice of a fuzzy lattice is defined and discussed. Some results in fuzzy distributive lattice are proved.

  3. Novel Architecture for supporting medical decision making of different data types based on Fuzzy Cognitive Map Framework.

    Science.gov (United States)

    Papageorgiou, Elpiniki; Stylios, Chrysostomos; Groumpos, Peter

    2007-01-01

    Medical problems involve different types of variables and data, which have to be processed, analyzed and synthesized in order to reach a decision and/or conclude to a diagnosis. Usually, information and data set are both symbolic and numeric but most of the well-known data analysis methods deal with only one kind of data. Even when fuzzy approaches are considered, which are not depended on the scales of variables, usually only numeric data is considered. The medical decision support methods usually are accessed in only one type of available data. Thus, sophisticated methods have been proposed such as integrated hybrid learning approaches to process symbolic and numeric data for the decision support tasks. Fuzzy Cognitive Maps (FCM) is an efficient modelling method, which is based on human knowledge and experience and it can handle with uncertainty and it is constructed by extracted knowledge in the form of fuzzy rules. The FCM model can be enhanced if a fuzzy rule base (IF-THEN rules) is available. This rule base could be derived by a number of machine learning and knowledge extraction methods. Here it is introduced a hybrid attempt to handle situations with different types of available medical and/or clinical data and with difficulty to handle them for decision support tasks using soft computing techniques.

  4. Statistical and Clustering Based Rules Extraction Approaches for Fuzzy Model to Estimate Academic Performance in Distance Education

    Science.gov (United States)

    Yildiz, Osman; Bal, Abdullah; Gulsecen, Sevinc

    2015-01-01

    The demand for distance education has been increasing at a rapid pace all around the world. This, in turn, places a special importance on the need for the development of more distance education systems. However, there is an alarming rise in the number of distance education students that drop out of the system without asking for any help. The…

  5. A T-S Fuzzy Model with Recurrent Rule and Its Identification Method%规则递归T-S模糊模型及其辨识方法

    Institute of Scientific and Technical Information of China (English)

    梁炎明; 刘丁

    2012-01-01

    针对传统T-S模糊模型不能较好描述系统时变特性的问题,提出了一种基于递归策略的动态T-S模糊模型及其辨识方法.规则递归T-S模糊模型在传统T-S模糊模型基础上,增加了具有一定权重的反馈环节,该环节对当前激励强度与前一时刻激励强度进行加权和得到当前时刻新的规则激励强度,从而实现动态递归变化,有效描述了系统的动态过程.为使规则递归T-S模糊模型具有较少的规则数量和较好的泛化能力,前件参数采用一种基于规则激励强度的模糊聚类算法获得,而后件和递归环节参数则采用一种由支持向量机和粒子群优化算法组成的联合辨识方法获得.Box-Jenkins煤气炉的仿真结果表明,规则递归T-S模糊模型及其辨识方法具有较好的动态描述能力,与混合聚类方法相比,均方差降低了1.2%.%A dynamic T-S fuzzy model with a recurrent rule structure (TFM-RR) and its identification are proposed to improve the problem that conventional T-S fuzzy models can not exactly describe the time-varying characteristics of systems. A weighted feedback component that bases on the traditional T-S fuzzy model, is introduced in TFM-RR, and produces a new firing strength of the current rule from the weighted sum of the current firing strength and the previous firing strength. Thus, the firing strength of a rule varies dynamically and recursively, and effectively describes the dynamic process of the system. In order to make TFM-RR has fewer rules and good generalization capabilities, parameters of the antecedent of a rule are achieved using a fuzzy clustering algorithm that bases on the firing strength of the rule, while parameters of the consequent and the recursion are achieved by an integrated identification method that combines the support vector machine and a particle swarm optimization algorithm. Simulation results and comparisons with the hybrid clustering method on Box-Jenkins gas furnace

  6. On Fuzzy Simplex and Fuzzy Convex Hull

    Institute of Scientific and Technical Information of China (English)

    Dong QIU; Wei Quan ZHANG

    2011-01-01

    In this paper,we discuss fuzzy simplex and fuzzy convex hull,and give several representation theorems for fuzzy simplex and fuzzy convex hull.In addition,by giving a new characterization theorem of fuzzy convex hull,we improve some known results about fuzzy convex hull.

  7. The Fuzzy Set by Fuzzy Interval

    OpenAIRE

    Dr.Pranita Goswami

    2011-01-01

    Fuzzy set by Fuzzy interval is atriangular fuzzy number lying between the two specified limits. The limits to be not greater than 2 and less than -2 by fuzzy interval have been discussed in this paper. Through fuzzy interval we arrived at exactness which is a fuzzymeasure and fuzzy integral

  8. A Fuzzy Quantum Neural Network and Its Application in Pattern Recognition

    Institute of Scientific and Technical Information of China (English)

    MIAOFuyou; XIONGYan; CHENHuanhuan; WANGXingfu

    2005-01-01

    This paper proposes a fuzzy quantum neural network model combining quantum neural network and fuzzy logic, which applies the fuzzy logic to design the collapse rules of the quantum neural network, and solves the character recognition problem. Theoretical analysis and experimental results show that fuzzy quantum neural network improves recognizing veracity than the traditional neural network and quantum neural network.

  9. Moldability Evaluation for Molded Parts Based on Fuzzy Reasoning

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Moldability evaluation for molded parts, which is the basis of concurrent design, is a key design stage in injection molding design. By moldability evaluation the design problems can be found timely and an optimum plastic part design achieved. In this paper, a systematic methodology for moldability evaluation based on fuzzy logic is proposed. Firstly, fuzzy set modeling for six key design attributes of molded parts is carried out respectively. Secondly, on the basis of this, the relationship between fuzzy sets for design attributes and fuzzy sets for moldability is established by fuzzy rules that are based on domain experts' experience and knowledge. At last the integral moldability for molded parts is obtained through fuzzy reasoning. The neural network based fuzzy reasoning approach presented in this paper can improve fuzzy reasoning efficiency greatly, especially for system having a large number of rules and complicated membership functions. An example for moldability evaluation is given to show the feasibility of this proposed methodology.

  10. A Metaheuristically Tuned Interval Type 2 Fuzzy System to Reduce Segmentation Uncertainty in Brain MRI Images.

    Science.gov (United States)

    Taghribi, Abolfazl; Sharifian, Saeed

    2017-09-19

    Precise segmentation of magnetic resonance image (MRI) seems challenging because of the complex structure of the brain, non-uniform field in images, and noise. As a result, decision-making is associated with uncertainty. Fuzzy based approaches have been developed to overcome this problem, though most of them use fuzzy type 1 method, and sometimes contain a pre-processing step. This paper "modified type 2 fuzzy system" (MT2FS) declares a state-of-the-art method to segment MRI images using interval fuzzy type-2. Furthermore, Genetic algorithm has been employed to specify the best values for mean and variance of upper and lower membership functions. This strategy will determine discrimination boundaries for different brain tissues to be less independent from the training set. Finally, the result of fuzzy rules is extracted by using Dempster-Shafer rule combination method. Simulation results demonstrate a satisfactory output on both simulated and real MRI images in comparison with previously conducted research works without the need for a pre-processing stage.

  11. Neuro Fuzzy Systems: Sate-of-the-Art Modeling Techniques

    OpenAIRE

    Abraham, Ajith

    2004-01-01

    Fusion of Artificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS) have attracted the growing interest of researchers in various scientific and engineering areas due to the growing need of adaptive intelligent systems to solve the real world problems. ANN learns from scratch by adjusting the interconnections between layers. FIS is a popular computing framework based on the concept of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The advantages of a combination of ANN a...

  12. A STUDY OF FUZZY LOGICAL PETRI NETS AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Jiang Changjun

    2001-01-01

    In this paper, a fuzzy Petri net approach to modelling fuzzy rule-based reasoning is proposed. Logical Petri net (LPN) and fuzzy logical Petri net (FLPN) are defined. The backward reasoning algorithm based on sub-fuzzy logical Petri net is given. It is simpler than the conventional algorithm of forward reasoning from initial propositions. An application to the partial fault model of a car engine in paper Portinale's(1993) is used as an illustrative example of FLPN.

  13. Vedic Mathematics: 'Vedic' or 'Mathematics' -- A Fuzzy and Neutrosophic Analysis

    OpenAIRE

    2006-01-01

    In this book the authors probe into Vedic Mathematics (a concept that gained renown in the period of the religious fanatic and revivalist Hindutva rule in India): and explore whether it is really 'Vedic' in origin or 'Mathematics' in content. We analyzed this problem using fuzzy models like Fuzzy Cognitive Maps (FCM), Fuzzy Relational Maps (FRM) and the newly constructed fuzzy dynamical system (and its Neutrosophic analogue) that can analyze multi-experts opinion at a time using a single mode...

  14. Fuzzy Reliability Analysis of the Shaft of a Steam Turbine

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Field surveying shows that the failure of the steam turbine's coupling is due to fatigue that is caused by compound stress. Fuzzy mathematics was applied to get the membership function of the fatigue strength rule. A formula of fuzzy reliability of the coupling was derived and a theory of coupling's fuzzy reliability is set up. The calculating method of the fuzzy reliability is explained by an illustrative example.

  15. A SELF-ORGANISING FUZZY LOGIC CONTROLLER

    African Journals Online (AJOL)

    ES Obe

    One major drawback of fuzzy logic controllers is the difficulty encountered in the construction of a ... an algorithm that allows a designer to initially specify a possibly inaccurate rule-base, which ... an adaptive FLC strategy based on these ideas.

  16. Fuzzy Riesz subspaces, fuzzy ideals, fuzzy bands and fuzzy band projections

    OpenAIRE

    Hong Liang

    2015-01-01

    Fuzzy ordered linear spaces, Riesz spaces, fuzzy Archimedean spaces and $\\sigma$-complete fuzzy Riesz spaces were defined and studied in several works. Following the efforts along this line, we define fuzzy Riesz subspaces, fuzzy ideals, fuzzy bands and fuzzy band projections and establish their fundamental properties.

  17. Evaluation Rules Acquisition of Performance Audit for IT Projects in China Based on Dominance Intuitionistic Fuzzy Rough Set Model%基于优势一直觉模糊粗糙模型的IT项目绩效审计评价规则获取

    Institute of Scientific and Technical Information of China (English)

    黄兵; 李华雄

    2011-01-01

    针对我国政府审计机关对政府投资的IT项目进行绩效审计评价规则知识获取的困难,考虑了条件属性取值为优势精确值、分类结果为直觉模糊值的决策系统规则获取问题.首先比较条件属性值的大小,构建对象的优势邻域,再由对象邻域的直觉模糊值确定对象的上下近似;根据对象的上下近似和不同对象的直觉模糊值确定对象间的区分关系,利用分辨矩阵给出知识约简和规则提取算法;最后将直觉模糊粗糙模型应用于政府IT项目绩效审计评价规则的获取,得到了较为合理的IT项目绩效评价规则.%Rules acquisition was studied in a type of decision systems where its values of condition attributes took dominance crisp values and those of decision attribute were intuitionistic fuzzy numbers. Firstly, the dominanting and domi-nanted classes of objects in the universe of discourse were constructed by the dominance crisp values of condition attributes. Secondly, the lower/upper approximation set of an object were ascertained by comparing the intuisionistic fuzzy numbers of decision attributes among objects. Thirdly, using discernibility matrix, the lower approximtion reduction and rules extraction algorithm based on discernibility relations among objects were devised. Finally,the presented model and algorithm were applied to performance audit for IT project,and some logical rules of performance audit for IT projects were obtianed.

  18. Evaluation Rules Acquisition of Performance Audit for IT Projects in China Based on Dominance Intuitionistic Fuzzy Rough Set Model%基于优势-直觉模糊粗糙模型的IT项目绩效审计评价规则获取

    Institute of Scientific and Technical Information of China (English)

    黄兵; 李华雄

    2011-01-01

    针对我国政府审计机关对政府投资的IT项目进行绩效审计评价规则知识获取的困难,考虑了条件属性取值为优势精确值、分类结果为直觉模糊值的决策系统规则获取问题.首先比较条件属性值的大小,构建对象的优势邻域,再由对象邻域的直觉模糊值确定对象的上下近似;根据对象的上下近似和不同对象的直觉模糊值确定对象间的区分关系,利用分辨矩阵给出知识约简和规则提取算法;最后将直觉模糊粗糙模型应用于政府IT项目绩效审计评价规则的获取,得到了较为合理的IT项目绩效评价规则.%Rules acquisiton was studied in a type of decision systems where its values of condition attributes took dominance crisp values and those of decision attribute were intuitionistic fuzzy numbers. Firstly,the dominanting and domi-nanted classes of objects in the universe of discourse were constructed by the dominance crisp values of condition attributes. Secondly, the lower/upper approximation set of an object were ascertained by comparing the intuisionistic fuzzy numbers of decision attributes among objects. Thirdly, using discernibility matrix, the lower approximtion reduction and rules extraction algorithm based on discernibility relations among objects were devised. Finally,the presented model and algorithm were applied to performance audit for IT project,and some logical rules of performance audit for IT projects were obtianed.

  19. The Non-Self-Embedding Property for Generalized Fuzzy Context-Free Grammars

    NARCIS (Netherlands)

    Asveld, Peter R.J.

    1996-01-01

    A fuzzy context-free $K$-grammar is a fuzzy context-free grammar with a countable rather than a finite number of rules satisfying the following condition: for each symbol $\\alpha$, the set containing all right-hand sides of rules with left-hand side equal to $\\alpha$ forms a fuzzy language that belo

  20. The Non-Self-Embedding Property for Generalized Fuzzy Context-free Grammars

    NARCIS (Netherlands)

    Asveld, Peter R.J.

    1999-01-01

    A fuzzy context-free $K$-grammar is a fuzzy context-free grammar with a countable rather than a finite number of rules satisfying the following condition: for each symbol $\\alpha$, the set containing all right-hand sides of rules with left-hand side equal to $\\alpha$ forms a fuzzy language that belo

  1. Extraction of fetal electrocardiogram (ECG) by extended state Kalman filtering and adaptive neuro-fuzzy inference system (ANFIS) based on single channel abdominal recording

    Indian Academy of Sciences (India)

    D Panigrahy; P K Sahu

    2015-06-01

    Fetal electrocardiogram (ECG) gives information about the health status of fetus and so, an early diagnosis of any cardiac defect before delivery increases the effectiveness of appropriate treatment. In this paper, authors investigate the use of adaptive neuro-fuzzy inference system (ANFIS) with extended Kalman filter for fetal ECG extraction from one ECG signal recorded at the abdominal areas of the mother’s skin. The abdominal ECG is considered to be composite as it contains both mother’s and fetus’ ECG signals. We use extended Kalman filter framework to estimate the maternal component from abdominal ECG. The maternal component in the abdominal ECG signal is a nonlinear transformed version of maternal ECG. ANFIS network has been used to identify this nonlinear relationship, and to align the estimated maternal ECG signal with the maternal component in the abdominal ECG signal. Thus, we extract the fetal ECG component by subtracting the aligned version of the estimated maternal ECG from the abdominal signal. Our results demonstrate the effectiveness of the proposed technique in extracting the fetal ECG component from abdominal signal at different noise levels. The proposed technique is also validated on the extraction of fetal ECG from both actual abdominal recordings and synthetic abdominal recording.

  2. Fuzzy Design Method of Product Quality Robustness

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to express information on the quality grade of product, designed, the target value of product quality design was described with a fuzzy number in this paper. The rule of robust design with a fuzzy target was analyzed with fuzzy probability theory,then the principle and modeling method of fuzzy robust design for a high quality product were put forward. With this new method used, the high-quality ratio of the product de-signed could be increased, and the ability to resist the influence of various disturbing fac-tors ang noise factors could be enhanced.

  3. Refining fuzzy logic controllers with machine learning

    Science.gov (United States)

    Berenji, Hamid R.

    1994-01-01

    In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.

  4. Characterization of convergence in fuzzy topological spaces

    Directory of Open Access Journals (Sweden)

    E. Lowen

    1985-01-01

    Full Text Available In a fuzzy topology on a set X, the limit of a prefilter (i.e. a filter in the lattice [0,1]X is calculated from the fuzzy closure. In this way convergence is derived from a fuzzy topology. In our paper we start with any rule “lim” which to any prefilter on X assigns, a function lim∈[0,1]X. We give necessary and sufficient conditions for the function →lim in order that it can be derived from a fuzzy topology.

  5. Fault Diagnosis in Deaerator Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    S Srinivasan

    2007-01-01

    Full Text Available In this paper a fuzzy logic based fault diagnosis system for a deaerator in a power plant unit is presented. The system parameters are obtained using the linearised state space deaerator model. The fuzzy inference system is created and rule base are evaluated relating the parameters to the type and severity of the faults. These rules are fired for specific changes in system parameters and the faults are diagnosed.

  6. A Natural-Rule-Based-Connection (NRBC Method for River Network Extraction from High-Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Chuiqing Zeng

    2015-10-01

    Full Text Available This study proposed a natural-rule-based-connection (NRBC method to connect river segments after water body detection from remotely sensed imagery. A complete river network is important for many hydrological applications. While water body detection methods using remote sensing are well-developed, less attention has been paid to connect discontinuous river segments and form a complete river network. This study designed an automated NRBC method to extract a complete river network by connecting river segments at polygon level. With the assistance of an image pyramid, neighbouring river segments are connected based on four criteria: gap width (Tg, river direction consistency (Tθ, river width consistency (Tw, and minimum river segment length (Tl. The sensitivity of these four criteria were tested, analyzed, and proper criteria values were suggested using image scenes from two diverse river cases. The comparison of NRBC and the alternative morphological method demonstrated NRBC’s advantage of natural rule based selective connection. We refined a river centerline extraction method and show how it outperformed three other existing centerline extraction methods on the test sites. The extracted river polygons and centerlines have a multitude of end uses including rapidly mapping flood extents, monitoring surface water supply, and the provision of validation data for simulation models required for water quantity, quality and aquatic biota assessments. The code for the NRBC is available on GitHub.

  7. Research on Parameter Self-adjusting PID Controller based on Fuzzy Rules%基于模糊规则参数自整定PID控制器的仿真研究

    Institute of Scientific and Technical Information of China (English)

    林辉

    2011-01-01

    针对常规PID控制器参数整定不易、适应性差、控制精度不理想的现状,提出了在动态过程中参数自整定的模糊PID控制系统.利用模糊理论在线对PID参数进行调整,构成参数自整定PID控制器.通过MATLAB/SIMULINK仿真,仿真结果表明,与经典的PID控制方式相比较,该控制方式在快速性、稳态性及准确性方面都有较大提高.%Aimed at the actuality problem of routine PID controller such as poor adaptability and low controlling precision. the adjustment of PID parameters in a dynamic process was designed to improve the adaptability and the control accuracy. The paper focused on the design of parameter auto-tuning PID controller based on fuzzy rules. on-line adjustment of PID parameter is carried on by using fuzzy theory to establish controller for PID parameter adjustment. The simulation is made by MATLAB/SIMULINK, the simulation results show that the control method is greatly improved in the aspects such as rapidity, stabilization and accuracy compared with classical PID controller.

  8. Assessment of Power Quality Disturbances in the Distribution System Using Kalman Filter and Fuzzy Expert System

    Directory of Open Access Journals (Sweden)

    P. Kalyana Sundaram

    2016-11-01

    Full Text Available The paper presents a novel method for the assessment of the power quality disturbances in the distribution system using the Kalman filter and fuzzy expert system. In this method the various classes of disturbance signals are developed through the Matlab Simulink on the test system model. The characteristic features of the disturbance signals are extracted based on the Kalman filter technique. The obtained features such as amplitude and slope are given as the two inputs to the fuzzy expert system. It applied some rules on these inputs to assess the various PQ disturbances. Fuzzy classifier has been carried out and tested for various power quality disturbances. The results clearly demonstrate that the proposed method in the distribution system has the ability to detect and classify PQ events.

  9. On the Fuzzy Convergence

    Directory of Open Access Journals (Sweden)

    Abdul Hameed Q. A. Al-Tai

    2011-01-01

    Full Text Available The aim of this paper is to introduce and study the fuzzy neighborhood, the limit fuzzy number, the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence on the base which is adopted by Abdul Hameed (every real number r is replaced by a fuzzy number r¯ (either triangular fuzzy number or singleton fuzzy set (fuzzy point. And then, we will consider that some results respect effect of the upper sequence on the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence.

  10. Triple I method and interval valued fuzzy reasoning

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The aims of this paper are: (i) to show that the CRI method should be improved and remould into the triple I method, (ii) to propose a new type of fuzzy reasoning with multiple rules of which the premise of each rule is an interval valued fuzzy subset, (iii) to establish the "fire one or leave (FOOL)" principle as pretreatment for solving the fuzzy reasoning problem mentioned in (ii), and (iv) to solve the problem mentioned in (ii).

  11. Triple I method and interval valued fuzzy reasoning

    Institute of Scientific and Technical Information of China (English)

    王国俊

    2000-01-01

    The aims of this paper are.- (i) to show that the CRI method should be improved and remould into the triple I method, (ii) to propose a new type of fuzzy reasoning with multiple rules of which the premise of each rule is an interval valued fuzzy subset, (iii) to establish the "fire one or leave (FOOL)" principle as pretreatment for solving the fuzzy reasoning problem mentioned in (ii), and (iv) to solve the problem mentioned in (ii).

  12. FHESMM: Fuzzy Hybrid Expert System for Marketing Mix Model

    Directory of Open Access Journals (Sweden)

    Mehdi Neshat

    2011-11-01

    Full Text Available Increasing customers satisfaction in this developed world is the most important factor to have a successful trade and production. New marketing methods and supervising the marketing choices will have a key role to increase the profit of a company. This paper investigates an expert system through four main principles of marketing (price, product, Place and Promotion and their composition with a logic fuzzy system and benefiting from the experiences of marketing specialists. Comparing with the other systems, this one has special properties such as investigating and extracting different fields in which affect the customers satisfaction directly or indirectly as input parameters (26, using knowledge of experts to design inference system rule, composing the results of five fuzzy expert systems and calculating final result(customers satisfaction and finally creating a high function expert system on management and guiding the managers to do a successful marketing in dynamic markets.

  13. A computationally efficient fuzzy control s

    Directory of Open Access Journals (Sweden)

    Abdel Badie Sharkawy

    2013-12-01

    Full Text Available This paper develops a decentralized fuzzy control scheme for MIMO nonlinear second order systems with application to robot manipulators via a combination of genetic algorithms (GAs and fuzzy systems. The controller for each degree of freedom (DOF consists of a feedforward fuzzy torque computing system and a feedback fuzzy PD system. The feedforward fuzzy system is trained and optimized off-line using GAs, whereas not only the parameters but also the structure of the fuzzy system is optimized. The feedback fuzzy PD system, on the other hand, is used to keep the closed-loop stable. The rule base consists of only four rules per each DOF. Furthermore, the fuzzy feedback system is decentralized and simplified leading to a computationally efficient control scheme. The proposed control scheme has the following advantages: (1 it needs no exact dynamics of the system and the computation is time-saving because of the simple structure of the fuzzy systems and (2 the controller is robust against various parameters and payload uncertainties. The computational complexity of the proposed control scheme has been analyzed and compared with previous works. Computer simulations show that this controller is effective in achieving the control goals.

  14. 基于广义模糊集的模糊规则库的设计及其应用%Design of Fuzzy Rule Base Based on Generalized Fuzzy Sets and Its Application

    Institute of Scientific and Technical Information of China (English)

    张胜礼

    2015-01-01

    对模糊知识及其否定知识的认识,潘正华指出存在着三种不同的否定关系:矛盾否定关系、对立否定关系和中介否定关系,并为此建立了一种带有矛盾否定、对立否定和中介否定的模糊集(Fuzzy Sets with Contradictory negation,Opposite negation and Medium negation,FScom).针对FScom及其改进模糊集(Improved Fuzzy Sets with Contradictory negation,Opposite negation and Medium negation,IFScom)在刻画模糊性知识及其三种不同否定关系上的一些不足,提出了广义模糊集GFScom.在此基础上,给出了基于GFScom的模糊控制规则的设记方法,并给出一个具体实例.通过该实例可以看出,所提出的设计方法是有效且合理的.

  15. Fuzzy promises

    DEFF Research Database (Denmark)

    Anker, Thomas Boysen; Kappel, Klemens; Eadie, Douglas

    2012-01-01

    This article clarifies the commonplace assumption that brands make promises by developing definitions of brand promise delivery. Distinguishing between clear and fuzzy brand promises, we develop definitions of what it is for a brand to deliver on fuzzy functional, symbolic, and experiential...

  16. Performance-friendly rule extraction in large water data-sets with AOC posets and relational concept analysis

    Science.gov (United States)

    Dolques, Xavier; Le Ber, Florence; Huchard, Marianne; Grac, Corinne

    2016-02-01

    In this paper, we consider data analysis methods for knowledge extraction from large water data-sets. More specifically, we try to connect physico-chemical parameters and the characteristics of taxons living in sample sites. Among these data analysis methods, we consider formal concept analysis (FCA), which is a recognized tool for classification and rule discovery on object-attribute data. Relational concept analysis (RCA) relies on FCA and deals with sets of object-attribute data provided with relations. RCA produces more informative results but at the expense of an increase in complexity. Besides, in numerous applications of FCA, the partially ordered set of concepts introducing attributes or objects (AOC poset, for Attribute-Object-Concept poset) is used rather than the concept lattice in order to reduce combinatorial problems. AOC posets are much smaller and easier to compute than concept lattices and still contain the information needed to rebuild the initial data. This paper introduces a variant of the RCA process based on AOC posets rather than concept lattices. This approach is compared with RCA based on iceberg lattices. Experiments are performed with various scaling operators, and a specific operator is introduced to deal with noisy data. We show that using AOC poset on water data-sets provides a reasonable concept number and allows us to extract meaningful implication rules (association rules whose confidence is 1), whose semantics depends on the chosen scaling operator.

  17. HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.

    Science.gov (United States)

    Kim, J; Kasabov, N

    1999-11-01

    This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.

  18. 基于模糊规则推理的主题资源搜索系统设计与实现%Design and Implementation of Theme Based Resource Gathering System Using Fuzzy Rule Reasoning Algorithm

    Institute of Scientific and Technical Information of China (English)

    徐朝军; 李艺; 杨晓江

    2009-01-01

    After the study of users' Internet surfing action and background knowledge, we reorganize users' personal domain knowledge to build a knowledge bank to guide the spider's crawling behavior. The spider downloads the web pages,predicts each URL's relevancy to the specified theme and classify the resources while downloading the web page using the fuzzy rule based reasoning algorithm. We also develop a Basic Educational Resource Gathering System to verify the algorithm we put forward. The experiment shows Fuzzy Rule Reasoning algorithm is very effective in boosting the spider s performace and the classification accuracy,so as to impove the whole system's efficience distinctly.%本文在分析用户网络浏览行为的基础上,从用户的专业知识经验出发设计了用以控制、引导网络蜘蛛行为的专家知识库,利用模糊规则推算法,在进行网页下载的同时对网页中的URL主题相关度进行预测的同时对相应的资源进行模糊规则分类.文章并以基础教育资源搜集为例对该算法进行了实现,通过对先后两个版本的系统性能的分析和比较,结果表明,使用模糊规则推理算法,进行URL相关度预测可以有效提高主题资源搜集的速度,采用二次分类的办法可以进一步提高资源分类的准确度,从而提高主题资源搜索系统的整体性能.

  19. Analysis of inventory difference using fuzzy controllers

    Energy Technology Data Exchange (ETDEWEB)

    Zardecki, A.

    1994-08-01

    The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented.

  20. Fuzzy associative memories for instrument fault detection

    Energy Technology Data Exchange (ETDEWEB)

    Heger, A.S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Holbert, K.E.; Ishaque, A.M. [Arizona State Univ., Tempe, AZ (United States)

    1996-06-01

    A fuzzy logic instrument fault detection scheme is developed for systems having two or three redundant sensors. In the fuzzy logic approach the deviation between each signal pairing is computed and classified into three fuzzy sets. A rule base is created allowing the human perception of the situation to be represented mathematically. Fuzzy associative memories are then applied. Finally, a defuzzification scheme is used to find the centroid location, and hence the signal status. Real-time analyses are carried out to evaluate the instantaneous signal status as well as the long-term results for the sensor set. Instantaneous signal validation results are used to compute a best estimate for the measured state variable. The long-term sensor validation method uses a frequency fuzzy variable to determine the signal condition over a specific period. To corroborate the methodology synthetic data representing various anomalies are analyzed with both the fuzzy logic technique and the parity space approach. (Author).

  1. FUZZY LOGIC IN LEGAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Z. Gonul BALKIR

    2011-04-01

    Full Text Available The necessity of examination of every case within its peculiar conditions in social sciences requires different approaches complying with the spirit and nature of social sciences. Multiple realities require different and various perceptual interpretations. In modern world and social sciences, interpretation of perception of valued and multi-valued have been started to be understood by the principles of fuzziness and fuzzy logic. Having the verbally expressible degrees of truthness such as true, very true, rather true, etc. fuzzy logic provides the opportunity for the interpretation of especially complex and rather vague set of information by flexibility or equivalence of the variables’ of fuzzy limitations. The methods and principles of fuzzy logic can be benefited in examination of the methodological problems of law, especially in the applications of filling the legal loopholes arising from the ambiguities and interpretation problems in order to understand the legal rules in a more comprehensible and applicable way and the efficiency of legal implications. On the other hand, fuzzy logic can be used as a technical legal method in legal education and especially in legal case studies and legal practice applications in order to provide the perception of law as a value and the more comprehensive and more quality perception and interpretation of value of justice, which is the core value of law. In the perception of what happened as it has happened in legal relationships and formations, the understanding of social reality and sociological legal rules with multi valued sense perspective and the their applications in accordance with the fuzzy logic’s methods could create more equivalent and just results. It can be useful for the young lawyers and law students as a facilitating legal method especially in the materialization of the perception and interpretation of multi valued and variables. Using methods and principles of fuzzy logic in legal

  2. Deduction Theorem and Hypothetical Syllogism Rule on Fuzzy Logic System%模糊逻辑系统中的演绎定理和HS规则

    Institute of Scientific and Technical Information of China (English)

    杨晓斌; 邓书显

    2005-01-01

    Cancelled the first axiom L1) or the third axiom L3) of the classical formal logic system we established two kinds of quasi-formal deductive system, LG*-Rand LG*, respectively. In LG*-R we proved that neither the deduction theorem nor the hypothetical syllogism (HS) rule held but a deduction theorem and an HS rule are obtained in a weak sense. We also proved that both the deduction theorem and the hypothetical syllogism(HS)rule hold in LG*.

  3. Extracting classification rules from an informatic security incidents repository by genetic programming

    Directory of Open Access Journals (Sweden)

    Carlos Javier Carvajal Montealegre

    2015-04-01

    Full Text Available This paper describes the data mining process to obtain classification rules over an information security incident data collection, explaining in detail the use of genetic programming as a mean to model the incidents behavior and representing such rules as decision trees. The described mining process includes several tasks, such as the GP (Genetic Programming approach evaluation, the individual's representation and the algorithm parameters tuning to upgrade the performance. The paper concludes with the result analysis and the description of the rules obtained, suggesting measures to avoid the occurrence of new informatics attacks. This paper is a part of the thesis work degree: Information Security Incident Analytics by Data Mining for Behavioral Modeling and Pattern Recognition (Carvajal, 2012.

  4. Establishment of a New Drug Code for Marihuana Extract. Final rule.

    Science.gov (United States)

    2016-12-14

    The Drug Enforcement Administration is creating a new Administration Controlled Substances Code Number for "Marihuana Extract." This code number will allow DEA and DEA-registered entities to track quantities of this material separately from quantities of marihuana. This, in turn, will aid in complying with relevant treaty provisions. Under international drug control treaties administered by the United Nations, some differences exist between the regulatory controls pertaining to marihuana extract versus those for marihuana and tetrahydrocannabinols. The DEA has previously established separate code numbers for marihuana and for tetrahydrocannabinols, but not for marihuana extract. To better track these materials and comply with treaty provisions, DEA is creating a separate code number for marihuana extract with the following definition: "Meaning an extract containing one or more cannabinoids that has been derived from any plant of the genus Cannabis, other than the separated resin (whether crude or purified) obtained from the plant." Extracts of marihuana will continue to be treated as Schedule I controlled substances.

  5. A Development of Self-Organization Algorithm for Fuzzy Logic Controller

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.M.; Moon, U.C. [Seoul National Univ. (Korea, Republic of). Coll. of Engineering; Lee, K.Y. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Electrical Engineering

    1994-09-01

    This paper proposes a complete design method for an on-line self-organizing fuzzy logic controller without using any plant model. By mimicking the human learning process, the control algorithm finds control rules of a system for which little knowledge has been known. To realize this, a concept of Fuzzy Auto-Regressive Moving Average(FARMA) rule is introduced. In a conventional fuzzy logic control, knowledge on the system supplied by an expert is required in developing control rules. However, the proposed new fuzzy logic controller needs no expert in making control rules. Instead, rules are generated using the history of input-output pairs, and new inference and defuzzification methods are developed. The generated rules are strode in the fuzzy rule space and updated on-line by a self-organizing procedure. The validity of the proposed fuzzy logic control method has been demonstrated numerically in controlling an inverted pendulum. (author). 28 refs., 16 figs.

  6. A recurrent fuzzy network for fuzzy temporal sequence processing and gesture recognition.

    Science.gov (United States)

    Juang, Chia-Feng; Ku, Ksuan-Chun

    2005-08-01

    A fuzzified Takagi-Sugeno-Kang (TSK)-type recurrent fuzzy network (FTRFN) for handling fuzzy temporal information is proposed in this paper. The FTRFN extends our previously proposed network, TRFN, to deal with fuzzy temporal signals represented by Gaussian or triangular fuzzy numbers. In the precondition part of FTRFN, matching degrees between input fuzzy variables and fuzzy antecedent sets is performed by similarity measure. In the TSK-type consequence, a linear combination of fuzzy variables is computed, where two sets of combination coefficients, one for the center and the other for the width of each fuzzy number, are used. Derivation of the linear combination results and final network output is based on left-right fuzzy number operation. There are no rules in FTRFN initially; they are constructed online by concurrent structure and parameter learning, where all free parameters in the precondition/consequence of FTRFN are all tunable. FTRFN can be applied on a variety of domains related to fuzzy temporal information processing. In this paper, it has been applied on one-dimensional and two-dimensional fuzzy temporal sequence prediction and CCD-based temporal gesture recognition. The performance of FTRFN is verified from these examples.

  7. Life insurance risk assessment using a fuzzy logic expert system

    Science.gov (United States)

    Carreno, Luis A.; Steel, Roy A.

    1992-01-01

    In this paper, we present a knowledge based system that combines fuzzy processing with rule-based processing to form an improved decision aid for evaluating risk for life insurance. This application illustrates the use of FuzzyCLIPS to build a knowledge based decision support system possessing fuzzy components to improve user interactions and KBS performance. The results employing FuzzyCLIPS are compared with the results obtained from the solution of the problem using traditional numerical equations. The design of the fuzzy solution consists of a CLIPS rule-based system for some factors combined with fuzzy logic rules for others. This paper describes the problem, proposes a solution, presents the results, and provides a sample output of the software product.

  8. A fuzzy neural network evolved by particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    PENG Zhi-ping; PENG Hong

    2007-01-01

    A cooperative system of a fuzzy logic model and a fuzzy neural network (CSFLMFNN) is proposed,in which a fuzzy logic model is acquired from domain experts and a fuzzy neural network is generated and prewired according to the model. Then PSO-CSFLMFNN is constructed by introducing particle swarm optimization (PSO) into the cooperative system instead of the commonly used evolutionary algorithms to evolve the prewired fuzzy neural network. The evolutionary fuzzy neural network implements accuracy fuzzy inference without rule matching. PSO-CSFLMFNN is applied to the intelligent fault diagnosis for a petrochemical engineering equipment, in which the cooperative system is proved to be effective. It is shown by the applied results that the performance of the evolutionary fuzzy neural network outperforms remarkably that of the one evolved by genetic algorithm in the convergence rate and the generalization precision.

  9. Enric Trillas a passion for fuzzy sets : a collection of recent works on fuzzy logic

    CERN Document Server

    Verdegay, Jose; Esteva, Francesc

    2015-01-01

    This book presents a comprehensive collection of the latest and most significant research advances and applications in the field of fuzzy logic. It covers fuzzy structures, rules, operations and mathematical formalisms, as well as important applications of fuzzy logic in a number of fields, like decision-making, environmental prediction and prevention, communication, controls and many others. Dedicated to Enric Trillas in recognition of his pioneering research in the field, the book also includes a foreword by Lotfi A. Zadeh and an outlook on the future of fuzzy logic.

  10. Fuzzy dynamic output feedback H∞ control for continuous-time T-S fuzzy systems under imperfect premise matching.

    Science.gov (United States)

    Zhao, Tao; Dian, Songyi

    2017-09-01

    This paper addresses a fuzzy dynamic output feedback H∞ control design problem for continuous-time nonlinear systems via T-S fuzzy model. The stability of the fuzzy closed-loop system which is formed by a T-S fuzzy model and a fuzzy dynamic output feedback H∞ controller connected in a closed loop is investigated with Lyapunov stability theory. The proposed fuzzy controller does not share the same membership functions and number of rules with T-S fuzzy systems, which can enhance design flexibility. A line-integral fuzzy Lyapunov function is utilized to derive the stability conditions in the form of linear matrix inequalities (LMIs). The boundary information of membership functions is considered in the stability analysis to reduce the conservativeness of the imperfect premise matching design technique. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Todd Vollmer; Jason Wright; Milos Manic

    2011-04-01

    Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.

  12. Extraction and Preference Ordering of Multireservoir Water Supply Rules in Dry Years

    Directory of Open Access Journals (Sweden)

    Ling Kang

    2016-01-01

    Full Text Available This paper presents a new methodology of combined use of the nondominated sorting genetic algorithm II (NSGA-II and the approach of successive elimination of alternatives based on order and degree of efficiency (SEABODE in identifying the most preferred multireservoir water supply rules in dry years. First, the suggested operation rules consists of a two-point type time-varying hedging policy for a single reservoir and a simple proportional allocation policy of common water demand between two parallel reservoirs. Then, the NSGA-II is employed to derive enough noninferior operation rules (design alternatives in terms of two conflicting objectives (1 minimizing the total deficit ratio (TDR of all demands of the entire system in operation horizon, and (2 minimizing the maximum deficit ratio (MDR of water supply in a single period. Next, the SEABODE, a multicriteria decision making (MCDM procedure, is applied to further eliminate alternatives based on the concept of efficiency of order k with degree p. In SEABODE, the reservoir performance indices and water shortage indices are selected as evaluation criteria for preference ordering among the design alternatives obtained by NSGA-II. The proposed methodology was tested on a regional water supply system with three reservoirs located in the Jialing River, China, where the results demonstrate its applicability and merits.

  13. Watermarking Digital Image Using Fuzzy Matrix Compositions and Rough Set

    Directory of Open Access Journals (Sweden)

    Sharbani Bhattacharya

    2014-07-01

    Full Text Available Watermarking is done in digital images for authentication and to restrict its unauthorized usages. Watermarking is sometimes invisible and can be extracted only by authenticated party. Encrypt a text or information by public –private key from two fuzzy matrix and embed it in image as watermark. In this paper we proposed two fuzzy compositions Product-Mod-Minus, and Compliment-Product-Minus. Embedded watermark using Fuzzy Rough set created from fuzzy matrix compositions.

  14. GATE TYPE SELECTION BASED ON FUZZY MAPPING

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Gate type selection is very important for mould design. Improper gate type may lead to poor product quality and low production efficiency. Although numerical simulation approach could be used to optimize gate location, the determination of gate type is still up to designers' experience. A novel method for selecting gate type based on fuzzy logic is proposed. The proposed methodology follows three steps:Design requirements for gate is extracted and generalized; Possible gate types (design schemes) are presented; The fuzzy mapping relationship between gate design requirements and gate design scheme is established based on fuzzy composition and fuzzy relation transition matrices that are assigned by domain experts.

  15. Fuzzy Control of Chaotic System with Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-an; GUO Zhao-xia; SHAO Shi-huang

    2002-01-01

    A novel approach to control the unpredictable behavior of chaotic systems is presented. The control algorithm is based on fuzzy logic control technique combined with genetic algorithm. The use of fuzzy logic allows for the implementation of human "rule-of-thumb" approach to decision making by employing linguistic variables. An improved Genetic Algorithm (GA) is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule,and to automatically generate fuzzy control actions under each condition. Simulation results show that such an approach for the control of chaotic systems is both effective and robust.

  16. Intuitionistic Fuzzy Time Series Forecasting Model Based on Intuitionistic Fuzzy Reasoning

    Directory of Open Access Journals (Sweden)

    Ya’nan Wang

    2016-01-01

    Full Text Available Fuzzy sets theory cannot describe the data comprehensively, which has greatly limited the objectivity of fuzzy time series in uncertain data forecasting. In this regard, an intuitionistic fuzzy time series forecasting model is built. In the new model, a fuzzy clustering algorithm is used to divide the universe of discourse into unequal intervals, and a more objective technique for ascertaining the membership function and nonmembership function of the intuitionistic fuzzy set is proposed. On these bases, forecast rules based on intuitionistic fuzzy approximate reasoning are established. At last, contrast experiments on the enrollments of the University of Alabama and the Taiwan Stock Exchange Capitalization Weighted Stock Index are carried out. The results show that the new model has a clear advantage of improving the forecast accuracy.

  17. Modeling and control of an unstable system using probabilistic fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Sozhamadevi N.

    2015-09-01

    Full Text Available A new type Fuzzy Inference System is proposed, a Probabilistic Fuzzy Inference system which model and minimizes the effects of statistical uncertainties. The blend of two different concepts, degree of truth and probability of truth in a unique framework leads to this new concept. This combination is carried out both in Fuzzy sets and Fuzzy rules, which gives rise to Probabilistic Fuzzy Sets and Probabilistic Fuzzy Rules. Introducing these probabilistic elements, a distinctive probabilistic fuzzy inference system is developed and this involves fuzzification, inference and output processing. This integrated approach accounts for all of the uncertainty like rule uncertainties and measurement uncertainties present in the systems and has led to the design which performs optimally after training. In this paper a Probabilistic Fuzzy Inference System is applied for modeling and control of a highly nonlinear, unstable system and also proved its effectiveness.

  18. Medical application of fuzzy logic: fuzzy patient state in arterial hypertension analysis

    Science.gov (United States)

    Blinowska, Aleksandra; Duckstein, Lucien

    1993-12-01

    A few existing applications of fuzzy logic in medicine are briefly described and some potential applications are reviewed. The problem of classification of patient states and medical decision making is discussed more in detail and illustrated by the example of a fuzzy rule based model developed to elicit, analyze and reproduce the opinions of multiple medical experts in the case of arterial hypertension. The goal was to reproduce the average coded answers using an adequate fuzzy procedure, here a fuzzy rule. State categories and the initial set of experimental parameters were defined according to medical practice. The fuzzy set membership functions were then assessed for each parameter in each category and a small subset of representative and pertinent parameters selected for each question. The data were split into two sets of 50 patient files each, the calibration set and the validation set. Two evaluation criteria were used: the sum of squared deviations and the sum of deviations. Fuzzy rules were then sought that reproduced the target, which was the average coded answer. Only one fuzzy rule `and' appeared to be necessary to describe the patient state in a continuous way and to approach the target as closely as the majority of experts.

  19. Fault Diagnosis of Machine Based on Fuzzy Reliability Theory

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    According to life analysis in reliability theory, certain diagnosis rules can be used to diagnose machines' faults. On this basis, considering the indefiniteness in machine working states, the accurate diagnosis rule was extended to fuzzy diagnosis rule by using basic concepts and methods of fuzzy mathematics. The formulas of fault probability under different conditions were deduced. In the end, an example is given and the results of two methods were compared.

  20. Fuzzy sets and autonomous navigation

    Science.gov (United States)

    Lea, Robert N.

    1987-01-01

    The use of fuzzy sets in modeling the human expert for certain Space Shuttle navigation problems is discussed with particular reference to onboard and ground console data monitoring tasks traditionally performed by astronauts and engineers. Specific problems include determining the quality of sensor data and of the filter state. The results obtained in this study indicate that fuzzy sets can be successfully used in modeling human reaction to rules in decision-making processes. They can also be used within software systems where guidelines have traditionally been used to set strict tolerances.

  1. Fuzzy Dynamic Discrimination Algorithms for Distributed Knowledge Management Systems

    Directory of Open Access Journals (Sweden)

    Vasile MAZILESCU

    2010-12-01

    Full Text Available A reduction of the algorithmic complexity of the fuzzy inference engine has the following property: the inputs (the fuzzy rules and the fuzzy facts can be divided in two parts, one being relatively constant for a long a time (the fuzzy rule or the knowledge model when it is compared to the second part (the fuzzy facts for every inference cycle. The occurrence of certain transformations over the constant part makes sense, in order to decrease the solution procurement time, in the case that the second part varies, but it is known at certain moments in time. The transformations attained in advance are called pre-processing or knowledge compilation. The use of variables in a Business Rule Management System knowledge representation allows factorising knowledge, like in classical knowledge based systems. The language of the first-degree predicates facilitates the formulation of complex knowledge in a rigorous way, imposing appropriate reasoning techniques. It is, thus, necessary to define the description method of fuzzy knowledge, to justify the knowledge exploiting efficiency when the compiling technique is used, to present the inference engine and highlight the functional features of the pattern matching and the state space processes. This paper presents the main results of our project PR356 for designing a compiler for fuzzy knowledge, like Rete compiler, that comprises two main components: a static fuzzy discrimination structure (Fuzzy Unification Tree and the Fuzzy Variables Linking Network. There are also presented the features of the elementary pattern matching process that is based on the compiled structure of fuzzy knowledge. We developed fuzzy discrimination algorithms for Distributed Knowledge Management Systems (DKMSs. The implementations have been elaborated in a prototype system FRCOM (Fuzzy Rule COMpiler.

  2. Rule Set Transferability for Object-Based Feature Extraction: An Example for Cirque Mapping

    NARCIS (Netherlands)

    Anders, N.S.; Seijmonsbergen, A.C.; Bouten, W.

    2015-01-01

    Cirques are complex landforms resulting from glacial erosion and can be used to estimate Equilibrium Line Altitudes and infer climate history. Automated extraction of cirques may help research on glacial geomorphology and climate change. Our objective was to test the transferability of an object-bas

  3. Rule Set Transferability for Object-Based Feature Extraction: An Example for Cirque Mapping

    NARCIS (Netherlands)

    Anders, N.S.; Seijmonsbergen, A.C.; Bouten, W.

    2015-01-01

    Cirques are complex landforms resulting from glacial erosion and can be used to estimate Equilibrium Line Altitudes and infer climate history. Automated extraction of cirques may help research on glacial geomorphology and climate change. Our objective was to test the transferability of an

  4. 一种基于模糊形式概念分析的模糊本体学习方法%A FUZZY ONTOLOGY LEARNING METHOD BASED ON FUZZY FORMAL CONCEPT ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    马迪; 李冠宇

    2014-01-01

    模糊本体是语义网中处理模糊信息的重要工具,而模糊本体学习是构建模糊本体的一种有效方法,因此模糊本体学习已逐渐成为现今本体研究的热点。作为模糊本体的另一种图结构的表现形式,模糊概念格构造与演化的研究也渐渐引起人们的关注。模糊形式概念分析是一种基于模糊形式背景表示形式概念的新模型,是由模糊集理论与形式概念分析结合而成,其主要表现形式即是模糊概念格。这种模糊概念层次结构是数据分析及规则提取的有效工具,且支持概念间相似度的计算。提出一种基于模糊形式概念分析的模糊本体学习方法,意图从领域文档中获取模糊概念和模糊概念关系,并通过模糊形式概念分析,将其添加到源模糊本体转化的模糊概念格中,以完成模糊本体学习。%Fuzzy ontology is an important tool used to deal with fuzzy information in semantic Web,while fuzzy ontology learning is an ef-fective method to construct the fuzzy ontology,therefore it has gradually become the focus in current ontology research.As another graph-structured manifestation of fuzzy ontology,the studies on the construction and evolution of fuzzy concept lattice are also increasingly attractedscholarsattentions.Fuzzy formal concept analysis is a new model which employs fuzzy formal background to represent formal concepts,and isthe integration of fuzzy set theory and the formal concept analysis,its major manifestation is the fuzzy concept lattice.This fuzzy concept hier-archical structure is an effective tool for data analysis and rule extraction and supports the inter-concept similarity calculation.With the inten-tion to acquire fuzzy concepts and fuzzy concept relations from domain documents,in the paper we propose a fuzzy ontology learning methodwhich is based on fuzzy formal concept analysis,and add it to fuzzy concept lattice transformed from source fuzzy

  5. Design New Online Tuning Intelligent Chattering Free Fuzzy Compensator

    Directory of Open Access Journals (Sweden)

    Alireza Khalilian

    2014-08-01

    Full Text Available This research is focused on proposed adaptive fuzzy sliding mode algorithms with the adaptation laws derived in the Lyapunov sense. The stability of the closed-loop system is proved mathematically based on the Lyapunov method. Adaptive MIMO fuzzy compensate fuzzy sliding mode method design a MIMO fuzzy system to compensate for the model uncertainties of the system, and chattering also solved by new adaption method. Since there is no tuning method to adjust the premise part of fuzzy rules so we presented a scheme to online tune consequence part of fuzzy rules. Classical sliding mode control is robust to control model uncertainties and external disturbances. A sliding mode method with a switching control low guarantees the stability of the certain and/or uncertain system, but the addition of the switching control low introduces chattering into the system. One of the main targets in this research to reduce or eliminate chattering is to insert online tuning method. Classical sliding mode control method has difficulty in handling unstructured model uncertainties. One can overcome this problem by combining a sliding mode controller and artificial intelligence (e.g. fuzzy logic. To approximate a time-varying nonlinear dynamic system, a fuzzy system requires a large amount of fuzzy rule base. This large number of fuzzy rules will cause a high computation load. The addition of an adaptive law to a fuzzy sliding mode controller to online tune the parameters of the fuzzy rules in use will ensure a moderate computational load. The adaptive laws in this algorithm are designed based on the Lyapunov stability theorem. Asymptotic stability of the closed loop system is also proved in the sense of Lyapunov. This method is applied to continuum robot manipulator to have the best performance.

  6. First course in fuzzy logic

    CERN Document Server

    Nguyen, Hung T

    2005-01-01

    THE CONCEPT OF FUZZINESS Examples Mathematical modeling Some operations on fuzzy sets Fuzziness as uncertainty Exercises SOME ALGEBRA OF FUZZY SETS Boolean algebras and lattices Equivalence relations and partitions Composing mappings Isomorphisms and homomorphisms Alpha-cuts Images of alpha-level sets Exercises FUZZY QUANTITIES Fuzzy quantities Fuzzy numbers Fuzzy intervals Exercises LOGICAL ASPECTS OF FUZZY SETS Classical two-valued logic A three-valued logic Fuzzy logic Fuzzy and Lukasiewi

  7. Defuzzification Strategies for Fuzzy Classifications of Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Peter Hofmann

    2016-06-01

    Full Text Available The classes in fuzzy classification schemes are defined as fuzzy sets, partitioning the feature space through fuzzy rules, defined by fuzzy membership functions. Applying fuzzy classification schemes in remote sensing allows each pixel or segment to be an incomplete member of more than one class simultaneously, i.e., one that does not fully meet all of the classification criteria for any one of the classes and is member of more than one class simultaneously. This can lead to fuzzy, ambiguous and uncertain class assignation, which is unacceptable for many applications, indicating the need for a reliable defuzzification method. Defuzzification in remote sensing has to date, been performed by “crisp-assigning” each fuzzy-classified pixel or segment to the class for which it best fulfills the fuzzy classification rules, regardless of its classification fuzziness, uncertainty or ambiguity (maximum method. The defuzzification of an uncertain or ambiguous fuzzy classification leads to a more or less reliable crisp classification. In this paper the most common parameters for expressing classification uncertainty, fuzziness and ambiguity are analysed and discussed in terms of their ability to express the reliability of a crisp classification. This is done by means of a typical practical example from Object Based Image Analysis (OBIA.

  8. Automatic extraction of semantic relations between medical entities: a rule based approach

    Directory of Open Access Journals (Sweden)

    Ben Abacha Asma

    2011-10-01

    Full Text Available Abstract Background Information extraction is a complex task which is necessary to develop high-precision information retrieval tools. In this paper, we present the platform MeTAE (Medical Texts Annotation and Exploration. MeTAE allows (i to extract and annotate medical entities and relationships from medical texts and (ii to explore semantically the produced RDF annotations. Results Our annotation approach relies on linguistic patterns and domain knowledge and consists in two steps: (i recognition of medical entities and (ii identification of the correct semantic relation between each pair of entities. The first step is achieved by an enhanced use of MetaMap which improves the precision obtained by MetaMap by 19.59% in our evaluation. The second step relies on linguistic patterns which are built semi-automatically from a corpus selected according to semantic criteria. We evaluate our system’s ability to identify medical entities of 16 types. We also evaluate the extraction of treatment relations between a treatment (e.g. medication and a problem (e.g. disease: we obtain 75.72% precision and 60.46% recall. Conclusions According to our experiments, using an external sentence segmenter and noun phrase chunker may improve the precision of MetaMap-based medical entity recognition. Our pattern-based relation extraction method obtains good precision and recall w.r.t related works. A more precise comparison with related approaches remains difficult however given the differences in corpora and in the exact nature of the extracted relations. The selection of MEDLINE articles through queries related to known drug-disease pairs enabled us to obtain a more focused corpus of relevant examples of treatment relations than a more general MEDLINE query.

  9. Automatic extraction of semantic relations between medical entities: a rule based approach.

    Science.gov (United States)

    Ben Abacha, Asma; Zweigenbaum, Pierre

    2011-10-06

    Information extraction is a complex task which is necessary to develop high-precision information retrieval tools. In this paper, we present the platform MeTAE (Medical Texts Annotation and Exploration). MeTAE allows (i) to extract and annotate medical entities and relationships from medical texts and (ii) to explore semantically the produced RDF annotations. Our annotation approach relies on linguistic patterns and domain knowledge and consists in two steps: (i) recognition of medical entities and (ii) identification of the correct semantic relation between each pair of entities. The first step is achieved by an enhanced use of MetaMap which improves the precision obtained by MetaMap by 19.59% in our evaluation. The second step relies on linguistic patterns which are built semi-automatically from a corpus selected according to semantic criteria. We evaluate our system's ability to identify medical entities of 16 types. We also evaluate the extraction of treatment relations between a treatment (e.g. medication) and a problem (e.g. disease): we obtain 75.72% precision and 60.46% recall. According to our experiments, using an external sentence segmenter and noun phrase chunker may improve the precision of MetaMap-based medical entity recognition. Our pattern-based relation extraction method obtains good precision and recall w.r.t related works. A more precise comparison with related approaches remains difficult however given the differences in corpora and in the exact nature of the extracted relations. The selection of MEDLINE articles through queries related to known drug-disease pairs enabled us to obtain a more focused corpus of relevant examples of treatment relations than a more general MEDLINE query.

  10. A Clustering and SVM Regression Learning-Based Spatiotemporal Fuzzy Logic Controller with Interpretable Structure for Spatially Distributed Systems

    Directory of Open Access Journals (Sweden)

    Xian-xia Zhang

    2012-01-01

    Full Text Available Many industrial processes and physical systems are spatially distributed systems. Recently, a novel 3-D FLC was developed for such systems. The previous study on the 3-D FLC was concentrated on an expert knowledge-based approach. However, in most of situations, we may lack the expert knowledge, while input-output data sets hidden with effective control laws are usually available. Under such circumstance, a data-driven approach could be a very effective way to design the 3-D FLC. In this study, we aim at developing a new 3-D FLC design methodology based on clustering and support vector machine (SVM regression. The design consists of three parts: initial rule generation, rule-base simplification, and parameter learning. Firstly, the initial rules are extracted by a nearest neighborhood clustering algorithm with Frobenius norm as a distance. Secondly, the initial rule-base is simplified by merging similar 3-D fuzzy sets and similar 3-D fuzzy rules based on similarity measure technique. Thirdly, the consequent parameters are learned by a linear SVM regression algorithm. Additionally, the universal approximation capability of the proposed 3-D fuzzy system is discussed. Finally, the control of a catalytic packed-bed reactor is taken as an application to demonstrate the effectiveness of the proposed 3-D FLC design.

  11. Improvement on fuzzy controller design techniques

    Science.gov (United States)

    Wang, Paul P.

    1993-01-01

    This paper addresses three main issues, which are somewhat interrelated. The first issue deals with the classification or types of fuzzy controllers. Careful examination of the fuzzy controllers designed by various engineers reveals distinctive classes of fuzzy controllers. Classification is believed to be helpful from different perspectives. The second issue deals with the design according to specifications, experiments related to the tuning of fuzzy controllers, according to the specification, will be discussed. General design procedure, hopefully, can be outlined in order to ease the burden of a design engineer. The third issue deals with the simplicity and limitation of the rule-based IF-THEN logical statements. The methodology of fuzzy-constraint network is proposed here as an alternative to the design practice at present. It is our belief that predicate calculus and the first order logic possess much more expressive power.

  12. FUZZY ECCENTRICITY AND GROSS ERROR IDENTIFICATION

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The dominant and recessive effect made by exceptional interferer is analyzed in measurement system based on responsive character, and the gross error model of fuzzy clustering based on fuzzy relation and fuzzy equipollence relation is built. The concept and calculate formula of fuzzy eccentricity are defined to deduce the evaluation rule and function of gross error, on the base of them, a fuzzy clustering method of separating and discriminating the gross error is found. Utilized in the dynamic circular division measurement system, the method can identify and eliminate gross error in measured data, and reduce measured data dispersity. Experimental results indicate that the use of the method and model enables repetitive precision of the system to improve 80% higher than the foregoing system, to reach 3.5 s, and angle measurement error is less than 7 s.

  13. Migration and transformation rule of heavy metals in sludge during hydrolysis for protein extraction.

    Science.gov (United States)

    Li, Yulong; Xue, Fei; Li, Jiebing; Xu, Shi Hong; Li, Dengxin

    2016-03-01

    The content and speciation of heavy metals can fundamentally affect the hydrolysis of sludge. This research study investigates the migration and transformation rule of heavy metals during the hydrolysis process by measuring the content of exchangeables (F1), bound to carbonates (F2), bound to Fe-Mn oxides (F3), bound to organic matter (F4), and residuals (F5) under different periods of time undergoing hydrolysis. The results show that the hydrolysis process generally stabilized Cu, Zn, Mn, Ni, Pb, Cr, and As by transforming the unstable states into structurally stable states. Such transformations and stabilization were primarily caused by the changes in local metal ion environment and bonding structure, oxidation of sulfides, pyrolyzation of organic matter, and evaporation of resulting volatile materials. An X-ray diffractometry (XRD) of the residuals conducted after hydrolysis indicated that hydrolysis did have a significant influence on the transportation and transformation of heavy metals.

  14. Fuzzy Set Approximations in Fuzzy Formal Contexts

    Institute of Scientific and Technical Information of China (English)

    Mingwen Shao; Shiqing Fan

    2006-01-01

    In this paper, a kind of multi-level formal concept is introduced. Based on the proposed multi-level formal concept, we present a pair of rough fuzzy set approximations within fuzzy formal contexts. By the proposed rough fuzzy set approximations, we can approximate a fuzzy set according to different precision level. We discuss the properties of the proposed approximation operators in detail.

  15. Over multiple rule-blocks to modular nets

    NARCIS (Netherlands)

    Spaanenburg, L; Jansen, WJ; Nijhuis, JAG

    1997-01-01

    Real production data are vague and irreproducible. This suggests fuzzy knowledge acquisition for an on-line learned, combined fuzzy/neural network. This paper advocates a modular neural-only network based on the injection of knowledge from a multiple rule-block fuzzy specification. A typical control

  16. A FUZZY FILTERING MODEL FOR CONTOUR DETECTION

    Directory of Open Access Journals (Sweden)

    T.C. Rajakumar

    2011-04-01

    Full Text Available Contour detection is the basic property of image processing. Fuzzy Filtering technique is proposed to generate thick edges in two dimensional gray images. Fuzzy logic is applied to extract value for an image and is used for object contour detection. Fuzzy based pixel selection can reduce the drawbacks of conventional methods(Prewitt, Robert. In the traditional methods, filter mask is used for all kinds of images. It may succeed in one kind of image but fail in another one. In this frame work the threshold parameter values are obtained from the fuzzy histogram of the input image. The Fuzzy inference method selects the complete information about the border of the object and the resultant image has less impulse noise and the contrast of the edge is increased. The extracted object contour is thicker than the existing methods. The performance of the algorithm is tested with Peak Signal Noise Ratio(PSNR and Complex Wavelet Structural Similarity Metrics(CWSSIM.

  17. Fuzzy Lyapunov Reinforcement Learning for Non Linear Systems.

    Science.gov (United States)

    Kumar, Abhishek; Sharma, Rajneesh

    2017-03-01

    We propose a fuzzy reinforcement learning (RL) based controller that generates a stable control action by lyapunov constraining fuzzy linguistic rules. In particular, we attempt at lyapunov constraining the consequent part of fuzzy rules in a fuzzy RL setup. Ours is a first attempt at designing a linguistic RL controller with lyapunov constrained fuzzy consequents to progressively learn a stable optimal policy. The proposed controller does not need system model or desired response and can effectively handle disturbances in continuous state-action space problems. Proposed controller has been employed on the benchmark Inverted Pendulum (IP) and Rotational/Translational Proof-Mass Actuator (RTAC) control problems (with and without disturbances). Simulation results and comparison against a) baseline fuzzy Q learning, b) Lyapunov theory based Actor-Critic, and c) Lyapunov theory based Markov game controller, elucidate stability and viability of the proposed control scheme.

  18. Fuzzy jets

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, Lester [Department of Statistics, Stanford University,Stanford, CA 94305 (United States); Nachman, Benjamin [Department of Physics, Stanford University,Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Stansbury, Conrad [Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  19. Identification Filtering with fuzzy estimations

    Directory of Open Access Journals (Sweden)

    J.J Medel J

    2012-10-01

    Full Text Available A digital identification filter interacts with an output reference model signal known as a black-box output system. The identification technique commonly needs the transition and gain matrixes. Both estimation cases are based on mean square criterion obtaining of the minimum output error as the best estimation filtering. The evolution system represents adaptive properties that the identification mechanism includes considering the fuzzy logic strategies affecting in probability sense the evolution identification filter. The fuzzy estimation filter allows in two forms describing the transition and the gain matrixes applying actions that affect the identification structure. Basically, the adaptive criterion conforming the inference mechanisms set, the Knowledge and Rule bases, selecting the optimal coefficients in distribution form. This paper describes the fuzzy strategies applied to the Kalman filter transition function, and gain matrixes. The simulation results were developed using Matlab©.

  20. A fuzzy method for improving the functionality of search engines based on user's web interactions

    Directory of Open Access Journals (Sweden)

    Farzaneh Kabirbeyk

    2015-04-01

    Full Text Available Web mining has been widely used to discover knowledge from various sources in the web. One of the important tools in web mining is mining of web user’s behavior that is considered as a way to discover the potential knowledge of web user’s interaction. Nowadays, Website personalization is regarded as a popular phenomenon among web users and it plays an important role in facilitating user access and provides information of users’ requirements based on their own interests. Extracting important features about web user behavior plays a significant role in web usage mining. Such features are page visit frequency in each session, visit duration, and dates of visiting a certain pages. This paper presents a method to predict user’s interest and to propose a list of pages based on their interests by identifying user’s behavior based on fuzzy techniques called fuzzy clustering method. Due to the user’s different interests and use of one or more interest at a time, user’s interest may belong to several clusters and fuzzy clustering provide a possible overlap. Using the resulted cluster helps extract fuzzy rules. This helps detecting user’s movement pattern and using neural network a list of suggested pages to the users is provided.

  1. Dimensional reduction over fuzzy coset spaces

    Energy Technology Data Exchange (ETDEWEB)

    Aschieri, P. E-mail: aschieri@theorie.physik.uni-muenchen.de; Madore, J.; Manousselis, P.; Zoupanos, G

    2004-04-01

    We examine gauge theories on Minkowski space-time times fuzzy coset spaces. This means that the extra space dimensions instead of being a continuous coset space S/R are a corresponding finite matrix approximation. The gauge theory defined on this non-commutative setup is reduced to four dimensions and the rules of the corresponding dimensional reduction are established. We investigate in particular the case of the fuzzy sphere including the dimensional reduction of fermion fields. (author)

  2. A Fuzzy Rule-based Key Re-Distribution Decision Scheme of Dynamic Filtering for Energy Saving in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dongjin Park

    2017-04-01

    Full Text Available A wireless sensor network’s sensor nodes have scarce resources, are exposed to the open environment, and use wireless communication. These features make the network vulnerable to physical capture and security attacks, therefore adversaries attempt various attacks such as false report injection attacks. A false report injection attack generates a false alarm by forwarding a false report to the base station. It confuses a user and lowers the reliability of the system. In addition, it leads to depletion of the node energy in the process of delivering a false report. A dynamic en-route filtering scheme performs detection in the data transfer process, but it incurs unnecessary energy loss in a continuous attack situation. In this paper, in order to solve this problem, a scheme is proposed for determining whether or not to redistribute keys at execution. The proposed scheme saves energy by detecting false reports at an earlier hop than the existing scheme by using fuzzy logic and the feature of a loaded secret key of each node in the key pre-distribution phase. Furthermore, it improves the detection performance with an appropriate re-distribution of the key. Experimental results show up to 52.33% energy savings and an improved detection performance of up to 18.57% compared to the existing scheme.

  3. Novel Power Flow Problem Solutions Method’s Based on Genetic Algorithm Optimization for Banks Capacitor Compensation Using an Fuzzy Logic Rule Bases for Critical Nodal Detections

    Directory of Open Access Journals (Sweden)

    Nasri Abdelfatah

    2011-01-01

    Full Text Available The Reactive power flow’s is one of the most electrical distribution systems problem wich have great of interset of the electrical network researchers, it’s  cause’s active power transmission reduction, power losses decreasing, and  the drop voltage’s increase. In this research we described the efficiency of the FLC-GAO approach to solve the optimal power flow (OPF combinatorial problem. The proposed approach employ tow algorithms, Fuzzy logic controller (FLC algorithm for critical nodal detection and gentic algorithm  optimization (GAO algorithm for optimal seizing capacitor.GAO method is more efficient in combinatory problem solutions. The proposed approach has been examined and tested on the standard IEEE 57-bus the resulats show the power loss minimization denhancement, voltage profile, and stability improvement. The proposed approach results have been compared to those that reported in the literature recently. The results are promising and show the effectiveness and robustness of the proposed approach.

  4. The Partial Fuzzy Set

    OpenAIRE

    Dr.Pranita Goswami

    2011-01-01

    The Partial Fuzzy Set is a portion of the Fuzzy Set which is again a Fuzzy Set. In the Partial Fuzzy Set the baseline is shifted from 0 to 1 to any of its α cuts . In this paper we have fuzzified a portion of the Fuzzy Set by transformation

  5. Determining a human cardiac pacemaker using fuzzy logic

    Science.gov (United States)

    Varnavsky, A. N.; Antonenco, A. V.

    2017-01-01

    The paper presents a possibility of estimating a human cardiac pacemaker using combined application of nonlinear integral transformation and fuzzy logic, which allows carrying out the analysis in the real-time mode. The system of fuzzy logical conclusion is proposed, membership functions and rules of fuzzy products are defined. It was shown that the ratio of the value of a truth degree of the winning rule condition to the value of a truth degree of any other rule condition is at least 3.

  6. Designing fuzzy inference system based on improved gradient descent method

    Institute of Scientific and Technical Information of China (English)

    Zhang Liquan; Shao Cheng

    2006-01-01

    The distribution of sampling data influences completeness of rule base so that extrapolating missing rules is very difficult. Based on data mining, a self-learning method is developed for identifying fuzzy model and extrapolating missing rules, by means of confidence measure and the improved gradient descent method. The proposed approach can not only identify fuzzy model, update its parameters and determine optimal output fuzzy sets simultaneously, but also resolve the uncontrollable problem led by the regions that data do not cover. The simulation results show the effectiveness and accuracy of the proposed approach with the classical truck backer-upper control problem verifying.

  7. A Simple Fuzzy Time Series Forecasting Model

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2016-01-01

    In this paper we describe a new first order fuzzy time series forecasting model. We show that our automatic fuzzy partitioning method provides an accurate approximation to the time series that when combined with rule forecasting and an OWA operator improves forecasting accuracy. Our model does...... not attempt to provide the best results in comparison with other forecasting methods but to show how to improve first order models using simple techniques. However, we show that our first order model is still capable of outperforming some more complex higher order fuzzy time series models....

  8. Scheduling By Using Fuzzy Logic in Manufacturing

    Directory of Open Access Journals (Sweden)

    Miss. Ashwini. A. Mate

    2014-07-01

    Full Text Available This paper represents the scheduling process in furniture manufacturing unit. It gives the fuzzy logic application in flexible manufacturing system. Flexible manufacturing systems are production system in furniture manufacturing unit. FMS consist of same multipurpose numerically controlled machines. Here in this project the scheduling has been done in FMS by using fuzzy logic tool in Matlab software. The fuzzy logic based scheduling model in this paper will deals with the job and best alternative route selection with multi-criteria of machine. Here two criteria for job and sequencing and routing with rules. This model is applicable to the scheduling of any manufacturing industry.

  9. UNCERTAIN KNOWLEDGE MANAGEMENT IN EXPERT SYSTEMS USING FUZZY METAGRAPHS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presented a new graph-theoretic construct fuzzy metagraphs and discussed their applications in constructing--fuzzy knowledge base. Fuzzy metagraphs describe the relationships between sets of fuzzy elements but not single fuzzy element and offer some distinct advantages both for visualization of systems, as well as for formal analysis of system structure. In rule-based system, a fuzzy metagraph is a unity of the knowledge base and the reasoning engine. Based on the closure of the adjacency matrix of fuzzy metagraphs, this paper presented an optimized inferential mechanism working mainly by an off-line approach. It can greatly increase the efficiency of inference. Finally, it was applied in a daignostic expert system and satisfactory results were obtained.

  10. Modeling Perception of 3D Forms Using Fuzzy Knowledge Bases

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Ahmed, Saeema

    2009-01-01

    the aesthetics of their products are likely to be perceived are of value. In this paper the authors propose an approach to formalize the relationship between geometric information of a 3D object and the intended perception using fuzzy logic. 3D objects (shapes) created by design engineering students to evoke...... a certain perception were analysed. Three different fuzzy logic models, with different input variables, for evaluating massiveness and lightness in a form are proposed. The uthors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map...... the relationships between the fuzzy sets on each input premise and the output premise. In our case the output premise of the fuzzy logic model is the level of belonging to the design context (perception). An evaluation of how users perceived the shapes was conducted to validate the fuzzy logic models and showed...

  11. Fuzzy logic and its application in football team ranking.

    Science.gov (United States)

    Zeng, Wenyi; Li, Junhong

    2014-01-01

    Fuzzy set theory and fuzzy logic are a highly suitable and applicable basis for developing knowledge-based systems in physical education for tasks such as the selection for athletes, the evaluation for different training approaches, the team ranking, and the real-time monitoring of sports data. In this paper, we use fuzzy set theory and apply fuzzy clustering analysis in football team ranking. Based on some certain rules, we propose four parameters to calculate fuzzy similar matrix, obtain fuzzy equivalence matrix and the ranking result for our numerical example, T 7, T 3, T 1, T 9, T 10, T 8, T 11, T 12, T 2, T 6, T 5, T 4, and investigate four parameters sensitivity analysis. The study shows that our fuzzy logic method is reliable and stable when the parameters change in certain range.

  12. Mapping Shape Geometry And Emotions Using Fuzzy Logic

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Ahmed, Saeema

    2008-01-01

    and the intended emotion using fuzzy logic. To achieve this; 3D objects (shapes) created by design engineering students to match a set of words/emotions were analyzed. The authors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map the relationships...... between the fuzzy sets on each input premise and the output premise. In our case the output premise of the fuzzy logic model is the level of belonging to the design context (emotion). An evaluation of how users perceived the shapes was conducted to validate the fuzzy logic model and showed a high...... correlation between the fuzzy logic model and user perception....

  13. Fuzzy Logic and Its Application in Football Team Ranking

    Directory of Open Access Journals (Sweden)

    Wenyi Zeng

    2014-01-01

    some certain rules, we propose four parameters to calculate fuzzy similar matrix, obtain fuzzy equivalence matrix and the ranking result for our numerical example, T7, T3, T1, T9, T10, T8, T11, T12, T2, T6, T5, T4, and investigate four parameters sensitivity analysis. The study shows that our fuzzy logic method is reliable and stable when the parameters change in certain range.

  14. Application of fuzzy logic in content-based image retrieval

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-ling; XIE Kang-lin

    2008-01-01

    We propose a fuzzy logic-based image retrieval system, in which the image similarity can be inferred in a nonlinear manner as human thinking. In the fuzzy inference process, weight assignments of multi-image features were resolved impliedly. Each fuzzy rule was embedded into the subjectivity of human perception of image contents. A color histogram called the average area histogram is proposed to represent the color features. Experimental results show the efficiency and feasibility of the proposed algorithms.

  15. Fuzzy Sliding Mode Control of Plate Vibrations

    Directory of Open Access Journals (Sweden)

    Manu Sharma

    2010-01-01

    Full Text Available In this paper, fuzzy logic is meshed with sliding mode control, in order to control vibrations of a cantilevered plate. Test plate is instrumented with a piezoelectric sensor patch and a piezoelectric actuator patch. Finite element method is used to obtain mathematical model of the test plate. A design approach of a sliding mode controller for linear systems with mismatched time-varying uncertainties is used in this paper. It is found that chattering around the sliding surface in the sliding mode control can be checked by the proposed fuzzy sliding mode control approach. With presented fuzzy sliding mode approach the actuator voltage time response has a smooth decay. This is important because an abrupt decay can excite higher modes in the structure. Fuzzy rule base consisting of nine rules, is generated from the sliding mode inequality. Experimental implementation of the control approach verify the theoretical findings. For experimental implementation, size of the problem is reduced using modal truncation technique. Modal displacements as well as velocities of first two modes are observed using real-time kalman observer. Real time implementation of fuzzy logic based control has always been a challenge because a given set of rules has to be executed in every sampling interval. Results in this paper establish feasibility of experimental implementation of presented fuzzy logic based controller for active vibration control.

  16. Genetic algorithm optimized rainfall-runoff fuzzy inference system for row crop watersheds with claypan soils

    Science.gov (United States)

    The fuzzy logic algorithm has the ability to describe knowledge in a descriptive human-like manner in the form of simple rules using linguistic variables, and provides a new way of modeling uncertain or naturally fuzzy hydrological processes like non-linear rainfall-runoff relationships. Fuzzy infe...

  17. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    Science.gov (United States)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  18. A Fuzzy Expert System for Distinguishing between Bacterial and Aseptic Meningitis

    Directory of Open Access Journals (Sweden)

    Mostafa Langarizadeh

    2015-05-01

    Full Text Available Introduction Bacterial meningitis is a known infectious disease which occurs at early ages and should be promptly diagnosed and treated. Bacterial and aseptic meningitis are hard to be distinguished. Therefore, physicians should be highly informed and experienced in this area. The main aim of this study was to suggest a system for distinguishing between bacterial and aseptic meningitis, using fuzzy logic.    Materials and Methods In the first step, proper attributes were selected using Weka 3.6.7 software. Six attributes were selected using Attribute Evaluator, InfoGainAttributeEval, and Ranker search method items. Then, a fuzzy inference engine was designed using MATLAB software, based on Mamdani’s fuzzy logic method with max-min composition, prod-probor, and centroid defuzzification. The rule base consisted of eight rules, based on the experience of three specialists and information extracted from textbooks. Results Data were extracted from 106 records of patients with meningitis (42 cases with bacterial meningitis in order to evaluate the proposed system. The system accuracy, specificity, and sensitivity were 89%, 92 %, and 97%, respectively. The area under the ROC curve was 0.93, and Kappa test revealed a good level of agreement (k=0.84, P

  19. Fuzzy audit risk modeling algorithm

    Directory of Open Access Journals (Sweden)

    Zohreh Hajihaa

    2011-07-01

    Full Text Available Fuzzy logic has created suitable mathematics for making decisions in uncertain environments including professional judgments. One of the situations is to assess auditee risks. During recent years, risk based audit (RBA has been regarded as one of the main tools to fight against fraud. The main issue in RBA is to determine the overall audit risk an auditor accepts, which impact the efficiency of an audit. The primary objective of this research is to redesign the audit risk model (ARM proposed by auditing standards. The proposed model of this paper uses fuzzy inference systems (FIS based on the judgments of audit experts. The implementation of proposed fuzzy technique uses triangular fuzzy numbers to express the inputs and Mamdani method along with center of gravity are incorporated for defuzzification. The proposed model uses three FISs for audit, inherent and control risks, and there are five levels of linguistic variables for outputs. FISs include 25, 25 and 81 rules of if-then respectively and officials of Iranian audit experts confirm all the rules.

  20. Properties of fuzzy hyperplanes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhong; LI Chuandong; WU Deyin

    2004-01-01

    Some properties of closed fuzzy matroid and those of its hyperplanes are investigated. A fuzzy hyperplane property,which extends the analog of a crisp matroid from crisp set systems to fuzzy set systems, is proved.

  1. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    Science.gov (United States)

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  2. A New Multi-Layered Fuzzy Image Filter for Removing Impulse Noise

    Directory of Open Access Journals (Sweden)

    Russel J Stonier

    2003-08-01

    Full Text Available In this paper we develop a fuzzy image .lter which consists of a multi-layered fuzzy structure based on the weighted fuzzy blend filter for the removal of noise from images heavily corrupted by impulse noise, while preserving the intricate details of the image. The introduction of multi-layered fuzzy systems substantially decreases the number of rules to be learnt. We then show how Evolutionary Algorithms (EAs can be used to effectively learn the fuzzy rules in each knowledge base. Results are presented for impulse noise corruption of the well-known 'Lena' image.

  3. Proposal for Classifying the Severity of Speech Disorder Using a Fuzzy Model in Accordance with the Implicational Model of Feature Complexity

    Science.gov (United States)

    Brancalioni, Ana Rita; Magnago, Karine Faverzani; Keske-Soares, Marcia

    2012-01-01

    The objective of this study is to create a new proposal for classifying the severity of speech disorders using a fuzzy model in accordance with a linguistic model that represents the speech acquisition of Brazilian Portuguese. The fuzzy linguistic model was run in the MATLAB software fuzzy toolbox from a set of fuzzy rules, and it encompassed…

  4. System control fuzzy neural sewage pumping stations using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Владлен Николаевич Кузнецов

    2015-06-01

    Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

  5. Optimization of Fuzzy Logic Controller for Supervisory Power System Stabilizers

    Directory of Open Access Journals (Sweden)

    Y. A. Al-Turki

    2012-01-01

    Full Text Available This paper presents a powerful supervisory power system stabilizer (PSS using an adaptive fuzzy logic controller driven by an adaptive fuzzy set (AFS. The system under study consists of two synchronous generators, each fitted with a PSS, which are connected via double transmission lines. Different types of PSS-controller techniques are considered. The proposed genetic adaptive fuzzy logic controller (GAFLC-PSS, using 25 rules, is compared with a static fuzzy logic controller (SFLC driven by a fixed fuzzy set (FFS which has 49 rules. Both fuzzy logic controller (FLC algorithms utilize the speed error and its rate of change as an input vector. The adaptive FLC algorithm uses a genetic algorithmto tune the parameters of the fuzzy set of each PSS. The FLC’s are simulated and tested when the system is subjected to different disturbances under a wide range of operating points. The proposed GAFLC using AFS reduced the computational time of the FLC, where the number of rules is reduced from 49 to 25 rules. In addition, the proposed adaptive FLC driven by a genetic algorithm also reduced the complexity of the fuzzy model, while achieving a good dynamic response of the system under study.

  6. Fuzzy Simulation Human Intelligent Control System Design on Gyratory Breaker

    Institute of Scientific and Technical Information of China (English)

    Wen,Ruchun; Zhao,Shuling; Zhu,Jianwu; Wang,Xiaoyan

    2005-01-01

    In order to deal with the complex process that incurs serious time delay, enormous inertia and nonlinear problems,fuzzy simulation human intelligent control algorithm rules are established. The fuzzy simulation human intelligent controller and the hardware with the single-chip microcomputer are designed and the anti-interference measures to the whole system are provided.

  7. Computerized Mastery Testing Using Fuzzy Set Decision Theory.

    Science.gov (United States)

    Du, Yi; And Others

    1993-01-01

    A new computerized mastery test is described that builds on the Lewis and Sheehan procedure (sequential testlets) (1990), but uses fuzzy set decision theory to determine stopping rules and the Rasch model to calibrate items and estimate abilities. Differences between fuzzy set and Bayesian methods are illustrated through an example. (SLD)

  8. Intuitionistic Fuzzy Cycles and Intuitionistic Fuzzy Trees

    Science.gov (United States)

    Alshehri, N. O.

    2014-01-01

    Connectivity has an important role in neural networks, computer network, and clustering. In the design of a network, it is important to analyze connections by the levels. The structural properties of intuitionistic fuzzy graphs provide a tool that allows for the solution of operations research problems. In this paper, we introduce various types of intuitionistic fuzzy bridges, intuitionistic fuzzy cut vertices, intuitionistic fuzzy cycles, and intuitionistic fuzzy trees in intuitionistic fuzzy graphs and investigate some of their interesting properties. Most of these various types are defined in terms of levels. We also describe comparison of these types. PMID:24701155

  9. From Watermarks to Fuzzy Extractors: a Practical Construction

    NARCIS (Netherlands)

    Buhan, I.R.; Doumen, J.M.; Hartel, Pieter H.; Veldhuis, Raymond N.J.

    Fuzzy extractors are a powerful tool to extract randomness from noisy data. A fuzzy extractor can extract randomness only if the source data is discrete while in practice source data is continuous. Using quantizers to transform continuous data into discrete data is a commonly used solution. However,

  10. 基于模糊控制的自适应光学校正技术∗%Adaptive optics correction technique based on fuzzy control

    Institute of Scientific and Technical Information of China (English)

    刘章文; 李正东; 周志强; 袁学文

    2016-01-01

    In an adaptive optics system, proportion-integration-differentiation (PID) controller is widely used for correcting wave front, but the controller is strictly dependent on the response model of deformable mirror. In this paper, a novel wave front correction method is proposed. The method, combining fuzzy control and PID control, does not depend on the response model of the deformable mirror. Based on rapid wave front reconstruction, the wave front evaluation indexes, extracted from the reconstructed wave front, are employed for the input of fuzzy controller and PID controller. Thus, the model response matrix of deformable mirror is not required. Each actuator of deformable mirror corresponds to an independent fuzzy PID controller. By designing the fuzzy controller, including fuzzy rule base selection and fuzzy reasoning, the three parameters of PID controller, the proportional kp, the integral ki and the differential kd, are adjusted automatically. A high rapid DSP hardware platform is constructed to verify the method. Test results show that the method can be used to correct the diffraction limit multiplication factorβ of the light spot from 10–12 to 3–4, which is basically the same as the traditional PID control, but its stability is better. Because the model does not need to calibrate the deformable mirror, the installation of the deformable mirror is easier.

  11. Intelligent Controller Design for DC Motor Speed Control based on Fuzzy Logic-Genetic Algorithms Optimization

    OpenAIRE

    Boumediene ALLAOUA; Laoufi, Abdellah; Brahim GASBAOUI; Nasri, Abdelfatah; Abdessalam ABDERRAHMANI

    2008-01-01

    In this paper, an intelligent controller of the DC (Direct current) Motor drive is designed using fuzzy logic-genetic algorithms optimization. First, a controller is designed according to fuzzy rules such that the systems are fundamentally robust. To obtain the globally optimal values, parameters of the fuzzy controller are improved by genetic algorithms optimization model. Computer MATLAB work space demonstrate that the fuzzy controller associated to the genetic algorithms approach became ve...

  12. The research on high speed underwater target recognition based on fuzzy logic inference

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiang-Dong; YANG De-Sen; SHI Sheng-guo; LI Si-Chun

    2006-01-01

    The underwater target recognition is a key technology in acoustic confrontation and underwater defence. In this article, a recognition system based on fuzzy logic inference (FLI) is set up. This system is mainly composed of three parts: the fuzzy input module, the fuzzy logic inference module with a set of inference rules and the de-fuzzy output module. The inference result shows the recognition system is effective in most conditions.

  13. The research on high speed underwater target recognition based on fuzzy logic inference

    Science.gov (United States)

    Jiang, Xiang-Dong; Yang, De-Sen; Shi, Sheng-Guo; Li, Si-Chun

    2006-06-01

    The underwater target recognition is a key technology in acoustic confrontation and underwater defence. In this article, a recognition system based of fuzzy logic inference (FLI) is set up. This system is mainly composed of three parts: the fuzzy input module, the fuzzy logic inference module with a set of inference rules and the de-fuzzy output module. The inference result shows the recognition system is effective in most conditions.

  14. 优势模糊区间目标粗糙集模型的群决策规则获取及应用%Rules acquisition of group decision-making based on dominance and fuzzy interval objective rough set model and its application

    Institute of Scientific and Technical Information of China (English)

    江效尧; 黄兵

    2012-01-01

    在群决策理论及应用中,如何获取合理而有效的群决策规则是一个重要的研究内容.针对条件属性具有优劣关系,决策属性取值为模糊值的群决策系统,将每个决策对象的群决策模糊值转化为一个决策区间,由每个对象的不可分辩优势类构建基于优势关系的模糊区间目标信息系统粗糙集模型,给出该模型的三种知识约简定义;通过构造区分矩阵和区分函数,获得求取优势模糊区间决策系统的优势下近似的约简算法.最后将该模型及算法应用于商业银行审计风险评估,获得较为合理的商业银行风险群决策评估规则.%In group decision-making theory and its applications how to acquire reasonable and effective group decision rules is one of important issues. In recent years, research on combing rough set theory with group decision- making has become one of hot topics in rough set theory. However, group decision rules acquisition based on rough set has been scarcely studied. This paper constructs a dominance relation-based fuzzy interval decision rough set model (RSM) in dominance fuzzy group decision systems where the conditional attributes are taken dominance notion values and the decision attribute is taken fuzzy values through examing the relation between the dominance classes determined by a conditional attribute set and their corresponding fuzzy decision values and proposes three knowledge reduction definitions called as dominance-based lower, dominance-based upper and dominance-based approximation reduction. Using discernibility matrix and discernibility function we devise a kind of lower approximation reduction algorithms for dominance-based fuzzy interval objective information systems. Finallywe apply this model to acquire audit risk assessment rules for bussiness banks and obtain some reasonable audit riskassessment rules for bussiness banks, which can be used to assistant auditors to judge

  15. Fuzzy Morphological Polynomial Image Representation

    Directory of Open Access Journals (Sweden)

    Chin-Pan Huang

    2010-01-01

    Full Text Available A novel signal representation using fuzzy mathematical morphology is developed. We take advantage of the optimum fuzzy fitting and the efficient implementation of morphological operators to extract geometric information from signals. The new representation provides results analogous to those given by the polynomial transform. Geometrical decomposition of a signal is achieved by windowing and applying sequentially fuzzy morphological opening with structuring functions. The resulting representation is made to resemble an orthogonal expansion by constraining the results of opening to equate adapted structuring functions. Properties of the geometric decomposition are considered and used to calculate the adaptation parameters. Our procedure provides an efficient and flexible representation which can be efficiently implemented in parallel. The application of the representation is illustrated in data compression and fractal dimension estimation temporal signals and images.

  16. A Modular Programmable CMOS Analog Fuzzy Controller Chip

    OpenAIRE

    1999-01-01

    We present a highly modular fuzzy inference analog CMOS chip architecture with on-chip digital programmability. This chip consists of the interconnection of parameterized instances of two different kind of blocks, namely label blocks and rule blocks. The architecture realizes a lattice partition of the universe of discourse, which at the hardware level means that the fuzzy labels associated to every input (realized by the label blocks) are shared among the rule blocks. This reduces the area a...

  17. Anaesthesia monitoring using fuzzy logic.

    Science.gov (United States)

    Baig, Mirza Mansoor; Gholamhosseini, Hamid; Kouzani, Abbas; Harrison, Michael J

    2011-10-01

    Humans have a limited ability to accurately and continuously analyse large amount of data. In recent times, there has been a rapid growth in patient monitoring and medical data analysis using smart monitoring systems. Fuzzy logic-based expert systems, which can mimic human thought processes in complex circumstances, have indicated potential to improve clinicians' performance and accurately execute repetitive tasks to which humans are ill-suited. The main goal of this study is to develop a clinically useful diagnostic alarm system based on fuzzy logic for detecting critical events during anaesthesia administration. The proposed diagnostic alarm system called fuzzy logic monitoring system (FLMS) is presented. New diagnostic rules and membership functions (MFs) are developed. In addition, fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS), and clustering techniques are explored for developing the FLMS' diagnostic modules. The performance of FLMS which is based on fuzzy logic expert diagnostic systems is validated through a series of off-line tests. The training and testing data set are selected randomly from 30 sets of patients' data. The accuracy of diagnoses generated by the FLMS was validated by comparing the diagnostic information with the one provided by an anaesthetist for each patient. Kappa-analysis was used for measuring the level of agreement between the anaesthetist's and FLMS's diagnoses. When detecting hypovolaemia, a substantial level of agreement was observed between FLMS and the human expert (the anaesthetist) during surgical procedures. The diagnostic alarm system FLMS demonstrated that evidence-based expert diagnostic systems can diagnose hypovolaemia, with a substantial degree of accuracy, in anaesthetized patients and could be useful in delivering decision support to anaesthetists.

  18. Finding features for real-time premature ventricular contraction detection using a fuzzy neural network system.

    Science.gov (United States)

    Lim, Joon S

    2009-03-01

    Fuzzy neural networks (FNNs) have been successfully applied to generate predictive rules for medical or diagnostic data. This brief presents an approach to detect premature ventricular contractions (PVCs) using the neural network with weighted fuzzy membership functions (NEWFMs). The NEWFM classifies normal and PVC beats by the trained bounded sum of weighted fuzzy membership functions (BSWFMs) using wavelet transformed coefficients from the MIT-BIH PVC database. The eight generalized coefficients, locally related to the time signal, are extracted by the nonoverlap area distribution measurement method. The eight generalized coefficients are used for the three PVC data sets with reliable accuracy rates of 99.80%, 99.21%, and 98.78%, respectively, which means that the selected features are less dependent on the data sets. It is shown that the locations of the eight features are not only around the QRS complex that represents ventricular depolarization in the electrocardiogram (ECG) containing a Q wave, an R wave, and an S wave, but also the QR segment from the Q wave to the R wave has more discriminate information than the RS segment from the R wave to the S wave. The BSWFMs of the eight features trained by NEWFM are shown visually, which makes the features explicitly interpretable. Since each BSWFM combines multiple weighted fuzzy membership functions into one using the bounded sum, the eight small-sized BSWFMs can realize real-time PVC detection in a mobile environment.

  19. Fuzzy prediction and experimental verification of road surface cleaning rate by pure waterjets

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The cleaning parameters affecting cleaning rate using pure waterjets to clean road surface was researched. A mathematical model for predicting cleaning rate was established using fuzzy mathematical method. A fuzzy rule base characterizing the relationship between input and output parameters was built through experiments. The prediction of cleaning rate was achieved under the condition of given input parameters by rule-based fuzzy reasoning. The prediction results were analyzed through experimental verification.

  20. Classification of jet fuels by fuzzy rule-building expert systems applied to three-way data by fast gas chromatography--fast scanning quadrupole ion trap mass spectrometry.

    Science.gov (United States)

    Sun, Xiaobo; Zimmermann, Carolyn M; Jackson, Glen P; Bunker, Christopher E; Harrington, Peter B

    2011-01-30

    A fast method that can be used to classify unknown jet fuel types or detect possible property changes in jet fuel physical properties is of paramount interest to national defense and the airline industries. While fast gas chromatography (GC) has been used with conventional mass spectrometry (MS) to study jet fuels, fast GC was combined with fast scanning MS and used to classify jet fuels into lot numbers or origin for the first time by using fuzzy rule-building expert system (FuRES) classifiers. In the process of building classifiers, the data were pretreated with and without wavelet transformation and evaluated with respect to performance. Principal component transformation was used to compress the two-way data images prior to classification. Jet fuel samples were successfully classified with 99.8 ± 0.5% accuracy for both with and without wavelet compression. Ten bootstrapped Latin partitions were used to validate the generalized prediction accuracy. Optimized partial least squares (o-PLS) regression results were used as positively biased references for comparing the FuRES prediction results. The prediction results for the jet fuel samples obtained with these two methods were compared statistically. The projected difference resolution (PDR) method was also used to evaluate the fast GC and fast MS data. Two batches of aliquots of ten new samples were prepared and run independently 4 days apart to evaluate the robustness of the method. The only change in classification parameters was the use of polynomial retention time alignment to correct for drift that occurred during the 4-day span of the two collections. FuRES achieved perfect classifications for four models of uncompressed three-way data. This fast GC/fast MS method furnishes characteristics of high speed, accuracy, and robustness. This mode of measurement may be useful as a monitoring tool to track changes in the chemical composition of fuels that may also lead to property changes.

  1. Fuzzy logic for personalized healthcare and diagnostics: FuzzyApp--a fuzzy logic based allergen-protein predictor.

    Science.gov (United States)

    Saravanan, Vijayakumar; Lakshmi, P T V

    2014-09-01

    The path to personalized medicine demands the use of new and customized biopharmaceutical products containing modified proteins. Hence, assessment of these products for allergenicity becomes mandatory before they are introduced as therapeutics. Despite the availability of different tools to predict the allergenicity of proteins, it remains challenging to predict the allergens and nonallergens, when they share significant sequence similarity with known nonallergens and allergens, respectively. Hence, we propose "FuzzyApp," a novel fuzzy rule based system to evaluate the quality of the query protein to be an allergen. It measures the allergenicity of the protein based on the fuzzy IF-THEN rules derived from five different modules. On various datasets, FuzzyApp outperformed other existing methods and retained balance between sensitivity and specificity, with positive Mathew's correlation coefficient. The high specificity of allergen-like putative nonallergens (APN) revealed the FuzzyApp's capability in distinguishing the APN from allergens. In addition, the error analysis and whole proteome dataset analysis suggest the efficiency and consistency of the proposed method. Further, FuzzyApp predicted the Tropomyosin from various allergenic and nonallergenic sources accurately. The web service created allows batch sequence submission, and outputs the result as readable sentences rather than values alone, which assists the user in understanding why and what features are responsible for the prediction. FuzzyApp is implemented using PERL CGI and is freely accessible at http://fuzzyapp.bicpu.edu.in/predict.php . We suggest the use of Fuzzy logic has much potential in biomarker and personalized medicine research to enhance predictive capabilities of post-genomics diagnostics.

  2. Design New Intelligent PID like Fuzzy Backstepping Controller

    Directory of Open Access Journals (Sweden)

    Arzhang Khajeh

    2014-02-01

    Full Text Available The minimum rule base Proportional Integral Derivative (PID Fuzzy backstepping Controller is presented in this research. The popularity of PID Fuzzy backstepping controller can be attributed to their robust performance in a wide range of operating conditions and partly to their functional simplicity. The process of setting of PID Fuzzy backstepping controller can be determined as an optimization task. Over the years, use of intelligent strategies for tuning of these controllers has been growing. PID methodology has three inputs and if any input is described with seven linguistic values, and any rule has three conditions we will need 7 × 7 × 7 = 343 rules. It is too much work to write 343 rules. In this research the PID-like fuzzy controller can be constructed as a parallel structure of a PD-like fuzzy controller and a PI-like controller to have the minimum rule base. However backstepping controller is work based on cancelling decoupling and nonlinear terms of dynamic parameters of each link, this controller is work based on manipulator dynamic model and this technique is highly sensitive to the knowledge of all parameters of nonlinear robot manipulator’s dynamic equation. This research is used to reduce or eliminate the backstepping controller problem based on minimum rule base fuzzy logic theory to control of flexible robot manipulator system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.

  3. Some Additions to the Fuzzy Convergent and Fuzzy Bounded Sequence Spaces of Fuzzy Numbers

    OpenAIRE

    Şengönül, M.; Z. Zararsız

    2011-01-01

    Some properties of the fuzzy convergence and fuzzy boundedness of a sequence of fuzzy numbers were studied in Choi (1996). In this paper, we have consider, some important problems on these spaces and shown that these spaces are fuzzy complete module spaces. Also, the fuzzy α-, fuzzy β-, and fuzzy γ-duals of the fuzzy module spaces of fuzzy numbers have been computeded, and some matrix transformations are given.

  4. A new attitude coupled with fuzzy thinking to fuzzy group and subgroup

    Directory of Open Access Journals (Sweden)

    F. Abbasi

    2016-02-01

    Full Text Available In this paper, we shall embark on the study of the algebraic object known as a fuzzy group which serves as one of the fundamental building blocks for the subject which is called fuzzy abstract algebra. In our opinion, the fuzzy algebraic systems are usually sets on whose elements we can operate algebraically by this we mean that we can combine two elements of the set, perhaps in several ways, to obtain a third element of the set and, in addition, we assume that these fuzzy algebraic operations are subject to certain rules, which are explicitly spelled out in what we call the axioms or postulates defining the system. In this abstract setting we then attempt to prove theorems about these very general structures. We should like to stress that these fuzzy algebraic systems and their axioms, must come from the experience of looking at many examples. Namely, they should be rich in meaningful results. Hence, the acceptable definition of fuzzy group and subgroup are presented with binary operations and on the basis of the specified parameter, called ambiguity rank, which fulfils the basic requirements. The properties of these fuzzy groups and their fundamental qualities are discussed and then, the several illustrative examples were given. The future prospect of this paper is a new attitude to fuzzy basic mathematics, which will be referred to in the end.

  5. Fuzzy logic control of telerobot manipulators

    Science.gov (United States)

    Franke, Ernest A.; Nedungadi, Ashok

    1992-01-01

    Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.

  6. Encoding nondeterministic fuzzy tree automata into recursive neural networks.

    Science.gov (United States)

    Gori, Marco; Petrosino, Alfredo

    2004-11-01

    Fuzzy neural systems have been a subject of great interest in the last few years, due to their abilities to facilitate the exchange of information between symbolic and subsymbolic domains. However, the models in the literature are not able to deal with structured organization of information, that is typically required by symbolic processing. In many application domains, the patterns are not only structured, but a fuzziness degree is attached to each subsymbolic pattern primitive. The purpose of this paper is to show how recursive neural networks, properly conceived for dealing with structured information, can represent nondeterministic fuzzy frontier-to-root tree automata. Whereas available prior knowledge expressed in terms of fuzzy state transition rules are injected into a recursive network, unknown rules are supposed to be filled in by data-driven learning. We also prove the stability of the encoding algorithm, extending previous results on the injection of fuzzy finite-state dynamics in high-order recurrent networks.

  7. Introduction to fuzzy systems

    CERN Document Server

    Chen, Guanrong

    2005-01-01

    Introduction to Fuzzy Systems provides students with a self-contained introduction that requires no preliminary knowledge of fuzzy mathematics and fuzzy control systems theory. Simplified and readily accessible, it encourages both classroom and self-directed learners to build a solid foundation in fuzzy systems. After introducing the subject, the authors move directly into presenting real-world applications of fuzzy logic, revealing its practical flavor. This practicality is then followed by basic fuzzy systems theory. The book also offers a tutorial on fuzzy control theory, based mainly on th

  8. Fuzzy Control Method with Application for Functional Neuromuscular Stimulation System

    Institute of Scientific and Technical Information of China (English)

    吴怀宇; 周兆英; 熊沈蜀

    2001-01-01

    A fuzzy control technique is applied to a functional neuromuscular stimulation (FNS) physicalmultiarticular muscle control system. The FNS multiarticular muscle control system based on the fuzzy controllerwas developed with the fuzzy control rule base. Simulation experiments were then conducted for the joint angletrajectories of both the elbow flexion and the wrist flexion using the proposed fuzzy control algorithm and aconventional PID control algorithm with the FNS physical multiarticular muscle control system. The simulationresults demonstrated that the proposed fuzzy control method is more suitable for the physiologicalcharacteristics than conventional PID control. In particular, both the trajectory-following and the stability of theFNS multiarticular muscle control system were greatly improved. Furthermore, the stimulating pulse trainsgenerated by the fuzzy controller were stable and smooth.``

  9. FUZZY-GENETIC CONTROL OF QUADROTOR UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    Attila Nemes

    2016-03-01

    Full Text Available This article presents a novel fuzzy identification method for dynamic modelling of quadrotor unmanned aerial vehicles. The method is based on a special parameterization of the antecedent part of fuzzy systems that results in fuzzy-partitions for antecedents. This antecedent parameter representation method of fuzzy rules ensures upholding of predefined linguistic value ordering and ensures that fuzzy-partitions remain intact throughout an unconstrained hybrid evolutionary and gradient descent based optimization process. In the equations of motion the first order derivative component is calculated based on Christoffel symbols, the derivatives of fuzzy systems are used for modelling the Coriolis effects, gyroscopic and centrifugal terms. The non-linear parameters are subjected to an initial global evolutionary optimization scheme and fine tuning with gradient descent based local search. Simulation results of the proposed new quadrotor dynamic model identification method are promising.

  10. Fuzziness in Chang's fuzzy topological spaces

    OpenAIRE

    1999-01-01

    It is known that fuzziness within the concept of openness of a fuzzy set in a Chang's fuzzy topological space (fts) is absent. In this paper we introduce a gradation of openness for the open sets of a Chang jts (X, $\\mathcal{T}$) by means of a map $\\sigma\\;:\\; I^{x}\\longrightarrow I\\left(I=\\left[0,1\\right]\\right)$, which is at the same time a fuzzy topology on X in Shostak 's sense. Then, we will be able to avoid the fuzzy point concept, and to introduce an adeguate theory f...

  11. Representation Theorems for Fuzzy Random Sets and Fuzzy Stochastic Processes

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The fuzzy static and dynamic random phenomena in an abstract separable Banach space is discussed in this paper. The representation theorems for fuzzy set-valued random sets, fuzzy random elements and fuzzy set-valued stochastic processes are obtained.

  12. Fuzzy associative memories

    Science.gov (United States)

    Kosko, Bart

    1991-01-01

    Mappings between fuzzy cubes are discussed. This level of abstraction provides a surprising and fruitful alternative to the propositional and predicate-calculas reasoning techniques used in expert systems. It allows one to reason with sets instead of propositions. Discussed here are fuzzy and neural function estimators, neural vs. fuzzy representation of structured knowledge, fuzzy vector-matrix multiplication, and fuzzy associative memory (FAM) system architecture.

  13. Fuzzy Soft Topological Groups

    Directory of Open Access Journals (Sweden)

    S. Nazmul

    2014-03-01

    Full Text Available Notions of Lowen type fuzzy soft topological space are introduced and some of their properties are established in the present paper. Besides this, a combined structure of a fuzzy soft topological space and a fuzzy soft group, which is termed here as fuzzy soft topological group is introduced. Homomorphic images and preimages are also examined. Finally, some definitions and results on fuzzy soft set are studied.

  14. Self-adaptive prediction of cloud resource demands using ensemble model and subtractive-fuzzy clustering based fuzzy neural network.

    Science.gov (United States)

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands.

  15. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    Science.gov (United States)

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896

  16. Fuzzy-based HAZOP study for process industry

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Junkeon; Chang, Daejun, E-mail: djchang@kaist.edu

    2016-11-05

    Highlights: • HAZOP is the important technique to evaluate system safety and its risks while process operations. • Fuzzy theory can handle the inherent uncertainties of process systems for the HAZOP. • Fuzzy-based HAZOP considers the aleatory and epistemic uncertainties and provides the risk level with less uncertainty. • Risk acceptance criteria should be considered regarding the transition region for each risk. - Abstract: This study proposed a fuzzy-based HAZOP for analyzing process hazards. Fuzzy theory was used to express uncertain states. This theory was found to be a useful approach to overcome the inherent uncertainty in HAZOP analyses. Fuzzy logic sharply contrasted with classical logic and provided diverse risk values according to its membership degree. Appropriate process parameters and guidewords were selected to describe the frequency and consequence of an accident. Fuzzy modeling calculated risks based on the relationship between the variables of an accident. The modeling was based on the mean expected value, trapezoidal fuzzy number, IF-THEN rules, and the center of gravity method. A cryogenic LNG (liquefied natural gas) testing facility was the objective process for the fuzzy-based and conventional HAZOPs. The most significant index is the frequency to determine risks. The comparison results showed that the fuzzy-based HAZOP provides better sophisticated risks than the conventional HAZOP. The fuzzy risk matrix presents the significance of risks, negligible risks, and necessity of risk reduction.

  17. Vehicles Recognition Using Fuzzy Descriptors of Image Segments

    CERN Document Server

    Płaczek, Bartłomiej

    2011-01-01

    In this paper a vision-based vehicles recognition method is presented. Proposed method uses fuzzy description of image segments for automatic recognition of vehicles recorded in image data. The description takes into account selected geometrical properties and shape coefficients determined for segments of reference image (vehicle model). The proposed method was implemented using reasoning system with fuzzy rules. A vehicles recognition algorithm was developed based on the fuzzy rules describing shape and arrangement of the image segments that correspond to visible parts of a vehicle. An extension of the algorithm with set of fuzzy rules defined for different reference images (and various vehicle shapes) enables vehicles classification in traffic scenes. The devised method is suitable for application in video sensors for road traffic control and surveillance systems.

  18. Research and Design of a Fuzzy Neural Expert System

    Institute of Scientific and Technical Information of China (English)

    王仕军; 王树林

    1995-01-01

    We have developed a fuzzy neural expert system that has the precision and learning ability of a neural network.Knowledge is acquired from domain experts as fuzzy rules and membership functions.Then,they are converted into a neural network which implements fuzzy inference without rule matching.The neural network is applied to problem-solving and learns from the data obtained during operation to enhance the accuracy.The learning ability of the neural network makes it easy to modify the membership functions defined by domain experts.Also,by modifying the weights of neural networks adaptively,the problem of belief propagation in conventional expert systems can be solved easily.Converting the neural network back into fuzzy rules and membership functions helps explain the inner representation and operation of the neural network.

  19. Competitive exception learning using fuzzy frequency distributions

    NARCIS (Netherlands)

    W.-M. van den Bergh (Willem-Max); J.H. van den Berg (Jan)

    2000-01-01

    textabstractA competitive exception learning algorithm for finding a non-linear mapping is proposed which puts the emphasis on the discovery of the important exceptions rather than the main rules. To do so,we first cluster the output space using a competitive fuzzy clustering algorithm and derive a

  20. Automating Software Development Process using Fuzzy Logic

    NARCIS (Netherlands)

    Marcelloni, Francesco; Aksit, Mehmet; Damiani, Ernesto; Jain, Lakhmi C.; Madravio, Mauro

    2004-01-01

    In this chapter, we aim to highlight how fuzzy logic can be a valid expressive tool to manage the software development process. We characterize a software development method in terms of two major components: artifact types and methodological rules. Classes, attributes, operations, and inheritance an

  1. Intuitionistic supra fuzzy topological spaces

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, S.E. E-mail: sabbas73@yahoo.com

    2004-09-01

    In this paper, We introduce an intuitionistic supra fuzzy closure space and investigate the relationship between intuitionistic supra fuzzy topological spaces and intuitionistic supra fuzzy closure spaces. Moreover, we can obtain intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space. We study the relationship between intuitionistic supra fuzzy closure space and the intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space.

  2. Fuzzy logic in management

    CERN Document Server

    Carlsson, Christer; Fullér, Robert

    2004-01-01

    Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...

  3. Hesitant fuzzy sets theory

    CERN Document Server

    Xu, Zeshui

    2014-01-01

    This book provides the readers with a thorough and systematic introduction to hesitant fuzzy theory. It presents the most recent research results and advanced methods in the field. These includes: hesitant fuzzy aggregation techniques, hesitant fuzzy preference relations, hesitant fuzzy measures, hesitant fuzzy clustering algorithms and hesitant fuzzy multi-attribute decision making methods. Since its introduction by Torra and Narukawa in 2009, hesitant fuzzy sets have become more and more popular and have been used for a wide range of applications, from decision-making problems to cluster analysis, from medical diagnosis to personnel appraisal and information retrieval. This book offers a comprehensive report on the state-of-the-art in hesitant fuzzy sets theory and applications, aiming at becoming a reference guide for both researchers and practitioners in the area of fuzzy mathematics and other applied research fields (e.g. operations research, information science, management science and engineering) chara...

  4. Improved model reduction and tuning of fractional-order PI(λ)D(μ) controllers for analytical rule extraction with genetic programming.

    Science.gov (United States)

    Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava

    2012-03-01

    Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples.

  5. Finger vein identification using fuzzy-based k-nearest centroid neighbor classifier

    Science.gov (United States)

    Rosdi, Bakhtiar Affendi; Jaafar, Haryati; Ramli, Dzati Athiar

    2015-02-01

    In this paper, a new approach for personal identification using finger vein image is presented. Finger vein is an emerging type of biometrics that attracts attention of researchers in biometrics area. As compared to other biometric traits such as face, fingerprint and iris, finger vein is more secured and hard to counterfeit since the features are inside the human body. So far, most of the researchers focus on how to extract robust features from the captured vein images. Not much research was conducted on the classification of the extracted features. In this paper, a new classifier called fuzzy-based k-nearest centroid neighbor (FkNCN) is applied to classify the finger vein image. The proposed FkNCN employs a surrounding rule to obtain the k-nearest centroid neighbors based on the spatial distributions of the training images and their distance to the test image. Then, the fuzzy membership function is utilized to assign the test image to the class which is frequently represented by the k-nearest centroid neighbors. Experimental evaluation using our own database which was collected from 492 fingers shows that the proposed FkNCN has better performance than the k-nearest neighbor, k-nearest-centroid neighbor and fuzzy-based-k-nearest neighbor classifiers. This shows that the proposed classifier is able to identify the finger vein image effectively.

  6. A Distributed Fuzzy Associative Classifier for Big Data.

    Science.gov (United States)

    Segatori, Armando; Bechini, Alessio; Ducange, Pietro; Marcelloni, Francesco

    2017-09-19

    Fuzzy associative classification has not been widely analyzed in the literature, although associative classifiers (ACs) have proved to be very effective in different real domain applications. The main reason is that learning fuzzy ACs is a very heavy task, especially when dealing with large datasets. To overcome this drawback, in this paper, we propose an efficient distributed fuzzy associative classification approach based on the MapReduce paradigm. The approach exploits a novel distributed discretizer based on fuzzy entropy for efficiently generating fuzzy partitions of the attributes. Then, a set of candidate fuzzy association rules is generated by employing a distributed fuzzy extension of the well-known FP-Growth algorithm. Finally, this set is pruned by using three purposely adapted types of pruning. We implemented our approach on the popular Hadoop framework. Hadoop allows distributing storage and processing of very large data sets on computer clusters built from commodity hardware. We have performed an extensive experimentation and a detailed analysis of the results using six very large datasets with up to 11,000,000 instances. We have also experimented different types of reasoning methods. Focusing on accuracy, model complexity, computation time, and scalability, we compare the results achieved by our approach with those obtained by two distributed nonfuzzy ACs recently proposed in the literature. We highlight that, although the accuracies result to be comparable, the complexity, evaluated in terms of number of rules, of the classifiers generated by the fuzzy distributed approach is lower than the one of the nonfuzzy classifiers.

  7. A Fuzzy Neural Model for Face Recognition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, a fuzzy neural model is proposed for face recognition. Each rule in the proposed fuzzy neural model is used to estimate one cluster of pattern distribution in a form, which is different from the classical possibilitydensity function. Through self-adaptive learning and fuzzy inference, a confidence value will be assigned to a given pattern to denote the possibility of this pattern's belongingness to some certain class/subject. The architecture of the whole system takes structure of one-class-in-one-network (OCON), which has many advantages such as easy convergence, suitable for distribution application, quickretrieving, and incremental training. Novel methods are used to determine the number of fuzzy rules and initialize fuzzy subsets. The proposed approach has characteristics of quick learning/recognition speed, high recognition accuracy and robustness. The proposed approach can even recognize very low-resolution face images (e.g., 7x6) well that human cannot when the number of subjects is not very large. Experiments on ORL demonstrate the effectiveness of the proposed approachand an average error rate of 3.95% is obtained.

  8. Optimal design and robustification of fuzzy-logic controllers for robotic manipulators using genetic algorithms

    CERN Document Server

    Moini, A

    2002-01-01

    In this paper, genetic algorithms are used in the design and robustification various mo el-ba ed/non-model-based fuzzy-logic controllers for robotic manipulators. It is demonstrated that genetic algorithms provide effective means of designing the optimal set of fuzzy rules as well as the optimal domains of associated fuzzy sets in a new class of model-based-fuzzy-logic controllers. Furthermore, it is shown that genetic algorithms are very effective in the optimal design and robustification of non-model-based multivariable fuzzy-logic controllers for robotic manipulators.

  9. Digital Image Enhancement with Fuzzy Interface System

    Directory of Open Access Journals (Sweden)

    Prabhpreet Kaur

    2012-09-01

    Full Text Available Present day application requires various version kinds of images and pictures as sources of information for interpretation and analysis. Whenever an image is converted from one form to another, such as, digitizing, scanning, transmitting, storing, etc. Some form of degradation occurs at the output. Hence, the output image has to undergo a process called image enhancement which consist of a collection of techniques that seeks to improve the visual appearances of an image. Image enhancement technique is basically improving the perception of information in images for human viewers and providing 'better' input for other automated image processing techniques. This thesis presents a new approach for image enhancement with fuzzy interface system. Fuzzy techniques can manage the vagueness and ambiguity efficiently (an image can be represented as fuzzy set. Fuzzy logic is a powerful tool to represent and process human knowledge in form of fuzzy if-then rules. Compared to other filtering techniques, fuzzy filter gives the better performance and is able to represent knowledge in a comprehensible way.

  10. Fuzzy Pattern Recognition System for Detection of Alga Distribution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To realize the on-line measurement and make analysis on the density of algae and their cluster distribution, the fluorescent detection and fuzzy pattern recognition techniques are used. The principle of fluorescent fiber-optic detection is given as well as the method of fuzzy feature extraction using a class of neural network.

  11. Using fuzzy data mining to diagnose patients' degrees of melancholia

    Science.gov (United States)

    Huang, Yo-Ping; Kuo, Wen-Lin

    2011-06-01

    The common treatments of melancholia are psychotherapy and taking medicines. The psychotherapy treatment which this study focuses on is limited by time and location. It is easier for psychiatrists to grasp information from clinical manifestation but it is difficult for psychiatrists to collect information from patients' daily conversations or emotion. To design a system which psychiatrists enable to capture patients' daily symptoms will show great help in the treatment. This study proposes to use fuzzy data mining algorithm to find association rules among keywords segmented from patients' daily voice/text messages to assist psychiatrists extract useful information before outpatient service. Patients of melancholia can use devices such as mobile phones or computers to record their own emotion anytime and anywhere and then uploading the recorded files to the back-end server for further analysis. The analytical results can be used for psychiatrists to diagnose patients' degrees of melancholia. Experimental results will be given to verify the effectiveness of the proposed methodology.

  12. Fuzzy clustering evaluation of the discrimination power of UV-Vis and (±) ESI-MS detection system in individual or coupled RPLC for characterization of Ginkgo Biloba standardized extracts.

    Science.gov (United States)

    Medvedovici, Andrei; Albu, Florin; Naşcu-Briciu, Rodica Domnica; Sârbu, Costel

    2014-02-01

    Discrimination power evaluation of UV-Vis and (±) electrospray ionization/mass spectrometric techniques, (ESI-MS) individually considered or coupled as detectors to reversed phase liquid chromatography (RPLC) in the characterization of Ginkgo Biloba standardized extracts, is used in herbal medicines and/or dietary supplements with the help of Fuzzy hierarchical clustering (FHC). Seventeen batches of Ginkgo Biloba commercially available standardized extracts from seven manufacturers were measured during experiments. All extracts were within the criteria of the official monograph dedicated to dried refined and quantified Ginkgo extracts, in the European Pharmacopoeia. UV-Vis and (±) ESI-MS spectra of the bulk standardized extracts in methanol were acquired. Additionally, an RPLC separation based on a simple gradient elution profile was applied to the standardized extracts. Detection was made through monitoring UV absorption at 220 nm wavelength or the total ion current (TIC) produced through (±) ESI-MS analysis. FHC was applied to raw, centered and scaled data sets, for evaluating the discrimination power of the method with respect to the origins of the extracts and to the batch to batch variability. The discrimination power increases with the increase of the intrinsic selectivity of the spectral technique being used: UV-Visextracts, and at some extent, to monitor the inter-batch variability. Although the chromatographic dimension sensibly contributes to the discrimination power, spectral MS data may be used as the lone powerful holistic alternative in characterization of standardized Ginkgo Biloba extracts. © 2013 Elsevier B

  13. Vowel recognition by fuzzy inference and application to recognition of continuous Korean speech. Fuzzy suiron ni yoru boin ninshiki to kankokugo renzoku onsei eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W.K.; Akizuki, K. (Waseda Univ., Tokyo (Japan)); Lee, H.H. (Fukuoka Inst. of Tech., Fukuoka (Japan))

    1991-05-20

    The target of voice recognition is to recognize continuous speech which is effective for speech recognition of unspecified persons. As a new matching method, the variations of feature parameters of speakers are represented as fuzzy variables to express the variation by membership functions. It is a new pattern matching method of fuzzy inference using feature parameters, fuzzy relation and synthesis of each formant, and the fuzzy rule. It is a recognition method for the inference of best formant which matches the fact by providing each characteristic quantity and fuzzy rule for composite calculation. For consonant recognition, pitch, logarithmic energies, zero crossing rates, etc. are used which represent features of each formant. KOSRES 2, recognition system for continuous Korean speech, was structured using this method which was subjected to recognition experiments on continuous Korean speech, and the recognition method by fuzzy inference is found to be effective for speech recognition of unspecified persons. 8 refs., 9 figs., 3 tabs.

  14. Fuzzy peer groups for reducing mixed gaussian-impulse noise from color images.

    Science.gov (United States)

    Morillas, Samuel; Gregori, Valentín; Hervas, Antonio

    2009-07-01

    The peer group of an image pixel is a pixel similarity-based concept which has been successfully used to devise image denoising methods. However, since it is difficult to define the pixel similarity in a crisp way, we propose to represent this similarity in fuzzy terms. In this paper, we introduce the fuzzy peer group concept, which extends the peer group concept in the fuzzy setting. A fuzzy peer group will be defined as a fuzzy set that takes a peer group as support set and where the membership degree of each peer group member will be given by its fuzzy similarity with respect to the pixel under processing. The fuzzy peer group of each image pixel will be determined by means of a novel fuzzy logic-based procedure. We use the fuzzy peer group concept to design a two-step color image filter cascading a fuzzy rule-based switching impulse noise filter by a fuzzy average filtering over the fuzzy peer group. Both steps use the same fuzzy peer group, which leads to computational savings. The proposed filter is able to efficiently suppress both Gaussian noise and impulse noise, as well as mixed Gaussian-impulse noise. Experimental results are provided to show that the proposed filter achieves a promising performance.

  15. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    Science.gov (United States)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  16. A fuzzy behaviorist approach to sensor-based robot control

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.

    1996-05-01

    Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-based approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.

  17. FIR: An Effective Scheme for Extracting Useful Metadata from Social Media.

    Science.gov (United States)

    Chen, Long-Sheng; Lin, Zue-Cheng; Chang, Jing-Rong

    2015-11-01

    Recently, the use of social media for health information exchange is expanding among patients, physicians, and other health care professionals. In medical areas, social media allows non-experts to access, interpret, and generate medical information for their own care and the care of others. Researchers paid much attention on social media in medical educations, patient-pharmacist communications, adverse drug reactions detection, impacts of social media on medicine and healthcare, and so on. However, relatively few papers discuss how to extract useful knowledge from a huge amount of textual comments in social media effectively. Therefore, this study aims to propose a Fuzzy adaptive resonance theory network based Information Retrieval (FIR) scheme by combining Fuzzy adaptive resonance theory (ART) network, Latent Semantic Indexing (LSI), and association rules (AR) discovery to extract knowledge from social media. In our FIR scheme, Fuzzy ART network firstly has been employed to segment comments. Next, for each customer segment, we use LSI technique to retrieve important keywords. Then, in order to make the extracted keywords understandable, association rules mining is presented to organize these extracted keywords to build metadata. These extracted useful voices of customers will be transformed into design needs by using Quality Function Deployment (QFD) for further decision making. Unlike conventional information retrieval techniques which acquire too many keywords to get key points, our FIR scheme can extract understandable metadata from social media.

  18. Modeling of Kefir Production with Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Hüseyin Nail Akgül

    2014-06-01

    Full Text Available The fermentation is ended with pH 4.6 values in industrial production of kefir. In this study, the incubation temperature, the incubation time and inoculums of culture were chose as variable parameters of kefir. In conventional control systems, the value of pH can be found by trial method. In these systems, if the number of input parameters is greater, the method of trial and error creates a system dependent on the person as well as troublesome. Fuzzy logic can be used in such cases. Modeling studies with this fuzzy logic control are examined in two portions. The first part consists of fuzzy rules and membership functions, while the second part consists of clarify. Kefir incubation temperature between 20 and 25°C, the incubation period between 18 to 22 hours and the inoculum ratio of culture between 1-5% are selected for optimum production conditions. Three separate fuzzy sets (triangular membership function are used to blur the incubation temperature, the incubation time and the inoculum ratio of culture. Because the membership function numbers belonging to the the input parameters are 3 units, 3x3x3=27 line rule is obtained by multiplying these numbers. The table of fuzzy rules was obtained using the method of Mamdani. The membership function values were determined by the method of average weight using three trapezoidal area of membership functions created for clarification. The success of the system will be found, comparing the numerical values obtained with pH values that should be. Eventually, to achieve the desired pH value of 4.6 in the production of kefir, with the using of fuzzy logic, the workload of people will be decreased and the productivity of business can be increased. In this case, it can be provided savings in both cost and time.

  19. Parton model sum rules

    CERN Document Server

    Hinchliffe, Ian; Hinchliffe, Ian; Kwiatkowski, Axel

    1996-01-01

    This review article discusses the experimental and theoretical status of various Parton Model sum rules. The basis of the sum rules in perturbative QCD is discussed. Their use in extracting the value of the strong coupling constant is evaluated and the failure of the naive version of some of these rules is assessed.

  20. Implementation of the fuzzy theory in control of alternative energy generation system; Aplicacao da teoria fuzzy no controle de sistemas de geracao de energias alternativas

    Energy Technology Data Exchange (ETDEWEB)

    Caneppele, Fernando de Lima [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Curso de Pos-Graduacao em Energia na Agricultura], E-mail: fernando@itapeva.unesp.br; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural], E-mail: seraphim@fca.unesp.br

    2010-07-01

    This paper presents the application and use of a methodology based on fuzzy theory and simulates its use in intelligent control of a hybrid system for generating electricity, using solar energy, photovoltaic and wind. When using a fuzzy control system, it reached the point of maximum generation of energy, thus shifting all energy generated from the alternative sources-solar photovoltaic and wind, cargo and / or batteries when its use not immediately. The model uses three variables used for entry, which are: wind speed, solar radiation and loading the bank of batteries. For output variable has to choose which of the batteries of the battery bank is charged. For the simulations of this work is used MATLAB software. In this environment mathematical computational are analyzed and simulated all mathematical modeling, rules and other variables in the system described fuzzy. This model can be used in a system of control of hybrid systems for generating energy, providing the best use of energy sources, sun and wind, so we can extract the maximum energy possible these alternative sources without any prejudice to the environment. (author)

  1. Spatiotemporal fuzzy based climate forecasting for Australia

    Science.gov (United States)

    Montazerolghaem, M.; Vervoort, R. W.; Minasny, B.; McBratney, A.

    2012-12-01

    Variation in weather and climate events impacts agriculture production processes, and profits across years. Therefore, seasonal rainfall prediction is an important factor for strategic and tactical decision making in agricultural, land and water resource management. This study aims to apply optimal data-driven techniques for fine resolution climate classification and forecasting over South-eastern Australia. Data were used in this study were included daily precipitation, maximum and minimum temperature data collected over 40 years from 107 weather stations in Southeast Australia acquired from the Bureau of Meteorology (BOM). Fuzzy-k means clustering techniques (FKM) were applied on one year weekly time series. Cluster centroids and memberships of rainfall and temperature weekly time series for one year period provide meaningful and insight into weather variability in time and space over the study. Stations are grouped based on their memberships in rainfall and temperature classes. The result showed that FKM is a useful method for trend analysis and pattern discovery in space and time. Outcomes indicate improvement in the climate classification of the area at the station level. An associate project is gathering higher spatial density on-farm data. This high-resolution climate data collected at the farm scale will be analyzed similarly in the future to improve spatial resolution of our classification. The second stage of this study consists of development of a fine-resolution forecasting model for predicting rainfall. FKM was applied on a metrics which included input and output time series to extract rules and relationships between them. After classification, rules were extracted within each class based on forecasting time, space and extreme climate events followed by effective sea surface temperature anomalies. These rules and a lookup table of input and output centroids were used for rainfall prediction in the form of weekly time series for the next six months. One

  2. Transformation and entropy for fuzzy rough sets

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new method for translating a fuzzy rough set to a fuzzy set is introduced and the fuzzy approximation of a fuzzy rough set is given.The properties of the fuzzy approximation of a fuzzy rough set are studied and a fuzzy entropy measure for fuzzy rough sets is proposed.This measure is consistent with similar considerations for ordinary fuzzy sets and is the result of the fuzzy approximation of fuzzy rough sets.

  3. Boolean Operator Fuzzy Logic

    Institute of Scientific and Technical Information of China (English)

    刘叙华; 邓安生

    1994-01-01

    A new approach of operator fuzzy logic, Boolean operator fuzzy logic (BOFL) based on Boolean algebra, is presented. The resolution principle is also introduced into BOFL. BOFL is a natural generalization of classical logic and can be applied to the qualitative description of fuzzy knowledge.

  4. Paired fuzzy sets

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel

    2015-01-01

    In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...

  5. Fuzzy Linguistic Topological Spaces

    CERN Document Server

    Kandasamy, W B Vasantha; Amal, K

    2012-01-01

    This book has five chapters. Chapter one is introductory in nature. Fuzzy linguistic spaces are introduced in chapter two. Fuzzy linguistic vector spaces are introduced in chapter three. Chapter four introduces fuzzy linguistic models. The final chapter suggests over 100 problems and some of them are at research level.

  6. ON OPTIMISING FUZZY RULES OF COUPLED HYBRID DISTRIBUTION ESTIMATION ALGORITHM WITH CH-COR JOINT MECHANISM%CH 与 COR联合机制耦合混杂分布估计算法的模糊规则优化研究

    Institute of Scientific and Technical Information of China (English)

    韩应江

    2015-01-01

    In order to reduce the time complexity of current fuzzy rules optimisation learning algorithm and to speed up the convergence rate, based on univariate marginal distribution estimation algorithm, we introduced CH ( Cordon & Herrera) and COR ( cooperative rules) mechanisms, and presented the study of fuzzy rules optimisation algorithm which couples the hybrid distribution estimation algorithm with the CH and COR joint mechanism;Moreover we carried out the theoretical derivation and analytical demonstration on the time complexity of the algorithm, and built the distribution probability model of the algorithm.First, we employed CH mechanism to generate variable space, and completed the candidate rules library with COR method.Then, we used the MUMDA ( multi-population variable irrelative distribution estima-tion algorithm) for rules learning, by increasing the diversity of population the possibility of the algorithm falling into local optimal was dimin-ished.Finally we conducted the experimental validation on the algorithm, it is shown by the experimental comparison result that the hybrid optimisation algorithm designed in the paper could obtain a fuzzy rules library with high accuracy and better comprehensibility, and this facili-tated the fuzzy system to be applied in practical projects.%为了降低当前模糊规则优化学习算法的时间复杂度,加快其收敛速度,基于单变量边缘分布估计算法,引入CH( Cordon and Herrera)与COR( Cooperative Rules Methodology)机制,提出混杂分布估计算法耦合CH( Cordon and Herrera)与COR联合机制的模糊规则优化算法研究;对算法的时间复杂度进行理论推导和分析证明,构建算法的分布概率模型。首先使用CH机制产生变量空间;再由COR方法完备的候选规则库;然后利用多种群变量无关分布估计算法MUMDA( Univariate Marginal Distribution Algorithm)进行规则学习,通过增加种群的多样性,减少算法

  7. Some weakly mappings on intuitionistic fuzzy topological spaces

    OpenAIRE

    Zhen-Guo Xu; Fu-Gui Shi

    2008-01-01

    In this paper, we shall introduce concepts of fuzzy semiopen set, fuzzy semiclosed set, fuzzy semiinterior, fuzzy semiclosure on intuitionistic fuzzy topological space and fuzzy open (fuzzy closed) mapping, fuzzy irresolute mapping, fuzzy irresolute open (closed) mapping, fuzzy semicontinuous mapping and fuzzy semiopen (semiclosed) mapping between two intuitionistic fuzzy topological spaces. Moreover, we shall discuss their some properties.

  8. Fuzzy Logic for Elimination of Redundant Information of Microarray Data

    Institute of Scientific and Technical Information of China (English)

    Edmundo Bonilla Huerta; Béatrice Duval; Jin-Kao Hao

    2008-01-01

    Gene subset selection is essential for classification and analysis of microarray data. However, gene selection is known to be a very difficult task since gene expression data not only have high dimensionalities, but also contain redundant information and noises. To cope with these difficulties, this paper introduces a fuzzy logic based pre-processing approach composed of two main steps. First, we use fuzzy inference rules to transform the gene expression levels of a given dataset into fuzzy values. Then we apply a similarity relation to these fuzzy values to define fuzzy equivalence groups, each group containing strongly similar genes. Dimension reduction is achieved by considering for each group of similar genes a single representative based on mutual information. To assess the usefulness of this approach, extensive experimentations were carried out on three well-known public datasets with a combined classification model using three statistic filters and three classifiers.

  9. Type-2 fuzzy logic uncertain systems’ modeling and control

    CERN Document Server

    Antão, Rómulo

    2017-01-01

    This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.

  10. Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space

    Directory of Open Access Journals (Sweden)

    Apu Kumar Saha

    2015-06-01

    Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.

  11. Development of an evolutionary fuzzy expert system for estimating future behavior of stock price

    Science.gov (United States)

    Mehmanpazir, Farhad; Asadi, Shahrokh

    2017-07-01

    The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a "data mining-based evolutionary fuzzy expert system" (DEFES) approach to estimate the behavior of stock price. This tool is developed in seven-stage architecture. Data mining is used in three stages to reduce the complexity of the whole data space. The first stage, noise filtering, is used to make our raw data clean and smooth. Variable selection is second stage; we use stepwise regression analysis to choose the key variables been considered in the model. In the third stage, K-means is used to divide the data into sub-populations to decrease the effects of noise and rebate complexity of the patterns. At next stage, extraction of Mamdani type fuzzy rule-based system will be carried out for each cluster by means of genetic algorithm and evolutionary strategy. In the fifth stage, we use binary genetic algorithm to rule filtering to remove the redundant rules in order to solve over learning phenomenon. In the sixth stage, we utilize the genetic tuning process to slightly adjust the shape of the membership functions. Last stage is the testing performance of tool and adjusts parameters. This is the first study on using an approximate fuzzy rule base system and evolutionary strategy with the ability of extracting the whole knowledge base of fuzzy expert system for stock price forecasting problems. The superiority and applicability of DEFES are shown for International Business Machines Corporation and compared the outcome with the results of the other methods. Results with MAPE metric and Wilcoxon signed ranks test indicate that DEFES provides more accuracy and outperforms all previous methods, so it can be considered as a superior tool for

  12. Development of an evolutionary fuzzy expert system for estimating future behavior of stock price

    Science.gov (United States)

    Mehmanpazir, Farhad; Asadi, Shahrokh

    2016-07-01

    The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a "data mining-based evolutionary fuzzy expert system" (DEFES) approach to estimate the behavior of stock price. This tool is developed in seven-stage architecture. Data mining is used in three stages to reduce the complexity of the whole data space. The first stage, noise filtering, is used to make our raw data clean and smooth. Variable selection is second stage; we use stepwise regression analysis to choose the key variables been considered in the model. In the third stage, K-means is used to divide the data into sub-populations to decrease the effects of noise and rebate complexity of the patterns. At next stage, extraction of Mamdani type fuzzy rule-based system will be carried out for each cluster by means of genetic algorithm and evolutionary strategy. In the fifth stage, we use binary genetic algorithm to rule filtering to remove the redundant rules in order to solve over learning phenomenon. In the sixth stage, we utilize the genetic tuning process to slightly adjust the shape of the membership functions. Last stage is the testing performance of tool and adjusts parameters. This is the first study on using an approximate fuzzy rule base system and evolutionary strategy with the ability of extracting the whole knowledge base of fuzzy expert system for stock price forecasting problems. The superiority and applicability of DEFES are shown for International Business Machines Corporation and compared the outcome with the results of the other methods. Results with MAPE metric and Wilcoxon signed ranks test indicate that DEFES provides more accuracy and outperforms all previous methods, so it can be considered as a superior tool for

  13. Mathematics of Fuzzy Sets and Fuzzy Logic

    CERN Document Server

    Bede, Barnabas

    2013-01-01

    This book presents a mathematically-based introduction into the fascinating topic of Fuzzy Sets and Fuzzy Logic and might be used as textbook at both undergraduate and graduate levels and also as reference guide for mathematician, scientists or engineers who would like to get an insight into Fuzzy Logic.   Fuzzy Sets have been introduced by Lotfi Zadeh in 1965 and since then, they have been used in many applications. As a consequence, there is a vast literature on the practical applications of fuzzy sets, while theory has a more modest coverage. The main purpose of the present book is to reduce this gap by providing a theoretical introduction into Fuzzy Sets based on Mathematical Analysis and Approximation Theory. Well-known applications, as for example fuzzy control, are also discussed in this book and placed on new ground, a theoretical foundation. Moreover, a few advanced chapters and several new results are included. These comprise, among others, a new systematic and constructive approach for fuzzy infer...

  14. How we pass from fuzzy $po$-semigroups to fuzzy $po$-$\\Gamma$-semigroups

    OpenAIRE

    Kehayopulu, Niovi

    2014-01-01

    The results on fuzzy ordered semigroups (or on fuzzy semigroups) can be transferred to fuzzy ordered gamma (or to fuzzy gamma) semigroups. We show the way we pass from fuzzy ordered semigroups to fuzzy ordered gamma semigroups.

  15. On generalized fuzzy strongly semiclosed sets in fuzzy topological spaces

    Directory of Open Access Journals (Sweden)

    Oya Bedre Ozbakir

    2002-01-01

    semiclosed, generalized fuzzy almost-strongly semiclosed, generalized fuzzy strongly closed, and generalized fuzzy almost-strongly closed sets. In the light of these definitions, we also define some generalizations of fuzzy continuous functions and discuss the relations between these new classes of functions and other fuzzy continuous functions.

  16. Bank Customer Credit Scoring by Using Fuzzy Expert System

    Directory of Open Access Journals (Sweden)

    Ali Bazmara

    2014-10-01

    Full Text Available Granting banking facility is one of the most important parts of the financial supplies for each bank. So this activity becomes more valuable economically and always has a degree of risk. These days several various developed Artificial Intelligent systems like Neural Network, Decision Tree, Logistic Regression Analysis, Linear Discriminant Analysis and etc, are used in the field of granting facilities that each of this system owns its advantages and disadvantages. But still studying and working are needed to improve the accuracy and performance of them. In this article among other AI methods, fuzzy expert system is selected. This system is based on data and also extracts rules by using data. Therefore the dependency to experts is omitted and interpretability of rules is obtained. Validity of these rules could be confirmed or rejected by banking affair experts. For investigating the performance of proposed system, this system and some other methods were performed on various datasets. Results show that the proposed algorithm obtained better performance among the others.

  17. Determination of interrill soil erodibility coefficient based on Fuzzy and Fuzzy-Genetic Systems

    Directory of Open Access Journals (Sweden)

    Habib Palizvan Zand

    2017-02-01

    Full Text Available Introduction: Although the fuzzy logic science has been used successfully in various sudies of hydrology and soil erosion, but in literature review no article was found about its performance for estimating of interrill erodibility. On the other hand, studies indicate that genetic algorithm techniques can be used in fuzzy models and finding the appropriate membership functions for linguistic variables and fuzzy rules. So this study was conducted to develop the fuzzy and fuzzy–genetics models and investigation of their performance in the estimation of soil interrill erodibility factor (Ki. Materials and Methods: For this reason 36 soil samples with different physical and chemical properties were collected from west of Azerbaijan province . soilsamples were also taken from the Ap or A horizon of each soil profile. The samples were air-dried , sieved and Some soil characteristics such as soil texture, organic matter (OM, cation exchange capacity (CEC, sodium adsorption ratio (SAR, EC and pH were determined by the standard laboratory methods. Aggregates size distributions (ASD were determined by the wet-sieving method and fractal dimension of soil aggregates (Dn was also calculated. In order to determination of soil interrill erodibility, the flume experiment performed by packing soil a depth of 0.09-m in 0.5 × 1.0 m. soil was saturated from the base and adjusted to 9% slope and was subjected to at least 90 min rainfall . Rainfall intensity treatments were 20, 37 and 47 mm h-1. During each rainfall event, runoff was collected manually in different time intervals, being less than 60 s at the beginning, up to 15 min near the end of the test. At the end of the experiment, the volumes of runoff samples and the mass of sediment load at each time interval were measured. Finally interrill erodibility values were calculated using Kinnell (11 Equation. Then by statistical analyses Dn and sand percent of the soils were selected as input variables and Ki as

  18. Fuzzy logic based robotic controller

    Science.gov (United States)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  19. A Simple Fuzzy Logic Approach for Induction Motors Stator Condition Monitoring

    Directory of Open Access Journals (Sweden)

    M. Zeraoulia

    2005-03-01

    Full Text Available Many researches dealt with the problem of induction motors fault detection and diagnosis. The major difficulty is the lack of an accurate model that describes a fault motor. Moreover, experienced engineers are often required to interpret measurement data that are frequently inconclusive. A fuzzy logic approach may help to diagnose induction motor faults. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. Therefore, this paper applies fuzzy logic to induction motors fault detection and diagnosis. The motor condition is described using linguistic variables. Fuzzy subsets and the corresponding membership functions describe stator current amplitudes. A knowledge base, comprising rule and data bases, is built to support the fuzzy inference. The induction motor condition is diagnosed using a compositional rule of fuzzy inference.

  20. EXTENSION OF THE PROJECTION THEOREM ON HILBERT SPACE TO FUZZY HILBERT SPACE OVER FUZZY NUMBER SPACE

    OpenAIRE

    K. P. DEEPA; Dr.S.Chenthur Pandian

    2012-01-01

    In this paper, we extend the projection theorem on Hilbert space to its fuzzy version over fuzzy number space embedded with fuzzy number mapping. To prove this we discuss the concepts of fuzzy Hilbert space over fuzzy number space with fuzzy number mapping. The fuzzy orthogonality, fuzzy orthonormality, fuzzy complemented subset property etc. of fuzzy Hilbert space over fuzzy number space using fuzzy number mapping also been discussed.

  1. A Fuzzy Control Irrigation System For Cottonfield

    Science.gov (United States)

    Zhang, Jun; Zhao, Yandong; Wang, Yiming; Li, Jinping

    A fuzzy control irrigation system for cotton field is presented in this paper. The system is composed of host computer, slave computer controller, communication module, soil water sensors, valve controllers, and system software. A fuzzy control model is constructed to control the irrigation time and irrigation quantity for cotton filed. According to the water-required rules of different cotton growing periods, different irrigation strategies can be carried out automatically. This system had been used for precision irrigation of the cotton field in Langfang experimental farm of Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences in 2006. The results show that the fuzzy control irrigation system can improve cotton yield and save much water quantity than the irrigation system based on simple on-off control algorithm.

  2. Variable-order fuzzy fractional PID controller.

    Science.gov (United States)

    Liu, Lu; Pan, Feng; Xue, Dingyu

    2015-03-01

    In this paper, a new tuning method of variable-order fractional fuzzy PID controller (VOFFLC) is proposed for a class of fractional-order and integer-order control plants. Fuzzy logic control (FLC) could easily deal with parameter variations of control system, but the fractional-order parameters are unable to change through this way and it has confined the effectiveness of FLC. Therefore, an attempt is made in this paper to allow all the five parameters of fractional-order PID controller vary along with the transformation of system structure as the outputs of FLC, and the influence of fractional orders λ and μ on control systems has been investigated to make the fuzzy rules for VOFFLC. Four simulation results of different plants are shown to verify the availability of the proposed control strategy.

  3. On fuzzy control of water desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Titli, A. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M. [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F. [Institute of Technology, Norway (Norway)

    1995-12-31

    In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)

  4. Development of a controller based on Fuzzy theory to better use the energy of a hybrid system power generation solar-photovoltaic and wind; Desenvolvimento de um controlador baseado na teoria Fuzzy para melhor aproveitamento da energia de um sistema hibrido de geracao de energia solar-fotovoltaico e eolico

    Energy Technology Data Exchange (ETDEWEB)

    Caneppele, Fernando de Lima [Universidade Estadual Paulista (UNESP), Itapeva, SP (Brazil). Campus Experimental], E-mail: fernando@itapeva.unesp.br; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural; Gabriel Filho, Luis Roberto de Almeida [Universidade Estadual Paulista (UNESP), Tupa, SP (Brazil). Campus Experimental

    2010-07-01

    The work developed a methodology fuzzy and simulated its use in control of a hybrid system of electric power generation, using solar-photovoltaic and wind energy. Using this control system, we get the point of maximum energy generation and transfer all the energy generated from alternative sources, solar-photovoltaic and wind energy to charge and / or batteries. The model uses three input variables, which are: wind (wind speed), sun (solar radiation) and batteries (charge the battery bank). With these variables, the fuzzy system will play, according to the rules to be described, what is the source of power supply system, which will have priority and how the batteries are loaded. For the simulations regarding the use of fuzzy theory to control, we used the scientific computing environment MATLAB. In this environment have been analyzed and simulated all mathematical modeling, rules and other variables described in the fuzzy system. This model can be applied to implement a control system of hybrid power generation, providing the best use of renewable energy, solar and wind, so that we can extract the maximum possible energy of these alternative sources without compromising the environment. (author)

  5. Design and implementation of fuzzy logic controllers. Thesis Final Report, 27 Jul. 1992 - 1 Jan. 1993

    Science.gov (United States)

    Abihana, Osama A.; Gonzalez, Oscar R.

    1993-01-01

    The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.

  6. Development of single-chip fuzzy controller based on FFSI in binary

    Institute of Scientific and Technical Information of China (English)

    张吉礼; 欧进萍; 孙德兴

    2003-01-01

    Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digitalfuzzy controller based on looking up fuzzy control responding table is only relative to the table and not relative tothe fuzzy control rules in the practical control process. Aiming at above problem and having combined fuzzy log-ic reasoning with digital operational characteristics of a single-chip microcomputer, functioning-fuzzy-subset in-ference (FFSI) in binary, in which triangle membership functions of error and error-in-change are all represen-ted in binary and singleton membership functions of control variable is binary too, has been introduced. The cir-cuit principle plans of a single-chip fuzzy controller have been introduced for development of its hardware, andthe primary program structure, fuzzy logic reasoning subroutine, serial communication subroutine with PC andreliability design of the fuzzy controller are all discussed in detail. The control of indoor temperature by a fuzzycontroller has been conducted using a testing-room thermodynamic system. Research results show that the FFSIin binary can exercise a concise fuzzy control in a single-chip fuzzy controller, and the fuzzy controller is there-fore reliable and possesses a high performance-price ratio.

  7. Constraint-Based Fuzzy Models for an Environment with Heterogeneous Information-Granules

    Institute of Scientific and Technical Information of China (English)

    K. Robert Lai; Yi-Yuan Chiang

    2006-01-01

    A novel framework for fuzzy modeling and model-based control design is described. Based on the theory of fuzzy constraint processing, the fuzzy model can be viewed as a generalized Takagi-Sugeno (TS) fuzzy model with fuzzy functional consequences. It uses multivariate antecedent membership functions obtained by granular-prototype fuzzy clustering methods and consequent fuzzy equations obtained by fuzzy regression techniques. Constrained optimization is used to estimate the consequent parameters, where the constraints are based on control-relevant a priori knowledge about the modeled process. The fuzzy-constraint-based approach provides the following features. 1) The knowledge base of a constraint-based fuzzy model can incorporate information with various types of fuzzy predicates. Consequently, it is easy to provide a fusion of different types of knowledge. The knowledge can be from data-driven approaches and/or from controlrelevant physical models. 2) A corresponding inference mechanism for the proposed model can deal with heterogeneous information granules. 3) Both numerical and linguistic inputs can be accepted for predicting new outputs.The proposed techniques are demonstrated by means of two examples: a nonlinear function-fitting problem and the well-known Box-Jenkins gas furnace process. The first example shows that the proposed model uses fewer fuzzy predicates achieving similar results with the traditional rule-based approach, while the second shows the performance can be significantly improved when the control-relevant constraints are considered.

  8. On fuzzy weakly-closed sets

    OpenAIRE

    Mahanta, J.; P. K. Das

    2012-01-01

    A new class of fuzzy closed sets, namely fuzzy weakly closed set in a fuzzy topological space is introduced and it is established that this class of fuzzy closed sets lies between fuzzy closed sets and fuzzy generalized closed sets. Alongwith the study of fundamental results of such closed sets, we define and characterize fuzzy weakly compact space and fuzzy weakly closed space.

  9. Compactness in intuitionistic fuzzy topological spaces

    Directory of Open Access Journals (Sweden)

    S. E. Abbas

    2005-02-01

    Full Text Available We introduce fuzzy almost continuous mapping, fuzzy weakly continuous mapping, fuzzy compactness, fuzzy almost compactness, and fuzzy near compactness in intuitionistic fuzzy topological space in view of the definition of Å ostak, and study some of their properties. Also, we investigate the behavior of fuzzy compactness under several types of fuzzy continuous mappings.

  10. Fuzzy Prediction for Traffic Flow Based on Delta Test

    OpenAIRE

    2016-01-01

    This paper presents a novel approach to one-step-forward prediction of traffic flow based on fuzzy reasoning. The successful construction of a competent fuzzy inference system of Sugeno type largely relies on proper choice of input dimension and accurate estimation of structure parameters and rules. The first issue is addressed with a proposed method, based on δ-test, which can simultaneously determine input dimension and reduce noise level. In response to the second issue, two clustering tec...

  11. Special functions in Fuzzy Analysis

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2006-01-01

    Full Text Available In the treatment of Fuzzy Logic an useful tool appears: the membership function, with the information about the degree of completion of a condition which defines the respective Fuzzy Set or Fuzzy Relation. With their introduction, it is possible to prove some results on the foundations of Fuzzy Logic and open new ways in Fuzzy Analysis.

  12. Vector-valued fuzzy multifunctions

    Directory of Open Access Journals (Sweden)

    Ismat Beg

    2001-01-01

    Full Text Available Some of the properties of vector-valued fuzzy multifunctions are studied. The notion of sum fuzzy multifunction, convex hull fuzzy multifunction, close convex hull fuzzy multifunction, and upper demicontinuous are given, and some of the properties of these fuzzy multifunctions are investigated.

  13. Fuzzy Sets and Mathematical Education.

    Science.gov (United States)

    Alsina, C.; Trillas, E.

    1991-01-01

    Presents the concept of "Fuzzy Sets" and gives some ideas for its potential interest in mathematics education. Defines what a Fuzzy Set is, describes why we need to teach fuzziness, gives some examples of fuzzy questions, and offers some examples of activities related to fuzzy sets. (MDH)

  14. Image Matching by Using Fuzzy Transforms

    Directory of Open Access Journals (Sweden)

    Ferdinando Di Martino

    2013-01-01

    Full Text Available We apply the concept of Fuzzy Transform (for short, F-transform for improving the results of the image matching based on the Greatest Eigen Fuzzy Set (for short, GEFS with respect to max-min composition and the Smallest Eigen Fuzzy Set (for short, SEFS with respect to min-max composition already studied in the literature. The direct F-transform of an image can be compared with the direct F-transform of a sample image to be matched and we use suitable indexes to measure the grade of similarity between the two images. We make our experiments on the image dataset extracted from the well-known Prima Project View Sphere Database, comparing the results obtained with this method with that one based on the GEFS and SEFS. Other experiments are performed on frames of videos extracted from the Ohio State University dataset.

  15. Robust support vector machine-trained fuzzy system.

    Science.gov (United States)

    Forghani, Yahya; Yazdi, Hadi Sadoghi

    2014-02-01

    Because the SVM (support vector machine) classifies data with the widest symmetric margin to decrease the probability of the test error, modern fuzzy systems use SVM to tune the parameters of fuzzy if-then rules. But, solving the SVM model is time-consuming. To overcome this disadvantage, we propose a rapid method to solve the robust SVM model and use it to tune the parameters of fuzzy if-then rules. The robust SVM is an extension of SVM for interval-valued data classification. We compare our proposed method with SVM, robust SVM, ISVM-FC (incremental support vector machine-trained fuzzy classifier), BSVM-FC (batch support vector machine-trained fuzzy classifier), SOTFN-SV (a self-organizing TS-type fuzzy network with support vector learning) and SCLSE (a TS-type fuzzy system with subtractive clustering for antecedent parameter tuning and LSE for consequent parameter tuning) by using some real datasets. According to experimental results, the use of proposed approach leads to very low training and testing time with good misclassification rate.

  16. Development of quantum-based adaptive neuro-fuzzy networks.

    Science.gov (United States)

    Kim, Sung-Suk; Kwak, Keun-Chang

    2010-02-01

    In this study, we are concerned with a method for constructing quantum-based adaptive neuro-fuzzy networks (QANFNs) with a Takagi-Sugeno-Kang (TSK) fuzzy type based on the fuzzy granulation from a given input-output data set. For this purpose, we developed a systematic approach in producing automatic fuzzy rules based on fuzzy subtractive quantum clustering. This clustering technique is not only an extension of ideas inherent to scale-space and support-vector clustering but also represents an effective prototype that exhibits certain characteristics of the target system to be modeled from the fuzzy subtractive method. Furthermore, we developed linear-regression QANFN (LR-QANFN) as an incremental model to deal with localized nonlinearities of the system, so that all modeling discrepancies can be compensated. After adopting the construction of the linear regression as the first global model, we refined it through a series of local fuzzy if-then rules in order to capture the remaining localized characteristics. The experimental results revealed that the proposed QANFN and LR-QANFN yielded a better performance in comparison with radial basis function networks and the linguistic model obtained in previous literature for an automobile mile-per-gallon prediction, Boston Housing data, and a coagulant dosing process in a water purification plant.

  17. Foundations of fuzzy logic and semantic web languages

    CERN Document Server

    Straccia, Umberto

    2013-01-01

    Managing vagueness/fuzziness is starting to play an important role in Semantic Web research, with a large number of research efforts underway. Foundations of Fuzzy Logic and Semantic Web Languages provides a rigorous and succinct account of the mathematical methods and tools used for representing and reasoning with fuzzy information within Semantic Web languages. The book focuses on the three main streams of Semantic Web languages: Triple languages RDF and RDFS Conceptual languages OWL and OWL 2, and their profiles OWL EL, OWL QL, and OWL RL Rule-based languages, such as SWRL and RIF Written b

  18. Image segmentation based on scaled fuzzy membership functions

    DEFF Research Database (Denmark)

    Jantzen, Jan; Ring,, P.; Christiansen, Pernille

    1993-01-01

    As a basis for an automated interpretation of magnetic resonance images, the authors propose a fuzzy segmentation method. The method uses five standard fuzzy membership functions: small, small medium, medium, large medium, and large. The method fits these membership functions to the modes...... of interest in the image histogram by means of a piecewise-linear transformation. A test example is given concerning a human head image, including a sensitivity analysis based on the fuzzy area measure. The method provides a rule-based interface to the physician...

  19. Fault Diagnosis in Dynamic Systems Using Fuzzy Interacting Observers

    Directory of Open Access Journals (Sweden)

    N. V. Kolesov

    2013-01-01

    Full Text Available A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

  20. Fuzzy neural network methodology applied to medical diagnosis

    Science.gov (United States)

    Gorzalczany, Marian B.; Deutsch-Mcleish, Mary

    1992-01-01

    This paper presents a technique for building expert systems that combines the fuzzy-set approach with artificial neural network structures. This technique can effectively deal with two types of medical knowledge: a nonfuzzy one and a fuzzy one which usually contributes to the process of medical diagnosis. Nonfuzzy numerical data is obtained from medical tests. Fuzzy linguistic rules describing the diagnosis process are provided by a human expert. The proposed method has been successfully applied in veterinary medicine as a support system in the diagnosis of canine liver diseases.

  1. T-S Fuzzy Control of Uncertain Chaotic Vibration

    Directory of Open Access Journals (Sweden)

    Abdelkrim Boukabou

    2012-01-01

    Full Text Available We present in this paper a novel and unified control approach that combines intelligent fuzzy logic methodology with predictive method for controlling chaotic vibration of a class of uncertain chaotic systems. We first introduce prediction into each subsystem of Takagi Sugeno (T-S fuzzy IF-THEN rules and then present a unified T-S predictive fuzzy model for chaos control. The proposed controller can successfully stabilize the chaos and track the desired targets. The simulation results illustrate its effectiveness.

  2. Temperature modeling and control of Direct Methanol Fuel Cell based on adaptive neural fuzzy technology

    Institute of Scientific and Technical Information of China (English)

    Qi Zhidong; Zhu Xinjian; Cao Guangyi

    2006-01-01

    Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an Adaptive Neural Fuzzy Inference System (ANFIS) identification model of DMFC stack temperature is developed based on the input-output sampled data, which can avoid the internal complexity of DMFC stack. In the controlling process, with the network model trained well as the reference model of the DMFC control system, a novel fuzzy genetic algorithm is used to regulate the parameters and fuzzy rules of a neural fuzzy controller. In the simulation, compared with the nonlinear Proportional Integral Derivative (PID) and traditional fuzzy algorithm, the improved neural fuzzy controller designed in this paper gets better performance, as demonstrated by the simulation results.

  3. TECHNICAL ANALYSIS OF FUZZY METAGRAPH BASED DECISION SUPPORT SYSTEM FOR CAPITAL MARKET

    OpenAIRE

    Anbalagan Thirunavukarasu; Uma Maheswari

    2013-01-01

    This study proposes a Fuzzy Metagraph based Decision Support System (DSS) for short term and long term investment in share market. This rule base decision system will help traders to make correct decision at very low risk. Relative Strength Index (RSI), Moving Average Convergence Divergence (MACD) and WILLIAM- %R are some of the Technical Indicators which are used as input to train the system which is integrated with Fuzzy Metagraph. This approach of incorporating Fuzzy Metagraph with RSI, MA...

  4. Design and Implementation of Fuzzy Approximation PI Controller for Automatic Cruise Control System

    Directory of Open Access Journals (Sweden)

    Pallab Maji

    2015-01-01

    Full Text Available Fuzzy logic systems have been widely used for controlling nonlinear and complex dynamic systems by programming heuristic knowledge. But these systems are computationally complex and resource intensive. This paper presents a technique of development and porting of a fuzzy logic approximation PID controller (FLAC in an automatic cruise control (ACC system. ACC is a highly nonlinear process and its control is trivial due to the large change in parameters. Therefore, a suitable controller based on heuristic knowledge will be easy to develop and provide an effective solution. But the major problem with employing fuzzy logic controller (FLC is its complexity. Moreover, the designing of Rulebase requires efficient heuristic knowledge about the system which is rarely found. Therefore, in this paper, a novel rule extraction process is used to derive a FLAC. This controller is then ported on a C6748 DSP hardware with timing and memory optimization. Later, it is seamlessly connected to a network to support remote reconfigurability. A performance analysis is drawn based on processor-in loop test with Simulink model of a cruise control system for vehicle.

  5. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.

    Science.gov (United States)

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir

    2015-01-01

    Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems.

  6. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques

    Science.gov (United States)

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-01-01

    Background: Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. Methods: In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. Results: With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Conclusion: Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications. PMID:28077898

  7. Fuzzy-based HAZOP study for process industry.

    Science.gov (United States)

    Ahn, Junkeon; Chang, Daejun

    2016-11-05

    This study proposed a fuzzy-based HAZOP for analyzing process hazards. Fuzzy theory was used to express uncertain states. This theory was found to be a useful approach to overcome the inherent uncertainty in HAZOP analyses. Fuzzy logic sharply contrasted with classical logic and provided diverse risk values according to its membership degree. Appropriate process parameters and guidewords were selected to describe the frequency and consequence of an accident. Fuzzy modeling calculated risks based on the relationship between the variables of an accident. The modeling was based on the mean expected value, trapezoidal fuzzy number, IF-THEN rules, and the center of gravity method. A cryogenic LNG (liquefied natural gas) testing facility was the objective process for the fuzzy-based and conventional HAZOPs. The most significant index is the frequency to determine risks. The comparison results showed that the fuzzy-based HAZOP provides better sophisticated risks than the conventional HAZOP. The fuzzy risk matrix presents the significance of risks, negligible risks, and necessity of risk reduction. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.

    Science.gov (United States)

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-12-01

    Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.

  9. Fuzzy method for pre-diagnosis of breast cancer from the Fine Needle Aspirate analysis.

    Science.gov (United States)

    Sizilio, Gláucia R M A; Leite, Cicília R M; Guerreiro, Ana M G; Neto, Adrião D Dória

    2012-11-02

    Across the globe, breast cancer is one of the leading causes of death among women and, currently, Fine Needle Aspirate (FNA) with visual interpretation is the easiest and fastest biopsy technique for the diagnosis of this deadly disease. Unfortunately, the ability of this method to diagnose cancer correctly when the disease is present varies greatly, from 65% to 98%. This article introduces a method to assist in the diagnosis and second opinion of breast cancer from the analysis of descriptors extracted from smears of breast mass obtained by FNA, with the use of computational intelligence resources--in this case, fuzzy logic. For data acquisition of FNA, the Wisconsin Diagnostic Breast Cancer Data (WDBC), from the University of California at Irvine (UCI) Machine Learning Repository, available on the internet through the UCI domain was used. The knowledge acquisition process was carried out by the extraction and analysis of numerical data of the WDBC and by interviews and discussions with medical experts. The PDM-FNA-Fuzzy was developed in four steps: 1) Fuzzification Stage; 2) Rules Base; 3) Inference Stage; and 4) Defuzzification Stage. Performance cross-validation was used in the tests, with three databases with gold pattern clinical cases randomly extracted from the WDBC. The final validation was held by medical specialists in pathology, mastology and general practice, and with gold pattern clinical cases, i.e. with known and clinically confirmed diagnosis. The Fuzzy Method developed provides breast cancer pre-diagnosis with 98.59% sensitivity (correct pre-diagnosis of malignancies); and 85.43% specificity (correct pre-diagnosis of benign cases). Due to the high sensitivity presented, these results are considered satisfactory, both by the opinion of medical specialists in the aforementioned areas and by comparison with other studies involving breast cancer diagnosis using FNA. This paper presents an intelligent method to assist in the diagnosis and second

  10. Fuzzy method for pre-diagnosis of breast cancer from the Fine Needle Aspirate analysis

    Directory of Open Access Journals (Sweden)

    Sizilio Gláucia RMA

    2012-11-01

    Full Text Available Abstract Background Across the globe, breast cancer is one of the leading causes of death among women and, currently, Fine Needle Aspirate (FNA with visual interpretation is the easiest and fastest biopsy technique for the diagnosis of this deadly disease. Unfortunately, the ability of this method to diagnose cancer correctly when the disease is present varies greatly, from 65% to 98%. This article introduces a method to assist in the diagnosis and second opinion of breast cancer from the analysis of descriptors extracted from smears of breast mass obtained by FNA, with the use of computational intelligence resources - in this case, fuzzy logic. Methods For data acquisition of FNA, the Wisconsin Diagnostic Breast Cancer Data (WDBC, from the University of California at Irvine (UCI Machine Learning Repository, available on the internet through the UCI domain was used. The knowledge acquisition process was carried out by the extraction and analysis of numerical data of the WDBC and by interviews and discussions with medical experts. The PDM-FNA-Fuzzy was developed in four steps: 1 Fuzzification Stage; 2 Rules Base; 3 Inference Stage; and 4 Defuzzification Stage. Performance cross-validation was used in the tests, with three databases with gold pattern clinical cases randomly extracted from the WDBC. The final validation was held by medical specialists in pathology, mastology and general practice, and with gold pattern clinical cases, i.e. with known and clinically confirmed diagnosis. Results The Fuzzy Method developed provides breast cancer pre-diagnosis with 98.59% sensitivity (correct pre-diagnosis of malignancies; and 85.43% specificity (correct pre-diagnosis of benign cases. Due to the high sensitivity presented, these results are considered satisfactory, both by the opinion of medical specialists in the aforementioned areas and by comparison with other studies involving breast cancer diagnosis using FNA. Conclusions This paper presents an

  11. 利用统计量和语言学规则提取多字词表达%Extracting Multiword Expressions with Statistics and Linguistic Rules

    Institute of Scientific and Technical Information of China (English)

    刘荣; 王奕凯

    2011-01-01

    基于特定领域的语料库,利用统计和语言学规则相结合的方法提取多字词表达(Multiword expressions).首先利用领域高频词作为种子词提取候选串,进一步利用各种统计量、多字词表达边界过滤规则对候选串进行噪声剔除,得到多字词表达.实验结果表明,该方法对于处理大规模真实文本效率很高,可以有效提高多字词表达的获取,可以更有针对性地在特定领域提取多字词表达.%Multiword Expressions(MWEs) are one of the bottlenecks for more precise Natural Language Processing(NLP) systems. Particularly, the lack of coverage of MWEs in resources can impact negatively on the performance of tasks and applications. For special domains, a significant portion of the vocabulary is composed of MWEs. This paper puts forwards an automatic method for extracting Chinese MWEs with help of statistics and linguistic rules. Seed words of high frequency in special domain are selected to extract candidate strings. By means of statistical measures and linguistic rules, noises in candidate strings are filtered. After filtering, Chinese MWEs are obtained finally. The result of our experiment shows that the method in this paper is efficient to deal with large-scale real texts. The method can extract Chinese MWEs rapidly. Chinese MWEs extracted in this way can be used in many application fields.

  12. On fuzzy almost continuous convergence in fuzzy function spaces

    Directory of Open Access Journals (Sweden)

    A.I. Aggour

    2013-10-01

    Full Text Available In this paper, we study the fuzzy almost continuous convergence of fuzzy nets on the set FAC(X, Y of all fuzzy almost continuous functions of a fuzzy topological space X into another Y. Also, we introduce the notions of fuzzy splitting and fuzzy jointly continuous topologies on the set FAC(X, Y and study some of its basic properties.

  13. A New Type Fuzzy Module over Fuzzy Rings

    Directory of Open Access Journals (Sweden)

    Ece Yetkin

    2014-01-01

    Full Text Available A new kind of fuzzy module over a fuzzy ring is introduced by generalizing Yuan and Lee’s definition of the fuzzy group and Aktaş and Çağman’s definition of fuzzy ring. The concepts of fuzzy submodule, and fuzzy module homomorphism are studied and some of their basic properties are presented analogous of ordinary module theory.

  14. Decentralized fuzzy control of multiple nonholonomic vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, B.J.; Feddema, J.T.; Kwok, K.S.

    1997-09-01

    This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.

  15. Association Rules Applied to Intrusion Detection

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We discuss the basic intrusion detection techniques, and focus on how to apply association rules to intrusion detection. Begin with analyzing some close relations between user's behaviors, we discuss the mining algorithm of association rules and apply to detect anomaly in IDS. Moreover, according to the characteristic of intrusion detection, we optimize the mining algorithm of association rules, and use fuzzy logic to improve the system performance.

  16. Fuzzy Wavenet (FWN classifier for medical images

    Directory of Open Access Journals (Sweden)

    Entather Mahos

    2005-01-01

    Full Text Available The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success. In this work we proposed a fuzzy wavenet network (FWN, which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images. We have known that the wavelet transformation is more accurate in small dimension problem. But image processing is large dimension problem then we used neural network. Results are presented on the application on the three layer fuzzy wavenet to vision system. They demonstrate a considerable improvement in performance by proposed two table’s rule for fuzzy and deterministic dilation and translation in wavelet transformation techniques.

  17. Neuro-fuzzy modeling in bankruptcy prediction

    Directory of Open Access Journals (Sweden)

    Vlachos D.

    2003-01-01

    Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.

  18. Fuzzy Logic Connectivity in Semiconductor Defect Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, S.S.; Kamowski, T.P.; Tobin, K.W.

    1999-01-24

    In joining defects on semiconductor wafer maps into clusters, it is common for defects caused by different sources to overlap. Simple morphological image processing tends to either join too many unrelated defects together or not enough together. Expert semiconductor fabrication engineers have demonstrated that they can easily group clusters of defects from a common manufacturing problem source into a single signature. Capturing this thought process is ideally suited for fuzzy logic. A system of rules was developed to join disconnected clusters based on properties such as elongation, orientation, and distance. The clusters are evaluated on a pair-wise basis using the fuzzy rules and are joined or not joined based on a defuzzification and threshold. The system continuously re-evaluates the clusters under consideration as their fuzzy memberships change with each joining action. The fuzzy membership functions for each pair-wise feature, the techniques used to measure the features, and methods for improving the speed of the system are all developed. Examples of the process are shown using real-world semiconductor wafer maps obtained from chip manufacturers. The algorithm is utilized in the Spatial Signature Analyzer (SSA) software, a joint development project between Oak Ridge National Lab (ORNL) and SEMATECH.

  19. Fuzzy Logic Connectivity in Semiconductor Defect Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, S.S.; Kamowski, T.P.; Tobin, K.W.

    1999-01-24

    In joining defects on semiconductor wafer maps into clusters, it is common for defects caused by different sources to overlap. Simple morphological image processing tends to either join too many unrelated defects together or not enough together. Expert semiconductor fabrication engineers have demonstrated that they can easily group clusters of defects from a common manufacturing problem source into a single signature. Capturing this thought process is ideally suited for fuzzy logic. A system of rules was developed to join disconnected clusters based on properties such as elongation, orientation, and distance. The clusters are evaluated on a pair-wise basis using the fuzzy rules and are joined or not joined based on a defuzzification and threshold. The system continuously re-evaluates the clusters under consideration as their fuzzy memberships change with each joining action. The fuzzy membership functions for each pair-wise feature, the techniques used to measure the features, and methods for improving the speed of the system are all developed. Examples of the process are shown using real-world semiconductor wafer maps obtained from chip manufacturers. The algorithm is utilized in the Spatial Signature Analyzer (SSA) software, a joint development project between Oak Ridge National Lab (ORNL) and SEMATECH.

  20. SISTEM PENGEMBANGAN KENDALI FUZZY LOGIC BERBASIS MIKROKONTROLER KELUARGA MCS51 (PetraFuz

    Directory of Open Access Journals (Sweden)

    Thiang Thiang

    1999-01-01

    Full Text Available This paper presents a Fuzzy Logic Development Tool called PetraFuz which has been developed at Control System Laboratory, Electrical Engineering Department, Petra Christian University. The system consists of a hardware target based on MCS51 microcontroller and a software support running under PC Windows. The system is targeted for developing fuzzy logic based systems. It supports fuzzy logic design, evaluation, assembly language generator and downloading process to the target hardware to perform on-line fuzzy process. Process action and fuzzy parameters could be transferred to PC monitor via RS-232 serial communication, this on-line process parameters is used for fuzzy tuning, i.e. fuzzy if-then rules and fuzzy membership functions. The PetraFuz tool helps very much for Fuzzy system developments, it could reduce development time significantly. The tool could spur the development of fuzzy systems based on microcontroller systems such as fuzzy control systems, fuzzy information processing, etc. Abstract in Bahasa Indonesia : Makalah ini menyajikan sebuah sistem pengembangan kendali fuzzy logic (PetraFuz, Petra Fuzzy Development System yang dikembangkan oleh laboratorium Sistem Kontrol, Jurusan Teknik Elektro, Universitas Kristen Petra Surabaya. Sistem ini terdiri dari perangkat keras sistem mikrokontroler MCS51 dan perangkat lunak pendukung yang berjalan pada PC. Sistem PetraFuz digunakan untuk mengembangkan sistem berbasis fuzzy logic utamanya pada bidang kendali. Kemampuan sistem meliputi pengembangan pada fase perancangan kendali, evaluasi kendali, pembentukan program bahasa assembly MCS51 dan proses downloading program menuju target sistem mikrokontroler MCS51 untuk dieksekusi melakukan kendali pada plant yang nyata. Aksi kendali dapat diakuisi oleh program PC melalui komunikasi serial RS232 sehingga respon kendali dapat digambarkan pada layar monitor untuk dilakukan analisis lebih lanjut yang diperlukan pada proses tuning if-then fuzzy rules