WorldWideScience

Sample records for extracted soil solutions

  1. Soil solution extraction techniques for microbial ecotoxicity testing: a comparative evaluation.

    Science.gov (United States)

    Tiensing, T; Preston, S; Strachan, N; Paton, G I

    2001-02-01

    The suitability of two different techniques (centrifugation and Rhizon sampler) for obtaining the interstitial pore water of soil (soil solution), integral to the ecotoxicity assessment of metal contaminated soil, were investigated by combining chemical analyses and a luminescence-based microbial biosensor. Two different techniques, centrifugation and Rhizon sampler, were used to extract the soil solution from Insch (a loamy sand) and Boyndie (a sandy loam) soils, which had been amended with different concentrations of Zn and Cd. The concentrations of dissolved organic carbon (DOC), major anions (F- , CI-, NO3, SO4(2-)) and major cations (K+, Mg2+, Ca2+) in the soil solutions varied depending on the extraction technique used. Overall, the concentrations of Zn and Cd were significantly higher in the soil solution extracted using the centrifugation technique compared with that extracted using the Rhizon sampler technique. Furthermore, the differences observed between the two extraction techniques depended on the type of soil from which the solution was being extracted. The luminescence-based biosensor Escherichia coli HB101 pUCD607 was shown to respond to the free metal concentrations in the soil solutions and showed that different toxicities were associated with each soil, depending on the technique used to extract the soil solution. This study highlights the need to characterise the type of extraction technique used to obtain the soil solution for ecotoxicity testing in order that a representative ecotoxicity assessment can be carried out.

  2. Mobility of arsenic and its compounds in soil and soil solution: the effect of soil pretreatment and extraction methods.

    Science.gov (United States)

    Száková, J; Tlustos, P; Goessler, W; Frková, Z; Najmanová, J

    2009-12-30

    The effect of soil extraction procedures and/or sample pretreatment (drying, freezing of the soil sample) on the extractability of arsenic and its compounds was tested. In the first part, five extraction procedures were compared with following order of extractable arsenic portions: 2M HNO(3)>0.43 M CH(3)COOH>or=0.05 M EDTA>or=Mehlich III (0.2M CH(3)COOH+0.25 M NH(4)NO(3)+0.013 M HNO(3)+0.015 M NH(4)F+0.001 M EDTA) extraction>water). Additionally, two methods of soil solution sampling were compared, centrifugation of saturated soil and the use of suction cups. The results showed that different sample pretreatments including soil solution sampling could lead to different absolute values of mobile arsenic content in soils. However, the interpretation of the data can lead to similar conclusions as apparent from the comparison of the soil solution sampling methods (r=0.79). For determination of arsenic compounds mild extraction procedures (0.05 M (NH(4))(2)SO(4), 0.01 M CaCl(2), and water) and soil solution sampling using suction cups were compared. Regarding the real soil conditions the extraction of fresh samples and/or in situ collection of soil solution are preferred among the sample pretreatments and/or soil extraction procedures. However, chemical stabilization of the solutions should be allowed and included in the analytical procedures for determination of individual arsenic compounds.

  3. Dependence of the concentrations of "1"3"7Cs and potassium in extracted soil solutions on soil humidity before centrifugation

    International Nuclear Information System (INIS)

    Prorok, V.V.; Datsenko, O.Yi.; Bulavyin, L.A.; Zlens'kij, S.Je.; Melnichenko, L.Yu.; Rozuvan, S.G.; Poperenko, L.V.; White, P.J.

    2017-01-01

    Concentrations of 137Cs and potassium in solutions extracted by centrifugation from soils selected at some experimental sites in the 10-km Exclusion Zone of Chornobyl Nuclear Plant were determined. The results showed that for the majority of investigated soils, the concentration of 137Cs in soil solution depends on the humidity of the soil before centrifugation. It is possible to explain the dependence of the concentration of 137Cs in the soil solution on soil humidity from the dependence of the concentrations of molecules of different molecular-gravimetric fractions in soil solution on soil humidity. Considerable amount of 137Cs in soil solution is associated with these molecules, that is why the concentration of 137Cs in the extracted soil solution changes with the humidity of soil. These dependences differ between soils. For the majority of investigated soils the concentration of 137Cs in the extracted soil solution increases with increasing humidity of the soil. By contrast, soil humidity had no effect on the potassium concentration in the extracted soil solution for any soil investigated. It is concluded, that potassium is practically not associated with molecules of different molecular-gravimetric fractions in the extracted soil solutions

  4. Acute toxicity assessment of explosive-contaminated soil extracting solution by luminescent bacteria assays.

    Science.gov (United States)

    Xu, Wenjie; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-11-01

    Explosive-contaminated soil is harmful to people's health and the local ecosystem. The acute toxicity of its extracting solution was tested by bacterial luminescence assay using three kinds of luminescent bacteria to characterize the toxicity of the soil. An orthogonal test L 16 (4 5 ) was designed to optimize the soil extracting conditions. The optimum extracting conditions were obtained when the ultrasonic extraction time, ultrasonic extraction temperature, and the extraction repeat times were 6 h, 40 °C, and three, respectively. Fourier transform infrared spectroscopy (FTIR) results showed that the main components of the contaminated soil's extracting solution were 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO 3 - ); 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO 3 - ); and 2,6-dinitrotoluene (2,6-DNT). Compared with Photobacterium phosphoreum and Vibrio fischeri, Vibrio qinghaiensis sp. Nov. is more suitable for assessing the soil extracting solution's acute toxicity. Soil washing can remove most of the contaminants toxic to luminescent bacterium Vibrio qinghaiensis sp. Nov., suggesting that it may be a potential effective remediation method for explosive-contaminated soil.

  5. Extraction of Pentachlorophenol from Soils using Environmentally Benign Lactic Acid Solutions

    Science.gov (United States)

    Soil contamination with pentachlorophenol (PCP) is widespread across the globe. Soil washing/extraction is a common technique to remove this compound. Several soil washing/extraction solutions have been used but a majority of them have the problem of persistence in the environmen...

  6. Chemical composition and Zn bioavailability of the soil solution extracted from Zn amended variable charge soils.

    Science.gov (United States)

    Zampella, Mariavittoria; Adamo, Paola

    2010-01-01

    A study on variable charge soils (volcanic Italian and podzolic Scottish soils) was performed to investigate the influence of soil properties on the chemical composition of soil solution. Zinc speciation, bioavailability and toxicity in the soil solution were examined. The soils were spiked with increasing amounts of Zn (0, 100, 200, 400 and 1000 mg/kg) and the soil solutions were extracted using rhizon soil moisture samplers. The pH, total organic carbon (TOC), base cations, anions, total Zn and free Zn2+ in soil solution were analysed. A rapid bioassay with the luminescent bacterium Escherichia coli HB101 pUCD607 was performed to assess Zn toxicity. The influence of soil type and Zn treatments on the chemical composition of soil solution and on Zn toxicity was considered and discussed. Different trends of total and free Zn concentrations, base cations desorption and luminescence of E. coli HB101 pUCD607 were observed. The soil solution extracted from the volcanic soils had very low total and free Zn concentrations and showed specific Zn2+/Ca2+ exchange. The soil solution from the podzolic soil had much higher total and free Zn concentrations and showed no evidence of specific Zn2+/Ca2+ exchange. In comparison with the subalkaline volcanic soils, the acidic podzol showed enhanced levels of toxic free Zn2+ and consequently stronger effects on E. coli viability.

  7. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.

    Science.gov (United States)

    Lambert, Raphaël; Grant, Cynthia; Sauvé, Sébastien

    2007-06-01

    This study investigated the solubility of cadmium and zinc in soils after the application of phosphate fertilizers containing those two metals. The solubility of cadmium and zinc was assessed by measuring their concentration in soil water extracts. Three monoammonium phosphate fertilizers containing various amounts of metals were applied on cultivated fields for 3 years at three different rates. In order to investigate the effects of long-term applications of fertilizers on the solubility of Cd and Zn, a similar design was used to apply contaminated fertilizers to soils in a laboratory experiment using a single fertilizer addition equivalent to 15 years of application. Phosphate fertilizers increased the concentration of Cd in soil extracts compared to control in 87% and 80% of the treatments in field and laboratory experiments respectively. Both increasing the rate of application and using fertilizer containing more Cd lead to higher Cd concentrations in extracts for the field and the laboratory experiments. The addition of the equivalent of 15 years of fertilizer application in the laboratory results in higher Cd concentration in extracts compared to the field experiment. For Zn, the fertilizer treatments enhanced the metal solution concentration in 83% of field treatments, but no significant correlations could be found between Zn inputs and its concentration in solution. In the laboratory, fertilizer additions increase the Zn concentrations in 53% of the treatments and decrease it in most of the other treatments. The decrease in Zn concentrations in the laboratory trial is attributed to the higher phosphate concentrations in the soil solution; which is presumed to have contributed to the precipitation of Zn-phosphates. For both trials, the metal concentrations in soil extracts cannot be related to the Zn concentration in the fertilizer or the rate of application. The high Zn to Cd ratio is presumably responsible for the Cd increase in the soil extracts due to

  8. Electrical Conductivity and Chemical Composition of Soil Solution: Comparison of Solution Samplers in Tropical Soils

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT Soil solution samplers may have the same working principle, but they differ in relation to chemical and physical characteristics, cost and handling, and these aspects exert influence on the chemical composition of the soil solution obtained. This study was carried out to evaluate, over time, the chemical composition of solutions extracted by Suolo Acqua, with the hydrophilic membrane (HM as a standard, using soils with contrasting characteristics, and to determine the relationship between electrical conductivity (EC and concentration of ions and pH of soil solution samples. This study was carried out under laboratory conditions, using three soils samples with different clay and organic matter (OM contents. Soil solution contents of F−, Cl−, NO−3, Br−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+, were analyzed, as well as inorganic, organic, and total C contents, pH, and EC, in four successive sampling times. Soil solution chemical composition extracted by the Suolo Acqua sampler is similar to that collected by the HM, but the Suolo Acqua extracted more Na+ and soluble organic C than the HM solution. Solution EC, cation and anion concentrations, and soluble C levels are higher in the soil with greater clay and OM contents (Latossolo and Cambissolo in this case. Soil solution composition varied over time, with considerable changes in pH, EC, and nutrient concentrations, especially associated with soil OM. Thus, single and isolated sampling of the soil solution must be avoided, otherwise composition of the soil solution may not be correctly evaluated. Soil solution EC was regulated by pH, as well as the sum of cation and anion concentrations, and the C contents determined in the soil liquid phase.

  9. Correlation between the extracting solutions, Modified KCl-Olsen and Mehlich 3, used in soil laboratories in Costa Rica

    International Nuclear Information System (INIS)

    Bertsch, Floria; Bejarano, Jose Antonio; Corrales, Marco

    2005-01-01

    The correlation found, between the 2 most commonly used extraction solutions in soil laboratories of Costa Rica, is discussed for Ca, Mg, K, Zn and P determinations in soil analyses. Given the coexistence of extraction methodologies, it is of great relevance to provide users with information allowing an adequate interpretation of the analysis results. Using data exchanged among laboratories, at the national level, relationships between modified KCl-Olsen and Mehlich 3 solutions were established. For all elements determined, except for P, the association between both solutions is very clear and well-defined. Both solutions extract the same amounts of Ca and Mg; Mehlich 3 extracts 1.5 times more K than Modified Olsen. In the case of Zn, in Ca-rich soils (>10 cmol(+) 1 -1 ) Mehlich 3 extracts more Zn, so the critical level must be raised to 3.5 mg 1''- 1 ; whereas, in soils low in Ca ( -1 ), Mehlich 3 extracts less Zn than Modified Olsen, so the critical level must be lowered to 2.5 mg 1 -1 . As for P, the association is not clear at all. (author) [es

  10. An approach using centrifugation for the extraction of the soil solution and its usefulness in studies of radionuclide speciation in soils - Approach using centrifugation for extraction of soil solution and its study for uranium speciation

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Adriana S. [CAPES Foundation, Ministry of Education of Brazil, 70040-020, Brasilia, Brazil, Proc.BEX 1958/13-5 (Brazil); Lozano, J.C.; Prieto, C. [Universidad de Salamanca, 37008, Salamanca (Spain); Blanco Rodriguez, P.; Vera Tome, F. [Universidad de Extremadura, 06006, Badajoz (Spain)

    2014-07-01

    The centrifugation technique is tested as a methodology for extraction of soil solution, for further characterization, in order to elucidate its contribution to the speciation of radionuclides, particularly uranium, in radioactively contaminated soils, as well as the determination of its availability for vegetation. Centrifugation of a previously saturated soil core provides the soil solution with a specific origin inside the soil sample. In such way that the different soil solution origin, associate to the effective pressure applied to the soil core, will reflect different distribution coefficients which affect the radionuclide availability definition. Speciation of radionuclides in the soil solution can be also conditioned by this water origin. The development of this methodology relating to technical challenges faces materials suitable for the centrifugation process, both in terms of mechanical properties and chemical inertness. This paper reports the preparation of ceramic pellets of perlite produced with the intention of replacing glass pellets, used inserts in support to soils coupled with centrifuges. The characterization of porosity and the test of its chemical inertness and mechanical strength to the centrifugation process have been performed. Porosity characterization is required to control the saturation gradient, which conditions the flow of water from the soil. Its mechanical adequacy was tested by subjecting the pellets to the centrifugation process and assessing its integrity end. Chemical inertia was measured by placing the tablets in aqueous solutions of known composition and then evaluating the presence or absence of elements in this solution, after on time of contact between them. (authors)

  11. Influence of the soil/solution ratio, interaction time, and extractant on the evaluation of iron chelate sorption/desorption by soils.

    Science.gov (United States)

    Hernández-Apaolaza, Lourdes; Lucena, Juan J

    2011-03-23

    Synthetic Fe chelates are the most efficient agricultural practice to control Fe deficiency in crops, EDTA/Fe3+ and o,o-EDDHA/Fe3+ being the most commonly used. Their efficacy as Fe sources and carriers in soils can be severely limited by their retention on it. The aim of this work is to evaluate the possible bias introduced in the studies of the iron chelate retention by soils. For that purpose, results obtained for EDTA and EDDHA iron chelates from two batch studies with different soil/solution ratios were compared with data obtained for a leaching column experiment. Moreover, different extractants were tested to study the o,o-EDDHA/Fe3+ and o,p-EDDHA/Fe3+ desorption from a calcareous soil, and also the effect of the interaction time in their retention process has been evaluated. In summary, the mobility through a calcareous soil of the studied iron chelates differs greatly depending on the type of iron chelate and also on the procedure used to evaluate the retention and the soil/solution ratio used. In general, the leaching column method is preferred because the achieved conclusions are more representative of the natural conditions, but batch methods are very useful as a preliminary experiment, especially one with a high soil/solution ratio. The iron chelate desorption could be quantified by using a sequential extraction with water, sodium sulfate, and DTPA as extractants. Under the experimental conditions used in this study, o,o-EDDHA/Fe3+ retention increased with interaction time.

  12. Comparison of extraction fluids used with contaminated soils

    International Nuclear Information System (INIS)

    Erickson, D.C.; White, E.; Loehr, R.C.

    1991-01-01

    Five separate solutions were evaluated for use as leaching fluids with soils containing petroleum refining waste residues. The extraction fluids were: (a) water, (b) dilute hydrochloric acid, (c) 0.05 molar EDTA, (d) acetate buffer and (e) a dilute sulfuric/nitric acid mixture. The soils were collected from former refinery land treatment sites which had been used to treat petroleum refining wastes. The extractions were performed using a rotary tumbler (30 RPM, 18 hours) and the resulting solutions were analyzed for polynuclear aromatic hydrocarbons (PAHs) and metals. Concentrations of the PAHs in each of the five solutions were near or below the analytical quantitation limits. Metal concentrations were highest in the HCL and EDTA extracts, although only a small fraction of the total available metal present in the soils was extracted by the solutions evaluated

  13. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry

    International Nuclear Information System (INIS)

    Mousset, Emmanuel; Huguenot, David; Hullebusch, Eric D. van; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A.

    2016-01-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween"® 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween"® 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R"2 > 0.975). More HPCD was recovered (89%) than Tween"® 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween"® 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  14. Comparison of different soil water extraction systems for the prognoses of solute transport at the field scale using numerical simulations, field and lysimeter experiments

    Energy Technology Data Exchange (ETDEWEB)

    Weihermueller, L

    2005-07-01

    To date, the understanding of processes, factors, and interactions that influence the amount of extracted water and the solute composition sampled with suction cups is limited. But this information is required for process description of solute transport in natural soils. Improved system understanding can lead to a low cost and easy to install water sampling system which can help to predict solute transport in natural soils for the benefit of environmental protection. The main objectives of this work were to perform numerical simulations with different boundary conditions and to implement the findings in the interpretation of the lysimeter and field experiments. In a first part of this thesis, theoretical considerations on the processes affecting the spatial influence of a suction cup in soil and changes in solute transport initiated by the suction cups are presented, including testing and validation of available model and experimental approaches. In the second part, a detailed experimental study was conducted to obtain data for the comparison of the different soil water sampling systems. Finally, the numerical experiments of the suction cup influence were used for the interpretation of the experimental data. The main goals are summarized as follows: - Characterization of the suction cup activity domain (SCAD), suction cup extraction domain (SCED) and suction cup sampling area (SCSA) of active suction cups (definitions are given in Chapter 6). - Determination of the boundary conditions and soil properties [e.g. infiltration, applied suction, duration of water extraction, soil hydraulic properties and soil heterogeneity] affecting the activity domain, extraction domain and sampling area of a suction cup. - Identification of processes that change the travel time and travel time variance of solutes extracted by suction cups. - Validation of the numerically derived data with analytical and experimental data from literature. - Comparison of the experimental data obtained

  15. Aluminium, extractable from soil samples by the acid ammonium acetate soil-testing method

    Directory of Open Access Journals (Sweden)

    Osmo Mäkitie

    1968-05-01

    Full Text Available The extractant, 0.5 M acetic acid –0.5 M ammonium acetate at pH 4.65, which is used in soil-testing, extracts relatively high amounts of aluminium from acid soils. The mean values of acetate-extractable aluminium at pH 4.65, 1.75 meq Al/100 g of soil, and of exchangeable aluminium (M KCI extraction, 0.41 meq Al were obtained from a material of 30 samples of acid soils (Table 2. Several other acetic acid ammonium acetate extractants, from M acetic acid to M ammonium acetate solution were also used for studying the extractability of soil aluminium. The soil-testing extractant can be used for the estimation of the soluble amounts of aluminium in acid soils, however, further studies are needed for a better interpretation of the ammonium acetate extractable (at pH 4.65 aluminium in our soils.

  16. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    Science.gov (United States)

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  17. Multi-element determination of soil solution by INAA

    International Nuclear Information System (INIS)

    Qian Qinfang; Wu Shuiqing; Tian Jibing

    1992-01-01

    One of the factors influencing crop growth is the effective elemental contents, especially trace elements, under the circumstances of the same concentrations of N, P and K in soil. In order to obtain the data of effective elemental contents in soil, a novel method was introduced. In this method, soil solution was extracted by a squeezer. The concentrations of elements in soil solution were determined by INAA. Study on the compositions and the contents of elements in soil solution will provide information on making a suitable soil environment for plant growth and on rational and economical manuring

  18. Estimating the extractability of potentially toxic metals in urban soils: A comparison of several extracting solutions

    International Nuclear Information System (INIS)

    Madrid, F.; Reinoso, R.; Florido, M.C.; Diaz Barrientos, E.; Ajmone-Marsan, F.; Davidson, C.M.; Madrid, L.

    2007-01-01

    Metals released by the extraction with aqua regia, EDTA, dilute HCl and sequential extraction (SE) by the BCR protocol were studied in urban soils of Sevilla, Torino, and Glasgow. By multivariate analysis, the amounts of Cu, Pb and Zn liberated by any method were statistically associated with one another, whereas other metals were not. The mean amounts of all metals extracted by HCl and by SE were well correlated, but SE was clearly underestimated by HCl. Individual data for Cu, Pb and Zn by both methods were correlated only if each city was considered separately. Other metals gave poorer relationships. Similar conclusions were reached comparing EDTA and HCl, with much lower values for EDTA. Dilute HCl extraction cannot thus be recommended for general use as alternative to BCR SE in urban soils. - Dilute HCl extraction is tested as an alternative to the BCR sequential extraction in urban soils

  19. Kinetics of radiocesium released from contaminated soil by fertilizer solutions

    International Nuclear Information System (INIS)

    Chiang, P.N.; Wang, M.K.; Huang, P.M.; Wang, J.J.

    2008-01-01

    137 Cs is one of the major artificial radionuclides found in environments; but the mechanisms behind fertilizer-induced 137 Cs desorption from soil remain unknown. This study aimed to investigate the kinetics and mechanisms underlying the various cations and anions that cause Cs release from soil under acidic conditions. NH 4 H 2 PO 4 (1 M), 0.5 M (NH 4 ) 2 SO 4 , 1 M NH 4 Cl, 1 M KCl or 1 M NaCl solutions were added to 137 Cs-contaminated soil. The power function model well described the short term 137 Cs desorption with the solutions. The rate coefficients for 137 Cs release from soil in NH 4 H 2 PO 4 , (NH 4 ) 2 SO 4 , NH 4 Cl, and KCl solutions were 7.7, 7.3, 6.8, and 6.1 times higher than the rate observed in a NaCl solution, respectively. The NH 4 H 2 PO 4 and (NH 4 ) 2 SO 4 solutions induced significantly greater 137 Cs release from the contaminated soil than the NH 4 Cl, KCl and NaCl solutions. After four times repeated extractions with the fertilizer solutions, the total amount of 137 Cs extracted by (NH 4 ) 2 SO 4 and NH 4 Cl solutions reached equilibrium, while that extracted using an NH 4 H 2 PO 4 solution continued to increase. The combined effect of phosphate and protons was the major mechanism behind 137 Cs release from contaminated soils, when an NH 4 H 2 PO 4 solution was used

  20. Dynamics of dissolved and extractable organic nitrogen upon soil amendment with crop residues

    NARCIS (Netherlands)

    Ros, G.H.; Hoffland, E.

    2010-01-01

    Dissolved organic nitrogen (DON) is increasingly recognized as a pivotal pool in the soil nitrogen (N) cycle. Numerous devices and sampling procedures have been used to estimate its size, varying from in situ collection of soil solution to extraction of dried soil with salt solutions. Extractable

  1. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Rare earth elements in soil extracts by ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Tobler, L.; Furrer, V.; Wyttenbach, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burger, M.; Jakob, A. [AC-Laboratorium Spiez (Switzerland)

    1997-09-01

    Three different horizons of a soil profile were extracted with water and with a complexing solution. 14 REEs were determined in the extracts. The distribution patterns obtained from the different horizons were rather similar and did not show the large fractionations observed between different plant species growing on this soil. (author) 2 figs., 1 ref.

  3. Remediation of lead-contaminated soil with non-toxic biodegradable natural ligands extracted from soybean.

    Science.gov (United States)

    Lee, Yong-Woo; Kim, Chulsung

    2012-01-01

    Bench-scale soil washing studies were performed to evaluate the potential application of non-toxic, biodegradable extracted soybean-complexing ligands for the remediation of lead-contaminated soils. Results showed that, with extracted soybean-complexing ligands, lead solubility extensively increased when pH of the solution was higher than 6, and approximately 10% (500 mg/kg) of lead was removed from a rifle range soil. Two potential primary factors controlling the effectiveness of lead extraction from lead-contaminated soils with natural ligands are adsorption of extracted aqueous lead ions onto the ground soybean and the pH of the extraction solution. More complexing ligands were extracted from the ground soybean as the reaction pH increased. As a result, significantly higher lead extraction efficiency was observed under basic environments. In addition, less adsorption onto soybean was observed when the pH of the solution was higher than 7. Among two available Lewis base functional groups in the extracted soybean-complexing ligands such as carboxylate and the alpha-amino functional groups, the non-protonated alpha-amino functional groups may play an important role for the dissolution of lead from lead-contaminated soil through the formation of soluble lead--ligand complexes.

  4. Influence of Extractant and Soil Type on Molecular Characteristics of Humic Substances From Two Brazilian Soils

    Directory of Open Access Journals (Sweden)

    Dick Deborah Pinheiro

    1999-01-01

    Full Text Available In a previous study it was observed that humic substances (HS extracted with NaOH solution and with Na4P2O7 solution presented different molecular weights, and also that the extracted HS yield by each method varied between an Oxisol and a Mollisol from South Brazil. In the present study, we further investigated the organic matter in these soils by characterizing HS extracted with 0.5 mol L-1 NaOH and with neutral 0.15 mol L-1 Na4P2O7 solutions from the above mentioned samples, using elemental analysis and nuclear magnetic ressonance spectroscopy (liquid state ¹H- and 13C-NMR, and by relating the molecular differences to the extraction method and soil type. HS extracted with pyrophosphate were more humified, showing a higher aromaticity and higher carboxylic content. The NaOH-extracted HS were more aliphatic and contained a higher O-alkyl proportion, which is indicative of a less humified nature than the pyrophosphate-extracted HS.

  5. Zinc species distribution in EDTA-extract residues of zinc-contaminated soil

    International Nuclear Information System (INIS)

    Chang, S.-H.; Wei, Y.-L.; Wang, H. Paul

    2007-01-01

    Soil sample from a site heavily contaminated with >10 wt.% zinc is sampled and extracted with aqueous solutions of ethylene diamine tetra-acetic acid (EDTA) that is a reagent frequently used to extract heavy metals in soil remediation. Three liquid/soil ratios (5/1, 20/1, and 100/1) were used in the extracting experiment. The molecular environment of the residual Zn in the EDTA-extract residues of zinc-contaminated soil is investigated with XANES technique. The results indicate that EDTA does not show considerable preference of chelating for any particular Zn species during the extraction. Zn species distribution in the sampled soil is found to resemble that in all EDTA-extract residues; Zn(OH) 2 is determined as the major zinc species (60-70%), seconded by organic zinc (21-26%) and zinc oxide (9-14%)

  6. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies

    International Nuclear Information System (INIS)

    Lau, Ee Von; Gan, Suyin; Ng, Hoon Kiat; Poh, Phaik Eong

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in soil have been recognised as a serious health and environmental issue due to their carcinogenic, mutagenic and teratogenic properties. One of the commonly employed soil remediation techniques to clean up such contamination is soil washing or solvent extraction. The main factor which governs the efficiency of this process is the solubility of PAHs in the extraction agent. Past field-scale soil washing treatments for PAH-contaminated soil have mainly employed organic solvents or water which is either toxic and costly or inefficient in removing higher molecular weight PAHs. Thus, the present article aims to provide a review and discussion of the alternative extraction agents that have been studied, including surfactants, biosurfactants, microemulsions, natural surfactants, cyclodextrins, vegetable oil and solution with solid phase particles. These extraction agents have been found to remove PAHs from soil at percentages ranging from 47 to 100% for various PAHs. -- Highlights: • The alternative and advancement in extraction agents to remove PAHs from soil using soil washing technology is summarised. • The soil regulations for PAH level in various countries are summarized for reference to researchers. • The concentration levels of PAHs in soil at present and the need for soil remediation is presented. -- The efficiency of the extraction agent plays a significant role in soil washing of PAH-contaminated soil

  7. Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil

    International Nuclear Information System (INIS)

    Sánchez-Trujillo, M.A.; Morillo, E.; Villaverde, J.; Lacorte, S.

    2013-01-01

    The objective of the present study was to characterise the polycyclic aromatic hydrocarbons (PAHs) content of an aged contaminated soil and to propose remediation techniques using cyclodextrins (CDs). Four CDs solutions were tested as soil decontamination tool and proved more efficient in extracting PAHs than when an aqueous solution was used; especially two chemically modified CDs resulted in higher extraction percentages than natural β-CD. The highest extraction percentages were obtained for 3-ring PAHs, because of the appropriate size and shape of these compounds relative to those of the hydrophobic cavities of the CDs studied. A detailed mechanistic interpretation of the chemical modification of CDs on the extraction of the different PAHs has been performed, and connected with the role that the different hydrophobicities of the PAHs play in the extraction behaviour observed for the 16 PAHs, limiting their accessibility and the remaining risk of those PAHs not extractable by CDs. -- Highlights: ► Four cyclodextrins (CDs) solutions were tested as soil decontamination tool for PAHs. ► Extractions with CDs were higher than with electrolyte, especially with synthetic CDs. ► Extraction capacity depends on the adequate size of PAHs and CDs hydrophobic cavity. ► 2–3 ring PAHs, the more abundant in the soil, were extracted in higher percentages. ► CDs extract preferably the less hydrophobic and more potentially toxic PAHs. -- Cyclodextrin solutions are useful and interesting tools for the decontamination of soils polluted by PAHs

  8. Polyaspartate extraction of cadmium ions from contaminated soil: Evaluation and optimization using central composite design.

    Science.gov (United States)

    Mu'azu, Nuhu Dalhat; Haladu, Shamsuddeen A; Jarrah, Nabeel; Zubair, Mukarram; Essa, Mohammad H; Ali, Shaikh A

    2018-01-15

    The occurrences of heavy metal contaminated sites and soils and the need for devising environmentally friendly solutions have become global issues of serious concern. In this study, polyaspartate (a highly biodegradable agent) was synthesized using L-Aspartic acid via a new modified thermal procedure and employed for extraction of cadmium ions (Cd) from contaminated soil. Response surface methodology approach using 3 5 full faced centered central composite design was employed for modeling, evaluating and optimizing the influence of polyaspartate concentration (36-145mM), polyaspartate/soil ratio (5-25), initial heavy metal concentration (100-500mg/kg), initial pH (3-6) and extraction time (6-24h) on Cd ions extracted into the polyaspartate solution and its residual concentration in the treated soil. The Cd extraction efficacy obtained reached up to 98.8%. Increase in Cd extraction efficiency was associated with increase in the polyaspartate and Cd concentration coupled with lower polyaspertate/soil ratio and initial pH. Under the optimal conditions characterized with minimal utilization of the polyaspartate and high Cd ions removal, the extractible Cd in the polyaspartate solution reached up to 84.4mg/L which yielded 85% Cd extraction efficacy. This study demonstrates the suitability of using polyaspartate as an effective environmentally friendly chelating agent for Cd extraction from contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Chelant extraction of heavy metals from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple

  10. Chelant extraction of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.

    1999-01-01

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  11. A new method to measure effective soil solution concentration predicts copper availability to plants.

    Science.gov (United States)

    Zhang, H; Zhao, F J; Sun, B; Davison, W; McGrath, S P

    2001-06-15

    Risk assessments of metal contaminated soils need to address metal bioavailability. To predict the bioavailability of metals to plants, it is necessary to understand both solution and solid phase supply processes in soils. In striving to find surrogate chemical measurements, scientists have focused either on soil solution chemistry, including free ion activities, or operationally defined fractions of metals. Here we introduce the new concept of effective concentration, CE, which includes both the soil solution concentration and an additional term, expressed as a concentration, that represents metal supplied from the solid phase. CE was measured using the technique of diffusive gradients in thin films (DGT) which, like a plant, locally lowers soil solution concentrations, inducing metal supply from the solid phase, as shown by a dynamic model of the DGT-soil system. Measurements of Cu as CE, soil solution concentration, by EDTA extraction and as free Cu2+ activity in soil solution were made on 29 different soils covering a large range of copper concentrations. Theywere compared to Cu concentrations in the plant material of Lepidium heterophyllum grown on the same soils. Plant concentrations were linearly related and highly correlated with CE but were more scattered and nonlinear with respect to free Cu2+ activity, EDTA extraction, or soil solution concentrations. These results demonstrate that the dominant supply processes in these soils are diffusion and labile metal release, which the DGT-soil system mimics. The quantity CE is shown to have promise as a quantitative measure of the bioavailable metal in soils.

  12. Chemodynamics of heavy metals in long-term contaminated soils: metal speciation in soil solution.

    Science.gov (United States)

    Kim, Kwon-Rae; Owens, Gary

    2009-01-01

    The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd2+, CU2+, Pb2+, and Zn2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd2+ (3%-52%) and Zn2+ (11%-72%) in soil solutions were generally higher than those of Cu2+ (0.2%-30%) and Pb2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (K(p)) and dissolved organic carbon did not show any significant influence on K(p).

  13. The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation.

    Science.gov (United States)

    Klitzke, Sondra; Metreveli, George; Peters, Andre; Schaumann, Gabriele E; Lang, Friederike

    2015-12-01

    Nanoparticles enter soils through various pathways. In the soil, they undergo various interactions with the solution and the solid phase. We tested the following hypotheses using batch experiments: i) the colloidal stability of Ag NP increases through sorption of soil-borne dissolved organic matter (DOM) and thus inhibits aggregation; ii) the presence of DOM suppresses Ag oxidation; iii) the surface charge of Ag NP governs sorption onto soil particles. Citrate-stabilized and bare Ag NPs were equilibrated with (colloid-free) soil solution extracted from a floodplain soil for 24h. Nanoparticles were removed through centrifugation. Concentrations of free Ag ions and DOC, the specific UV absorbance at a wavelength of 254 nm, and the absorption ratio α254/α410 were determined in the supernatant. Nanoparticle aggregation was studied using time-resolved dynamic light scattering (DLS) measurement following the addition of soil solution and 1.5mM Ca(2+) solution. To study the effect of surface charge on the adsorption of Ag NP onto soil particles, bare and citrate-stabilized Ag NP, differing in the zeta potential, were equilibrated with silt at a solid-to-solution ratio of 1:10 and an initial Ag concentration range of 30 to 320 μg/L. Results showed that bare Ag NPs sorb organic matter, with short-chained organic matter being preferentially adsorbed over long-chained, aromatic organic matter. Stabilizing effects of organic matter only come into play at higher Ag NP concentrations. Soil solution inhibits the release of Ag(+) ions, presumably due to organic matter coatings. Sorption to silt particles was very similar for the two particle types, suggesting that the surface charge does not control Ag NP sorption. Besides, sorption was much lower than in comparable studies with sand and glass surfaces. Copyright © 2014. Published by Elsevier B.V.

  14. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    Science.gov (United States)

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.

  15. Effect of aluminum, zinc, copper, and lead on the acid-base properties of water extracts from soils

    Science.gov (United States)

    Motuzova, G. V.; Makarychev, I. P.; Petrov, M. I.

    2013-01-01

    The potentiometric titration of water extracts from the upper horizons of taiga-zone soils by salt solutions of heavy metals (Pb, Cu, and Zn) showed that their addition is an additional source of the extract acidity because of the involvement of the metal ions in complexation with water-soluble organic substances (WSOSs). At the addition of 0.01 M water solutions of Al(NO3)3 to water extracts from soils, Al3+ ions are also involved in complexes with WSOSs, which is accompanied by stronger acidification of the extracts from the upper horizon of soddy soils (with a near-neutral reaction) than from the litter of bog-podzolic soil (with a strongly acid reaction). The effect of the Al3+ hydrolysis on the acidity of the extracts is insignificantly low in both cases. A quantitative relationship was revealed between the release of protons and the ratio of free Cu2+ ions to those complexed with WSOSs at the titration of water extracts from soils by a solution of copper salt.

  16. Subcritical water extraction of amino acids from Mars analog soils.

    Science.gov (United States)

    Noell, Aaron C; Fisher, Anita M; Fors-Francis, Kisa; Sherrit, Stewart

    2018-01-18

    For decades, the Martian regolith has stymied robotic mission efforts to catalog the organic molecules present. Perchlorate salts, found widely throughout Mars, are the main culprit as they breakdown and react with organics liberated from the regolith during pyrolysis, the primary extraction technique attempted to date on Mars. This work further develops subcritical water extraction (SCWE) as a technique for extraction of amino acids on future missions. The effect of SCWE temperature (185, 200, and 215°C) and duration of extraction (10-120 min) on the total amount and distribution of amino acids recovered was explored for three Mars analog soils (JSC Mars-1A simulant, an Atacama desert soil, and an Antarctic Dry Valleys soil) and bovine serum albumin (as a control solution of known amino acid content). Total amounts of amino acids extracted increased with both time and temperature; however, the distribution shifted notably due to the destruction of the amino acids with charged or polar side chains at the higher temperatures. The pure bovine serum albumin solution and JSC Mars 1A also showed lower yields than the Atacama and Antarctic extractions suggesting that SCWE may be less effective at hydrolyzing large or aggregated proteins. Changing solvent from water to a dilute (10 mM) HCl solution allowed total extraction efficiencies comparable to the higher temperature/time combinations while using the lowest temperature/time (185°C/20 min). The dilute HCl extractions also did not lead to the shift in amino acid distribution observed at the higher temperatures. Additionally, adding sodium perchlorate salt to the extraction did not interfere with recoveries. Native magnetite in the JSC Mars-1A may have been responsible for destruction of glycine, as evidenced by its uncharacteristic decrease as the temperature/time of extraction increased. This work shows that SCWE can extract high yields of native amino acids out of Mars analog soils with minimal disruption of the

  17. Extraction of soil solution by drainage centrifugation-effects of centrifugal force and time of centrifugation on soil moisture recovery and solute concentration in soil moisture of loess subsoils.

    Science.gov (United States)

    Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique

    2017-02-01

    The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.

  18. Redox speciation analysis of antimony in soil extracts by hydride generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Fuentes, Edwar; Pinochet, Hugo; Gregori, Ida de; Potin-Gautier, Martine

    2003-01-01

    A sensitive atomic spectrometric method for the redox speciation analysis of antimony in soils is described. The method is based on the selective generation of stibine from Sb(III) in a continuous flow system using atomic fluorescence spectrometry for detection. Sb(V) is masked by citric or oxalic acid in HCl medium. The procedure was optimized with synthetic solutions of Sb(III) and Sb(V). The effect of carboxylic acid and HCl concentration on the recovery of Sb(III) and Sb(V) species from standard solutions, and on the fluorescence signal were studied. Both species were extracted from soil with H 2 O, 0.05 mol l -1 EDTA and 0.25 mol l -1 H 2 SO 4 . Since the soil samples were collected from sites impacted by copper mining activities, the effect of Cu 2+ on the determination of antimony in synthetic solutions and soil extracts was studied. Cu 2+ decreased the Sb(III) signal, but had no effect on the total antimony determination. Therefore, the selective determination of Sb(III) was carried out in citric acid-HCl medium, using the analyte addition technique. Total antimony in soil extracts was determined using the standard calibration technique after reducing Sb(V) to Sb(III) at room temperature with KI-ascorbic acid. The Sb(V) concentration was calculated from the difference between total antimony and Sb(III). The limits of detection (PS Analytical, Excalibur Millennium model) were 17 and 10 ng l -1 for Sb(III) and total antimony, respectively, and the R.S.D. at the 0.5-μg l -1 level were 2.5 and 2.4%, respectively. The total antimony concentration of soils is in the mg kg -1 range; the Sb recovery from the different soils by the extracting solutions was between less than 0.02% and approximately 10%. Similar recoveries were obtained using EDTA and sulfuric acid solutions. Sb(V) was found to be the main antimony species extracted from soils

  19. COMPARISON OF DIFFERENT EXTRACTION METHODS REPRESENTING AVAILABLE AND TOTAL CONCENTRATIONS OF Cd, Cu, Fe, Mn and Zn IN SOIL

    Directory of Open Access Journals (Sweden)

    Vladimir Ivezić

    2013-06-01

    Full Text Available Various extraction methods are used to predict plant uptake of trace metals. Most commonly it is total concentration that is used for risk assessment and evaluation of trace metal availability. However, recent studies showed that total concentration is a poor indicator of availability while concentrations in soil solution show good correlation with plant uptake. Present study was conducted on magricultural soils with low levels of trace metals where 45 soil samples were collected from different soil types. The main objective was to compare four different extraction methods and examine how total and reactive (EDTA trace metal concentrations correlate ,with soil solution concentration (in this study determined by water extraction. The samples were analyzed by four extraction methods: strong acid extraction (ultra-pure HNO3 extraction and aqua regia, weak acid extraction by EDTA and the most available fraction, fraction in soil solution, were represented by water extraction (weakest extractant. Five elements were investigated (Cd, Cu, Fe, Mn and Zn. Water extraction significantly correlated with EDTA extraction for Cu, Fe and Mn, while total extraction (HNO3 extraction and aqua regia correlated significantly with water extraction only for Cu. No correlation between water extraction and total extraction confirmed poor role of total concentration as an indicator of availability. EDTA extraction can be used to represent reactive pool of trace metals in soil but it should be also taken with caution when using it to describe available fraction.

  20. Optimizing the molarity of a EDTA washing solution for saturated-soil remediation of trace metal contaminated soils

    International Nuclear Information System (INIS)

    Andrade, M.D.; Prasher, S.O.; Hendershot, W.H.

    2007-01-01

    Three experiments were conducted to optimize the use of ethylenediaminetetraacetic acid (EDTA) for reclaiming urban soils contaminated with trace metals. As compared to Na 2 EDTA (NH 4 ) 2 EDTA extracted 60% more Zn and equivalent amounts of Cd, Cu and Pb from a sandy loam. When successively saturating and draining loamy sand columns during a washing cycle, which submerged it once with a (NH 4 ) 2 EDTA wash and four times with deionised water, the post-wash rinses largely contributed to the total cumulative extraction of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn. Both the washing solution and the deionised water rinses were added in a 2:5 liquid to soil (L:S) weight ratio. For equal amounts of EDTA, concentrating the washing solution and applying it and the ensuing rinses in a smaller 1:5 L:S weight ratio, instead of a 2:5 L:S weight ratio, increased the extraction of targeted Cr, Cu, Ni, Pb and Zn. - A single EDTA addition is best utilised in a highly concentrated washing solution given in a small liquid to soil weight ratio

  1. Sequential extraction for the speciation of some heavy metals in soils

    International Nuclear Information System (INIS)

    Zemberyova, M.; Zwaik, A.A.H.; Farkasovska, I.

    1998-01-01

    The five step sequential extraction for speciation of copper and nickel originally designed for sediments has been applied to soil samples. The extractant solutions were: 1 mol/l ammonium acetate, 1 mol/l hydroxylammonium chloride in 25% acetic acid (1:1), 0.1 mol/l hydrochlorid acid, 0.5 mol/l sodium hydroxide and 8 mol/l nitric acid. The residue was decomposed by HF and HNO 3 . Using this procedure the metal fraction bound to the organic matter can be distinguished. The concentrations of analytes were determined in the soil extracts by FAAS and ETAAS. Accuracy was assessed by comparing the sum of the contents of copper and nickel in soil extracts with the total certified values of CRMs of soils. The overall recovery values for nickel was 84-105% and for copper 105-114%. (author)

  2. Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.

    Science.gov (United States)

    Nkana, J C Voundi; Demeyer, A; Verloo, M G

    2002-12-01

    The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment.

  3. A new method for determining the bioavailability of radionuclides in the soil solution

    International Nuclear Information System (INIS)

    Jouve, A.; Lejeune, M.; Rey, J.

    1999-01-01

    A new method for determining the pool of radionuclides in the soil solution, available for root uptake, has been compared to existing methods. The new method is based on extracting the soil solution at a soil moisture below saturation. It uses the soaking capacity of a polyacrylamide resin deposited on a cellulose acetate membrane laid on the soil surface. The new method exhibited the best reproductibility amongst the methods tested. It allowed us to extract more 134 Cs and a similar amount of 85 Sr relative to the other methods. The correlation between the observed ratio of radionuclide concentrations in soil and plants and the radionuclide concentration of the soil solution using the new method was better than using the existing methods. Using the measurement of 134 Cs and natural potassium in the soil solution by the new method, based on a multiple regression equation involving an exponential form, the uptake of 134 Cs by bean and wheat was predicted with a 0.9 determination coefficient. As far as the uptake of 85 Sr is considered, this method was not very successful since the equation with a linear form involved a large number of parameters. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Using DTPA-extractable soil fraction to assess the bioconcentration factor of plants in phytoremediation of urban soils

    Science.gov (United States)

    Rodríguez-Bocanegra, Javier; Roca, Núria; Tume, Pedro; Bech, Jaume

    2017-04-01

    Urban soils may be highly contaminated with potentially toxic metals, as a result of intensive anthropogenic activities. Developing cities are increasing the number of lands where is practiced the urban agriculture. In this way, it is necessary to assess the part of heavy metals that is transferred to plants in order to a) know the potential health risk that represent soils and b) know the relation soil-plant to assess the ability of these plants to remove heavy metals from soil. Nowadays, to assess the bioconcentration factor (BF) of plants in phytoremediation, the pseudototal o total concentration has been used by many authors. Two different urban soils with similar pH and carbonates content but with different pollution degree were phytoremediated with different plant species. Urban soil from one Barcelona district (Spain), the most contaminated soil, showed an extractability of Cu, Pb and Zn of 9.6, 6.7 and 5.8% of the total fraction respectively. The soil from Talcahuano city (Chile), with contents of heavy metals slightly above the background upper limit, present values of 15.5, 13.5 and 12% of the total fraction of studied heavy metals. Furthermore, a peri-urban analysed soil from Azul (Argentina) also showed an elevated extractability with values of 24, 13.5 and 14% of the Cu, Pb and Zn contents respectively. These soils presented more extractability than other disturbed soils, like for example, soils from mine areas. The urban soils present more developed soil with an interaction between solution and solid phase in polluted systems. The most important soil surface functional groups include the basal plane of phyllosilicates and metal hydroxyls at edge sites of clay minerals, iron oxyhydroxides, manganese oxyhydroxides and organic matter. The interaction between solution and solid phase in polluted urban systems tends to form labile associations and pollutants are more readily mobilized because their bonds with soil particles are weaker. Clay and organic

  5. Effect of soil contaminant extraction method in determining toxicity using the Microtox(reg.) assay

    International Nuclear Information System (INIS)

    Harkey, G.A.; Young, T.M.

    2000-01-01

    This project examined the influence of different extraction methods on the measured toxicity of contaminated soils collected from manufactured gas plant (MGP) sites differing in soil composition and contaminant concentration. Aged soils from a number of MGP sites were extracted using a saline solution, supercritical fluid extraction (SFE), and Soxhlet extraction. Toxicity was assessed using two forms of Microtox tests: acute aqueous tests on saline and SFE soil extracts and solid-phase tests (SPTs) on soil particles. Microtox SPTs were performed on soils before and after SFE to determine resulting toxicity reduction. Three hypotheses were tested: (1) Toxicity of soil extracts is related to contaminant concentrations of the extracts, (2) measured toxicity significantly decreases with less vigorous methods of extraction, and (3) supercritical fluid extractability correlates with measured toxicity. The EC50s for SPTs performed before and after SFE were not different for some soils but were significantly greater after extraction for other soils tested. The most significant toxicity reductions were observed for soils exhibiting the highest toxicity in both preextraction SPTs and acute aqueous tests. Acute Microtox tests performed on SFE extracts showed significantly lower EC50s than those reported from saline-based extraction procedures. Toxicity of the soils measured by Microtox SPTs was strongly correlated with both SFE efficiency and measures of contaminant aging. Data from this project provide evidence of sequestration and reduced availability of polycyclic aromatic hydrocarbons (PAHs) from soils extracted via physiologically based procedures compared to vigorous physical extraction protocols

  6. The influence of temperature, pH/molarity and extractant on the removal of arsenic, chromium and zinc from contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Rastas Amofah, Lea; Maurice, Christian; Kumpiene, Jurate [Luleaa Univ. of Technology, Luleaa (Sweden). Dept. of Civil, Environmental and Natural Resources; Bhattacharya, Prosun [Royal Institute of Technology (KTH), Stockholm (Sweden). Dept. of Land and Water Resources Engineering

    2011-12-15

    Normal soil washing leave high residual pollutant content in soil. The remediation could be improved by targeting the extraction to coarser fractions. Further, a low/high extraction pH and higher temperature enhance the pollutant removal, but these measures are costly. In this study, the utility of NaOH, oxalate-citrate (OC) and dithionite-citrate-oxalate (DCO) solutions for extracting of arsenic, chromium and zinc from contaminated soil were assessed and compared. In addition the effects of NaOH concentration and temperature on NaOH extractions, and those of temperature and pH on OC and DCO extractions, were evaluated. A two-level, full-factorial design with a centre point was implemented. Two factors, concentration and temperature,were evaluated in NaOH extractions, and pH and temperature for OC and DCO solutions. In all cases, the extraction temperature was 20 C, 30 C and 40 C. The studied NaOH concentrations were 0.05, 0.075 and 0.1 M. The pH in OC solutions was 3, 5 and 7, and in DCO solutions, 4.7, 6.3 and 6.7. Water-washed and medium coarse soil fraction of arsenic, chromium and zinc contaminated soil was agitated for 15 min with the extraction solution. In NaOH extractions, the temperature and (less strongly) NaOH concentration significantly affected As and Cr mobilisation, but only the latter affected Zn mobilisation. Both pH and temperature significantly (and similarly) influenced As and Cr mobilisation in OC extractions, while only the pH influenced Zn mobilisation. In contrast, the extraction temperature (but not pH) influenced As, Cr and Zn mobilisation in DCO extractions. For all extractants, mobilisation was most efficient at elevated temperature (40 C). None of the extractants reduced the soil's As content to below the Swedish EPA's guideline value. Use of DCO is not recommended because dithionite has a short lifetime and residual arsenic contents in DCO-extracted soil are relatively high. Instead, sequential extraction with NaOH followed

  7. Effect of the cationic composition of sorption solution on the quantification of sorption-desorption parameters of heavy metals in soils

    International Nuclear Information System (INIS)

    Sastre, J.; Rauret, G.; Vidal, M.

    2006-01-01

    We obtained the sorption isotherms of Cd, Cu, Pb and Zn in clay, clay saline and organic soils. The distribution coefficients (K d ) were determined in 0.02 eq l -1 CaCl 2 and in a solution that simulated the soil solution cationic composition. The K d values greatly varied with the composition of the sorption solution and the initial metal concentration. The sorption experiments were complemented with the quantification of the extractable metal, to estimate the reversibility of metal sorption. The extraction yields depended on the metal-soil combination, and the initial metal concentration, showing no correlation with previous K d values. The effect of the solution composition in mobility predictions was estimated through a Retention Factor, defined as the ratio of the K d versus the extraction yield. Results showed that risk was over- or underestimated using the CaCl 2 medium in soils with a markedly different soil solution composition. - Sorption solution composition modifies metal sorption-desorption pattern in soils

  8. Speciation and isotopic exchangeability of nickel in soil solution.

    Science.gov (United States)

    Nolan, Annette L; Ma, Yibing; Lombi, Enzo; McLaughlin, Mike J

    2009-01-01

    Knowledge of trace metal speciation in soil pore waters is important in addressing metal bioavailability and risk assessment of contaminated soils. In this study, free Ni(2+) activities were determined in pore waters of long-term Ni-contaminated soils using a Donnan dialysis membrane technique. The pore water free Ni(2+) concentration as a percentage of total soluble Ni ranged from 21 to 80% (average 53%), and the average amount of Ni bound to dissolved organic matter estimated by Windermere Humic Aqueous Model VI was < or = 17%. These data indicate that complexed forms of Ni can constitute a significant fraction of total Ni in solution. Windermere Humic Aqueous Model VI provided reasonable estimates of free Ni(2+) fractions in comparison to the measured fractions (R(2) = 0.83 with a slope of 1.0). Also, the isotopically exchangeable pools (E value) of soil Ni were measured by an isotope dilution technique using water extraction, with and without resin purification, and 0.1 mol L(-1) CaCl(2) extraction, and the isotopic exchangeability of Ni species in soil water extracts was investigated. The concentrations of isotopically non-exchangeable Ni in water extracts were <9% of total water soluble Ni concentrations for all soils. The resin E values expressed as a percentage of the total Ni concentrations in soil showed that the labile Ni pool ranged from 0.9 to 32.4% (average 12.4%) of total soil Ni. Therefore the labile Ni pool in these well-equilibrated contaminated soils appears to be relatively small in relation to total Ni concentrations.

  9. Use of azeotropic distillation for isotopic analysis of deuterium in soil water and saturate saline solution

    International Nuclear Information System (INIS)

    Santos, Antonio Vieira dos.

    1995-05-01

    The azeotropic distillation technique was adapted to extract soil water and saturate saline solution, which is similar to the sea water for the Isotopic Determination of Deuterium (D). A soil test was used to determine the precision and the nature of the methodology to extract soil water for stable isotopic analysis, using the azeotropic distillation and comparing with traditional methodology of heating under vacuum. This methodology has been very useful for several kinds of soil or saturate saline solution. The apparatus does not have a memory effect, and the chemical reagents do not affect the isotopic composition of soil water. (author). 43 refs., 10 figs., 12 tabs

  10. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils.

    Science.gov (United States)

    Wang, Yiwen; Ma, Fujun; Zhang, Qian; Peng, Changsheng; Wu, Bin; Li, Fasheng; Gu, Qingbao

    2017-04-01

    Soil washing is a promising way to remediate arsenic-contaminated soils. Most research has mostly focused on seeking efficient extractants for removing arsenic, but not concerned with any changes in soil properties when using this technique. In this study, the removal of arsenic from a heavily contaminated soil employing different washing solutions including H 3 PO 4 , NaOH and dithionite in EDTA was conducted. Subsequently, the changes in soil physicochemical properties and phytotoxicity of each washing technique were evaluated. After washing with 2 M H 3 PO 4 , 2 M NaOH or 0.1 M dithionite in 0.1 M EDTA, the soil samples' arsenic content met the clean-up levels stipulated in China's environmental regulations. H 3 PO 4 washing decreased soil pH, Ca, Mg, Al, Fe, and Mn concentrations but increased TN and TP contents. NaOH washing increased soil pH but decreased soil TOC, TN and TP contents. Dithionite in EDTA washing reduced soil TOC, Ca, Mg, Al, Fe, Mn and TP contents. A drastic color change was observed when the soil sample was washed with H 3 PO 4 or 0.1 M dithionite in 0.1 M EDTA. After adjusting the soil pH to neutral, wheat planted in the soil sample washed by NaOH evidenced the best growth of all three treated soil samples. These results will help with selecting the best washing solution when remediating arsenic-contaminated soils in future engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Examination of soil contaminated by coal-liquids by size exclusion chromatography in 1-methyl-2-pyrrolidinone solution to evaluate interference from humic and fulvic acids and extracts from peat.

    Science.gov (United States)

    Morgan, T J; Herod, A A; Brain, S A; Chambers, F M; Kandiyoti, R

    2005-11-18

    Soil from a redundant coke oven site has been examined by extraction of soluble materials using 1-methyl-2-pyrrolidinone (NMP) followed by size exclusion chromatography (SEC) of the extracted material. The extracted material was found to closely resemble a high temperature coal tar pitch. Standard humic and fulvic acids were also examined since these materials are very soluble in NMP and would be extracted with pitch if present in the soil. Humic substances derived from peat samples and NMP-extracts of peats were also examined. The results show that the humic and fulvic substances were not extracted directly by NMP from peats. They were extracted using caustic soda solution and were different from the peat extracts in NMP. These results indicate that humic and fulvic acids were soluble in NMP in the protonated polyelectrolyte form but not in the original native polyelectrolyte form. The extraction of soil using NMP followed by SEC appears to be a promising method for identifying contamination by coal-based industries.

  12. Phyto extraction of 99Tc on soil cores with aged contamination

    International Nuclear Information System (INIS)

    Massoura, S.T.; Echevarria, G.; Morel, J.L.; Massoura, S.T.; Leclerc-Cessac, E.; Denys, D.

    2004-01-01

    99 Tc is an artificial radionuclide which is found in high-activity and long-lived nuclear waste. This work was designed to study the phyto-extraction of 99 Tc in soils that had received aged contamination and to monitor the resulting 99 Tc concentrations in the soil solution of undisturbed soil cores in a greenhouse. Undisturbed soil cores had been sampled previously from a Rendzic Leptosol (R), a Fluvic cambisol (F) and a Dystric cambisol (D), using 0.5-m diameter PVC tubing (3 samples/soil type) without disturbing soil structure (1). Each core was equipped with two nylon porous cups (respectively 20 and 35 cm deep) and a final leachate collector. A 99 TcNO 3 solution had been supplied at the soil surface of each core during the two previous years (4200 kBq in total) in which maize and wheat had been successively cropped. These two crops had already removed 30-65% of total contamination before the present study. After the second year no more 99 Tc was added to the cores. Thereafter, Lolium perenne was cultivated for 20 successive months. 99 Tc was determined in both plant aerial parts and water samples (from both cups and collectors), and the balance of 99 Tc in the system was established after phyto-extraction. Results showed that transfer of 99 Tc to plants vary among soils: 7% on soil R to 11% on soil D. Concentration of 99 Tc in the porous cups dramatically decreased in all soils. The plants maintained low and stable concentration levels of 99 Tc in the soil solution which decreased the potential migration of the radionuclide through the cores: The leaching of 99 Tc in the final collectors of the R soil cores decreased from 18 to 1.7 Bq mL -1 . (author)

  13. Removal of 2,4,6-trichlorophenol from a solution by humic acids repeatedly extracted from a peat soil

    International Nuclear Information System (INIS)

    Tzou, Y.-M.; Wang, S.-L.; Liu, J.-C.; Huang, Y.-Y.; Chen, J.-H.

    2008-01-01

    Humic acid (HA) is one of the major components of soil organic matter. It strongly affects the sorption behavior of organic and inorganic contaminants in soils. To obtain a better understanding of the interactions of contaminants with HA, a repeated extraction technique has been applied to a peat soil to obtain HA fractions with varying aliphaticity and aromaticity, which were subsequently correlated to the sorption properties of 2,4,6-trichlorophenol (TCP). HA fractions were extracted repeatedly using an alkaline solution and each HA fraction was separated into two portions with an air-drying or re-suspending (denoted as RSHAs) process. Solid-state 13 C NMR and elemental analysis demonstrated that the aromaticity and polarity of HAs decreased with extractions. Kinetic results indicated that air-dried HAs exhibited two-step first order sorption behavior with a rapid stage followed by a slower stage. The slower sorption is attributed to the diffusion of 2,4,6-TCP in the condensed aromatic domains of HAs. Conversely, sorption of 2,4,6-TCP on RSHAs was extremely rapid and could not be fitted with any kinetic model. For air-dried HAs the sorption capacity (K oc ) was weakly correlated with the chemical compositions of HAs. However, a positive trend between K oc and aromaticity was observed for RSHAs. Compared with the results of air-dried HAs with their counterparts of RSHAs, it is therefore concluded that air-drying may alter the structure of HAs through artificially creating a more condensed domain in HAs. The structural alternation may result in an incorrect interpretation of the relationship between sorption capacity and chemical composition of HAs and a misjudgment of the transport behavior of 2,4,6-TCP in soils and sediments

  14. Effect of ageing on benzo[a]pyrene extractability in contrasting soils

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Luchun [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Liu, Yanju; Palanisami, Thavamani; Dong, Zhaomin; Mallavarapu, Megharaj [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Semple, Kirk T. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-10-15

    Highlights: • In vitro assessment of B[a]P in contaminated soils using 4 different methods. • An exponential kinetic model fits well with the extractability data. • Fitting parameter and {sup 14}C residue correlates with key soil properties. • Fractionation of B[a]P was obtained based on extractability by extractants. - Abstract: Changes in benzo[a]pyrene (B[a]P) extractability over 160 days ageing in four contrasting soils varying in organic matter content and clay mineralogy were investigated using dichloromethane: acetone 1:1 (DCM/Ace), 60 mM hydroxypropyl-β-cyclodextrin (HPCD) solution, 1-butanol (BuOH) and Milli-Q water. The B[a]P extractability by the four methods decreased with ageing and a first-order exponential model could be used to describe the kinetics of release. Correlation of the kinetic rate constant with major soil properties showed a significant effect of clay and sand contents and pore volume fraction (<6 nm) on sequestration of the desorbable fraction (by HPCD) and the water-extractable fraction. Analysis of {sup 14}C-B[a]P in soils after ageing showed a limited loss of B[a]P via degradation. Fractionation of B[a]P pools associated with the soil matrix was analysed according to extractability of B[a]P by the different extraction methods. A summary of the different fractions is proposed for the illustration of the effect of ageing on different B[a]P-bound fractions in soils. This study provides a better understanding of the B[a]P ageing process associated with different fractions and also emphasises the extraction capacity of the different methods employed.

  15. Effect of ageing on benzo[a]pyrene extractability in contrasting soils

    International Nuclear Information System (INIS)

    Duan, Luchun; Naidu, Ravi; Liu, Yanju; Palanisami, Thavamani; Dong, Zhaomin; Mallavarapu, Megharaj; Semple, Kirk T.

    2015-01-01

    Highlights: • In vitro assessment of B[a]P in contaminated soils using 4 different methods. • An exponential kinetic model fits well with the extractability data. • Fitting parameter and 14 C residue correlates with key soil properties. • Fractionation of B[a]P was obtained based on extractability by extractants. - Abstract: Changes in benzo[a]pyrene (B[a]P) extractability over 160 days ageing in four contrasting soils varying in organic matter content and clay mineralogy were investigated using dichloromethane: acetone 1:1 (DCM/Ace), 60 mM hydroxypropyl-β-cyclodextrin (HPCD) solution, 1-butanol (BuOH) and Milli-Q water. The B[a]P extractability by the four methods decreased with ageing and a first-order exponential model could be used to describe the kinetics of release. Correlation of the kinetic rate constant with major soil properties showed a significant effect of clay and sand contents and pore volume fraction (<6 nm) on sequestration of the desorbable fraction (by HPCD) and the water-extractable fraction. Analysis of 14 C-B[a]P in soils after ageing showed a limited loss of B[a]P via degradation. Fractionation of B[a]P pools associated with the soil matrix was analysed according to extractability of B[a]P by the different extraction methods. A summary of the different fractions is proposed for the illustration of the effect of ageing on different B[a]P-bound fractions in soils. This study provides a better understanding of the B[a]P ageing process associated with different fractions and also emphasises the extraction capacity of the different methods employed

  16. Selective Removal of Uranium from the Washing Solution of Uranium-Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Han, G. S.; Kim, G. N.; Koo, D. S.; Jeong, J. W.; Choi, J. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This study examined selective removal methods of uranium from the waste solution by ion exchange resins or solvent extraction methods to reduce amount of the 2{sup nd} waste. Alamine-336, known as an excellent extraction reagent of uranium from the leaching solution of uranium ore, did not remove uranium from the acidic washing solution of soil. Uranyl ions in the acidic waste solution were sorbed on ampholyte resin with a high sorption efficiency, and desorbed from the resin by a washing with 0.5 M Na{sub 2}CO{sub 3} solution at 60 .deg. C. However, the uranium dissolved in the sulfuric acid solution was not sorbed onto the strong anion exchanger resins. A great amount of uranium-contaminated (U-contaminated) soil had been generated from the decommissioning of a uranium conversion plant. Our group has developed a decontamination process with washing and electrokinetic methods to decrease the amount of waste to be disposed of. However, this process generates a large amount of waste solution containing various metal ions.

  17. Extraction of soil solution by drainage centrifugation—effects of centrifugal force and time of centrifugation on soil moisture recovery and solute concentration in soil moisture of loess subsoils

    NARCIS (Netherlands)

    Fraters, D.; Boom, G.J.F.L.; Boumans, L.J.M.; Weerd, H. de; Wolters, M.

    2017-01-01

    The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this

  18. Decontamination of Metal Ions in Soil by Supercritical CO2 Extraction with Crown Ether

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihe; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-05-15

    Previous decontamination methods have shortcomings in that they produce additional waste due to the usage of solutions with chemical toxicity. Hence, demand is strong for new decontamination methods that can guarantee effective decontamination while decreasing the chemical solution. In particular, methods using supercritical CO2 as a means of decontamination are currently in progress. This study examines the method of decontaminating metallic ions inside soil using supercritical CO2. This paper examined the effects of extracting metallic ions inside soil using supercritical CO2 and crown ether as the ligand. It was confirmed that extraction effectiveness increases following greater usage of ligand and co-ligand, with a drastic increase in extraction effectiveness when using extracts over a certain dose. Moreover, it was shown that if the usage of ligand and additive decreases, the extraction ratio also decreases.

  19. Decontamination of Metal Ions in Soil by Supercritical CO2 Extraction with Crown Ether

    International Nuclear Information System (INIS)

    Park, Jihe; Park, Kwangheon

    2015-01-01

    Previous decontamination methods have shortcomings in that they produce additional waste due to the usage of solutions with chemical toxicity. Hence, demand is strong for new decontamination methods that can guarantee effective decontamination while decreasing the chemical solution. In particular, methods using supercritical CO2 as a means of decontamination are currently in progress. This study examines the method of decontaminating metallic ions inside soil using supercritical CO2. This paper examined the effects of extracting metallic ions inside soil using supercritical CO2 and crown ether as the ligand. It was confirmed that extraction effectiveness increases following greater usage of ligand and co-ligand, with a drastic increase in extraction effectiveness when using extracts over a certain dose. Moreover, it was shown that if the usage of ligand and additive decreases, the extraction ratio also decreases

  20. Multilevel soil-vapor extraction test for heterogeneous soil

    International Nuclear Information System (INIS)

    Widdowson, M.A.; Haney, O.R.; Reeves, H.W.

    1997-01-01

    The design, performance, and analysis of a field method for quantifying contaminant mass-extraction rates and air-phase permeability at discrete vertical locations of the vadose zones are presented. The test configuration consists of a multiscreen extraction well and multilevel observation probes located in soil layers adjacent to the extraction well. For each level tested an inflatable packer system is used to pneumatically isolate a single screen in the extraction well, and a vacuum is applied to induce air flow through the screen. Test data include contaminant concentration and flow characteristics at the extraction well, and transient or steady-state pressure drawdown data at observation probes located at variable radii from the extraction well. The test method is applicable to the design of soil-vapor extraction (SVE) and bioventing remediation systems in a variety of geologic settings, particularly stratified soils. Application of the test method at a gasoline-polluted site located in the Piedmont physiographic region is described. Contaminant mass-extraction rates, expressed in terms of volatile hydrocarbons, varied from 0.16 to 14 kg/d

  1. Migration characteristics of cobalt-60 through sandy soil in high pH solution

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko

    1992-01-01

    Migration characteristics of 60 Co through sandy soil in high pH solution has been investigated by both column and batch techniques. The association of 60 Co with the sandy soil and its components were studied by sequential extraction techniques. The concentration profile of 60 Co in the sandy soil column was composed of two exponential curves showing that 60 Co would consist of immobile and mobile fractions. The immobile 60 Co was retained by the sandy soil and was distributed near the top. Though the mobile 60 Co was little sorbed by soil and migrated through the soil column, maximum concentration of 60 Co in the effluents decreased slightly with increasing path length of the soil column. The sequential extraction of 60 Co from the sandy soil and from its components showed that 60 Co was sorbed by both manganese oxide and clay minerals. And manganese oxide is one of the responsible soil components for the observed decrease in the maximum concentration of 60 Co in the effluents. Although the content of manganese oxide in the sandy soil was 0.13%, manganese oxide is the important component to prevent from the migration of 60 Co in the high pH solution. (author)

  2. Soil Solution

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  3. Extraction of heavy metals from contaminated soils using EDTA and HCl

    Directory of Open Access Journals (Sweden)

    Hatem Asel Gzar

    2015-01-01

    Full Text Available The present study examines the extraction of lead (Pb, cadmium (Cd and nickel (Ni from a contaminated soil by washing process. Ethylenediaminetetraacetic acid disodium salt (Na2EDTA and hydrochloric acid (HCl solution were used as extractants. Soil washing is one of the most suitable in-situ/ ex-situ remediation method in removing heavy metals. Soil was artificially contaminated with 500 mg/kg (Pb , Cd and Ni . A set of batch experiments were carried out at different conditions of extractant concentration , contact time, pH and agitation speed. The results showed that the maximum removal efficiencies of (Cd, Pb and Ni were (97, 88 and 24 % respectively using ( 0.1 M Na2EDTA. While the maximum removal efficiencies using (1M HCl were (98, 94 and 55% respectively. The experimental data of batch extraction were applied in four kinetic models; first order, parabolic diffusion, two constant and Elovich model. The parabolic diffusion was the most fitted to the experimental data.

  4. Some plant extracts retarde nitrification in soil

    Directory of Open Access Journals (Sweden)

    Abdul–Mehdi S. AL-ANSARI

    2015-12-01

    Full Text Available An incubation experiment was conducted to evaluate the effect of aqueous extracts of 17 plant materials on nitrification inhibition of urea- N in soil as compared with chemical inhibitor Dicyandiamide (DCD. Plant materials used in study were collected from different areas of Basrah province, south of Iraq. Aqueous extracts were prepared at ratio of 1:10 (plant material: water and added at conc. of 0.05, 0.10 and 0.20 ml g– 1 soil to loamy sand soil. DCD was added to soil at rate of 50 µg g-1 soil . Soil received urea at rate of 1000 µg N g-1 soil. Treated soils were incubated at 30 OC for 40 days. Results showed that application of all plant extracts, except those of casuarina, date palm and eucalyptus to soil retarded nitrification in soil. Caper, Sowthistle ,bladygrass and pomegranate extracts showed highest inhibition percentage (51, 42, 40 and 40 %, respectively and were found to be more effective than DCD (33 %. Highest inhibition was achieved by using those extracts at conc. of 0.1 ml g-1 soil after 10 days of incubation . Data also revealed that treated soil with these plant extracts significantly increased amount of NH4+–N and decreased amount of NO3-–N accumulation in soil compared with DCD and control treatments. Results of the study suggested a possibility of using aqueous extracts of some studied plants as potent nitrification inhibitor in soil.

  5. Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants.

    Science.gov (United States)

    Shan, Xiao-Quan; Wang, Zhongwen; Wang, Weisheng; Zhang, Shuzhen; Wen, Bei

    2003-02-01

    A labile rhizosphere soil solution fraction has been recommended to predict the bioavailability of heavy metals and rare earth elements to plants. This method used moist rhizosphere soil in combination with a mixture of 0.01 mol L(-1) of low-molecular-weight organic acids (LMWOAs) as extractant. The extracted soil solutions were fractionated into two colloidal fractions of soil solution fraction, F(lrss). For the soil solutions extracted with a mixture of LMWOAs the concentrations of heavy metals and rare earth elements in F(2) and F(3) were quite similar. However, the mean concentrations of Cr, Ni, Zn, Cu, Pb, Cd, La, Ce, Pr, and Nd in F(lrss) accounted for 79.9%, 91.3%, 90.8%, 60.1%, 77.5%, 75.3%, 81.2%, 77.2%, 80.3%, and 79.5%, respectively, of their concentrations in F(2). In contrast, there were no differences in the extractable metal concentrations between the three fractions while the first step of the method recommended by the European Community of Reference (BCR), where 0.1 mol L(-1) acetic acid was used as an extractant. The single correlation analysis was made between metal concentrations in the different fractions of soil solutions and their concentrations in wheat. If the first step of BCR method was used there was no good correlation between heavy metals in soil pools and that in wheat shoots and roots. When LMWAOs were used a good correlation was obtained between the concentrations of heavy metals in soil pools and that in wheat roots, which followed a general order of r(1 kD, LMWOAs) >r(0.2 microm, LMWOAs) approximately r(0.45 microm, LMWOAs). In the case of rare earth elements the good correlation was obtained for both the wheat roots and shoots. Generally, the correlation coefficients obtained by LMWAOs were better than that obtained by the first step of BCR method. Therefore, LMWAOs and F(lrss) were strongly recommended to predict the bioavailability of metals in soil pools to plants.

  6. Aqueous biphasic extraction of uranium and thorium from contaminated soils. Final report

    International Nuclear Information System (INIS)

    Chaiko, D.J.; Gartelmann, J.; Henriksen, J.L.; Krause, T.R.; Deepak; Vojta, Y.; Thuillet, E.; Mertz, C.J.

    1995-07-01

    The aqueous biphasic extraction (ABE) process for soil decontamination involves the selective partitioning of solutes and fine particulates between two immiscible aqueous phases. The biphase system is generated by the appropriate combination of a water-soluble polymer (e.g., polyethlene glycol) with an inorganic salt (e.g., sodium carbonate). Selective partitioning results in 99 to 99.5% of the soil being recovered in the cleaned-soil fraction, while only 0.5 to 1% is recovered in the contaminant concentrate. The ABE process is best suited to the recovery of ultrafine, refractory material from the silt and clay fractions of soils. During continuous countercurrent extraction tests with soil samples from the Fernald Environmental Management Project site (Fernald, OH), particulate thorium was extracted and concentrated between 6- and 16-fold, while the uranium concentration was reduced from about 500 mg/kg to about 77 mg/kg. Carbonate leaching alone was able to reduce the uranium concentration only to 146 mg/kg. Preliminary estimates for treatment costs are approximately $160 per ton of dry soil. A detailed flowsheet of the ABE process is provided

  7. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    Science.gov (United States)

    Lau, E. V.; Gan, S.; Ng, H. K.

    2010-01-01

    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670

  8. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    Directory of Open Access Journals (Sweden)

    E. V. Lau

    2010-01-01

    Full Text Available This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction.

  9. Controls on accumulation and soil solution partitioning of heavy metals across upland sites in United Kingdom (UK).

    Science.gov (United States)

    Zia, Afia; van den Berg, Leon; Ahmad, Muhammad Nauman; Riaz, Muhammad; Zia, Dania; Ashmore, Mike

    2018-05-31

    A significant body of knowledge suggests that soil solution pH and dissolved organic carbon (DOC) strongly influence metal concentrations and speciation in porewater, however, these effects vary between different metals. This study investigated the factors influencing soil and soil solution concentrations of copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) under field conditions in upland soils from UK having a wide range of pH, DOC and organic matter contents. The study primarily focussed on predicting soil and soil solution metal concentrations from the data on total soil metal concentrations (HNO 3 extracts) and soil and soil solution properties (pH, DOC and organic matter content). We tested the multiple regression models proposed by Tipping et al. (2003) to predict heavy metal concentrations in soil solutions and the results indicated a better fit (higher R 2 values) in both studies for Pb compared to the Zn and Cu concentrations. Both studies observed consistent negative relationships of metals with pH and loss on ignition (LOI) suggesting an increase in soil solution metal concentrations with increasing acidity. The positive relationship between Pb concentrations in porewater and HNO 3 extracts was similar for both studies, however, similar relationships were not found for the Zn and Cu concentrations because of the negative coefficients for these metals in our study. The results of this study conclude that the predictive equations of Tipping et al. (2003) may not be applicable to the field sites where the range of DOC and metal concentrations is much lower than their study. Our study also suggests that the extent to which metals are partitioned into soil solution is lower in soils with a higher organic matter contents due to binding of these metals to soil organic matter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry.

    Science.gov (United States)

    Turner, Benjamin L; Newman, Susan; Reddy, K Ramesh

    2006-05-15

    Accurate information on the chemical nature of soil phosphorus is essential for understanding its bioavailability and fate in wetland ecosystems. Solution phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy was used to assess the conventional colorimetric procedure for phosphorus speciation in alkaline extracts of organic soils from the Florida Everglades. Molybdate colorimetry markedly overestimated organic phosphorus by between 30 and 54% compared to NMR spectroscopy. This was due in large part to the association of inorganic phosphate with organic matter, although the error was exacerbated in some samples by the presence of pyrophosphate, an inorganic polyphosphate that is not detected by colorimetry. The results have important implications for our understanding of phosphorus biogeochemistry in wetlands and suggest that alkaline extraction and solution 31p NMR spectroscopy is the only accurate method for quantifying organic phosphorus in wetland soils.

  11. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass.

    Science.gov (United States)

    Kalis, Erwin J J; Temminghoff, Erwin J M; Town, Raewyn M; Unsworth, Emily R; van Riemsdijk, Willem H

    2008-01-01

    The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total metal concentration in the soil solution. In this study the Donnan Membrane Technique (DMT) was used to measure free metal ion concentrations in CaCl(2) extractions (to mimic the soil solution, and to work under standardized conditions) of 10 different soils, whereas diffusive gradients in thin-films (DGT) and scanning chronopotentiometry (SCP) were used to measure the sum of free and labile metal concentrations in the CaCl(2) extracts. The DGT device was also exposed directly to the (wetted) soil (soil-DGT). The metal concentrations measured with the speciation techniques are related to the metal adsorption at the root surface of ryegrass (Lolium perenne L.), to be able to subsequently predict metal uptake. In most cases the metal adsorption related pH-dependently to the metal concentrations measured by DMT, SCP, and DGT in the CaCl(2) extract. However, the relationship between metal adsorption at the root surface and the metal concentrations measured by the soil-DGT was not-or only slightly-pH dependent. The correlations between metal adsorption at the root surface and metal speciation detected by different speciation techniques allow discussion about rate limiting steps in biouptake and the contribution of metal complexes to metal bioavailability.

  12. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.

    Science.gov (United States)

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2017-04-01

    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Peroxidase-catalyzed stabilization of 2,4-dichlorophenol in alkali-extracted soils.

    Science.gov (United States)

    Palomo, Mónica; Bhandari, Alok

    2011-01-01

    Horseradish peroxidase- (HRP) mediated stabilization of phenolic contaminants is a topic of interest due to its potential for remediation of contaminated soils. This study evaluated the sorption of 2,4-dichlorophenol (DCP) and its HRP-mediated stabilization in two alkali-extracted soils. Alkali extraction reduced the soil organic matter (SOM) contents of the geomaterials and enriched the residual SOM with humin C. Sorption of DCP on these sorbents was complete within 1 d. However, most of the sorbed DCP was removed from the geomaterials by water and methanol, suggesting weak solute-sorbent interactions. The addition of HRP resulted in the generation of DCP polymerization products (DPP), which partitioned between the aqueous and solid phases. The DPP phase distribution was rapid and complete within 24 h. Between 70 and 90% of the added DCP was converted to DPP and up to 43% of the initial aqueous phase contaminant was transformed into a residue that was resistant to extraction with methanol. Bound residues of DPP increased with initial aqueous phase solute concentration and remained fairly constant after 7 d of contact. Contaminant stabilization was noted to be high in the humin-mineral geomaterial. Results illustrate that HRP may be effective in stabilizing phenolic contaminants in subsoils that are likely to contain SOM enriched in humin C.

  14. Migration through soil of organic solutes in an oil-shale process water

    Science.gov (United States)

    Leenheer, J.A.; Stuber, H.A.

    1981-01-01

    The migration through soil of organic solutes in an oil-shale process water (retort water) was studied by using soil columns and analyzing leachates for various organic constituents. Retort water extracted significant quantities of organic anions leached from ammonium-saturated-soil organic matter, and a distilled-water rinse, which followed retort-water leaching, released additional organic acids from the soil. After being corrected for organic constitutents extracted from soil by retort water, dissolved-organic-carbon fractionation analyses of effluent fractions showed that the order of increasing affinity of six organic compound classes for the soil was as follows: hydrophilic neutrals nearly equal to hydrophilic acids, followed by the sequence of hydrophobic acids, hydrophilic bases, hydrophobic bases, and hydrophobic neutrals. Liquid-chromatographic analysis of the aromatic amines in the hydrophobic- and hydrophilic-base fractions showed that the relative order of the rates of migration through the soil column was the same as the order of migration on a reversed-phase, octadecylsilica liquid-chromatographic column.

  15. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils

    International Nuclear Information System (INIS)

    Kuo, S.; Lai, M.S.; Lin, C.W.

    2006-01-01

    Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1 ± 0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl 2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them

  16. Metals in European roadside soils and soil solution – A review

    International Nuclear Information System (INIS)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-01-01

    This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table. - Highlights: • Summary of studies analysing metals in soils and soil solution at European roadsides. • Metal concentrations in topsoil 5 m beside the road are influenced strongly by traffic. • Solute concentrations of metals are mostly independent from soil concentrations. • High percolation rates lead to high annual loadings directly beside the road. - Summarised data showed typical distance related metal patterns of European roadside soils; solute concentrations are mostly independent from soil matrix concentrations

  17. Effective extraction of radioactive cesium from various pollutants with a detergent solution including Mg2+ and K+

    International Nuclear Information System (INIS)

    Noguchi, Yuki; Kida, Toshiyuki; Kato, Eiichi; Akashi, Mitsuru; Shimizu, Kikuo

    2015-01-01

    Radioactive cesium (Cs) is extracted effectively from various polluted samples such as soil, silt, and burned ash by washing with a detergent solution comprised of KCl, MgCl 2 , and hydroxyethyl cellulose in a 5% H 2 SO 4 aqueous solution. Repeatedly washing extracts more than 65% of the radioactive Cs. (author)

  18. Migration of 137Cs, 90Sr, 239,240Pu and 241Am in the chain soil-soil solution-plant. The soil-soil solution link

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Kil'chitskaya, S.L.; Ehjsmont, E.A.; Zhukovich, N.V.; Kimlenko, I.M.; Duksina, V.V.; Rubinchik, S.Ya.

    1999-01-01

    The mobility of 137 Cs, 90 Sr, 239,240 Pu and 241 Am in the link soil-soil solution is analysed for different soil types on the basis of radionuclide distribution coefficients between solid and liquid soil phases. The distribution coefficients allow to differentiate soils in correlation with radionuclide migration rate from the solid phase to the soil solution. The reasons of different radionuclide mobility are considered

  19. Solute diffusivity in undisturbed soil

    DEFF Research Database (Denmark)

    Lægdsmand, Mette; Møldrup, Per; Schjønning, Per

    2012-01-01

    Solute diffusivity in soil plays a major role in many important processes with relation to plant growth and environmental issues. Soil solute diffusivity is affected by the volumetric water content as well as the morphological characteristics of water-filled pores. The solute diffusivity in intact...

  20. Comparison of mild extraction procedures for determination of plant-available arsenic compounds in soil

    Energy Technology Data Exchange (ETDEWEB)

    Szakova, Jirina; Tlustos, Pavel; Pavlikova, Daniela; Balik, Jiri [Czech University of Agriculture, Department of Agrochemistry and Plant Nutrition, Prague (Czech Republic); Goessler, Walter; Schlagenhaufen, Claudia [Karl-Franzens-University Graz, Institute of Chemistry, Analytical Chemistry, Graz (Austria)

    2005-05-01

    In this work three mild extraction agents for determination of plant-available fractions of elements in soil were evaluated for arsenic speciation in soil samples. Pepper (Capsicum annum, L.) var. California Wonder was cultivated in pots, and aqueous solutions of arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid, at a concentration of 15 mg As kg{sup -1} soil, were added at the beginning of the experiment. Control pots (untreated) were also included. Deionized water, 0.01 mol L{sup -1} CaCl{sub 2}, and 0.05 mol L{sup -1} (NH{sub 4}){sub 2}SO{sub 4} were used to extract the plant-available fraction of the arsenic compounds in soil samples collected during the vegetation period of the plants. Whereas in control samples the extractable arsenic fraction did not exceed 1% of total arsenic content, soil amendment by arsenic compounds resulted in extraction of larger amounts, which varied between 1.4 and 8.1% of total arsenic content, depending on soil treatment and on the extracting agent applied. Among arsenic compounds determined by HPLC-ICPMS arsenate was predominant, followed by small amounts of arsenite, methylarsonic acid, and dimethylarsinic acid, depending on the individual soil treatment. In all the experiments in which methylarsonic acid was added to the soil methylarsonous acid was detected in the extracts, suggesting that the soil bacteria are capable of reducing methylarsonic acid before a further methylation occurs. No significant differences were observed between analytical data obtained by using different extraction procedures. (orig.)

  1. Metals in European roadside soils and soil solution--a review.

    Science.gov (United States)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-06-01

    This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Rapid quantification of polycyclic aromatic hydrocarbons in hydroxypropyl-{beta}-cyclodextrin (HPCD) soil extracts by synchronous fluorescence spectroscopy (SFS)

    Energy Technology Data Exchange (ETDEWEB)

    Guoxiong, Hua [School of Biology and Psychology, Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Broderick, John [School of Biology and Psychology, Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Semple, Kirk T [Department of Environmental Science, Faculty of Science and Technology, University of Lancaster, Lancaster LA1 4YQ (United Kingdom); Killham, Ken [School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU (United Kingdom); Singleton, Ian [School of Biology and Psychology, Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2007-07-15

    Synchronous fluorescence spectroscopy (SFS) was directly applied to rapidly quantify selected polycyclic aromatic hydrocarbons (PAHs: benzo[a]pyrene and pyrene) in aqueous hydroxypropyl-{beta}-cyclodextrin (HPCD) soil extract solutions from a variety of aged contaminated soils containing four different PAHs. The method was optimized and validated. The results show that SFS can be used to analyse benzo[a]pyrene and pyrene in HPCD based soil extracts with high sensitivity and selectivity. The linear calibration ranges were 4.0 x 10{sup -6}-1.0 x 10{sup -3} mM for benzo[a]pyrene and 6.0 x 10{sup -6}-1.2 x 10{sup -3} mM for pyrene in 10 mM HPCD aqueous solution alone. The detection limits according to the error propagation theory for benzo[a]pyrene and pyrene were 3.9 x 10{sup -6} and 5.4 x 10{sup -6} mM, respectively. A good agreement between SFS and HPLC was reached for both determinations of PAHs in HPCD alone and in soil HPCD extracts. Hence, SFS is a potential means to simplify the present non-exhaustive hydroxypropyl-{beta}-cyclodextrin (HPCD)-based extraction technique for the evaluation of PAH bioavailability in soil. - SFS can be used to rapidly quantify selected PAHs in soil extracts and to simplify the non-exhaustive HPCD-based extraction technique for the evaluation of PAH bioavailability.

  3. Rapid quantification of polycyclic aromatic hydrocarbons in hydroxypropyl-β-cyclodextrin (HPCD) soil extracts by synchronous fluorescence spectroscopy (SFS)

    International Nuclear Information System (INIS)

    Hua Guoxiong; Broderick, John; Semple, Kirk T.; Killham, Ken; Singleton, Ian

    2007-01-01

    Synchronous fluorescence spectroscopy (SFS) was directly applied to rapidly quantify selected polycyclic aromatic hydrocarbons (PAHs: benzo[a]pyrene and pyrene) in aqueous hydroxypropyl-β-cyclodextrin (HPCD) soil extract solutions from a variety of aged contaminated soils containing four different PAHs. The method was optimized and validated. The results show that SFS can be used to analyse benzo[a]pyrene and pyrene in HPCD based soil extracts with high sensitivity and selectivity. The linear calibration ranges were 4.0 x 10 -6 -1.0 x 10 -3 mM for benzo[a]pyrene and 6.0 x 10 -6 -1.2 x 10 -3 mM for pyrene in 10 mM HPCD aqueous solution alone. The detection limits according to the error propagation theory for benzo[a]pyrene and pyrene were 3.9 x 10 -6 and 5.4 x 10 -6 mM, respectively. A good agreement between SFS and HPLC was reached for both determinations of PAHs in HPCD alone and in soil HPCD extracts. Hence, SFS is a potential means to simplify the present non-exhaustive hydroxypropyl-β-cyclodextrin (HPCD)-based extraction technique for the evaluation of PAH bioavailability in soil. - SFS can be used to rapidly quantify selected PAHs in soil extracts and to simplify the non-exhaustive HPCD-based extraction technique for the evaluation of PAH bioavailability

  4. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass.

    Science.gov (United States)

    Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J

    2010-02-01

    The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass

    Energy Technology Data Exchange (ETDEWEB)

    Duquene, L. [SCK-CEN, Biosphere Impact Studies, Boeretang 200, B-2400 Mol (Belgium); Vandenhove, H., E-mail: hvandenh@sckcen.b [SCK-CEN, Biosphere Impact Studies, Boeretang 200, B-2400 Mol (Belgium); Tack, F. [Ghent University, Laboratory for Analytical Chemistry and Applied Ecochemistry, Coupure Links 653, B-9000 Gent (Belgium); Van Hees, M.; Wannijn, J. [SCK-CEN, Biosphere Impact Studies, Boeretang 200, B-2400 Mol (Belgium)

    2010-02-15

    The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C{sub DGT}) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO{sub 2}{sup 2+}, uranyl carbonate complexes and UO{sub 2}PO{sub 4}{sup -}. The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants.

  6. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass

    International Nuclear Information System (INIS)

    Duquene, L.; Vandenhove, H.; Tack, F.; Van Hees, M.; Wannijn, J.

    2010-01-01

    The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C DGT ) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO 2 2+ , uranyl carbonate complexes and UO 2 PO 4 - . The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants.

  7. Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution.

    Science.gov (United States)

    Koopmans, G F; Hiemstra, T; Regelink, I C; Molleman, B; Comans, R N J

    2015-05-01

    Manufactured metallic silver nanoparticles (AgNP) are intensively utilized in consumer products and this will inevitably lead to their release to soils. To assess the environmental risks of AgNP in soils, quantification of both their concentration and size in soil solution is essential. We developed a methodology consisting of asymmetric flow field-flow fractionation (AF4) in combination with on-line detection by UV-vis spectroscopy and off-line HR-ICP-MS measurements to quantify the concentration and size of AgNP, coated with either citrate or polyvinylpyrrolidone (PVP), in water extracts of three different soils. The type of mobile phase was a critical factor in the fractionation of AgNP by AF4. In synthetic systems, fractionation of a series of virgin citrate- and PVP-coated AgNP (10-90 nm) with reasonably high recoveries could only be achieved with ultrahigh purity water as a mobile phase. For the soil water extracts, 0.01% (w:v) sodium dodecyl sulfate (SDS) at pH 8 was the key to a successful fractionation of the AgNP. With SDS, the primary size of AgNP in all soil water extracts could be determined by AF4, except for PVP-coated AgNP when clay colloids were present. The PVP-coated AgNP interacted with colloidal clay minerals, leading to an overestimation of their primary size. Similar interactions between PVP-coated AgNP and clay colloids can take place in the environment and facilitate their transport in soils, aquifers, and surface waters. In conclusion, AF4 in combination with UV-vis spectroscopy and HR-ICP-MS measurements is a powerful tool to characterize AgNP in soil solution if the appropriate mobile phase is used. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Speciation of mercury in soil and sediment by selective solvent and acid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Han, Y. [Metara Inc., 1225 East Arques Ave, Sunnyvale, CA (United States); Kingston, H.M.; Boylan, H.M.; Rahman, G.M.M.; Shah, S.; Richter, R.C.; Link, D.D.; Bhandari, S. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA (United States)

    2003-02-01

    In order to characterize the mercury hazard in soil, a sequential extraction scheme has been developed to classify mercury species based on their environmental mobility and/or toxicity for either routine lab analysis or on-site screening purposes. The alkyl mercury species and soluble inorganic species that contribute to the major portion of potential mercury toxicity in the soil are extracted by an acidic ethanol solution (2% HCl+10% ethanol solution) from soil matrices as ''mobile and toxic'' species. A High-Performance Liquid Chromatography (HPLC) system coupled with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) detection has been developed to further resolve the species information into soluble inorganic species (Hg{sup 2+}), methylmercury(II) (MeHg{sup +}) and ethylmercury(II) (EtHg{sup +}) species. Alternatively, these species can be separated into ''soluble inorganic mercury'' and ''alkyl mercury'' sub-categories by Solid-Phase Extraction (SPE). A custom Sulfydryl Cotton Fiber (SCF) material is used as the solid phase medium. Optimization of the SCF SPE technique is discussed. Combined with a direct mercury analyzer (DMA-80), the SCF SPE technique is a promising candidate for on-site screening purposes. Following the ethanol extraction, the inorganic mercury species remaining in soil are further divided into ''semi-mobile'' and ''non-mobile'' sub-categories by sequential acid extractions. The ''semi-mobile'' mercury species include mainly elemental mercury (Hg) and mercury-metal amalgams. The non-mobile mercury species mainly include mercuric sulfide (HgS) and mercurous chloride (Hg{sub 2}Cl{sub 2}). (orig.)

  9. Effect of decreasing acidity on the extractability of inorganic soil phosphorus

    Directory of Open Access Journals (Sweden)

    Helinä Hartikainen

    1981-01-01

    Full Text Available The extractability of P by the water and anion exchange resin methods and reactions of soil inorganic P were investigated with seven acid mineral soil samples incubated with KOH solutions of various concentrations. The results were compared with the analytical data obtained from three soil samples incubated in a prolonged liming experiment. The resin extraction method proved more effective than the water extraction method. The amounts of P desorbed by both methods seemed to increase exponentially as the pH in the soil suspensions rose. The factors involved were discussed. On the basis of fractionation analyses P reacting to changes in the pH and participating in desorption processes was supposed to originate from secondary NH4F and NaOH soluble reserves. In general, as the acidity decreased NH4F-P increased at the expense of NaOH-P. In heavily limed gyttja soil also H2SO4-P increased. This was possibly induced by the precipitation of mobilized P as a Ca compound. The significance of pH in the extractability of soil P seemed somewhat to lessen as the amount of secondary P increased. The results were in accordance with the conception that liming improves the availability of inorganic P to plants and reduces the need for P fertilization. However, increasing of the soil pH involves the risk that P is more easily desorbed to the recipient water by the eroded soil material carried into the watercourse. Therefore, intensive liming is not recommendable close to the shoreline. Further, it should be taken into account that liming of lakes may also result in eutrophication as desorption of sedimentary inorganic P is enhanced.

  10. Can we predict uranium bioavailability based on soil parameters? Part 2: soil solution uranium concentration is not a good bioavailability index.

    Science.gov (United States)

    Vandenhove, H; Van Hees, M; Wannijn, J; Wouters, K; Wang, L

    2007-01-01

    The present study aimed to quantify the influence of soil parameters on uranium uptake by ryegrass. Ryegrass was established on eighteen distinct soils, spiked with (238)U. Uranium soil-to-plant transfer factors (TF) ranged from 0.0003 to 0.0340kgkg(-1). There was no significant relation between the U soil-to-plant transfer (or total U uptake or flux) and the uranium concentration in the soil solution or any other soil factor measured, nor with the U recovered following selective soil extractions. Multiple linear regression analysis resulted in a significant though complex model explaining up to 99% of variation in TF. The influence of uranium speciation on uranium uptake observed was featured: UO(2)(+2), uranyl carbonate complexes and UO(2)PO(4)(-) seem the U species being preferentially taken up by the roots and transferred to the shoots. Improved correlations were obtained when relating the uranium TF with the summed soil solution concentrations of mentioned uranium species.

  11. Analysis of perfluorinated carboxylic acids in soils II: optimization of chromatography and extraction.

    Science.gov (United States)

    Washington, John W; Henderson, W Matthew; Ellington, J Jackson; Jenkins, Thomas M; Evans, John J

    2008-02-15

    With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorooctanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary phases, two different liquid chromatography-tandem mass spectrometry (LC/MS/MS) systems, and eight combinations of sample-extract pretreatments, extractions and cleanups on three test soils. For the columns and systems we tested, we achieved the greatest analytical sensitivity for PFCAs using a column with a C(18) stationary phase in a Waters LC/MS/MS. In this system we achieved an instrument detection limit for PFOA of 270 ag/microL, equating to about 14 fg of PFOA on-column. While an elementary acetonitrile/water extraction of soils recovers PFCAs effectively, natural soil organic matter also dissolved in the extracts commonly imparts significant noise that appears as broad, multi-nodal, asymmetric peaks that coelute with several PFCAs. The intensity and elution profile of this noise is highly variable among soils and it challenges detection of low concentrations of PFCAs by decreasing the signal-to-noise contrast. In an effort to decrease this background noise, we investigated several methods of pretreatment, extraction and cleanup, in a variety of combinations, that used alkaline and unbuffered water, acetonitrile, tetrabutylammonium hydrogen sulfate, methyl-tert-butyl ether, dispersed activated carbon and solid-phase extraction. For the combined objectives of complete recovery and minimization of background noise, we have chosen: (1) alkaline pretreatment; (2) extraction with acetonitrile/water; (3) evaporation to dryness; (4) reconstitution with tetrabutylammonium-hydrogen-sulfate ion-pairing solution; (5) ion-pair extraction to methyl-tert-butyl ether; (6) evaporation to dryness; (7) reconstitution with 60/40 acetonitrile/water (v/v); and (8) analysis by LC/MS/MS. Using this method, we

  12. General well function for soil vapor extraction

    Science.gov (United States)

    Perina, Tomas

    2014-04-01

    This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.

  13. Formation and release of non-extractable 14C-Dicamba residues in soil under sterile and non-sterile regimes

    International Nuclear Information System (INIS)

    Gevao, Bondi; Jones, Kevin C.; Semple, Kirk T.

    2005-01-01

    The role of native soil microorganisms in the formation and release of non-extractable 14 C-residues, previously treated with 14 C-Dicamba, was investigated to examine their significance to the longer-term environmental effects on non-extractable pesticide residues. A 90 d study compared the fate of Dicamba under sterile and non-sterile regimes. In addition, soils were aged for 30 d and repeatedly extracted with a 0.01 M CaCl 2 solution, to an extraction end point, to produce non-extractable residues. The extracted soil containing non-extractable residues was mixed with clean soil that had been freshly spiked with non-labeled Dicamba at 0.2 mg kg -1 to increase the bulk volume of the soil and stimulate microbial activity. Sub-samples were then introduced into microcosms to compare the extent of microbially facilitated release and mineralisation with release rates in sterile microcosms. The results show that microorganisms play a significant role in the formation and release of non-extractable Dicamba residues. The release of 14 C-activity in sterile microcosms was linked to physical mixing of the extracted soil with field soil prior to the beginning of the incubations. The released 14 C-activity may be further mineralized, reincorporated into humus, or taken up by plants or other soil inhabiting biota

  14. Remediation of flare pit soils using supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, V.; Guigard, S.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil Engineering

    2005-09-01

    A laboratory study was conducted to examine the ability of supercritical fluid extraction (SFE) to remove petroleum hydrocarbons (PHCs) from two flare pit soils in Alberta. SFE is a technology for remediation of contaminated soils. In order to determine the optimal extraction conditions and to understand the effects of pressure, temperature, supercritical carbon dioxide flow rate, soil type, and extraction time on the extraction efficiency of SFE, extractions were performed on two flare pit soils at various pressures and temperatures. Chemicals in the study included diesel oil, SAE 10-30W motor oil, n-decane, hexadecane, tetratriacontane and pentacontane. The best extraction conditions were defined as conditions that result in a treated soil with a PHC concentration that meets the regulatory guidelines of the Canadian Council of Ministers of the Environment in the Canada-wide standard for PHC is soil. The study results indicate that the efficiency of the SFE process is solvent-density dependent for the conditions studied. The highest extraction efficiency for both soils was obtained at conditions of 24.1 MPa and 40 degrees C. An increase in pressure at a fixed temperature led to an increase in the extraction efficiency while an increase in temperature at a fixed pressure led to a decrease in the extraction efficiency. The treated soils were observed to be lighter in colour, drier, and grainier than the soil prior to extraction. It was concluded that SFE is an effective method for remediating flare pit soils. 63 refs., 4 tabs., 5 figs.

  15. The use of stable isotopes for Cr(VI) determination in silty-clay soil solution.

    Science.gov (United States)

    Zuliani, Tea; Sčančar, Janez; Milačič, Radmila

    2013-09-01

    In assessing the environmental hazard of Cr(VI) present in soil, exchangeable Cr(VI) is important, since it can be easily washed out from the upper part of the soil into subsurface soil, surface and ground water, and taken up by plants. The aim of this study was to evaluate the degree of species interconversion that may occur during the extraction of exchangeable Cr(VI) from silty-clay soil with phosphate buffer in order to establish an extraction method that would be effective, accurate and with minimal or no species interconversions. The Cr(VI) concentration in soil extracts was determined by speciated isotope dilution inductively coupled plasma mass spectrometry (SID-ICP-MS). The study was performed on soil samples from a field treated with tannery waste for 17 years. Samples were spiked by enriched stable isotopic solutions of (50)Cr(VI) and (53)Cr(III) that were added to phosphate buffers (0.1 M KH2PO4-K2HPO4 (pH 7.2) and/or 0.1 M K2HPO4 (pH 8)). To optimize extraction, mechanical shaking and/or ultrasound-assisted extraction were compared. The separation and detection of Cr species was performed by high-performance liquid chromatography (HPLC) ICP-MS. When mechanical shaking was applied, 90 % reduction of Cr(VI) was induced by extraction with 0.1 M KH2PO4-K2HPO4, while with 0.1 M K2HPO4 reduction was around 40 %. To shorten the extraction time and the possibility of species interconversions, ultrasound-assisted extraction was further applied only with 0.1 M K2HPO4. For total extraction of exchangeable Cr(VI) with a maximum 10 % reduction of Cr(VI), five consecutive ultrasound-assisted extractions were needed.

  16. Influence of extractable soil manganese on oxidation capacity of different soils in Korea

    Science.gov (United States)

    Chon, Chul-Min; Kim, Jae Gon; Lee, Gyoo Ho; Kim, Tack Hyun

    2008-08-01

    We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00-0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests ( r = 0.655-0.851; P Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).

  17. Extraction of rare earth elements from a contaminated cropland soil using nitric acid, citric acid, and EDTA.

    Science.gov (United States)

    Tang, Hailong; Shuai, Weitao; Wang, Xiaojing; Liu, Yangsheng

    2017-08-01

    Rare earth elements (REEs) contamination to the surrounding soil has increased the concerns of health risk to the local residents. Soil washing was first attempted in our study to remediate REEs-contaminated cropland soil using nitric acid, citric acid, and ethylene diamine tetraacetic acid (EDTA) for soil decontamination and possible recovery of REEs. The extraction time, washing agent concentration, and pH value of the washing solution were optimized. The sequential extraction analysis proposed by Tessier was adopted to study the speciation changes of the REEs before and after soil washing. The extract containing citric acid was dried to obtain solid for the X-ray fluorescence (XRF) analysis. The results revealed that the optimal extraction time was 72 h, and the REEs extraction efficiency increased as the agent concentration increased from 0.01 to 0.1 mol/L. EDTA was efficient to extract REEs over a wide range of pH values, while citric acid was around pH 6.0. Under optimized conditions, the average extraction efficiencies of the major REEs in the contaminated soil were 70.96%, 64.38%, and 62.12% by EDTA, nitric acid, and citric acid, respectively. The sequential extraction analyses revealed that most soil-bounded REEs were mobilized or extracted except for those in the residual fraction. Under a comprehensive consideration of the extraction efficiency and the environmental impact, citric acid was recommended as the most suitable agent for extraction of the REEs from the contaminated cropland soils. The XRF analysis revealed that Mn, Al, Si, Pb, Fe, and REEs were the major elements in the extract indicating a possibile recovery of the REEs.

  18. Determination of diagnostic standards on saturated soil extracts for cut roses grown in greenhouses.

    Science.gov (United States)

    Franco-Hermida, John Jairo; Quintero, María Fernanda; Cabrera, Raúl Iskander; Guzman, José Miguel

    2017-01-01

    This work comprises the theoretical determination and validation of diagnostic standards for the analysis of saturated soil extracts for cut rose flower crops (Rosa spp.) growing in the Bogota Plateau, Colombia. The data included 684 plant tissue analyses and 684 corresponding analyses of saturated soil extracts, all collected between January 2009 and June 2013. The tissue and soil samples were selected from 13 rose farms, and from cultivars grafted on the 'Natal Briar' rootstock. These concurrent samples of soil and plant tissues represented 251 production units (locations) of approximately 10,000 m2 distributed across the study area. The standards were conceived as a tool to improve the nutritional balance in the leaf tissue of rose plants and thereby define the norms for expressing optimum productive potential relative to nutritional conditions in the soil. To this end, previously determined diagnostic standard for rose leaf tissues were employed to obtain rates of foliar nutritional balance at each analyzed location and as criteria for determining the diagnostic norms for saturated soil extracts. Implementing this methodology to foliar analysis, showed a higher significant correlation for diagnostic indices. A similar behavior was observed in saturated soil extracts analysis, becoming a powerful tool for integrated nutritional diagnosis. Leaf analyses determine the most limiting nutrients for high yield and analyses of saturated soil extracts facilitate the possibility of correcting the fertigation formulations applied to soils or substrates. Recommendations are proposed to improve the balance in soil-plant system with which the possibility of yield increase becomes more probable. The main recommendations to increase and improve rose crop flower yields would be: continuously check pH values of SSE, reduce the amounts of P, Fe, Zn and Cu in fertigation solutions and carefully analyze the situation of Mn in the soil-plant system.

  19. Speciation of As(III), As(V), MMA and DMA in contaminated soil extracts by HPLC-ICP/MS

    Energy Technology Data Exchange (ETDEWEB)

    Bissen, M.; Frimmel, F.H. [Engler-Bunte-Institut, Univ. Karlsruhe (Germany)

    2000-05-01

    A method to separate and quantify two inorganic arsenic species As(III) and As(V) and two organic arsenic species, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), by HPLC-ICP/MS has been developed. The separation of arsenic species was achieved on the anionic exchange column IonPac {sup trademark} AS11 (Dionex) with NaOH as mobile phase. The technique was successfully applied to analyze extracts of two contaminated soils, sampled at a former tannery site (soil 1) and a former paint production site (soil 2). The soils were extracted at pH values similar to the natural environment. Extractions were performed at different pH values with 0.3 M ammonium oxalate (pH = 3), milli-Q water (pH = 5.8), 0.3 M sodium carbonate (pH = 8) and 0.3 M sodium bicarbonate (pH = 11). No organically bound arsenic was found in the extracts. As(V) was the major component. Only up to 0.04% of the total arsenic contained in soil 1 were mobilized. The highest amount of extracted arsenic was found at the highest pH. In the milli-Q water extract of soil 1 As(III) and As(V) were found. High amounts of As(V) were found in the extracts of soil 2. Up to 20% of the total arsenic bound to soil 2 constituents were released. The results show that the mobilization of arsenic depended on the pH value of the extraction solution and the kind of extracted soil. Dramatic consequences have to be expected for pH changes in the environment especially in cases where soils contain high amounts of mobile arsenic. (orig.)

  20. Six-phase soil heating accelerates VOC extraction from clay soil

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Roberts, J.S.; Bergsman, T.M.; Caley, S.M.; Heath, W.O.; Miller, M.C.; Moss, R.W.; Schalla, R.; Jarosch, T.R.; Eddy-Dilek, C.A.

    1994-08-01

    Six-Phase Soil Heating (SPSH) was demonstrated as a viable technology for heating low permeability soils containing volatile organic contaminants. Testing was performed as part of the Volatile Organic Compounds in Non-Arid Soils Integrated Demonstration (VOC Non-Arid ID) at the Savannah River Site. The soil at the integrated demonstration site is contaminated with perchloroethylene (PCE) and trichloroethylene (TCE); the highest soil contamination occurs in clay-rich zones that are ineffectively treated by conventional soil vapor extraction due to the very low permeability of the clay. The SPSH demonstration sought to heat the clay zone and enhance the performance of conventional soil vapor extraction. Thermocouples at thirty locations quantified the areal and vertical heating within the treated zone. Soil samples were collected before and after heating to quantify the efficacy of heat-enhanced vapor extraction of PCE and TCE from the clay soil. Samples were taken (essentially every foot) from six wells prior to heating and adjacent to these wells after heating. Results show that contaminant removal from the clay zone was 99.7% (median) within the electrode array. Outside the array where the soil was heated, but to only 50 degrees C, the removal efficiency was 93%, showing that heating accelerated the removal of VOCs from the clay soil. The accelerated remediation resulted from effective heating of the contaminated clay zone by SPSH. The temperature of the clay zone increased to 100 degrees C after 8 days of heating and was maintained near 100 degrees C for 17 days. Electrical heating removed 19,000 gal of water from the soil as steam, with peak removal rate of 1,500 gpd of condensed steam

  1. Case study of shallow soil mixing and soil vacuum extraction remediation project

    International Nuclear Information System (INIS)

    Carey, M.J.; Day, S.R.; Pinewski, R.; Schroder, D.

    1995-01-01

    Shallow Soil Mixing (SSM) and Soil Vacuum Extraction (SVE) are techniques which have been increasingly relied on for the insitu remediation of contaminated soils. The primary applications of SSM have been to mix cement, bentonite, or other reagents to modify properties and thereby remediate contaminated soils or sludges. Soil vacuum extraction has been used at numerous applications for insitu removal of contaminants from soils. At a recent project in southern Ohio, the two technologies were integrated and enhanced to extract volatile organic compounds (VOCs) from soils at a Department of Energy facility. Advantages of the integrated SSM/SVE technology over alternative technologies include a relatively rapid remediation compared to other in-situ techniques at a lower cost, less exposure of waste to the surface environment and elimination of off-site disposal. These advantages led to the selection of the use of both technologies on the project in Southern Ohio. The information presented in this paper is intended to provide Engineers and owners with the level of understanding necessary to apply soil mixing and vacuum extraction technology to a specific site. The most important steps in implementing the technology are site investigation, feasibility estimate, selection of performance criteria, selection of appropriate materials, bench scale testing and construction

  2. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  3. Development of an extraction method for perchlorate in soils.

    Science.gov (United States)

    Cañas, Jaclyn E; Patel, Rashila; Tian, Kang; Anderson, Todd A

    2006-03-01

    Perchlorate originates as a contaminant in the environment from its use in solid rocket fuels and munitions. The current US EPA methods for perchlorate determination via ion chromatography using conductivity detection do not include recommendations for the extraction of perchlorate from soil. This study evaluated and identified appropriate conditions for the extraction of perchlorate from clay loam, loamy sand, and sandy soils. Based on the results of this evaluation, soils should be extracted in a dry, ground (mortar and pestle) state with Milli-Q water in a 1 ratio 1 soil ratio water ratio and diluted no more than 5-fold before analysis. When sandy soils were extracted in this manner, the calculated method detection limit was 3.5 microg kg(-1). The findings of this study have aided in the establishment of a standardized extraction method for perchlorate in soil.

  4. Effects of Land-Applied Ammonia Scrubber Solutions on Yield, Nitrogen Uptake, Soil Test Phosphorus, and Phosphorus Runoff.

    Science.gov (United States)

    Martin, Jerry W; Moore, Philip A; Li, Hong; Ashworth, Amanda J; Miles, Dana M

    2018-03-01

    Ammonia (NH) scrubbers reduce amounts of NH and dust released from animal rearing facilities while generating nitrogen (N)-rich solutions, which may be used as fertilizers. The objective of this study was to determine the effects of various NH scrubber solutions on forage yields, N uptake, soil-test phosphorus (P), and P runoff. A small plot study was conducted using six treatments: (i) an unfertilized control, (ii) potassium bisulfate (KHSO) scrubber solution, (iii) aluminum sulfate [Al(SO) ⋅14HO, alum] scrubber solution, (iv) sodium bisulfate (NaHSO) scrubber solution, (v) sulfuric acid (HSO) scrubber solution, and (vi) ammonium nitrate (NHNO) fertilizer. The scrubber solutions were obtained from ARS Air Scrubbers attached to commercial broiler houses. All N sources were applied at a rate of 112 kg N ha. Plots were harvested approximately every 4 wk and soil-test P measurements were made, then a rainfall simulation study was conducted. Cumulative forage yields were greater ( scrubber solutions than for alum (6.7 Mg ha) or HSO (6.5 Mg ha) scrubber solutions or for NHNO (6.9 Mg ha). All N sources resulted in higher yields than the control (5.1 Mg ha). The additional potassium in the KHSO treatment likely resulted in higher yields. Although Mehlich-III-extractable P was not affected, water-extractable P in soil was lowered by the alum-based scrubber solution, which also resulted in lower P runoff. This study demonstrates that N captured using NH scrubbers is a viable N fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Effect of humic acid on the underpotential deposition-stripping voltammetry of copper in acetic acid soil extract solutions at mercaptoacetic acid-modified gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Gregoire; Beni, Valerio; Dillon, Patrick H.; Barry, Thomas; Arrigan, Damien W.M

    2004-05-24

    Electrochemical measurements were undertaken for the investigation of the underpotential deposition-stripping process of copper at bare and modified gold electrodes in 0.11 M acetic acid, the first fraction of the European Union's Bureau Communautaire de References (BCR) sequential extraction procedure for fractionating metals within soils and sediments. Gold electrodes modified with mercaptoacetic acid showed higher sensitivity for the detection of copper than bare gold electrodes, both in the absence and in the presence of humic acid in acetic acid solutions, using the underpotential deposition-stripping voltammetry (UPD-SV) method. In the presence of 50 mg l{sup -1} of humic acid, the mercaptoacetic acid modified electrode proved to be 1.5 times more sensitive than the bare gold electrode. The mercaptoacetic acid monolayer formed on the gold surface provided efficient protection against the adsorption of humic acid onto the gold electrode surface. Variation of the humic acid concentration in the solution showed little effect on the copper stripping signal at the modified electrode. UPD-SV at the modified electrode was applied to the analysis of soil extract samples. Linear correlation of the electrochemical results with atomic spectroscopic results yielded the straight-line equation y ({mu}g l{sup -1}) = 1.10x - 44 (ppb) (R=0.992, n=6), indicating good agreement between the two methods.

  6. Role of Various Extractants in Removing Group-IIB Elements of Soils Incubated with EDTA

    Directory of Open Access Journals (Sweden)

    Tanmoy Karak

    2004-01-01

    Full Text Available This paper presents the results of an experimental investigation undertaken to evaluate different extractant solutions viz. HCl, Mg(NO32, and DTPA with the range of concentration from 0.001 to 0.1N after incubation with group-IIB metals (Zn, Cd, and Hg and EDTA to understand the capability to remove Zn, Cd, and Hg from soils. Two noncontaminated soils, one acidic (GHL and the other alkaline (KAP, in reaction were taken from an agricultural field of West Bengal, India for this investigation. Experiments were conducted on these two soils spiked with ZnII, CdII, and HgII in concentrations of 612, 321, and 215 mg/kg for soil GHL and 778, 298, and 157 mg/kg for soil KAP, respectively, which simulate typical electroplating waste contamination. The removal of Zn, Cd, and Hg in soil GHL within the range of HCl concentrations was 8.2–16.5, 12.2–19.1, and 4.3–6.9 whereas these were 6.5–7.6, 8.5–14.1, and 3.2–5.2 in soil KAP. The removal of Zn, Cd, and Hg in soil GHL within the range of Mg(NO32 concentrations were 12.2–28.5, 19.1–24.6, and 18.2–19.1 whereas these were 9.1–12.1, 8.3–12.1, and 10.6–48.1 in soil KAP. For DTPA extractant, the percent removal of metal was found to be significantly higher than the other two extractants, which corroborates that DTPA is a better extractant for soil cleaning.

  7. Soil solution Ni concentrations over which Kd is constant in Japanese agricultural soils

    International Nuclear Information System (INIS)

    Kamei-Ishikawa, Nao; Uchida, Shigeo; Tagami, Keiko; Satta, Naoya

    2011-01-01

    The soil-soil solution distribution coefficient (K d ) is one of the most important parameters required by the models used for radioactive waste disposal environmental impact assessment. The models are generally based on the assumption that K d is independent of the element concentration in soil solution. However, at high soil solution concentrations, this assumption is not valid. Since the sorption of most radionuclides in soil is influenced by their stable isotope concentrations, it is necessary to consider if the range in the naturally occurring stable isotope concentrations in the soil solution is within the range over which K d is valid. The objective of this study was to determine if the K d for nickel (Ni) can be assumed to be constant over the ranges of stable Ni concentration in five main Japanese agricultural soil types. To obtain Ni sorption isotherms for five Japanese soils, two types of batch sorption tests were carried out using radioactive 63 Ni as a tracer. The concentration at which the relationship between soil and soil solution concentration became nonlinear was determined using the two types of sorption isotherms: the Langmuir and Henry isotherms. The result showed that the Ni concentration in the soil solution at which the assumption of a constant K d becomes valid is at least ten times higher than the natural Ni concentrations in solutions of Japanese agricultural soils. This value is sufficient to treat K d for Ni as constant for environmental impact assessment models for the disposal of radioactive waste. (author)

  8. Extractability of plutonium-238 and curium-242 from a contaminated soil as a function of pH and certain soil components. CH3COOH-NH4OH system

    International Nuclear Information System (INIS)

    Nishita, H.

    1978-01-01

    Extractability of 238 Pu and 242 Cm from an artificially contaminated soil as a function of pH and certain soil components was examined with an equilibrium batch technique by the use of a CH 3 COOH--NH 4 OH extracting system. The influence of various soil components on 238 Pu and 242 Cm extractability was determined indirectly by selective removal of the components from the soil. The soil organic matter appeared to have a major influence on the extractability of these radionuclides. Though to a lesser extent, free iron oxides exerted an influence also. Before removal of soil organic matter, the extractability curves for these radionuclides were qualitatively similar in general form. The nature of this form is discussed. Within the contaminated, untreated soil, the 238 Pu and 242 Cm extractability ranged from 0.60 to 30.8% and 0.11 to 14.83% of dose, respectively, depending on the pH of the extracting solution. The liquid-to soild-phase ratio (K'/sub d/) values ranged from 3.5 x 10 -4 to 2.7 x 10 -2 for 238 Pu and 0.9 x 10 -4 to 1.4 x 10 -2 for 242 Cm. Very low extractability occurred in the pH range from approx. 8.6 to approx. 9.7 for 238 Pu and from 7.6 to approx. 9.7 for 242 Cm

  9. Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils

    International Nuclear Information System (INIS)

    Ivanov, Krasimir; Zaprjanova, Penka; Petkova, Milena; Stefanova, Violeta; Kmetov, Veselin; Georgieva, Deyana; Angelova, Violina

    2012-01-01

    The most widely used method for determination of total phosphorus in soils is perchloric acid digestion, followed by a colorimetric assay to measure the concentration of P in solution. The first part of this study compares an alternative digestion method, using aqua regia (ISO 11466 and EPA Method 3052), with perchloric acid digestion procedure, and also compares inductively coupled plasma mass spectroscopy (ICP-MS) with colorimetry for the measurement of P on the basis of five internationally certified standard soils and 20 real-life soils with widely different extractability of phosphorus. The phosphorus concentration was determined by means of the reduced phosphomolybdenum blue and ICP-MS. The relationship between methods has been examined statistically. Good agreement of the results from colorimetry and ICP-MS was established for all certified soils. The microwave-assisted digestion with aqua regia was comparable, both in precision and accuracy, with the hot plate aqua regia method. The phosphorus concentration found with the HF + HClO 4 digestion method was in good agreement with the certified mean values, while the superiority in extracting phosphorus, when compared to other methods, was obvious. Soil testing for plant-available phosphorus in Bulgaria and many European countries is most commonly conducted using acid Ca-lactate extraction (Egner–Riehm test) and alkaline sodium bicarbonate extraction (BDS ISO 11263:2002), based on Olsen test, followed by a colorimetric assay to measure the concentration of P in solution. The second part of this study reports the differences between Egner–Riehm test and BDS ISO 11263:2002 measured colorimetrically and by ICP-MS. Fifty soils were selected from South Bulgaria to represent a wide range of soil properties. It was established that ICP-MS consistently yielded significantly higher P concentrations than the colorimetric method in both extraction tests, and the relative differences were greatest in soils with lower P

  10. Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Krasimir, E-mail: kivanov1@abv.bg [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria); Zaprjanova, Penka [Tobacco and Tobacco Products Institute, Plovdiv (Bulgaria); Petkova, Milena [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria); Stefanova, Violeta; Kmetov, Veselin; Georgieva, Deyana [Department of Analytical Chemistry, Plovdiv University ' Paisii Hilendarski,' Plovdiv (Bulgaria); Angelova, Violina [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria)

    2012-05-15

    The most widely used method for determination of total phosphorus in soils is perchloric acid digestion, followed by a colorimetric assay to measure the concentration of P in solution. The first part of this study compares an alternative digestion method, using aqua regia (ISO 11466 and EPA Method 3052), with perchloric acid digestion procedure, and also compares inductively coupled plasma mass spectroscopy (ICP-MS) with colorimetry for the measurement of P on the basis of five internationally certified standard soils and 20 real-life soils with widely different extractability of phosphorus. The phosphorus concentration was determined by means of the reduced phosphomolybdenum blue and ICP-MS. The relationship between methods has been examined statistically. Good agreement of the results from colorimetry and ICP-MS was established for all certified soils. The microwave-assisted digestion with aqua regia was comparable, both in precision and accuracy, with the hot plate aqua regia method. The phosphorus concentration found with the HF + HClO{sub 4} digestion method was in good agreement with the certified mean values, while the superiority in extracting phosphorus, when compared to other methods, was obvious. Soil testing for plant-available phosphorus in Bulgaria and many European countries is most commonly conducted using acid Ca-lactate extraction (Egner-Riehm test) and alkaline sodium bicarbonate extraction (BDS ISO 11263:2002), based on Olsen test, followed by a colorimetric assay to measure the concentration of P in solution. The second part of this study reports the differences between Egner-Riehm test and BDS ISO 11263:2002 measured colorimetrically and by ICP-MS. Fifty soils were selected from South Bulgaria to represent a wide range of soil properties. It was established that ICP-MS consistently yielded significantly higher P concentrations than the colorimetric method in both extraction tests, and the relative differences were greatest in soils with lower

  11. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  12. Degradation kinetics of ptaquiloside in soil and soil solution.

    Science.gov (United States)

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun

    2008-02-01

    Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glycoside produced in bracken (Pteridium aquilinum (L.) Kuhn), a widespread, aggressive weed. Transfer of PTA to soil and soil solution eventually may contaminate groundwater and surface water. Degradation rates of PTA were quantified in soil and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction was similar in all horizons, with the rate constant k(1F) ranging between 0.23 and 1.5/h. The slow degradation, with the rate constant k(1S) ranging between 0.00067 and 0.029/ h, was more than twice as fast in topsoils compared to subsoils, which is attributable to higher microbial activity in topsoils. Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA by clay silicates. Ptaquiloside appeared to be stable in all soil solutions, in which no degradation was observed within a period of 28 d, in strong contrast to previous studies of hydrolysis rates in artificial aqueous electrolytes. The present study predicts that the risk of PTA leaching is controlled mainly by the residence time of pore water in soil, soil microbial activity, and content of organic matter and clay silicates.

  13. Online recovery of radiocesium from soil, cellulose and plant samples by supercritical fluid extraction employing crown ethers and calix-crown derivatives as extractants

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.

    2014-01-01

    Two crown ethers (CEs) viz. dibenzo18crown6, and dibenzo12crown7 and three calix-crown derivatives viz. (octyloxy)calix[4]arene-mono-crown-6 (CMC), calix[4]arene-bis(o-benzocrown-6) (CBC), and calix[4]arene-bis(naphthocrown-6) (CNC) were evaluated for the recovery of 137 Cs from synthetic soil, cellulose (tissue paper), and plant samples by supercritical fluid extraction (SFE) route. CEs showed poor extraction of 137 Cs from soil matrix. SFE experiments using 1 × 10 -3 M solutions of CMC, CBC and CNC in acetonitrile at 3 M HNO 3 as modifiers displayed better extraction of 137 Cs, viz. 21(±2) % (CMC), 16.5(±3) % (CBC), and 4(±1) % (CNC). It was not possible to recover 137 Cs quantitatively from soil matrix. The inefficient extraction of 137 Cs from soil matrix was attributed to its incorporation into the interstitial sites. Experiments on tissue papers using CMC showed near quantitative 137 Cs recovery. On the other hand, recovery from plant samples varied between 50(±5) % (for stems) and 75(±5) % (for leaves). (author)

  14. Association of radionuclides with different molecular size fractions in soil solution: implications for plant uptake

    International Nuclear Information System (INIS)

    Nisbet, A.F.; Shaw, S.; Salbu, B.

    1993-01-01

    The feasibility of using hollow fibre ultrafiltration to determine the molecular size distribution of radionuclides in soil solution was investigated. The physical and chemical composition of soil plays a vital role in determining radionuclide uptake by plant roots. Soil solution samples were extracted from loam, peat and sand soils that had been artificially contaminated with 137 Cs, 90 Sr, 239 Pu and 241 Am six years previously as part of a five-year lysimeter study on radionuclide uptake to crops. Ultrafiltration of soil solution was performed using hollow fibre cartridges with a nominal molecular weight cut off of 3 and 10 kD. The association of 137 Cs, 90 Sr, 239 Pu and 241 Am with different molecular size fractions of the soil solution is discussed in terms of radionuclide bioavailability to cabbage grown in the same three soils. 137 Cs and 90 Sr were present in low molecular weight forms and as such were mobile in soil and potentially available for uptake by the cabbage. In contrast, a large proportion (61-87%) of the 239 Pu and 241 Am were associated with colloidal and high molecular weight material and therefore less available for uptake by plant roots. The contribution from low molecular weight species of 239 Pu and 241 Am to the total activity in soil solution decreased in the order loam ≥ peat ≥ sand. Association of radionuclides with low molecular weight species of less than 3 kD did not, however, automatically imply availability to plants. (author)

  15. EXTRACTION OF MONOAZO DYES BY HYDROPHILIC EXTRACTANTS FROM AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Y. I. Korenman

    2012-01-01

    Full Text Available The extraction of mono azo dyes E102, E122, E110, E124, E129 from aqueous solutions with hydrophilic solvents (alcohols, esters, ketones and polymers (poly-N-vinylamides, polyethylene glycol was studied. The main regularities of extraction are established. The distribution coefficients and degree of extraction of dyes was estimate. The influence of the nature of solvents and polymers on the extraction of dyes from aqueous solutions are established.

  16. Integrated vacuum extraction/pneumatic soil fracturing system for remediation of low permeability soil

    International Nuclear Information System (INIS)

    Plaines, A.L.; Piniewski, R.J.; Yarbrough, G.D.

    1994-01-01

    There is wide use of vacuum extraction to remove volatile and semi-volatile organic compounds (VOCs) from unsaturated soil. At sites with soil of low permeability, VOC extraction rates may not be sufficient to meet soil clean-up objectives within the desired time frame. During vacuum extraction in low permeability soil, the diffusion rates of VOCs through the soil matrix may limit VOC removal rates. An increase in the number of subsurface paths for advective flow through the contaminated zone results in a larger mass of contaminant being removed in a shorter time frame, accelerating site remediation. One technique for increasing the number of subsurface flow paths is Terra Vac's process of pneumatic soil fracturing (PSF). In this process, pressurized air is injected into the subsurface, creating micro-fractures for the vacuum extraction system to withdraw contaminants. Similar to hydraulic fracturing techniques long used in the petroleum industry for increasing yield from oil and gas production wells, this technique has applications for soil remediation in low permeability conditions. Two case studies, one in Louisiana at a gasoline service station and one at a manufacturing plant in New York, are presented

  17. Supercritical Fluid Extraction of Plutonium and Americium from Soil

    International Nuclear Information System (INIS)

    Fox, R.V.; Mincher, B.J.

    2002-01-01

    Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65 C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% ± 6.0 extraction of americium and 69% ± 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% ± 3.0 extraction of americium and 83% ± 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95 C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil

  18. Effect of different levels of magnesium saturation on the extractability of native and applied zinc in red and alluvial soils

    International Nuclear Information System (INIS)

    Deb, D.L.; Das, S.K.; Sachdev, Pamila

    1978-01-01

    The investigation showed that Mg saturation of soil has a beneficial effect on the extractibility of native and applied zinc in soil. The soils used in the investigation were alluvial soil from Delhi and red soil from Karnataka under upland and waterlogged conditions. Zinc was applied in the form of ZnSO 4 solution labelled with 65 Zn. (M.G.B.)

  19. Searching for life on Mars: degradation of surfactant solutions used in organic extraction experiments.

    Science.gov (United States)

    Court, Richard W; Sims, Mark R; Cullen, David C; Sephton, Mark A

    2014-09-01

    Life-detection instruments on future Mars missions may use surfactant solutions to extract organic matter from samples of martian rocks. The thermal and radiation environments of space and Mars are capable of degrading these solutions, thereby reducing their ability to dissolve organic species. Successful extraction and detection of biosignatures on Mars requires an understanding of how degradation in extraterrestrial environments can affect surfactant performance. We exposed solutions of the surfactants polysorbate 80 (PS80), Zonyl FS-300, and poly[dimethylsiloxane-co-[3-(2-(2-hydroxyethoxy)ethoxy)propyl]methylsiloxane] (PDMSHEPMS) to elevated radiation and heat levels, combined with prolonged storage. Degradation was investigated by measuring changes in pH and electrical conductivity and by using the degraded solutions to extract a suite of organic compounds spiked onto grains of the martian soil simulant JSC Mars-1. Results indicate that the proton fluences expected during a mission to Mars do not cause significant degradation of surfactant compounds. Solutions of PS80 or PDMSHEPMS stored at -20 °C are able to extract the spiked standards with acceptable recovery efficiencies. Extraction efficiencies for spiked standards decrease progressively with increasing temperature, and prolonged storage at 60°C renders the surfactant solutions ineffective. Neither the presence of ascorbic acid nor the choice of solvent unequivocally alters the efficiency of extraction of the spiked standards. Since degradation of polysorbates has the potential to produce organic compounds that could be mistaken for indigenous martian organic matter, the polysiloxane PDMSHEPMS may be a superior choice of surfactant for the exploration of Mars.

  20. Comparison of soil solution sampling techniques to assess metal fluxes from contaminated soil to groundwater.

    Science.gov (United States)

    Coutelot, F; Sappin-Didier, V; Keller, C; Atteia, O

    2014-12-01

    The unsaturated zone plays a major role in elemental fluxes in terrestrial ecosystems. A representative chemical analysis of soil pore water is required for the interpretation of soil chemical phenomena and particularly to assess Trace Elements (TEs) mobility. This requires an optimal sampling system to avoid modification of the extracted soil water chemistry and allow for an accurate estimation of solute fluxes. In this paper, the chemical composition of soil solutions sampled by Rhizon® samplers connected to a standard syringe was compared to two other types of suction probes (Rhizon® + vacuum tube and Rhizon® + diverted flow system). We investigated the effects of different vacuum application procedures on concentrations of spiked elements (Cr, As, Zn) mixed as powder into the first 20 cm of 100-cm columns and non-spiked elements (Ca, Na, Mg) concentrations in two types of columns (SiO2 sand and a mixture of kaolinite + SiO2 sand substrates). Rhizon® was installed at different depths. The metals concentrations showed that (i) in sand, peak concentrations cannot be correctly sampled, thus the flux cannot be estimated, and the errors can easily reach a factor 2; (ii) in sand + clay columns, peak concentrations were larger, indicating that they could be sampled but, due to sorption on clay, it was not possible to compare fluxes at different depths. The different samplers tested were not able to reflect the elemental flux to groundwater and, although the Rhizon® + syringe device was more accurate, the best solution remains to be the use of a lysimeter, whose bottom is kept continuously at a suction close to the one existing in the soil.

  1. Extraction of Plutonium From Spiked INEEL Soil Samples Using the Ligand-Assisted Supercritical Fluid Extraction (LA-SFE) Technique

    International Nuclear Information System (INIS)

    Fox, R.V.; Mincher, B.J.; Holmes, R.G.G.

    1999-01-01

    In order to investigate the effectiveness of ligand-assisted supercritical fluid extraction for the removal of transuranic contaminations from soils an Idaho National Engineering and Environmental Laboratory (INEEL) silty-clay soil sample was obtained from near the Radioactive Waste Management Complex area and subjected to three different chemical preparations before being spiked with plutonium. The spiked INEEL soil samples were subjected to a sequential aqueous extraction procedure to determine radionuclide portioning in each sample. Results from those extractions demonstrate that plutonium consistently partitioned into the residual fraction across all three INEEL soil preparations whereas americium partitioned 73% into the iron/manganese fraction for soil preparation A, with the balance partitioning into the residual fraction. Plutonium and americium were extracted from the INEEL soil samples using a ligand-assisted supercritical fluid extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction efficiencies ranging from 14% to 19%. After a second round wherein the initial extraction parameters were changed, the plutonium extraction efficiencies increased to 60% and as high as 80% with the americium level in the post-extracted soil samples dropping near to the detection limits. The third round of experiments are currently underway. These results demonstrate that the ligand-assisted supercritical fluid extraction technique can effectively extract plutonium from the spiked INEEL soil preparations

  2. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    Directory of Open Access Journals (Sweden)

    Christopher Ash

    Full Text Available Shredded card (SC was assessed for use as a sorbent of potentially toxic elements (PTE carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water. We further assessed SC for retention of PTE, using acidified water (pH 3.4. Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49 were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC. In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC. In water, only Pb showed high sorption (191x more Pb in leachate without SC. In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil, and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC. A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption. SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing.

  3. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions

    Science.gov (United States)

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  4. Estimating the impact of seawater on the production of soil water-extractable organic carbon during coastal erosion.

    Science.gov (United States)

    Dou, Fugen; Ping, Chien-Lu; Guo, Laodong; Jorgenson, Torre

    2008-01-01

    The production of water-extractable organic carbon (WEOC) during arctic coastal erosion and permafrost degradation may contribute significantly to C fluxes under warming conditions, but it remains difficult to quantify. A tundra soil collected near Barrow, AK, was selected to evaluate the effects of soil pretreatments (oven drying vs. freeze drying) as well as extraction solutions (pure water vs. seawater) on WEOC yields. Both oven drying and freeze drying significantly increased WEOC release compared with the original moist soil samples; dried samples released, on average, 18% more WEOC than did original moist samples. Similar results were observed for the production of low-molecular-weight dissolved organic C. However, extractable OC released from different soil horizons exhibited differences in specific UV absorption, suggesting differences in WEOC quality. Furthermore, extractable OC yields were significantly less in samples extracted with seawater compared with those extracted with pure water, likely due to the effects of major ions on extractable OC flocculation. Compared with samples from the active horizons, upper permafrost samples released more WEOC, suggesting that continuously frozen samples were more sensitive than samples that had experienced more drying-wetting cycles in nature. Specific UV absorption of seawater-extracted OC was significantly lower than that of OC extracted using pure water, suggesting more aromatic or humic substances were flocculated during seawater extraction. Our results suggest that overestimation of total terrestrial WEOC input to the Arctic Ocean during coastal erosion could occur if estimations were based on WEOC extracted from dried soil samples using pure water.

  5. Organic components and plutonium and americium state in soils and soil solutions

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Kimlenko, I.M.

    2002-01-01

    The fraction composition of humus substances of different type soils and soil solutions have been studied. A distribution of Pu 239, 240 and Am 241 between humus substances fractions of different dispersity and mobility in soil-vegetation cover has been established. It was shown that humus of organic soils fixes plutonium and americium in soil medium in greater extent than humus of mineral soils. That leads to lower migration ability of radionuclides in organic soils. The lower ability of americium to form difficultly soluble organic and organic-mineral complexes and predomination of its anion complexes in soil solutions may be a reason of higher mobility and biological availability of americium in comparison to plutonium during soil-plant transfer (authors)

  6. LC-MS/MS quantitative analysis of reducing carbohydrates in soil solutions extracted from crop rhizospheres.

    Science.gov (United States)

    McRae, G; Monreal, C M

    2011-06-01

    A simple, sensitive, and specific analytical method has been developed for the quantitative determination of 15 reducing carbohydrates in the soil solution of crop rhizosphere. Reducing carbohydrates were derivatized with 1-phenyl-3-methyl-5-pyrazolone, separated by reversed-phase high-performance liquid chromatography and detected by electrospray ionization tandem mass spectrometry. Lower limits of quantitation of 2 ng/mL were achieved for all carbohydrates. Quantitation was performed using peak area ratios (analyte/internal standard) and a calibration curve spiked in water with glucose-d(2) as the internal standard. Calibration curves showed excellent linearity over the range 2-100 ng/mL (10-1,000 ng/mL for glucose). The method has been tested with quality control samples spiked in water and soil solution samples obtained from the rhizosphere of wheat and canola and has been found to provide accurate and precise results.

  7. Filter Membrane Effects on Water-Extractable Phosphorus Concentrations from Soil.

    Science.gov (United States)

    Norby, Jessica; Strawn, Daniel; Brooks, Erin

    2018-03-01

    To accurately assess P concentrations in soil extracts, standard laboratory practices for monitoring P concentrations are needed. Water-extractable P is a common analytical test to determine P availability for leaching from soils, and it is used to determine best management practices. Most P analytical tests require filtration through a filter membrane with 0.45-μm pore size to distinguish between particulate and dissolved P species. However, filter membrane type is rarely specified in method protocols, and many different types of membranes are available. In this study, three common filter membrane materials (polyether sulfone, nylon, and nitrocellulose), all with 0.45-μm pore sizes, were tested for analytical differences in total P concentrations and dissolved reactive P (DRP) concentrations in water extracts from six soils sampled from two regions. Three of the extracts from the six soil samples had different total P concentrations for all three membrane types. The other three soil extracts had significantly different total P results from at least one filter membrane type. Total P concentration differences were as great as 35%. The DRP concentrations in the extracts were dependent on filter type in five of the six soil types. Results from this research show that filter membrane type is an important parameter that affects concentrations of total P and DRP from soil extracts. Thus, membrane type should be specified in soil extraction protocols. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Solute transport and extraction by a single root in unsaturated soils: model development and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaisoo; Sung, Kijune; Corapcioglu, M. Yavuz; Drew, Malcolm C

    2004-09-01

    A contaminant transport model was developed to simulate the fate and transport of organic compounds such as TNT (2,4,6-trinitrotoluene), using the single-root system. Onions were planted for this system with 50-ml plastic tubes. Mass in the soil, soil solution, root and leaf was monitored using {sup 14}C-TNT. Model parameters were acquired from the experiments in the single-root system and were used to simulate total TNT concentration in soil, providing the average concentrations in the rhizosphere and bulk soil as well as root and leaf compartments. Because the existing RCF (root concentration factor) and TSCF (transpiration stream concentration factor) equations based on log K{sub ow} (octanol-water partition coefficient) were not correlated to TNT uptake, a new term, root uptake rate (R{sub ur}), and a new T{sub scf} equation, based on the experimental data, were introduced in the proposed model. The results from both modeling and experimental studies showed higher concentrations of TNT in the rhizosphere than in the bulk soil, because mass transported from the surrounding soil into the rhizosphere was higher than that by root uptake.

  9. Cadmium and zinc in plants and soil solutions from contaminated soils

    DEFF Research Database (Denmark)

    Lorenz, S.E.; Hamon, R.E.; Holm, P.E.

    1997-01-01

    In an experiment using ten heavy metal-contaminated soils from six European countries, soil solution was sampled by water displacement before and after the growth of radish. Concentrations of Cd, Zn and other elements in solution (K, Ca, Mg, Mn) generally decreased during plant growth, probably...

  10. NH4NO3 extractable trace element contents of soil samples prepared for proficiency testing--a stability study.

    Science.gov (United States)

    Traub, H; Scharf, H

    2001-06-01

    In view of its intended use as a sample for proficiency testing or as a reference material the stability of the extractable trace element contents of a soil from an irrigation field was tested using the extraction with 1 mol/L ammonium nitrate solution according to DIN 19730. Therefore, changes of the extractability of sterilized and non sterilized soil samples stored at different temperatures were evaluated over a period of 18 months. Sets of bottles were kept at -20 degrees C, +4 degrees C, about +20 degrees C and +40 degrees C, respectively. The NH4NO3 extractable contents of Cd, Cr, Cu, Ni, Pb and Zn were determined immediately after bottling and then after 3, 6, 12 and 18 months with ICP-AES or ETAAS. Appropriate storage conditions are of utmost importance to prevent deterioration of soil samples prepared for the determination of NH4NO3 extractable trace element contents. Temperatures above +20 degrees C must be avoided. The observed changes in the extractability of the metals (especially for Cr and Cu) most likely could be related to thermal degradation of the organic matter of the soil. There is no need to sterilize dry soil samples, because microbiological activity in soils with a low moisture content appears to be negligible with regard to trace element mobilization.

  11. Study of reactive solutes transport and PAH migration in unsaturated soils

    International Nuclear Information System (INIS)

    Gujisaite, V.; Simonnot, M.O.; Gujisaite, V.; Morel, J.L.; Ouvrard, S.; Simonnot, M.O.; Gaudet, J.P.

    2005-01-01

    Experimental studies about solute transport in soil have most of the time been conducted under saturated conditions, whereas studies with unsaturated media are usually limited to hydrodynamic analysis. Those are mainly concerning the prediction of water flow, which is the main vector for the transport of contaminants in soil. Only a few studies have made the link between unsaturated flow and physical, chemical and biological interactions, which are controlling the availability of pollutants. However, the presence of a gaseous phase in soil can modify not only the movement of soil solution, but also chemical interactions and exchanges between soil aggregates and solution. Study of reactive solute transport in the vadose zone seems thus to be a necessary stage to predict contaminant fate in natural soils, for risk assessment as well as for the design of effective processes for the remediation of contaminated soils. This question is the main objective of the present work developed in the frame of our French Scientific Interest Group Industrial Wastelands called 'GISFI' (www.gisfi.prd.fr), based around a scientific and technological project dedicated to acquisition of knowledge for sustainable requalification of degraded sites polluted by past industrial activities. We will focus here on Polycyclic Aromatic Hydrocarbons (PAH), which are among the most widely discussed environmental contaminants because of their toxicity for human health and ecosystems. They are present in large quantities in soils polluted by former industrial activities, especially in relation to the coal extraction, exploitation and treatment. An experimental system has been specifically designed at the laboratory scale to carry out experiments under controlled conditions, with an unsaturated steady-state flow. The first experiments are performed on model soils, in order to investigate unsaturated steady-state flow in relation to interactions mechanisms. We have thus chosen to use a sandy

  12. Comparison of Chemical Extraction Methods for Determination of Soil Potassium in Different Soil Types

    Science.gov (United States)

    Zebec, V.; Rastija, D.; Lončarić, Z.; Bensa, A.; Popović, B.; Ivezić, V.

    2017-12-01

    Determining potassium supply of soil plays an important role in intensive crop production, since it is the basis for balancing nutrients and issuing fertilizer recommendations for achieving high and stable yields within economic feasibility. The aim of this study was to compare the different extraction methods of soil potassium from arable horizon of different types of soils with ammonium lactate method (KAL), which is frequently used as analytical method for determining the accessibility of nutrients and it is a common method used for issuing fertilizer recommendations in many Europe countries. In addition to the ammonium lactate method (KAL, pH 3.75), potassium was extracted with ammonium acetate (KAA, pH 7), ammonium acetate ethylenediaminetetraacetic acid (KAAEDTA, pH 4.6), Bray (KBRAY, pH 2.6) and with barium chloride (K_{BaCl_2 }, pH 8.1). The analyzed soils were extremely heterogeneous with a wide range of determined values. Soil pH reaction ( {pH_{H_2 O} } ) ranged from 4.77 to 8.75, organic matter content ranged from 1.87 to 4.94% and clay content from 8.03 to 37.07%. In relation to KAL method as the standard method, K_{BaCl_2 } method extracts 12.9% more on average of soil potassium, while in relation to standard method, on average KAA extracts 5.3%, KAAEDTA 10.3%, and KBRAY 27.5% less of potassium. Comparison of analyzed extraction methods of potassium from the soil is of high precision, and most reliable comparison was KAL method with KAAEDTA, followed by a: KAA, K_{BaCl_2 } and KBRAY method. Extremely significant statistical correlation between different extractive methods for determining potassium in the soil indicates that any of the methods can be used to accurately predict the concentration of potassium in the soil, and that carried out research can be used to create prediction model for concentration of potassium based on different methods of extraction.

  13. SOIL VAPOR EXTRACTION TECHNOLOGY: REFERENCE HANDBOOK

    Science.gov (United States)

    Soil vapor extraction (SVE) systems are being used in Increasing numbers because of the many advantages these systems hold over other soil treatment technologies. SVE systems appear to be simple in design and operation, yet the fundamentals governing subsurface vapor transport ar...

  14. Phosphate fertilizers with varying water-solubility applied to Amazonian soils: II. Soil P extraction methods

    International Nuclear Information System (INIS)

    Muraoka, T.; Brasil, E.C.; Scivittaro, W.B.

    2002-01-01

    A pot experiment was carried out under greenhouse conditions at the Centro de Energia Nuclear na Agricultura, Piracicaba (SP, Brazil), to evaluate the phosphorus availability of different phosphate sources in five Amazonian soils. The soils utilized were: medium texture Yellow Latosol, clayey Yellow Latosol, very clayey Yellow Latosol, clayey Red-Yellow Podzolic and very clayey Red-Yellow Podzolic. Four phosphate sources were applied: triple superphosphate, ordinary Yoorin thermophosphate, coarse Yoorin termo-phosphate and North Carolina phosphate rock at P rates of 0, 40, 80 and 120 mg kg -1 soil. The dry matter yield and the amount of P taken up by cowpea and rice were correlated with the extractable P by anionic exchangeable resin, Mehlich-1, Mehlich-3 and Bray-I. The results showed that the extractable P by Mehlich-1 was higher in the soils amended with North Carolina rock phosphate. Irrespective of the phosphorus sources used, the Mehlich-3 extractant showed close correlation with plant response. The Mehlich-3 and Bray-I extractants were more sensitive to soil variations. The Mehlich-3 extractant was more suitable in predicting the P availability to plants in the different soils and phosphorus sources studied. (author)

  15. Direct Cellular Lysis/Protein Extraction Protocol for Soil Metaproteomics

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Jansson, Janet [Lawrence Berkeley National Laboratory (LBNL); Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Chavarria, Krystle L. [Lawrence Berkeley National Laboratory (LBNL); Tom, Lauren M [Lawrence Berkeley National Laboratory (LBNL); Brodie, Eoin L. [Lawrence Berkeley National Laboratory (LBNL); Hettich, Robert {Bob} L [ORNL

    2010-01-01

    We present a novel direct protocol for deep proteome characterization of microorganisms in soil. The method employs thermally assisted detergent-based cellular lysis (SDS) of soil samples, followed by TCA precipitation for proteome extraction/cleanup prior to liquid chromatography-mass spectrometric characterization. This approach was developed and optimized using different soils inoculated with genome-sequenced bacteria (Gram-negative Pseudomonas putida or Gram-positive Arthrobacter chlorophenolicus). Direct soil protein extraction was compared to protein extraction from cells isolated from the soil matrix prior to lysis (indirect method). Each approach resulted in identification of greater than 500 unique proteins, with a wide range in molecular mass and functional categories. To our knowledge, this SDS-TCA approach enables the deepest proteome characterizations of microbes in soil to date, without significant biases in protein size, localization, or functional category compared to pure cultures. This protocol should provide a powerful tool for ecological studies of soil microbial communities.

  16. Extraction of thorium from solution using tribenzylamine

    International Nuclear Information System (INIS)

    Whitehead, N.E.; Ditchburn, R.G.

    1975-01-01

    A method is described for isolating thorium from solutions in a state sufficiently pure for alpha spectroscopy. It parallels the method described by Moore and Thern (Radiochemical Radioanalytical Letters 19(2), 117-125, 1974), but uses tribenzylamine instead of Adogen 364. The method involves extracting thorium from a solution in 8M nitric acid, into a 6% w/v solution of tribenzylamine in toluene. The thorium is concentrated in a third, interfacial layer which forms. This layer is isolated, diluted with chloroform, and back extracted with 10M HC1. Overall yields range between 83 and 90% for one extraction. The acidic solution is taken down to near dryness, diluted until the pH is 2 and extracted into 1.2 ml of thenoyltrifluoroacetone in toluene. This solution is evaporated onto a stainless steel disk, flamed, and the disk may be used for alpha spectroscopy of thorium isotopes. (auth.)

  17. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  18. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  19. Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers.

    Science.gov (United States)

    Knight, B P; Chaudri, A M; McGrath, S P; Giller, K E

    1998-01-01

    A rapid method for extracting soil solutions using porous plastic soil-moisture samplers was combined with a cation resin equilibration based speciation technique to look at the chemical availability of metals in soil. Industrially polluted, metal sulphate amended and sewage sludge treated soils were used in our study. Cadmium sulphate amended and industrially contaminated soils all had > 65% of the total soil solution Cd present as free Cd2+. However, increasing total soil Cd concentrations by adding CdSO4 resulted in smaller total soil solution Cd. Consequently, the free Cd2+ concentrations in soil solutions extracted from these soils were smaller than in the same soil contaminated by sewage sludge addition. Amendment with ZnSO4 gave much greater concentrations of free Zn2+ in soil solutions compared with the same soil after long-term Zn contamination via sewage sludge additions. Our results demonstrate the difficulty in comparing total soil solution and free metal ion concentrations for soils from different areas with different physiochemical properties and sources of contamination. However, when comparing the same Woburn soil, Cd was much less available as Cd2+ in soil solution from the CdSO4 amended soils compared with soil contaminated by about 36 years of sewage sludge additions. In contrast, much more Zn was available in soil solution as free Zn2+ in the ZnSO4 amended soils compared with the sewage sludge treated soils.

  20. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge

    International Nuclear Information System (INIS)

    Liu, Cheng-Chung; Chen, Guan-Bu

    2013-01-01

    Highlights: ► Increases in acidity, washing frequency, and operational temperature enhance the Cd removal. ► Approximately 80% of Cd can be removed from the soil by dissolved organic matter (DOM) washing. ► The DOM washing can moderate the loss of soil fertility. ► The DOM washing will have a great improvement if we employ NaOH, KOH, Ca(OH) 2 , and Mg(OH) 2 to prepare the DOM solution together. -- Abstract: Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg −1 ) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L −1 DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (N-NH 4 ) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively

  1. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Chung, E-mail: ccliu@niu.edu.tw [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China); Chen, Guan-Bu [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China)

    2013-01-15

    Highlights: ► Increases in acidity, washing frequency, and operational temperature enhance the Cd removal. ► Approximately 80% of Cd can be removed from the soil by dissolved organic matter (DOM) washing. ► The DOM washing can moderate the loss of soil fertility. ► The DOM washing will have a great improvement if we employ NaOH, KOH, Ca(OH){sub 2}, and Mg(OH){sub 2} to prepare the DOM solution together. -- Abstract: Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg{sup −1}) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L{sup −1} DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (N-NH{sub 4}) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively.

  2. Interpretation of soil-to-plant transfer on the basis of soil solution chemical composition

    International Nuclear Information System (INIS)

    Lembrechts, J.F.; Van Loon, L.R.; Van Ginkel, J.H.; Desmet, G.M.

    1988-01-01

    Soil-to-plant translocation of a radionuclide depends on its availability on the one hand and on the efficiency of the uptake process on the other. Criticism on the use of transfer coefficients for the description of translocation mainly concerns the fact that the complex variety of processes, a.o. dependent on plant characteristics and soil type and treatment, is integrated in a single ratio. For the interpretation of the effect of counter-measures the static transfer coefficient proved to be hard to handle and knowledge of the separate underlying processes and their time dependence showed to be indispensible. Based upon translocation experiments with technetium, cobalt, strontium and zinc transfer was shown to be primarily related to the concentration of the plant available fraction in the soil solution as well as to the soil solution chemistry in general. The transfer factor of the first three elements expressed in the basis of soil solution activity (ml/g), was observed to decrease when the nutrient content of the soil solution -- reflected by its conductivity -- increased. The characteristics of the soil matrix (solid phase) furthermore showed to be of secondary importance for the explanation of the observed accumulation. Since the interstitial soil liquid phase mediates between solid phase and plant root, reliable interpretations of soil-to-plant transfer might as a rule be based on a separate study of the effect of soil properties on availability on the one hand of the uptake from nutrient solutions on the other

  3. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge.

    Science.gov (United States)

    Liu, Cheng-Chung; Chen, Guan-Bu

    2013-01-15

    Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg(-1)) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L(-1) DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (NNH(4)) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Methods for microbial DNA extraction from soil for PCR amplification

    Directory of Open Access Journals (Sweden)

    Yeates C

    1998-01-01

    Full Text Available Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1. DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size.

  5. Efficiency of three buffers for extracting B-glucosidase enzyme in different soil orders: Evaluating the role of soil organic matter

    Directory of Open Access Journals (Sweden)

    Viviana Gutiérrez

    2017-01-01

    Full Text Available The objective of this research was to evaluate extraction methods for β - glucosidases comparing three buffer solutions (MUB, acetate, and maleate at different incubation times (0.5 h to 10 h and in three different soil orders (Mollisols, Andisols and Ultisols. Seven acidic soils were evaluated, showing differences in pH, OM, and clay contents. To evaluate the effect of OM as enzymes source, one soil of each order was treated to partially remove its OM and then the enzyme assay was performed. When using MUB and maleate buffers the highest (32 and 31 μg - p NP g - soil - 1 h - 1 in average , respec tively were found, and the latter was significantly (p < 0.050 correlated with the soil clay content. The activity obtained with acetate buffer was much lower ( 3 8.2 μg - p NP g - soil - 1 h - 1 in average . The use of MUB buffer with 1 h of incubation is suggested as extraction method, showing good reproducibility and allowing to express higher enzyme potential for soil comparisons. For the Andisol and Ultisol, the enzyme activity significantly decreased with the OM removal (% indicating that OM is the major sourc e of the measured β - glucosidase activity, while a different trend was observed for the Mollisol, in which the mineral fraction (mainly 2:1 type clay appears to be involved in the increased enzyme activity displayed after the initial OM removal.

  6. Sistema de extração seqüencial da solução na macro e microporosidade do solo System of sequential extraction of solution in macro and microporosity of soil

    Directory of Open Access Journals (Sweden)

    Thomas V. Gloaguen

    2009-10-01

    Full Text Available Existem várias técnicas de extração da solução no solo; entretanto, a proporção entre a água gravitacional e as retidas por forças capilares é geralmente desconhecida. Neste estudo se propôs desenvolver um sistema de extração seqüencial da solução no solo a fim de caracterizar a sua composição química em função da porosidade do solo. Construíram-se colunas com terra fina secada ao ar de um Cambissolo de textura argilo-siltosa. As colunas foram saturadas por 24 h com água destilada, logo após, a solução no solo foi coletada aplicando-se sucessivamente na base das colunas um vácuo de: 0; -13,3; -26,7; -40,0; -53,3; -66,6 kPa. Mediram-se o volume, o pH, a condutividade elétrica e as concentrações de Na+, K+ e NO3-. Houve boa correlação entre o vácuo aplicado e o potencial mátrico do solo medido por tensiometria (não linear, r² = 0,998, validando o método proposto da extração seqüencial de solução. O estudo evidenciou importantes variações da composição química da solução nas diferentes porosidades do solo, com concentração iônica menor na macroporosidade, exceto para K+, demonstrando a necessidade de se uniformizar a metodologia de amostragem da solução do solo para evitar estimação incorreta da concentração de solutos no solo.Various methodologies for soil solution sampling are available, but the proportion between gravitational and capilar water is usually unknown. In this study, a sequential extraction system of soil water for determining its chemical composition as a function of the soil porosity is presented. Soil columns were filled by air-dried clay-loam Ultisol. The columns were saturated with distilled water for 24 h, and then the soil solution was sampled at the base of the column by applying the suction equivalent to 0, 13.3, 26.7, 40.0, 53.3 and 66.6 kPa. Volume, pH, electrical conductivity, Na+, K+ and NO3- were measured in the solution. The high correlation (non linear; r

  7. Recyclable bio-reagent for rapid and selective extraction of contaminants from soil

    International Nuclear Information System (INIS)

    Lomasney, H.L.

    1997-01-01

    This Phase I Small Business Innovation Research program is confirming the effectiveness of a bio-reagent to cost-effectively and selectively extract a wide range of heavy metals and radionuclide contaminants from soil. This bioreagent solution, developed by ISOTRON reg-sign Corporation (New Orleans, LA), is flushed through the soil and recycled after flowing through an electrokinetic separation module, also developed by ISOTRON reg-sign. The process is ex situ, and the soil remains in its transport container through the decontamination process. The transport container can be a fiberglass box, or a bulk bag or open-quotes super sack.close quotes Rocks, vegetation, roots, etc. need not be removed. High clay content soils are accommodated. The process provides rapid injection of reagent solution, and when needed, sand is introduced to speed up the heap leach step. The concentrated waste form is eventually solidified. The bio-reagent is essentially a natural product, therefore any solubizer residual in soil is not expected to cause regulatory concern. The Phase I work will confirm the effectiveness of this bio-reagent on a wide range of contaminants, and the engineering parameters that are needed to carry out a full-scale demonstration of the process. ISOTRON reg-sign scientists will work with contaminated soil from Los Alamos National Laboratory. LANL is in the process of decontaminating and decommissioning more than 300 sites within its complex, many of which contain heavy metals or radionuclides; some are mixed wastes containing TCE, PCB, and metals

  8. Recyclable bio-reagent for rapid and selective extraction of contaminants from soil

    Energy Technology Data Exchange (ETDEWEB)

    Lomasney, H.L. [ISOTRON Corp., New Orleans, LA (United States)

    1997-10-01

    This Phase I Small Business Innovation Research program is confirming the effectiveness of a bio-reagent to cost-effectively and selectively extract a wide range of heavy metals and radionuclide contaminants from soil. This bioreagent solution, developed by ISOTRON{reg_sign} Corporation (New Orleans, LA), is flushed through the soil and recycled after flowing through an electrokinetic separation module, also developed by ISOTRON{reg_sign}. The process is ex situ, and the soil remains in its transport container through the decontamination process. The transport container can be a fiberglass box, or a bulk bag or {open_quotes}super sack.{close_quotes} Rocks, vegetation, roots, etc. need not be removed. High clay content soils are accommodated. The process provides rapid injection of reagent solution, and when needed, sand is introduced to speed up the heap leach step. The concentrated waste form is eventually solidified. The bio-reagent is essentially a natural product, therefore any solubizer residual in soil is not expected to cause regulatory concern. The Phase I work will confirm the effectiveness of this bio-reagent on a wide range of contaminants, and the engineering parameters that are needed to carry out a full-scale demonstration of the process. ISOTRON{reg_sign} scientists will work with contaminated soil from Los Alamos National Laboratory. LANL is in the process of decontaminating and decommissioning more than 300 sites within its complex, many of which contain heavy metals or radionuclides; some are mixed wastes containing TCE, PCB, and metals.

  9. Soil and groundwater remediation using dual-phase extraction technology

    International Nuclear Information System (INIS)

    Miller, A.W.; Gan, D.R.

    1995-01-01

    A gasoline underground storage tank (UST) was formerly used to fuel vehicles for a hospital in Madison, Wisconsin. Elevated concentrations of gasoline range organics (GRO) were observed in soils and groundwater at the site during the tank removal and a subsequent site investigation. Based on the extent of soil and groundwater contamination, a dual-phase extraction technology was selected as the most cost effective alternative to remediate the site. The dual-phase extraction system includes one extraction well functioning both as a soil vapor extraction (SVE) and groundwater recovery well. After six months of operation, samples collected from the groundwater monitoring wells indicated that the groundwater has been cleaned up to levels below the Wisconsin preventative action limits. The dual-phase extraction system effectively remediated the site in a short period of time, saving both operation and maintenance costs and overall project cost

  10. Parameterization of radiocaesium soil-plant transfer using soil characteristics

    International Nuclear Information System (INIS)

    Konoplev, A. V.; Drissner, J.; Klemt, E.; Konopleva, I. V.; Zibold, G.

    1996-01-01

    A model of radionuclide soil-plant transfer is proposed to parameterize the transfer factor by soil and soil solution characteristics. The model is tested with experimental data on the aggregated transfer factor T ag and soil parameters for 8 forest sites in Baden-Wuerttemberg. It is shown that the integral soil-plant transfer factor can be parameterized through radiocaesium exchangeability, capacity of selective sorption sites and ion composition of the soil solution or the water extract. A modified technique of (FES) measurement for soils with interlayer collapse is proposed. (author)

  11. [Removal of volatile organic compounds in soils by soil vapor extraction (SVE)].

    Science.gov (United States)

    Yin, Fu-xiang; Zhang, Sheng-tian; Zhao, Xin; Feng, Ke; Lin, Yu-suo

    2011-05-01

    An experiment study has been carried out to investigate effects of the diameter of soil columns, the size of soil particulate and different contaminants on efficiency of simulated soil vapor extraction (SVE). Experiments with benzene, toluene, ethylbenzene and n-propylbenzene contaminated soils showed that larger bottom area/soil height (S/H) of the columns led to higher efficiency on removal of contaminants. Experiments with contaminated soils of different particulate size showed that the efficiency of SVE decreased with increases in soil particulate size, from 10 mesh to between 20 mesh and 40 mesh and removal of contaminants in soils became more difficult. Experiments with contaminated soils under different ventilation rates suggested that soil vapor extraction at a ventilation rate of 0.10 L x min(-1) can roughly remove most contaminants from the soils. Decreasing of contaminants in soils entered tailing stages after 12 h, 18 h and 48 h for benzene, toluene and ethylbenzene, respectively. Removal rate of TVOCs (Total VOCs) reached a level as high as 99.52%. The results of the experiment have indicated that molecule structure and properties of the VOCs are also important factors which have effects on removal rates of the contaminants. Increases in carbon number on the benzene ring, decreases in vapor pressure and volatile capability resulted in higher difficulties in soil decontamination. n-propylbenzene has a lower vapor pressure than toluene and ethylbenzene which led to a significant retard effect on desorption and volatilization of benzene and ethylbenzene.

  12. Soil solid-phase controls lead activity in soil solution.

    Science.gov (United States)

    Badawy, S H; Helal, M I D; Chaudri, A M; Lawlor, K; McGrath, S P

    2002-01-01

    Lead pollution of the environment is synonymous with civilization. It has no known biological function, and is naturally present in soil, but its presence in food crops is deemed undesirable. The concern regarding Pb is mostly due to chronic human and animal health effects, rather then phytotoxicity. However, not much is known about the chemistry and speciation of Pb in soils. We determined the activity of Pb2+, in near neutral and alkaline soils, representative of alluvial, desertic and calcareous soils of Egypt, using the competitive chelation method. Lead activity ranged from 10(-6.73) to 10(-4.83) M, and was negatively correlated with soil and soil solution pH (R2 = -0.92, P soil solution from the equation: log(Pb2+) = 9.9 - 2pH. A solubility diagram for the various Pb minerals found in soil was constructed using published thermodynamic data obtained from the literature, and our measured Pb2+ activities compared with this information. The measured Pb2+ activities were undersaturated with regard to the solubility of PbSiO3 in equilibrium with SiO2 (soil). However, they were supersaturated with regard to the solubilities of the Pb carbonate minerals PbCO3 (cerussite) and Pb3(CO3)2(OH)2 in equilibrium with atmospheric CO2 and hydroxide Pb(OH)2. They were also supersaturated with regard to the solubilities of the Pb phosphate minerals Pb3(PO4)2, Pb5(PO4)3OH, and Pb4O(PO4)2 in equilibrium with tricalcium phosphate and CaCO3. The activity of Pb2+ was not regulated by any mineral of known solubility in our soils, but possibly by a mixture of Pb carbonate and phosphate minerals.

  13. Efficiency of solvent extraction methods for the determination of methyl mercury in forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Qian, J. [Department of Forest Ecology, Swedish University of Agricultural Sciences, Umeaa (Sweden); Dept. of Analytical Chemistry, Umeaa Univ. (Sweden); Skyllberg, U. [Department of Forest Ecology, Swedish University of Agricultural Sciences, Umeaa (Sweden); Tu, Q.; Frech, W. [Dept. of Analytical Chemistry, Umeaa Univ. (Sweden); Bleam, W.F. [Dept. of Soil Science, University of Wisconsin, Madison, WI (United States)

    2000-07-01

    Methyl mercury was determined by gas chromatography, microwave induced plasma, atomic emission spectrometry (GC-MIP-AES) using two different methods. One was based on extraction of mercury species into toluene, pre-concentration by evaporation and butylation of methyl mercury with a Grignard reagent followed by determination. With the other, methyl mercury was extracted into dichloromethane and back extracted into water followed by in situ ethylation, collection of ethylated mercury species on Tenax and determination. The accuracy of the entire procedure based on butylation was validated for the individual steps involved in the method. Methyl mercury added to various types of soil samples showed an overall average recovery of 87.5%. Reduced recovery was only caused by losses of methyl mercury during extraction into toluene and during pre-concentration by evaporation. The extraction of methyl mercury added to the soil was therefore quantitative. Since it is not possible to directly determine the extraction efficiency of incipient methyl mercury, the extraction efficiency of total mercury with an acidified solution containing CuSO{sub 4} and KBr was compared with high-pressure microwave acid digestion. The solvent extraction efficiency was 93%. For the IAEA 356 sediment certified reference material, mercury was less efficiently extracted and determined methyl mercury concentrations were below the certified value. Incomplete extraction could be explained by the presence of a large part of inorganic sulfides, as determined by x-ray absorption near-edge structure spectroscopy (XANES). Analyses of sediment reference material CRM 580 gave results in agreement with the certified value. The butylation method gave a detection limit for methyl mercury of 0.1 ng g{sup -1}, calculated as three times the standard deviation for repeated analysis of soil samples. Lower values were obtained with the ethylation method. The precision, expressed as RSD for concentrations 20 times

  14. Global Distribution of Plant-Extractable Water Capacity of Soil (Dunne)

    Data.gov (United States)

    National Aeronautics and Space Administration — Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. This data set provides an...

  15. A laboratory method to estimate the efficiency of plant extract to neutralize soil acidity

    Directory of Open Access Journals (Sweden)

    Marcelo E. Cassiolato

    2002-06-01

    Full Text Available Water-soluble plant organic compounds have been proposed to be efficient in alleviating soil acidity. Laboratory methods were evaluated to estimate the efficiency of plant extracts to neutralize soil acidity. Plant samples were dried at 65ºC for 48 h and ground to pass 1 mm sieve. Plant extraction procedure was: transfer 3.0 g of plant sample to a becker, add 150 ml of deionized water, shake for 8 h at 175 rpm and filter. Three laboratory methods were evaluated: sigma (Ca+Mg+K of the plant extracts; electrical conductivity of the plant extracts and titration of plant extracts with NaOH solution between pH 3 to 7. These methods were compared with the effect of the plant extracts on acid soil chemistry. All laboratory methods were related with soil reaction. Increasing sigma (Ca+Mg+K, electrical conductivity and the volume of NaOH solution spent to neutralize H+ ion of the plant extracts were correlated with the effect of plant extract on increasing soil pH and exchangeable Ca and decreasing exchangeable Al. It is proposed the electrical conductivity method for estimating the efficiency of plant extract to neutralize soil acidity because it is easily adapted for routine analysis and uses simple instrumentations and materials.Tem sido proposto que os compostos orgânicos de plantas solúveis em água são eficientes na amenização da acidez do solo. Foram avaliados métodos de laboratório para estimar a eficiência dos extratos de plantas na neutralização da acidez do solo. Os materiais de plantas foram secos a 65º C por 48 horas, moídos e passados em peneira de 1mm. Utilizou-se o seguinte procedimento para obtenção do extrato de plantas: transferir 3.0 g da amostra de planta para um becker, adicionar 150 ml de água deionizada, agitar por 8h a 175 rpm e filtrar. Avaliaram-se três métodos de laboratório: sigma (Ca + Mg + K do extrato de planta, condutividade elétrica (CE do extrato de planta e titulação do extrato de planta com solu

  16. Assessment of a sequential extraction protocol by examining solution chemistry and mineralogical evolution

    Science.gov (United States)

    Maubec, Nicolas; Pauwels, Hélène; Noël, Hervé; Bourrat, Xavier

    2015-04-01

    Knowledge of the behavior of heavy metals, such as copper and zinc in sediments, is a key factor to improve the management of rivers. The mobility of these metals, which may be harmful to the environment, depends directly on their concentration and speciation , which in turn depend on physico-chemical parameters such as mineralogy of the sediment fraction, pH, redox potential, salinity etc ... (Anderson et al., 2000; Sterckeman et al., 2004; Van Oort et al., 2008). Several methods based on chemical extractions are currently applied to assess the behavior of heavy metals in soils and sediments. Among them, sequential extraction procedure is widely used in soil and sediment science and provides details about the origin, biological and physicochemical availability, mobilization and transports of trace metals elements. It is based on the use of a series of extracting reagents to extract selectively heavy metals according to their association within the solid phase (Cornu and Clozel, 2000) including the following different fraction : exchangeable, bound to carbonates, associated to oxides (reducible fraction), linked to organic matter and sulfides (oxidizable fraction) as well as silicate minerals so called residual fraction (Hickey and Kittrick, 1984; Tessier et al., 1979). Consequently sequential extraction method is expected to simulate a lot of potential natural and anthropogenic modifications of environmental conditions (Arey et al., 1999; Brannon and Patrick, 1987; Hickey and Kittrick, 1984; La Force et al., 1999; Tessier et al., 1979). For three decades, a large number of protocols has been proposed, characterized by specific reagents and experimental conditions (concentrations, number of steps, extraction orders and solid/solution ratio) (Das et al., 1995; Gomez Ariza et al., 2000; Quevauviller et al., 1994; Rauret, 1998; Tack and Verloo, 1995), but it appeared that several of them suffer from a lack of selectivity of applied reagents: besides target ones, some

  17. Sorption of Tannin and Related Phenolic Compounds and Effects on Extraction of Soluble-N in Soil Amended with Several Carbon Sources

    Directory of Open Access Journals (Sweden)

    Javier M. Gonzalez

    2012-02-01

    Full Text Available Some tannins sorb to soil and reduce soluble-N. However, we know little about how they interact with organic amendments in soil. Soil (0–5 cm from plots, which were amended annually with various carbon substances, was treated with water (control or solutions containing tannins or related phenolic subunits. Treatments included a proanthocyanidin, catechin, tannic acid, β-1,2,3,4,6-penta-O-galloyl-D-glucose (PGG, gallic acid, and methyl gallate. We applied solutions of each of these materials to soil and measured soluble-C and -N in supernatants after application and following extraction with hot water (16 h, 80 °C. Sorption was low for non-tannin phenolics, methyl gallate, gallic acid, and catechin, and unaffected by amendment. Sorption of tannins, proanthocyanidin, tannic acid, and PGG, was higher and greater in plots amended with biosolids or manure. Extraction of soluble-N was not affected by amendment or by catechin, proanthocyanidin, or methyl gallate, but was reduced with PGG, tannic acid and gallic acid. Soil cation exchange capacity increased following treatment with PGG but decreased with gallic acid, irrespective of amendment. Tannins entering soil may thus influence soil organic matter dynamics and nutrient cycling but their impact may be influenced by the composition of soil organic matter.

  18. Effects of Pig Slurry Application and Crops on Phosphorus Content in Soil and the Chemical Species in Solution

    Directory of Open Access Journals (Sweden)

    Lessandro De Conti

    2015-06-01

    Full Text Available The application of pig slurry rates and plant cultivation can modify the soil phosphorus (P content and distribution of chemical species in solution. The purpose of this study was to evaluate the total P, available P and P in solution, and the distribution of chemical P species in solution, in a soil under longstanding pig slurry applications and crop cultivation. The study was carried out in soil columns with undisturbed structure, collected in an experiment conducted for eight years in the experimental unit of the Universidade Federal de Santa Maria (UFSM, Santa Maria (RS. The soil was an Argissolo Vermelho distrófico arênico (Typic Hapludalf, subjected to applications of 0, 20, 40, and 80 m3 ha-1 pig slurry. Soil samples were collected from the layers 0-5, 5-10, 10-20, 20-30, 30-40, and 40-60 cm, before and after black oat and maize grown in a greenhouse, for the determination of available P, total P and P in the soil solution. In the solution, the concentration of the major cations, anions, dissolved organic carbon (DOC, and pH were determined. The distribution of chemical P species was determined by software Visual Minteq. The 21 pig slurry applications increased the total P content in the soil to a depth of 40 cm, and the P extracted by Mehlich-1 and from the solution to a depth of 30 cm. Successive applications of pig slurry changed the balance between the solid and liquid phases in the surface soil layers, increasing the proportion of the total amount of P present in the soil solution, aside from changing the chemical species in the solution, reducing the percentage complexed with Al and increasing the one complexed with Ca and Mg in the layers 0-5 and 5-10 cm. Black oat and maize cultivation increased pH in the solution, thereby increasing the proportion of HPO42- and reducing H2PO4- species.

  19. ROLE OF SOME CHEMICAL MATERIALS ON THE PHYTO-EXTRACTION OF HEAVY METALS FROM CONTAMINATED SOILS WITH SUNFLOWER PLANTS (HELIANTHUS ANNUUS)

    International Nuclear Information System (INIS)

    ABD EL-BARY, S.A.; EL-NAKA, E.A.; RIZK, M.A.; LOTFY, S.M.

    2009-01-01

    Chelation and complexation of heavy metals were evaluated as practical ways to solubilize, detoxify and enhance heavy metals accumulation by plants. Sunflower (Helianthus annuus) was selected as potential heavy metals accumulator for metals phyto-extraction in two selected soils (clayey and sandy). To enhance metals phyto-extraction, ammonium nitrate and organic chelates such as EDTA and citric acid were added to soils at the rates from 0 to 20 mmol/kg soil as extracting solutions and applied to the soil by mixing thoroughly before planting. Dry matter production and metals concentrations in shoots and roots and soil pH were measured after 60 days.Plant dry matter production and metals accumulation were varied with soil contamination, chelate / organic acid form and rate, and soil type. The highest metals concentration was obtained in plants grown on clayey soil, however, the lowest content was observed in case of sandy soil. Addition of citric acid increased metals accumulation and translocation to the shoots significantly. Addition of 20 mmol/kg of citric acid to clayey soils increased metals concentration in shoots several folds of magnitude, but addition of ammonium nitrate had little effect on metal translocation to shoots. Citric acid was the most effective chelate in plant accumulation of tested metals.

  20. Soil solution interactions may limit Pb remediation using P amendments in an urban soil.

    Science.gov (United States)

    Obrycki, John F; Scheckel, Kirk G; Basta, Nicholas T

    2017-01-01

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg -1 was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organic acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm -1 , potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. More research is needed to characterize soil solutions in Pb contaminated urban soils to identify where P treatments might be effective and when competing cations, such as Ca, Fe, and Zn may limit low rate P applications for treating Pb soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Extraction of lambda-cyhalothrin from aqueous dioxan solutions].

    Science.gov (United States)

    Shormanov, V K; Chigareva, E N; Belousova, O V

    2011-01-01

    The results of extraction of lambda-cigalotrin from dioxan aqueous solutions by hydrophobic organic solvents are presented. It is shown that the degree of extraction depends on the nature of the extractant, the water to dioxan ratio, and saturation of the water-dioxan layer with the electrolyte. The highest efficiency of lambda-cigalotrin extraction was achieved using chlorophorm as a solvent under desalination conditions. The extraction factor was calculated necessary to obtain the desired amount of lambda-cigalotrin from the water-dioxan solution (4:1) with the help of the extractants being used.

  2. Can we predict uranium bioavailability based on soil parameters? Part 1: Effect of soil parameters on soil solution uranium concentration

    International Nuclear Information System (INIS)

    Vandenhove, H.; Hees, M. van; Wouters, K.; Wannijn, J.

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for 238 U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K d , L kg -1 ) and the organic matter content (R 2 = 0.70) and amorphous Fe content (R 2 = 0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH = 6, log(K d ) was linearly related with pH [log(K d ) = - 1.18 pH + 10.8, R 2 = 0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex. - Uranium solubility in soil can be predicted from organic matter or amorphous iron content and pH or with complex multilinear models considering several soil parameters

  3. Sequential Application of Soil Vapor Extraction and Bioremediation Processes for the Remediation of Ethylbenzene-Contaminated Soils

    DEFF Research Database (Denmark)

    Soares, António Carlos Alves; Pinho, Maria Teresa; Albergaria, José Tomás

    2012-01-01

    Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application of these technol......Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application...

  4. Arsenic in the rhizosphere soil solution of ferns.

    Science.gov (United States)

    Wei, Chaoyang; Zheng, Huan; Yu, Jiangping

    2012-12-01

    The aim of this study was to explore the evidence of arsenic hyperaccumulation in plant rhizosphere solutions. Six common fern plants were selected and grown in three types of substrate: arsenic (As) -tailings, As-spiked soil, and soil-As-tailing composites. A rhizobox was designed with an in-situ collection of soil solutions to analyze changes in the As concentration and valence as well as the pH, dissolved organic carbon (DOC) and total nitrogen (TN). Arsenite composed less than 20% of the total As, and As depletion was consistent with N depletion in the rhizosphere solutions of the various treatments. The As concentrations in the rhizosphere and non-rhizosphere solutions in the presence of plants were lower than in the respective controls without plants, except for in the As-spiked soils. The DOC concentrations were invariably higher in the rhizosphere versus non-rhizosphere solutions from the various plants; however, no significant increase in the DOC content was observed in Pteris vittata, in which only a slight decrease in pH appeared in the rhizosphere compared to non-rhizosphere solutions. The results showed that As reduction by plant roots was limited, acidification-induced solubilization was not the mechanism for As hyperaccumulation.

  5. Influence of organic components on plutonium and americium speciation in soils and soil solutions

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Kimlenko, I.M.

    2003-01-01

    Group composition of humic substances of organic and mineral soils sampled in the 30-km zone of the Chernobyl accident was analyzed for studying influence of organic components on migration properties of plutonium and americium in soils and soil solutions by the method of gel-chromatography and chemical fractionation. It was ascertained that humus of organic soils binds plutonium and americium stronger than humus of mineral soils. Elevated mobility of americium compared to plutonium one stems from lower ability of the latter to from hard to solve organic and organomineral complexes, as well as from its ability to form anionic complexes in soil solutions [ru

  6. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration.

    Science.gov (United States)

    Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.

  7. Process for extracting uranium from phosphoric acid solutions

    International Nuclear Information System (INIS)

    1977-01-01

    The description is given of a method for extracting uranium from phosphoric acid solutions whereby the previously oxided acid is treated with an organic solvent constituted by a mixture of dialkylphosphoric acid and trialkylphosphine oxide in solution in a non-reactive inert solvent so as to obtain de-uraniated phosphoric acid and an organic extract constituted by the solvent containing most of the uranium. The uranium is then separated from the extract as uranyl ammonium tricarbonate by reaction with ammonia and ammonium carbonate and the extract de-uraniated at the extraction stage is recycled. The extract is treated in a re-extraction apparatus comprising not less than two stages. The extract to be treated is injected at the top of the first stage. At the bottom of the first stage, ammonia is introduced counter current as gas or as an aqueous solution whilst controlling the pH of the first stage so as to keep it to 8.0 or 8.5 and at the bottom of the last stage an ammonium carbonate aqueous solution is injected in a quantity representing 50 to 80% of the stoichiometric quantity required to neutralize the dialkylphosphoric acid contained in the solvent and transform the uranium into uranyl ammonium tricarbonate [fr

  8. Cyclohexanone microfluidic extraction of radioactive perrhenate from acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dalmázio, Ilza [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oehlke, Elisabeth, E-mail: E.Oehlke@tudelft.nl [Section Radiation and Isotopes for Health, Department of Radiation Science and Technology, Delft University of Technology (Netherlands)

    2017-07-01

    Several studies have investigated the application of microfluidic devices in extraction processes. A potential use of microfluidic devices is in radionuclide generators based on solvent extraction, as the {sup 188}W/{sup 188}Re generator. The aim of this work is to present the initial results of microfluidic solvent extraction of radioactive perrhenate. Aqueous solutions of ammonium perrhenate at 0.1 mg/mL (in water, HCl or sodium tungstate) were used as feed solution and cyclohexanone as extractant. As a first step, the fluid behaviour inside the glass microchannel was evaluated to reach laminar flow. The second step was the determination of extraction efficiency using thermal neutron activated perrhenate to produce feed solutions. The extraction conditions permitted liquid-liquid contact times as short as 0.5 s. Increasing of the contact time, resulted in a higher extraction efficiency of perrhenate, e.g. 14 % for 0.5 s and 32 % for 1.1 s using a 0.1 mol/L HCl feed solution. The extraction of perrhenate improved also when applying a feed solution with higher acidity, e.g. 52% for 1 mol/L HCl with contact time of 1.1 s. The influence of adding sodium tungstate to the feed solution was also examined. To the best of our knowledge, these are the first results related to perrhenate solvent extraction using a microfluidic device. The usefulness of microfluidic devices to screen extraction conditions was demonstrated making it possible to evaluate the effect of electrolytes on the perrhenate extraction process in a short time-frame. (author)

  9. Cyclohexanone microfluidic extraction of radioactive perrhenate from acid solutions

    International Nuclear Information System (INIS)

    Dalmázio, Ilza; Oehlke, Elisabeth

    2017-01-01

    Several studies have investigated the application of microfluidic devices in extraction processes. A potential use of microfluidic devices is in radionuclide generators based on solvent extraction, as the 188 W/ 188 Re generator. The aim of this work is to present the initial results of microfluidic solvent extraction of radioactive perrhenate. Aqueous solutions of ammonium perrhenate at 0.1 mg/mL (in water, HCl or sodium tungstate) were used as feed solution and cyclohexanone as extractant. As a first step, the fluid behaviour inside the glass microchannel was evaluated to reach laminar flow. The second step was the determination of extraction efficiency using thermal neutron activated perrhenate to produce feed solutions. The extraction conditions permitted liquid-liquid contact times as short as 0.5 s. Increasing of the contact time, resulted in a higher extraction efficiency of perrhenate, e.g. 14 % for 0.5 s and 32 % for 1.1 s using a 0.1 mol/L HCl feed solution. The extraction of perrhenate improved also when applying a feed solution with higher acidity, e.g. 52% for 1 mol/L HCl with contact time of 1.1 s. The influence of adding sodium tungstate to the feed solution was also examined. To the best of our knowledge, these are the first results related to perrhenate solvent extraction using a microfluidic device. The usefulness of microfluidic devices to screen extraction conditions was demonstrated making it possible to evaluate the effect of electrolytes on the perrhenate extraction process in a short time-frame. (author)

  10. Biotoxicity of Mars soils: 2. Survival of Bacillus subtilis and Enterococcus faecalis in aqueous extracts derived from six Mars analog soils

    Science.gov (United States)

    Schuerger, Andrew C.; Ming, Doug W.; Golden, D. C.

    2017-07-01

    The search for an extant microbiota on Mars depends on exploring sites that contain transient or permanent liquid water near the surface. Examples of possible sites for liquid water may be active recurring slope lineae (RSL) and fluid inclusions in ice or salt deposits. The presence of saline fluids on Mars will act to depress the freezing points of liquid water to as low as ‒60 °C, potentially permitting the metabolism and growth of halophilic microorganisms to temperatures significantly below the freezing point of pure water at 0 °C. In order to predict the potential risks of forward contamination by Earth microorganisms to subsurface sites on Mars with liquid brines, experiments were designed to characterize the short-term survival of two bacteria in aqueous soil solutions from six analog soils. The term ''soil'' is used here to denote any loose, unconsolidated matrix with no implications for the presence or absence of organics or biology. The analog soils were previously described (Schuerger et al., 2012, Planetary Space Sci., 72, 91-101), and represented crushed Basalt (benign control), Salt, Acid, Alkaline, Aeolian, and Phoenix analogs on Mars. The survival rates of spores of Bacillus subtilis and vegetative cells of Enterococcus faecalis were tested in soil solutions from each analog at 24, 0, or ‒70 °C for time periods up to 28 d. Survival of dormant spores of B. subtilis were mostly unaffected by incubation in the aqueous extracts of all six Mars analogs. In contrast, survival rates of E. faecalis cells were suppressed by all soil solutions when incubated at 24 °C but improved at 0 and ‒70 °C, except for assays in the Salt and Acid soil solutions in which most cells were killed. Results suggest that Earth microorganisms that form spores may persist in liquid brines on Mars better than non-spore forming species, and thus, spore-forming species may pose a potential forward contamination risk to sites with liquid brines.

  11. Toxicity Thresholds Based on EDTA Extractable Nickel and Barley Root Elongation in Chinese Soils

    Directory of Open Access Journals (Sweden)

    Guangyun Zhu

    2018-04-01

    Full Text Available The uncertainty in the risk assessment of trace metal elements in soils when total metal contents are used can be decreased by assessing their availability and/or extractability when the soils have a high background value or different sources of trace metal elements. In this study, the added water-soluble nickel (Ni toxicity to barley root elongation was studied in 17 representative Chinese soil samples with and without artificial rainwater leaching. The extractability of added Ni in soils was estimated by three sequential extractions with ethylenediaminetetraacetic acid (EDTA. The results showed that the effective concentration of EDTA extractable Ni (EC50, which caused 50% inhibition of barley root elongation, ranged from 46 to 1019 mg/kg in unleached soils and 24 to 1563 mg/kg in leached soils. Regression models for EDTA extractable Ni and total Ni added to soils against soil properties indicated that EDTA extractable Ni was significantly correlated with the total Ni added to soils and that pH was the most important control factor. Regression models for toxicity thresholds based on EDTA extractable Ni against soil properties showed that soil citrate dithionate extractable Fe was more important than soil pH in predicting Ni toxicity. These results can be used to accurately assess the risk of contaminated soils with high background values and/or different Ni sources.

  12. Radionuclides distribution coefficient of soil to soil-solution

    International Nuclear Information System (INIS)

    1990-06-01

    The present book addresses various issues related with the coefficient of radionuclides distribution between soil and soil solution. It consists of six sections and two appendices. The second section, following an introductory one, describes the definition of the coefficient and a procedures of its calculation. The third section deals with the application of the distribution coefficient to the prediction of movements of radionuclides through soil. Various methods for measuring the coefficient are described in the fourth section. The next section discusses a variety of factors (physical and chemical) that can affect the distribution coefficient. Measurements of the coefficient for different types of oils are listed in the sixth section. An appendix is attached to the book to show various models that can be helpful in applying the coefficient of distribution of radionuclides moving from soil into agricultural plants. (N.K.)

  13. Estimation of soil-soil solution distribution coefficient of radiostrontium using soil properties.

    Science.gov (United States)

    Ishikawa, Nao K; Uchida, Shigeo; Tagami, Keiko

    2009-02-01

    We propose a new approach for estimation of soil-soil solution distribution coefficient (K(d)) of radiostrontium using some selected soil properties. We used 142 Japanese agricultural soil samples (35 Andosol, 25 Cambisol, 77 Fluvisol, and 5 others) for which Sr-K(d) values had been determined by a batch sorption test and listed in our database. Spearman's rank correlation test was carried out to investigate correlations between Sr-K(d) values and soil properties. Electrical conductivity and water soluble Ca had good correlations with Sr-K(d) values for all soil groups. Then, we found a high correlation between the ratio of exchangeable Ca to Ca concentration in water soluble fraction and Sr-K(d) values with correlation coefficient R=0.72. This pointed us toward a relatively easy way to estimate Sr-K(d) values.

  14. Evaluation of a simple, non-alkaline extraction protocol to quantify soil ergosterol

    NARCIS (Netherlands)

    De Ridder-Duine, A.S.; Smant, W.; Van der Wal, A.; Van Veen, J.A.; De Boer, W.

    2006-01-01

    Quantification of soil ergosterol is increasingly used as an estimate for soil fungal biomass. Several methods for extraction of ergosterol from soil have been published, perhaps the simplest being that described by Gong, P., Guan, X., Witter, E. [2001. A rapid method to extract ergosterol from soil

  15. Numerical solution for heave of expansive soils

    International Nuclear Information System (INIS)

    Sadrnezhad, S. A.

    1999-01-01

    A numerical solution for heave prediction is developed within the context theories for both saturated and unsaturated soil behaviors. Basically, lowering the potential level of compressing on a saturated layer will cause heaving due to water absorption. This water absorption is in an opposite way, similar to water dissipation as what happens during unloading in consolidation process. However, in unsaturated layers any change of the stability of potential energy level will cause the tendency of change in particle interconnection forces. So, any change by either distressing or the variation of moisture ratio will lead to soil heave. In this paper a finite element solution is employed for predicting the heave in saturated soil similar to unloading in consolidation. Also, in the case of unsaturated soil, equivalent soil suction as negative pore water pressures in applied to soil elements as equivalent nodal forces. To show the potential of this method, test results were com pated with those obtained from computations. These comparisons show that the presented method is capable of predicting the heave phenomenon quite well

  16. Comparative scrub solution tests for decontamination of transuranic radionuclides from soils

    International Nuclear Information System (INIS)

    Stevens, J.R.; Kochen, R.L.; Rutherford, D.W.; Riordan, G.A.; Delaney, I.C.

    1982-08-01

    Soil decontamination tests were done using three scrubbing solutions on five different transuranic-contaminated soils from Department of Energy sites. The soils came from Rocky Flats, Colorado; Hanford, Washington; Mound Facility, Ohio; Idaho National Engineering Laboratory, Idaho; and Los Alamos National Laboratory, New Mexico. Decontamination was effected by physical and chemical means. A pH 12.5 scrub effected decontamination by serving as a hydraulic grading and attrition scrub medium; this solution did not solubilize the actinide contamination. A 2% HNO 3 , 0.2% HF, 2% pine oil, and 5% Calgon solution effected decontamination by physical and chemical means; this solution solubilized particulate actinide and actinide dispersed on the surface of soil particles. A 2N HCl scrub was also used to effect decontamination by physical and chemical means; this reagent solubilized soil constituents, removing contamination that had migrated into mineral surfaces. Only Rocky Flats soil was effectively decontaminated by the high pH solution although all soils had an enrichment of the activity in the -150 mesh fraction. Attrition scrubbing with both acid solutions had a better decontamination ability for the +150 mesh fraction for Hanford, INEL, and LANL soils. In addition, the acid solutions solubilized some of the plutonium and had a decontamination effect on the fine fractions

  17. Availability of heavy metals in contaminated soil evidenced by chemical extractants

    Directory of Open Access Journals (Sweden)

    Maria Ligia de Souza Silva

    2012-06-01

    Full Text Available Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.

  18. Carcinogenicity of soil extracts

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbak, N P

    1970-01-01

    A total of 270 3-mo-old mice, hybrids of the C57BL and CBA strains which are highly susceptible to carcinogens, were painted on the skin (2-3 admin./week) with 3-4 drops of (1) a concentrated benzene extract of soil taken near a petroleum refinery with a 3,4 benzpyrene (BP) content of 0.22%; (2) a 0.22% soln of pure BP in benzene; (3) a concentrated benzene extract of soil taken from an old residential area of Moscow (BP content 0.0004%); (4) a 0.0004% BP soln in benzene; and (5) pure benzene. Only mice in the first 2 groups developed tumors. In group (1), 8 mice had papillomas, 46 had skin cancer, 1 had a sarcoma and 2 had plasmocytomas. In group (2) all 60 animals had skin cancer. Lung metastases were present at autopsy in 5 mice in group (1) and in 10 mice in group (2); in some cases, these tumors were multiple. Lymph node metastases were found in 6 mice in group (1) and in 10 mice in group (2). Tumors developed more slowly in group (1) than in group (2).

  19. Speciation of zinc in contaminated soils

    International Nuclear Information System (INIS)

    Stephan, Chadi H.; Courchesne, Francois; Hendershot, William H.; McGrath, Steve P.; Chaudri, Amar M.; Sappin-Didier, Valerie; Sauve, Sebastien

    2008-01-01

    The chemical speciation of zinc in soil solutions is critical to the understanding of its bioavailability and potential toxic effects. We studied the speciation of Zn in soil solution extracts from 66 contaminated soils representative of a wide range of field conditions in both North America and Europe. Within this dataset, we evaluated the links among the dissolved concentrations of zinc and the speciation of Zn 2+ , soil solution pH, total soil Zn, dissolved organic matter (DOM), soil organic matter (SOM) and the concentrations of different inorganic anions. The solid-liquid partitioning coefficient (K d ) for Zn ranged from 17 to 13,100 L kg -1 soil. The fraction of dissolved Zn bound to DOM varied from 60% to 98% and the soil solution free Zn 2+ varied from 40% to 60% of the labile Zn. Multiple regression equations to predict free Zn 2+ , dissolved Zn and the solid-liquid partitioning of Zn are given for potential use in environmental fate modeling and risk assessment. The multiple regressions also highlight some of the most important soil properties controlling the solubility and chemical speciation of zinc in contaminated soils. - We studied the relationships among the chemical speciation of Zn in soil solution extracts from 66 contaminated soils and various physicochemical properties of the soils

  20. Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil solution in view of ecotoxicological effects.

    Science.gov (United States)

    de Vries, Wim; Lofts, Steve; Tipping, Ed; Meili, Markus; Groenenberg, Jan E; Schütze, Gudrun

    2007-01-01

    Risk assessment for metals in terrestrial ecosystems, including assessments of critical loads, requires appropriate critical limits for metal concentrations in soil and soil solution. This chapter presents an overview of methodologies used to derive critical (i) reactive and total metal concentrations in soils and (ii) free metal ion and total metal concentrations in soil solution for Cd, Pb, Cu, Zn, and Hg, taking into account the effect of soil properties related to ecotoxicological effects. Most emphasis is given to the derivation of critical free and total metal concentrations in soil solution, using available NOEC soil data and transfer functions relating solid-phase and dissolved metal concentrations. This approach is based on the assumption that impacts on test organisms (plants, microorganisms, and soil invertebrates) are mainly related to the soil solution concentration (activity) and not to the soil solid-phase content. Critical Cd, Pb, Cu, Zn, and Hg concentrations in soil solution vary with pH and DOC level. The results obtained are generally comparable to those derived for surface waters based on impacts to aquatic organisms. Critical soil metal concentrations, related to the derived soil solution limits, can be described as a function of pH and organic matter and clay content, and varying about one order of magnitude between different soil types.

  1. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH

    NARCIS (Netherlands)

    Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.

    2008-01-01

    In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total

  2. Use of sequential extraction to assess metal partitioning in soils

    International Nuclear Information System (INIS)

    Kaasalainen, Marika; Yli-Halla, Markku

    2003-01-01

    The state of heavy metal pollution and the mobility of Cd, Cu, Ni, Cr, Pb and Zn were studied in three texturally different agricultural soil profiles near a Cu-Ni smelter in Harjavalta, Finland. The pseudo-total concentrations were determined by an aqua regia procedure. Metals were also determined after division into four fractions by sequential extraction with (1) acetic acid (exchangeable and specifically adsorbed metals), (2) a reducing agent (bound to Fe/Mn hydroxides), (3) an oxidizing agent (bound to soil organic matter) and (4) aqua regia (bound to mineral structures). Fallout from the smelter has increased the concentrations of Cd, Cu and Ni in the topsoil, where 75-90% of Cd, 49-72% of Cu and 22-52% of Ni occurred in the first two fractions. Slight Pb and Zn pollution was evident as well. High proportions of mobile Cd, Cu and Ni also deeper in the sandy soil, closest to the smelter, indicated some downward movement of metals. The hydroxide-bound fraction of Pb dominated in almost all soils and horizons, while Ni, Cr and Zn mostly occurred in mineral structures. Aqua regia extraction is usefully supplemented with sequential extraction, particularly in less polluted soils and in soils that exhibit substantial textural differences within the profiles. - Sequential extraction is most useful with soils with low metal pollutant levels

  3. Effects of Iron Concentration Level in Extracting Solutions from Contaminated Soils on the Determination of Zinc by Flame Atomic Absorption Spectrometry with Two Background Correctors

    Directory of Open Access Journals (Sweden)

    Christophe Waterlot

    2012-01-01

    Full Text Available Zinc and iron concentrations were determined after digestion, water, and three-step sequential extractions of contaminated soils. Analyses were carried out using flame absorption spectrometry with two background correctors: a deuterium lamp used as the continuum light source (D2 method and the high-speed self-reversal method (HSSR method. Regarding the preliminary results obtained with synthetic solutions, the D2 method often emerged as an unsuitable configuration for compensating iron spectral interferences. In contrast, the HSSR method appeared as a convenient and powerful configuration and was tested for the determination of zinc in contaminated soils containing high amounts of iron. Simple, fast, and interference-free method, the HSSR method allows zinc determination at the ppb level in the presence of large amounts of iron with high stability, sensitivity, and reproducibility of results. Therefore, the HSSR method is described here as a promising approach for monitoring zinc concentrations in various iron-containing samples without any pretreatment.

  4. Determination of flumequine and oxolinic acid in sediments and soils by microwave-assisted extraction and liquid chromatography-fluorescence

    International Nuclear Information System (INIS)

    Prat, M.D.; Ramil, D.; Compano, R.; Hernandez-Arteseros, J.A.; Granados, M.

    2006-01-01

    A method is reported for the determination of the quinolones oxolinic acid and flumequine in aquatic sediments and agricultural soils. The analytes are extracted by liquid-liquid partitioning between a sample homogenated in an aqueous buffer solution and dichloromethane. Microwave-assisted extraction (MAE) was tested to improve the speed and efficiency of the extraction process. The parameters affecting the efficiency of MAE, such as irradiation time and temperature, were studied. The clean-up consists of back-extraction in 1 M sodium hydroxide. The determination is carried out by reversed phase liquid chromatography on an octyl silica-based column and fluorimetric detection. The optimised method was applied to the analysis of two sediments and one agricultural soil spiked with the analytes. The absolute recovery rates for the whole process range from 79% to 94% (RSD 3-7%), and detection limits are in the low μg kg -1 level

  5. Chemical extraction to assess the bioavailability of chlorobenzenes in soil with different aging periods

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang; Wang, Fang; Yang, Xinglun; Liu, Cuiying; Jin, Xin; Jiang, Xin [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Kengara, Fredrick Orori [Maseno Univ. (Kenya). Dept. of Chemistry

    2011-12-15

    Bioavailability is mainly influenced by aging and desorption of contaminants in soil. The purpose of this study was to investigate the desorption kinetics of chlorobenzenes (CBs) in soil and to investigate whether chemical extractions are suitable for the bioavailability assessment of CBs in soil. A soil spiked with CBs and aged for different periods was extracted with Tenax, hydroxypropyl-{beta}-cyclodextrin (HPCD), and butanol to assess the bioavailability of CBs in soil, respectively. Earthworm (Eisenia foetida) accumulation was used as bioassay in parallel experiments to evaluate the chemical extractions. The results showed that desorption of CBs from soil with consecutive Tenax extraction fitted into triphasic kinetics model. Different chemical methods extracted different amounts of CBs over different aging periods. For hexachlorobenzene (HCB), the extraction efficiency was in the order of butanol > Tenax-6h > HPCD extraction, while the order of butanol > HPCD > Tenax-6h extraction for pentachlorobenzene (PeCB). The bioaccumulation by earthworm decreased with increasing aging period and was significantly higher for HCB than for PeCB (p < 0.05). Earthworm accumulated CBs correlated well with all the three chemical extracted CBs. However, HPCD extraction showed the converse extraction tendency with earthworm uptake of CBs. Chemical extraction could be used to assess the bioavailability of contaminants in soil; however, they were method and compound specific. Tenax and butanol extractions were more reliable than HPCD extraction for bioavailability assessment of the tested CBs and the soil used since they showed the consistent extraction tendency with earthworm uptake of CBs.

  6. Extraction of transplutonium elements from carbonate solutions by alkylpyrocatechol

    International Nuclear Information System (INIS)

    Karalova, Z.K.; Myasoedov, B.F.; Rodionova, L.M.; Kuznetsova, V.S.

    1983-01-01

    Extraction of americium, berkelium as well as Ce, Eu, Th, U, Zr, Cs, Fe with solution of 4(α, α-dioctylethyl)pyrocatechol (DOP) in toluene from carbonate solutions to determine conditions of their separation has been studied. It is established that americium extraction is quite sensitive to the changes of potassium carbonate concentration. The maximum extraction of americium (R >90%) is observed in the case of 0.1-0.5 mol/l of K 2 CO 3 solutions and the minimum one (R=2.5%) - in the case of 8 mol/l K 2 CO 3 . Americium extraction increases sharply when sodium hydroxide is introduced in carbonate solutions. It is shown that varying sodium hydroxide concentration it is possible to achieve qualitative extraction of americium even from saturated solution of potassium carbonate. Reextraction of TPE is easily realized with 3 mol/l HCl solution. The system K 2 CO 3 (KOH)-DOP proved to be perspective for Am separation from Bk, Ce, Cs, actinoid elements as well as from Fe

  7. Influence of indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study.

    Science.gov (United States)

    Kim, Kwon-Rae; Owens, Gary; Kwon, Soon-lk

    2010-01-01

    This study investigated the influence of Indian mustard (Brassica juncea) root exudation on soil solution properties (pH, dissolved organic carbon (DOC), metal solubility) in the rhizosphere using a rhizobox. Measurement was conducted following the cultivation of Indian mustard in the rhizobox filled four different types of heavy metal contaminated soils (two alkaline soils and two acidic soils). The growth of Indian mustard resulted in a significant increase (by 0.6 pH units) in rhizosphere soil solution pH of acidic soils and only a slight increase (soil solution varied considerably amongst different soils, resulting in significant changes to soil solution metals in the rhizosphere. For example, the soil solution Cd, Cu, Pb, and Zn concentrations increased in the rhizosphere of alkaline soils compared to bulk soil following plant cultivation. In contrast, the soluble concentrations of Cd, Pb, and Zn in acidic soils decreased in rhizosphere soil when compared to bulk soils. Besides the influence of pH and DOC on metal solubility, the increase of heavy metal concentration having high stability constant such as Cu and Pb resulted in a release of Cd and Zn from solid phase to liquid phase.

  8. Feasibility Study of the Use of Thiosulfate as Extractant Agent in the Electrokinetic Remediation of a Soil Contaminated by Mercury from Almadén

    DEFF Research Database (Denmark)

    Subires-Muñoz, José Diego; García-Rubio, Ana; Vereda-Alonso, Carlos

    2010-01-01

    Natural soils are rather complex, making the predictability of the behavior of some remediation techniques very complicated. In this paper, the remediation of a Hg contaminated soil close to Almadén using a thiosulfate solution as extractant agent is studied. In addition, the use of the BCR...... extraction procedure before and after the remediation was performed. Once again, a clear relationship between the remediation and the extraction results are observed, giving further support to the idea that BCR can be used as a reasonable tool for feasibility studies of EKR among other remediation techniques....

  9. Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils

    Science.gov (United States)

    Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...

  10. Element fractionation by sequential extraction in a soil with high carbonate content

    International Nuclear Information System (INIS)

    Sulkowski, Margareta; Hirner, Alfred V.

    2006-01-01

    The influence of carbonate and other buffering substances in soils on the results of a 3-step sequential extraction procedure (BCR) used for metal fractionation was investigated. Deviating from the original extraction scheme, where the extracts are analysed only for a limited number of metals, almost all elements in the soils were quantified by X-ray fluorescence spectroscopy, in the initial samples as well as in the residues of all extraction steps. Additionally, the mineral contents were determined by X-ray diffractometry. Using this methodology, it was possible to correlate changes in soil composition caused by the extraction procedure with the release of elements. Furthermore, the pH values of all extracts were monitored, and certain extraction steps were repeated until no significant pH-rise occurred. A soil with high dolomite content (27%) and a carbonate free soil were extracted. Applying the original BCR-sequence to the calcareous soil, carbonate was found in the residues of the first two steps and extract pH-values rose by around two units in the first and second step, caused mainly by carbonate dissolution. This led to wrong assignment of the carbonate elements Ca, Mg, Sr, Ba, and also to decreased desorption and increased re-adsorption of ions in those steps. After repetition of the acetic acid step until extract pH remained low, the carbonate was completely destroyed and the distributions of the elements Ca, Mg, Sr, Ba as well as those of Co, Ni, Cu, Zn and Pb were found to be quite different to those determined in the original extraction. Furthermore, it could be shown that the effectiveness of the reduction process in step two was reduced by increasing pH: Fe oxides were not significantly attacked by the repeated acetic acid treatments, but a 10-fold amount of Fe was mobilized by hydroxylamine hydrochloride after complete carbonate destruction. On the other hand, only small amounts of Fe were released anyway. Even repeated reduction steps did not

  11. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil.

    Science.gov (United States)

    Luo, Y M; Christie, P; Baker, A J

    2000-07-01

    Temporal changes in soil solution properties and metal speciation were studied in non-rhizosphere soil and in the rhizosphere of the hyperaccumulator Thlaspi caerulescens J. & C. Presl (population from Prayon, Belgium) grown in a Zn- and Cd-contaminated soil. This paper focuses on soil solution Zn and pH dynamics during phytoextraction. The concentration of Zn in both non-rhizosphere and rhizosphere soil solutions decreased from 23 mg/l at the beginning to 2 mg/l at the end of the experiment (84 days after transplanting of seedlings), mainly due to chemical sorption. There was no significant difference in overall Zn concentration between the planted and the unplanted soil solutions (P > 0.05). Soil solution pH decreased initially and then increased slightly in both planted and unplanted soil zones. From 60 to 84 days after transplanting, the pH of the rhizosphere soil solution was higher than that of non-rhizosphere soil solution (P<0.05). Zn uptake by the hyperaccumulator plants was 8.8 mg per pot (each containing 1 kg oven-dry soil) on average. The data indicate that the potential of T. caerulescens to remove Zn from contaminated soil may not be related to acidification of the rhizosphere.

  12. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    Science.gov (United States)

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  13. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    International Nuclear Information System (INIS)

    Phillips, E.J.P.; Landa, E.R.; Lovley, D.R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranium-contaminated soils. Bicarbonate (100 mM) extracted 20-94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism, Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils. (author)

  14. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Hu, S.S.; Buckler, M.J.

    1993-01-01

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  15. Electrochemical EDTA recycling with sacrificial Al anode for remediation of Pb contaminated soil

    International Nuclear Information System (INIS)

    Pociecha, Maja; Lestan, Domen

    2010-01-01

    Recycling chelant is a precondition for cost-effective EDTA-based soil remediation. Extraction with EDTA removed 67.5% of Pb from the contaminated soil and yielded washing solution with 1535 mg L -1 Pb and 33.4 mM EDTA. Electrochemical treatment of the washing solution using Al anode, current density 96 mA cm -2 and pH 10 removed 90% of Pb from the solution (by electrodeposition on the stainless steel cathode) while the concentration of EDTA in the treated solution remained the same. The obtained data indicate that the Pb in the EDTA complex was replaced by electro-corroded Al after electro-reduction of the EDTA and subsequently removed from the solution. Additional soil extraction with the treated washing solution resulted in total removal of 87% of Pb from the contaminated soil. The recycled EDTA retained the Pb extraction potential through several steps of soil extraction and washing solution treatment, although part of the EDTA was lost by soil absorption. - Aluminium anode at alkaline pH in conventional electrolytic cell enables efficient recycling of EDTA as a part of soil washing remediation technology.

  16. Soil solution interactions may limit Pb remediation using P ...

    Science.gov (United States)

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg-1 was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organic acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm-1, potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. Mor

  17. Soil solution and extractable soil nitrogen response to climate change in two boreal forest ecosystems

    NARCIS (Netherlands)

    Verburg, P.H.

    2005-01-01

    Several studies show that increases in soil temperature result in higher N mineralization rates in soils. It is, however, unclear if additional N is taken up by the vegetation or accumulates in the soil. To address this question two small, forested catchments in southern Norway were experimentally

  18. Nitrate concentrations in soil solutions below Danish forests

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Raulund-Rasmussen, Karsten; Gundersen, Per

    1999-01-01

    leaching in relation to land-use, a national monitoring programme has established sampling routines in a 7x7 km grid including 111 points in forests. During winters of 1986-1993, soil samples were obtained from a depth of 0-25, 25-50, 50-75 and 75-100 cm. Nitrate concentrations in soil solutions were...... species. A few sites deviated radically from the general pattern of low concentrations. The elevated concentrations recorded there were probably caused by high levels of N deposition due to emission from local sources or temporal disruptions of the N cycle. The nitrate concentration in the soil solution...

  19. Bioremediation of petroleum hydrocarbon contaminated soils using soil vapor extraction: Case study

    International Nuclear Information System (INIS)

    Roth, R.J.; Peterson, R.M.

    1994-01-01

    Soils contaminated with petroleum hydrocarbons are being remediated in situ at a site in Lakewood, New Jersey by bioremediation in conjunction with soil vapor extractions (SVE) and nutrient addition. The contaminants were from hydraulic oils which leaked from subsurface hydraulic lifts, waste oil from leaking underground storage tanks (USTs), an aboveground storage tank, and motor oil from a leaking UST. The oils contaminated subsurface soils at the site to a depth of 25 feet. Approximately 900 cubic yards of soil were contaminated. Soil sample analyses showed total petroleum hydrocarbon (TPH) concentrations up to 31,500 ppm. The design of the remedial system utilized the results of a treatability study which showed that TPH degrading microorganisms, when supplied with oxygen and nutrients, affected a 14% reduction in TPH in 30 days. A SVE system was installed which used three wells, each installed to a depth of 25 feet below grade. The SVE system was operated to achieve an extracted air flow of approximately 20 to 30 scfm from each well. Bioremediation of the TPH was monitored by measuring CO 2 and O 2 concentrations at the wellheads and vapor monitoring probes. After four months of remediation, CO 2 concentrations were at a minimum, at which point the subsurface soils were sampled and analyzed for TPH. The soil analyses showed a removal of TPH by biodegradation of up to 99.8% after four months of remediation

  20. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Alshawabkeh, Akram N.; Chen Haifeng

    2007-01-01

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary

  1. Remediation of soils combining soil vapor extraction and bioremediation: benzene.

    Science.gov (United States)

    Soares, António Alves; Albergaria, José Tomás; Domingues, Valentina Fernandes; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2010-08-01

    This work reports the study of the combination of soil vapor extraction (SVE) with bioremediation (BR) to remediate soils contaminated with benzene. Soils contaminated with benzene with different water and natural organic matter contents were studied. The main goals were: (i) evaluate the performance of SVE regarding the remediation time and the process efficiency; (ii) study the combination of both technologies in order to identify the best option capable to achieve the legal clean up goals; and (iii) evaluate the influence of soil water content (SWC) and natural organic matter (NOM) on SVE and BR. The remediation experiments performed in soils contaminated with benzene allowed concluding that: (i) SVE presented (a) efficiencies above 92% for sandy soils and above 78% for humic soils; (b) and remediation times from 2 to 45 h, depending on the soil; (ii) BR showed to be an efficient technology to complement SVE; (iii) (a) SWC showed minimum impact on SVE when high airflow rates were used and led to higher remediation times for lower flow rates; (b) NOM as source of microorganisms and nutrients enhanced BR but hindered the SVE due the limitation on the mass transfer of benzene from the soil to the gas phase. (c) 2010 Elsevier Ltd. All rights reserved.

  2. Interaction of Brilliant Blue dye solution with soil and its effect on mobility of compounds around the zones of preferenial flows at spruce stand

    Directory of Open Access Journals (Sweden)

    Bebej Juraj

    2017-06-01

    Full Text Available We performed field experiment with 10 g l−1 concentration of Brilliant Blue solutes in 100 l of water sprinkling on 1 × 1 m surface of the Dystric Cambisol. Consequently, four vertical profiles were exposed at experimental plot after 2 hours (CUT 2, 24 hours (CUT 24, 27 hours (CUT 27 and after 504 hours (CUT 504 in order to analyse spatiotemporal interactions among the BB solution (Na-salts, soil exchangeable complex and fine earth soil (% samples extracted from both the high and low coloured zones located around the optically visualised macropore preferred flow (PF zones. The concentration changes were quantifying via soil profiles not affected by BB (termed as REF located in the close vicinity of experimental plot. Observed changes in pH (H2O, chemical composition of fineearth soil, as well as in concentration of Na+ in soil exchangeable complex to suggest, the BB dye solution didn’t represent an inert tracer, but compounds strongly involved in reaction with surrounding soils. Recorded chemical trends seems to be the result both the competitive processes between the Na+ of BB dye solution and composition of surrounding soil exchangeable complex, as well and the spatial-temporal controlled mechanism of dye solution transfer in soil.

  3. Case study: Free product recovery and site remediation using horizontal trenching, soil vapor treatment and groundwater extraction

    International Nuclear Information System (INIS)

    Sanderson, E.P.; Johnston, H.S. Jr.; Farrell, M.; Twedell, D.B.

    1993-01-01

    Sites with soil and groundwater impacted by petroleum hydrocarbons have been remediated using a variety of traditional techniques. However, when the site impacted lies within a very confined downtown area of an expanding metropolitan city, a more complex array of technologies must be considered. The Law Enforcement Center site is the City of Charlotte's worst known underground storage tank (UST) release to date. A cost effective free product recovery, soil vapor and groundwater extraction system is being piloted here using new horizontal trenching technology and state of the art equipment. On-site low permeability soil required that an alternative to standard recovery wells be developed for groundwater recovery and vapor extraction. Operation and maintenance (O and M) of the large number of recovery wells required would have been extremely costly over the expected lifetime of the project. Although horizontal trenching was the best solution to the O and M costs, many problems were encountered during their installation

  4. The dependence of the 137Cs on the parameters of a soil solution

    International Nuclear Information System (INIS)

    Bulavyin, L.A.; Prorok, V.V.; Agejev, V.A.; Mel'nichenko, L.Yu.; Ostashko, V.V.

    2007-01-01

    Different kinds of rapidly maturing plants were grown simultaneously at experimental sites under natural conditions at the Chernobyl Exclusion Zone. The content of 137 Cs in a plant and in the corresponding soil solution and the content of the soil solution in soil were measured. We have first established that, for all investigated plants and experimental sites, the 137 Cs plant uptake is approximately proportional to the concentration of dissolved 137 Cs in the soil - to the product of the 137 Cs content in the soil solution and the content of the soil solution per unit volume of soil

  5. Variation of the rare earth element concentrations in the soil, soil extract and in individual plants from the same site

    International Nuclear Information System (INIS)

    Wyttenbach, A.; Tobler, L.; Furrer, V.; Schleppi, P.

    1998-01-01

    Samples of various types (spruce needles, blackberry leaves, soils, and soil extracts) have each been taken at 6 places from the same site. In addition, 4 whirls each from 2 spruce trees were sampled. Rare earth elements (REEs) were determined in these samples by neutron activation analysis with a chemical group separation. Variations between places were found to be small with soils and soil extracts, but large with plants. Variations between whirls were small. Plants neither reflected the soil nor the soil extract. Both plant species were dissimilar, but the logarithm of their ratio was a linear function of the atomic number of the REE. A negative Ce anomaly (with respect to soil) was found in both plant species. (author)

  6. Uptake of radiocaesium by lettuce crops: the effect of K in soil solution

    International Nuclear Information System (INIS)

    Waegeneers, N.; Camps I Vila, M.; Smolders, E.; Merckx, R.; Sauras, T.; Madoz-Escande, C.

    1998-01-01

    The effect of varying K supply on 137 Cs uptake by lettuce (Lactuca sativa, cv. Batavia, Gloire du Dauphine) was studied in solution culture, in a potted soil experiment and in a greenhouse lysimeter experiment under close-to-real conditions. Lettuce was grown for 13 days in nutrient solution spiked with 137 Cs. Treatments were four concentrations of potassium in solution (25, 50, 250, and 1000 μM). Yields were marginally affected by K supply. The 137 Cs concentration factor (CF, ml/g) decreased 66-fold in the shoot and 432-fold in the roots over the whole K concentration range. The decrease was most pronounced between 25 and 250 μM K. In a subsequent experiment, lettuce was grown for 20 days under the same climatic conditions in two sandy-foam soils (A, B) contaminated with 134 Cs. Both had similar characteristics but differed widely in K supply. Soil solution K concentrations were 100 μM (A) or 3000 μM (B). The radiocesium soil-to-plant Transfer Factor (TF, g plant dry weight / g soil) was 0.320 in soil A and 0.016 in soil B. The higher 137 Cs availability at the lower K supply (soil A) was contrasted by lower 137 Cs concentrations in soil solution of soil A than of soil B. Radiocesium transfer to lettuce grown to maturity was analysed on 5 different lysimeter soils under controlled climatic conditions. The soils were artificially contaminated with 137 Cs in 1994. The TF's varied between 0.032 and 0.191 and were not related to K concentrations in soil solution. The CF decreased about 100-fold with K concentrations increasing from 0.3 to 18 mM. Predictions of soil-to-plant transfer factors based on soil solution composition and nutrient solution results were qualitatively correct but underestimated the observed values

  7. Evaluation of extraction methods for hexavalent chromium determination in dusts, ashes, and soils

    Science.gov (United States)

    Wolf, Ruth E.; Wilson, Stephen A.

    2010-01-01

    One of the difficulties in performing speciation analyses on solid samples is finding a suitable extraction method. Traditional methods for extraction of hexavalent chromium, Cr(VI), in soils, such as SW846 Method 3060A, can be tedious and are not always compatible with some determination methods. For example, the phosphate and high levels of carbonate and magnesium present in the U.S. Environmental Protection Agency (USEPA) Method 3060A digestion for Cr(VI) were found to be incompatible with the High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS) detection method used by our laboratory. Modification of Method 3060A by eliminating the use of the phosphate buffer provided improved performance with the detection method, however dilutions are still necessary to achieve good chromatographic separation and detection of Cr(VI). An ultrasonic extraction method using a 1 mM Na2CO3 - 9 mM NaHCO3 buffer solution, adapted from Occupational Safety and Health Administration (OSHA) Method ID215, has been used with good results for the determination of Cr(VI) in air filters. The average recovery obtained for BCR-545 - Welding Dust Loaded on Filter (IRMM, Belgium) using this method was 99 percent (1.2 percent relative standard deviation) with no conversion of Cr(VI) to Cr(III) during the extraction process. This ultrasonic method has the potential for use with other sample matrices, such as ashes and soils. Preliminary investigations using NIST 2701 (Hexavalent Chromium in Contaminated Soil) loaded onto quartz filters showed promising results with approximately 90 percent recovery of the certified Cr(VI) value. Additional testing has been done using NIST 2701 and NIST 2700 using different presentation methods. Extraction efficiency of bulk presentation, where small portions of the sample are added to the bottom of the extraction vessel, will be compared with supported presentation, where small portions of the sample are loaded onto a

  8. Modelling trends in soil solution concentrations under five forest-soil combinations in the Netherlands

    NARCIS (Netherlands)

    Salm, van der C.; Vries, de W.; Kros, J.

    1996-01-01

    The influence of forest and soil properties on changes in soil solution concentration upon a reduction deposition was examined for five forest-soil combinations with the dynamic RESAM model. Predicted concentrations decreased in the direction Douglas fir - Scotch pine - oak, due to decreased

  9. The speciation of radionuclides in sediments and soils. Part II. Studies with a sequential organic extraction procedure

    International Nuclear Information System (INIS)

    Voss, H.A.; Williams, G.A.; Cooper, M.B.

    1983-07-01

    A series of chemical extractions with a range of organic solvents has been performed to investigate the speciation of radionuclides in soil and sediment samples from the Mt. Brockman area in the Northern Territory. The major result is that of all the organic solvents used in the extractions, only acetic acid removes large proportions of the radionuclides 210 Pb (ca. 30-70%) and 226 Ra (10-55%) from the soil and sediment samples. The failure of the other organic solvents, and in particular dimethylformamide, to extract appreciable amounts of these radionuclides is taken to indicate that 210 Pb and 226 Ra are not present as discrete metal complexes of organic ligands. The overriding conclusion, that the acidic nature of the solvent is the most important property in releasing the bound radionuclides into solution, suggests that even under mildly acidic conditions encountered in the environment significant amounts of 210 Pb and 226 Ra may be released for transportation

  10. Phytotoxicity of water-soluble substances from alfalfa and barley soil extracts on four crop species.

    Science.gov (United States)

    Read, J J; Jensen, E H

    1989-02-01

    Problems associated with continuously planting alfalfa (Medicago saliva L.) or seeding to thicken depleted alfalfa stands may be due to autotoxicity, an intraspecific form of allelopathy. A bioassay approach was utilized to characterize the specificity and chemical nature of phytotoxins in extracts of alfalfa soils as compared to fallow soil or soil where a cereal was the previous crop. In germination chamber experiments, water-soluble substances present in methanol extracts of soil cropped to alfalfa or barley (Hordeum vulgare L.) decreased seedling root length of alfalfa L-720, winter wheat (Triticum aestivum L. Nugaines) and radish (Raphanus sativa L. Crimson Giant). Five days after germination, seedling dry weights of alfalfa and radish in alfalfa soil extracts were lower compared to wheat or red clover (Trifolium pralense L. Kenland). Growth of red clover was not significantly reduced by soil extracts from cropped soil. Extracts of crop residue screened from soil cropped to alfalfa or barley significantly reduced seedling root length; extracts of alfalfa residue caused a greater inhibition of seedling dry weight than extracts of barely residue. A phytotoxic, unidentified substance present in extracts of crop residue screened from alfalfa soil, which inhibited seedling root length of alfalfa, was isolated by thin-layer chromatography (TLC). Residues from a soil cropped continuously to alfalfa for 10 years had the greatest phytotoxic activity.

  11. Microstructure and hardness of bovine enamel in roselle extract solution

    Science.gov (United States)

    Dame, M. T.; Noerdin, A.; Indrani, D. J.

    2017-08-01

    The aim of this study was to analyze the effect of roselle extract solution on the microstructure and hardness of bovine enamel. Ten bovine teeth and a 5% concentration of roselle extract solution were prepared. Immersions of each bovine tooth in roselle extract solution were conducted up to 60 minutes. The bovine enamel surface was characterized in hardness and microscopy. It was apparent that the initial hardness was 328 KHN, and after immersion in 15 and 60 min, the values decrease to 57.4 KHN and 11 KHN, respectively. Scanning electron microscopy (SEM) revealed changes in enamel rods after immersion in the roselle extract solution.

  12. Influence of soil solution cation composition on boron adsorption by soils

    Science.gov (United States)

    Boron (B) adsorption on five arid-zone soil samples from California was investigated as a function of solution pH (4-10) and cation composition (Na, Ca, or Mg). Boron adsorption increased with increasing solution pH, reached an adsorption maximum near pH 9, and decreased with further increases with...

  13. Effects of seasonal and well construction variables on soil vapor extraction pilot tests

    International Nuclear Information System (INIS)

    Campbell, R.; Hudon, N.; Bass, D.

    1995-01-01

    The selection and design of an effective soil vapor extraction system is dependent upon data generated from pilot testing. Therefore, it is critical to understand factors that may affect the testing prior to selecting or designing a system. In Sebago Lake Village, Maine, two adjacent gasoline stations experienced a release. Gasoline migrated through fine sand into the groundwater and discharged to a small stream. Soil vapor extraction was investigated as a remedial alternative to reduce volatile organic compounds in the unsaturated soil. Three soil vapor extraction pilot tests were performed at one of the sites and one test at the other site. The results of the testing varied. Data collected during a summer test indicated soil vapor extraction was less likely to work. The wells tested were installed using an excavator. An adequate surface seal was not present in any of the tested wells. An additional test was performed in the winter using wells installed by a drill rig. Winter test results indicated that soil vapor extraction could be effective. Another test was performed after a horizontal soil vapor extraction system with a surface seal was installed. The results of this testing indicated that soil vapor extraction was more effective than predicted by the earlier tests. Tests performed on the other property indicated that the horizontal wells were more effective than the vertical wells. Testing results were affected by the well installation method, well construction, proximity to manmade structures, and the season in which testing was performed. Understanding factors that affect the testing is critical in selecting and designing the system

  14. Distributions and concentrations of thallium in Korean soils determined by single and sequential extraction procedures.

    Science.gov (United States)

    Lee, Jin-Ho; Kim, Dong-Jin; Ahn, Byung-Koo

    2015-06-01

    The objectives of this study were to investigate the distribution of thallium in soils collected near suspected areas such as cement plants, active and closed mines, and smelters and to examine the extraction of thallium in the soils using 19 single chemical and sequential chemical extraction procedures. Thallium concentrations in soils near cement plants were distributed between 1.20 and 12.91 mg kg(-1). However, soils near mines and smelters contained relatively low thallium concentrations ranging from 0.18 to 1.09 mg kg(-1). Thallium extractability with 19 single chemical extractants from selected soils near cement plants ranged from 0.10% to 8.20% of the total thallium concentration. In particular, 1.0 M NH4Cl, 1.0 M (NH4)2SO4, and 1.0 M CH3COONH4 extracted more thallium than other extractants. Sequential fractionation results of thallium from different soils such as industrially and artificially contaminated soils varied with the soil properties, especially soil pH and the duration of thallium contamination.

  15. Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea.

    Science.gov (United States)

    Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong

    2018-03-24

    Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.

  16. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils

    International Nuclear Information System (INIS)

    Keller, Catherine; Hammer, Daniel

    2004-01-01

    Metal phytoextraction with hyperaccumulating plants could be a useful method to decontaminate soils, but it is not fully validated yet. In order to quantify the efficiency of Cd and Zn extraction from a calcareous soil with and without Fe amendment and an acidic soil, we performed a pot experiment with three successive croppings of Thlaspi caerulescens followed by 3 months without plant and 7 weeks with lettuce. We used a combined approach to assess total extraction efficiency (2 M HNO 3 -extractable metals), changes in metal bio/availability (0.1 M NaNO 3 -extractable metals and lettuce uptake) and toxicity (lettuce biomass and the BIOMETreg] biosensor). The soil solution was monitored over the whole experiment. In the calcareous soil large Cu concentrations were probably responsible for chlorosis symptoms observed on T. caerulescens. When this soil was treated with Fe, the amount of extracted metal by T. caerulescens increased and metal availability and soil toxicity decreased when compared to the untreated soil. In the acidic soil, T. caerulescens was most efficient: Cd and Zn concentrations in plants were in the range of hyperaccumulation and HNO 3 -extractable Cd and Zn, metal bio/availability, soil toxicity, and Cd and Zn concentrations in the soil solution decreased significantly. However, a reduced Cd concentration measured in the third T. caerulescens cropping indicated a decrease in metal availability below a critical threshold, whereas the increase of dissolved Cd and Zn concentrations after the third cropping may be the early sign of soil re-equilibration. This indicates that phytoextraction efficiency must be assessed by different approaches in order not to overlook any potential hazard and that an efficient phytoextraction scheme will have to take into account the different dynamics of the soil-plant system

  17. Electrokinetic extraction of chromate from unsaturated soils

    International Nuclear Information System (INIS)

    Mattson, E.D.; Lindgren, E.R.

    1993-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode

  18. Electrokinetic extraction of chromate from unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, E.D. [SAT-UNSAT, Inc., Albuquerque, NM (United States); Lindgren, E.R. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode.

  19. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    Science.gov (United States)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single

  20. Zinc fractionation in contaminated soils by sequential and single extractions: influence of soil properties and zinc content.

    Science.gov (United States)

    Voegelin, Andreas; Tokpa, Gerome; Jacquat, Olivier; Barmettler, Kurt; Kretzschmar, Ruben

    2008-01-01

    We studied the fractionation of zinc (Zn) in 49 contaminated soils as influenced by Zn content and soil properties using a seven-step sequential extraction procedure (F1: NH4NO3; F2: NH4-acetate, pH 6; F3: NH3OHCl, pH 6; F4: NH4-EDTA, pH 4.6; F5: NH4-oxalate, pH 3; F6: NH4-oxalate/ascorbic acid, pH 3; F7: residual). The soils had developed from different geologic materials and covered a wide range in soil pH (4.0-7.3), organic C content (9.3-102 g kg(-1)), and clay content (38-451 g kg(-1)). Input of aqueous Zn with runoff water from electricity towers during 26 to 74 yr resulted in total soil Zn contents of 3.8 to 460 mmol kg(-1). In acidic soils (n = 24; pH soils (n = 25; pH > or =6.0), most Zn was extracted in the mobilizable fraction (F2) and the intermediate fractions (F4 and F5). The extractability of Zn increased with increasing Zn contamination of the soils. The sum of mobile (F1) and mobilizable (F2) Zn was independent of soil pH, the ratio of Zn in F1 over F1+F2 plotted against soil pH, exhibited the typical shape of a pH sorption edge and markedly increased from pH 6 to pH 5, reflecting the increasing lability of mobilizable Zn with decreasing soil pH. In conclusion, the extractability of Zn from soils contaminated with aqueous Zn after decades of aging under field conditions systematically varied with soil pH and Zn content. The same trends are expected to apply to aqueous Zn released from decomposing Zn-bearing contaminants, such as sewage sludge or smelter slag. The systematic trends in Zn fractionation with varying soil pH and Zn content indicate the paramount effect of these two factors on molecular scale Zn speciation. Further research is required to characterize the link between the fractionation and speciation of Zn and to determine how Zn loading and soil physicochemical properties affect Zn speciation in soils.

  1. Removal of fission products from waste solutions using 16 different soil samples

    International Nuclear Information System (INIS)

    Bangash, M.A.; Hanif, J.

    1997-01-01

    Most of the nuclear sites use pits in the surrounding soils for the storage/disposal of low active waste (LAW) solutions. The characteristics of the soil if not suitable for the fixation or adsorption of the radioactive nuclides, may cause migration of these nuclides to hydrosphere. The phenomenon has the risk of radio toxic pollution for the living bodies therefore minerals composing the soil and their adsorption properties need to be investigated. For this purpose 16 different soil samples were collected from all over Pakistan. Mineralogical composition of the soils was determined by X-ray diffraction analysis. It was found that most of the samples contained clay minerals, illite, kaolinite and montmorillonite. Studies for the removal of fission products like, /sup 137/Cs. /sup 60/Sr and activation product /sup 60/CO from solution were carried out on these samples. The sorption experiments were performed by batch technique using radioactive as tracers. Distribution co-efficient were determined by mixing he element solution at pH 3 with the soil at soil solution ratios of 1 to 20. It is revealed from the experimental data that efficient removal of fission products from solutions is achieved by soil samples containing clay mineral montmorillonite, followed by little and kaolinite. These soils thus can be effectively used for the disposal of low level radioactive waste solutions without causing any environmental hazard. (author)

  2. Controls on soil solution nitrogen along an altitudinal gradient in the Scottish uplands.

    Science.gov (United States)

    Jackson-Blake, L; Helliwell, R C; Britton, A J; Gibbs, S; Coull, M C; Dawson, L

    2012-08-01

    Nitrogen (N) deposition continues to threaten upland ecosystems, contributing to acidification, eutrophication and biodiversity loss. We present results from a monitoring study aimed at investigating the fate of this deposited N within a pristine catchment in the Cairngorm Mountains (Scotland). Six sites were established along an elevation gradient (486-908 m) spanning the key habitats of temperate maritime uplands. Bulk deposition chemistry, soil carbon content, soil solution chemistry, soil temperature and soil moisture content were monitored over a 5 year period. Results were used to assess spatial variability in soil solution N and to investigate the factors and processes driving this variability. Highest soil solution inorganic N concentrations were found in the alpine soils at the top of the hillslope. Soil carbon stock, soil solution dissolved organic carbon (DOC) and factors representing site hydrology were the best predictors of NO(3)(-) concentration, with highest concentrations at low productivity sites with low DOC and freely-draining soils. These factors act as proxies for changing net biological uptake and soil/water contact time, and therefore support the hypothesis that spatial variations in soil solution NO(3)(-) are controlled by habitat N retention capacity. Soil percent carbon was a better predictor of soil solution inorganic N concentration than mass of soil carbon. NH(4)(+) was less affected by soil hydrology than NO(3)(-) and showed the effects of net mineralization inputs, particularly at Racomitrium heath and peaty sites. Soil solution dissolved organic N concentration was strongly related to both DOC and temperature, with a stronger temperature effect at more productive sites. Due to the spatial heterogeneity in N leaching potential, a fine-scale approach to assessing surface water vulnerability to N leaching is recommended over the broad scale, critical loads approach currently in use, particularly for sensitive areas. Copyright © 2012

  3. Enzymatic vegetable organic extracts as soil biochemical biostimulants and atrazine extenders.

    Science.gov (United States)

    García-Martínez, Ana María; Tejada, Manuel; Díaz, Ana Isabel; Rodríguez-Morgado, Bruno; Bautista, Juan; Parrado, Juan

    2010-09-08

    The purpose of this study was to gather information on the potential effects of organic biostimulants on soil activity and atrazine biodegradation. Carob germ enzymatic extract (CGEE) and wheat condensed distiller solubles enzymatic extract (WCDS-EE) have been obtained using an enzymatic process; their main organic components are soluble carbohydrates and proteins in the form of peptides and free amino acids. Their application to soil results in high biostimulation, rapidly increased dehydrogenase, phosphatase and glucosidase activities, and an observed atrazine extender capacity due to inhibition of its mineralization. The extender capacity of both extracts is proportional to the protein/carbohydrate ratio content. As a result, these enzymatic extracts are highly microbially available, leading to two independent phenomena, fertility and an atrazine persistence that is linked to increased soil activity.

  4. Soil clean up by vapour extraction: parametrical study; Depollution des sols par extraction sous pression reduite: etude de quelques parametres

    Energy Technology Data Exchange (ETDEWEB)

    Dutheil, C.

    2003-05-15

    Soil vapour extraction is a treatment process for soils polluted by volatile organic compounds. Its principle relies on the circulation of gaseous flow in soil by the application of a depression of some hundreds milli-bars. A parametrical study has been led on a soil artificially polluted by tri-chloro-ethene. It shows that the gaseous flow rate has a slight influence on pollutants extraction yield. This is due to rate limited mass transfer processes. Soil moisture plays a negative role on treatment efficiency because of the reduction of the porosity available for the gas circulation. Tests have been performed on a soil polluted by a complex mixture of organic pollutants to elaborate a methodology of technical feasibility assessment. This methodology aims at identifying and limiting risks of site rehabilitation failure. Tests results show that soil vapour extraction was inadequate to treat the soil tested in this study because of the strong affinity between a dense organic phase (grease) and chlorinated solvents. (author)

  5. Change of the Extractability of Cadmium Added to Different Soils: Aging Effect and Modeling

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2018-03-01

    Full Text Available Ethylenediaminetetraacetic acid (EDTA is known to be a chelating agent and has been widely used for estimating the total extractable metals in soil. The effect of aging on EDTA-extractable cadmium (Cd was investigated in five different soils at three Cd concentrations incubated for 180 days. The EDTA-extractable Cd rapidly decreased after incubated during 30–60 days, followed by slow processes, and for 90 days the EDTA-extractable Cd tended to be stable. The decrease in EDTA-extractable Cd may be due to precipitation/nucleation processes, diffusion of Cd into the micropores/mesopores, and occlusion within organic matter in soils. A semi-mechanistic model to predict the extractability of Cd during incubation, based on processes of Cd precipitation/nucleation, diffusion, and occlusion within organic matter, was developed and calibrated. The results showed that the processes of micropore/mesopore diffusion were predominant processes affecting the extractability of Cd added to soils, and were slow. However, the proportions of the processes of precipitation/nucleation and occlusion within organic matter to the non-EDTA-extractable Cd added to soils were only 0.03–21.0% and 0.41–6.95%, respectively. The measured EDTA-extractable Cd from incubated soils were in good agreement with those predicted by the semi-mechanistic model (R2 = 0.829. The results also indicated that soil pH, organic matter, and incubation time were the most important factors affecting Cd aging.

  6. Solute transport model for radioisotopes in layered soil

    International Nuclear Information System (INIS)

    Essel, P.

    2010-01-01

    The study considered the transport of a radioactive solute in solution from the surface of the earth down through the soil to the ground water when there is an accidental or intentional spillage of a radioactive material on the surface. The finite difference method was used to model the spatial and temporal profile of moisture content in a soil column using the θ-based Richard's equation leading to solution of the convective-dispersive equation for non-adsorbing solutes numerically. A matlab code has been generated to predict the transport of the radioactive contaminant, spilled on the surface of a vertically heterogeneous soil made up of two layers to determine the residence time of the solute in the unsaturated zone, the time it takes the contaminant to reach the groundwater and the amount of the solute entering the groundwater in various times and the levels of pollution in those times. The model predicted that, then there is a spillage of 7.2g of tritium, on the surface of the ground at the study area, it will take two years for the radionuclide to enter the groundwater and fifteen years to totally leave the unsaturated zone. There is therefore the need to try as much as possible to avoid intentional or accidental spillage of the radionuclide since it has long term effect. (au)

  7. Accelerated solvent extraction method with one-step clean-up for hydrocarbons in soil

    International Nuclear Information System (INIS)

    Nurul Huda Mamat Ghani; Norashikin Sain; Rozita Osman; Zuraidah Abdullah Munir

    2007-01-01

    The application of accelerated solvent extraction (ASE) using hexane combined with neutral silica gel and sulfuric acid/ silica gel (SA/ SG) to remove impurities prior to analysis by gas chromatograph with flame ionization detector (GC-FID) was studied. The efficiency of extraction was evaluated based on the three hydrocarbons; dodecane, tetradecane and pentadecane spiked to soil sample. The effect of ASE operating conditions (extraction temperature, extraction pressure, static time) was evaluated and the optimized condition obtained from the study was extraction temperature of 160 degree Celsius, extraction pressure of 2000 psi with 5 minutes static extraction time. The developed ASE with one-step clean-up method was applied in the extraction of hydrocarbons from spiked soil and the amount extracted was comparable to ASE extraction without clean-up step with the advantage of obtaining cleaner extract with reduced interferences. Therefore in the developed method, extraction and clean-up for hydrocarbons in soil can be achieved rapidly and efficiently with reduced solvent usage. (author)

  8. Selective extraction of hydrocarbons, phosphonates and phosphonic acids from soils by successive supercritical fluid and pressurized liquid extractions.

    Science.gov (United States)

    Chaudot, X; Tambuté, A; Caude, M

    2000-01-14

    Hydrocarbons, dialkyl alkylphosphonates and alkyl alkylphosphonic acids are selectively extracted from spiked soils by successive implementation of supercritical carbon dioxide, supercritical methanol-modified carbon dioxide and pressurized water. More than 95% of hydrocarbons are extracted during the first step (pure supercritical carbon dioxide extraction) whereas no organophosphorus compound is evidenced in this first extract. A quantitative extraction of phosphonates is achieved during the second step (methanol-modified supercritical carbon dioxide extraction). Polar phosphonic acids are extracted during a third step (pressurized water extraction) and analyzed by gas chromatography under methylated derivatives (diazomethane derivatization). Global recoveries for these compounds are close to 80%, a loss of about 20% occurring during the derivatization process (co-evaporation with solvent). The developed selective extraction method was successfully applied to a soil sample during an international collaborative exercise.

  9. The possible use of soluble humic substances for remediation of heavy metal polluted soils

    DEFF Research Database (Denmark)

    Borggaard, Ole K.; Jensen, Julie Katrine; Holm, Peter Engelund

    2008-01-01

    Polluted soil is a common and serious environmental problem. While reliable methods exist for cleaning soil contaminated by organic compounds through degradation, remediation of heavy metal polluted soils awaits an appropriate solution. This is because heavy metals are nondegradable and generally....... Therefore, the potential of soluble natural humic substances (HS) to extract heavy metals from contaminated soils is tested as an environmental friendly substitute for EDTA. A strongly polluted urban soil and a moderately polluted agricultural soil were extracted at neutral pH in batch mode by three HS...... extraction. Heavy metal extraction with dissolved HS is compared with EDTA at the same concentration and sequential extraction has been performed to identify extracted pools. The results indicate a clear potential of using HS solutions for remediation of heavy metal polluted soils, which is fortunate...

  10. Green Remediation Best Management Practices: Soil Vapor Extraction & Air Sparging

    Science.gov (United States)

    Historically, approximately one-quarter of Superfund source control projects have involved soil vapor extraction (SVE) to remove volatile organic compounds (VOCs) sorbed to soil in the unsaturated (vadose) zone.

  11. Degradation kinetics of ptaquiloside in soil and soil solution

    DEFF Research Database (Denmark)

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun

    2008-01-01

    and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction...... was similar in all horizons, with the rate constant k1F ranging between 0.23 and 1.5/h. The slow degradation, with the rate constant k1S ranging between 0.00067 and 0.029/h, was more than twice as fast in topsoils compared to subsoils, which is attributable to higher microbial activity in topsoils....... Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA...

  12. Prediction of the effects of soil-based countermeasures on soil solution chemistry of soils contaminated with radiocesium using the hydrogeochemical code PHREEQC.

    Science.gov (United States)

    Hormann, Volker; Kirchner, Gerald

    2002-04-22

    For agriculturally used areas, which are contaminated by the debris from a nuclear accident, the use of chemical amendmends (e.g. potassium chloride and lime) is among the most common soil-based countermeasures. These countermeasures are intended to reduce the plant uptake of radionuclides (mainly 137Cs and 90Sr) by competitive inhibition by chemically similar ions. So far, the impacts of countermeasures on soil solution composition - and thus, their effectiveness - have almost exclusively been established experimentally, since they depend on mineral composition and chemical characteristics of the soil affected. In this study, which focuses on caesium contamination, the well-established code PHREEQC was used as a geochemical model to calculate the changes in the ionic compositions of soil solutions, which result from the application of potassium or ammonium in batch equilibrium experiments. The simple ion exchange model used by PHREEQC was improved by taking into account selective sorption of Cs+, NH4+ and K+ by clay minerals. Calculations were performed with three different initial soil solution compositions, corresponding to particular soil types (loam, sand, peat). For loamy and sandy soils, our calculational results agree well with experimental data reported by Nisbet (Effectiveness of soil-based countermeasures six months and one year after contamination of five diverse soil types with caesium-134 and strontium-90. Contract Report NRPB-M546, National Radiation Protection Board, Chilton, 1995.). For peat, discrepancies were found indicating that for organic soils a reliable set of exchange constants of the relevant cations still has to be determined experimentally. For cesium, however, these discrepancies almost disappeared if selective sites were assumed to be inaccessible. Additionally, results of sensitivity analyses are presented by which the influence of the main soil parameters on Cs+ concentrations in solution after soil treatment has been systematically

  13. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  14. Behaviour of radioactive and stable isotopes of calcium in the soil-solution-plant system at different soil humidity

    International Nuclear Information System (INIS)

    Karavaeva, E.N.; Molchanova, I.V.

    1976-01-01

    The results of experiments performed to study the behaviour of radioactive and stable isotopes of Ca in soil - solution - plant system at different soil moistening are given. The experiments have been conducted in culture pans with two soils: soddy-meadow and soddy-podzolic differing in a number of physico-chemical properties. The solution of radioactive Ca( 45 CaCl 2 ) has been applied to soddy-meadow soil at the rate of 0.2 μcurie/kg, and to soddy-podzolic soil - at the rate of 0.1 μcurie/kg. The distribution and accumulation coefficients are estimated by the ratio to the total content of stable Ca and 45 Ca in soil. A direct relationship between distribution coefficients and the rate of soil moistening is observed. It has been established that 45 Ca and the natural stable isotopes of Ca applied to the soil differ in the type of distribution in soil - soil solution system and in accumulation by plants. However, a great similarity has been observed in behaviour of radioactive and stable isotopes of Ca depending on soil moistening

  15. Hydroxypropyl-beta-cyclodextrin as non-exhaustive extractant for organochlorine pesticides and polychlorinated biphenyls in muck soil

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Fiona [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario, L0L 1N0 (Canada); Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4 (Canada); Bidleman, Terry F., E-mail: terry.bidleman@ec.gc.c [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario, L0L 1N0 (Canada)

    2010-05-15

    Hydroxypropyl-beta-cyclodextrin (HPCD) was used as a non-exhaustive extractant for organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) in muck soil. An optimized extraction method was developed which involved using a HPCD to soil mass ratio of 5.8 with a single extraction period of 20 h. An aging experiment was performed by spiking a muck soil with {sup 13}C-labeled OCs and non-labeled PCBs. The soil was extracted with the optimized HPCD method and Soxhlet apparatus with dichloromethane over 550 d periodically. The HPCD extractability of the spiked OCs was greater than of the native OCs. A decreased in HPCD extractability was observed for the spiked OCs after 550 d of aging and their extractability approached those of the natives. The partition coefficient between HPCD and soil (log K{sub CD-Soil}) was negatively correlated with the octanol-water partition coefficient (log K{sub OW}) with r{sup 2} = 0.67 and p < 0.05. - The effect of aging on the extractability of organochlorine chemicals in muck soil was investigated using hydroxypropyl-beta-cyclodextrin as a mild extractant.

  16. Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process.

    Science.gov (United States)

    Dias-Ferreira, Celia; Kirkelund, Gunvor M; Ottosen, Lisbeth M

    2015-01-01

    Seven electrodialytic experiments were conducted using ammonium citrate as enhancing agent to remediate copper and chromium-contaminated soil from a wood-preservation site. The purpose was to investigate the effect of current density (0.2, 1.0 and 1.5 mA cm(-2)), concentration of enhancing agent (0.25, 0.5 and 1.0 M) and remediation times (21, 42 and 117 d) for the removal of Cu and Cr from a calcareous soil. To gain insight on metal behavior, soil solution was periodically collected using suction cups. It was seen that current densities higher than 1.0 mA cm(-2) did not increase removal and thus using too high current densities can be a waste of energy. Desorption rate is important and both remediation time and ammonium citrate concentration are relevant parameters. It was possible to collect soil solution samples following an adaptation of the experimental set-up to ensure continuous supply of ammonium citrate to the soil in order to keep it saturated during the remediation. Monitoring soil solution gives valuable information on the evolution of remediation and helps deciding when the soil is remediated. Final concentrations in the soil ranged from 220 to 360 mg Cu kg(-1) (removals: 78-86%) and 440-590 mg Cr kg(-1) (removals: 35-51%), being within the 500 mg kg(-1) limit for a clean soil only for Cu. While further optimization is still required for Cr, the removal percentages are the highest achieved so far, for a real Cu and Cr-contaminated, calcareous soil. The results highlight EDR potential to remediate metal polluted soils at neutral to alkaline pH by choosing a good enhancement solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Chemical and plant extractability of metals and plant growth on soils amended with sludge

    Energy Technology Data Exchange (ETDEWEB)

    Gaynor, J.D.; Halstead, R.L.

    1976-02-01

    The addition of sludge to a Fox sandy loam (sl), Granby sl and Rideau clay (c) soil increased soil pH, total C, NaHCO3 extractable P, cation exchange capacity and exchangeable Ca. Sludge application increased DTPA-extractable Cd 2 to 5 times, Pb 2 to 3 times, Cu 3 to 7 times and Zn 7 to 31 times. Metal extractability in Granby and Fox sl soils was not greatly changed after 11 mo incubation but extractable Zn, Cu, Pb and Cd were reduced in the clay soil following incubation. Cropping to lettuce reduced the quantity of metal extracted from Fox sl soil and to a lesser extent from Rideau c soil but not from Granby sl soil. Lettuce (Lactuca sativa L.) yields were significantly reduced for the first crop grown on sludge + fertilizer-treated Rideau c and Granby sl soils and for all three harvests from similarly treated Fox s 1 soil compared to harvests from soils treated with fertilizer only. Yield reduction for the first crop was attributed to a salt effect, as subsequent yields on Rideau c and Granby sl soils were similar to harvests from fertilized treatments. Saturation extract conductivities for all sludge treatments were higher for incubated than for cropped soils. Generally Zn, Cu and Pb tissue concentrations in lettuce harvested from sludge + fertilizer-treated Fox and Granby sl soils were significantly increased but total uptake was only increased for Zn. Metal uptake and tissue concentrations for lettuce grown on similarly treated Rideau c soil were equal to or less than those found in lettuce harvested from the fertilizer-only treatment. To a lesser extent similar trends were observed with the tomato (Lycospersicon esculentum Mill.) crop. 27 references, 3 tables.

  18. Extraction of cesium from acid solutions

    International Nuclear Information System (INIS)

    Katykhin, G.S.; Simonov, A.S.

    1983-01-01

    The extraction of cesium from acidic solutions is studied. Halogen-substituted carboxylic acids were chosen for the aqueous phase and nitrobenzene the diluent. The distribution coefficients are determined by the use of radioactive tracers 134 Cs and 137 Cs. It is believed that large singly charged anions of strong acids are necessary for the extraction of cesium. Metal halide acids are selected for supplying the anions

  19. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, Sascha R.A.; van der Ham, Aloysius G.J.; Schuur, Boelo

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  20. Uranium extraction from sulfuric acid solution using anion exchange resin

    International Nuclear Information System (INIS)

    Sheta, M. E.; Abdel Aal, M. M.; Kandil, A. T.

    2012-12-01

    Uranium is currently recovered from sulfuric acid leach liquor using anion exchange resin as Amberlite IRA 402 (CT). This technology is based on fact that, uranium exists as anionic complexes. This takes place by controlling the pH of the solution, agitation time, temperature and resin to solution ratio (R/S). In this work, batch stirrer tank used for uranium extraction from sulfate medium and after extraction, elution process was done using 1M NaCl solution. After extraction and elution process, the resin was separated from the system and uranium was determined in the solution. (Author)

  1. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    Energy Technology Data Exchange (ETDEWEB)

    Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dryman, Joshua Cory [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results of tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.

  2. Ultrasound assisted mercury extraction from soil and sediment

    International Nuclear Information System (INIS)

    Collasiol, Andre; Pozebon, Dirce; Maia, Sandra M.

    2004-01-01

    A method for mercury (Hg) determination in soil, river sediment and marine sediment without sample digestion is investigated. Mercury determination is performed by cold vapour atomic absorption spectrometry (CV-AAS) using a flow injection system. Mercury quantitatively leaches out from the investigated marine sediment into 30% (v/v) HNO 3 assisted by ultrasonic irradiation (during 90-120 s) when sample particles size are ≤120 μm. Similar conditions can be applied for Hg determination in river sediment and soil, excepting the time of sonication which needs to be increased to 180 s and KCl is also added to the extraction medium. The presence of 0.15% (m/v) KCl in addition to 30% (v/v) HNO 3 is seen to be effective for quantitative Hg leaching. The certified samples PACS-2 and MESS-3 (both marine sediment from NRCC), Buffalo River (NIST 8704), Montana Soil (NIST 2710) and the non-certified river sediment sample RS-3 were analysed. The attained results were well within the 95% confidence level of the certificate or close to information value. Samples were analysed using aqueous standard calibration. A characteristic mass of 25 pg, a LOD (3s) of 0.2 μg Hg l -1 and a LOQ (10s) of 0.012 μg Hg g -1 are typically attained. These are based on 800 μl of sample solution and 1.000 g of sample mass in 20 ml. The RSD of 10 consecutive runs of the sample is <5%. The proposed method was finally applied for the determination of Hg in real samples of soil, river sediment and marine sediment. The same samples were also analysed using a digestion method giving similar results

  3. Two Solutions of Soil Moisture Sensing with RFID for Landslide Monitoring

    Directory of Open Access Journals (Sweden)

    Sérgio Francisco Pichorim

    2018-02-01

    Full Text Available Two solutions for UHF RFID tags for soil moisture sensing were designed and are described in this paper. In the first, two conventional tags (standard transponders are employed: one, placed close to the soil surface, is the sensor tag, while the other, separated from the soil, is the reference for system calibration. By transmission power ramps, the tag’s turn-on power levels are measured and correlated with soil condition (dry or wet. In the second solution, the SL900A chip, which supports up to two external sensors and an internal temperature sensor, is used. An interdigital capacitive sensor was connected to the transponder chip and used for soil moisture measurement. In a novel design for an UHF RFID tag the sensor is placed below the soil surface, while the transponder and antenna are above the soil to improve communication. Both solutions are evaluated practically and results show the presence of water in soil can be remotely detected allowing for their application in landslide monitoring.

  4. Necessity of purification during bacterial DNA extraction with environmental soils

    Directory of Open Access Journals (Sweden)

    Hyun Jeong Lim

    2017-08-01

    Full Text Available Complexity and heterogeneity of soil samples have often implied the inclusion of purification steps in conventional DNA extraction for polymerase chain reaction (PCR assays. Unfortunately the purification steps are also time and labor intensive. Therefore the necessity of DNA purification was re-visited and investigated for a variety of environmental soil samples that contained various amounts of PCR inhibitors. Bead beating and centrifugation was used as the baseline (without purification method for DNA extraction. Its performance was compared with that of conventional DNA extraction kit (with purification. The necessity criteria for DNA purification were established with environmental soil samples. Using lysis conditions at 3000 rpm for 3 minutes with 0.1 mm glass beads, centrifugation time of 10 minutes and 1:10 dilution ratio, the baseline method outperformed conventional DNA extraction on cell seeded sand samples. Further investigation with PCR inhibitors (i.e., humic acids, clay, and magnesium [Mg] showed that sand samples containing less than 10 μg/g humic acids and 70% clay may not require purifications. Interestingly, the inhibition pattern of Mg ion was different from other inhibitors due to the complexation interaction of Mg ion with DNA fragments. It was concluded that DNA extraction method without purification is suitable for soil samples that have less than 10 μg/g of humic acids, less than 70% clay content and less than 0.01% Mg ion content.

  5. Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium.

    Science.gov (United States)

    Weggler, Karin; McLaughlin, Michael J; Graham, Robin D

    2004-01-01

    Increasing chloride (Cl) concentration in soil solution has been shown to increase cadmium (Cd) concentration in soil solution and Cd uptake by plants, when grown in phosphate fertilizer- or biosolid-amended soils. However, previous experiments did not distinguish between the effect of Cl on biosolid-borne Cd compared with soil-borne Cd inherited from previous fertilizer history. A factorial pot experiment was conducted with biosolid application rates of 0, 20, 40, and 80 g biosolids kg(-1) and Cl concentration in soil solution ranging from 1 to 160 mM Cl. The Cd uptake of wheat (Triticum aestivum L. cv. Halberd) was measured and major cations and anions in soil solution were determined. Cadmium speciation in soil solution was calculated using GEOCHEM-PC. The Cd concentration in plant shoots and soil solution increased with biosolid application rates up to 40 g kg(-1), but decreased slightly in the 80 g kg(-1) biosolid treatment. Across biosolid application rates, the Cd concentration in soil solution and plant shoots was positively correlated with the Cl concentration in soil solution. This suggests that biosolid-borne Cd is also mobilized by chloride ligands in soil solution. The soil solution CdCl+ activity correlated best with the Cd uptake of plants, although little of the variation in plant Cd concentrations was explained by activity of CdCl+ in higher sludge treatments. It was concluded that chlorocomplexation of Cd increased the phytoavailability of biosolid-borne Cd to a similar degree as soil (fertilizer) Cd. There was a nonlinear increase in plant uptake and solubility of Cd in biosolid-amended soils, with highest plant Cd found at the 40 g kg(-1) rate of biosolid application, and higher rates (80 g kg(-1)) producing lower plant Cd uptake and lower Cd solubility in soil. This is postulated to be a result of Cd retention by CaCO3 formed as a result of the high alkalinity induced by biosolid application.

  6. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions.

    Science.gov (United States)

    Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile

    2015-01-01

    This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A simplified extraction schema to for the analytical characterization of apple orchard soils

    Science.gov (United States)

    Sager, Manfred

    2014-05-01

    In agriculture, soil analysis is mainly done to monitor available nutrients as well contaminants, in order to find the optimum fertilization resp. remediation strategy. Traditionally, available nutrients in soils have been obtained from a series of different extractions, some just for one single parameter. In order to simplify the entire procedures, multi-element techniques, like ICP-OES and ICP-MS, have been applied to a sequence of extracts obtained with 0,16M acetic acid and 0,1M oxalate buffer pH 3, which are more suitable for the plasma than traditional salt extractant solutions. Dilute acetic acid should characterize exchangeables plus carbonates, and oxalate buffer the pedogenic oxides. Aqua regia extractions in glass have been replaced by pressure digestion with KClO3 in dilute nitric acid, which yields results equivalent to aqua regia, and additionally permits the determination of total sulfur, as well as acid-leachable boron and silicon. Total digestion was done in PTFE beakers by fuming with HNO3/HClO4, subsequently with HF, and final uptake in 1+1 HCl. The results of total digestion could be verified by XRF analysis of the solid, Ti recovery was the most critical item. The method was applied to 34 soils from apple orchards of different soil types and climatic zones. P and K obtained from standard acetate-lactate extract as well as B obtained from the Baron extract correlated with the results from the acetic acid extract better than 0,9. Just Mg from the CaCl2 extract (Schachtschabel) was independent from all other Mg fractions. The results for Ca, Cu, Mg, Mn, Sr, Pb and Zn obtained from KClO3 digest and from totals, were strongly correlated. The Rare Earth elements formed a strongly intercorrelated group as well after total digestion as in the oxalate leach. Factor analysis was utilized to prove if the obtained fractions part into groups in a geochemically feasible way. The fraction mobilized by dilute acetic acid contained Ca-Mg-carbonates as well as

  8. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils.

    Science.gov (United States)

    Senthilkumar, P; Prince, W S P M; Sivakumar, S; Subbhuraam, C V

    2005-09-01

    Soil and plant samples (root and shoot) of Prosopis juliflora were collected in the vicinity of metal based foundry units in Coimbatore and assessed for their heavy metal content (Cu and Cd) to ascertain the use of P. juliflora as a green solution to decontaminate soils contaminated with Cu and Cd. The results showed that Cu and Cd content was much higher in plant components compared to their extractable level in the soil. Furthermore, there exist a strong correlation between the distance of the sources of industrial units and accumulation of heavy metals in plants. Accumulation of Cd in roots is comparatively higher than that of shoots. However, in case of Cu no such clear trend is seen. Considering the accumulation efficiency and tolerance of P. juliflora to Cd and Cu, this plant can be explored further for the decontamination of metal polluted soils. On the other hand, in view of heavy metal accumulate the practice of providing foliage and pods as fodder for live stock should be avoided.

  9. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil.

    Science.gov (United States)

    Wu, L H; Luo, Y M; Christie, P; Wong, M H

    2003-02-01

    A pot experiment was conducted to study the effects of EDTA and low molecular weight organic acids (LMWOA) on the pH, total organic carbon (TOC) and heavy metals in the soil solution in the rhizosphere of Brassica juncea grown in a paddy soil contaminated with Cu, Zn, Pb and Cd. The results show that EDTA and LMWOA have no effect on the soil solution pH. EDTA addition significantly increased the TOC concentrations in the soil solution. The TOC concentrations in treatments with EDTA were significantly higher than those in treatments with LMWOA. Adding 3 mmol kg(-1) EDTA to the soil markedly increased the total concentrations of Cu, Zn, Pb and Cd in the soil solution. Compared to EDTA, LMWOA had a very small effect on the metal concentrations. Total concentrations in the soil solution followed the sequence: EDTA > citric acid (CA) approximately oxalic acid (OA) approximately malic acid (MA) for Cu and Pb; EDTA > MA > CA approximately OA for Zn; and EDTA > MA > CA > OA for Cd. The labile concentrations of Cu, Zn, Pb and Cd showed similar trends to the total concentrations.

  10. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    International Nuclear Information System (INIS)

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60 degree C) or long extraction times (23 h). Adding KMnO 4 in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium

  11. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  12. The variability of standard artificial soils: Behaviour, extractability and bioavailability of organic pollutants

    International Nuclear Information System (INIS)

    Hofman, Jakub; Hovorková, Ivana; Semple, Kirk T.

    2014-01-01

    Highlights: • Artificial soils from different laboratories revealed different fates, behaviour and bioavailability of lindane and phenanthrene. • Lindane behaviour was related to organic carbon. • Phenanthrene behaviour was significantly affected by degrading microorganisms from peat. • Sterilization of artificial soils might reduce unwanted variability. -- Abstract: Artificial soil is an important standard medium and reference material for soil ecotoxicity bioassays. Recent studies have documented the significant variability of their basic properties among different laboratories. Our study investigated (i) the variability of ten artificial soils from different laboratories by means of the fate, extractability and bioavailability of phenanthrene and lindane, and (ii) the relationships of these results to soil properties and ageing. Soils were spiked with 14 C-phenanthrene and 14 C-lindane, and the total residues, fractions extractable by hydroxypropyl-β-cyclodextrin, and the fractions of phenanthrene mineralizable by bacteria were determined after 1, 14, 28 and 56 days. Significant temporal changes in total residues and extractable and mineralizable fractions were observed for phenanthrene, resulting in large differences between soils after 56 days. Phenanthrene mineralization by indigenous peat microorganisms was suggested as the main driver of that, outweighing the effects of organic matter. Lindane total residues and extractability displayed much smaller changes over time and smaller differences between soils related to organic matter. Roughly estimated, the variability between the artificial soils was comparable to natural soils. The implications of such variability for the results of toxicity tests and risk assessment decisions should be identified. We also suggested that the sterilization of artificial soils might reduce unwanted variability

  13. The variability of standard artificial soils: Behaviour, extractability and bioavailability of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, Jakub, E-mail: hofman@recetox.muni.cz [Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno CZ-62500 (Czech Republic); Hovorková, Ivana [Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno CZ-62500 (Czech Republic); Semple, Kirk T. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2014-01-15

    Highlights: • Artificial soils from different laboratories revealed different fates, behaviour and bioavailability of lindane and phenanthrene. • Lindane behaviour was related to organic carbon. • Phenanthrene behaviour was significantly affected by degrading microorganisms from peat. • Sterilization of artificial soils might reduce unwanted variability. -- Abstract: Artificial soil is an important standard medium and reference material for soil ecotoxicity bioassays. Recent studies have documented the significant variability of their basic properties among different laboratories. Our study investigated (i) the variability of ten artificial soils from different laboratories by means of the fate, extractability and bioavailability of phenanthrene and lindane, and (ii) the relationships of these results to soil properties and ageing. Soils were spiked with {sup 14}C-phenanthrene and {sup 14}C-lindane, and the total residues, fractions extractable by hydroxypropyl-β-cyclodextrin, and the fractions of phenanthrene mineralizable by bacteria were determined after 1, 14, 28 and 56 days. Significant temporal changes in total residues and extractable and mineralizable fractions were observed for phenanthrene, resulting in large differences between soils after 56 days. Phenanthrene mineralization by indigenous peat microorganisms was suggested as the main driver of that, outweighing the effects of organic matter. Lindane total residues and extractability displayed much smaller changes over time and smaller differences between soils related to organic matter. Roughly estimated, the variability between the artificial soils was comparable to natural soils. The implications of such variability for the results of toxicity tests and risk assessment decisions should be identified. We also suggested that the sterilization of artificial soils might reduce unwanted variability.

  14. Extraction Kinetics and Molecular Size Fractionation of Humic Substances From Two Brazilian Soils

    Directory of Open Access Journals (Sweden)

    Dick Deborah Pinheiro

    1999-01-01

    Full Text Available In the present study, the extraction behaviour of humic substances (HS from an Oxisol and a Mollisol from South Brazil, by using 0.1 and 0.5 mol L-1 NaOH and 0.15 mol L-1 neutral pyrophosphate solutions, respectively, was systematically studied. The kinetics and efficiency of HS extraction were evaluated by means of UV/Vis spectroscopy. The isolated humic acids (HA and fulvic acids (FA were size-classified by multistage ultrafiltration (six fractions in the molecular weight range of 1 to 100 kDa. The obtained data show that the HS extraction yield depended not only on the extractant, but also on the soil type. Within 3 h approximately 90% of the soluble HS could be extracted following complex extraction kinetics by both methods and none or little structural modification was verified as observed from their stable extinction ratio E350/E550. In the Mollisol the pyrophosphate extraction was more effective, suggesting that a great part of HS occurred as macromolecules bonded to clay minerals and aggregated between themselves through cationic bridges. In the Oxisol a higher HS yield was verified with the alkaline method, presumably due to HS fixation onto the oxide surface by H-bonds and/or surface complexation reactions. In general, HS extracted by the pyrophosphate procedure showed higher molecular weights than those extracted by NaOH.

  15. A fully continuous supercritical fluid extraction system for contaminated soil

    International Nuclear Information System (INIS)

    Ryan, M.; Stiver, W.H.

    2007-01-01

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO 2 ) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs

  16. A fully continuous supercritical fluid extraction system for contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.; Stiver, W.H. [Guelph Univ., ON (Canada). School of Engineering

    2007-04-15

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO{sub 2}) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs.

  17. High-temperature extraction of rhenium from sulfuric acid solutions with trialkylamines

    International Nuclear Information System (INIS)

    Gladyhev, V.P.; Andreeva, N.N.; Kim, E.M.; Kovaleva, S.V.

    1985-01-01

    This paper attempts to determine the possibility of conducting high-temperature extraction of rhenium from sulfuric acid solutions with trialkylamines (TAA) using higher hydrocarbon-paraffin mixtures as the diluent of the extraction system. Substitution of kerosene by paraffin in the extraction system would permit decreasing the danger of fire and explosions during he extraction process. In extracting rhenium from industrial solutions with a melt of higher paraffins containing TAA and alcohols, the extraction system can be continously heated in heat exchangers through which washing sulfuric acid passes and then goes to the extractor. This permits utilizing the heat and decreases the temperature of the solutions for extraction to the optimum temperatures. Extraction of rhenium with a melt of trioctylamine in paraffin obeys the same mechanisms as high-temperature extraction of ruthenium (IV) by amines in kerosene and aromatic hydrocarbons

  18. New methods For Modeling Transport Of Water And Solutes In Soils

    DEFF Research Database (Denmark)

    Møldrup, Per

    Recent models for water and solute transport in unsaturated soils have been mechanistically based but numerically very involved. This dissertation concerns the development of mechanistically-based but numerically simple models for calculating and analyzing transport of water and solutes in soil...

  19. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction

    Energy Technology Data Exchange (ETDEWEB)

    Crean, Daniel E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Livens, Francis R.; Sajih, Mustafa [Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Stennett, Martin C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Grolimund, Daniel; Borca, Camelia N. [Swiss Light Source, Paul Scherrer Institute, Villigen (Switzerland); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom)

    2013-12-15

    Highlights: • Batch leaching was examined to remediate soils contaminated with munitions depleted uranium. • Site specific maximum extraction was 42–50% total U in single batch with NH{sub 4}HCO{sub 3}. • Analysis of residues revealed partial leaching and secondary carbonate phases. • Sequential batch leaching alternating between NH{sub 4}HCO{sub 3} and citric acid was designed. • Site specific extraction was increased to 68–87% total U in three batch steps. -- Abstract: Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42–50% total DU extracted), citric acid (30–42% total DU) and sulphuric acid (13–19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68–87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents.

  20. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction.

    Science.gov (United States)

    Crean, Daniel E; Livens, Francis R; Sajih, Mustafa; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C

    2013-12-15

    Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42-50% total DU extracted), citric acid (30-42% total DU) and sulphuric acid (13-19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68-87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  2. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala†

    Science.gov (United States)

    Habte, Mitiku; Manjunath, Aswathanarayan

    1987-01-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 μg/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 μg/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 μg/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis. PMID:16347323

  3. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala.

    Science.gov (United States)

    Habte, M; Manjunath, A

    1987-04-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 mug/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 mug/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 mug/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis.

  4. Extractability and bioavailability of Pb and As in historically contaminated orchard soil: Effects of compost amendments

    International Nuclear Information System (INIS)

    Fleming, Margaret; Tai, Yiping; Zhuang, Ping; McBride, Murray B.

    2013-01-01

    The availability of Pb and As in an historically contaminated orchard soil, after amendment with compost and aging in the field, was determined by single-step chemical extraction with 1.0 M ammonium acetate at pH 4.8, sequential extraction using the modified BCR test, and a redworm bioassay in the laboratory. The efficiency of soil Pb extraction by ammonium acetate was greater at higher total soil Pb but was reduced by compost amendment. Conversely, the extraction efficiency of total soil As increased with compost amendment, but was not sensitive to total soil As. The redworm bioassay indicated Pb (but not As) bioavailability to be reduced by soil amendment with compost, a result consistent with the ammonium acetate extraction test but not reflected in modified BCR test. Electron microprobe studies of the orchard soil revealed Pb and As to be spatially associated in discrete particles along with phosphorus and iron. -- Highlights: ► Soil Pb and As in an old orchard were concentrated in discrete particles. ► Compost amendment of contaminated soil reduced Pb bioavailability. ► Compost amendment of contaminated soil did not reduce As bioavailability. ► Ammonium acetate extraction test reflected bioavailability of soil Pb and As. -- Remediating metal-contaminated orchard soils with compost reduced lead bioavailability but had little effect on arsenic

  5. Impact of historical mining assessed in soils by kinetic extraction and lead isotopic ratios

    International Nuclear Information System (INIS)

    Camizuli, E.; Monna, F.; Bermond, A.; Manouchehri, N.; Besançon, S.; Losno, R.; Oort, F. van; Labanowski, J.; Perreira, A.; Chateau, C.; Alibert, P.

    2014-01-01

    The aim of this study is to estimate the long-term behaviour of trace metals, in two soils differently impacted by past mining. Topsoils from two 1 km 2 zones in the forested Morvan massif (France) were sampled to assess the spatial distribution of Cd, Cu, Pb and Zn. The first zone had been contaminated by historical mining. As expected, it exhibits higher trace-metal levels and greater spatial heterogeneity than the second non-contaminated zone, supposed to represent the local background. One soil profile from each zone was investigated in detail to estimate metal behaviour, and hence, bioavailability. Kinetic extractions were performed using EDTA on three samples: the A horizon from both soil profiles and the B horizon from the contaminated soil. For all three samples, kinetic extractions can be modelled by two first-order reactions. Similar kinetic behaviour was observed for all metals, but more metal was extracted from the contaminated A horizon than from the B horizon. More surprising is the general predominance of the residual fraction over the “labile” and “less labile” pools. Past anthropogenic inputs may have percolated over time through the soil profiles because of acidic pH conditions. Stable organo-metallic complexes may also have been formed over time, reducing metal availability. These processes are not mutually exclusive. After kinetic extraction, the lead isotopic compositions of the samples exhibited different signatures, related to contamination history and intrinsic soil parameters. However, no variation in lead signature was observed during the extraction experiment, demonstrating that the “labile” and “less labile” lead pools do not differ in terms of origin. Even if trace metals resulting from past mining and metallurgy persist in soils long after these activities have ceased, kinetic extractions suggest that metals, at least for these particular forest soils, do not represent a threat for biota. - Highlights: • Trace

  6. Impact of historical mining assessed in soils by kinetic extraction and lead isotopic ratios

    Energy Technology Data Exchange (ETDEWEB)

    Camizuli, E., E-mail: estelle.camizuli@u-bourgogne.fr [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Monna, F. [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Bermond, A.; Manouchehri, N.; Besançon, S. [Institut des sciences et industries du vivant et de l' environnement (AgroParisTech), Laboratoire de Chimie Analytique, 16, rue Claude Bernard, 75231 Paris Cedex 05 (France); Losno, R. [UMR 7583, LISA, Universités Paris 7-Paris 12 — CNRS, 61 av. du Gal de Gaulle, 94010 Créteil Cedex (France); Oort, F. van [UR 251, Pessac, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, RD 10, 78026 Versailles Cedex (France); Labanowski, J. [UMR 7285, IC2MP, Université de Poitiers — CNRS, 4, rue Michel Brunet, 86022 Poitiers (France); Perreira, A. [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Chateau, C. [UFR SVTE, Université de Bourgogne, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Alibert, P. [UMR 6282, Biogeosciences, Université de Bourgogne — CNRS, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France)

    2014-02-01

    The aim of this study is to estimate the long-term behaviour of trace metals, in two soils differently impacted by past mining. Topsoils from two 1 km{sup 2} zones in the forested Morvan massif (France) were sampled to assess the spatial distribution of Cd, Cu, Pb and Zn. The first zone had been contaminated by historical mining. As expected, it exhibits higher trace-metal levels and greater spatial heterogeneity than the second non-contaminated zone, supposed to represent the local background. One soil profile from each zone was investigated in detail to estimate metal behaviour, and hence, bioavailability. Kinetic extractions were performed using EDTA on three samples: the A horizon from both soil profiles and the B horizon from the contaminated soil. For all three samples, kinetic extractions can be modelled by two first-order reactions. Similar kinetic behaviour was observed for all metals, but more metal was extracted from the contaminated A horizon than from the B horizon. More surprising is the general predominance of the residual fraction over the “labile” and “less labile” pools. Past anthropogenic inputs may have percolated over time through the soil profiles because of acidic pH conditions. Stable organo-metallic complexes may also have been formed over time, reducing metal availability. These processes are not mutually exclusive. After kinetic extraction, the lead isotopic compositions of the samples exhibited different signatures, related to contamination history and intrinsic soil parameters. However, no variation in lead signature was observed during the extraction experiment, demonstrating that the “labile” and “less labile” lead pools do not differ in terms of origin. Even if trace metals resulting from past mining and metallurgy persist in soils long after these activities have ceased, kinetic extractions suggest that metals, at least for these particular forest soils, do not represent a threat for biota. - Highlights: • Trace

  7. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    Science.gov (United States)

    Leite, D.C.A.; Balieiro, F.C.; Pires, C.A.; Madari, B.E.; Rosado, A.S.; Coutinho, H.L.C.; Peixoto, R.S.

    2014-01-01

    Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples. PMID:24948928

  8. Remediation of arsenic-contaminated soils and groundwaters

    Science.gov (United States)

    Peters, Robert W.; Frank, James R.; Feng, Xiandong

    1998-01-01

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  9. Effect of soil compositions on the electrochemical corrosion behavior of carbon steel in simulated soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.M. [College of Materials Science and Engineering, Chongqing University (China); Luo, S.X. [Department of Chemistry, Zunyi Normal College, Zunyi (China); Sun, C. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Wu, Y.H.

    2010-04-15

    In this study, effect of cations, Ca{sup 2+}, Mg{sup 2+}, K{sup +}, and anions, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, NO{sub 3}{sup -} on electrochemical corrosion behavior of carbon steel in simulated soil solution was investigated through potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results indicate that the Ca{sup 2+}and Mg{sup 2+} can decrease the corrosion current density of carbon steel in simulated soil solution, and K{sup +}, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, and NO{sub 3}{sup -} can increase the corrosion density. All the above ions in the simulated soil solution can decrease its resistivity, but they have different effect on the charge transfer resistivity. This finding can be useful in evaluating the corrosivity of certain soil through chemical analysis, and provide data for construction engineers. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Effects of atmospheric deposition nitrogen flux and its composition on soil solution chemistry from a red soil farmland, southeast China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; Chan, Andrew; Mao, Jingdong

    2015-12-01

    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.

  11. Improving Griffith's protocol for co-extraction of microbial DNA and RNA in adsorptive soils

    DEFF Research Database (Denmark)

    Paulin, Mélanie Marie; Nicolaisen, Mette Haubjerg; Jacobsen, Carsten Suhr

    2013-01-01

    Quantification of microbial gene expression is increasingly being used to study key functions in soil microbial communities, yet major limitations still exist for efficient extraction of nucleic acids, especially RNA for transcript analysis, from this complex matrix. We present an improved......-time PCR on both the RNA (after conversion to cDNA) and the DNA fraction of the extracts. Non-adsorptive soils were characterized by low clay content and/or high phosphate content, whereas adsorptive soils had clay contents above 20% and/or a strong presence of divalent Ca in combination with high p......H. Modifications to the co-extraction protocol improved nucleic acid extraction efficiency from all adsorptive soils and were successfully validated by DGGE analysis of the indigenous community based on 16S rRNA gene and transcripts in soils representing low biomass and/or high clay content. This new approach...

  12. Solute-matrix and Solute-Solute Interactions during Supercritical Fluid Extraction of Sea Buckthorn Leaves

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Sovová, Helena

    2012-01-01

    Roč. 42, SI (2012), s. 1682-1691 E-ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague, 25.08.2012-29.08.2012] R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * sea buckthom leaves * solute-solute interaction Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  13. A two-stage extraction procedure for insensitive munition (IM) explosive compounds in soils.

    Science.gov (United States)

    Felt, Deborah; Gurtowski, Luke; Nestler, Catherine C; Johnson, Jared; Larson, Steven

    2016-12-01

    The Department of Defense (DoD) is developing a new category of insensitive munitions (IMs) that are more resistant to detonation or promulgation from external stimuli than traditional munition formulations. The new explosive constituent compounds are 2,4-dinitroanisole (DNAN), nitroguanidine (NQ), and nitrotriazolone (NTO). The production and use of IM formulations may result in interaction of IM component compounds with soil. The chemical properties of these IM compounds present unique challenges for extraction from environmental matrices such as soil. A two-stage extraction procedure was developed and tested using several soil types amended with known concentrations of IM compounds. This procedure incorporates both an acidified phase and an organic phase to account for the chemical properties of the IM compounds. The method detection limits (MDLs) for all IM compounds in all soil types were regulatory risk-based Regional Screening Level (RSL) criteria for soil proposed by the U.S. Army Public Health Center. At defined environmentally relevant concentrations, the average recovery of each IM compound in each soil type was consistent and greater than 85%. The two-stage extraction method decreased the influence of soil composition on IM compound recovery. UV analysis of NTO established an isosbestic point based on varied pH at a detection wavelength of 341 nm. The two-stage soil extraction method is equally effective for traditional munition compounds, a potentially important point when examining soils exposed to both traditional and insensitive munitions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Evaluation of methods for available Zn in four soil orders in Costa Rica

    International Nuclear Information System (INIS)

    Molina, E.; Bornemisza, E.

    2001-01-01

    Analytical methods for available Zn determination were evaluated on four soil orders in Costa Rica (Ultisols, Vertisols, Inceptisols and Andisols) with 25 samples for each; using the following extract solutions : Modified Olsen, Mehlich 3, Modified Morgan , DTPA and HCI. The Zn levels obtained depended on the chemical characteristics of the extracting solutions. The highest levels were obtained with HCI, except for the Vertisols. The solutions with EDTA (Modified Olsen and Mehlich 3), extracted intermediate levels of Zn, while the method using DTPA (Modified Morgan and DTPA) gave the lowest Zn values . In most of the cases, significant values of correlation were obtained between the 5 extraction methods; so for individual soil orders, or comparing all 100 soils. The highest correlation coefficients for extractable Zn were found for the Mehlich 3, Modified Morgan and DTPA. The correlations were consistent for the 4 orders, which indicate that they are adaptable to different soils, a useful characteristic for these methods. The Modified Olsen was the most efficient extractor in slightly acis soils (Vertisols and Inceptisols). The HCI extracted very high Zn levels, which are probably not related to plant available forms. It is concluded that the Mehlich 3, Modified Morgan and DTPA solutions are probably adequate for available Zn determination and might present an alternative to substitute the generally used Modified Olsen solution in Costa Rica. (Author) [es

  15. Soil solution dynamics of Cu and Zn in a Cu- and Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction.

    Science.gov (United States)

    Luo, Y M; Yan, W D; Christie, P

    2001-01-01

    A pot experiment was conducted to study soil solution dynamics of Cu and Zn in a Cu/Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction. A slightly acid sandy loam was amended with Cu and Zn (as nitrates) either singly or in combination (100 mg Cu and 150 mg Zn kg(-1) soil) and was then gamma-irradiated (10 kGy). Unamended and unirradiated controls were included, and spring barley (Hordeum vulgare L. cv. Forrester) was grown for 50 days. Soil solution samples obtained using soil moisture samplers immediately before transplantation and every ten days thereafter were used directly for determination of Cu, Zn, pH and absorbance at 360 nm (A360). Cu and Zn concentrations in the solution of metal-polluted soil changed with time and were affected by gamma-irradiation and metal interaction. gamma-Irradiation raised soil solution Cu substantially but generally decreased soil solution Zn. These trends were consistent with increased dissolved organic matter (A360) and solution pH after gamma-irradiation. Combined addition of Cu and Zn usually gave higher soil solution concentrations of Cu or Zn compared with single addition of Cu or Zn in gamma-irradiated and non-irradiated soils, indicating an interaction between Cu and Zn. Cu would have been organically complexed and consequently maintained a relatively high concentration in the soil solution under higher pH conditions. Zn tends to occur mainly as free ion forms in the soil solution and is therefore sensitive to changes in pH. The extent to which gamma-irradiation and metal interaction affected solubility and bioavailability of Cu and Zn was a function of time during plant growth. Studies on soil solution metal dynamics provide very useful information for understanding metal mobility and bioavailability.

  16. Mobility of radionuclides based on sequential extraction of soils

    International Nuclear Information System (INIS)

    Salbu, B.; Oughton, D.H.; Lien, H.N.; Oestby, G.; Strand, P.

    1992-01-01

    Since 1989, core samples of soil and vegetation from semi-natural pastures have been collected at selected sites in Norway during the growing season. The activity concentrations in soil and vegetation as well as transfer coefficients vary significantly between regions, within regions and even within sampling plot areas. In order to differentiate between mobil and inert fractions of radioactive and stable isotopes of Cs and Sr in soils, samples were extracted sequentially using agents with increasing dissolution power. The reproducibility of the sequential extraction technique is good and the data obtained seems most informative. As the distribution pattern for radioactive and stable isotopes of Cs and Sr are similar, a high degree of isotopic exchange is indicated. Based on easily leachable fractions, mobility factors are calculated. In general the mobility of 90 Sr is higher than for 137 Cs. Mobility factors are not significantly influenced by seasonal variations, but a decrease in the mobile fraction in soil with time is indicated. Mobility factors should be considered useful for modelling purposes. (au)

  17. Extraction of pesticides in soil using supercritical carbon dioxide co-solvents

    International Nuclear Information System (INIS)

    Forero, Jose R; Castro, Henry I; Guerrero, Jairo A.

    2009-01-01

    In this study, three organic solvents (ethyl acetate, methanol and acetone) were used as co solvent in supercritical fluid extraction (SFE) of a mixture of pesticides with different physical and chemical properties present in soil. These pesticides were determined by gas chromatography with electronic micro capture detector μECD and nitrogen-phosphorus detector (NPD), coupled in parallel. The extractions were performed on spiked soil samples using supercritical carbon dioxide (CO 2 SC) as the extracting phase to 35 celsius degrade and 14 MPa, using 10 mL of each co solvent and it was found that methanol offers the greatest efficiency in the extraction process obtaining recovery values between 51.24 and 123.50%.

  18. Influence of soil-extractable aluminium and pH on the uptake of aluminium from soil into the soybean plant (Glycine max).

    Science.gov (United States)

    Dong, D; Thornton, I; Ramsey, M H

    1993-09-01

    The effects of soil pH and other soil properties on the uptake of AI by soybean plants have been investigated in a greenhouse experiment. Six soils were compared that were developed over six contrasting bedrock types ranging widely in their AI content and other chemical and physical characteristics, namely Oxford Clay, Chalk, Lower Lias Clay, Devonian Shale, Granite and Lower Greensand. Soil pH varied naturally between soil types and each soil was also amended to give two other pH levels using elemental sulphur and/or calcium carbonate. AI concentrations in various parts of the soybean plants were determined by ICP-AES after acid digestion. The AI solubility in the soils and hence its availability to the plants was estimated using a number of different reagents designed to extract different forms of AI.The AI concentration measured in the soybean leaves was found to be predicted most accurately by the 'available' AI extracted from soils by 0.02 M CaCl2. The relationship appears to the linear, with a correlation coefficient of 0.97 (p <0.01). The AI content of the leaves increases with decreasing soil pH. The relationship is non-linear with a marked increase in leaf AI for soils with pH <4.4. The amounts of 'plant-available' AI in the soils extracted with 0.02 M CaCl2 was much less than that extracted with 0.05 M EDTA, although both increased markedly with decreasing soil pH. The amount of AI measured in the soybean plants was directly related to both the 'available' forms of AI in the soils, and also to the pH of the soils. Soil pH was identified as a major factor that controls the uptake of Al from soil into the soybean plant.

  19. Use of extracts from oyster shell and soil for cultivation of Spirulina maxima.

    Science.gov (United States)

    Jung, Joo-Young; Kim, Sunmin; Lee, Hansol; Kim, Kyochan; Kim, Woong; Park, Min S; Kwon, Jong-Hee; Yang, Ji-Won

    2014-12-01

    Calcium ion and trace metals play important roles in various metabolisms of photosynthetic organisms. In this study, simple methods were developed to extract calcium ion and micronutrients from oyster shell and common soil, and the prepared extracts were tested as a replacement of the corresponding chemicals that are essential for growth of microalgae. The oyster shell and soil were treated with 0.1 M sodium hydroxide or with 10 % hydrogen peroxide, respectively. The potential application of these natural sources to cultivation was investigated with Spirulina maxima. When compared to standard Zarrouk medium, the Spirulina maxima cultivated in a modified Zarrouk media with elements from oyster shell and soil extract exhibited increases in biomass, chlorophyll, and phycocyanin by 17, 16, and 64 %, respectively. These results indicate that the extracts of oyster shell and soil provide sufficient amounts of calcium and trace metals for successful cultivation of Spirulina maxima.

  20. Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils

    International Nuclear Information System (INIS)

    Conte, Pellegrino; Agretto, Anna; Spaccini, Riccardo; Piccolo, Alessandro

    2005-01-01

    The remediation of the highly contaminated site around the former chemical plant of ACNA (near Savona) in Northern Italy is a top priority in Italy. The aim of the present work was to contribute in finding innovative and environmental-friendly technology to remediate soils from the ACNA contaminated site. Two soils sampled from the ACNA site (A and B), differing in texture and amount and type of organic contaminants, were subjected to soil washings by comparing the removal efficiency of water, two synthetic surfactants, sodium dodecylsulphate (SDS) and Triton X-100 (TX100), and a solution of a natural surfactant, a humic acid (HA) at its critical micelle concentration (CMC). The extraction of pollutants by sonication and soxhlet was conducted before and after the soil washings. Soil A was richer in polycyclic aromatic hydrocarbons, whereas soil B had a larger content of thiophenes. Sonication resulted more analytically efficient in the fine-textured soil B. The coarse-textured soil A was extracted with a general equal efficiency also by soxhlet. Clean-up by water was unable to exhaustively remove contaminants from the two soils, whereas all the organic surfactants revealed very similar efficiencies (up to 90%) in the removal of the contaminants from the soils. Hence, the use of solutions of natural HAs appears as a better choice for soil washings of highly polluted soils due to their additional capacity to promote microbial activity, in contrast to synthetic surfactants, for a further natural attenuation in washed soils. - Solutions of natural humic acids appear to be a better choice for washing highly polluted soils

  1. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    Directory of Open Access Journals (Sweden)

    D.C.A. Leite

    2014-01-01

    Full Text Available Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit, the PowerSoil® DNA Isolation Kit (PS kit and the ZR Soil Microbe DNA Kit MiniprepTM (ZR kit, for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples.

  2. 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE). Screening-Level Feasibility Assessment and Design Tool in Support of 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) ESTCP Project ER 201326

    Science.gov (United States)

    2017-10-01

    USER GUIDE 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) Screening-Level Feasibility Assessment and Design Tool in...Support of 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) ESTCP Project ER-201326 OCTOBER 2017 Rob Hinchee Integrated Science...Technology, Inc. 1509 Coastal Highway Panacea, FL 32346 8/8/2013 - 8/8/2018 10-2017 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) Screening

  3. Factors influencing the chemical extractability of 241Am from a contaminated soil

    International Nuclear Information System (INIS)

    Nishita, H.; Hamilton, M.

    1976-01-01

    Factors influencing the extractability of 241 Am from an artificially contaminated soil were investigated. This was done with an equilibrium batch technique using CH 3 COOH-NH 4 OH and HNO 3 -NaOH extracting systems. The influence of several soil components was determined indirectly by selectively removing them from the soil. The effect of water- and HCl-soluble salts and organic matter on 241 Am extractability was small. The most marked effect was due to the soil organic fraction that was not water- or HCl-soluble. This organic fraction was influential under both low and high pH conditions, but its influence was particularly marked under low pH conditions. The free iron-oxides had an appreciable effect under low pH conditions, but no observable effect in the high pH range. Though to a lesser extent, the free silica and alumina, amorphous alumino-silicate, and possibly residual organic matter also showed some influence. These results provide some implications on the conditions that influence the movement of 241 Am in soils and its availability to plants. A review of the literature on the behavior of Am in soils is included

  4. Prediction of reducible soil iron content from iron extraction data

    NARCIS (Netherlands)

    Bodegom, van P.M.; Reeven, van J.; Denier van der Gon, H.A.C.

    2003-01-01

    Soils contain various iron compounds that differ in solubility, reducibility and extractability. Moreover, the contribution of the various iron compounds to total iron (Fe) and total Fe concentrations differs highly among soils. As a result, the total reducible Fe content can also differ among

  5. Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils.

    Science.gov (United States)

    Sui, Hong; Hua, Zhengtao; Li, Xingang; Li, Hong; Wu, Guozhong

    2014-05-01

    Petroleum ether was used to extract petroleum hydrocarbons from soils collected from six oil fields with different history of exploratory and contamination. It was capable of fast removing 76-94 % of the total petroleum hydrocarbons including 25 alkanes (C11-C35) and 16 US EPA priority polycyclic aromatic hydrocarbons from soils at room temperature. The partial least squares analysis indicated that the solvent extraction efficiencies were positively correlated with soil organic matter, cation exchange capacity, moisture, pH, and sand content of soils, while negative effects were observed in the properties reflecting the molecular size (e.g., molecular weight and number of carbon atoms) and hydrophobicity (e.g., water solubility, octanol-water partition coefficient, soil organic carbon partition coefficient) of hydrocarbons. The high concentration of weathered crude oil at the order of 10(5) mg kg(-1) in this study was demonstrated adverse for solvent extraction by providing an obvious nonaqueous phase liquid phase for hydrocarbon sinking and increasing the sequestration of soluble hydrocarbons in the insoluble oil fractions during weathering. A full picture of the mass distribution and transport mechanism of petroleum contaminants in soils will ultimately require a variety of studies to gain insights into the dynamic interactions between environmental indicator hydrocarbons and their host oil matrix.

  6. Decontamination of electronic waste-polluted soil by ultrasound-assisted soil washing.

    Science.gov (United States)

    Chen, Fu; Yang, Baodan; Ma, Jing; Qu, Junfeng; Liu, Gangjun

    2016-10-01

    Laboratorial scale experiments were performed to evaluate the efficacy of a washing process using the combination of methyl-β-cyclodextrin (MCD) and tea saponin (TS) for simultaneous desorption of hydrophobic organic contaminants (HOCs) and heavy metals from an electronic waste (e-waste) site. Ultrasonically aided mixing of the field contaminated soil with a combination of MCD and TS solutions simultaneously mobilizes most of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and the analyte metal (Pb, Cu, and Ni) burdens. It is found that 15 g/L MCD and 10 g/L TS is an efficient reagent combination reconciling extraction performance and reagent costs. Under these conditions, the removal efficiencies of HOCs and heavy metals are 93.5 and 91.2 %, respectively, after 2 cycles of 60-min ultrasound-assisted washing cycles. By contrast, 86.3 % of HOCs and 88.4 % of metals are removed from the soil in the absence of ultrasound after 3 cycles of 120-min washing. The ultrasound-assisted soil washing could generate high removal efficiency and decrease the operating time significantly. Finally, the feasibility of regenerating and reusing the spent washing solution in extracting pollutants from the soil is also demonstrated. By application of this integrated technology, it is possible to recycle the washing solution for a purpose to reduce the consumption of surfactant solutions. Collectively, it has provided an effective and economic treatment of e-waste-polluted soil.

  7. Sequential diffusion of ammonium and nitrate from soil extracts to a polytetrafluoroethylene trap for 15N determination

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1991-01-01

    A novel diffusion method was used for preparation of NH4+- and NO3--N samples from soil extracts for N-15 determination. Ammonium, and nitrate following reduction to ammonia, are allowed to diffuse to an acid-wetted glass filter enclosed in polytetrafluoroethylene tape. The method was evaluated...... with simulated soil extracts obtained using 50 ml of 2 M potassium chloride solution containing 130-mu-g of NH4+-N (2.3 atom% N-15) and 120-mu-g of NO3--N (natural N-15 abundance). No cross-over in the N-15 abundances of NH4+-N and NO3--N was observed, indicating a quantitative diffusion process (72 h, 25...

  8. A multistratum approach to soil vapor extraction

    International Nuclear Information System (INIS)

    Fuhr, J.M.; Giesler, R.S.

    1993-01-01

    An innovative soil remediation design was implemented to address petroleum hydrocarbon contamination in a gradationally stratified subsurface environment containing alternating layers of clay, sand and clayey sand, and perched water tables in north Florida. The soil vapor extraction (SVE) design enables remediation to focus on distinct subsurface intervals depending on changing site conditions such as constituent concentration levels and periodic water-table fluctuations. Contaminated soils were assessed from the land surface to the top of a two foot thick perched water table located at 13 feet below land surface (bls), and also were encountered below the perched water table downward to another perched water table at 45 feet bls. Use of an organic vapor analyzer equipped with a flame ionization detector revealed hydrocarbon vapor concentrations in soil samples ranging to greater than 1,000 parts per million (ppm). Nonaqueous phase liquids were encountered on both perched water tables. Based on the site assessment, a multistratum soil and ground-water remediation system was designed and constructed. A pilot test was conducted to aid in the design of an effective SVE system

  9. Extraction of copper zinc and iron from hydrochloric acid solutions by means of different extractants

    Energy Technology Data Exchange (ETDEWEB)

    Zhivkova, Svetlana [Institute of Chemical Engineering - Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2011-07-01

    The extraction of copper, zinc and iron from hydrochloric acid solutions has been studied. The experiments have been carried out using various solvents, involving different extraction mechanisms – solvating, anion-exchange, cation-exchange, bifunctional . Mixtures of these extractants have been also used. The extraction properties of these extractant mixtures toward copper, zinc and iron, the effect of used modifiers and diluents have been also investigated. Key words: Copper, Zinc, Iron, Extraction, Extractant, Modifier, Diluent.

  10. Landfill cover soil, soil solution, and vegetation responses to municipal landfill leachate applications.

    Science.gov (United States)

    Macdonald, Neil W; Rediske, Richard R; Scull, Brian T; Wierzbicki, David

    2008-01-01

    Municipal solid waste landfill leachate must be removed and treated to maintain landfill cover integrity and to prevent contamination of surface and ground waters. From 2003 to 2007, we studied an onsite disposal system in Ottawa County, Michigan, where leachate was spray irrigated on the vegetated landfill cover. We established six 20-m-diameter circular experimental plots on the landfill; three were spray irrigated as part of the operational system, and three remained as untreated control plots. We quantified the effects of leachate application on soil properties, soil solution chemistry, vegetative growth, and estimated solute leaching. The leachate had high mean levels of electrical conductivity (0.6-0.7 S m(-1)), Cl (760-900 mg L(-1)), and NH(4)-N (290-390 mg L(-1)) but was low in metals and volatile organic compounds. High rates of leachate application in 2003 (32 cm) increased soil electrical conductivity and NO(3)-N leaching, so a sequential rotation of spray areas was implemented to limit total leachate application to <9.6 cm yr(-1) per spray area. Concentrations of NO(3)-N and leaching losses remained higher on irrigated plots in subsequent years but were substantially reduced by spray area rotation. Leachate irrigation increased plant biomass but did not significantly affect soil metal concentrations, and plant metal concentrations remained within normal ranges. Rotating spray areas and timing irrigation to conform to seasonal capacities for evapotranspiration reduced the localized impacts of leachate application observed in 2003. Careful monitoring of undiluted leachate applications is required to avoid adverse impacts to vegetation or soils and elevated solute leaching losses.

  11. Water, solute and heat transport in the soil: the Australian connection

    Science.gov (United States)

    Knight, John

    2016-04-01

    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  12. Large zero-tension plate lysimeters for soil water and solute collection in undisturbed soils

    Directory of Open Access Journals (Sweden)

    A. Peters

    2009-09-01

    Full Text Available Water collection from undisturbed unsaturated soils to estimate in situ water and solute fluxes in the field is a challenge, in particular if soils are heterogeneous. Large sampling devices are required if preferential flow paths are present. We present a modular plate system that allows installation of large zero-tension lysimeter plates under undisturbed soils in the field. To investigate the influence of the lysimeter on the water flow field in the soil, a numerical 2-D simulation study was conducted for homogeneous soils with uni- and bimodal pore-size distributions and stochastic Miller-Miller heterogeneity. The collection efficiency was found to be highly dependent on the hydraulic functions, infiltration rate, and lysimeter size, and was furthermore affected by the degree of heterogeneity. In homogeneous soils with high saturated conductivities the devices perform poorly and even large lysimeters (width 250 cm can be bypassed by the soil water. Heterogeneities of soil hydraulic properties result into a network of flow channels that enhance the sampling efficiency of the lysimeter plates. Solute breakthrough into zero-tension lysimeter occurs slightly retarded as compared to the free soil, but concentrations in the collected water are similar to the mean flux concentration in the undisturbed soil. To validate the results from the numerical study, a dual tracer study with seven lysimeters of 1.25×1.25 m area was conducted in the field. Three lysimeters were installed underneath a 1.2 m filling of contaminated silty sand, the others deeper in the undisturbed soil. The lysimeters directly underneath the filled soil material collected water with a collection efficiency of 45%. The deeper lysimeters did not collect any water. The arrival of the tracers showed that almost all collected water came from preferential flow paths.

  13. Adsorption and diffusion of plutonium in soil

    International Nuclear Information System (INIS)

    Relyea, J.F.; Brown, D.A.

    1978-01-01

    The behavior of plutonium in soil--water systems was studied by measuring its apparent diffusion coefficient in the aqueous and solid phases and by finding the adsorption--desorption relationships between soil and solution. Apparent diffusion coefficients of plutonium in soil were measured using a quick-freeze method. Aqueous diffusion was studied in a capillary-tube diffusion cell. Adsorption studies were done by equilibrating a tagged soil--water mixture on a rotary shaker before centrifuging and sampling. As expected from high adsorption coefficients (Kd) (300--10,000), the apparent diffusion coefficients were low compared with normal soil cations (1.4 x 10 -8 cm 2 /sec in a sandy soil to less than 2.4 x 10 -11 cm 2 /sec in a silt loam). The Kd of plutonium in aqueous solution containing the chelate ethylenediaminetetraacetic acid (EDTA) was reduced compared with the Kd in dilute HNO 3 . As the EDTA concentration was increased, the Kd was decreased. The chelate diethylenetriaminepentaacetic acid (DTPA) reduced the Kd more than EDTA at comparable concentrations. The aqueous diffusion coefficients varied from 3.1 x 10 -7 cm 2 /sec in a solution extracted from the silt loam up to 2.7 x 10 -5 cm 2 /sec in a solution extracted from the sandy soil

  14. Variability of standard artificial soils: Physico-chemical properties and phenanthrene desorption measured by means of supercritical fluid extraction

    International Nuclear Information System (INIS)

    Bielská, Lucie; Hovorková, Ivana; Komprdová, Klára; Hofman, Jakub

    2012-01-01

    The study is focused on artificial soil which is supposed to be a standardized “soil like” medium. We compared physico-chemical properties and extractability of Phenanthrene from 25 artificial soils prepared according to OECD standardized procedures at different laboratories. A substantial range of soil properties was found, also for parameters which should be standardized because they have an important influence on the bioavailability of pollutants (e.g. total organic carbon ranged from 1.4 to 6.1%). The extractability of Phe was measured by supercritical fluid extraction (SFE) at harsh and mild conditions. Highly variable Phe extractability from different soils (3–89%) was observed. The extractability was strongly related (R 2 = 0.87) to total organic carbon content, 0.1–2 mm particle size, and humic/fulvic acid ratio in the following multiple regression model: SFE (%) = 1.35 * sand (%) − 0.77 * TOC (%)2 + 0.27 * HA/FA. - Highlights: ► We compared properties and extractability of Phe from 25 different artificial soils. ► Substantial range of soil properties was found, also for important parameters. ► Phe extractability was measured by supercritical fluid extraction (SFE) at 2 modes. ► Phe extractability was highly variable from different soils (3–89%). ► Extractability was strongly related to TOC, 0.1–2 mm particles, and HA/FA. - Significant variability in physico-chemical properties exists between artificial soils prepared at different laboratories and affects behavior of contaminants in these soils.

  15. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    International Nuclear Information System (INIS)

    Le, T.T. Yen; Hendriks, A. Jan

    2014-01-01

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  16. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T. Yen, E-mail: YenLe@science.ru.nl; Hendriks, A. Jan

    2014-08-15

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  17. Metal extraction from Cetraria islandica (L. Ach. lichen using low pH solutions

    Directory of Open Access Journals (Sweden)

    ANA A. CUCULOVIC

    2008-04-01

    Full Text Available Extraction of metals (K, Al, Ca, Mg, Fe, Cu, Ba, Zn, Mn and Sr from dry Cetraria islandica (L. Ach. lichen was performed using solutions similar to acid rain (solution A – H2SO4–HNO3–(NH42SO4 and solution B – H2SO4–HNO3–(NH42SO4–NH4NO3. The pH values of these solutions were 2.00, 2.58, 2.87, 3.28, and 3.75. Five consecutive extractions were performed with each solution. In all solutions, the extracted metal content, except Cu and Ca, was the highest in the first extract. The highest percentage of the metals desorbed in the first extraction was obtained using solutions with low pH values, 2.00, 2.58, and 2.87. The lowest percentage in the first extraction was obtained using solutions with pH 3.28 and 3.75, indicating influence of the H+ ion on the extraction. According to the results obtained, the investigated metals form two groups. The first group includes K, Al, Ca, Mg, and Fe. They were extracted in each of the five extractions at each of the pH values. The second group includes Ba, Zn, Mn, Cu, and Sr, which were not all extracted at each pH value. The first group yielded three types of extraction curves when the logarithms of extracted metal amounts were plotted as a function of the number of successive extractions. These effects indicate that three different positions (centres of metal ion accumulation exist in the lichen (due to sorption, complex formation, or other processes present in the tissues.

  18. Occurrence of pesticide non extractable residues in physical and chemical fractions from two natural soils.

    Science.gov (United States)

    Andreou, K.; Jones, K.; Semple, K.

    2009-04-01

    Distribution of pesticide non extractable residues resulted from the incubation of two natural soils with each of the isoproturon, diazinon and cypermethrin pesticide was assessed in this study. Pesticide non extractable residues distribution in soil physical and chemical fractions is known to ultimately affect their fate. This study aimed to address the fate and behaviour of the non extractable residues in the context of their association with soil physical and chemical fractions with varying properties and characteristics. Non extractable residues were formed from incubation of each pesticide in the two natural soils over a period of 24 months. Soils containing the non extractable residues were fractionated into three solid phase fractions using a physical fractionation procedure as follows: Sediment (SED, >20 μm), (II) Microaggregate (MA, 20-2 μm) and (III) Colloid phase (COL, 2-0.05 μm). Each soil fraction was then fractionated into organic carbon chemical fractionations as follows: Fulvic acid (FA), Humic acid (HA) and Humin (HM). Significant amount of the pesticides was lost during the incubation period. Enrichment factors for the organic carbon and the 14C-pesticide residues were higher in the MA and COL fraction rather than the SED fraction. Greater association and enrichment of the fulvic acid fraction of the organic carbon in the soil was observed. Non extractable residues at the FA fraction showed to diminish while in the HA fraction were increased with decreasing the fraction size. An appreciable amount of non extractable residues were located in the HM fraction but this was less than the amount recovered in the humic substances. Long term fate of pesticide non extractable residues in the soil structural components is important in order to assess any risk associated with them.

  19. Optimization of radioactivation analysis for the determination of iodine, bromine, and chlorine contents in soils, plants, soil solutions and rain water

    International Nuclear Information System (INIS)

    Yuita, Kouichi

    1983-01-01

    The conventional analytical procedures for iodine, bromine and chlorine in soils, plants, soil solutions and rain water, especially in the former two, have not been sufficient in their accuracy and sensitivity. With emphasis on the radioactivation analysis known to be a highly accurate analytical method, practical radioactivation procedures with high sensitivity, accurate and covenient, have been investigated for the determination of the three halogen elements in various soils and plants and of the three contained in extremely low concentrations in soil solutions and rain water. Consequently, the following methods were able to be established: (1) non-destructive radioactivation analysis without the chemical separation of bromine and chlorine in plants, soil solutions and rain water; (2) radioactivation analysis by group separating, simultaneous determination of iodine, bromine and chlorine in soils; (3) highsensitivity radioactivation analysis for iodine in plants, soil solutions and rain water. A manual for the analytical procedures was prepared accordingly. (Mori, K.)

  20. Extraction of an urease-active organo-complex from soil.

    Science.gov (United States)

    Burns, R. G.; El-Sayed, M. H.; Mclaren, A. D.

    1972-01-01

    Description of an extraction from a Dublin clay loam soil of a colloidal organic matter complex that is urease active and, by X-ray analysis, free of clays. Urease activity in the clay-free precipitates, as in the soil, was not destroyed by the activity of an added proteolytic enzyme, pronase. This is attributed to the circumstance that native soil urease resides in organic colloidal particles with pores large enough for water, urea, ammonia, and carbon dioxide to pass freely, but nevertheless small enough to exclude pronase.

  1. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil

    NARCIS (Netherlands)

    Zutphen, M. van; Heron, G.; Enfield, C.G.; Christensen, T.H.

    1998-01-01

    A 2D-laboratory box experiment (12 x 56 x 116 cm) was conducted to simulate the enhancement of soil vapor extraction by the application of low frequency electrical heating Uoule heating) for the remediation of a low permeable, silty soil contaminated with trichloroethylene. Joule heating enlarged

  2. Selective Extraction of Organic Contaminants from Soil Using Pressurised Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Rozita Osman

    2013-01-01

    Full Text Available This study focuses on the application of sorbents in pressurised liquid extraction (PLE cell to establish a selective extraction of a variety of organic contaminants (polycyclic aromatic hydrocarbons (PAHs, chlorpyrifos, phenol, pentachlorophenol, and sterols from soil. The selectivity and efficiency of each sorbent depend on the properties of the material, extracting solvent, capacity factor, organic compounds of interest, and PLE operating parameters (temperature, pressure, and extraction time. Several sorbents (silica, alumina, and Florisil were evaluated and with the proper choice of solvents, polar and nonpolar compounds were successfully separated in two fractions. Nonpolar compounds (PAHs, chlorpyrifos, and pentachlorophenol were recovered in the first fraction using a polar sorbent such as Florisil or alumina, and n-hexane as eluting solvent, while more polar compounds (phenol and sterols were recovered in the second fraction using methanol. Silica (5 g was found to be effective for selective extraction with the satisfactory recoveries for all compounds (PAHs from 87.1–96.2%, chlorpyrifos 102.9%, sterols from 93.7–100.5%, phenol 91.9%, and pentachlorophenol 106.2%. The efficiency and precision of this extraction approach and the existing EPA Method 3545 were compared.

  3. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS

    International Nuclear Information System (INIS)

    Favorito, Jessica E.; Luxton, Todd P.; Eick, Matthew J.; Grossl, Paul R.

    2017-01-01

    Selenium is a trace element found in western US soils, where ingestion of Se-accumulating plants has resulted in livestock fatalities. Therefore, a reliable understanding of Se speciation and bioavailability is critical for effective mitigation. Sequential extraction procedures (SEP) are often employed to examine Se phases and speciation in contaminated soils but may be limited by experimental conditions. We examined the validity of a SEP using X-ray absorption spectroscopy (XAS) for both whole and a sequence of extracted soils. The sequence included removal of soluble, PO 4 -extractable, carbonate, amorphous Fe-oxide, crystalline Fe-oxide, organic, and residual Se forms. For whole soils, XANES analyses indicated Se(0) and Se(-II) predominated, with lower amounts of Se(IV) present, related to carbonates and Fe-oxides. Oxidized Se species were more elevated and residual/elemental Se was lower than previous SEP results from ICP-AES suggested. For soils from the SEP sequence, XANES results indicated only partial recovery of carbonate, Fe-oxide and organic Se. This suggests Se was incompletely removed during designated extractions, possibly due to lack of mineral solubilization or reagent specificity. Selenium fractions associated with Fe-oxides were reduced in amount or removed after using hydroxylamine HCl for most soils examined. XANES results indicate partial dissolution of solid-phases may occur during extraction processes. This study demonstrates why precautions should be taken to improve the validity of SEPs. Mineralogical and chemical characterizations should be completed prior to SEP implementation to identify extractable phases or mineral components that may influence extraction effectiveness. Sequential extraction procedures can be appropriately tailored for reliable quantification of speciation in contaminated soils. - Highlights: • XANES spectra indicated whole soils consisted of mostly elemental and organic Se and lower amounts of sorbed oxidized Se.

  4. The validation of forensic DNA extraction systems to utilize soil contaminated biological evidence.

    Science.gov (United States)

    Kasu, Mohaimin; Shires, Karen

    2015-07-01

    The production of full DNA profiles from biological evidence found in soil has a high failure rate due largely to the inhibitory substance humic acid (HA). Abundant in various natural soils, HA co-extracts with DNA during extraction and inhibits DNA profiling by binding to the molecular components of the genotyping assay. To successfully utilize traces of soil contaminated evidence, such as that found at many murder and rape crime scenes in South Africa, a reliable HA removal extraction system would often be selected based on previous validation studies. However, for many standard forensic DNA extraction systems, peer-reviewed publications detailing the efficacy on soil evidence is either lacking or is incomplete. Consequently, these sample types are often not collected or fail to yield suitable DNA material due to the use of unsuitable methodology. The aim of this study was to validate the common forensic DNA collection and extraction systems used in South Africa, namely DNA IQ, FTA elute and Nucleosave for processing blood and saliva contaminated with HA. A forensic appropriate volume of biological evidence was spiked with HA (0, 0.5, 1.5 and 2.5 mg/ml) and processed through each extraction protocol for the evaluation of HA removal using QPCR and STR-genotyping. The DNA IQ magnetic bead system effectively removed HA from highly contaminated blood and saliva, and generated consistently acceptable STR profiles from both artificially spiked samples and crude soil samples. This system is highly recommended for use on soil-contaminated evidence over the cellulose card-based systems currently being preferentially used for DNA sample collection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Optimization of microwave-assisted extraction and supercritical fluid extraction of carbamate pesticides in soil by experimental design methodology.

    Science.gov (United States)

    Sun, Lei; Lee, Hian Kee

    2003-10-03

    Orthogonal array design (OAD) was applied for the first time to optimize microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) conditions for the analysis of four carbamates (propoxur, propham, methiocarb, chlorpropham) from soil. The theory and methodology of a new OA16 (4(4)) matrix derived from a OA16 (2(15)) matrix were developed during the MAE optimization. An analysis of variance technique was employed as the data analysis strategy in this study. Determinations of analytes were completed using high-performance liquid chromatography (HPLC) with UV detection. Four carbamates were successfully extracted from soil with recoveries ranging from 85 to 105% with good reproducibility (approximately 4.9% RSD) under the optimum MAE conditions: 30 ml methanol, 80 degrees C extraction temperature, and 6-min microwave heating. An OA8 (2(7)) matrix was employed for the SFE optimization. The average recoveries and RSD of the analytes from spiked soil by SFE were 92 and 5.5%, respectively except for propham (66.3+/-7.9%), under the following conditions: heating for 30 min at 60 degrees C under supercritical CO2 at 300 kg/cm2 modified with 10% (v/v) methanol. The composition of the supercritical fluid was demonstrated to be a crucial factor in the extraction. The addition of a small volume (10%) of methanol to CO2 greatly enhanced the recoveries of carbamates. A comparison of MAE with SFE was also conducted. The results indicated that >85% average recoveries were obtained by both optimized extraction techniques, and slightly higher recoveries of three carbamates (propoxur, propham and methiocarb) were achieved using MAE. SFE showed slightly higher recovery for chlorpropham (93 vs. 87% for MAE). The effects of time-aged soil on the extraction of analytes were examined and the results obtained by both methods were also compared.

  6. Distribution of six heavy metals in contaminated clay soils before and after extractive cleaning

    NARCIS (Netherlands)

    Tuin, B.J.W.; Tels, M.

    1990-01-01

    A sequential extraction procedure according to Tessier et al. is carried out to compare the distribution of six metals (Cd, Cr, Cu, Ni, Pb and Zn) in contaminated clay soils before and after extractive cleaning. Extraction of metals from the ‘soil fractions’ with 0.1 N HC1 or 0.1 M EDTA becomes more

  7. [Influence of the earthworm Lumbricus terrestris on soil solution complexation capacity].

    Science.gov (United States)

    el Gharmali, A; Rada, A; el Meray, M; Nejmeddine, A

    2001-04-01

    Four soil samples highly contaminated with metals of urban and mine origin (SE1, SE2, SM1, SM2) and having different physico-chemical proprieties were selected to study copper complexation capacity (LT) of soil solution. The effect of Lumbricus terrestris on copper complexation capacity of soil solution was investigated on SE1 and SE2. The complexation capacity was estimated by amperometric titration of soil solution by copper. Free hydrated cation and labile complexes of copper were determined by DPASV. The results show that the copper complexation capacity variation depends on the physico-chemical characteristics of soils, particularly pH. Thus, the values of copper complexation capacity are 0; 0.6 x 10(-7); 1.8 x 10(-7) and 5.5 x 10(-7) mol l-1 respectively for SM2; SM1; SE1 and SE2 which are pH 5; 5.4; 6.5 and 7.4. Based on these results, the bioavailability levels of heavy metals show the following pool ranking: SM2 > SM1 > SE1 > SE2. The copper complexation capacity of soil solution increases with the soil disturbance by Lumbricus terrestris. This is more obvious when the time of disturbance by lumbrics is longer. Indeed, average values determined for 1 month and 3 months are 3.8 x 10(-7) and 7.8 x 10(-7) mol l-1 for SE1; 7.7 x 10(-7) and 15.2 x 10(-7) mol l-1 for SE2 respectively. It seems that the action of earthworm on soil can contribute to the decrease of bioavailability of heavy metals, particularly copper.

  8. Removal of petroleum-derived hydrocarbons from contaminated soils by solvent extraction

    International Nuclear Information System (INIS)

    Ladanowski, C.; Petti, L.

    1993-01-01

    Laboratory studies were conducted using hexane for the removal of light crude oil from contaminated sand, peat, and clay soils. The bench-scale process tested consists of three major steps: solvent washing, settling/decantation/filtration of extract, and solvent recycle. The results indicate that the use of solvent extraction for cleanup of oil-contaminated soils is an effective technology at the bench-scale level. Using a 1,000 g batch system, extremely high oil removal efficiencies were obtained from contaminated sand (up to 98.9%) and peat soil (up to 83.9%). The final oil contaminant concentration for sand varied between 0.06% and 0.39%, while that for peat soil varied between 1.52% and 5.21%. The guidelines for the decommissioning and cleanup of sites in Ontario for oil and grease (1 wt %) were met in all instances for the treated sand. Hexane recovery from diesel-contaminated sand and peat soil experiments was ca 81% and 67% respectively. 4 refs., 6 figs., 10 tabs

  9. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS

    Energy Technology Data Exchange (ETDEWEB)

    Favorito, Jessica E.; Luxton, Todd P.; Eick, Matthew J.; Grossl, Paul R. (VP); (Utah SU); (EPA)

    2017-10-01

    Selenium is a trace element found in western US soils, where ingestion of Se-accumulating plants has resulted in livestock fatalities. Therefore, a reliable understanding of Se speciation and bioavailability is critical for effective mitigation. Sequential extraction procedures (SEP) are often employed to examine Se phases and speciation in contaminated soils but may be limited by experimental conditions. We examined the validity of a SEP using X-ray absorption spectroscopy (XAS) for both whole and a sequence of extracted soils. The sequence included removal of soluble, PO4-extractable, carbonate, amorphous Fe-oxide, crystalline Fe-oxide, organic, and residual Se forms. For whole soils, XANES analyses indicated Se(0) and Se(-II) predominated, with lower amounts of Se(IV) present, related to carbonates and Fe-oxides. Oxidized Se species were more elevated and residual/elemental Se was lower than previous SEP results from ICP-AES suggested. For soils from the SEP sequence, XANES results indicated only partial recovery of carbonate, Fe-oxide and organic Se. This suggests Se was incompletely removed during designated extractions, possibly due to lack of mineral solubilization or reagent specificity. Selenium fractions associated with Fe-oxides were reduced in amount or removed after using hydroxylamine HCl for most soils examined. XANES results indicate partial dissolution of solid-phases may occur during extraction processes. This study demonstrates why precautions should be taken to improve the validity of SEPs. Mineralogical and chemical characterizations should be completed prior to SEP implementation to identify extractable phases or mineral components that may influence extraction effectiveness. Sequential extraction procedures can be appropriately tailored for reliable quantification of speciation in contaminated soils.

  10. Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils.

    Science.gov (United States)

    Degryse, Fien; Smolders, Erik; Oliver, Ian; Zhang, Hao

    2003-09-01

    The technique of diffusive gradients in thin films (DGT) has been suggested to sample an available fraction of metals in soil. The objectives of this study were to compare DGT measurements with commonly measured fractions of Zn in soil, viz, the soil solution concentration and the total Zn concentration. The DGT technique was used to measure fluxes and interfacial concentrations of Zn in three series of field-contaminated soils collected in transects toward galvanized electricity pylons and in 15 soils amended with ZnCl2 at six rates. The ratio of DGT-measured concentration to pore water concentration of Zn, R, varied between 0.02 and 1.52 (mean 0.29). This ratio decreased with decreasing distribution coefficient, Kd, of Zn in the soil, which is in agreement with the predictions of the DGT-induced fluxes in soils (DIFS) model. The R values predicted with the DIFS model were generally larger than the observed values in the ZnCl2-amended soils at the higher Zn rates. A modification of the DIFS model indicated that saturation of the resin gel was approached in these soils, despite the short deployment times used (2 h). The saturation of the resin with Zn did not occur in the control soils (no Zn salt added) or the field-contaminated soils. Pore water concentration of Zn in these soils was predicted from the DGT-measured concentration and the total Zn content. Predicted values and observations were generally in good agreement. The pore water concentration was more than 5 times underpredicted for the most acid soil (pH = 3) and for six other soils, for which the underprediction was attributed to the presence of colloidal Zn in the soil solution.

  11. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction.

    Science.gov (United States)

    Albergaria, José Tomás; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2012-08-15

    This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Uncertainties in detecting decadal change in extractable soil elements in Northern Forests

    Science.gov (United States)

    Bartlett, O.; Bailey, S. W.; Ducey, M. J.

    2016-12-01

    Northern Forest ecosystems have been or are being impacted by land use change, forest harvesting, acid deposition, atmospheric CO2 enrichment, and climate change. Each of these has the potential to modify soil forming processes, and the resulting chemical stocks. Horizontal and vertical variations in concentrations complicate determination of temporal change. This study evaluates sample design, sample size, and differences among observers as sources of uncertainty when quantifying soil temporal change over regional scales. Forty permanent, northern hardwood, monitoring plots were established on the White Mountain National Forest in central New Hampshire and western Maine. Soil pits were characterized and sampled by genetic horizon at plot center in 2001 and resampled again in 2014 two-meters on contour from the original sampling location. Each soil horizon was characterized by depth, color, texture, structure, consistency, boundaries, coarse fragments, and roots from the forest floor to the upper C horizon, the relatively unaltered glacial till parent material. Laboratory analyses included pH in 0.01 M CaCl2 solution and extractable Ca, Mg, Na, K, Al, Mn, and P in 1 M NH4OAc solution buffered at pH 4.8. Significant elemental differences were identified by genetic horizon from paired t-tests (p ≤ 0.05) indicate temporal change across the study region. Power analysis, 0.9 power (α = 0.05), revealed sampling size was appropriate within this region to detect concentration change by genetic horizon using a stratified sample design based on topographic metrics. There were no significant differences between observers' descriptions of physical properties. As physical properties would not be expected to change over a decade, this suggests spatial variation in physical properties between the pairs of sampling pits did not detract from our ability to detect temporal change. These results suggest that resampling efforts within a site, repeated across a region, to quantify

  13. Selective and Efficient Solvent Extraction of Copper(II Ions from Chloride Solutions by Oxime Extractants

    Directory of Open Access Journals (Sweden)

    Zahra Kaboli Tanha

    2016-06-01

    Full Text Available Oxime extractants 3-tert-butyl-2-hydroxy-5-methyl benzaldehyde oxime (HL1 and 3-tert-butyl-2-hydroxy-5-methoxy benzaldehyde oxime (HL2 were synthesized and characterized by conventional spectroscopic methods. Suitable lipophilic nature of the prepared extractants allowed examining the ability of these molecules for extraction-separation of copper from its mixture with normally associated metal ions by performing competitive extraction experiments of Cu(II, Co(II, Ni(II, Zn(II, Cd(II and Pb(II ions from chloride solutions. Both ligands transfer selectively the copper ions into dichloromethane by a cation exchange mechanism. Conventional log-log analysis and isotherm curves showed that Cu(II ions are extracted as the complexes with 1:2 metal to ligand ratio by both extractants. Verification of the effect of the organic diluent used in the extraction of copper ions by HL1 and HL2 demonstrated that the extraction efficiency varies as: dichloromethane ~ dichloroethane > toluene > xylene > ethylacetate. Time dependency investigation of the extraction processes revealed that the kinetics of the extraction of copper by HL2 is more rapid than that of HL1. The application of the ligands for extraction-separation of copper ions from leach solutions of cobalt and nickel-cadmium filter-cakes of a zinc production plants was evaluated.

  14. Combining Sequential Extractions and X-ray Absorption Spectroscopy for Quantitative and Qualitative Zinc Speciation in Soil

    Science.gov (United States)

    Bauer, Tatiana; Minkina, Tatiana; Batukaev, Abdulmalik; Nevidomskaya, Dina; Burachevskaya, Marina; Tsitsuashvili, Viktoriya; Urazgildieva, Kamilya

    2017-04-01

    The combined use of X-ray absorption spectrometry and extractive fractionation is an effective approach for studying the interaction of metal ions with soil compounds and identifying the phases-carriers of metals in soil and their stable fixation. These studies were carried out using the technique of X-ray absorption spectroscopy and chemical extractive fractionation. In a model experiment the samples taken in Calcic Chernozem were artificially contaminated with higher portion of Zn(NO3)2 (2000 mg/kg). The metal were incubated in soil samples for 2 year. The samples of soil mineral and organic phases (calcite, kaolinite, bentonite, humic acids) were saturated with Zn2+ from a solution of nitrate salts of metal. The total content of Zn in soil and soil various phases was determined using the X-ray fluorescence method. Extended X-ray absorption fine structure (EXAFS) Zn was measured at the Structural Materials Science beamline of the Kurchatov Center for Synchrotron Radiation. Sequential fractionation of Zn in soil conducted by Tessier method (Tessier et al., 1979) which determining 5 fractions of metals in soil: exchangeable, bound to Fe-Mn oxide, bound to carbonate, bound to the organic matter, and bound to silicate (residual). This methodology has so far more than 4000 citations (Web of Science), which demonstrates the popularity of this approach. Much Zn compounds are contained in uncontaminated soils in stable primary and secondary silicates inherited from the parental rocks (67% of the total concentrations in all fractions), which is a regional trait of soils in the fore-Caucasian plain. Extracted fractionation of metal compounds in soil samples, artificially contaminated with Zn salts, indicates the priority holding of Zn2+ ions by silicates, carbonates and Fe-Mn oxides. The Zn content significantly increases in the exchangeable fraction. Atomic structure study of the soil various phases saturated with Zn2+ ion by using (XANES) X-ray absorption spectroscopy

  15. The status of phosphorus in Thai soils and P evaluation using EDTA-NaF extraction method

    Directory of Open Access Journals (Sweden)

    Toru Matoh

    2003-07-01

    Full Text Available Although the available P extracted by Bray II method in tropical soil is low, most of tropical plants can grow well. The objective of this study was to study P status and to evaluate the available P extracted by EDTA-NaF method. Top soil and sub soil of 10 dominant soil series in Thailand were analyzed for some chemical properties and characterization of the forms of phosphorus using EDTA-NaF extraction and successive phosphorus extraction by the modified Sekiya method. The soil total P concentration was 38-1137 mg P2O5 kg-1. The available Bray II-P was very low to high (1-76 mg P2O5 kg-1, and it approximated 0.17-12% of the total P. Iron and aluminum phosphates were the main fraction of inorganic P in acid soil, whereas Ca phosphates were in calcareous soils. Organic P content accounted for 33-67% and most of them were bound with Fe and Al in acid soils and Ca in calcareous soils. P extracted by EDTA-NaF reagent was obviously larger than that of Bray II reagent. The EDTA-NaF extracted P [high molecular weight organic P (HMWP+ inorganic P (EDTA ext Pi] was 7-46% and 1-6% of total P in acid soils and calcareous soils respectively. The EDTA ext Pi tended to be larger than HMWP except in Tk soil. The total amount of extracted P correlated well with Al-Pi and Fe-Pi which were the main fraction of inorganic P. It also correlated with HMWP, but HMWP did not correlate with organic P determine by ignition method and Ca-Po, Fe-Po and Al-Po. The EDTA-NaF method may be suitable for P evaluation in the soils which have high amounts of Fe-Pi, Al -Pi and organic P widely distributed in Thailand.

  16. Hot water extraction with in situ wet oxidation: Kinetics of PAHs removal from soil

    International Nuclear Information System (INIS)

    Dadkhah, Ali A.; Akgerman, Aydin

    2006-01-01

    Finding environmentally friendly and cost-effective methods to remediate soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is currently a major concern of researchers. In this study, a series of small-scale semi-continuous extractions - with and without in situ wet oxidation - were performed on soils polluted with PAHs, using subcritical water (i.e. liquid water at high temperatures and pressures, but below the critical point) as the removal agent. Experiments were performed in a 300 mL reactor using an aged soil sample. To find the desorption isotherms and oxidation reaction rates, semi-continuous experiments with residence times of 1 and 2 h were performed using aged soil at 250 deg. C and hydrogen peroxide as oxidizing agent. In all combined extraction and oxidation flow experiments, PAHs in the remaining soil after the experiments were almost undetectable. In combined extraction and oxidation no PAHs could be detected in the liquid phase after the first 30 min of the experiments. Based on these results, extraction with hot water, if combined with oxidation, should reduce the cost of remediation and can be used as a feasible alternative technique for remediating contaminated soils and sediments

  17. Extraction of fission product rhodium from nitric acid solutions. 1

    International Nuclear Information System (INIS)

    Gorski, B.; Beer, M.; Russ, L.

    1988-01-01

    The extraction of noble metals from nitric acid solutions represents one problem of separating valueable substances from nuclear wastes in nuclear fuel reprocessing. Results of distribution experiments demonstrate the possibility of solvent extraction of rhodium using tertiary amines in presence of nitrite. Even short mixing times realize high distribution coefficients allowing quantitative separation from aqueous solutions. (author)

  18. Speciation of Se and DOC in soil solution and their relation to Se bioavailability.

    Science.gov (United States)

    Weng, Liping; Vega, Flora Alonso; Supriatin, Supriatin; Bussink, Wim; Van Riemsdijk, Willem H

    2011-01-01

    A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.

  19. Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ahring, Birgitte Kiær; Ottosen, Lisbeth M.

    2007-01-01

    for decontamination of the sludge was investigated. The ability of 11 organic acids to extract Pb from the fine fraction of contaminated soil (grains soil fines in suspension......The implementation of soil washing technology for the treatment of heavy metal contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy metal contaminated sludge. In this work, the feasibility of combining electrodialytic remediation with heterotrophic leaching...... was tested. Five of the acids showed the ability to extract Ph from the soil fines in excess of the effect caused solely by pH changes. Addition of the acids, however, severely impeded EDR, hence promotion of EDR by combination with heterotrophic leaching was rejected. In contrast, enhancement of EDR...

  20. Benzo(a)pyrene accumulation in soils of technogenic emission zone by subcritical water extraction method

    Science.gov (United States)

    Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun

    2016-04-01

    The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds

  1. Extraction of plutonium and uranium from oxalate bearing solutions using phosphonic acid

    International Nuclear Information System (INIS)

    Godbole, A.G.; Mapara, P.M.; Swarup, Rajendra

    1995-01-01

    A feasibility study on the solvent extraction of plutonium and uranium from solutions containing oxalic and nitric acids using a phosphonic acid extractant (PC88A) was made to explore the possibility of recovering Pu from these solutions. Batch experiments on the extraction of Pu(IV) and U(VI) under different parameters were carried out using PC88A in dodecane. The results indicated that Pu could be extracted quantitatively by PC88A from these solutions. A good separation of Pu from U could be achieved at higher temperatures. (author). 6 refs., 3 tabs

  2. Polycyclic aromatic hydrocarbons bioavailability in industrial and agricultural soils: Linking SPME and Tenax extraction with bioassays.

    Science.gov (United States)

    Guo, Meixia; Gong, Zongqiang; Li, Xiaojun; Allinson, Graeme; Rookes, James; Cahill, David

    2017-06-01

    The aims of this study were to evaluate the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in industrial and agricultural soils using chemical methods and a bioassay, and to study the relationships between the methods. This was conducted by comparing the quantities of PAHs extracted from two manufactured gas plant (MGP) soils and an agricultural soil with low level contamination by solid-phase micro-extraction (SPME) and Tenax-TA extraction with the quantities taken up by the earthworm (Eisenia fetida). In addition, a biodegradation experiment was conducted on one MGP soil (MGP-A) to clarify the relationship between PAH removal by biodegradation and the variation in PAH concentrations in soil pore water. Results demonstrated that the earthworm bioassay could not be used to examine PAH bioavailability in the tested MGP soils; which was the case even in the diluted MGP-A soils after biodegradation. However, the bioassay was successfully applied to the agricultural soil. These results suggest that earthworms can only be used for bioassays in soils with low toxicity. In general, rapidly desorbing concentrations extracted by Tenax-TA could predict PAH concentrations accumulated in earthworms (R 2 =0.66), while SPME underestimated earthworm concentrations by a factor of 2.5. Both SPME and Tenax extraction can provide a useful tool to predict PAH bioavailability for earthworms, but Tenax-TA extraction was proven to be a more sensitive and precise method than SPME for the prediction of earthworm exposure in the agricultural soil. Copyright © 2017. Published by Elsevier Inc.

  3. Soil sampling and extraction methods with possible application to pear thrips (Thysanoptera: Thripidae)

    Science.gov (United States)

    John E. Bater

    1991-01-01

    Techniques are described for the sampling and extraction of microarthropods from soil and the potential of these methods to extract the larval stages of the pear thrips, Taeniothrips inconsequens (Uzel), from soil cores taken in sugar maple stands. Also described is a design for an emergence trap that could be used to estimate adult thrips...

  4. Comparison of Soxhlet and Shake Extraction of Polycyclic Aromatic Hydrocarbons from Coal Tar Polluted Soils Sampled in the Field

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Holst, Helle; Christensen, Thomas Højlund

    1994-01-01

    This study compares three extraction methods for PAHs in coal tar polluted soil: 3-times repeated shaking of the soil with dichloromethane-methanol (1:1), Soxhlet extraction with dichloromethane, and Soxhlet extraction with dichloromethane followed by Soxhlet extraction with methanol....... The extraction efficiencies were determined for ten selected PAHs in triplicate samples of six soils sampled at former gasworks sites. The samples covered a wide range of PAH concentrations, from 0.6 to 397 mg/kg soil. Soxhlet extraction with dichloromethane followed by Soxhlet extraction with methanol...

  5. Effect of pH value of applied solution on radioiodine sorption by soils

    International Nuclear Information System (INIS)

    Szabova, T.

    1976-01-01

    Sorption of radioiodine by soils was followed under static conditions at different pH values of the initial solution in five soil types. Sorption of radioiodine by soils is affected by the amount of the organic mass and by the pH of solutions. With the same pH, soils containing a higher amount of the organic mass absorb more radioiodine. The highest sorption percentage of 131 I - for all pH values was found in meadow chernozem soil and the lowest in the rendzina and in carboniferous meadow soils. The highest sorption of 131 I - for degraded chernozem, meadow chernozem soils and brown soil was recorded at pH 5 and for carboniferous meadow soil and rendzina at pH 7. (author)

  6. Mathematical description of adsorption and transport of reactive solutes in soil: a review of selected literature

    International Nuclear Information System (INIS)

    Travis, C.C.

    1978-10-01

    This report reviews selected literature related to the mathematical description of the transport of reactive solutes through soil. The primary areas of the literature reviewed are (1) mathematical models in current use for description of the adsorption-desorption interaction between the soil solution and the soil matrix and (2) analytic solutions of the differential equations describing the convective-dispersive transport of reactive solutes through soil

  7. The response of soil solution chemistry in European forests to decreasing acid deposition

    DEFF Research Database (Denmark)

    Johnson, James; Pannatier, Elisabeth Graf; Carnicelli, Stefano

    2018-01-01

    to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Altot) and dissolved organic carbon were determined for the period 1995–2012. Plots...... with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10–20 cm, 104 plots) and subsoil (40–80 cm, 162 plots). There was a large decrease in the concentration of sulphate () in soil solution; over a 10‐year period (2000...... over the entire dataset. The response of soil solution acidity was nonuniform. At 10–20 cm, ANC increased in acid‐sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40–80 cm, ANC remained unchanged in acid‐sensitive soils (base...

  8. Extraction and analysis of 14C-carbofuran radioactivity in soil sample

    International Nuclear Information System (INIS)

    Maizatul Akmam Mhd Nasir; Nashriyah Mat

    2005-01-01

    Carbofuran insecticide or nematicide sprayed onto soil in the agroecosystem will be taken up by plant. Carbofuran residue will pollute the environment and organisms in the food chain. Extraction and analysis of 14 C-carbofuran in soil from lysimeter were carried out. The Liquid Scintillation Counter (LSC) was used to measure radioactivity of 14 C-carbofuran in soil sample. (Author)

  9. Model analysis of mechanisms controlling pneumatic soil vapor extraction

    DEFF Research Database (Denmark)

    Høier, Camilla Kruse; Sonnenborg, Torben Obel; Jensen, Karsten Høgh

    2009-01-01

    of heterogeneous soils by enforcing large fluctuating pressure fronts through the contaminated area. Laboratory experiments have suggested that pneumatic SVE considerably improves the recovery rate from low-permeable units. We have analyzed the experimental results using a numerical code and quantified......The efficiency of traditional soil venting or soil vapor extraction (SVE) highly depends on the architecture of the subsurface because imposed advective air flow tends to bypass low-permeable contaminated areas. Pneumatic SVE is a technique developed to enhance remediation efficiency...... level the pneumatic venting technology is superior to the traditional technique, and that the method is particularly efficient in cases where large permeability contrasts exist between soil units in the subsurface....

  10. Trends in soil solution dissolved organic carbon (DOC) concentrations across European forests

    NARCIS (Netherlands)

    Camino-Serrano, Marta; Graf Pannatier, Elisabeth; Vicca, Sara; Luyssaert, Sebastiaan; Jonard, Mathieu; Ciais, Philippe; Guenet, Bertrand; Gielen, Bert; Peñuelas, Josep; Sardans, Jordi; Waldner, Peter; Sawicka, Kasia

    2016-01-01

    Dissolved organic carbon (DOC) in surface waters is connected to DOC in soil solution through hydrological pathways. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site studies have failed so far to establish

  11. Trends in soil solution dissolved organic carbon (DOC) concentrations across European forests

    NARCIS (Netherlands)

    Camino-Serrano, M.; Graf Pannatier, E.; Vicca, S.; Luyssaert, S.; Jonard, M.; Ciais, P.; Guenet, B.; Gielen, B.; Peñuelas, J.; Sardans, J.; Waldner, P.; Etzold, S.; Cecchini, G.; Clarke, N.; Galić, Z.; Gandois, L.; Hansen, K.; Johnson, J.; Klinck, U.; Lachmanová, Z.; Lindroos, A.J.; Meesenburg, H.; Nieminen, T.M.; Sanders, T.G.M.; Sawicka, K.; Seidling, W.; Thimonier, A.; Vanguelova, E.; Verstraeten, A.; Vesterdal, L.; Janssens, I.A.

    2016-01-01

    Dissolved organic carbon (DOC) in surface waters is connected to DOC in soil solution through hydrological pathways. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site studies have failed so far to establish

  12. Phyto extraction Of Cadmium And Zinc From Contaminated Soils

    International Nuclear Information System (INIS)

    Lotfy, S.M.; Mostafa, A.Z.; Abdel Sabour, M. F.

    2012-01-01

    A trial was made to study the use of different plant species to extract heavy metals out of contaminated soils. Four Kg of each air-dried surface soil sample (0-20 cm) were packed in plastic containers in three replicates. Five plant species tested in this study namely, Panikum (Panicum antidotal) and napier grass (Bennisetum purpureum), squash (Cucurbita pepo), cotton (Gossypium hirsutum), sunflower (Helianthus annuus); were grown on two different polluted soil types (Mostorud Clayey soil, irrigated with contaminated water for more than 30 years and El-Gabal EL-Asfar sandyloam soil, subjected to sewage effluent irrigation for more than 50 years) in a complete randomized block experimental design to study the mobility and fate of selected heavy metals and evaluate the efficiency of the tested plant species to extract Cadmium and Zinc out of polluted soils. Data indicated that sunflower and cotton shoots accumulated the highest Cd content among the five tested plant species, Shoot concentrations of Cd were as high as 9.6 mg/kg dry matter of sunflower, followed by panikum and napier grass, cotton then squash with a range of Cd between 9.6 to 1.6 mg/kg dry matter in case of the alluvium soil. However in the sandy soil, sunflower Cd -shoots were > penakium> napier grass > cotton> Squash with a lower order of magnitude which could be explained by the lower Cd -content in sandy soil compared to the alluvial soil .Calculation of recovery percentage based on Cd and Zn removed from the soil after cultivation ranged between 5.9 to 27.4 % and 16.1 to 49.1% of total initial Cd and Zn, Respectively. However, The percentage of Cd and Zn -removed by plant shoots from the initial total varied between 27.6 to 37.5% and 25.3 and 36.8 % of the removed Cd and Zn, Respectively, whereas the lowest values were observed in case of squash for Cd and Zn. As expected plant roots exhibited higher Cd and Zn accumulation than in shoots by 2-3 folds. Sunflower roots showed the highest Cd

  13. Trace elements and nutrients adsorption onto nano-maghemite in a contaminated-soil solution: A geochemical/statistical approach.

    Science.gov (United States)

    Martínez-Fernández, Domingo; Bingöl, Deniz; Komárek, Michael

    2014-07-15

    Two experiments were carried out to study the competition for adsorption between trace elements (TEs) and nutrients following the application of nano-maghemite (NM) (iron nano-oxide; Fe2O3) to a soil solution (the 0.01molL(-1) CaCl2 extract of a TEs-contaminated soil). In the first, the nutrients K, N, and P were added to create a set of combinations: potential availability of TEs during their interaction with NM and nutrients were studied. In the second, response surface methodology was used to develop predictive models by central composite design (CCD) for competition between TEs and the nutrients K and N for adsorption onto NM. The addition of NM to the soil solution reduced specifically the concentrations of available As and Cd, but the TE-adsorption capacity of NM decreased as the P concentration increased. The CCD provided more concise and valuable information, appropriate to estimate the behavior of NM sequestering TEs: according to the suggested models, K(+) and NH4(+) were important factors for Ca, Fe, Mg, Mn, Na, and Zn adsorption (Radj(2)=95%, except for Zn with Radj(2)=87%). The obtained information and models can be used to predict the effectiveness of NM for the stabilization of TEs, crucial during the phytoremediation of contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effective extractants for the extraction of lithium from aqueous solutions containing sodium and potassium compounds

    International Nuclear Information System (INIS)

    Marinkina, G.A.; Zanina, A.S.; Shergina, S.I.; Sokolov, I.E.; Kotlyarevskii, I.L.

    1992-01-01

    The extraction power of newly obtained pure methoxy-1,3-diketones in diluents and in their mixtures with electron-donating additives during the extraction of lithium from aqueous solutions containing sodium and potassium was investigated. High separation factors were obtained; no appreciable amounts of sodium and potassium were found in the extract after total extraction of the lithium. 9 refs., 2 figs., 8 tabs

  15. Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions

    DEFF Research Database (Denmark)

    Ngo, Lien K.; Pinch, Benjamin M.; Bennett, William W.

    2016-01-01

    gradients in thin films technique (DGT) (as CDGT), soil solution analysis, and sequential extraction procedure (SEP). Lability was compared to the bioaccumulation of As and Sb by various compartments of radish (Raphanus sativus) grown in these soils in a pot experiment. Irrespective of the method, all...... of the labile fractions showed that both As and Sb were firmly bound to the solid phases, and that Sb was less mobile than As, although total soil Sb concentrations were higher than total soil As. The bioassay demonstrated low bioaccumulation of As and Sb into R. sativus due to their low lability of As and Sb...... in soils and that there are likely to be differences in their mechanisms of uptake. As accumulated in R. sativus roots was much higher (2.5-21 times) than that of Sb, while the Sb translocated from roots to shoots was approximately 2.5 times higher than that of As. As and Sb in R. sativus tissues were...

  16. Numerical modeling of solute transport in deformable unsaturated layered soil

    Directory of Open Access Journals (Sweden)

    Sheng Wu

    2017-07-01

    Full Text Available The effect of soil stratification was studied through numerical investigation based on the coupled model of solute transport in deformable unsaturated soil. The theoretical model implied two-way coupled excess pore pressure and soil deformation based on Biot's consolidation theory as well as a one-way coupled volatile pollutant concentration field developed from the advection-diffusion theory. Embedded in the model, the degree of saturation, fluid compressibility, self-weight of the soil matrix, porosity variance, longitudinal dispersion, and linear sorption were computed. Based on simulation results of a proposed three-layer landfill model using the finite element method, the multi-layer effects are discussed with regard to the hydraulic conductivity, shear modulus, degree of saturation, molecular diffusion coefficient, and thickness of each layer. Generally speaking, contaminants spread faster in a stratified field with a soft and highly permeable top layer; soil parameters of the top layer are more critical than the lower layers but controlling soil thicknesses will alter the results. This numerical investigation showed noticeable impacts of stratified soil properties on solute migration results, demonstrating the importance of correctly modeling layered soil instead of simply assuming the averaged properties across the soil profile.

  17. Releasing Pattern of Applied Phosphorus and Distribution Change of Phosphorus Fractions in the Acid Upland Soils with Successive Resin Extraction

    Directory of Open Access Journals (Sweden)

    Arief Hartono

    2008-05-01

    Full Text Available The releasing pattern of applied P in the acid upland soils and the soil properties influencing the pattern were studied. Surface horizons of six acid upland soils from Sumatra, Java and Kalimantan were used in this study. The releasing pattern of applied P (300 mg P kg-1 of these soils were studied by successive resin extraction. P fractionation was conducted to evaluate which fractions released P to the soil solution after successive resin extraction. The cumulative of resin-Pinorganic (Pi release of soils was fitted to the first order kinetic. Regression analyses using factor scores obtained from the previous principal components analyses was applied to determine soil properties influencing P releasing pattern. The results suggested that the maximum P release was significantly (P < 0.05 increased by acidity plus 1.4 nm mineral-related factor (PC2 i.e. exchangeable Al and 1.4 nm minerals (smectite and vermiculite and decreased by oxide related factor (PC1 i.e. aluminum (Al plus 1/2 iron (Fe (by ammonium oxalate, crystalline Al and Fe oxides, cation exchange capacity, and clay content. P fractionation analysis after successive resin extraction showed that both labile and less labile in the form of NaHCO3-Pi and NaOH-Pi fractions, respectively, can be transformed into resin-Pi when in the most labile resin-Pi is depleted. Most of P released in high oxides soils were from NaOH-Pi fraction while in low oxides soils were from NaHCO3-Pi. P release from the former fraction resulted in the maximum P release lower than that of the latter one. When NaHCO3-Pi was high, NaOH-Pi was relatively more stable than NaHCO3-Pi despite resin-Pi removal. NaHCO3-Pi and NaOH-Pi are very important P fractions in replenishing resin-Pi in these acid upland soils.

  18. Modified micro-diffusion method for 15N-enriched soil solutions

    International Nuclear Information System (INIS)

    Aigner, M.

    2000-01-01

    The preparation of solutions for determination of 15 N/ 14 N isotope ratios is described, with special reference to dilute samples. A micro-diffusion method has been simplified to be more suitable for rapid isotope-ratio determination in soil solutions collected in tensionics. Ammonia expelled during micro-diffusion is captured on acidified filter discs fixed to the caps of gas-tight vials. The discs are transferred to tin capsules for shipment to the Soil Science Unit for 15 N-enrichment determination. (author)

  19. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    Science.gov (United States)

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  20. Ekspansif soil solution in the villages at Trenggalek

    Science.gov (United States)

    Triastuti, Nusa Setiani

    2017-11-01

    District 2/3 hills with easy sliding and land survey results showed the soil because it consists of expansive soil Survey some villages who experience insatiability or failure, a secondary analysis of the data gathered from the expert on geology, Trenggalek geological map, Trenggalek geography. Ground location researched several villages, the Terbis village of focus discussion of the landslides and plan of relocation. In the watching a black. Colored soil and easily slide, showed very expansive soil due to montmorrelite. While soil relocation contour relative is more stable because the land of kaolin and invisible water sources that could push the land. Expansive soil in the village of solution should be cheap, easily obtainable, not damaging the fertility of the soil, groundwater should be awake to the source of life, ease of implementation, utilizing local materials and use modest tools and equipment. Under the soil surface do not get there water stored in the soil until deep the water because it will slide the ground. The analysis must meet the 7 items above and steady the contour. Design of building installed sub drain, the shallow bore foundations tied tie beam, floor plate into the unity of the structure.

  1. Uranium and radium content in the soil solutions of the south-western part of Belarus

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Vojnikova, E.V.; Popenya, M.V.

    2008-01-01

    The contents of uranium and radium in the pore soil solutions, which are the main chain in the geochemical and biological migration of the chemical elements, has been determined for the first time in Belarus. The control sites have been located outside the zone of Chernobyl fallout radionuclide contamination, that allowed evaluating the current background level of uranium and radium content in the soil solutions. The data on accumulation of the radioactive elements in the pore solutions give the opportunity to estimate the reserve of the radioactive elements in the migratory active forms in the soils. In the majority of soils studied, uranium content in the pore solution is higher than radium content, that points to the higher migratory ability of uranium. The direct correlation between content of fulvic acids' components in the soil solutions and accumulation of uranium in such solutions has been established. (authors)

  2. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    Science.gov (United States)

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  3. Investigating substrate use efficiency across different microbial physiologies in soil-extracted, solubilized organic matter (SESOM)

    Science.gov (United States)

    Cyle, K. T.; Martinez, C. E.

    2017-12-01

    Recent experimental work has elevated the importance of microbial processing for the stabilization of fresh carbon inputs within the soil mineral matrix. Enhancing our understanding of soil carbon and nitrogen dynamics therefore requires a better understanding of how efficiently microbial metabolism can process low molecular weight carbon substrates (carbon use efficiency, CUE) under environmentally relevant conditions. One approach to better understanding microbial uptake rates and CUE is the ecophysiological study of soil isolates in liquid media culture consisting of soil-extracted solubilized organic matter (SESOM). We are using SESOM from an Oa horizon under hemlock hardwood vegetation in upstate New York as liquid media for the growth of 12 isolates from the Oa and B horizon of the same site. Here we seek to test the uptake rates as well as CUE of 5 different low molecular weight substrates spanning compound class and nominal oxidation state (glucose, acetate, formate, glycine, valine) by isolates differing in phylogeny and physiology. The use of a spike of each of the 13C-labeled substrates into SESOM, along with a 0.2 μm filtration step, allows accurate partitioning of labeled carbon between biomass, gaseous CO2 as well as the exometabolome. Coupled UHPLC-MS measurements are being used to identify and determine uptake rates of over 80 potential C substrates present in the extract as well as our labeled substrate of interest along the course of the isolate growth curve. This work seeks to utilize a gradient in substrate class as well as microbial physiologies to inform our understanding of C and N cycling under relevant soil solution conditions. Future experiments may also use labeled biomass from stationary phase to investigate the stabilization potential of anabolic products formed from each substrate with a clay fraction isolated from the same site.

  4. Determination of available phosphorus in soils by using a new extraction procedure and a flow injection amperometric system.

    Science.gov (United States)

    Jakmunee, Jaroon; Junsomboon, Jaroon

    2009-09-15

    A new extraction procedure based on an off-line extraction column was proposed for extracting of available phosphorus from soils. The column was fabricated from a plastic syringe fitted at the bottom with a cotton wool and a piece of filter paper to support a soil sample. An aliquot (50 mL) of extracting solution (0.05 M HCl+0.0125 M H(2)SO(4)) was used to extract the sample under gravity flow and the eluate was collected in a polyethylene bottle. The extract was then analyzed for phosphorus contents by a simple flow injection amperometric system, employing a set of three-way solenoid valves as an injection valve. The method is based on the electrochemical reduction of 12-molybdophosphate which is produced on-line by the reaction of orthophosphate with acidic molybdate and the electrical current produced was directly proportional to the concentration of phosphate in range of 0.1-10.0 mg L(-1) PO(4)-P, with a detection limit of 0.02 mg L(-1). Relative standard for 11 replicate injections of 5 mg L(-1) PO(4)-P was 0.5%. A sample through put of 35 h(-1) was achieved, with consumption of 14 mg KCl, 10mg ammonium molybdate and 0.05 mL H(2)SO(4) per analysis. The detection system does not suffer from the interferences that are encountered in the photometric method such as colored substances, colloids, metal ions, silicate and refractive index effect (Schlieren effect). The results obtained by the column extraction procedure were well correlated with those obtained by the steady-state extraction procedure, but showed slightly higher extraction efficiency.

  5. Soil DNA extraction procedure influences protist 18S rRNA gene community profiling outcome

    DEFF Research Database (Denmark)

    Santos, Susana S.; Nunes, Ines Marques; Nielsen, Tue K.

    2017-01-01

    Advances in sequencing technologies allow deeper studies of the soil protist diversity and function. However, little attention has been given to the impact of the chosen soil DNA extraction procedure to the overall results. We examined the effect of three acknowledged DNA recovery methods, two...... manual methods (ISOm-11063, GnS-GII) and one commercial kit (MoBio), on soil protist community structures obtained from different sites with different land uses. Results from 18S rRNA gene amplicon sequencing suggest that DNA extraction method significantly affect the replicate homogeneity, the total...... number of operational taxonomic units (OTUs) recovered and the overall taxonomic structure and diversity of soil protist communities. However, DNA extraction effects did not overwhelm the natural variation among samples, as the community data still strongly grouped by geographical location...

  6. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China.

    Science.gov (United States)

    Qiu, Qingyan; Wu, Jianping; Liang, Guohua; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2015-05-01

    Acid rain is an environmental problem of increasing concern in China. In this study, a laboratory leaching column experiment with acid forest soil was set up to investigate the responses of soil and soil solution chemistry to simulated acid rain (SAR). Five pH levels of SAR were set: 2.5, 3.0, 3.5, 4.0, and 4.5 (as a control, CK). The results showed that soil acidification would occur when the pH of SAR was ≤3.5. The concentrations of NO₃(-)and Ca(2+) in the soil increased significantly when the pH of SAR fell 3.5. The concentration of SO₄(2-) in the soil increased significantly when the pH of SAR was soil solution chemistry became increasingly apparent as the experiment proceeded (except for Na(+) and dissolved organic carbon (DOC)). The net exports of NO₃(-), SO₄(2-), Mg(2+), and Ca(2+) increased about 42-86% under pH 2.5 treatment as compared to CK. The Ca(2+) was sensitive to SAR, and the soil could release Ca(2+) through mineral weathering to mitigate soil acidification. The concentration of exchangeable Al(3+) in the soil increased with increasing the acidity of SAR. The releases of soluble Al and Fe were SAR pH dependent, and their net exports under pH 2.5 treatment were 19.6 and 5.5 times, respectively, higher than that under CK. The net export of DOC was reduced by 12-29% under SAR treatments as compared to CK. Our results indicate the chemical constituents in the soil are more sensitive to SAR than those in the soil solution, and the effects of SAR on soil solution chemistry depend not only on the intensity of SAR but also on the duration of SAR addition. The soil and soil solution chemistry in this region may not be affected by current precipitation (pH≈4.5) in short term, but the soil and soil leachate chemistry may change dramatically if the pH of precipitation were below 3.5 and 3.0, respectively.

  7. Extraction of lanthanide(III) nitrates from water-salt solutions with n.-octanol

    International Nuclear Information System (INIS)

    Keskinov, V.A.; Kudrova, A.V.; Valueva, O.V.; Pyartman, A.K.

    2004-01-01

    Extraction of lanthanide(III) nitrates (Ln=La-Nd, Sm-Gd) from aqueous-salt solutions at 298.15 K was studied using solution of n.-octanol, its concentration 6.31 mol/l. It was ascertained that at Ln(NO 3 ) 3 concentration in aqueous phase below 0.6 mol/l, there is actually no extraction. At higher concentrations of nitrates in aqueous phase the content of lanthanides(III) in organic phase increases in the series La-Gd. Isotherms of extraction were ascertained, its phase equilibria being described mathematically. It is shown that extraction of lanthanide(III) nitrates with n.-octanol should be realized from concentrated aqueous solutions [ru

  8. Rapid extraction of PCDD/Fs from soil and fly ash samples. Pressurized fluid extraction (PFE) and microwave-assisted extraction (MAE)

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, P.; Fabrellas, B. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)

    2004-09-15

    The main reference extraction method in the analysis of polychlorinated dibenzop- dioxins and dibenzofurans (PCDD/Fs) is still the Soxhlet extraction. But it requires long extraction times (up to 24 hs), large volumes of hazardous organic solvents (100-300 ml) and its automation is limited. Pressurized Fluid Extraction (PFE) and Microwave-Assisted Extraction (MAE) are two relatively new extraction techniques that reduce the time and the volume of solvent required for extraction. However, very different PFE extraction conditions are found for the same enviromental matrices in the literature. MAE is not a extraction technique very applied for the analysis of PCDD/Fs yet, although it is used for the determination of other organic compounds, such as PCBs and PAHs. In this study, PFE and MAE extraction conditions were optimized to determine PCDDs y PCDFs in fly ash and soil/sediment samples. Conventional Soxhlet extraction with toluene was used to compare the extraction efficiency of both techniques.

  9. Influence of plants on the chemical extractability and biodegradability of 2,4-dichlorophenol in soil

    International Nuclear Information System (INIS)

    Boucard, Tatiana K.; Bardgett, Richard D.; Jones, Kevin C.; Semple, Kirk

    2005-01-01

    This study investigated the fate and behaviour of [UL- 14 C] 2,4-dichlorophenol (DCP) in planted (Lolium perenne L.) and unplanted soils over 57 days. Extractability of [UL- 14 C] 2,4-DCP associated activity was measured using calcium chloride (CaCl 2 ), acetonitrile-water and dichloromethane (DCM) extractions. Biodegradability of [UL- 14 C] 2,4-DCP associated activity was assessed through measurement of 14 CO 2 production by a degrader inoculum (Burkholderia sp.). Although extractability and mineralisation of [UL- 14 C] 2,4-DCP associated activity decreased significantly in both planted and unplanted soils, plants appeared to enhance the sequestration process. After 57 days, in unplanted soil, 27% of the remaining [UL- 14 C] 2,4-DCP associated activity was mineralised by Burkholderia sp., and 13%, 48%, and 38% of 14 C-activity were extracted by CaCl 2 , acetonitrile-water and DCM, respectively. However, after 57 days, in planted soils, only 10% of the [UL- 14 C] 2,4-DCP associated activity was available for mineralisation, whilst extractability was reduced to 2% by CaCl 2 , 17% by acetonitrile-water and 11% by DCM. This may be due to the effect of plants on soil moisture conditions, which leads to modification of the soil structure and trapping of the compound. However, the influence of plants on soil biological and chemical properties may also play a role in the ageing process

  10. Remediation of heavy-metal-contaminated soil using chelant extraction: Feasibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Miller, G.; Taylor, J.D.; Schneider, J.F.; Zellmer, S.; Edgar, D.E.; Johnson, D.O.

    1993-08-01

    Results are presented of a laboratory investigation conducted to determine the efficacy of using chelating agents to extract heavy metals (Pb, Cd, Cr, Ba, Cu, and Zn) from soil, the primary focus being on the extraction of lead from the soil. Results from the batch-shaker studies and emphasizes the columnar extraction studies are described. The chelating agents studied included ethylenediaminetetraacetic acid (EDTA) and citric acid, in addition to water. Concentrations of the chelants ranged from 0.01 to 0.05 M; the suspension pH was varied between 3 and 8. Results showed that the removal of lead using citric acid and water was somewhat pH-dependent. For the batch-shaker studies, the results indicated that EDTA was more effective at removing Cd, Cu, Pb, and Zn than was citric acid (both present at 0.01 M). EDTA and citric acid were equally effective in mobilizing Cr and Ba from the soil. Heavy metals removal was slightly more effective in the more acidic region (pH {le} 5).

  11. System of extraction of volatiles from soil using microwave processes

    Science.gov (United States)

    Ethridge, Edwin C. (Inventor); Kaukler, William F. (Inventor)

    2013-01-01

    A device for the extraction and collection of volatiles from soil or planetary regolith. The device utilizes core drilled holes to gain access to underlying volatiles below the surface. Microwave energy beamed into the holes penetrates through the soil or regolith to heat it, and thereby produces vapor by sublimation. The device confines and transports volatiles to a cold trap for collection.

  12. Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth

    International Nuclear Information System (INIS)

    Manoharan, V.; Loganathan, P.; Tillman, R.W.; Parfitt, R.L.

    2007-01-01

    A greenhouse study was conducted to determine if concentrations of fluoride (F), which would be added to acid soils via P fertilisers, were detrimental to barley root growth. Increasing rates of F additions to soil significantly increased the soil solution concentrations of aluminium (Al) and F irrespective of the initial adjusted soil pH, which ranged from 4.25 to 5.48. High rates of F addition severely restricted root growth; the effect was more pronounced in the strongly acidic soil. Speciation calculations demonstrated that increasing rates of F additions substantially increased the concentrations of Al-F complexes in the soil. Stepwise regression analysis showed that it was the combination of the activities of AlF 2 1+ and AlF 2+ complexes that primarily controlled barley root growth. The results suggested that continuous input of F to soils, and increased soil acidification, may become an F risk issue in the future. - Addition of high rates of fluoride to strongly acidic soils can reduce barley root growth due to the toxicity of aluminium-fluoride complexes formed in soil solution

  13. Extraction of hafnium with chelating agents from aqueous-alcoholic solutions

    International Nuclear Information System (INIS)

    Hala, J.; Prihoda, J.

    1975-01-01

    The extraction was studied of hafnium into solutions of N-benzoyl-N-phenylhydroxylamine, 2-thenoyltrifluoroacetone and di-n-butylphosphoric acid in benzene, toluene, chloroform and tetrachloromethane from aqueous alcoholic solutions with a formal acidity of 2M-HClO 4 . Methyl-, ethyl-, n- and isopropyl- and tert-butyl alcohol were used as organic components in the mixed aqueous-organic phase. In the extraction into N-benzoyl-N-phenylhydroxylamine the presence of the alcohols resulted in synergic effects analogous to the previously described extraction by substituted benzoylpyrazolone. With the other two extractants, the effect of the alcohols was antagonistic, due to the interaction of alcohol or water with the reagent in the organic phase, and to the decrease in the reagent distribution constant. (author)

  14. Decontamination of soils by irrigation with solutions containing complexing agents

    International Nuclear Information System (INIS)

    Pimpl, M.; Schuettelkopf, H.

    1982-01-01

    Experiments in laboratory scale were performed to increase the mobility of Pu, Am, and Cm in soil. Soil columns of 30 cm in diameter and 40 cm of length were contaminated on the surface with 5 μCi of Pu, Am, and Cm, applied as nitrates. By irrigation with 0.1 M DTPA-solution the actinides were mobilized and migrated with the irrigation solution through the columns. The migration velocity was measured and compared to the calculated one. Conclusions for the application of this procedure in field experiments are drawn. (author)

  15. Multiresidual determination of pesticides in agricultural soil sample using Quechers extraction methodology

    International Nuclear Information System (INIS)

    Castro Garcia, Consuelo del Pilar

    2011-01-01

    To achieve a sustainable agricultural production there are used different organic and inorganic products, among them we found the fertilizers and pesticides. When they are applied most of the product falls to the ground, generating significant sources of pollution in the areas near the application and depending on the mobility of the pesticide, it can reach more remote areas. That is why it is important to determine the pesticide residues in soil after their application, being the selection of the extraction method crucial for the subsequent traces detection. In the present work there was evaluated the QUECHERS extraction technique, a method used in food but modified for a different and complex matrix like soil in order to achieve acceptable efficiencies multi-residue extraction of 20 pesticides and their subsequent determination by gas chromatography with electron capture and mass detection. The method was applied for the determination of pesticides in three soil samples from an agricultural site with different slopes between them. The Results indicated that 75% of the pesticides tested had acceptable efficiencies, thus meeting the objective of achieving multiresidue determination of pesticides in agricultural soil samples by extraction methodology QUECHERS. Besides, the presence of the fungicide penconazole was only detected in the three samples, being the highest concentration of pesticide found in the area with less slope (V_A_B_A_J_O) (author)

  16. [Aging Law of PAHs in Contaminated Soil and Their Enrichment in Earthworms Characterized by Chemical Extraction Techniques].

    Science.gov (United States)

    Zhang, Ya-nan; Yang, Xing-lun; Bian, Yong-rong; Gu, Cheng-gang; Liu, Zong-tang; Li, Jiao; Wang, Dai-zhang; Jiang, Xin

    2015-12-01

    To evaluate the effect of aging on the availability of PAHs, chemical extraction by exhaustive ( ASE extraction) and nonexhaustive techniques (Tenax-TA extraction, hydroxypropyl-p-cyclodextrin ( HPCD ) extraction, n-butyl alcohol ( BuOH) extraction) as well as PAHs accumulation in earthworms (Eisenia fetida) were conducted in yellow soil from Baguazhou, Nanjing, China, and red soil from Hainan, China, spiked with phenanthrene, pryene and benzo(a) pyrene and aged 0, 7, 15, 30 and 60 days. The results showed that the concentration of PAHs extracted by ASE and three nonexhaustive techniques and accumulated by earthworms significantly decreased with aging time, except the ASE extracted concentration between 30-and 60-day aging time. Furthermore, the relationships were studied in this experiment between chemical extracted PAHs concentration and accumulated concentration in earthworms. PAHs accumulated concentration in earthworms was not significantly correlated with the exhaustive extracted concentration of PAHs in soil (R² 0.44-0.56), which indicated that ASE extraction techniques could not predict PAHs bioavailability to earthworms because it overestimated the risk of PAHs. However, the PAHs accumulated concentration in earthworms was significantly correlated with the three nonexhaustive extracted concentrations of PAHs in soil, which indicated that all the three nonexhaustive techniques could predict PAHs bioavailability to earthworm to some extent, among which, HPCD extraction (R² 0.94-0.99) was better than Tenax-TA extraction (R² 0.62-0.87) and BuOH extraction (R² 0.69-0.94). So HPCD extraction was a more appropriate and reliable technique to predict bioavailability of PAHs in soil.

  17. The uptake of silver(I from chloride solutions by amine extractants

    Directory of Open Access Journals (Sweden)

    Wejman Katarzyna

    2017-01-01

    Full Text Available The amine extractants, bis(2-ethylhexylamine, N,N-dimethylethanolamine, and trioctylamine were used to recover silver(I ions from chloride solutions. The effect of the pH, contact time, extractant concentration and reextraction were studied. It was found that extraction of silver(I depended on the pH, extractant concentration and strongly on the contact time. Reextraction of Ag(I ions from the loaded organic phase showed that the metal can be removed in over 50% for the three extractant using sodium hydroxide. The recovery of silver from the chloride leaching solutions were above 85% for bis(2-ethylhexylamine, above 58% for N,N-dimethylethanolamine, and above 70% for trioctylamine.

  18. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    Science.gov (United States)

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  19. Distribution coefficients for 85Sr and 137Cs in Japanese agricultural soils and their correlations with soil properties

    International Nuclear Information System (INIS)

    Kamei-Ishikawa, N.; Uchida, S.; Tagami, K.

    2008-01-01

    In this work, soil-soil solution distribution coefficients (K d ) of Sr and Cs were obtained for 112 Japanese agricultural soil samples (50 paddy soil and 62 upland soil samples) using batch sorption test. The relationships between Sr- or Cs-K d values and soil properties were discussed. Furthermore, the amount of Cs fixed in soil was estimated for 22 selected soil samples using a sequential extraction method. Then, cross effects of some soil properties for Cs fixation were evaluated. (author)

  20. Alkaline extraction: can it be used for the removal of 137Cs from soil?

    International Nuclear Information System (INIS)

    Nageldinger, G.; Flowers, A.; Entwistle, J.

    1998-01-01

    A titration extraction procedure was applied to a silty clay which was spiked with 137 Cs. At least 20% of spiked 137 Cs silty clay was found to be associated with the humic acid (HA) fraction. This shows that HA contributes significantly to cesium fixing in soil and cesium is not only fixed between regular ion exchange complexes (REC) and specific sites in the frayed edges of clay minerals (FES). About 85% of 137 Cs was found in the 12M HCl extract. The titration extraction procedure was found useful for investigation of the impact of the soil pH on the radiocesium mobility. Only trace amounts of cesium were found between pH 1 to 7, demonstrating a high immobility of cesium over this pH range. If the alkaline digestion is applied to soil for the removal of radiocesium, then these can be significantly separated from the extract by protonation of the extracted HA. (P.A.)

  1. Modifier free supercritical fluid extraction of uranium from sintered UO2, soil and ore samples

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Acharya, R.; Mohapatra, P.K.; Manchanda, V.K.

    2011-01-01

    Direct extraction of uranium from different samples viz. sintered UO 2 , soil and ores was carried out by modifier free supercritical fluid using tri-n-butyl phosphate-nitric acid (TBP-HNO 3 ) adduct as extractant. These studies showed that pre-equilibration with more concentrated nitric acid helps in better dissolution and extraction of uranium from sintered UO 2 samples. Modifier free supercritical fluid extraction appears attractive with respect to minimization of secondary wastes. This method resulted 80-100% extraction of uranium from different soil/ore samples. The results were confirmed by performing neutron activation analysis of original (before extraction) and residue (after extraction) samples. (author)

  2. Removal of radioactive cesium from soil by ammonium citrate solution and ionic liquid

    International Nuclear Information System (INIS)

    Ishiwata, Shunji; Kitakouji, Manabu; Taga, Atsushi; Ogata, Fumihiko; Ouchi, Hidekazu; Yamanishi, Hirokuni; Inagaki, Masayo

    2015-01-01

    Radioactive cesium has strongly bound soil as time proceeded, which could not be cleaved in mild condition. We have found that serial treatment of ammonium citrate solution and ionic liquid removed radioactive cesium from soil effectively. The sequence of the treatment is crucial, since inverse serial treatment or mixture of two kinds of solution did not show such an effect, which suggested that ammonium citrate unlocked trapped cesium in soil and ionic liquid solved it. We also found that repeating serial treatment and prolonged treatment time additively removed cesium from soil. (author)

  3. Analytical solution describing pesticide volatilization from soil affected by a change in surface condition.

    Science.gov (United States)

    Yates, S R

    2009-01-01

    An analytical solution describing the fate and transport of pesticides applied to soils has been developed. Two pesticide application methods can be simulated: point-source applications, such as idealized shank or a hot-gas injection method, and a more realistic shank-source application method that includes a vertical pesticide distribution in the soil domain due to a soil fracture caused by a shank. The solutions allow determination of the volatilization rate and other information that could be important for understanding fumigant movement and in the development of regulatory permitting conditions. The solutions can be used to characterize differences in emissions relative to changes in the soil degradation rate, surface barrier conditions, application depth, and soil packing. In some cases, simple algebraic expressions are provided that can be used to obtain the total emissions and total soil degradation. The solutions provide a consistent methodology for determining the total emissions and can be used with other information, such as field and laboratory experimental data, to support the development of fumigant regulations. The uses of the models are illustrated by several examples.

  4. Aqueous CO2 vs. aqueous extraction of soils as a preparative procedure for acute toxicity testing

    International Nuclear Information System (INIS)

    Yates, G.W.; Burks, S.L.

    1994-01-01

    This study was to determine if contaminated soils extracted with supercritical CO 2 (SFE) would yield different results from soils extracted with an aqueous media. Soil samples from an abandoned oil refinery were subjected to aqueous and SFE extraction. Uncontaminated control sites were compared with contaminated sites. Each extract was analyzed for 48 hour acute Ceriodaphnia LC50s and Microtox reg-sign EC50s. Comparisons were then made between the aqueous extracts and the SFE extracts. An additional study was made with HPLC chromatographs of the SFE contaminated site extracts to determine if there was a correlation between LC50 results and peak area of different sections of the chromatograph. The 48 hour Ceriodaphnia LC50 of one contaminated site showed a significant increase in toxicity with the supercritical extract compared to the aqueous extract. All contaminated sites gave toxic responses with the supercritical procedure. The Microtox reg-sign assay showed a toxic response with 2 of the 3 contaminated sites for both aqueous and SFE extracts. Results indicate that the Ceriodaphnia assays were more sensitive than Microtox reg-sign to contaminants found in the refinery soil. SFE controls did not show adverse effects with the Ceriodaphnia, but did have a slight effect with Microtox reg-sign. The best correlation (r 2 > 0.90) between the Ceriodaphnia LC50s and the peak areas of the chromatographs was obtained for sections with an estimated log K ow of 1 to 5. SFE extraction provided a fast, efficient and inexpensive method of collecting and testing moderately non-polar to strongly non-polar organic contaminants from contaminated soils

  5. The effect of soil extracts from a monoculture of spring wheat (Triticum aestivum L. grown under different tillage systems on the germination of its seeds

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present experiment was carried out in the period 2006-2008. The aim of this study was to determine the effect of aqueous soil extracts from the soil of a spring wheat monoculture on seed germination energy and capacity, the length of the first leaf and of the longest radicle as well as the number of radicles. Moreover, the content of 0-dihydroxyphenols in the soil was compared in the last year of the study. The soil used to prepare the solutions came from a field experiment established on medium heavy mixed rendzina soil. Spring wheat, cv. Zebra, was grown using plough tillage and two conservation tillage methods in the presence of undersown crops (red clover, Westerwolds ryegrass and stubble crops (lacy phacelia, white mustard. Germination energy of the seeds watered with the soil extracts from the ploughed plots was significantly higher than this trait in the seeds watered with the extracts from the conservation tillage treatments with spring disking of the catch crops. Germination energy and capacity of spring wheat in the control treatment watered with distilled water were significantly higher compared to the other treatments under evaluation. Spring wheat watered with the aqueous extract prepared from the soil obtained from the plough tillage treatment produced a significantly longer first leaf compared to the treatments in which both conservation tillage methods had been used. The shortest leaf and the lowest number of radicles were produced by the seedlings watered with the soil extract from the treatment with the white clover stubble crop. Radicle length was not significantly differentiated by the soil extracts under consideration. The content of 0-dihydroxyphenols in the rendzina soil determined during the spring period was higher than that determined in the autumn. The content of 0-dihydroxyphenols in the soil was lower in the conservation tillage treatments with autumn incorporation of the catch crops than in the plots in which

  6. Soil solution phosphorus turnover: derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies

    Science.gov (United States)

    Helfenstein, Julian; Jegminat, Jannes; McLaren, Timothy I.; Frossard, Emmanuel

    2018-01-01

    The exchange rate of inorganic phosphorus (P) between the soil solution and solid phase, also known as soil solution P turnover, is essential for describing the kinetics of bioavailable P. While soil solution P turnover (Km) can be determined by tracing radioisotopes in a soil-solution system, few studies have done so. We believe that this is due to a lack of understanding on how to derive Km from isotopic exchange kinetic (IEK) experiments, a common form of radioisotope dilution study. Here, we provide a derivation of calculating Km using parameters obtained from IEK experiments. We then calculated Km for 217 soils from published IEK experiments in terrestrial ecosystems, and also that of 18 long-term P fertilizer field experiments. Analysis of the global compilation data set revealed a negative relationship between concentrations of soil solution P and Km. Furthermore, Km buffered isotopically exchangeable P in soils with low concentrations of soil solution P. This finding was supported by an analysis of long-term P fertilizer field experiments, which revealed a negative relationship between Km and phosphate-buffering capacity. Our study highlights the importance of calculating Km for understanding the kinetics of P between the soil solid and solution phases where it is bioavailable. We argue that our derivation can also be used to calculate soil solution turnover of other environmentally relevant and strongly sorbing elements that can be traced with radioisotopes, such as zinc, cadmium, nickel, arsenic, and uranium.

  7. Assessment of chromium biostabilization in contaminated soils using standard leaching and sequential extraction techniques

    International Nuclear Information System (INIS)

    Papassiopi, Nymphodora; Kontoyianni, Athina; Vaxevanidou, Katerina; Xenidis, Anthimos

    2009-01-01

    The iron reducing microorganism Desulfuromonas palmitatis was evaluated as potential biostabilization agent for the remediation of chromate contaminated soils. D. palmitatis were used for the treatment of soil samples artificially contaminated with Cr(VI) at two levels, i.e. 200 and 500 mg kg -1 . The efficiency of the treatment was evaluated by applying several standard extraction techniques on the soil samples before and after treatment, such as the EN12457 standard leaching test, the US EPA 3060A alkaline digestion method and the BCR sequential extraction procedure. The water soluble chromium as evaluated with the EN leaching test, was found to decrease after the biostabilization treatment from 13 to less than 0.5 mg kg -1 and from 120 to 5.6 mg kg -1 for the soil samples contaminated with 200 and 500 mg Cr(VI) per kg soil respectively. The BCR sequential extraction scheme, although not providing accurate estimates about the initial chromium speciation in contaminated soils, proved to be a useful tool for monitoring the relative changes in element partitioning, as a consequence of the stabilization treatment. After bioreduction, the percentage of chromium retained in the two least soluble BCR fractions, i.e. the 'oxidizable' and 'residual' fractions, increased from 54 and 73% to more than 96% in both soils

  8. Remediation of cadmium-contaminated soil by extraction with para-sulphonato-thiacalix[4]arene, a novel supramolecular receptor

    International Nuclear Information System (INIS)

    Li Yushuang; Hu Xiaojun; Song Xueying; Sun Tieheng

    2012-01-01

    Batch extractions were conducted to evaluate the performance of para-sulphonato-thiacalix[4]arene (STC[4]A), a novel supramolecular receptor, for removing cadmium (Cd) from soil. The extraction mechanism was investigated by determination of the conditional stability constants (log K) of the STC[4]A-Cd complex. The influences of various variables were examined, including pH, contact time, and extractant concentration. The Cd extraction efficiency increased with increasing pH, reaching the maximum at pH 11 and then declining at higher pH values. This pH dependence was explained by the variation in the log K value of the STC[4]A-Cd complex along with pH change. When the STC[4]A dose was increased to an STC[4]A:Cd molar ratio of 2.5:1, Cd was exhaustively removed (up to 96.8%). The comparison experiment revealed that the Cd extraction performance of STC[4]A was almost equivalent to that of EDTA and significantly better than that of natural organic acids. STC[4]A extraction could efficiently prevent co-dissolution of soil minerals. - Highlights: ► First report on para-sulphonato-thiacalix[4]arene (STC[4]A) as extractant for soil washing. ► The Cd extraction performance of STC[4]A was almost equivalent to that of EDTA. ► STC[4]A extraction could efficiently avoid the dissolution of soil minerals, such as K, Ca, Mn. ► Extraction mechanism was investigated by determination of log K values of STC[4]A-Cd complex. ► A rational explanation for the pH dependence of extraction performance was given. - This is the first report on para-sulphonato-thiacalix[4]arene as an extractant for soil washing, which proved to be very efficient for Cd removal and could prevent co-dissolution of soil minerals.

  9. Recovery of environmental analytes from clays and soils by supercritical fluid extracting/gas chromatography

    International Nuclear Information System (INIS)

    Emery, A.P.; Chesler, S.N.; MacCrehan, W.A.

    1992-01-01

    This paper reports on Supercritical Fluid Extraction (SFE) which promises to provide rapid extractions of organic analytes from environmental sample types without the use of hazardous solvents. In addition, SFE protocols using commercial instrumentation can be automated lowering analysis costs. Because of these benefits, we are investigating SFE as an alternative to the solvent extraction (eg. Soxhlet and sonication) techniques required in many EPA test procedures. SFE, using non-polar carbon dioxide as well as more polar supercritical fluids, was used to determine n-alkane hydrocarbons and polynuclear aromatic hydrocarbons (PAHs) in solid samples. The extraction behavior of these analyte classes from environmentally-contaminated soil matrices and model soil and clay matrices was investigated using a SFE apparatus in which the extracted analytes were collected on a solid phase trap and then selectively eluted with a solvent. The SFE conditions for quantitative recovery of n-alkane hydrocarbons in diesel fuel from a series of clays and soils were determined using materials prepared at the 0.02% level with diesel fuel oil in order to simplify analyte collection and analysis after extraction. The effect of extraction parameters including temperature, fluid flow rate and modifier addition were investigated by monitoring the amount of diesel fuel extracted as a function of time

  10. Development of Novel Method for Rapid Extract of Radionuclides from Solution Using Polymer Ligand Film

    Science.gov (United States)

    Rim, Jung H.

    than recovery. PLFs were also tested using blind quality control samples and the activities were accurately measured. It is important to point out that PLFs were consistently susceptible to analytes penetrating and depositing below the surface. The internal radiation within the body of PLF is mostly contained and did not cause excessive self-attenuation and peak broadening in alpha spectroscopy. The analyte penetration issue was beneficial in the destructive analysis. H2DEH[MDP] PLF was tested with environmental samples to fully understand the capabilities and limitations of the PLF in relevant environments. The extraction system was very effective in extracting plutonium from environmental water collected from Mortandad Canyon at Los Alamos National Laboratory with minimal sample processing. Soil samples were tougher to process than the water samples. Analytes were first leached from the soil matrixes using nitric acid before processing with PLF. This approach had a limitation in extracting plutonium using PLF. The soil samples from Mortandad Canyon, which are about 1% iron by weight, were effectively processed with the PLF system. Even with certain limitations of the PLF extraction system, this technique was able to considerably decrease the sample analysis time. The entire environmental sample was analyzed within one to two days. The decrease in time can be attributed to the fact that PLF is replacing column chromatography and electrodeposition with a single step for preparing alpha spectrometry samples. The two-step process of column chromatography and electrodeposition takes a couple days to a week to complete depending on the sample. The decrease in time and the simplified procedure make this technique a unique solution for application to nuclear forensics and emergency response. A large number of samples can be quickly analyzed and selective samples can be further analyzed with more sensitive techniques based on the initial data. The deployment of a PLF system

  11. Atomic absorption spectrophotometric determination of microgram levels of Co, Ni, Cu, Pb, and Zn in soil and sediment extracts containing large amounts of Mn and Fe

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1973-01-01

    An atomic absorption spectrophotometric method has been developed for the determination of seven metal ions in the hydroxylamine extract of soils and sediments. Mn, Fe, and Zn are directly determined in the aqueous extract upon dilution. Co, Ni, Cu, and Pb in a separate aliquot of the extract are chelated with APDC (ammonium pyrrolidine dithiocarbamate) and extracted into MIBK (methyl isobutyl ketone) before determination. Data are presented to show the quantitative recovery of microgram levels of Co, Ni, Cu, and Pb by APDC-MIBK chelation-extraction from synthetic solutions containing as much as 2,000 ug/ml (micrograms per milliliter) Mn or 50 ug/ml Fe. Recovery of known amounts of the metal ions from sample solutions is equally satisfactory. Reproducible results are obtained by replicate analyses of two sediment samples for the seven metals.

  12. Especiação redox de cromo em solo acidentalmente contaminado com solução sulfocrômica Crhomium redox specification in soil accidentally contamined with sulphochrinuc solution

    Directory of Open Access Journals (Sweden)

    Wladiana Oliveira Matos

    2008-01-01

    Full Text Available Determination of Cr(VI and Cr(III was studied in soil samples accidentally contaminated with sulphochromic solution. Molecular absorption spectrophotometry based on the diphenylcarbazide method was used for the determination of Cr(VI after its alkaline extraction. The total chromium concentration was determined using ICP OES. The quantification of Cr(III was accomplished by subtracting the Cr(VI concentration from the total chromium concentration. Regardless of the known contamination of the soil samples by sulphochromic solution, concentrations of Cr(VI were below the detection limit. Addition and recovery experiments for Cr(VI in soil samples with and without organic matter indicated its influence on the reduction of Cr(VI to Cr(III.

  13. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection

    Science.gov (United States)

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T.; Carr, Christopher E.

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars.

  14. High-pressure extraction of polychlorinated biphenyls from soils and other fine-grained solids

    International Nuclear Information System (INIS)

    Markowz, G.

    1996-12-01

    Four doped and three really contaminated samples were subjected to high-pressure PCB (polychlorinated biphenyl) extraction in a laboratory-scale experimental plant using CO 2 (carbon dioxide) as solvent. The PCB levels (sum out of the six key substances) of the real samples were 2.6, 6.8, and 139 mg/kg. The success of the cleaning process was determined by measuring the residual PCB levels in the soil after the extraction. Parameters were varied and samples were taken selectively from various points in the bed (length 270 mm, diameter 14 mm, weighed - in soil 50-60 g) in order to gain an idea of the effects of upscaling. The following parameters were varied: extraction temperature 40-90 C; extraction pressure 200-300 bar; CO 2 flow rate 3.6-14.6 g/min; CO 2 quantity 0-328 g; degree of contamination (doped samples) 12-60 mg/kg; soil moisture 0-15%; particle size 0-2000 μm; entraining agent methanol, ethanol, acetone; proportion of entraining agent 0-7.5% by weight. Furthermore the influence of moisture at the time of doping on extraction was examined. (orig./ABI) [de

  15. Mobility of radioactive cesium in soil originated from the Fukushima Daiichi nuclear disaster. Application of extraction experiments

    International Nuclear Information System (INIS)

    Yoshikazu Kikawada; Takao Oi; Katsumi Hirose; Masaaki Hirose; Atsushi Tsukamoto; Ko Nakamachi; Teruyuki Honda; Hiroaki Takahashi

    2015-01-01

    Extraction experiments on soil radioactively contaminated by the Fukushima Daiichi Nuclear Power Plant accident were conducted by using a variety of extractants to acquire knowledge on the mobility of radioactive cesium in soil. The experimental results revealed that cesium is tightly bound with soil particles and that radioactive cesium newly deposited on soil due to the accident had apparently a higher mobility than stable cesium commonly existing in soil. The results suggested that radioactive cesium deposited on soil hardly migrates via aqueous processes, although chemical and mineralogical conditions of soil affect their mobility. (author)

  16. Tannin-Metal Interactions in Soils: An Incubation-Extraction Approach in Hill-Land Environments

    Science.gov (United States)

    Gonzalez, J. M.; Halvorson, J. J.

    2007-12-01

    Tannins, plant polyphenols known to react with proteins, metals and soil organic matter, are commonly found in the vegetation growing in Appalachian hill-lands. Establishing silvopastoral grazing systems in these environments is a means for improving productivity however the fate of tannins in soils and, in particular, the effect on solubility/mobility of metals in soils is poorly understood. Soils from forest and pasture systems were sampled from two depths, treated with tannic acid or related phenolic compounds, and analyzed for metals in solution. The amount of Mn and Ca detected in solution varied among the different phenolic treatments, highest for gallic acid, and was also influenced by depth and land use. As expected, the Ca content in solution was correlated with the electrical conductivity (EC) and the Mn content was correlated with the redox potential in solution. Interestingly, the EC was also correlated with both Mn content and redox potential. The higher Ca content found in solution may result from the low pH of the phenolic compounds. The higher Mn in solution may result from the redox reaction of Mn (IV) oxides with the phenolic compounds, producing soluble Mn2+ and quinones. These quinones are very reactive compounds that can self-polymerize and/or copolymerize with other biomolecules, such as amino-containing compounds and carbohydrates, to form humic-like substances. Successful management of silvopastures, requires an understanding of factors that affect the quality and quantity of plant secondary compounds like tannins entering soil not only to increase forage productivity but also to enhance formation/stabilization of soil organic matter to increase nutrient cycling and reduce the toxicity risk of some metals such as Mn.

  17. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China

    International Nuclear Information System (INIS)

    Li, Lianzhen; Wu, Huifeng; Gestel, Cornelis A.M. van; Peijnenburg, Willie J.G.M.; Allen, Herbert E.

    2014-01-01

    The bioavailability of Cu, Zn, Pb and Cd from field-aged orchard soils in a certified fruit plantation area of the Northeast Jiaodong Peninsula in China was assessed using bioassays with earthworms (Eisenia fetida) and chemical assays. Soil acidity increased with increasing fruit cultivation periods with a lowest pH of 4.34. Metals were enriched in topsoils after decades of horticultural cultivation, with highest concentrations of Cu (132 kg −1 ) and Zn (168 mg kg −1 ) in old apple orchards and Pb (73 mg kg −1 ) and Cd (0.57 mg kg −1 ) in vineyard soil. Earthworm tissue concentrations of Cu and Pb significantly correlated with 0.01 M CaCl 2 -extractable soil concentrations (R 2  = 0.70, p < 0.001 for Cu; R 2  = 0.58, p < 0.01 for Pb). Because of the increased bioavailability, regular monitoring of soil conditions in old orchards and vineyards is recommended, and soil metal guidelines need reevaluation to afford appropriate environmental protection under acidifying conditions. - Highlights: • Soil acidity of Chinese orchards increased with increasing fruit cultivation period. • Metal levels were enriched in topsoils after decades of horticultural cultivation. • Earthworm bioassays and chemical assays were used to assess metal bioavailability. • Earthworm Cu and Pb concentrations correlated with CaCl 2 -extractable concentrations. • Regular monitoring of soil conditions in old orchards and vineyards is recommended. - Long-term cultivation leads to increased acidification and metal accumulation in horticultural soils, with higher metal bioavailability to earthworms

  18. Evaluation of an approach for the characterization of reactive and available pools of 20 potentially toxic elements in soils: Part II – Solid-solution partition relationships and ion activity in soil solutions

    NARCIS (Netherlands)

    Rodrigues, S.M.; Henriques, B.; Ferreira da Silva, E.; Pereira, M.E.; Duarte, A.C.; Groenenberg, J.E.; Romkens, P.F.A.M.

    2010-01-01

    To assess environmental risks related to contaminants in soil it is essential to predict the available pool of inorganic contaminants at regional scales, accounting for differences between soils from variable geologic and climatic origins. An approach composed of a well-accepted soil extraction

  19. Use of aqueous and solvent extraction to assess risk and bioavailability of contaminated soil

    International Nuclear Information System (INIS)

    Bordelon, N.; Huebner, H.; Washburn, K.; Donnelly, K.C.

    1995-01-01

    Contaminated media at Superfund sites typically consist of complex mixtures of organic and inorganic chemicals. These mixtures are difficult to characterize, both analytically and toxicologically, especially the complex mixtures of polycyclic aromatic hydrocarbons. The current approach to risk assessment assumes that all contaminants in the soil are available for human exposure. EPA protocol uses solvent extraction to remove chemicals from the soil as a basis for estimating risk to the human population. However, contaminants that can be recovered with a solvent extract may not represent chemicals that are available for exposure. A system using aqueous extraction provides a more realistic picture of what chemicals are bioavailable through leaching and ingestion. A study was conducted with coal tar contaminated soil spiked with benzo(a)pyrene, and trinitrotoluene. Samples were extracted with hexane:acetone and water titrated to pH 2 and pH 7. HPLC analysis demonstrated up to 35% and 29% recovery of contaminants from aqueous extracts with an estimated cancer risk one order of magnitude less than that for solvent extracts. Analysis using the Salmonella/microsome assay showed that solvent extracts were genotoxic with metabolic activation while aqueous extracts showed no genotoxicity. These results suggest that aqueous extraction may be useful in determining what contaminants are available for human exposure, as well as what compounds may pose a risk to human health

  20. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants

    International Nuclear Information System (INIS)

    Muhammad, Iqbal; Puschenreiter, Markus; Wenzel, Walter W.

    2012-01-01

    Manipulation of soil pH by soil additives and / or rhizosphere processes may enhance the efficiency of metal phytoextraction. Here we report on the effect of nitric acid additions to four polluted soils on Cd and Zn concentrations in soil solution (C soln ) and 0.005 M Ca(NO 3 ) 2 extracts, and related changes in the diffusive fluxes and resupply of the metals as assessed by diffusive gradients in thin films (DGT). The responses of these chemical indicators of bioavailability were compared to metal uptake in two indicator plant species, common dandelion (Taraxacum officinale F.H. Wigg) and narrow leaf plantain (Plantago lanceolata L.) grown for 75 days in a pot experiment. Lowering soil pH increased C soln , the 0.005 M Ca(NO 3 ) 2 -soluble fractions and the DGT-measured Cd and Zn concentrations (C DGT ) in the experimental soils. This was associated with enhanced uptake of Cd and Zn on soils acidified to pH 4.5 whereas plants did not survive at pH 3.5. Toxicity along with decreased kinetics of metal resupply (calculated by the 2D DIFS model) in the strong acidification treatment suggests that moderate acidification is more appropriate to enhance the phytoextraction process. Each of the chemical indicators of bioavailability predicted well (R 2 > 0.70) the Cd and Zn concentrations in plantain shoots but due to metal toxicity not for dandelion. Concentration factors, i.e. the ratio between metal concentrations in shoots and in soil solution (CF) indicate that Cd and Zn uptake in plantain was not limited by diffusion which may explain that DGT did not perform better than C soln . However, DGT is expected to predict plant uptake better in diffusion-limited conditions such as in the rhizosphere of metal-accumulating phytoextraction crops. - Highlights: ► The effect of soil acidification was assessed for four Zn and Cd polluted soils. ► For some soils moderate acidification could enhance the metal uptake efficiency. ► Chemical assessment of bioavailability using

  1. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Iqbal; Puschenreiter, Markus, E-mail: markus.puschenreiter@boku.ac.at; Wenzel, Walter W.

    2012-02-01

    Manipulation of soil pH by soil additives and / or rhizosphere processes may enhance the efficiency of metal phytoextraction. Here we report on the effect of nitric acid additions to four polluted soils on Cd and Zn concentrations in soil solution (C{sub soln}) and 0.005 M Ca(NO{sub 3}){sub 2} extracts, and related changes in the diffusive fluxes and resupply of the metals as assessed by diffusive gradients in thin films (DGT). The responses of these chemical indicators of bioavailability were compared to metal uptake in two indicator plant species, common dandelion (Taraxacum officinale F.H. Wigg) and narrow leaf plantain (Plantago lanceolata L.) grown for 75 days in a pot experiment. Lowering soil pH increased C{sub soln}, the 0.005 M Ca(NO{sub 3}){sub 2}-soluble fractions and the DGT-measured Cd and Zn concentrations (C{sub DGT}) in the experimental soils. This was associated with enhanced uptake of Cd and Zn on soils acidified to pH 4.5 whereas plants did not survive at pH 3.5. Toxicity along with decreased kinetics of metal resupply (calculated by the 2D DIFS model) in the strong acidification treatment suggests that moderate acidification is more appropriate to enhance the phytoextraction process. Each of the chemical indicators of bioavailability predicted well (R{sup 2} > 0.70) the Cd and Zn concentrations in plantain shoots but due to metal toxicity not for dandelion. Concentration factors, i.e. the ratio between metal concentrations in shoots and in soil solution (CF) indicate that Cd and Zn uptake in plantain was not limited by diffusion which may explain that DGT did not perform better than C{sub soln}. However, DGT is expected to predict plant uptake better in diffusion-limited conditions such as in the rhizosphere of metal-accumulating phytoextraction crops. - Highlights: Black-Right-Pointing-Pointer The effect of soil acidification was assessed for four Zn and Cd polluted soils. Black-Right-Pointing-Pointer For some soils moderate acidification could

  2. The role of pore soil solutions in redistribution of 137Cs, 90Sr, 239,240Pu and 241Am within soil-vegetative cover

    International Nuclear Information System (INIS)

    Ovsiannikova, S.V.; Sokolik, G.A.; Kilchitskaya, S.L.; Eismont, E.A.; Zhukovich, N.V.; Kimlenko, I.M.

    1998-01-01

    The role of pore soil solutions in the migration of 137 Cs, 90 Sr, 239,240 Pu and 241 Am within soil-vegetative cover of natural ecosystems was examined. The soil solutions were found to play an important role in the redistribution of 137 Cs, 90 Sr, 239,240 Pu and 241 Am in the soil-plant systems. Obvious relationships between the distribution coefficients of radionuclides between solid and liquid phases (K d ) and the intensity of vertical migration of 137 Cs, 90 Sr, 239,240 Pu and 241 Am along the soil profiles and with intensity of their accumulation by grass vegetation of natural meadows have been obtained. It means that the distribution coefficient may be used as a criterion of the radionuclide mobility in the soil-plant system whatever its level of radioactive contamination is. The influence of the degree of soil moistening, the content of mobile radionuclide forms in the soils and some characteristics of pore soil solutions (pH, content of K + , Ca 2+ , NH 4 + , water soluble organic substances) on the concentration of radionuclide in the soil solutions and on the value of radionuclide distribution coefficient have been analysed. The results of investigation are of great importance in the evaluation of radioecological situation and in solution of problems of radioecological rehabilitation of the contaminated territories. The received data constitute a part of scientific basis for the development of a system of countermeasures to decrease the mobility and biological availability of radionuclides of high and very high radiotoxicity

  3. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE

  4. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    This report describes the formulation, numerical development, and use of a multiphase, multicomponent, biodegradation model designed to simulate physical, chemical, and biological interactions occurring primarily in field scale soil vapor extraction (SVE) and bioventing (B...

  5. Root water extraction and limiting soil hydraulic conditions estimated by numerical simulation

    NARCIS (Netherlands)

    Jong van Lier, de Q.; Metselaar, K.; Dam, van J.C.

    2006-01-01

    Root density, soil hydraulic functions, and hydraulic head gradients play an important role in the determination of transpiration-rate-limiting soil water contents. We developed an implicit numerical root water extraction model to solve the Richards equation for the modeling of radial root water

  6. Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment.

    Science.gov (United States)

    Beiyuan, Jingzi; Tsang, Daniel C W; Valix, Marjorie; Zhang, Weihua; Yang, Xin; Ok, Yong Sik; Li, Xiang-Dong

    2017-01-01

    To enhance extraction of strongly bound metals from oxide minerals and organic matter, this study examined the sequential use of reductants, oxidants, alkaline solvents and organic acids followed by a biodegradable chelating agent (EDDS, [S,S]-ethylene-diamine-disuccinic-acid) in a two-stage soil washing. The soil was contaminated by Cu, Zn, and Pb at an e-waste recycling site in Qingyuan city, China. In addition to extraction efficiency, this study also examined the fate of residual metals (e.g., leachability, bioaccessibility, and distribution) and the soil quality parameters (i.e., cytotoxicity, enzyme activities, and available nutrients). The reductants (dithionite-citrate-bicarbonate and hydroxylamine hydrochloride) effectively extracted metals by mineral dissolution, but elevated the leachability and bioaccessibility of metals due to the transformation from Fe/Mn oxides to labile fractions. Subsequent EDDS washing was found necessary to mitigate the residual risks. In comparison, prior washing by oxidants (persulphate, hypochlorite, and hydrogen peroxide) was marginally useful because of limited amount of soil organic matter. Prior washing by alkaline solvents (sodium hydroxide and sodium bicarbonate) was also ineffective due to metal precipitation. In contrast, prior washing by low-molecular-weight organic acids (citrate and oxalate) improved the extraction efficiency. Compared to hydroxylamine hydrochloride, citrate and oxalate induced lower cytotoxicity (Microtox) and allowed higher enzyme activities (dehydrogenase, acid phosphatase, and urease) and soil nutrients (available nitrogen and phosphorus), which would facilitate reuse of the treated soil. Therefore, while sequential washing proved to enhance extraction efficacy, the selection of chemical agents besides EDDS should also include the consideration of effects on metal leachability/bioaccessibility and soil quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. How to Perform Precise Soil and Sediment Sampling? One solution: The Fine Increment Soil Collector (FISC)

    Energy Technology Data Exchange (ETDEWEB)

    Mabit, L.; Toloza, A. [Soil and Water Management and Crop Nutrition Laboratory, IAEA, Seibersdorf (Austria); Meusburger, K.; Alewell, C. [Environmental Geosciences, Department of Environmental Sciences, University of Basel, Basel (Switzerland); Iurian, A-R. [Babes-Bolyai University, Faculty of Environmental Science and Engineering, Cluj-Napoca (Romania); Owens, P. N. [Environmental Science Program and Quesnel River Research Centre, University of Northern British Columbia, Prince George, British Columbia (Canada)

    2014-07-15

    Soil and sediment related research for terrestrial agrienvironmental assessments requires accurate depth incremental sampling to perform detailed analysis of physical, geochemical and biological properties of soil and exposed sediment profiles. Existing equipment does not allow collecting soil/sediment increments at millimetre resolution. The Fine Increment Soil Collector (FISC), developed by the SWMCN Laboratory, allows much greater precision in incremental soil/sediment sampling. It facilitates the easy recovery of collected material by using a simple screw-thread extraction system (see Figure 1). The FISC has been designed specifically to enable standardized scientific investigation of shallow soil/sediment samples. In particular, applications have been developed in two IAEA Coordinated Research Projects (CRPs): CRP D1.20.11 on “Integrated Isotopic Approaches for an Area-wide Precision Conservation to Control the Impacts of Agricultural Practices on Land Degradation and Soil Erosion” and CRP D1.50.15 on “Response to Nuclear Emergencies Affecting Food and Agriculture.”.

  8. How to Perform Precise Soil and Sediment Sampling? One solution: The Fine Increment Soil Collector (FISC)

    International Nuclear Information System (INIS)

    Mabit, L.; Toloza, A.; Meusburger, K.; Alewell, C.; Iurian, A-R.; Owens, P.N.

    2014-01-01

    Soil and sediment related research for terrestrial agrienvironmental assessments requires accurate depth incremental sampling to perform detailed analysis of physical, geochemical and biological properties of soil and exposed sediment profiles. Existing equipment does not allow collecting soil/sediment increments at millimetre resolution. The Fine Increment Soil Collector (FISC), developed by the SWMCN Laboratory, allows much greater precision in incremental soil/sediment sampling. It facilitates the easy recovery of collected material by using a simple screw-thread extraction system (see Figure 1). The FISC has been designed specifically to enable standardized scientific investigation of shallow soil/sediment samples. In particular, applications have been developed in two IAEA Coordinated Research Projects (CRPs): CRP D1.20.11 on “Integrated Isotopic Approaches for an Area-wide Precision Conservation to Control the Impacts of Agricultural Practices on Land Degradation and Soil Erosion” and CRP D1.50.15 on “Response to Nuclear Emergencies Affecting Food and Agriculture.”

  9. Evaluating the efficacy of a centrifugation-flotation method for extracting Ascaris ova from soil

    DEFF Research Database (Denmark)

    Cranston, Imogen; Teoh, Penelope J.; baker, Sarah M.

    2016-01-01

    method to extract STH ova from soil makes it challenging to examine whether the use of latrines may or may not have an effect on environmental contamination with ova. The present study evaluated the recovery rate of a method developed to extract STH ova from soil. Methods: The adapted centrifugation...... with increasing soil moisture content, particle size and organic matter content. The association between recovery rate and organic matter content was statistically significant. Conclusions: The present study identified a low recovery rate for an adapted centrifugation-flotation method, although this was similar...

  10. The dynamics of radionuclide behaviour in soil solution with special reference to the application of countermeasures

    International Nuclear Information System (INIS)

    Nisbet, A.F.; Lembrechts, J.F.

    1990-01-01

    Any investigations into the effect of countermeasures on radionuclide transfer to plants should include a comprehensive chemical analysis of soil solution. This is because of the disturbances that soil-based countermeasures cause on soil:solution equilibria and radionuclide distribution between solid and liquid phases. As it is difficult to determine directly the effects of countermeasures under field conditions, it is recommended that laboratory-based studies be done first. These should include batch equilibrium experiments for soil:solution interactions, and hydroponic studies for solution:plant relationships. Speciation of radionuclides should form a fundamental part of both studies. (author)

  11. Extractability of 137Cs in Response to its Input Forms into Fukushima Forest Soils.

    Science.gov (United States)

    Mengistu, T. T.; Carasco, L.; Orjollet, D.; Coppin, F.

    2017-12-01

    In case of nuclear accidents like Fukushima disaster, the influence of 137Cs depositional forms (soluble and/or solid forms) on mineral soil of forest environment on its availability have not reported yet. Soluble (137Cs tagged ultra-pure water) and solid (137Cs contaminated litter-OL and fragmented litter-OF) input forms were mixed with the mineral soils collected under Fukushima coniferous and broadleaf forests. The mixtures then incubated under controlled laboratory condition to evaluate the extractability of 137Cs in soil over time in the presence of decomposition process through two extracting reagents- water and ammonium acetate. Results show that extracted 137Cs fraction with water was less than 1% for soluble input form and below detection limit for solid input form. On the same way with acetate reagent, the extracted 137Cs fraction ranged from 46 to 56% for soluble input and 2 to 15% for solid input, implying the nature of 137Cs contamination strongly influences the extractability and hence the mobility of 137Cs in soil. Although the degradation rate of the organic materials has been calculated in the range of 0.18 ± 0.1 to 0.24 ± 0.1 y-1, its impact on 137Cs extractability appeared very weak at least within the observation period, probably due to shorter time scale. Concerning the treatments of solid 137Cs input forms through acetate extraction, relatively more 137Cs has been extracted from broadleaf organic materials mixes (BL-OL & BL-OF) than the coniferous counterparts. This probably is due to the fact that the lignified coniferous organic materials (CED-OL & CED-OF) components tend to retain more 137Cs than that of the broadleaf. Generally, by extrapolating these observations in to a field context, one can expect more available 137Cs fraction in forest soil from wet depositional pathways such as throughfall and stemflow than those attached with organic materials like litter (OL) and its eco-processed forms (OF).

  12. Antifungal activity of root, bark, leaf and soil extracts of Androstachys ...

    African Journals Online (AJOL)

    Extracts of leaf, root, soil and bark of Androstachys johnsonii Prain (commonly called Lembobo ironwood) screened for antifungal activity had a significant inhibitory effect on the most of fungi tested in this investigation. Of the four fungi tested in the present study Fusarium solani was significantly inhibited by all extracts (that ...

  13. Influence of the extracted solute on the aggregation of malonamide extractant in organic phases: Consequences for phase stability

    International Nuclear Information System (INIS)

    Berthon, L.; Martinet, L.; Testard, F.; Madic, Ch.; Zem, Th.

    2010-01-01

    Due to their amphiphilic properties, malonamide molecules in alkane are organized in reverse micelle type aggregates, composed of a polar core formed by the malonamide polar heads and the extracted solutes, and surrounded by a hydrophobic shell made up of the extractant alkyl chains. The aggregates interact with one another through an attractive potential, leading to the formation of a third phase. This occurs with the splitting of the organic phase into a light phase composed mostly of diluent, and a heavy third phase containing highly concentrated extractant and solutes. In this article, we show that the aggregation (monomer concentration, domain of stability, and attractive potential between micelles) greatly depends on the nature of the extracted solute, whereas the size of aggregate (aggregation number) is only slightly influenced by this. We describe the extraction of water, nitric acid, neodymium nitrate and uranyl nitrate. Strongly polarizable species induce consistently large attraction potentials and a small stability domain for the dispersion of nano-droplets in the solvent. Highly polarizable ions such as lanthanides or uranyl induce more long-range attractive interactions than do protons. (authors)

  14. Effects of lead mineralogy on soil washing enhanced by ferric salts as extracting and oxidizing agents.

    Science.gov (United States)

    Yoo, Jong-Chan; Park, Sang-Min; Yoon, Geun-Seok; Tsang, Daniel C W; Baek, Kitae

    2017-10-01

    In this study, we evaluated the feasibility of using ferric salts including FeCl 3 and Fe(NO 3 ) 3 as extracting and oxidizing agents for a soil washing process to remediate Pb-contaminated soils. We treated various Pb minerals including PbO, PbCO 3 , Pb 3 (CO 3 ) 2 (OH) 2 , PbSO 4 , PbS, and Pb 5 (PO 4 ) 3 (OH) using ferric salts, and compared our results with those obtained using common washing agents of HCl, HNO 3 , disodium-ethylenediaminetetra-acetic acid (Na 2 -EDTA), and citric acid. The use of 50 mM Fe(NO 3 ) 3 extracted significantly more Pb (above 96% extraction) from Pb minerals except PbSO 4 (below 55% extraction) compared to the other washing agents. In contrast, washing processes using FeCl 3 and HCl were not effective for extraction from Pb minerals because of PbCl 2 precipitation. Yet, the newly formed PbCl 2 could be dissolved by subsequent wash with distilled water under acidic conditions. When applying our washing method to remediate field-contaminated soil from a shooting range that had high concentrations of Pb 3 (CO 3 ) 2 (OH) 2 and PbCO 3 , we extracted more Pb (approximately 99% extraction) from the soil using 100 mM Fe(NO 3 ) 3 than other washing agents at the same process conditions. Our results show that ferric salts can be alternative washing agents for Pb-contaminated soils in view of their extracting and oxidizing abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Metrological assessment of TDR performance for measurement of potassium concentration in soil solution

    Directory of Open Access Journals (Sweden)

    Isaac de M. Ponciano

    2016-04-01

    Full Text Available ABSTRACT Despite the growing use of the time domain reflectometry (TDR technique to monitoring ions in the soil solution, there are few studies that provide insight into measurement error. To overcome this lack of information, a methodology, based on the central limit theorem error, was used to quantify the uncertainty associated with using the technique to estimate potassium ion concentration in two soil types. Mathematical models based on electrical conductivity and soil moisture derived from TDR readings were used to estimate potassium concentration, and the results were compared to potassium concentration determined by flame spectrophotometry. It was possible to correct for random and systematic errors associated with TDR readings, significantly increasing the accuracy of the potassium estimation methodology. However, a single TDR reading can lead to an error of up to ± 18.84 mg L-1 K+ in soil solution (0 to 3 dS m-1, with a 95.42% degree of confidence, for a loamy sand soil; and an error of up to ± 12.50 mg L-1 of K+ (0 to 2.5 dS m-1 in soil solution, with a 95.06% degree of confidence, for a sandy clay soil.

  16. Influence of soil water repellency on runoff and solute loss from New Zealand pasture

    Science.gov (United States)

    Jeyakumar, P.; Müller, K.; Deurer, M.; van den Dijssel, C.; Mason, K.; Green, S.; Clothier, B. E.

    2012-04-01

    Soil water repellency (SWR) has been reported in New Zealand, but knowledge on its importance for the country's economy and environment is limited. Our recent survey on the occurrence of SWR under pasture across the North Island of New Zealand showed that most soils exhibited SWR when dry independent of climate but influenced by the soil order. SWR is discussed as an important soil surface condition enhancing run-off and the transfer of fertilizers and pesticides from agricultural land into waterways. So far, the impact of SWR on run-off has rarely been measured. We developed a laboratory-scale run-off measurement apparatus (ROMA) to quantify directly the impact of SWR on run-off from undisturbed soil slabs. We compared the run-off resulting from the run-on of water with that resulting from an ethanol (30% v/v) solution, which is a fully-wetting liquid even in severely hydrophobic soils. Thus, the experiments with the ethanol solution can be understood as a proxy measure of the wetting-up behaviour of hydrophilic soils. We conducted ROMA run-off experiments with air-dried soil slabs (460 mm long x 190 mm wide x 50 mm deep) collected from pastoral sites, representing three major soil orders in the North Island: Recent Soil (Fluvisol), Gley Soil (Gleysol), and Organic Soil (Histosol), with water followed by the ethanol solution at a run-on rate of 60 mm/h. Bromide was applied at 80 kg KBr/ha prior to the water experiments to assess potential solute losses via run-off. The air-dried soils had a high degree and persistence of SWR (contact angles, 97, 98 and 104° , and potential water drop penetration times, 42, 54 and 231 min for the Fluvisol, Gleysol and Histosol, respectively). Under identical soil and experimental conditions, water generated run-off from all soils, but in the experiments with the ethanol solution, the entire ethanol solution infiltrated into the soils. The ranking of the run-off coefficients of the soils directly reflected their ranking in

  17. Contribution of microorganisms to non-extractable residue formation during biodegradation of ibuprofen in soil

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Karolina M., E-mail: karolina.nowak@ufz.de [UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig (Germany); Department of Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Girardi, Cristobal; Miltner, Anja [UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig (Germany); Gehre, Matthias [UFZ, Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstraße 15, 04318 Leipzig (Germany); Schäffer, Andreas [Department of Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Kästner, Matthias [UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig (Germany)

    2013-02-15

    Non-extractable residues (NER) formed during biodegradation of organic contaminants in soil are considered to be mainly composed of parent compounds or their primary metabolites with hazardous potential. However, in the case of biodegradable organic compounds, the soil NER may also contain microbial biomass components, for example fatty acids (FA) and amino acids (AA). After cell death, these biomolecules are subsequently incorporated into non-living soil organic matter (SOM) and are stabilised ultimately forming hardly extractable residues of biogenic origin. We investigated biodegradation of {sup 13}C{sub 6}-ibuprofen, in particular the metabolic incorporation of the {sup 13}C-label into FA and AA and their fate in soil over 90 days. {sup 13}C-FA and {sup 13}C-AA amounts in the living microbial biomass fraction initially increased, then decreased over time and were continuously incorporated into the non-living SOM pool. The {sup 13}C-FA in the non-living SOM remained stable from day 59 whereas the contents of {sup 13}C-AA slightly increased until the end. After 90 days, nearly all NER were biogenic as they were made up almost completely by natural biomass compounds. The presented data demonstrated that the potential environmental risks related to the ibuprofen-derived NER are overestimated. - Highlights: ► Biogenic residue formation during microbial degradation of ibuprofen was studied. ► Nearly all non-extractable residues derived from ibuprofen were biogenic. ► Fatty acids and amino acids formed biogenic non-extractable residues and were stabilised in soil. ► Environmental risks of ibuprofen-derived non-extractable residues are overestimated.

  18. Contribution of microorganisms to non-extractable residue formation during biodegradation of ibuprofen in soil

    International Nuclear Information System (INIS)

    Nowak, Karolina M.; Girardi, Cristobal; Miltner, Anja; Gehre, Matthias; Schäffer, Andreas; Kästner, Matthias

    2013-01-01

    Non-extractable residues (NER) formed during biodegradation of organic contaminants in soil are considered to be mainly composed of parent compounds or their primary metabolites with hazardous potential. However, in the case of biodegradable organic compounds, the soil NER may also contain microbial biomass components, for example fatty acids (FA) and amino acids (AA). After cell death, these biomolecules are subsequently incorporated into non-living soil organic matter (SOM) and are stabilised ultimately forming hardly extractable residues of biogenic origin. We investigated biodegradation of 13 C 6 -ibuprofen, in particular the metabolic incorporation of the 13 C-label into FA and AA and their fate in soil over 90 days. 13 C-FA and 13 C-AA amounts in the living microbial biomass fraction initially increased, then decreased over time and were continuously incorporated into the non-living SOM pool. The 13 C-FA in the non-living SOM remained stable from day 59 whereas the contents of 13 C-AA slightly increased until the end. After 90 days, nearly all NER were biogenic as they were made up almost completely by natural biomass compounds. The presented data demonstrated that the potential environmental risks related to the ibuprofen-derived NER are overestimated. - Highlights: ► Biogenic residue formation during microbial degradation of ibuprofen was studied. ► Nearly all non-extractable residues derived from ibuprofen were biogenic. ► Fatty acids and amino acids formed biogenic non-extractable residues and were stabilised in soil. ► Environmental risks of ibuprofen-derived non-extractable residues are overestimated

  19. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: Experimental study

    International Nuclear Information System (INIS)

    Viglianti, Christophe; Hanna, Khalil; Brauer, Christine de; Germain, Patrick

    2006-01-01

    The removal of polycyclic aromatic hydrocarbons (PAHs) from soil using water as flushing agent is relatively ineffective due to their low aqueous solubility. However, addition of cyclodextrin (CD) in washing solutions has been shown to increase the removal efficiency several times. Herein are investigated the effectiveness of cyclodextrin to remove PAH occurring in industrially aged-contaminated soil. β-Cyclodextrin (BCD), hydroxypropyl-β-cyclodextrin (HPCD) and methyl-β-cyclodextrin (MCD) solutions were used for soil flushing in column test to evaluate some influent parameters that can significantly increase the removal efficiency. The process parameters chosen were CD concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant and almost linear effect on PAH removal from the contaminated soil, except the temperature where no significant enhancement in PAH extraction was observed for temperature range from 5 to 35 o C. The PAHs extraction enhancement factor compared to water was about 200. - An innovative method using a biodegradable and non-toxic flushing agent for the depollution of industrially aged-contaminated soil

  20. Study of solution speciation, soil retention and soil-plant transfer of zirconium

    International Nuclear Information System (INIS)

    Ferrand, E.

    2005-12-01

    Within the framework of the risks prevention policy of Andra, the radioactive zirconium introduction ( 93 Zr and 95 Zr) into the environment could be carried out starting from the nuclear waste whose storage is envisaged in deep geological layers. Thus, the goal of this study was to evaluate the parameters and phenomena influencing speciation (various chemical forms) and the soil-plant transfer of zirconium. Experiments of adsorption/desorption of zirconium with different ligands likely to be present in soils (goethite and humic acid) and with two soils, with contrasted characteristics, close to the underground research laboratory of Andra (Meuse) were carried out. These results of adsorption were then confronted with those obtained by the MUSIC and NICA-DONNAN models carried out using the computer code ECOSAT. Zr presents a strong affinity for the two types of soils and the soils constituents. Specific interactions of internal sphere type with the goethite were highlighted using the model. Soil-solution partition coefficients, or K d , values increase with pH and contact time. Various types of edible plants, pea (Pisum sativum L.) and tomato (Lycopersicon esculentum L cv. St Pierre) were cultivated in hydroponic conditions and in soils spiked with various sources of Zirconium. The maximum zirconium contents are mainly measured in the roots of the plants. The soil-plant transfer factors measured during these experiments show a weak bioavailability of zirconium. An influence of speciation on Zr bioavailability is however highlighted. Some chemical forms, such as oxychloride or acetate, are more easily mobilized than others by the plant. (author)

  1. Validation of Transfer Functions Predicting Cd and Pb Free Metal Ion Activity in Soil Solution as a Function of Soil Characteristics and Reactive Metal Content

    NARCIS (Netherlands)

    Pampura, T.; Groenenberg, J.E.; Lofts, S.; Priputina, I.

    2007-01-01

    According to recent insight, the toxicity of metals in soils is better related to the free metal ion (FMI) activity in the soil solution than to the total metal concentration in soil. However, the determination of FMI activities in soil solution is a difficult and time-consuming task. An alternative

  2. Desorption of organophosphorous pesticides from soil with wastewater and surfactant solutions

    International Nuclear Information System (INIS)

    Hernandez-Soriano, M. C.; Mingorance, M. D.; Pena, A.

    2009-01-01

    Surfactants can be introduced in the environment by wastewater discharge, point-charge pollution or deliberate action, e. g. to remediate contaminated soil or groundwater. The irrigation of soil with wastewater containing surfactants may modify pesticide desorption from soil, thus affecting their affecting their environmental fate. Desorption from soil of the plain of Granada (South-eastern Spain) of two organophosphorous pesticides, diazinon and dimethoate, differing in solubility and hydrophobicity, has been evaluated in the presence of different surfactant aqueous solutions and municipal wastewater. (Author)

  3. Remediation of lead-contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.; Shem, L.

    1992-01-01

    Excavation and transport of soil contaminated with heavy metals has generally been the standard remediation technique for treatment of heavy-metal-contaminated soils. This approach is not a permanent solution; moreover, off-site shipment and disposal of contaminated soil involves high expense, liability, and appropriate regulatory approval. Recently, a number of other techniques have been investigated for treating such contaminated sites, including flotation, solidification/stabilization, vitrification, and chemical extraction. This paper reports the results of a laboratory investigation determining the efficiency of using chelating agents to extract lead from contaminated soils. Lead concentrations in the soils ranged from 500 to 10,000 mg/kg. Ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) were examined for their potential extractive capabilities. Concentrations of the chelating agents ranged from 0.01 to 0.10 M. The pH of the suspensions in which the extractions were performed ranged from 4 to 12. Results showed that the removal of lead using NTA and water was ph-dependent, whereas the removal of lead using EDTA was ph-insensitive. Maximum removals of lead were 68.7%,19.1%, and 7.3% using EDTA, NTA, and water, respectively (as compared with initial lead concentrations)

  4. Solute movement observation in the field soils by means of radioactive tracers

    International Nuclear Information System (INIS)

    Lichner, L.

    1986-01-01

    The radioactive tracer method is discussed as applied to transfer velocity measurements of solutions in unsaturated soils, its applicability and the criteria for the choice of the tracer. The method is based on measurement of the radioactive tracer velocity in the field and on laboratory determination of the equilibrium distribution coefficients of the tracer and the solute in the same field soil. From these results and from the soil characteristics (porosity, bulk density) the solute transfer velocity in the field soil can be calculated. The results are presented of 131 I - velocity measurements in the loamy soil in the region of water source Cunovo near Bratislava, which equals 9.29x10 -9 m/s, and in the downstream slope of the earth dam Rozgrund near Banska Stiavnica where the velocity of 131 I - near the dam foot was found to be 2.03 - 2.86 times greater than near the top. Results are also presented of 131 I - , [ 60 Co-EDTA] - and 60 Co 2+ velocity measurements in clay-loam soil at the experimental field of the Research Institute of Irrigation in Most near Bratislava. The results are applicable to evaluation of surface damage to embankments and earth dams, to determination of the conservation zone around water sources, and the establishment of the level of ground water pollution from different sources (waste disposal, agriculture, etc.)

  5. Effects of some organic materials on bicarbonate extractable phosphate content of soils having different pH

    Directory of Open Access Journals (Sweden)

    Nutullah Özdemir

    2016-10-01

    Full Text Available This study was carried out to determine the effects of rice husk compost (RC, town waste compost (TW and tobacco waste (TB on bicarbonate extractable phosphate content (P in soils having different pH levels under greenhouse conditions. Soil samples used in this study were taken from surfaces (0-20 cm of agricultural fields around Samsun, Northern Anatolia. The experiment was conducted according to split plot design with four doses of organic matterials (0, 2.5, 5.0 and 7.5, %. After a month of mixing organic matterials into soils, lettuce were grown in the medias. According to the results, RC, TW and TB applications into acidic (Tepecik, neutral (Kampüs and alkaline (Çetinkaya soils increased extractable P content. It was observed that effectiveness of organic matterials changed depend on soil reaction, type and dose of organic matterials. All organic wastes were more effective on increment of bicarbonate extractable phosphate content in neutral soil pH when compared the other soil pH levels.

  6. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection.

    Science.gov (United States)

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T; Carr, Christopher E

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars. Key Words: Life-detection instruments-Nucleic acids-Mars-Panspermia. Astrobiology 17, 747-760.

  7. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing.

    Science.gov (United States)

    Tandy, Susan; Ammann, Adrian; Schulin, Rainer; Nowack, Bernd

    2006-07-01

    This paper aims to investigate the degradation and speciation of EDDS-complexes (SS-ethylenediaminedisuccinic acid) in soil following soil washing. The changes in soil solution metal and EDDS concentrations were investigated for three polluted soils. EDDS was degraded after a lag phase of 7-11 days with a half-life of 4.18-5.60 days. No influence of EDDS-speciation on the reaction was observed. The decrease in EDDS resulted in a corresponding decrease in solubilized metals. Changes in EDDS speciation can be related to (1) initial composition of the soil, (2) temporarily anoxic conditions in the soil slurry after soil washing, (3) exchange of EDDS complexes with Cu even in soils without elevated Cu and (4) formation of NiEDDS. Dissolved organic matter is important for metal speciation at low EDDS concentrations. Our results show that even in polluted soils EDDS is degraded from a level of several hundred micromoles to below 1 microM within 50 days.

  8. An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media

    DEFF Research Database (Denmark)

    Aagot, N.; Nybroe, O.; Nielsen, P.

    2001-01-01

    We designed five Pseudomonas-selective soil extract NAA media containing the selective properties of trimethoprim and sodium lauroyl sarcosine and 0 to 100% of the amount of Casamino Acids used in the classical Pseudomonas-selective Gould's S1 medium. All of the isolates were confirmed to be Pseu......We designed five Pseudomonas-selective soil extract NAA media containing the selective properties of trimethoprim and sodium lauroyl sarcosine and 0 to 100% of the amount of Casamino Acids used in the classical Pseudomonas-selective Gould's S1 medium. All of the isolates were confirmed....... Several of these analyses showed that the amount of Casamino Acids significantly influenced the diversity of the recovered Pseudomonas isolates. Furthermore, the data suggested that specific Pseudomonas subpopulations were represented on the nutrient-poor media. The NAA 1:100 medium, containing ca. 15 mg...... of organic carbon per liter, consistently gave significantly higher Pseudomonas CFU counts than Gould's S1 when tested on four Danish soils. NAA 1:100 may, therefore, be a better medium than Gould's S1 for enumeration and isolation of Pseudomonas from the low-nutrient soil environment....

  9. Occurrence of non extractable pesticide residues in physical and chemical fractions of two soils

    Science.gov (United States)

    Andreou, Kostas; Semple, Kirk; Jones, Kevin

    2010-05-01

    Soils are considered to be a significant sink for organic contaminants, including pesticides, in the environment. Understanding the distribution and localisation of aged pesticide residues in soil is of great importance for assessing the mobility and availability of these chemicals in the environment. This study aimed to characterise the distribution of radiolabeled herbicide isoproturon and the radiolabeled insecticides diazinon and cypermethrin in two organically managed soils. The soils were spiked and aged under laboratory conditions for 17 months. The labile fraction of the pesticides residues was recovered in CaCl2 (0.01M) and then subjected to physical size fractionation using sedimentation and centrifugation steps, with >20μm, 20-2μm and 2-0.1μm soil factions collected. Further, the distribution of the pesticide residues in the organic matter of the fractionated soil was investigated using a sequential alkaline extraction (0.1N NaOH) into humic and fulvic acid and humin. Soil fractions of 20-2μm and 2-0.1μm had the largest burden of the 14C-residues. Different soil constituents have different capacities to form non-extractable residues. Soil solid fractions of 20-2 µm and 20 µm). Fulvic acid showed to play a vital role in the formation and stabilisation of non-extractable 14C-pesticide residues in most cases.Assessment of the likelihood of the pesticide residues to become available to soil biota requires an understanding of the structure of the SOM matrix and the definition of the kinetics of the pesticide residues in different SOM pools as a function of the time.

  10. Radiocaesium forms in soil - problems of experimental determination

    International Nuclear Information System (INIS)

    Davydov, D.; Davydov, Yu.; Voronik, N.; Titov, A.; Toropova, N.

    2006-01-01

    A method for determining Cs form in soil is proposed based on the comparison of the experimental data on desorption of Cs radionuclide from the soil contaminated as a result of the Chernobyl accident and from the soil samples on which Cs was absorbed in laboratory (Cs was introduced in ionic form in solution). The data obtained on desorption of Cs from different soils show that Cs radionuclide is present in the soil contaminated as a result of the Chernobyl accident predominantly in an ionic form (sorbed on the different soil fractions). It has also been found that the ratio of 144 Ce/ 137 Cs radionuclides is much higher in solution than in the soil. At the same time the data on sorption of Cs and Ce radionuclides on different soils from solution 0.1M HCI + 0.1M KCI + 0.1M FeCI 3 show that the sorption ability of Cs is higher than the sorption ability of Ce for all the soil types investigated. Hence, it can be assumed that the mechanism of the radionuclides extraction is desorption rather than dissolution of the matrix particles, since in the letter case extraction value of the radionuclides would not be different. The fact that the ratio of 144 Ce/ 137 Cs radionuclides in solution remains higher than in soil independent on the distance from the Chernobyl NPP indicates that the form of the radionuclides does not change with the distance from the reactor. In order to determine what type of molecules Cs radionuclide can be bound to in soil the experiments on sorption of Cs on sandy soil in the presence of humic acid in solution has been carried out. The data obtained show that the presence of humic acids has none or little effect on the sorption of Cs. This indicates that interaction of Cs radionuclides with humic acid is week and these molecules can not be responsible for binding Cs in soil. (author)

  11. Influences of observation method, season, soil depth, land use and management practice on soil dissolvable organic carbon concentrations: A meta-analysis.

    Science.gov (United States)

    Li, Siqi; Zheng, Xunhua; Liu, Chunyan; Yao, Zhisheng; Zhang, Wei; Han, Shenghui

    2018-08-01

    Quantifications of soil dissolvable organic carbon concentrations, together with other relevant variables, are needed to understand the carbon biogeochemistry of terrestrial ecosystems. Soil dissolvable organic carbon can generally be grouped into two incomparable categories. One is soil extractable organic carbon (EOC), which is measured by extracting with an aqueous extractant (distilled water or a salt solution). The other is soil dissolved organic carbon (DOC), which is measured by sampling soil water using tension-free lysimeters or tension samplers. The influences of observation methods, natural factors and management practices on the measured concentrations, which ranged from 2.5-3970 (mean: 69) mg kg -1 of EOC and 0.4-200 (mean: 12) mg L -1 of DOC, were investigated through a meta-analysis. The observation methods (e.g., extractant, extractant-to-soil ratio and pre-treatment) had significant effects on EOC concentrations. The most significant divergence (approximately 109%) occurred especially at the extractant of potassium sulfate (K 2 SO 4 ) solutions compared to distilled water. As EOC concentrations were significantly different (approximately 47%) between non-cultivated and cultivated soils, they were more suitable than DOC concentrations for assessing the influence of land use on soil dissolvable organic carbon levels. While season did not significantly affect EOC concentrations, DOC concentrations showed significant differences (approximately 50%) in summer and autumn compared to spring. For management practices, applications of crop residues and nitrogen fertilizers showed positive effects (approximately 23% to 91%) on soil EOC concentrations, while tillage displayed negative effects (approximately -17%), compared to no straw, no nitrogen fertilizer and no tillage. Compared to no nitrogen, applications of synthetic nitrogen also appeared to significantly enhance DOC concentrations (approximately 32%). However, further studies are needed in the future

  12. Batch experiments versus soil pore water extraction--what makes the difference in isoproturon (bio-)availability?

    Science.gov (United States)

    Folberth, Christian; Suhadolc, Metka; Scherb, Hagen; Munch, Jean Charles; Schroll, Reiner

    2009-10-01

    Two approaches to determine pesticide (bio-)availability in soils (i) batch experiments with "extraction with an excess of water" (EEW) and (ii) the recently introduced "soil pore water (PW) extraction" of pesticide incubated soil samples have been compared with regard to the sorption behavior of the model compound isoproturon in soils. A significant correlation between TOC and adsorbed pesticide amount was found when using the EEW approach. In contrast, there was no correlation between TOC and adsorbed isoproturon when using the in situ PW extraction method. Furthermore, sorption was higher at all concentrations in the EEW method when comparing the distribution coefficients (K(d)) for both methods. Over all, sorption in incubated soil samples at an identical water tension (-15 kPa) and soil density (1.3 g cm(-3)) appears to be controlled by a complex combination of sorption driving soil parameters. Isoproturon bioavailability was found to be governed in different soils by binding strength and availability of sorption sites as well as water content, whereas the dominance of either one of these factors seems to depend on the individual composition and characteristics of the respective soil sample. Using multiple linear regression analysis we obtained furthermore indications that the soil pore structure is affected by the EEW method due to disaggregation, resulting in a higher availability of pesticide sorption sites than in undisturbed soil samples. Therefore, it can be concluded that isoproturon sorption is overestimated when using the EEW method, which should be taken into account when using data from this approach or similar batch techniques for risk assessment analysis.

  13. Role of reducing agent in extraction of arsenic and heavy metals from soils by use of EDTA.

    Science.gov (United States)

    Kim, Eun Jung; Jeon, Eun-Ki; Baek, Kitae

    2016-06-01

    Although many metal-contaminated sites contain both anionic arsenic and cationic heavy metals, the current remediation technologies are not effective for the simultaneous removal of both anionic and cationic elements from the contaminated sites due to their different characteristics. In this study, the role of reducing agent in simultaneous extraction of As, Cu, Pb, and Zn from contaminated soils was investigated using EDTA. The addition of reducing agents, which includes sodium oxalate (Na2C2O4), ascorbic acid (C6H8O6) and sodium dithionite (Na2S2O4), greatly enhanced the EDTA extraction of both As and heavy metals from the contaminated soils due to the increased mobility of the metals under the reduced conditions. The extent of the enhancement of the EDTA extraction was greatly affected by the reducing conditions. Strong reducing conditions (0.1 M of dithionite) were required for the extraction of metals strongly bound to the soil, while weak reducing conditions (0.01 M of dithionite or 0.1 M of oxalate/ascorbic acid) were sufficient for extraction of metals that were relatively weakly bound to the soil. An almost 90% extraction efficiency of total metals (As, Cu, Zn, and Pb) was obtained from the contaminated soils using the combination of dithionite and EDTA. Our results clearly showed that the combination of dithionite and EDTA can effectively extract As and heavy metals simultaneously from soils under a wide range of pH conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Iron Availability in Tropical Soils and Iron Uptake by Plants

    Directory of Open Access Journals (Sweden)

    Guilherme Furlan Mielki

    Full Text Available ABSTRACT Given the increase in crop yields and the expansion of agriculture in low fertility soils, deficiency of micronutrients, such as iron, in plants grown in tropical soils has been observed. The aim of this study was to evaluate Fe availability and Fe uptake by corn (Zea mays L. plants in 13 different soils, at two depths. Iron was extracted by Mehlich-1, Mehlich-3, and CaCl2 (Fe-CC and was fractionated in forms related to low (Feo and high (Fed crystallinity pedogenic oxyhydroxides, and organic matter (Fep using ammonium oxalate, dithionite-citrate, and sodium pyrophosphate, respectively. In order to relate Fe availability to soil properties and plant growth, an experiment was carried out in a semi-hydroponic system in which part of the roots developed in a nutrient solution (without Fe and part in the soil (the only source of Fe. Forty-five days after seeding, we quantified shoot dry matter and leaf Fe concentration and content. Fed levels were high, from 5 to 132 g kg-1, and Feo and Fe-CC levels were low, indicating the predominance of Fe as crystalline oxyhydroxides and a low content of Fe readily available to plants. The extraction solutions showed significant correlations with various soil properties, many common to both, indicating that they act similarly. The correlation between the Mehlich-1 and Mehlich-3 extraction solutions was highly significant. However, these two extraction methods were inefficient in predicting Fe availability to plants. There was a positive correlation between dry matter and Fe levels in plant shoots, even within the ranges considered adequate in the soil and in the plant. Dry matter production and leaf Fe concentration and content were positively correlated with Fep concentration, indicating that the Fe fraction related to soil organic matter most contributes to Fe availability to plants.

  15. Selective extraction methods for aluminium, iron and organic carbon from montane volcanic ash soils

    NARCIS (Netherlands)

    Jansen, B.; Tonneijck, F.H.; Verstraten, J.M.

    2011-01-01

    Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle. Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils, we assessed various extraction methods of Al, Fe, and

  16. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts

    OpenAIRE

    Redmile-Gordon, M.A.; Armenise, E.; White, R.P.; Hirsch, P.R.; Goulding, K.W.T.

    2013-01-01

    Soil extracts usually contain large quantities of dissolved humified organic material, typically reflected by high polyphenolic content. Since polyphenols seriously confound quantification of extracted protein, minimising this interference is important to ensure measurements are representative. Although the Bradford colorimetric assay is used routinely in soil science for rapid quantification protein in soil-extracts, it has several limitations. We therefore investigated an alternative colori...

  17. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction

    International Nuclear Information System (INIS)

    Beesley, Luke; Moreno-Jimenez, Eduardo; Clemente, Rafael; Lepp, Nicholas; Dickinson, Nicholas

    2010-01-01

    Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile. - Mobility of arsenic, cadmium and zinc in a polluted soil can be realistically interpreted by in-situ soil pore water sampling.

  18. Differences in soil solution chemistry between soils amended with nanosized CuO or Cu reference materials: implications for nanotoxicity tests.

    Science.gov (United States)

    McShane, Heather V A; Sunahara, Geoffrey I; Whalen, Joann K; Hendershot, William H

    2014-07-15

    Soil toxicity tests for metal oxide nanoparticles often include micrometer-sized oxide and metal salt treatments to distinguish between toxicity from nanometer-sized particles, non-nanometer-sized particles, and dissolved ions. Test result will be confounded if each chemical form has different effects on soil solution chemistry. We report on changes in soil solution chemistry over 56 days-the duration of some standard soil toxicity tests-in three soils amended with 500 mg/kg Cu as nanometer-sized CuO (nano), micrometer-sized CuO (micrometer), or Cu(NO3)2 (salt). In the CuO-amended soils, the log Cu2+ activity was initially low (minimum -9.48) and increased with time (maximum -5.20), whereas in the salt-amended soils it was initially high (maximum -4.80) and decreased with time (minimum -6.10). The Cu2+ activity in the nano-amended soils was higher than in the micrometer-amended soils for at least the first 11 days, and lower than in the salt-amended soils for at least 28 d. The pH, and dissolved Ca and Mg concentrations in the CuO-amended soils were similar, but the salt-amended soils had lower pH for at least 14 d, and higher Ca and Mg concentrations throughout the test. Soil pretreatments such as leaching and aging prior to toxicity tests are suggested.

  19. Soil properties and preferential solute transport at the field scale

    DEFF Research Database (Denmark)

    Koestel, J K; Minh, Luong Nhat; Nørgaard, Trine

    An important fraction of water flow and solute transport through soil takes place through preferential flow paths. Although this had been already observed in the nineteenth century, it had been forgotten by the scientific community until it was rediscovered during the 1970s. The awareness...... of the relevance of preferential flow was broadly re-established in the community by the early 1990s. However, since then, the notion remains widespread among soil scientists that the occurrence and strength of preferential flow cannot be predicted from measurable proxy variables such as soil properties or land...

  20. Effect of solution composition on the adsorption and desorption of 137Cs on forest soils

    International Nuclear Information System (INIS)

    Staunton, S.; Wells, C.; Shaw, G.

    2004-01-01

    There is ongoing debate as to the pertinence of measurements of soil-liquid distribution coefficients in dilute suspension to the understanding and the prediction of the mobility of radionuclides in soil. This debate is particularly active in the case of radiocaesium. Several factors could cause significant discrepancies between measured and effective in situ distributions of radiocaesium. 1. Differences in solution composition, notably ionic strength and concentration in cations such as potassium and ammonium; 2. Differences in soil:solution ratio; 3. Time dependent reactions; 4. Reversibility of the adsorption reaction; 5. Concentration dependence of adsorption. We have attempted to assess the importance of some of these factors by studying 137 Cs adsorption on soils sampled from different horizons of a forest soil. Kd was measured in suspension. Soil:solution ratio and initial 137 Cs concentration and concentration of potassium and stable Cs in solution were varied. Adsorption and desorption Kd values were measured under similar conditions and compared. Kd values were in the lower range of values reported in the literature (5-30 1/kg). Samples from surface layers showed no concentration dependence at trace additions of 137 Cs, whereas some decrease in Kd was observed with increasing 137 Cs concentration on the Ea horizon. Data obtained at different soil:solution ratios all fell on the same adsorption isotherms as those obtained by varying initial 137 Cs concentration. Stable caesium and, to a lesser extent, potassium inhibited 137 Cs adsorption. This effect was greater in the Ea horizon than the surface soils, probably due to the mineral content. For all samples the desorption Kd was greater than the adsorption Kd in the same solution, indicating a small but significant degree of irreversibility. (author)

  1. Solid/solution Cu fractionations/speciation of a Cu contaminated soil after pilot-scale electrokinetic remediation and their relationships with soil microbial and enzyme activities

    International Nuclear Information System (INIS)

    Wang Quanying; Zhou Dongmei; Cang Long; Li Lianzhen; Wang Peng

    2009-01-01

    The aim of this study was to investigate the detailed metal speciation/fractionations of a Cu contaminated soil before and after electrokinetic remediation as well as their relationships with the soil microbial and enzyme activities. Significant changes in the exchangeable and adsorbed-Cu fractionations occurred after electrokinetic treatment, while labile soil Cu in the solution had a tendency to decrease from the anode to the cathode, and the soil free Cu 2+ ions were mainly accumulated in the sections close to the cathode. The results of regression analyses revealed that both the soil Cu speciation in solution phase and the Cu fractionations in solid phase could play important roles in the changes of the soil microbial and enzyme activities. Our findings suggest that the bioavailability of soil heavy metals and their ecotoxicological effects on the soil biota before and after electroremediation can be better understood in terms of their chemical speciation and fractionations. - The assessment of the roles of soil solution speciation and solid-phase fractionations in metal bioavailability after electrokinetic remediation deserves close attention.

  2. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area

    International Nuclear Information System (INIS)

    Chaignon, V.; Sanchez-Neira, I.; Herrmann, P.; Jaillard, B.; Hinsinger, P.

    2003-01-01

    Root Cu concentration is a good indicator of soil Cu bioavailability. - Vineyard soils have been contaminated by Cu as a consequence of the long-term use of Cu salts as fungicides against mildew. This work aimed at identifying which soil parameters were the best related to Cu bioavailability, as assessed by measuring the concentrations of Cu in shoots and roots of tomato cropped (in lab conditions) over a range of 29 (24 calcareous and five acidic) Cu-contaminated topsoils from a vine-growing area (22-398 mg Cu kg -1 ). Copper concentrations in tomato shoots remained in the adequate range and were independent of soil properties and soil Cu content. Conversely, strong, positive correlations were found between root Cu concentration, total soil Cu, EDTA- or K-pyrophosphate-extractable Cu and organic C contents in the 24 calcareous soils, suggesting a prominent role of organic matter in the retention and bioavailability of Cu. Such relations were not observed when including the five acidic soils in the investigated population, suggesting a major pH effect. Root Cu concentration appeared as a much more sensitive indicator of soil Cu bioavailability than shoot Cu concentration. Simple extractions routinely used in soil testing procedures (total and EDTA-extractable Cu) were adequate indicators of Cu bioavailability for the investigated calcareous soils, but not when different soil types were considered (e.g. acidic versus calcareous soils)

  3. Voltammetric behaviour at gold electrodes immersed in the BCR sequential extraction scheme media Application of underpotential deposition-stripping voltammetry to determination of copper in soil extracts

    Energy Technology Data Exchange (ETDEWEB)

    Beni, Valerio; Newton, Hazel V.; Arrigan, Damien W.M.; Hill, Martin; Lane, William A.; Mathewson, Alan

    2004-01-30

    The development of mercury-free electroanalytical systems for in-field analysis of pollutants requires a foundation on the electrochemical behaviour of the chosen electrode material in the target sample matrices. In this work, the behaviour of gold working electrodes in the media employed in the BCR sequential extraction protocol, for the fractionation of metals in solid environmental matrices, is reported. All three of the BCR sequential extraction media are redox active, on the basis of acidity and oxygen content as well as the inherent reducing or oxidising nature of some of the reagents employed: 0.11 M acetic acid, 0.1 M hydroxylammonium chloride (adjusted to pH 2) and 1 M ammonium acetate (adjusted to pH 2) with added trace hydrogen peroxide. The available potential ranges together with the demonstrated detection of target metals in these media are presented. Stripping voltammetry of copper or lead in the BCR extract media solutions reveal a multi-peak behaviour due to the stripping of both bulk metal and underpotential metal deposits. A procedure based on underpotential deposition-stripping voltammetry (UPD-SV) was evaluated for application to determination of copper in 0.11 M acetic acid soil extracts. A preliminary screening step in which different deposition times are applied to the sample enables a deposition time commensurate with UPD-SV to be selected so that no bulk deposition or stripping occurs thus simplifying the shape and features of the resulting voltammograms. Choice of the suitable deposition time is then followed by standards addition calibration. The method was validated by the analysis of a number of BCR 0.11 M acetic acid soil extracts. Good agreement was obtained been the UPD-SV method and atomic spectroscopic results.

  4. Voltammetric behaviour at gold electrodes immersed in the BCR sequential extraction scheme media Application of underpotential deposition-stripping voltammetry to determination of copper in soil extracts

    International Nuclear Information System (INIS)

    Beni, Valerio; Newton, Hazel V.; Arrigan, Damien W.M.; Hill, Martin; Lane, William A.; Mathewson, Alan

    2004-01-01

    The development of mercury-free electroanalytical systems for in-field analysis of pollutants requires a foundation on the electrochemical behaviour of the chosen electrode material in the target sample matrices. In this work, the behaviour of gold working electrodes in the media employed in the BCR sequential extraction protocol, for the fractionation of metals in solid environmental matrices, is reported. All three of the BCR sequential extraction media are redox active, on the basis of acidity and oxygen content as well as the inherent reducing or oxidising nature of some of the reagents employed: 0.11 M acetic acid, 0.1 M hydroxylammonium chloride (adjusted to pH 2) and 1 M ammonium acetate (adjusted to pH 2) with added trace hydrogen peroxide. The available potential ranges together with the demonstrated detection of target metals in these media are presented. Stripping voltammetry of copper or lead in the BCR extract media solutions reveal a multi-peak behaviour due to the stripping of both bulk metal and underpotential metal deposits. A procedure based on underpotential deposition-stripping voltammetry (UPD-SV) was evaluated for application to determination of copper in 0.11 M acetic acid soil extracts. A preliminary screening step in which different deposition times are applied to the sample enables a deposition time commensurate with UPD-SV to be selected so that no bulk deposition or stripping occurs thus simplifying the shape and features of the resulting voltammograms. Choice of the suitable deposition time is then followed by standards addition calibration. The method was validated by the analysis of a number of BCR 0.11 M acetic acid soil extracts. Good agreement was obtained been the UPD-SV method and atomic spectroscopic results

  5. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents

    DEFF Research Database (Denmark)

    Karup, Dan; Møldrup, Per; Paradelo Pérez, Marcos

    2016-01-01

    tracer mass could be well fitted to an analytical solution to the classical convection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were hereby reasonable well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer mass......Solute transport through the soil matrix is heterogeneous and greatly affected by soil texture, soil structure, and macropore networks. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. Hundred...... of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5 % and up to 50 % of the tracer mass were found to be strongly correlated with volumetric fines content. The hereby predicted tracer concentration breakthrough points up to 50% of applied...

  6. The EED [Emergencies Engineering Division] solvent extraction process for the removal of petroleum-derived hydrocarbons from soil

    International Nuclear Information System (INIS)

    Bastien, C.Y.

    1994-03-01

    Research was conducted to investigate the ability of hexane and natural gas condensate (NGC) to extract three different types of hydrocarbon contaminant (light crude oil, diesel fuel, and bunker C oil) from three types of soil (sand, peat, and clay). A separate but related study determined the efficiency of solvent extraction (using hexane and five other solvents but not NGC) for removal of polychlorinated biphenyls (PCB) from contaminated soil. The process developed for this research includes stages of mixing, extraction, separation, and solvent recovery, for eventual implementation as a mobile solvent extraction unit. In experiments on samples created in the laboratory, extraction efficiencies of hydrocarbons often rose above 95%. On samples from a petroleum contaminated site, average extraction efficiency was ca 82%. Sandy soils contaminated in the laboratory were effectively cleaned of all hydrocarbons tested but only diesel fuel was successfully extracted from peat soils. No significant differences were observed in the effectiveness of hexane and NGC for contamination levels above 3%. Below this number, NGC seems more effective at removing oil from peat while hexane is slightly more effective on clay soils. Sand is equally cleaned by both solvents at all contamination levels. Safety considerations, odor, extra care needed to deal with light ends and aromatics, and the fact that only 26% of the solvent is actually usable make NGC an unfeasible option in spite of its significantly lower cost compared to hexane. For extracting PCBs, a hexane/acetone mixture proved to have the best removal efficiency. 14 refs., 14 figs., 7 tabs

  7. Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process

    DEFF Research Database (Denmark)

    Dias-Ferreira, Celia; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2015-01-01

    Seven electrodialytic experiments were conducted using ammonium citrate as enhancing agent to remediate copper and chromium-contaminated soil from a wood-preservation site. The purpose was to investigate the effect of current density (0.2, 1.0 and 1.5 mA cm−2), concentration of enhancing agent (0...... to remediate metal polluted soils at neutral to alkaline pH by choosing a good enhancement solution....

  8. SOILSOLN: A Program for Teaching Equilibria Modeling of Soil Solution Composition.

    Science.gov (United States)

    Wolt, Jeffrey D.

    1989-01-01

    Presents a computer program for use in teaching ion speciation in soil solutions. Provides information on the structure of the program, execution, and software specifications. The program estimates concentrations of ion pairs, hydrolytic species, metal-organic complexes, and free ions in solutions. (Author/RT)

  9. Water extraction and implications on soil moisture sensor placement in the root zone of banana

    Directory of Open Access Journals (Sweden)

    Alisson Jadavi Pereira da Silva

    Full Text Available ABSTRACT: The knowledge on spatial and temporal variations of soil water storage in the root zone of crops is essential to guide the studies to determine soil water balance, verify the effective zone of water extraction in the soil and indicate the correct region for the management of water, fertilizers and pesticides. The objectives of this study were: (i to indicate the zones of highest root activity for banana in different development stages; (ii to determine, inside the zone of highest root activity, the adequate position for the installation of soil moisture sensors. A 5.0 m3 drainage lysimeter was installed in the center of an experimental area of 320 m2. Water extraction was quantified inside the lysimeter using a 72 TDR probe. The concept of time stability was applied to indicate the position for sensor installation within the limits of effective water extraction. There are two patterns of water extraction distribution during the development of banana and the point of installation of sensors for irrigation management inside the zone of highest root activity is not constant along the crop development.

  10. Current extraction and separation of uranium, thorium and rare earths elements from monazite leach solution using organophosphorous extractants

    International Nuclear Information System (INIS)

    Biswas, Sujoy; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.

    2014-01-01

    A new process based on solvent extraction has been developed for separation of uranium, thorium and rare earths from monazite leach solution using organophosphorous extractants. The Thorium cake coming from monazite source was dissolved in HNO 3 medium in presence of trace amount of HF for feed preparation. The separation of U(VI) was carried out by liquid-liquid extraction using tris-2-ethyl hexyl phosphoric acid (TEHP) in dodecane leaving thorium and rare earths elements in the raffinate. The thorium from raffinate was selectively extracted using 1M tri iso amyl phosphate (TiAP) in dodecane in organic phase leaving all rare earths elements in aqueous solution. The uranium and thorium from organic medium was quantitatively stripped using 0.05 M HNO 3 counter current mode. Results indicate the quantitative separation of uranium, thorium and rare earths from thorium cake (monazite source) using organophosphorous extractant in counter current mode

  11. Uncertainty analysis of the nonideal competitive adsorption-donnan model: effects of dissolved organic matter variability on predicted metal speciation in soil solution.

    Science.gov (United States)

    Groenenberg, Jan E; Koopmans, Gerwin F; Comans, Rob N J

    2010-02-15

    Ion binding models such as the nonideal competitive adsorption-Donnan model (NICA-Donnan) and model VI successfully describe laboratory data of proton and metal binding to purified humic substances (HS). In this study model performance was tested in more complex natural systems. The speciation predicted with the NICA-Donnan model and the associated uncertainty were compared with independent measurements in soil solution extracts, including the free metal ion activity and fulvic (FA) and humic acid (HA) fractions of dissolved organic matter (DOM). Potentially important sources of uncertainty are the DOM composition and the variation in binding properties of HS. HS fractions of DOM in soil solution extracts varied between 14 and 63% and consisted mainly of FA. Moreover, binding parameters optimized for individual FA samples show substantial variation. Monte Carlo simulations show that uncertainties in predicted metal speciation, for metals with a high affinity for FA (Cu, Pb), are largely due to the natural variation in binding properties (i.e., the affinity) of FA. Predictions for metals with a lower affinity (Cd) are more prone to uncertainties in the fraction FA in DOM and the maximum site density (i.e., the capacity) of the FA. Based on these findings, suggestions are provided to reduce uncertainties in model predictions.

  12. Selective solvation extraction of gold from alkaline cyanide solution by alkyl phosphorus esters

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.; Wan, R.Y.; Mooiman, M.B.; Sibrell, P.L.

    1987-01-01

    Research efforts have shown that solvation extraction of gold from alkaline cyanide solution is possible by alkyl phosphorus esters. Both tributyl phosphate (TBP) and dibutyl butyl phosphonate (DBBP) appear to be effective extractants for gold and exhibit high loading capacities exceeding 30 gpl. Selective solvation extraction of gold from alkaline cyanide solution can be achieved with selectivity factors relative to other cyanoanions as high as 1000 under certain circumstances. Variables influencing the selectivity such as ionic strength, temperature, and extractant structure, are discussed in terms of the extraction chemistry, which seems to involve the solvation of a M dot, dot, dot Au(CN)2 ion pair.

  13. [Allelopathy autotoxicity effects of aquatic extracts from rhizospheric soil on rooting and growth of stem cuttings in Pogostemon cablin].

    Science.gov (United States)

    Tang, Kun; Li, Ming; Dong, Shan; Li, Yun-qi; Huang, Jie-wen; Li, Long-ming

    2014-06-01

    To study the allelopathy effects of aquatic extracts from rhizospheric soil on the rooting and growth of stem cutting in Pogostemon cablin, and to reveal its mechanism initially. The changes of rhizogenesis characteristics and physic-biochemical during cutting seedlings were observed when using different concentration of aquatic extracts from rhizospheric soil. Aquatic extracts from rhizospheric soil had significant inhibitory effects on rooting rate, root number, root length, root activity, growth rate of cutting with increasing concentrations of tissue extracts; The chlorophyll content of cutting seedlings were decreased, but content of MDA were increased, and activities of POD, PPO and IAAO in cutting seedlings were affected. Aquatic extracts from rhizospheric soil of Pogostemon cablin have varying degrees of inhibitory effects on the normal rooting and growth of stem cuttings.

  14. The use of in-situ dual vacuum extraction for remediation of soil and groundwater

    International Nuclear Information System (INIS)

    Trowbridge, B.E.; Ott, D.E.

    1992-01-01

    Dual Extraction provides a rapid and cost-effective method of remediating soil and groundwater impacted by volatile organic compounds (VOC's). Dual Extraction is the removal of both water and vapors through the same borehole using entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an Underground Storage Tank (UST) was responsible for a hydrocarbon plume spreading over approximately 50,000 square feet. The release produced vadose zone contamination in the silty and sandy clays from 10 - 30 feet below ground surface with TPH concentrations up to 1,400 mg/kg. A layer of free floating liquid hydrocarbon was present on a shallow aquifer located at 30 feet bgs in thicknesses ranging from 0.5 feet to 3.0 feet. An in-situ dual-extraction system was installed to remediate the soils and groundwater to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hours/day for 196 days with an operating efficiency of over 99%. After 196 days, over 17,000 pounds of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings were advanced in the area of highest initial hydrocarbon concentrations and indicated that TPH and BTEX concentrations had decreased over 99% from initial soil concentrations. Three confirmatory groundwater samples were obtained from monitoring wells initially exhibiting up to 3 feet of floating product. Confirmatory samples exhibited non-detectable (ND) concentrations of TPH and BTEX. Based upon the positive confirmatory results, site closure was obtained from the RWQCB in May of 1991. In only 28 weeks of operation, the groundwater contamination was reduced from free floating product to non-detectable concentrations of TPH using Dual Vacuum Extraction

  15. Evaluation of the ISO standard 11063 DNA extraction procedure for assessing soil microbial abundance and community structure.

    Directory of Open Access Journals (Sweden)

    Pierre Plassart

    Full Text Available Soil DNA extraction has become a critical step in describing microbial biodiversity. Historically, ascertaining overarching microbial ecological theories has been hindered as independent studies have used numerous custom and commercial DNA extraction procedures. For that reason, a standardized soil DNA extraction method (ISO-11063 was previously published. However, although this ISO method is suited for molecular tools such as quantitative PCR and community fingerprinting techniques, it has only been optimized for examining soil bacteria. Therefore, the aim of this study was to assess an appropriate soil DNA extraction procedure for examining bacterial, archaeal and fungal diversity in soils of contrasting land-use and physico-chemical properties. Three different procedures were tested: the ISO-11063 standard; a custom procedure (GnS-GII; and a modified ISO procedure (ISOm which includes a different mechanical lysis step (a FastPrep ®-24 lysis step instead of the recommended bead-beating. The efficacy of each method was first assessed by estimating microbial biomass through total DNA quantification. Then, the abundances and community structure of bacteria, archaea and fungi were determined using real-time PCR and terminal restriction fragment length polymorphism approaches. Results showed that DNA yield was improved with the GnS-GII and ISOm procedures, and fungal community patterns were found to be strongly dependent on the extraction method. The main methodological factor responsible for differences between extraction procedure efficiencies was found to be the soil homogenization step. For integrative studies which aim to examine bacteria, archaea and fungi simultaneously, the ISOm procedure results in higher DNA recovery and better represents microbial communities.

  16. The influence of surface incorporated lime and gypsiferous by-products on surface and subsurface soil acidity. I. Soil solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hedley, M.J.; Bolan, N.S.; Horne, D.J. [New Zealand Forest Research Institute, Rotorua (New Zealand)

    1999-04-01

    Lime, fluidised bed boiler ash (FBA) and flue gas desulfurisation gypsum (FGDG) were incorporated in the top 50 mm of repacked columns of either an Allophanic (the Patua sand loam) or an Ultic (the Kaawa clay loam) soil, at rates containing calcium equivalent to 5000 kg/ha of CaCO{sub 3}. After leaching with water, the columns were sliced into sections for chemical analysis. In the columns of the variable-charged, allophanic Patua soil, topsoil-incorporated FBA ameliorated top and subsurface soil acidity through liming and the `self liming effect` induced by sulfate sorption, respectively. The soil solution pH of the top and subsurface layers of the Patua soil were raised to pH 6.40 and 5.35, respectively, by the FBA treatment. Consequently , phytotoxic labile monomeric aluminium (Al) concentration in the soil solution of the FBA treatment was reduced to {lt} 0.1 {mu}M Al. FGDG had a similar `self-liming effect` on subsurface of the Patua soil, but not the topsoil. Whereas FBA raised the pH of the Kaawa topsoil, no `self-liming effect` of subsurface soil by sulfate sorption was observed on the Kaawa subsurface soil, which is dominated by permanently charged clay minerals. Application of FBA and FGDG to both soils, however, caused significantly leaching of native soil Mg{sup 2+} and K{sup +}.

  17. Growing Gardens in Shrinking Cities: A Solution to the Soil Lead Problem?

    Directory of Open Access Journals (Sweden)

    Kirsten Schwarz

    2016-02-01

    Full Text Available As cities shrink, they often leave a patchwork of vacancy on the landscape. The maintenance of vacant lands and eventual transformation to sustainable land uses is a challenge all cities face, but one that is particularly pronounced in shrinking cities. Vacant lands can support sustainability initiatives, specifically the expansion of urban gardens and local food production. However, many shrinking cities are the same aging cities that have experienced the highest soil lead burdens from their industrial past as well as the historic use of lead-based paint and leaded gasoline. Elevated soil lead is often viewed as a barrier to urban agriculture and managing for multiple ecosystem services, including food production and reduced soil lead exposure, remains a challenge. In this paper, we argue that a shift in framing the soil lead and gardening issue from potential conflict to potential solution can advance both urban sustainability goals and support healthy gardening efforts. Urban gardening as a potential solution to the soil lead problem stems from investment in place and is realized through multiple activities, in particular (1 soil management, including soil testing and the addition of amendments, and (2 social network and community building that leverages resources and knowledge.

  18. Separation of beryllium and mercury from lithium chloride solution by gaseous extraction

    International Nuclear Information System (INIS)

    Sevast'yanov, A.I.; Chepovol, V.I.

    1989-01-01

    The possibility is shown of extracting beryllium and mercury by acetylacetone (HAA) from lithium chloride solution by passing argon through the solution and the optimum conditions have been determined. The dependence of the degree of extraction and the distribution coefficients on various parameters of the liquid phase are presented, viz. the initial pH value, the lithium chloride concentration, and the initial HAA content

  19. Extractability of water-soluble soil organic matter as monitored by spectroscopic and chromatographic analyses.

    Science.gov (United States)

    Nkhili, Ezzhora; Guyot, Ghislain; Vassal, Nathalie; Richard, Claire

    2012-07-01

    Cold and hot water processes have been intensively used to recover soil organic matter, but the effect of extraction conditions on the composition of the extracts were not well investigated. Our objective was to optimize the extraction conditions (time and temperature) to increase the extracted carbon efficiency while minimizing the possible alteration of water extractable organic matter of soil (WEOM). WEOM were extracted at 20°C, 60°C, or 80°C for 24 h, 10-60 min, and 20 min, respectively. The different processes were compared in terms of pH of suspensions, yield of organic carbon, spectroscopic properties (ultraviolet-visible absorption and fluorescence), and by chromatographic analyses. For extraction at 60°C, the time 30 min was optimal in terms of yield of organic carbon extracted and concentration of absorbing and fluorescent species. The comparison of WEOM 20°C, 24 h; 60°C, 30 min; and 80°C, 20 min highlighted significant differences. The content of total organic carbon, the value of specific ultraviolet absorbance (SUVA(254)), the absorbance ratio at 254 and 365 nm (E (2)/E (3)), and the humification index varied in the order: WEOM (20°C, 24 h) < WEOM (80°C, 20 min) < WEOM (60°C, 30 min). The three WEOM contained common fluorophores associated with simple aromatic structures and/or fulvic-like and common peaks of distinct polarity as detected by ultra performance liquid chromatography. For the soil chosen, extraction at 60°C for 30 min is the best procedure for enrichment in organic chemicals and minimal alteration of the organic matter.

  20. Determination of the uranium concentration in soil solutions by the fission track registration technique

    International Nuclear Information System (INIS)

    Fernandes, G.P.

    1980-02-01

    The fission tracks registration technique was used to determine the uranium concentration in soil solutions. The Makrofol KG, a synthetic plastic manufactured by Bayer, was used as a detector and the wet method was applied. From the calibration curves obtained, it was possible to determine uranium concentrations in soil solutions, from 90 to 320 μg U/l, with an error between 9.4% and 4.0%, respectively. The method was applied to a few soil samples from Pocos de Caldas, Minas Gerais in Brazil. The uranium concentrations in the sample and residues were also determined by other methods to compare the results obtained; only one sample showed deviation from the results obtained by the fission tracks method. And this discrepancy was explained in a reasonable way. It was shown that the fission tracks technique can be used with sucess for application in soil solutions. (Author) [pt

  1. [Dissolved aluminum and organic carbon in soil solution under six tree stands in Lushan forest ecosystems].

    Science.gov (United States)

    Wang, Lianfeng; Pan, Genxing; Shi, Shengli; Zhang, Lehua; Huang, Mingxing

    2003-10-01

    Different depths of soils under 6 tree stands in Lushan Botany Garden were sampled and water-digested at room temperature. The dissolved aluminum and organic carbon were then determined by colorimetry, using 8-hydroxylquilin and TOC Analyzer, respectively. The results indicated that even derived from a naturally identical soil type, the test soils exhibited a diverse solution chemistry, regarding with the Al speciation. The soil solutions under Japanese cedar, giant arborvitae and tea had lower pH values and higher contents of soluble aluminum than those under Giant dogwood, azalea and bamboo. Under giant arborvitae, the lowest pH and the highest content of total soluble aluminum and monomeric aluminum were found in soil solution. There was a significant correlation between soluble aluminum and DOC, which tended to depress the accumulation of toxic monomeric aluminum. The 6 tree stands could be grouped into 2 categories of solution chemistry, according to aluminum mobilization.

  2. Applications of Fertilizer Cations Affect Cadmium and Zinc Concentrations in Soil Solutions and Uptake by Plants

    DEFF Research Database (Denmark)

    Lorenz, S. E.; Hamon, R. E.; McGrath, S. P.

    1994-01-01

    A pot experiment was conducted to study changes over time of Cd and Zn in soil solution and in plants. Radish was grown in a soil which had been contaminated with heavy metals prior to 1961. Constant amounts of a fertilizer solution (NH4N03, KN03) were added daily. Soil solution was obtained......-metal (Cd, Zn) ions in soil solutions and a decrease in soil pH, probably due to ion-exchange mechanisms and the dissolution of carbonates. Uptake of Cd and Zn into leaves was correlated with the mass flow of Cd (adjusted r2 = 0.798) and Zn (adjusted r2=0.859). Uptake of K, Ca and Mg by the plants...... at intervals by displacement with water. The cumulative additions of small amounts of fertilizers were made equal to the plants' requirements at the final harvest but were found to exceed them during most of the experiment. Excess fertilizers caused substantial increases of major (K, Ca, Mg) and heavy...

  3. Decontamination of Metal Ions in Soil by Supercritical CO{sub 2} Extraction with Catecholamine Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Kim, Hakwon; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The role of fuel cladding and reactor vessels is to help prevent the leakage of radioactive materials, including the fission products. However, if these shielding materials are damaged by a severe disaster such as the Fukushima Accident, radioactive materials could leak outside of a power plant site. Indeed, after the Fukushima Accident, radioactive materials have been detected in air and water samples. The air and water pollution lead to soil pollution, which is particularly difficult to decontaminate, as soil pollution has several types that vary according to the characteristics of a pollutant or its area. The existing decontamination methods generate a secondary waste owing to use of chemical toxicity solvents. It is also disadvantageous due to the additional cost of handling them. Therefore, new effective decontamination methods that reduce the use of toxicity solvents are necessary. For example, using supercritical CO{sub 2} has been studied as a new decontamination method. This study examines the method of decontaminating metallic ions inside of the soil using supercritical CO{sub 2} and a catecholamine compound. This study examined the effects of extracting metallic ions inside the soil using supercritical CO{sub 2} and catecholamine as the ligand. Based on these results, it is evident that when only the extraction agent was used, there was no extraction effect and that only when the ligand, co-ligand, and additive were used together was there an extraction effect. Following this, the optimal extraction-agent ratio was confirmed using varying amounts of extraction agents. The most effective extraction ratio of ligand to co-ligand was 1:2 in E-9 when 0.3 ml of H{sub 2}O were added.

  4. Sensitive PCR Detection of Meloidogyne arenaria, M. incognita, and M. javanica Extracted from Soil

    Science.gov (United States)

    Qiu, Jinya Jack; Westerdahl, Becky B.; Anderson, Cindy; Williamson, Valerie M.

    2006-01-01

    We have developed a simple PCR assay protocol for detection of the root-knot nematode (RKN) species Meloidogyne arenaria, M. incognita, and M. javanica extracted from soil. Nematodes are extracted from soil using Baermann funnels and centrifugal flotation. The nematode-containing fraction is then digested with proteinase K, and a PCR assay is carried out with primers specific for this group of RKN and with universal primers spanning the ITS of rRNA genes. The presence of RKN J2 can be detected among large numbers of other plant-parasitic and free-living nematodes. The procedure was tested with several soil types and crops from different locations and was found to be sensitive and accurate. Analysis of unknowns and spiked soil samples indicated that detection sensitivity was the same as or higher than by microscopic examination. PMID:19259460

  5. Sequential extraction procedures to ascertain the role of organic matter in the fate of iodine in soils

    International Nuclear Information System (INIS)

    Gavalda, D.; Colle, C.

    2004-01-01

    In the assessment of the radiological impact on man of radioactive substances the fate of the long-lived 129 I in soils is of special interest. In order to predict the behaviour of iodine in the environment the knowledge of soil parameters which are responsible for its sorption is necessary. Sequential extraction techniques were performed to investigate the degree of binding of iodine with soil components and more specifically with the different constituents of soil organic matter (humic acid, fulvic acid, humin) which are liable to change with time. A speciation scheme was especially developed to study the role of organic matter in iodine retention and complexation. In the first steps, several mineral fractions of iodine were extracted: water soluble (H 2 O), exchangeable (1M MgCl 2 ), carbonate bound (0.01N HCl), bound to Fe-Mn oxides (0.5 M NH 4 OH,HCl adjusted to pH=2 with HNO 3 ). After these preliminary steps, the extraction of organic matter was carried out with neutral pyrophosphate (Na 2 H 2 P 2 O 7 / K 4 P 2 O 7 1/1 0.1M pH=7) to determine iodine bound to organo-mineral complexes and sodium hydroxide (0.5 M NaOH) to quantify iodine bound to humic substances. For these extracts, the distribution of iodine between humic and fulvic acids was studied. Iodine bound to residual and insoluble organic matter (humin) was extracted with H 2 O 2 30% adjusted to pH=2 with HNO 3 . In the last step, iodine bound to the residual soil was extracted by wet digestion (H 2 SO 4 ). In this scheme, all the traditional organic reagents (acetate, acetic acid,..) were removed and replaced by mineral reagents to allow the monitoring of organic carbon in the soil extracts. (author)

  6. Use of olive oil for soil extraction and ultraviolet degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans.

    Science.gov (United States)

    Isosaari, P; Tuhkanen, T; Vartiainen, T

    2001-03-15

    This paper represents a successful laboratory-scale photolysis of soil-bound tetra- to octachlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in olive oil. The irradiation source consisted of two blacklight lamps emitting light at a near-ultraviolet range. Samples used in the experiments included pure 1,2,3,4,6,7,8-heptachlorodibenzofuran, PCDD/F extract made of a wood preservative (chlorophenol product Ky 5), and soil that was highly contaminated with PCDD/Fs. Degradation of 1,2,3,4,6,7,8-heptachlorodibenzofuran dissolved in olive oil proceeded rapidlywith a first-order reaction half-life of 13 min. Irradiation of a soil sample resulted in an 84% reduction in PCDD/F toxicity equivalent (I-TEQ) in 17.5 h. A more complete degradation of soil-bound PCDD/Fs was achieved after extraction of the soil with olive oil. The oil was effective in solubilizing PCDD/Fs. After one extraction at room temperature, only 9% of I-TEQ remained in soil. Irradiation of the resulting extract reduced toxicity of the extract by 99%, and even the highly chlorinated congeners octachlorodibenzo-p-dioxin and octachlorodibenzofuran degraded easily (97 and 99% degradation, respectively). Photodegradation byproducts found included diphenyl ether and small amounts of dechlorination products, which were mainly nontoxic PCDD/Fs. Degradation was probably mediated by light absorption of unsaturated fatty acids and phenolic compounds in olive oil, leading to sensitized photolysis of PCDD/Fs.

  7. A new approach to study cadmium complexes with oxalic acid in soil solution.

    Science.gov (United States)

    Dytrtová, Jana Jaklová; Jakl, Michal; Sestáková, Ivana; Zins, Emilie-Laure; Schröder, Detlef; Navrátil, Tomáš

    2011-05-05

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH(2)) were observed. In order to verify the possible formation of complexes with OAH(2), aqueous solutions of OAH(2) with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd(n)(X,Y)((2n+1))](-), where n is the number of cadmium atoms, X=Cl(-), and Y=OAH(-). Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A new approach to study cadmium complexes with oxalic acid in soil solution

    International Nuclear Information System (INIS)

    Jaklova Dytrtova, Jana; Jakl, Michal; Sestakova, Ivana; Zins, Emilie-Laure; Schroeder, Detlef; Navratil, Tomas

    2011-01-01

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH 2 ) were observed. In order to verify the possible formation of complexes with OAH 2 , aqueous solutions of OAH 2 with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd n (X,Y) (2n+1) ] - , where n is the number of cadmium atoms, X = Cl - , and Y = OAH - . Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions.

  9. A new approach to study cadmium complexes with oxalic acid in soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Jaklova Dytrtova, Jana, E-mail: dytrtova@uochb.cas.cz [Institute of Organic Chemistry and Biochemistry of the AS CR, v.v.i., Flemingovo namesti 2, 16610 Prague 6 (Czech Republic); Jakl, Michal [Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 16521 Prague - Suchdol (Czech Republic); Sestakova, Ivana [J. Heyrovsky Institute of Physical Chemistry of the AS CR, v.v.i., Dolejskova 3, 182 23 Prague 8 (Czech Republic); Zins, Emilie-Laure; Schroeder, Detlef [Institute of Organic Chemistry and Biochemistry of the AS CR, v.v.i., Flemingovo namesti 2, 16610 Prague 6 (Czech Republic); Navratil, Tomas [J. Heyrovsky Institute of Physical Chemistry of the AS CR, v.v.i., Dolejskova 3, 182 23 Prague 8 (Czech Republic)

    2011-05-05

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH{sub 2}) were observed. In order to verify the possible formation of complexes with OAH{sub 2}, aqueous solutions of OAH{sub 2} with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd{sub n}(X,Y){sub (2n+1)}]{sup -}, where n is the number of cadmium atoms, X = Cl{sup -}, and Y = OAH{sup -}. Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions.

  10. Test plan for demonstrating plutonium extraction from 10-L solutions using EIChrom extraction chromatographic resins

    International Nuclear Information System (INIS)

    Barney, G.S.

    1994-01-01

    Corrosive plutonium solutions stored in 10-L containers at the Plutonium Finishing Plant must be treated to convert the plutonium to a safe, solid form for storage and to remove the americium so that radiation exposure can be reduced. Extraction chromatographic resins will be tested for separating plutonium from these solutions in the laboratory. Separation parameters will be developed during the testing for large scale processing of the 10-L solutions and solutions of similar composition. Use of chromatographic resins will allow plutonium separation with minimum of chemical addition to the feed and without the need for plutonium valence adjustment. The separated plutonium will be calcined to plutonium oxide by direct solution calcination

  11. Effects of Water Solutions on Extracting Green Tea Leaves

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2013-01-01

    Full Text Available This study investigates the effects of water solutions on the antioxidant content of green tea leaf extracts. Green teas prepared with tap water and distilled water were compared with respect to four antioxidant assays: total phenol content, reducing power, DMPD assay, and trolox equivalent antioxidant capacity assay. The results indicate that green tea prepared with distilled water exhibits higher antioxidant activity than that made with tap water. The high performance liquid chromatography showed that major constituents of green tea were found in higher concentrations in tea made with distilled water than in that made with tap water. This could be due to less calcium fixation in leaves and small water clusters. Water solutions composed of less mineralisation are more effective in promoting the quality of green tea leaf extracts.

  12. Removal of Radium-226 from Radium-Contaminated Soil using Distilled Water and Humic Acid: Effect of pH

    International Nuclear Information System (INIS)

    Phillips, E.; Muhammad Samudi Yasir; Muhamat Omar

    2011-01-01

    Effect of washing solutions' pH removal of radium-226 from radium-contaminated soil using distilled water and humic acid extracted from Malaysian peat soil was studied by batch washing method. The study encompassed the extraction of humic acid and the washing of radium-contaminated soil using distilled water and humic acid solutions of 100 ppm, both with varying pHs in the range of 3 to 11. The radioactivity concentration of radium-226 was determined by gamma spectrometer.The removal of radium-226 was greater when humic acid solutions were used compared to distilled water at the pH range studied and both washing solutions showed greater removal of radium-226 when basic solutions were used. Nevertheless, comparable removal efficiencies were observed when neutral and highly basic humic acid solutions were used. (author)

  13. Root-induced Changes in the Rhizosphere of Extreme High Yield Tropical Rice: 2. Soil Solution Chemical Properties

    Directory of Open Access Journals (Sweden)

    Mitsuru Osaki

    2012-09-01

    Full Text Available Our previous studies showed that the extreme high yield tropical rice (Padi Panjang produced 3-8 t ha-1 without fertilizers. We also found that the rice yield did not correlate with some soil properties. We thought that it may be due to ability of root in affecting soil properties in the root zone. Therefore, we studied the extent of rice root in affecting the chemical properties of soil solution surrounding the root zone. A homemade rhizobox (14x10x12 cm was used in this experiment. The rhizobox was vertically segmented 2 cm interval using nylon cloth that could be penetrated neither root nor mycorrhiza, but, soil solution was freely passing the cloth. Three soils of different origins (Kuin, Bunipah and Guntung Papuyu were used. The segment in the center was sown with 20 seeds of either Padi Panjang or IR64 rice varieties. After emerging, 10 seedlings were maintained for 5 weeks. At 4 weeks after sowing, some chemical properties of the soil solution were determined. These were ammonium (NH4+, nitrate (NO3-, phosphorus (P and iron (Fe2+ concentrations and pH, electric conductivity (EC and oxidation reduction potential (ORP. In general, the plant root changed solution chemical properties both in- and outside the soil rhizosphere. The patterns of changes were affected by the properties of soil origins. The release of exudates and change in ORP may have been responsible for the changes soil solution chemical properties.

  14. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts.

    Science.gov (United States)

    Redmile-Gordon, M A; Armenise, E; White, R P; Hirsch, P R; Goulding, K W T

    2013-12-01

    Soil extracts usually contain large quantities of dissolved humified organic material, typically reflected by high polyphenolic content. Since polyphenols seriously confound quantification of extracted protein, minimising this interference is important to ensure measurements are representative. Although the Bradford colorimetric assay is used routinely in soil science for rapid quantification protein in soil-extracts, it has several limitations. We therefore investigated an alternative colorimetric technique based on the Lowry assay (frequently used to measure protein and humic substances as distinct pools in microbial biofilms). The accuracies of both the Bradford assay and a modified Lowry microplate method were compared in factorial combination. Protein was quantified in soil-extracts (extracted with citrate), including standard additions of model protein (BSA) and polyphenol (Sigma H1675-2). Using the Lowry microplate assay described, no interfering effects of citrate were detected even with concentrations up to 5 times greater than are typically used to extract soil protein. Moreover, the Bradford assay was found to be highly susceptible to two simultaneous and confounding artefacts: 1) the colour development due to added protein was greatly inhibited by polyphenol concentration, and 2) substantial colour development was caused directly by the polyphenol addition. In contrast, the Lowry method enabled distinction between colour development from protein and non-protein origin, providing a more accurate quantitative analysis. These results suggest that the modified-Lowry method is a more suitable measure of extract protein (defined by standard equivalents) because it is less confounded by the high polyphenolic content which is so typical of soil extracts.

  15. Extraction behavior of Nb and Ta in HF solutions with tributyl phosphate

    International Nuclear Information System (INIS)

    Murakami, M.; Tsuto, S.; Ooe, K.; Goto, S.; Kudo, H.; Haba, H.; Kanaya, J.

    2013-01-01

    Extraction behavior of carrier-free Nb and Ta with tributyl phosphate (TBP) from HF solutions was studied by a batch method. Tantalum is extracted well to an organic phase, while Nb is left in an aqueous phase at 0.053-1.0 M HF concentrations. The similar extraction trends of Nb and Ta are shown in the solid phase extraction using a TBP resin. The extraction equilibria in the solid phase extraction are attained within ∼10 s. (author)

  16. TOTAL AND HOT-WATER EXTRACTABLE CARBON RELATIONSHIP IN CHERNOZEM SOIL UNDER DIFFERENT CROPPING SYSTEMS AND LAND USE

    Directory of Open Access Journals (Sweden)

    Srdjan Šeremešić

    2013-12-01

    Full Text Available A study was conducted to determine the hot water extractable organic carbon (HWOC in 9 arable and 3 non arable soil samples on Haplic Chernozem. The hot water extractable carbon represents assimilative component of the total organic matter (OM that could contain readily available nutrients for plant growth. The obtained fraction of organic carbon (C makes up only a small percentage of the soil OM and directly reflects the changes in the rhizosphere. This labile fraction of the organic matter was separated by hot water extraction at 80°C. In our study the HWOC content in different samples ranged from 125 mg g-1 to 226 mg g-1. On the plots that are under native vegetation, higher values were determined (316 mg g-1 to 388 mg g-1. Whereas samples from arable soils were lower in HWOC. It was found that this extraction method can be successfully used to explain the dynamics of the soil OM. Soil samples with lower content of the total OM had lower HWOC content, indicating that the preservation of the OM depends on the renewal of its labile fractions.

  17. Anaerobic N mineralization in paddy soils in relation to inundation management, physicochemical soil fractions, mineralogy and soil properties

    Science.gov (United States)

    Sleutel, Steven; Kader, Mohammed Abdul; Ara Begum, Shamim; De Neve, Stefaan

    2013-04-01

    turn equivalent to decreasing bio-availability. Although water has frequently been used to extract labile SOM, its use has mostly been limited to 100°C. 3° Third we developed sub critical water extraction (SCWE) at 100°C, 150°C and 200°C to isolate SOM fractions from the set of 25 paddy soil samples. In all cases, SCWE organic carbon (SCWE-OC) and N (SCWE-N) increased exponentially with the increase of temperature. SCWE preferentially extracted N over OC with increasing temperature. The efficiency of SCWE and the selectivity towards N were both lower in soils with increasingly reactive clay mineralogy. No correlations were found between the SCWE fractions and anaerobic N mineralization rate. In conclusion, SOM quantity and SOM quality, here represented by C and N distribution over physicochemical fractions, don't seem to dominantly determine anaerobic N mineralization in primarily young floodplain paddy soils. Other factors with exceeding control (pH and pyrophosphate extractable Fe) appear to exist. Possibly, the specific young genesis stage of most of the soils included (termed 'floodplain' soils) results in a limited availability of readily reducible Fe. Being an important alternative electron acceptor under submerged conditions, the availability of Fe, which is also controlled by pH, may be a bottleneck in the anaerobic N mineralization process. This needs to be further investigated by controlled incubation experiments with detailed follow-up of pH, redox potential, Fe in solution and mineral N.

  18. A comparison of the toluene distillation and vacuum/heat methods for extracting soil water for stable isotopic analysis

    Science.gov (United States)

    Ingraham, Neil L.; Shadel, Craig

    1992-12-01

    Hanford Loam, from Richland, Washington, was used as a test soil to determine the precision, accuracy and nature of two methods to extract soil water for stable isotopic analysis: azeotropic distillation using toluene, and simple heating under vacuum. The soil was oven dried, rehydrated with water of known stable isotopic compositions, and the introduced water was then extracted. Compared with the introduced water, initial aliquots of evolved water taken during a toluene extraction were as much as 30 ‰ more depleted in D and 2.7 ‰ more depleted in 18O, whereas final aliquots were as much as 40 ‰ more enriched in D and 14.3 ‰ more enriched in 18O. Initial aliquots collected during the vacuum/heat extraction were as much as 64 ‰ more depleted in D and 8.4 ‰ more depleted in 18O than was the introduced water, whereas the final aliquots were as much as 139 ‰ more enriched in D, and 20.8 ‰ more enriched in 18O. Neither method appears quantitative; however, the difference in stable isotopic composition between the first and last aliquots of water extracted by the toluene method is less than that from the vacuum/heat method. This is attributed to the smaller fractionation factors involved with the higher average temperatures of distillation of the toluene. The average stable isotopic compositions of the extracted water varied from that of the introduced water by up to 1.4 ‰ in δD and 4.2 ‰ in δ18O with the toluene method, and by 11.0 ‰ in δD and 1.8 ‰ in δ18O for the vacuum/heat method. The lack of accuracy of the extraction methods is thought to be due to isotopic fractionation associated with water being weakly bound (not released below 110°C) in the soil. The isotopic effect of this heat-labile water is larger at low water contents (3.6 and 5.2% water by weight) as the water bound in the soil is a commensurately larger fraction of the total. With larger soilwater contents the small volume of water bound with an associated fractionation is

  19. The response of soil solution chemistry in European forests to decreasing acid deposition.

    Science.gov (United States)

    Johnson, James; Graf Pannatier, Elisabeth; Carnicelli, Stefano; Cecchini, Guia; Clarke, Nicholas; Cools, Nathalie; Hansen, Karin; Meesenburg, Henning; Nieminen, Tiina M; Pihl-Karlsson, Gunilla; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Jonard, Mathieu

    2018-03-31

    Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosystems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Al tot ) and dissolved organic carbon were determined for the period 1995-2012. Plots with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10-20 cm, 104 plots) and subsoil (40-80 cm, 162 plots). There was a large decrease in the concentration of sulphate (SO42-) in soil solution; over a 10-year period (2000-2010), SO42- decreased by 52% at 10-20 cm and 40% at 40-80 cm. Nitrate was unchanged at 10-20 cm but decreased at 40-80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca 2+  + Mg 2+  + K + ) and Al tot over the entire dataset. The response of soil solution acidity was nonuniform. At 10-20 cm, ANC increased in acid-sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40-80 cm, ANC remained unchanged in acid-sensitive soils (base saturation ≤20%, pHCaCl2 ≤ 4.5) and decreased in better-buffered soils (base saturation >20%, pHCaCl2 > 4.5). In addition, the molar ratio of Bc to Al tot either did not change or decreased. The results suggest a long-time lag between emission abatement and changes in soil solution acidity and underline the importance of long-term monitoring in evaluating ecosystem response to decreases in deposition. © 2018 John Wiley & Sons

  20. Effects of Pisha sandstone content on solute transport in a sandy soil.

    Science.gov (United States)

    Zhen, Qing; Zheng, Jiyong; He, Honghua; Han, Fengpeng; Zhang, Xingchang

    2016-02-01

    In sandy soil, water, nutrients and even pollutants are easily leaching to deeper layers. The objective of this study was to assess the effects of Pisha sandstone on soil solute transport in a sandy soil. The miscible displacement technique was used to obtain breakthrough curves (BTCs) of Br(-) as an inert non-adsorbed tracer and Na(+) as an adsorbed tracer. The incorporation of Pisha sandstone into sandy soil was able to prevent the early breakthrough of both tracers by decreasing the saturated hydraulic conductivity compared to the controlled sandy soil column, and the impeding effects increased with Pisha sandstone content. The BTCs of Br(-) were accurately described by both the convection-dispersion equation (CDE) and the two-region model (T-R), and the T-R model fitted the experimental data slightly better than the CDE. The two-site nonequilibrium model (T-S) accurately fit the Na(+) transport data. Pisha sandstone impeded the breakthrough of Na(+) not only by decreasing the saturated hydraulic conductivity but also by increasing the adsorption capacity of the soil. The measured CEC values of Pisha sandstone were up to 11 times larger than those of the sandy soil. The retardation factors (R) determined by the T-S model increased with increasing Pisha sandstone content, and the partition coefficient (K(d)) showed a similar trend to R. According to the results of this study, Pisha sandstone can successfully impede solute transport in a sandy soil column. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil.

    Science.gov (United States)

    Li, X; Christie, P

    2001-01-01

    Red clover plants inoculated with Glomus mosseae were grown in a sterile pasture soil containing 50 mg Zn kg(-1) in 'Plexiglas' (acrylic) containers with nylon net partitions (30 microm mesh) designed to separate the soil into a central root zone and two outer zones for hyphal growth with no root penetration. Two porous plastic soil moisture samplers were installed in each pot, one in the root compartment and the other in one of the hyphal compartments. The soil in the outer compartments was amended with one of the four application rates of Zn (as ZnSO4) ranging from 0 to 1000 mg kg(-1). Non-mycorrhizal controls were included, and there were five replicates of each treatment in a randomised block in a glasshouse. Uninoculated plants received supplementary P to avoid yield limitation due to low soil P status. Plants grew in the central compartment for nine weeks. Soil moisture samples were collected 4, 24 and 62 days after sowing to monitor changes in the Zn concentration and pH of the soil solution. At harvest, the mean mycorrhizal infection rate of inoculated plants ranged from 29% to 34% of total root length and was little affected by Zn application. Root and shoot yields were not affected by mycorrhizal infection. Plant Zn concentration and uptake were lower in mycorrhizal plants than non-mycorrhizal controls, and this effect was more pronounced with increasing Zn application rate to the soil. Soil solution Zn concentrations were lower and pH values were higher in mycorrhizal treatments than non-mycorrhizal controls and the mycorrhiza effect was more pronounced at higher Zn application rates. The protective effect of mycorrhiza against plant Zn uptake may have been associated with changes in Zn solubility mediated by changes in the soil solution pH, or by immobilisation of Zn in the extraradical mycelium.

  2. The transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion

    OpenAIRE

    Rianti, Devi

    2006-01-01

    A laboratoric experimental study was conducted on the transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion. The aim of this study is to know the difference of acrylic resin transverse strengths caused by immersion time variations in a concentrate solution. The study was carried out on unpolished acrylic resin plates with 65 × 10 × 2,5 mm dimension; solution with 15% Coleus amboinicus, Lour extract, and 30, 60, 90 days immersion times to measure the tra...

  3. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    Science.gov (United States)

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  4. Dinâmica de íons em solo ácido lixiviado com extratos de resíduos de adubos verdes e soluções puras de ácidos orgânicos Dynamic of ions in acid soil leached with green manure residues extracts and pure solutions of organic acids

    Directory of Open Access Journals (Sweden)

    Júlio Cezar Franchini

    1999-12-01

    Full Text Available A influência da aplicação de resíduos vegetais na dinâmica de íons em solos ácidos é pouco conhecida. Neste estudo, a mobilidade de íons em amostra do horizonte Bw de um Latossolo Vermelho-Escuro álico lixiviado com soluções puras de ácidos cítrico e succínico e extratos aquosos de resíduos de nabo forrageiro (Raphanus sativus e aveia-preta (Avena strigosa foi avaliada em colunas de solo (5, 10, 20 e 40 cm de altura por 4 cm de diâmetro. Após a percolação das soluções e extratos pelas colunas de solo determinaram-se, nas soluções efluentes, os teores de Ca (Ca s, Mg (Mg s, K (Ks, Al total (Al st, orgânico (Al so, monomérico (Al sm e carbono orgânico dissolvido. No solo, foram determinados os teores trocáveis de Ca (Ca tr, Mg (Mg tr, K (Ktr e Al (Al tr e o pH (CaCl2. Os ácidos cítrico e succínico aumentaram os teores de Al st e Ca s, respectivamente, causando reduções nas frações trocáveis desses elementos no solo. O extrato de aveia-preta foi mais efetivo na remoção do Ca tr e o de nabo forrageiro na do Al tr. O decréscimo de Ca tr e Al tr foi seguido do aumento do Ktr. A formação de complexos entre Ca s e Al tr com compostos orgânicos de baixo peso molecular foi sugerida como o provável mecanismo responsável pela mobilidade dos íons polivalentes no subsolo de solos ácidos após a aplicação dos extratos de resíduos vegetais e das soluções puras de ácidos orgânicos.The influence of green manure residues addition in the dynamic of ions in acid soils is not well known. In this study, ion mobility in a sample of the Bw horizon of an Dark-Red Latosol (Oxisol, leached with citric and succinic acid pure solutions and with aqueous residue extracts of black oats (Avena strigosa and oil seed radish (Raphanus sativus were evaluated in soil columns (5, 10, 20, and 40 cm long by 4 cm diameter. After the solutions and extracts passed through the soil columns, the following parameters were determined

  5. A method for efficient extraction of rotifers (Rotifera) from soils

    Czech Academy of Sciences Publication Activity Database

    Devetter, Miloslav

    2010-01-01

    Roč. 53, č. 2 (2010), s. 115-118 ISSN 0031-4056 R&D Projects: GA ČR(CZ) GP206/06/P405 Institutional research plan: CEZ:AV0Z60660521 Keywords : soil rotifers * Bdelloids * quantitative extraction Subject RIV: EH - Ecology, Behaviour Impact factor: 1.474, year: 2010

  6. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    DEFF Research Database (Denmark)

    Koestel, J. K.; Nørgaard, Trine; Loung, N. M.

    2013-01-01

    It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables......, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field...... to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column...

  7. Extractability of added lead in soils and its concentration in plants

    Energy Technology Data Exchange (ETDEWEB)

    MacLean, A J; Halstead, R L; Finn, B J

    1969-01-01

    The concentrations of Pb in five species of plants were found to increase with proximity of the sampling sites to a well-travelled highway. The Pb content of oats and alfalfa grown in four soils pretreated with PbCl/sub 2/ in pot tests varied inversely with the organic matter content and pH of the soils. The amounts of Pb taken up by the plants were reduced upon addition of phosphate or of lime to the acid soils. Furthermore, the beneficial effects of organic matter, phosphate and lime in reducing Pb in the plants were usually in accord with corresponding reductions in extractable Pb in the soils as measured in 1 N neutral ammonium acetate and 0.1 M CaCl/sub 2/. 11 references, 6 tables.

  8. Coalescence of organic solutions in acid and metal extraction by tri-alkylamines; Demixtion des solutions organiques lors de l'extraction des acides et des metaux par les trialcoylamines

    Energy Technology Data Exchange (ETDEWEB)

    Blain, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1970-07-01

    The formation of two layers with tri-alkylammonium salts solutions in low polarity diluents could be explained on the basis of settling of micelles. Light scattering and viscosity measurements reveal that micelles size increases rather sharply before coalescence. The existence of micelles in the solution has been confirmed by ultracentrifuge experiments. The behaviour of these solutions, in general, is similar to that of colloidal soap solutions. The various parameters which promote third phase formation are: anion size in the order of Cl{sup -} {approx} Br{sup -} < NO{sub 3} < ClO{sub 4}{sup -}; extraction of excess acid; metal cation size in the order of UO{sub 2}{sup ++} < Pu{sup 4+} {approx} Th{sup 4+}; decreasing in the length of the n-alkyl chain in the alkyl-ammonium salts; decreasing in diluent polarity. The above phenomenon could be explained on the basis of the affinity between alkylammonium salts and organic solvent. The composition of the three phases is independent of the initial amine concentration for a fixed acid and metal concentration. This has been verified experimentally and is in conformity with phase rule. (author) [French] La demixtion des solutions organiques de sels de trialcoyl-ammonium dans les solvants peu polaires est provoquee par la decantation des micelles presentes dans la solution. Nous avons montre par viscosimetrie et surtout par diffusion de la lumiere que les micelles grossissent de facon importante juste avant demixtion. Des experiences d'ultracentrifugation nous ont permis de confirmer la presence de micelles. Le comportement de ces solutions est analogue a celui des solutions colloidales de savons dans l'eau. Ainsi tous les parametres qui font decroitre la compatibilite du sel d'ammonium R{sub 3}NH+ oooX{sup -} avec le solvant organique favorisent l'agregation du sel et par consequent la demixtion, soient: l'extraction des anions de taille croissante Cl{sup -} {approx} Br{sup -} < NO{sub 3} < ClO{sub 4}{sup -}; l'extraction

  9. The use of supercritical fluid extraction as a sample preparation technique for soils

    International Nuclear Information System (INIS)

    Levy, J.M.; Dolata, L.A.; Rosselli, A.C.; Ravey, R.M.

    1994-01-01

    Using off-line supercritical fluid extraction (SFE), polynuclear aromatic hydrocarbons (PAHs) were extracted at different levels from various soil and sediment matrices. Based upon GC/MS measurements a number of SFE operational parameters including pressure, temperature and flow rate, were optimized to yield the highest efficiencies with the best precision

  10. Extraction of pores from microtomographic reconstructions of intact soil aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Albee, P. B.; Stockman, G. C.; Smucker, A. J. M.

    2000-02-29

    Segmentation of features is often a necessary step in the analysis of volumetric data. The authors have developed a simple technique for extracting voids from irregular volumetric data sets. In this work they look at extracting pores from soil aggregates. First, they identify a threshold that gives good separability of the object from the background. They then segment the object, and perform connected components analysis on the pores within the object. Using their technique pores that break the surface can be segmented along with pores completely contained in the initially segmented object.

  11. Data Assimilation to Extract Soil Moisture Information from SMAP Observations

    Directory of Open Access Journals (Sweden)

    Jana Kolassa

    2017-11-01

    Full Text Available This study compares different methods to extract soil moisture information through the assimilation of Soil Moisture Active Passive (SMAP observations. Neural network (NN and physically-based SMAP soil moisture retrievals were assimilated into the National Aeronautics and Space Administration (NASA Catchment model over the contiguous United States for April 2015 to March 2017. By construction, the NN retrievals are consistent with the global climatology of the Catchment model soil moisture. Assimilating the NN retrievals without further bias correction improved the surface and root zone correlations against in situ measurements from 14 SMAP core validation sites (CVS by 0.12 and 0.16, respectively, over the model-only skill, and reduced the surface and root zone unbiased root-mean-square error (ubRMSE by 0.005 m 3 m − 3 and 0.001 m 3 m − 3 , respectively. The assimilation reduced the average absolute surface bias against the CVS measurements by 0.009 m 3 m − 3 , but increased the root zone bias by 0.014 m 3 m − 3 . Assimilating the NN retrievals after a localized bias correction yielded slightly lower surface correlation and ubRMSE improvements, but generally the skill differences were small. The assimilation of the physically-based SMAP Level-2 passive soil moisture retrievals using a global bias correction yielded similar skill improvements, as did the direct assimilation of locally bias-corrected SMAP brightness temperatures within the SMAP Level-4 soil moisture algorithm. The results show that global bias correction methods may be able to extract more independent information from SMAP observations compared to local bias correction methods, but without accurate quality control and observation error characterization they are also more vulnerable to adverse effects from retrieval errors related to uncertainties in the retrieval inputs and algorithm. Furthermore, the results show that using global bias correction approaches without a

  12. Sorption of cesium in young till soils

    Energy Technology Data Exchange (ETDEWEB)

    Lusa, Merja; Lempinen, Janne; Ahola, Hanna; Soederlund, Mervi; Lehto, Jukka [Helsinki Univ. (Finland). Laboratory of Radiochemistry; Lahdenperae, Anne-Maj [Saanio and Riekkola Oy, Consulting Engineers, Helsinki (Finland); Ikonen, Ari T.K. [Posiva Oy, Eurajoki (Finland)

    2014-10-01

    Soil samples from three forest soil pits were examined down to a depth of approximately three metres using 1 M ammonium acetate extraction and microwave-assisted extraction with concentrated nitric acid (HNO{sub 3}), to study the binding of cesium (Cs) at Olkiluoto Island, southern Finland. Ammonium acetate was used to extract the readily exchangeable Cs fractions roughly representing the Cs fraction in soil which is available for plants. Microwave-assisted HNO{sub 3} extraction dissolves various minerals, e.g. carbonates, most sulphides, arsenides, selenides, phosphates, molybdates, sulphates, iron (Fe) and manganese (Mn) oxides and some silicates (olivine, biotite, zeolite), and reflects the total Cs concentrations. Cs was mostly found in the strongly bound fraction obtained through HNO{sub 3} extraction. The average Cs concentrations found in this fraction were 3.53 ± 0.30 mg/kg (d.w.), 3.06 ± 1.86 mg/kg (d.w.) and 1.83 ± 0.42 mg/kg (d.w.) in the three soil pits, respectively. The average exchangeable Cs found in the ammonium acetate extraction in all three sampling pits was 0.015 ± 0.008 mg/kg (d.w.). In addition, Cs concentrations in the soil solution were determined and in situ distribution coefficients (K{sub d}) for Cs were calculated. Furthermore, the in situ K{sub d} data was compared with the Cs K{sub d} data obtained using the model batch experiments. The in situ K{sub d} values were observed to fairly well follow the trend of batch sorption data with respect to soil depth, but on average the batch distribution coefficients were almost an order of magnitude higher than the in situ K{sub d} data. In situ Cs sorption data could be satisfactory fitted with the Langmuir sorption isotherm, but the Freundlich isotherm failed to fit the data. Finally, distribution coefficients were calculated by an ion exchange approach using soil solution data, the cation exchange capacity (CEC) as well as Cs to sodium (Na) and Cs to potassium (K) ion exchange selectivity

  13. Using in situ bioventing to minimize soil vapor extraction costs

    International Nuclear Information System (INIS)

    Downey, D.C.; Frishmuth, R.A.; Archabal, S.R.; Pluhar, C.J.; Blystone, P.G.; Miller, R.N.

    1995-01-01

    Gasoline-contaminated soils may be difficult to remediate with bioventing because high concentrations of gasoline vapors become mobile when air is injected into the soil. Because outward vapor migration is often unacceptable on small commercial sites, soil vapor extraction (SVE) or innovative bioventing techniques are required to control vapors and to increase soil gas oxygen levels to stimulate hydrocarbon biodegradation. Combinations of SVE, off-gas treatment, and bioventing have been used to reduce the costs normally associated with remediation of gasoline-contaminated sites. At Site 1, low rates of pulsed air injection were used to provide oxygen while minimizing vapor migration. At Site 2, a period of high-rate SVE and off-gas treatment was followed by long-term air injection. Site 3 used an innovative approach that combined regenerative resin for ex situ vapor treatment with in situ bioventing to reduce the overall cost of site remediation. At each of these Air Force sites, bioventing provided cost savings when compared to more traditional SVE methods

  14. Effects of solution chemistry and aging time on prion protein adsorption and replication of soil-bound prions.

    Directory of Open Access Journals (Sweden)

    Samuel E Saunders

    2011-04-01

    Full Text Available Prion interactions with soil may play an important role in the transmission of chronic wasting disease (CWD and scrapie. Prions are known to bind to a wide range of soil surfaces, but the effects of adsorption solution chemistry and long-term soil binding on prion fate and transmission risk are unknown. We investigated HY TME prion protein (PrP(Sc adsorption to soil minerals in aqueous solutions of phosphate buffered saline (PBS, sodium chloride, calcium chloride, and deionized water using western blotting. The replication efficiency of bound prions following adsorption in these solutions was also evaluated by protein misfolding cyclic amplification (PMCA. Aging studies investigated PrP(Sc desorption and replication efficiency up to one year following adsorption in PBS or DI water. Results indicate that adsorption solution chemistry can affect subsequent prion replication or desorption ability, especially after incubation periods of 30 d or longer. Observed effects were minor over the short-term (7 d or less. Results of long-term aging experiments demonstrate that unbound prions or prions bound to a diverse range of soil surfaces can readily replicate after one year. Our results suggest that while prion-soil interactions can vary with solution chemistry, prions bound to soil could remain a risk for transmitting prion diseases after months in the environment.

  15. Soil Vapor Extraction and Bioventing Test Work Plan for the MOGAS Site, Myrtle Beach Air Force Base, South Carolina

    National Research Council Canada - National Science Library

    1995-01-01

    This work plan presents an evaluation of soil vapor extraction (SVE) and bioventing, and describes the SVE pilot scale and bioventing activities to be conducted to extract and treat soil gas at Installation Restoration Program (IRP...

  16. How ISCO Can Interfere in Soil Pore Distribution and Solute Transport

    Science.gov (United States)

    Favero, M.; Freitas, J. G.; Furquim, S. A. C.; Thomson, N. R.; Cooper, M.

    2016-12-01

    Recently in situ chemical oxidation (ISCO) has been a remedy of choice for sites contaminated with organic compounds. However, the impact of the chemical oxidant on soil properties and, therefore, on solute transport and remediation efficiency still lacks understanding. This research effort sought to evaluate the changes in soil physical properties and solute transport behavior in a typical tropical soil (Oxisol) resulting from exposure to persulfate. The Oxisol used had a microaggregate structure, resulting in a relatively high hydraulic conductivity despite the high clay content (67%). One-dimensional laboratory experiments were performed using a saturated undisturbed column. The injection of an ideal tracer (bromide), a reactive tracer (phenol) and persulfate (12 ± 1 gL-1 for 30 d) were performed consecutively. The tracer tests were repeated following persulfate injection. Transport parameters (longitudinal dispersivity: αL and retardation factor: R) and the effective porosity (ne) were obtained by fitting the breakthrough curves with an analytical solution for one-dimensional transport. Micromorphological analyses of porosity were conducted on impregnated soil blocks from control and oxidized systems. The bromide and phenol tracer test data yielded αL of 2.431 ± 0.002 cm, ne of 41.99 ± 1.52 %, R of 1.10, and a first-order decay rate coefficient of 6.5x10-5 min-1 prior to persulfate exposure. The effluent persulfate concentration stabilized at C/Co of 0.8 after 4 d of injection and the breakthrough was delayed relative to bromide. Concurrent with the breakthrough of persulfate, the pH decreased and a progressive release of Al (III) over the first 4 d with subsequent stabilization were observed. Following persulfate exposures the hydraulic conductivity increased about one-order of magnitude. Micromorphological analysis showed that persulfate produced alterations in poroids types, with an increase of complex packing voids. It was verified that persulfate

  17. Microwave Acid Extraction to Analyze K and Mg Reserves in the Clay Fraction of Soils

    Directory of Open Access Journals (Sweden)

    Araína Hulmann Batista

    Full Text Available ABSTRACT: Extraction of K and Mg with boiling 1 mol L-1 HNO3 in an open system for predicting K and Mg uptake by plants is a method of low reproducibility. The aim of this study was to compare the extraction capacity of different acid methods relative to hydrofluoric acid extraction for K and Mg. A further objective was to develop a chemical extraction method using a closed system (microwave for nonexchangeable and structural forms of these nutrients in order to replace the traditional method of extraction with boiling HNO3 on a hot plate (open system. The EPA 3051A method can be used to estimate the total content of K in the clay fraction of soils developed from carbonate and phyllite/mica schist rocks. In the clay fraction of soils developed from basalt, recoveries of K by the EPA 3051A (pseudo-total method were higher than for the EPA 3052 (total hydrofluoric extraction method. The relative abundance of K and Mg for soils in carbonate rocks, phyllite/mica schist, granite/gneiss, and basalt determined by aqua regia digestion is unreliable. The method using 1 mol L-1 HNO3 in an closed system (microwave showed potential for replacing the classical method of extraction of nonexchangeable forms of K (boiling 1 mol L-1 HNO3 in an open system - hot plate and reduced the loss of Si by volatilization.

  18. Soil Degradation in India: Challenges and Potential Solutions

    Directory of Open Access Journals (Sweden)

    Ranjan Bhattacharyya

    2015-03-01

    Full Text Available Soil degradation in India is estimated to be occurring on 147 million hectares (Mha of land, including 94 Mha from water erosion, 16 Mha from acidification, 14 Mha from flooding, 9 Mha from wind erosion, 6 Mha from salinity, and 7 Mha from a combination of factors. This is extremely serious because India supports 18% of the world’s human population and 15% of the world’s livestock population, but has only 2.4% of the world’s land area. Despite its low proportional land area, India ranks second worldwide in farm output. Agriculture, forestry, and fisheries account for 17% of the gross domestic product and employs about 50% of the total workforce of the country. Causes of soil degradation are both natural and human-induced. Natural causes include earthquakes, tsunamis, droughts, avalanches, landslides, volcanic eruptions, floods, tornadoes, and wildfires. Human-induced soil degradation results from land clearing and deforestation, inappropriate agricultural practices, improper management of industrial effluents and wastes, over-grazing, careless management of forests, surface mining, urban sprawl, and commercial/industrial development. Inappropriate agricultural practices include excessive tillage and use of heavy machinery, excessive and unbalanced use of inorganic fertilizers, poor irrigation and water management techniques, pesticide overuse, inadequate crop residue and/or organic carbon inputs, and poor crop cycle planning. Some underlying social causes of soil degradation in India are land shortage, decline in per capita land availability, economic pressure on land, land tenancy, poverty, and population increase. In this review of land degradation in India, we summarize (1 the main causes of soil degradation in different agro-climatic regions; (2 research results documenting both soil degradation and soil health improvement in various agricultural systems; and (3 potential solutions to improve soil health in different regions using a

  19. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions.

    Science.gov (United States)

    DeJong, Jason T; Soga, Kenichi; Banwart, Steven A; Whalley, W Richard; Ginn, Timothy R; Nelson, Douglas C; Mortensen, Brina M; Martinez, Brian C; Barkouki, Tammer

    2011-01-06

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming-these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that 'soil engineering in vivo', wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon-effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized.

  20. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions

    Science.gov (United States)

    DeJong, Jason T.; Soga, Kenichi; Banwart, Steven A.; Whalley, W. Richard; Ginn, Timothy R.; Nelson, Douglas C.; Mortensen, Brina M.; Martinez, Brian C.; Barkouki, Tammer

    2011-01-01

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming—these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that ‘soil engineering in vivo’, wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon—effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized. PMID:20829246

  1. Comparative analysis of environmental DNA extraction and purification methods from different humic acid rich soils

    CSIR Research Space (South Africa)

    Lakay, FM

    2007-01-01

    Full Text Available Three different soil DNA isolation and four purification strategies were compared on different soil samples with variable rates of success. Bead beating extraction gave significantly higher DNA yields than microwave-based and liquid nitrogen...

  2. Influence of dissolved organic matter and manganese oxides on metal speciation in soil solution: A modelling approach.

    Science.gov (United States)

    Schneider, Arnaud R; Ponthieu, Marie; Cancès, Benjamin; Conreux, Alexandra; Morvan, Xavier; Gommeaux, Maxime; Marin, Béatrice; Benedetti, Marc F

    2016-06-01

    Trace element (TE) speciation modelling in soil solution is controlled by the assumptions made about the soil solution composition. To evaluate this influence, different assumptions using Visual MINTEQ were tested and compared to measurements of free TE concentrations. The soil column Donnan membrane technique (SC-DMT) was used to estimate the free TE (Cd, Cu, Ni, Pb and Zn) concentrations in six acidic soil solutions. A batch technique using DAX-8 resin was used to fractionate the dissolved organic matter (DOM) into four fractions: humic acids (HA), fulvic acids (FA), hydrophilic acids (Hy) and hydrophobic neutral organic matter (HON). To model TE speciation, particular attention was focused on the hydrous manganese oxides (HMO) and the Hy fraction, ligands not considered in most of the TE speciation modelling studies in soil solution. In this work, the model predictions of free ion activities agree with the experimental results. The knowledge of the FA fraction seems to be very useful, especially in the case of high DOM content, for more accurately representing experimental data. Finally, the role of the manganese oxides and of the Hy fraction on TE speciation was identified and, depending on the physicochemical conditions of the soil solution, should be considered in future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mutual effect of zinc (2) and cadmium (2) during extraction with tributil phosphate from lithium chloride solutions

    International Nuclear Information System (INIS)

    Prokuev, V.A.; Belousov, E.A.

    1980-01-01

    Mutual effect of zinc and cadmium chlorides during extraction with tributyl phosphate at 5, 25 and 45 deg C from LiCl solutions is studied. The conclusion about the suppression of zinc and cadmium extraction by extracting macroelement (cadmium and zinc correspondingly) as the result of manifestation of general ion effect (lithium ion) in the extraction systems is made. It is established that the suppression of zink and cadmium extraction increases with the temperature decrease. On the base of the obtained experimental data the different type of extraction element distribution curves at the extraction from the muriatic solutions and lithium chloride solutions with tributyl phosphate is discussed

  4. Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus deficiency

    International Nuclear Information System (INIS)

    Cheyns, Karlien; Peeters, Sofie; Delcourt, Dorien; Smolders, Erik

    2012-01-01

    This study was set up to relate lead (Pb) bioavailability with its toxicity to plants in soils. Tomato and barley seedlings were grown in six different PbCl 2 spiked soils (pH: 4.7–7.4; eCEC: 4.2–41.7 cmol c /kg). Soils were leached and pH corrected after spiking to exclude confounding factors. Plant growth was halved at 1600–6500 mg Pb/kg soil for tomato and at 1900–8300 mg Pb/kg soil for barley. These soil Pb threshold were unrelated to soil pH, organic carbon, texture or eCEC and neither soil solution Pb nor Pb 2+ ion activity adequately explained Pb toxicity among soils. Shoot phosphorus (P) concentrations significantly decreased with increasing soil Pb concentrations. Tomato grown in hydroponics at either varying P supply or at increasing Pb (equal initial P) illustrated that shoot P explained growth response in both scenarios. The results suggest that Pb toxicity is partially related to Pb induced P deficiency, likely due to lead phosphate precipitation. - Highlights: ► Tomato and barley shoot growth was affected by Pb toxicity in six different soils. ► Soil properties did not explain differences in plant Pb toxicity among soils. ► Neither soil solution Pb nor Pb 2+ ion activity explained Pb toxicity among soils. ► Shoot phosphorus concentration decreased with increasing soil Pb concentrations. ► Lead induced a P deficiency in plants, likely due to lead phosphate precipitation. - Soil properties did not explain differences in plant lead toxicity among different soils. Shoot phosphorus concentration decreased with increasing soil lead concentrations.

  5. Evaluation of Phytoavailability of Heavy Metals to Chinese Cabbage (Brassica chinensis L.) in Rural Soils

    Science.gov (United States)

    Hseu, Zeng-Yei; Zehetner, Franz

    2014-01-01

    This study compared the extractability of Cd, Cu, Ni, Pb, and Zn by 8 extraction protocols for 22 representative rural soils in Taiwan and correlated the extractable amounts of the metals with their uptake by Chinese cabbage for developing an empirical model to predict metal phytoavailability based on soil properties. Chemical agents in these protocols included dilute acids, neutral salts, and chelating agents, in addition to water and the Rhizon soil solution sampler. The highest concentrations of extractable metals were observed in the HCl extraction and the lowest in the Rhizon sampling method. The linear correlation coefficients between extractable metals in soil pools and metals in shoots were higher than those in roots. Correlations between extractable metal concentrations and soil properties were variable; soil pH, clay content, total metal content, and extractable metal concentration were considered together to simulate their combined effects on crop uptake by an empirical model. This combination improved the correlations to different extents for different extraction methods, particularly for Pb, for which the extractable amounts with any extraction protocol did not correlate with crop uptake by simple correlation analysis. PMID:25295297

  6. Evaluation of Phytoavailability of Heavy Metals to Chinese Cabbage (Brassica chinensis L. in Rural Soils

    Directory of Open Access Journals (Sweden)

    Yao-Tsung Chang

    2014-01-01

    Full Text Available This study compared the extractability of Cd, Cu, Ni, Pb, and Zn by 8 extraction protocols for 22 representative rural soils in Taiwan and correlated the extractable amounts of the metals with their uptake by Chinese cabbage for developing an empirical model to predict metal phytoavailability based on soil properties. Chemical agents in these protocols included dilute acids, neutral salts, and chelating agents, in addition to water and the Rhizon soil solution sampler. The highest concentrations of extractable metals were observed in the HCl extraction and the lowest in the Rhizon sampling method. The linear correlation coefficients between extractable metals in soil pools and metals in shoots were higher than those in roots. Correlations between extractable metal concentrations and soil properties were variable; soil pH, clay content, total metal content, and extractable metal concentration were considered together to simulate their combined effects on crop uptake by an empirical model. This combination improved the correlations to different extents for different extraction methods, particularly for Pb, for which the extractable amounts with any extraction protocol did not correlate with crop uptake by simple correlation analysis.

  7. Mechanism of vertical migration of Am 241 in peaty-gley soil

    International Nuclear Information System (INIS)

    Kalinin, V.N.

    2002-01-01

    Nowadays soil in the Chernobyl zone has become a source from which radionuclides can come to other objects of biosphere. The vertical migration determines distribution of the radionuclides in the soil. For research of vertical migration of Am 241 in soil the distribution of the radionuclide in granulometric fractions of the soil particles was measured, humus was extracted from the soil with the help of a sodium pyrophosphate solution by the accelerated method of Kononova and Beltchikova. For an estimation of a share of a mobile form of radionuclide the soil was dissolved in ammonium acetate solution. The conclusion is made, that nowadays significant part of Am 241 is strongly fixed on a mineral matrix of the soil and migrates together with the soil particles

  8. Novel colorimetric method overcoming phosphorus interference during trace arsenic analysis in soil solution.

    Science.gov (United States)

    Makris, Konstantinos C; Punamiya, Pravin; Sarkar, Dibyendu; Datta, Rupali

    2008-02-01

    A sensitive (method detection limit, 2.0 microg As L(-1)) colorimetric determination of trace As(v) and As(iii) concentrations in the presence of soluble phosphorus (P) concentrations in soil/water extracts is presented. The proposed method modifies the malachite green method (MG) originally developed for P in soil and water. Our method relies upon the finding that As(iii) and As(v) do not develop the green color during P analysis using the MG method. When an optimum concentration of ascorbic acid (AA) is added to a sample containing up to 15 times P > As (microM) concentrations, the final sample absorbance due to P will be equal to that of As(v) molecules. The soluble As concentration can then be quantified by the concentration difference between the mixed oxyanion (As + P) absorbance (proposed method) and the MG method absorbance that measures only P. Our method is miniaturized using a 96-well microplate UV-VIS reader that utilizes minute reagent and sample volumes (120 and 200 microL sample(-1), respectively), thus, minimizing waste and offering flexibility in the field. Our method was tested in a suite of As-contaminated soils that successfully measured both As and P in soil water extracts and total digests. Mean% As recoveries ranged between 84 and 117%, corroborating data obtained with high-resolution inductively-coupled plasma mass-spectrometry. The performance of the proposed colorimetric As method was unaffected by the presence of Cu, Zn, Pb, Ni, Fe, Al, Si, and Cr in both neutral and highly-acidic (ca. pH 2) soil extracts. Data from this study provide the proof of concept towards creating a field-deployable, portable As kit.

  9. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals.

    Science.gov (United States)

    Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae

    2017-01-15

    Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes--a transition regime between bioventing and soil vapour extraction.

    Science.gov (United States)

    Magalhães, S M C; Ferreira Jorge, R M; Castro, P M L

    2009-10-30

    Bioventing has emerged as one of the most cost-effective in situ technologies available to address petroleum light-hydrocarbon spills, one of the most common sources of soil pollution. However, the major drawback associated with this technology is the extended treatment time often required. The present study aimed to illustrate how an intended air-injection bioventing technology can be transformed into a soil vapour extraction effort when the air flow rates are pushed to a stripping mode, thus leading to the treatment of the off-gas resulting from volatilisation. As such, a combination of an air-injection bioventing system and a biotrickling filter was applied for the treatment of contaminated soil, the latter aiming at the treatment of the emissions resulting from the bioventing process. With a moisture content of 10%, soil contaminated with toluene at two different concentrations, namely 2 and 14 mg g soil(-1), were treated successfully using an air-injection bioventing system at a constant air flow rate of ca. 0.13 dm(3) min(-1), which led to the removal of ca. 99% toluene, after a period of ca. 5 days of treatment. A biotrickling filter was simultaneously used to treat the outlet gas emissions, which presented average removal efficiencies of ca. 86%. The proposed combination of biotechnologies proved to be an efficient solution for the decontamination process, when an excessive air flow rate was applied, reducing both the soil contamination and the outlet gas emissions, whilst being able to reduce the treatment time required by bioventing only.

  11. Mobile heavy metal fractions in soils

    International Nuclear Information System (INIS)

    Horak, O.; Kamel, A.A.; Ecker, S.; Benetka, E.; Rebler, R.; Lummerstorfer, E.; Kandeler, E.

    1994-01-01

    A long term outdoor experiment was conducted in plastic containers (50 litres) with three soils, contaminated by increasing concentrations of zinc, copper, nickel, cadmium and vanadium. The aim of the study was to investigate the influence of heavy metal contamination on soil microbial processes as well as the accumulation of heavy metals in plants. Spring barley, followed by winter endive were grown as experimental crops in a first vegetation period, while spring wheat was grown during the second year. The soil microbial activities, indicated by arylsulfatase, dehydrogenase, and substrate-induced respiration, decreased with increasing heavy metal contamination. Significant correlations were observed between the inhibition of soil microorganisms and the easily mobilizable heavy metal fractions of soils, extracted by a solution of 1 M ammoniumacetate at pH = 7. The heavy metal accumulation in vegetative and generative parts of the crop plants also showed a good agreement with mobilizable soil fractions. The results of the experiment indicate, that the extraction with ammoniumacetate can be used as a reference method for determination of tolerable heavy metal concentrations in soils. (authors)

  12. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...... to 80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...

  13. Analysis of Fluorotelomer Alcohols in Soils: Optimization of Extraction and Chromatography

    Science.gov (United States)

    This article describes the development of an analytical method for the determination of fluorotelomer alcohols (FTOHs) in soil. The sensitive and selective determination of the telomer alcohols was performed by extraction with mthyl tert-butyl ether (MTBE) and analysis of the ext...

  14. Application of supercritical and subcritical fluids for the extraction of hazardous materials from soil

    Directory of Open Access Journals (Sweden)

    Skorupan Dara

    2002-01-01

    Full Text Available Subcritical and supercritical extractions are novel, non destructive techniques which can be applied for the removal of hazardous compounds from contaminated soil without any changes of the soil composition and structure. The aim of the presented review paper is to give information on up-to day results of this method commonly applied by several institutions worldwide. Interest in the application of SC CO2 has been more expressed in the last two decades, which may be related to its favorable characteristics (non-toxic, non-flammable, increase diffusion into small pores, low viscosity under SC conditions, low price and others. However, interest in wet oxidation (WO and especially in SCWO (the application of water under supercritical conditions with air has also increased in the last few years. Interest in H2O as a SC fluid, as well as in extraction with water under subcritical conditions may also be related to specific characteristics and the enhanced rate of extraction. Moreover, the solubility of some specific compounds present in soil can be easily changed by adjusting the pressure and temperature of extraction. The high price of the units designed to operate safely at a pressure and temperature much higher than the a critical one of the applied fluids is the main reason why, at present, there is no more broader application of such techniques for the removal hazardous materials from contaminated soil. In the present paper, among many literature citations and their overall review, some specific details related to the development of specific analytical methods under SC conditions are also considered.

  15. Organic radionuclide compounds in soil solutions and their role in elements absorption in plants

    International Nuclear Information System (INIS)

    Agapkin, G.I.; Tikhomirov, F.A.

    1991-01-01

    The results of reference experiments with introduction of radioactive labels ( 35 S, 45 Ca, 59 Fe, 85 , 125 I) into 5 types of climatophytic soils by the method of radiogel-chromatography allow to ascertain that in soil solutions 59 Fe and 125 I incorporate completely and 35 S, 45 Ca and 85 Sr incorporate by 60-90 % into the composition of one of three fractions of organic compounds with molecular masses of 4x10 2 -6x10 4 . It is shown that significant variations between soils in the absorption of such radionuclides as 4 5 Ca, 58 Fe, 85 Sr and 125 I are celated to a different degree of their transport into soil solutions as well as to differencies in their distribution by molecular-mass fractions of water-soluble organic compounds

  16. Bioavailability and ecotoxicity of arsenic species in solution culture and soil system: implications to remediation.

    Science.gov (United States)

    Bolan, Nanthi; Mahimairaja, Santiago; Kunhikrishnan, Anitha; Seshadri, Balaji; Thangarajan, Ramya

    2015-06-01

    In this work, bioavailability and ecotoxicity of arsenite (As(III)) and arsenate (As(V)) species were compared between solution culture and soil system. Firstly, the adsorption of As(III) and As(V) was compared using a number of non-allophanic and allophanic soils. Secondly, the bioavailability and ecotoxicity were examined using germination, phytoavailability, earthworm, and soil microbial activity tests. Both As-spiked soils and As-contaminated sheep dip soils were used to test bioavailability and ecotoxicity. The sheep dip soil which contained predominantly As(V) species was subject to flooding to reduce As(V) to As(III) and then used along with the control treatment soil to compare the bioavailability between As species. Adsorption of As(V) was much higher than that of As(III), and the difference in adsorption between these two species was more pronounced in the allophanic than non-allophanic soils. In the solution culture, there was no significant difference in bioavailability and ecotoxicity, as measured by germination and phytoavailability tests, between these two As species. Whereas in the As-spiked soils, the bioavailability and ecotoxicity were higher for As(III) than As(V), and the difference was more pronounced in the allophanic than non-allophanic soils. Bioavailability of As increased with the flooding of the sheep dip soils which may be attributed to the reduction of As(V) to As(III) species. The results in this study have demonstrated that while in solution, the bioavailability and ecotoxicity do not vary between As(III) and As(V), in soils, the latter species is less bioavailable than the former species because As(V) is more strongly retained than As(III). Since the bioavailability and ecotoxicity of As depend on the nature of As species present in the environment, risk-based remediation approach should aim at controlling the dynamics of As transformation.

  17. Selective extraction of chromium(VI) using a leaching procedure with sodium carbonate from some plant leaves, soil and sediment samples

    Energy Technology Data Exchange (ETDEWEB)

    Elci, Latif, E-mail: elci@pamukkale.edu.tr [Department of Chemistry, Pamukkale University, 20017 Denizli (Turkey); Divrikli, Umit; Akdogan, Abdullah; Hol, Aysen; Cetin, Ayse [Department of Chemistry, Pamukkale University, 20017 Denizli (Turkey); Soylak, Mustafa [Department of Chemistry, Erciyes University, 38039 Kayseri (Turkey)

    2010-01-15

    Speciation of chromium in some plant leaves, soil and sediment samples was carried out by selective leaching of Cr(VI) using a sodium carbonate leaching procedure. Total chromium from the samples was extracted using aqua regia and oxidative acid digestion, respectively. The concentrations of chromium species in the extracts were determined using by graphite furnace atomic absorption spectrometry (GFAAS). Uncoated graphite furnace tubes were used as an atomizer. Due to the presence of relatively high amounts of Na{sub 2}CO{sub 3} in the resulting samples, the possible influences of Na{sub 2}CO{sub 3} on the absorbance signals were checked. There is no interference of Na{sub 2}CO{sub 3} on the chromium absorbance up to 0.1 mol L{sup -1} Na{sub 2}CO{sub 3}. A limit of detection (LOD) for determination of Cr(VI) in 0.1 Na{sub 2}CO{sub 3} solution by GFAAS was found to be 0.93 {mu}g L{sup -1}. The procedure was applied to environmental samples. The relative standard deviation, R.S.D. as precision for 10 replicate measurements of 20 {mu} L{sup -1} Cr in processed soil sample was 4.2%.

  18. Selective extraction of chromium(VI) using a leaching procedure with sodium carbonate from some plant leaves, soil and sediment samples.

    Science.gov (United States)

    Elci, Latif; Divrikli, Umit; Akdogan, Abdullah; Hol, Aysen; Cetin, Ayse; Soylak, Mustafa

    2010-01-15

    Speciation of chromium in some plant leaves, soil and sediment samples was carried out by selective leaching of Cr(VI) using a sodium carbonate leaching procedure. Total chromium from the samples was extracted using aqua regia and oxidative acid digestion, respectively. The concentrations of chromium species in the extracts were determined using by graphite furnace atomic absorption spectrometry (GFAAS). Uncoated graphite furnace tubes were used as an atomizer. Due to the presence of relatively high amounts of Na(2)CO(3) in the resulting samples, the possible influences of Na(2)CO(3) on the absorbance signals were checked. There is no interference of Na(2)CO(3) on the chromium absorbance up to 0.1 mol L(-1) Na(2)CO(3). A limit of detection (LOD) for determination of Cr(VI) in 0.1 Na(2)CO(3) solution by GFAAS was found to be 0.93 microg L(-1). The procedure was applied to environmental samples. The relative standard deviation, R.S.D. as precision for 10 replicate measurements of 20 microL(-1) Cr in processed soil sample was 4.2%.

  19. Heavy metals extractability in a soil amended with sewage sludge Extractabilidade de metais pesados em um solo tratado com lodo de esgoto

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2009-10-01

    Full Text Available Few investigations have been carried out about the comparison of desorption rate and amount of heavy metals extracted successively by organic acid mixtures mimicking the rhizosphere and routine extractants in sewage sludge-amended soils. Extractions of Zn, Cd, Ni, Cr, and Cu were performed in samples of a sewage sludge-amended soil using seven extractants: four organic acid mixtures and three routine extractants (DTPA, Mehlich-I, and ammonium acetate. Results from single pass extractions, in which the extractable metal contents were determined by simply extracting the soil a single time, as well as from 15 successive extractions, in which the solid residues of the first extraction was successively extracted 14 additional times, of heavy metals were analyzed. The extractability of heavy metals in a single pass extraction was, in general, as follows: Mehlich-I > DTPA > organic acids > NH4OAc. The highest rates of extraction followed the general order: DTPA > Mehlich-I > organic acids > NH4OAc. While Mehlich-I presented the highest extractability of heavy metals among studied extractants, DTPA showed a high extractability of Zn, Cd, Ni, and Cu in a single extraction as well as the highest rates of extraction among the studied extractants. The transfer of heavy metals from soil to organic acid solutions is slower than to DTPA and Mehlich-I extractants.Poucos trabalhos têm sido realizados sobre a comparação da taxa de dessorção e da quantidade de metais extraídos sucessivamente por misturas de ácidos orgânicos que imitam a composição da rizosfera e por extratores usados na rotina em amostras de solo tratado com lodo de esgoto. Extrações de Zn, Cd, Ni, Cr e Cu foram realizadas em amostras de um solo de carga variável tratado com lodo de esgoto usando-se sete extratores: quatro misturas com ácidos orgânicos e três extratores usados na rotina (DTPA, Mehlich-I e acetato de amônio. Os resultados para uma única extração, em que o conte

  20. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Loree Joanne [Univ. of California, Berkeley, CA (United States); King, C. Judson [Univ. of California, Berkeley, CA (United States)

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO2 and H2S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The