WorldWideScience

Sample records for extracted soil solutions

  1. Extraction of Pentachlorophenol from Soils using Environmentally Benign Lactic Acid Solutions

    Science.gov (United States)

    Soil contamination with pentachlorophenol (PCP) is widespread across the globe. Soil washing/extraction is a common technique to remove this compound. Several soil washing/extraction solutions have been used but a majority of them have the problem of persistence in the environmen...

  2. Extraction of Pentachlorophenol from Soils using Environmentally Benign Lactic Acid Solutions

    Science.gov (United States)

    Soil contamination with pentachlorophenol (PCP) is widespread across the globe. Soil washing/extraction is a common technique to remove this compound. Several soil washing/extraction solutions have been used but a majority of them have the problem of persistence in the environmen...

  3. Regularities of extracting humic acids from soils using sodium pyrophosphate solutions

    Science.gov (United States)

    Bakina, L. G.; Drichko, V. F.; Orlova, N. E.

    2017-02-01

    Regularities of extracting humic acids from different soil types (soddy-podzolic soil, gray forest soil, and all chernozem subtypes) with sodium pyrophosphate solutions at different pH values (from 5 to 13) have been studied. It is found that, regardless of soil type, the process occurs in two stages through the dissociation of carboxylic groups and phenolic hydroxyls, each of which can be described by a logistic function. Parameters of the logistic equations approximating the extraction of humic acids from soils at different pH values are independent of the content and composition of humus in soils. Changes in the optical density of humic acids extracted from soils using sodium pyrophosphate solutions with different pH values are described in the first approximation by the Gaussian function. The optically densest humic acids are extracted using sodium pyrophosphate solutions at pH 10. Therefore, it is proposed to use an extract with pH 10 for the characterization of organic matter with the maximum possible degree of humification in the given soil.

  4. Estimating the extractability of potentially toxic metals in urban soils: A comparison of several extracting solutions

    Energy Technology Data Exchange (ETDEWEB)

    Madrid, F. [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Apartado 1052, 41080 Sevilla (Spain); Reinoso, R. [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Apartado 1052, 41080 Sevilla (Spain); Florido, M.C. [Departamento de Cristalografia, Mineralogia y Quimica Agricola, Universidad de Sevilla, Avda. Reina Mercedes, s/n, 41012 Sevilla (Spain); Diaz Barrientos, E. [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Apartado 1052, 41080 Sevilla (Spain); Ajmone-Marsan, F. [DI.VA.P.R.A., Chimica Agraria, Universita di Torino, Via Leonardo da Vinci, 44, 10095 Grugliasco, Torino (Italy); Davidson, C.M. [Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland (United Kingdom); Madrid, L. [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Apartado 1052, 41080 Sevilla (Spain)]. E-mail: madrid@irnase.csic.es

    2007-06-15

    Metals released by the extraction with aqua regia, EDTA, dilute HCl and sequential extraction (SE) by the BCR protocol were studied in urban soils of Sevilla, Torino, and Glasgow. By multivariate analysis, the amounts of Cu, Pb and Zn liberated by any method were statistically associated with one another, whereas other metals were not. The mean amounts of all metals extracted by HCl and by SE were well correlated, but SE was clearly underestimated by HCl. Individual data for Cu, Pb and Zn by both methods were correlated only if each city was considered separately. Other metals gave poorer relationships. Similar conclusions were reached comparing EDTA and HCl, with much lower values for EDTA. Dilute HCl extraction cannot thus be recommended for general use as alternative to BCR SE in urban soils. - Dilute HCl extraction is tested as an alternative to the BCR sequential extraction in urban soils.

  5. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.

    Science.gov (United States)

    Lambert, Raphaël; Grant, Cynthia; Sauvé, Sébastien

    2007-06-01

    This study investigated the solubility of cadmium and zinc in soils after the application of phosphate fertilizers containing those two metals. The solubility of cadmium and zinc was assessed by measuring their concentration in soil water extracts. Three monoammonium phosphate fertilizers containing various amounts of metals were applied on cultivated fields for 3 years at three different rates. In order to investigate the effects of long-term applications of fertilizers on the solubility of Cd and Zn, a similar design was used to apply contaminated fertilizers to soils in a laboratory experiment using a single fertilizer addition equivalent to 15 years of application. Phosphate fertilizers increased the concentration of Cd in soil extracts compared to control in 87% and 80% of the treatments in field and laboratory experiments respectively. Both increasing the rate of application and using fertilizer containing more Cd lead to higher Cd concentrations in extracts for the field and the laboratory experiments. The addition of the equivalent of 15 years of fertilizer application in the laboratory results in higher Cd concentration in extracts compared to the field experiment. For Zn, the fertilizer treatments enhanced the metal solution concentration in 83% of field treatments, but no significant correlations could be found between Zn inputs and its concentration in solution. In the laboratory, fertilizer additions increase the Zn concentrations in 53% of the treatments and decrease it in most of the other treatments. The decrease in Zn concentrations in the laboratory trial is attributed to the higher phosphate concentrations in the soil solution; which is presumed to have contributed to the precipitation of Zn-phosphates. For both trials, the metal concentrations in soil extracts cannot be related to the Zn concentration in the fertilizer or the rate of application. The high Zn to Cd ratio is presumably responsible for the Cd increase in the soil extracts due to

  6. Analytical solutions for a soil vapor extraction model that incorporates gas phase dispersion and molecular diffusion

    Science.gov (United States)

    Huang, Junqi; Goltz, Mark N.

    2017-06-01

    To greatly simplify their solution, the equations describing radial advective/dispersive transport to an extraction well in a porous medium typically neglect molecular diffusion. While this simplification is appropriate to simulate transport in the saturated zone, it can result in significant errors when modeling gas phase transport in the vadose zone, as might be applied when simulating a soil vapor extraction (SVE) system to remediate vadose zone contamination. A new analytical solution for the equations describing radial gas phase transport of a sorbing contaminant to an extraction well is presented. The equations model advection, dispersion (including both mechanical dispersion and molecular diffusion), and rate-limited mass transfer of dissolved, separate phase, and sorbed contaminants into the gas phase. The model equations are analytically solved by using the Laplace transform with respect to time. The solutions are represented by confluent hypergeometric functions in the Laplace domain. The Laplace domain solutions are then evaluated using a numerical Laplace inversion algorithm. The solutions can be used to simulate the spatial distribution and the temporal evolution of contaminant concentrations during operation of a soil vapor extraction well. Results of model simulations show that the effect of gas phase molecular diffusion upon concentrations at the extraction well is relatively small, although the effect upon the distribution of concentrations in space is significant. This study provides a tool that can be useful in designing SVE remediation strategies, as well as verifying numerical models used to simulate SVE system performance.

  7. Soil Solution

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  8. An approach using centrifugation for the extraction of the soil solution and its usefulness in studies of radionuclide speciation in soils - Approach using centrifugation for extraction of soil solution and its study for uranium speciation

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Adriana S. [CAPES Foundation, Ministry of Education of Brazil, 70040-020, Brasilia, Brazil, Proc.BEX 1958/13-5 (Brazil); Lozano, J.C.; Prieto, C. [Universidad de Salamanca, 37008, Salamanca (Spain); Blanco Rodriguez, P.; Vera Tome, F. [Universidad de Extremadura, 06006, Badajoz (Spain)

    2014-07-01

    The centrifugation technique is tested as a methodology for extraction of soil solution, for further characterization, in order to elucidate its contribution to the speciation of radionuclides, particularly uranium, in radioactively contaminated soils, as well as the determination of its availability for vegetation. Centrifugation of a previously saturated soil core provides the soil solution with a specific origin inside the soil sample. In such way that the different soil solution origin, associate to the effective pressure applied to the soil core, will reflect different distribution coefficients which affect the radionuclide availability definition. Speciation of radionuclides in the soil solution can be also conditioned by this water origin. The development of this methodology relating to technical challenges faces materials suitable for the centrifugation process, both in terms of mechanical properties and chemical inertness. This paper reports the preparation of ceramic pellets of perlite produced with the intention of replacing glass pellets, used inserts in support to soils coupled with centrifuges. The characterization of porosity and the test of its chemical inertness and mechanical strength to the centrifugation process have been performed. Porosity characterization is required to control the saturation gradient, which conditions the flow of water from the soil. Its mechanical adequacy was tested by subjecting the pellets to the centrifugation process and assessing its integrity end. Chemical inertia was measured by placing the tablets in aqueous solutions of known composition and then evaluating the presence or absence of elements in this solution, after on time of contact between them. (authors)

  9. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    Directory of Open Access Journals (Sweden)

    Silva João Eudes da

    2002-01-01

    Full Text Available Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were subjected to clay dissolution tests, using sodium salts of different ionic forces, to detect the relationship between certain physico-chemical parameters of water, such as pH, nitrate, chloride and sulphate content, in the dissolution of clay and the subsequent extraction of such cations as Al, Fe and K. In acidic sandy clay soils, the mineralogical composition of which was characterised by a predominance of quartz, micas, kaolinite and K-feldspars, decreases of the clay material/water pH ratio increases dissolution of the micaceous and K-feldspars phases. The presence of nitrates in the aqueous solution apparently advanced the extraction of all three cations Al, Fe and K. The specific surface area of the clay material showed a significant correlation with the main kinetic parameters of cation extraction.

  10. THE IMPORTANCE OF ORGANIC MATTER DISTRIBUTION AND EXTRACT SOIL:SOLUTION RATIO ON THE DESORPTION OF HEAVY METALS FROM SOILS

    Science.gov (United States)

    The lability (mobility and bioavailability) of metals varies significantly with soil properties for similar total soil metal concentrations. We studied desorption of Cu, Ni and Zn, from 15 diverse, unamended soils. These studies included evaluation of the effects of soil:solution...

  11. Effects of soil oven-drying on concentrations and speciation of trace metals and dissolved organic matter in soil solution extracts of sandy soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Groenenberg, J.E.

    2011-01-01

    Weak salt extracts can be used to assess the availability of trace metals for leaching and uptake by soil organisms and plants in soil. Before extraction, the International Organization for Standardization recommends to dry soils in an oven at a temperature of 40 °C. Effects of soil oven-drying on

  12. Effects of soil oven-drying on concentrations and speciation of trace metals and dissolved organic matter in soil solution extracts of sandy soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Groenenberg, J.E.

    2011-01-01

    Weak salt extracts can be used to assess the availability of trace metals for leaching and uptake by soil organisms and plants in soil. Before extraction, the International Organization for Standardization recommends to dry soils in an oven at a temperature of 40 °C. Effects of soil oven-drying on d

  13. EXTRACTION OF PENTACHLOROPHENOL (PCP) FROM SOILS USING ENVIRONMENTALLY BENIGN ACID SOLUTIONS

    Science.gov (United States)

    The presence of organic contaminants like PCP in soil is a major environmental concern. Various remediation methods have been used of which soil washing is a common procedure. Many different solvents like surfactants, ionic liquids and cyclodextrins have been studied. the pres...

  14. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    OpenAIRE

    Silva João Eudes da; Castro Fernando

    2002-01-01

    Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were sub...

  15. Estimation of Zn mobility and biological availability in sod-podzolic soil and leached chernozem based on results of soil extraction by various salt solutions and Zn accumulation in barley plants

    Science.gov (United States)

    Pivovarova, Y. A.

    2012-04-01

    Extraction of soils by chemical reagents is widely used as a basis for forecasting the stock of the metal in the soil available to the plants. There are some doubts about how heavy metals uptake from specific soil to certain plant species can be adequately modeled on the results of chemical extraction. Problems of regulation of heavy metals in natural objects and risk assessment of soil contamination must be solved as issues of unification and standardization of existing assessment methods and new methods developing for their use in studies of the mobility of metals in soils and their availability to plants. Zn is a priority pollutant of the soil. The availability of Zn compounds to plants in two soils of different genesis was compared on the basis of their extraction by neutral salt solutions Ca(NO3)2, MgCl2, and CH3COONH4 and a pot experiment. It was shown that not only the concentration of contaminant in the extractant, but also the proportion of extractable Zn in its total content in the soil increased with increasing contamination of soil. The difference between the estimates of exchangeable Zn obtained by these methods was ~2.5 times for soddy-podzolic soil and 3-6 times for leached chernozem. The relationship between the accumulation of Zn in 14-day-old barley seedlings and the content of its exchangeable form in the soil was near linear, but the parameters of regression equations for two soils differed significantly. Chemical extraction allowed the differentiation of the mobile Zn fraction, but its accumulation by plants from different soils could not be predicted from the extractability of the element by neutral salt solutions without consideration for other soil properties.

  16. Electrical Conductivity and Chemical Composition of Soil Solution: Comparison of Solution Samplers in Tropical Soils

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT Soil solution samplers may have the same working principle, but they differ in relation to chemical and physical characteristics, cost and handling, and these aspects exert influence on the chemical composition of the soil solution obtained. This study was carried out to evaluate, over time, the chemical composition of solutions extracted by Suolo Acqua, with the hydrophilic membrane (HM as a standard, using soils with contrasting characteristics, and to determine the relationship between electrical conductivity (EC and concentration of ions and pH of soil solution samples. This study was carried out under laboratory conditions, using three soils samples with different clay and organic matter (OM contents. Soil solution contents of F−, Cl−, NO−3, Br−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+, were analyzed, as well as inorganic, organic, and total C contents, pH, and EC, in four successive sampling times. Soil solution chemical composition extracted by the Suolo Acqua sampler is similar to that collected by the HM, but the Suolo Acqua extracted more Na+ and soluble organic C than the HM solution. Solution EC, cation and anion concentrations, and soluble C levels are higher in the soil with greater clay and OM contents (Latossolo and Cambissolo in this case. Soil solution composition varied over time, with considerable changes in pH, EC, and nutrient concentrations, especially associated with soil OM. Thus, single and isolated sampling of the soil solution must be avoided, otherwise composition of the soil solution may not be correctly evaluated. Soil solution EC was regulated by pH, as well as the sum of cation and anion concentrations, and the C contents determined in the soil liquid phase.

  17. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Characterization of soil heavy metal pools in paddy fields in Taiwan: chemical extraction and solid-solution partitioning

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Guo, H.Y.; Chu, C.L.; Liu, T.S.; Chiang, C.F.; Koopmans, G.F.

    2009-01-01

    Ongoing industrialization has resulted in an accumulation of metals like Cd, Cu, Cr, Ni, Zn, and Pb in paddy fields across Southeast Asia. Risks of metals in soils depend on soil properties and the availability of metals in soil. At present, however, limited information is available on how to measur

  19. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH

    NARCIS (Netherlands)

    Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.

    2008-01-01

    In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total dissolve

  20. Rare earth elements in soil extracts by ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Tobler, L.; Furrer, V.; Wyttenbach, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burger, M.; Jakob, A. [AC-Laboratorium Spiez (Switzerland)

    1997-09-01

    Three different horizons of a soil profile were extracted with water and with a complexing solution. 14 REEs were determined in the extracts. The distribution patterns obtained from the different horizons were rather similar and did not show the large fractionations observed between different plant species growing on this soil. (author) 2 figs., 1 ref.

  1. Examination of soil contaminated by coal-liquids by size exclusion chromatography in 1-methyl-2-pyrrolidinone solution to evaluate interference from humic and fulvic acids and extracts from peat.

    Science.gov (United States)

    Morgan, T J; Herod, A A; Brain, S A; Chambers, F M; Kandiyoti, R

    2005-11-18

    Soil from a redundant coke oven site has been examined by extraction of soluble materials using 1-methyl-2-pyrrolidinone (NMP) followed by size exclusion chromatography (SEC) of the extracted material. The extracted material was found to closely resemble a high temperature coal tar pitch. Standard humic and fulvic acids were also examined since these materials are very soluble in NMP and would be extracted with pitch if present in the soil. Humic substances derived from peat samples and NMP-extracts of peats were also examined. The results show that the humic and fulvic substances were not extracted directly by NMP from peats. They were extracted using caustic soda solution and were different from the peat extracts in NMP. These results indicate that humic and fulvic acids were soluble in NMP in the protonated polyelectrolyte form but not in the original native polyelectrolyte form. The extraction of soil using NMP followed by SEC appears to be a promising method for identifying contamination by coal-based industries.

  2. Some plant extracts retarde nitrification in soil

    Directory of Open Access Journals (Sweden)

    Abdul–Mehdi S. AL-ANSARI

    2015-12-01

    Full Text Available An incubation experiment was conducted to evaluate the effect of aqueous extracts of 17 plant materials on nitrification inhibition of urea- N in soil as compared with chemical inhibitor Dicyandiamide (DCD. Plant materials used in study were collected from different areas of Basrah province, south of Iraq. Aqueous extracts were prepared at ratio of 1:10 (plant material: water and added at conc. of 0.05, 0.10 and 0.20 ml g– 1 soil to loamy sand soil. DCD was added to soil at rate of 50 µg g-1 soil . Soil received urea at rate of 1000 µg N g-1 soil. Treated soils were incubated at 30 OC for 40 days. Results showed that application of all plant extracts, except those of casuarina, date palm and eucalyptus to soil retarded nitrification in soil. Caper, Sowthistle ,bladygrass and pomegranate extracts showed highest inhibition percentage (51, 42, 40 and 40 %, respectively and were found to be more effective than DCD (33 %. Highest inhibition was achieved by using those extracts at conc. of 0.1 ml g-1 soil after 10 days of incubation . Data also revealed that treated soil with these plant extracts significantly increased amount of NH4+–N and decreased amount of NO3-–N accumulation in soil compared with DCD and control treatments. Results of the study suggested a possibility of using aqueous extracts of some studied plants as potent nitrification inhibitor in soil.

  3. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  4. Soil vapor extraction with dewatering

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, N.R. [Univ. of Waterloo, Ontario (Canada)

    1996-08-01

    The physical treatment technology of soil vapor extraction (SVE) is reliable, safe, robust, and able to remove significant amounts of mass at a relatively low cost. SVE combined with a pump-and-treat system to create a dewatered zone has the opportunity to remove more mass with the added cost of treating the extracted groundwater. Various limiting processes result in a significant reduction in the overall mass removal rates from a SVE system in porous media. Only pilot scale, limited duration SVE tests conducted in low permeability media have been reported in the literature. It is expected that the presence of a fracture network in low permeability media will add another complexity to the limiting conditions surrounding the SVE technology. 20 refs., 4 figs.

  5. Metal Concentrations in Soil Paste Extracts as Affected by Extraction Ratio

    Directory of Open Access Journals (Sweden)

    Filip M.G. Tack

    2002-01-01

    Full Text Available Saturated paste extracts are sometimes used to estimate metal levels in the soil solution. To assess the significance of heavy-metal concentrations measured in saturation extracts, soil paste extracts were prepared with distilled water in amounts ranging from 60–200% of the moisture content at saturation. Trace metals behaved as if a small pool consistently was dissolved independent of the extraction ratio applied. Metal concentrations in the solution hence were not buffered by the solid phase, but the observed behaviour would allow the estimation of metal concentrations in the soil solution as a function of moisture content. The behaviour of iron and manganese suggested that some microbial reduction occurred. The intensity increased with increasing extraction ratio but not to the extent of affecting dissolution of trace elements.

  6. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies.

    Science.gov (United States)

    Lau, Ee Von; Gan, Suyin; Ng, Hoon Kiat; Poh, Phaik Eong

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in soil have been recognised as a serious health and environmental issue due to their carcinogenic, mutagenic and teratogenic properties. One of the commonly employed soil remediation techniques to clean up such contamination is soil washing or solvent extraction. The main factor which governs the efficiency of this process is the solubility of PAHs in the extraction agent. Past field-scale soil washing treatments for PAH-contaminated soil have mainly employed organic solvents or water which is either toxic and costly or inefficient in removing higher molecular weight PAHs. Thus, the present article aims to provide a review and discussion of the alternative extraction agents that have been studied, including surfactants, biosurfactants, microemulsions, natural surfactants, cyclodextrins, vegetable oil and solution with solid phase particles. These extraction agents have been found to remove PAHs from soil at percentages ranging from 47 to 100% for various PAHs.

  7. Chemical evaluation of soil-solution in acid forest soils

    Science.gov (United States)

    Lawrence, G.B.; David, M.B.

    1996-01-01

    Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and tension lysimetry indicated that expelled

  8. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  9. Sistema de extração seqüencial da solução na macro e microporosidade do solo System of sequential extraction of solution in macro and microporosity of soil

    Directory of Open Access Journals (Sweden)

    Thomas V. Gloaguen

    2009-10-01

    Full Text Available Existem várias técnicas de extração da solução no solo; entretanto, a proporção entre a água gravitacional e as retidas por forças capilares é geralmente desconhecida. Neste estudo se propôs desenvolver um sistema de extração seqüencial da solução no solo a fim de caracterizar a sua composição química em função da porosidade do solo. Construíram-se colunas com terra fina secada ao ar de um Cambissolo de textura argilo-siltosa. As colunas foram saturadas por 24 h com água destilada, logo após, a solução no solo foi coletada aplicando-se sucessivamente na base das colunas um vácuo de: 0; -13,3; -26,7; -40,0; -53,3; -66,6 kPa. Mediram-se o volume, o pH, a condutividade elétrica e as concentrações de Na+, K+ e NO3-. Houve boa correlação entre o vácuo aplicado e o potencial mátrico do solo medido por tensiometria (não linear, r² = 0,998, validando o método proposto da extração seqüencial de solução. O estudo evidenciou importantes variações da composição química da solução nas diferentes porosidades do solo, com concentração iônica menor na macroporosidade, exceto para K+, demonstrando a necessidade de se uniformizar a metodologia de amostragem da solução do solo para evitar estimação incorreta da concentração de solutos no solo.Various methodologies for soil solution sampling are available, but the proportion between gravitational and capilar water is usually unknown. In this study, a sequential extraction system of soil water for determining its chemical composition as a function of the soil porosity is presented. Soil columns were filled by air-dried clay-loam Ultisol. The columns were saturated with distilled water for 24 h, and then the soil solution was sampled at the base of the column by applying the suction equivalent to 0, 13.3, 26.7, 40.0, 53.3 and 66.6 kPa. Volume, pH, electrical conductivity, Na+, K+ and NO3- were measured in the solution. The high correlation (non linear; r

  10. Alkaline solution neutralization capacity of soil.

    Science.gov (United States)

    Asakura, Hiroshi; Sakanakura, Hirofumi; Matsuto, Toshihiko

    2010-10-01

    Alkaline eluate from municipal solid waste (MSW) incineration residue deposited in landfill alkalizes waste and soil layers. From the viewpoint of accelerating stability and preventing heavy metal elution, pH of the landfill layer (waste and daily cover soil) should be controlled. On the other hand, pH of leachate from existing MSW landfill sites is usually approximately neutral. One of the reasons is that daily cover soil can neutralize alkaline solution containing Ca(2+) as cation. However, in landfill layer where various types of wastes and reactions should be taken into consideration, the ability to neutralize alkaline solutions other than Ca(OH)(2) by soil should be evaluated. In this study, the neutralization capacities of various types of soils were measured using Ca(OH)(2) and NaOH solutions. Each soil used in this study showed approximately the same capacity to neutralize both alkaline solutions of Ca(OH)(2) and NaOH. The cation exchange capacity was less than 30% of the maximum alkali neutralization capacity obtained by the titration test. The mechanism of neutralization by the pH-dependent charge can explain the same neutralization capacities of the soils. Although further investigation on the neutralization capacity of the soils for alkaline substances other than NaOH is required, daily cover soil could serve as a buffer zone for alkaline leachates containing Ca(OH)(2) or other alkaline substances.

  11. CHEMICAL EQUILIBRIUM OF SOIL SOLUTION IN STEPPE ZONE SOIL

    Directory of Open Access Journals (Sweden)

    A. A. Batukaev

    2014-01-01

    Full Text Available Dynamics of material composition, migration and accumulation of salts is determined by chemical equilibrium in soil solution. Soil solution contains associated electrically neutral ion pairs CaCO30; CaSO40, MgCO30, MgSO40, charged ion pairs CaHCO3+, MgHCO3+, NaCO3-, NaSO4-, CaOH+, MgOH+. Calculation method is proposed for quantitative assessment of real ion forms in the soil solution of chestnut solonetz soil complex. Were proposed equations to calculate free and associated forms of ions. To solve the equations were used an iteration, a linear interpolation of equilibrium constants, a Method of Ionic Pairs including a law of initial concentration preservation, a law of the operating masses of equilibrium system, the concentration constants of ion pair dissociation on the law of operating masses. Was determined the quantity of ion free form and a coefficient of ion association as ratio of ions free form to analytical content ?e = Cass/Can. The association of ions varies in individual soils and soil layer. Increasing soil solution salinity amplifies the ions association. In form of ionic pairs in soil solution are: 11.8-53.8% of Ca2+; 9.4-57.3% of Mg2+; 0.7-11.9% of Na+; 2.2-22.3% of HCO3-, 11.8-62.7% of SO42-. The ion CO32- is high associated, the share of ions in associated form is up to 92.7%. The degree of soil solution saturation was obtained for three level of approximation accounting on analytical concentration, calculated association coefficient, calculated coefficient of association. Relating to thermodynamic solubility product S0, the mathematical product of analytical ionic pairs

  12. Relationship between dieldrin uptake in cucumber and solvent-extractable residue in soil.

    Science.gov (United States)

    Sakai, Mizuki; Seike, Nobuyasu; Murano, Hirotatsu; Otani, Takashi

    2009-12-09

    To prevent the distribution of cucumbers with dieldrin contamination exceeding the limit set by the Japanese Food Sanitation Law, the extraction solvent for dieldrin-contaminated soil was selected prior to cultivation so that the dieldrin residue level in cucumber could be predicted. The exhaustive extraction from soil could not explain the dieldrin uptake by cucumber plants. However, significant correlation (R(2) = 0.966, P dieldrin concentrations in cucumber and dieldrin concentrations extracted with 50% (v/v) methanol-water solution from soils. This was a result of the phytoavailability of dieldrin to the cucumber plants. The extractability of soil dieldrin with the methanol-water solution decreased as the organic carbon content in the soils increased. This suggested that a 50% (v/v) methanol-water solution is the optimal solution for predicting dieldrin concentrations in cucumbers by soil analysis.

  13. Synergistic Extraction of Gallium for Sulfate Solution

    Institute of Scientific and Technical Information of China (English)

    DENGTong; HUANGLijuan; 等

    2002-01-01

    A novel extractant mixture, di-2-ethylhexyl phosphate (DEHPA) plus HX, was propose and tested for recovering gallium from sulfate solution.It was found that the extraction capacity of DEPHA for gallium from sulfate solution could be enhanced significantly due to the synergistic effect of acidix extractant HX. Gallium extraction is negligible below pH 0 and highly sensitive to pH of aqueous phase in the range from 0 to 1, and satisfactory extraction can be gained at pH>1. More than 96% Ga extraction was obtained using 15% DEHPA plus 2% HX. Although Fe(Ⅲ) was found to be extracted preferentially to Ga (Ⅲ), effective extraction of Ga (Ⅲ) was possible by reducing ferric to the ferrous state prior to extraction. A loaded organic phase containing 0.48g·L-1 Ga could be produced from solution of 0.12g·L-1 Ga at A/O ratio of 4:1 via three mixer-settler operation stages. Gallium was stripped quantitatively from the loaded organic phase with 1.5mol·L-1 of sulfuric acid.

  14. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    Directory of Open Access Journals (Sweden)

    E. V. Lau

    2010-01-01

    Full Text Available This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction.

  15. Solute diffusivity in undisturbed soil

    DEFF Research Database (Denmark)

    Lægdsmand, Mette; Møldrup, Per; Schjønning, Per

    2012-01-01

    diffusivities independent of the tracer set used. We analyzed the whole data set using Archie's law and found a linear relation between Archie's exponent and the logarithm of the soil water matric suction in centimeters of water (pF). An analysis of seven data sets from the literature showed...

  16. Extração de cobre e de zinco por soluções multielementares em solos do sul do Brasil Copper and zinc extracted by multielement solution for Southern Brazilian soils

    Directory of Open Access Journals (Sweden)

    Leandro Bortolon

    2010-03-01

    Full Text Available As quantidades extraídas de cobre (Cu e de zinco (Zn pelas soluções de HCl 0,1mol L-1 (HCl foram comparadas com as extraídas pelas soluções de Mehlich-1 (M1 e de Mehlich-3 (M3. Foram utilizadas 130 amostras de solo representando as principais áreas agrícolas do Estado do Rio Grande do Sul, as quais foram extraídas do banco de solos do Laboratório de Análises de Solo da Universidade Federal do Rio Grande do Sul. A correlação entre as quantidades extraídas pelos métodos indicou alto grau de associação e de significância. A quantidade de Cu extraída pela solução de M3, em média, não diferiu do HCl. A quantidade extraída de Zn pela solução de M3, entretanto, foi inferior à extraída por HCl. As quantidades extraídas de Cu e Zn pelas soluções de HCl e de M1 não diferiram estatisticamente. As soluções de M1 e de M3 são eficientes para a extração multielementar simultânea de Cu e Zn dos solos e são alternativas viáveis para serem utilizadas em laboratórios de análises de solo dos Estados do Rio Grande do Sul e de Santa Catarina.Copper (Cu and zinc (Zn amounts extracted with 0.1molar L-1 HCl (HCl for the most representative soil types of Rio Grande do Sul State (Brazil were compared with those extracted with Mehlich-1 (M3 and Mehlich-3 (M3 solutions. The nutrients' amounts extracted by different methods indicated high correlation degree. The M3 solution extracted similar copper amounts than HCl; however, lower amounts of Zn. The M1 and M3 solutions are efficient for simultaneous multielement extraction and can be used in soil testing laboratories for RS and SC states.

  17. Column Holdup Formula of Soil Solute Transport

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The shortcomings of the present two formulae for describing column holdup are analyzed and deductions are made to find a new formula. The column holdup, Hw, described by the new formula is dimensional,and related to soil solute transport kinesis and column physical properties. Compared with the other two column holdups, Hw is feasible to describe dimensional column holdup during solute transport process. The relationships between Hw and retardation factor, R, in different solute transport boundary conditions are established.

  18. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils.

    Science.gov (United States)

    Wang, Yiwen; Ma, Fujun; Zhang, Qian; Peng, Changsheng; Wu, Bin; Li, Fasheng; Gu, Qingbao

    2017-04-01

    Soil washing is a promising way to remediate arsenic-contaminated soils. Most research has mostly focused on seeking efficient extractants for removing arsenic, but not concerned with any changes in soil properties when using this technique. In this study, the removal of arsenic from a heavily contaminated soil employing different washing solutions including H3PO4, NaOH and dithionite in EDTA was conducted. Subsequently, the changes in soil physicochemical properties and phytotoxicity of each washing technique were evaluated. After washing with 2 M H3PO4, 2 M NaOH or 0.1 M dithionite in 0.1 M EDTA, the soil samples' arsenic content met the clean-up levels stipulated in China's environmental regulations. H3PO4 washing decreased soil pH, Ca, Mg, Al, Fe, and Mn concentrations but increased TN and TP contents. NaOH washing increased soil pH but decreased soil TOC, TN and TP contents. Dithionite in EDTA washing reduced soil TOC, Ca, Mg, Al, Fe, Mn and TP contents. A drastic color change was observed when the soil sample was washed with H3PO4 or 0.1 M dithionite in 0.1 M EDTA. After adjusting the soil pH to neutral, wheat planted in the soil sample washed by NaOH evidenced the best growth of all three treated soil samples. These results will help with selecting the best washing solution when remediating arsenic-contaminated soils in future engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation.

    Science.gov (United States)

    Klitzke, Sondra; Metreveli, George; Peters, Andre; Schaumann, Gabriele E; Lang, Friederike

    2015-12-01

    Nanoparticles enter soils through various pathways. In the soil, they undergo various interactions with the solution and the solid phase. We tested the following hypotheses using batch experiments: i) the colloidal stability of Ag NP increases through sorption of soil-borne dissolved organic matter (DOM) and thus inhibits aggregation; ii) the presence of DOM suppresses Ag oxidation; iii) the surface charge of Ag NP governs sorption onto soil particles. Citrate-stabilized and bare Ag NPs were equilibrated with (colloid-free) soil solution extracted from a floodplain soil for 24h. Nanoparticles were removed through centrifugation. Concentrations of free Ag ions and DOC, the specific UV absorbance at a wavelength of 254 nm, and the absorption ratio α254/α410 were determined in the supernatant. Nanoparticle aggregation was studied using time-resolved dynamic light scattering (DLS) measurement following the addition of soil solution and 1.5mM Ca(2+) solution. To study the effect of surface charge on the adsorption of Ag NP onto soil particles, bare and citrate-stabilized Ag NP, differing in the zeta potential, were equilibrated with silt at a solid-to-solution ratio of 1:10 and an initial Ag concentration range of 30 to 320 μg/L. Results showed that bare Ag NPs sorb organic matter, with short-chained organic matter being preferentially adsorbed over long-chained, aromatic organic matter. Stabilizing effects of organic matter only come into play at higher Ag NP concentrations. Soil solution inhibits the release of Ag(+) ions, presumably due to organic matter coatings. Sorption to silt particles was very similar for the two particle types, suggesting that the surface charge does not control Ag NP sorption. Besides, sorption was much lower than in comparable studies with sand and glass surfaces. Copyright © 2014. Published by Elsevier B.V.

  20. Acid Release from an Acid Sulfate Soil Sample Under Successive Extractions with Different Extractants

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An acid sulfate soil sample was successively extracted with deionized water, 1 mol L-1 KCI and 0.000 5 mol L-1 Ca(OH)2 solutions. The results showed that only very small amounts of acidity were extracted by deionized water, possibly through slow jarosite hydrolysis. Acid release through jarosite hydrolysis was greatly enhanced by Ca(OH)2 extraction at the expense of the added OH- being neutralized by the acid released. Successive extraction of the sample with KCI removed the largest amounts of acidity from the sample. However, it is likely that the major form of acidity released by KC1 extraction was exchangeable acidity. The results also show the occurrence of low or non charged A1 and Fe species in water and Ca(OH)2 extracts after first a few extractions. It appears that such a phenomenon was related to a decreasing EC value with increasing number of extractions.

  1. A Device for Simulating Soil Nutrient Extraction and Plant Uptake

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-Jian; LAI Yong-Lin; MO Jin-Yu; SHEN Hong

    2012-01-01

    In situ evaluating the availability of soil nutrients has been a challenge.In this study,a new type of Device for Simulating Soil Nutrient Extraction and Plant Uptake (DSSNEPU) and its operating procedures were introduced.The device consists of a sampling tube,a fluid supply system,a low pressure system,a tube sheath and an elution cylinder.The sampling tube was firstly soaked in the solution of 0.5 mol L-1 NaHCO3 and then buried into soils.The fluid supply system was connected to the sampling tube and the deionized water was supplied.During the period,low pressure system started a vacuum for 3 min every 10 min interval.After extraction,the sampling tube was removed and the nutrients on the sampling tube were eluted with 0.5 mol L-1 HC1.The elution solution was used for nutrient measurement.The amounts of P and K extracted by DSSNEPU reached the maximal values after 4 h.No significant increases of P and K were observed for longer extraction duration.The optimal temperature for extracting P and K was 30 ℃ in this experiment.Extracted P and K were increased by 83.3% and 84.6% with the employment of low pressure system in comparison to those without employing low pressure system.Correlation analysis indicated that P and K extracted by DSSNEPU were highly correlated with those by conventional chemical extraction and by plant uptake.The above results suggest that this device is applicable to assess the availability of nutrients in soils.

  2. Remediation of Contaminated Soils By Supercritical Carbon Dioxide Extraction

    Science.gov (United States)

    Ferri, A.; Zanetti, M. C.; Banchero, M.; Fiore, S.; Manna, L.

    The contaminants that can be found in soils are many, inorganic, like heavy metals, as well as organic. Among the organic contaminants, oil and coal refineries are responsi- ble for several cases of soil contamination with PAHs (Polycyclic Aromatic Hydrocar- bons). Polynuclear aromatic hydrocarbons (PAHs) have toxic, carcinogenic and mu- tagenic effects. Limits have been set on the concentration of most contaminants, and growing concern is focusing on soil contamination issues. USA regulations set the maximum acceptable level of contamination by PAHs equal to 40 ppm at residential sites and 270 ppm at industrial sites. Stricter values are usually adopted in European Countries. Supercritical carbon dioxide extraction is a possible alternative technology to remove volatile organic compounds from contaminated soils. Supercritical fluid extraction (SFE) offers many advantages over conventional solvent extraction. Super- critical fluids combine gaseous properties as a high diffusion coefficient, and liquid properties as a high solvent power. The solvent power is strongly pressure-dependent near supercritical conditions: selective extractions are possible without changing the solvent. Solute can be separate from the solvent depressurising the system; therefore, it is possible to recycle the solvent and recover the contaminant. Carbon dioxide is frequently used as supercritical fluid, because it has moderate critical conditions, it is inert and available in pure form. In this work, supercritical fluid extraction technology has been used to remove a polynuclear aromatic hydrocarbon from contaminated soils. The contaminant choice for the experiment has been naphthalene since several data are available in literature. G. A. Montero et al. [1] studied soil remediation with supercrit- ical carbon dioxide extraction technology; these Authors have found that there was a mass-transfer limitation. In the extraction vessel, the mass transfer coefficient in- creases with the

  3. Electrokinetic extraction of chromate from unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, E.D. [SAT-UNSAT, Inc., Albuquerque, NM (United States); Lindgren, E.R. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode.

  4. Chemodynamics of heavy metals in long-term contaminated soils: metal speciation in soil solution.

    Science.gov (United States)

    Kim, Kwon-Rae; Owens, Gary

    2009-01-01

    The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd2+, CU2+, Pb2+, and Zn2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd2+ (3%-52%) and Zn2+ (11%-72%) in soil solutions were generally higher than those of Cu2+ (0.2%-30%) and Pb2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (K(p)) and dissolved organic carbon did not show any significant influence on K(p).

  5. Chemodynamics of heavy metals in long-term contaminated soils: Metal speciation in soil solution

    Institute of Scientific and Technical Information of China (English)

    Kwon-Rae Kim; Gary Owens

    2009-01-01

    The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated.The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h.The free metal concentrations (Cd~(2+),Cu~(2+),Pb~(2+),and Zn~(2+)) in soil solution were determined using the Donnan membrane technique (DMT).Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2.However,there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT.This was due to significant metal adsorption onto the cation exchange membrane used in the DMT with 20%,28%,44%,and 8% mass loss of the initial total concentration of Cd,Cu,Pb,and Zn in solution,respectively.This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made.Relative to the total soluble metal concentrations the amounts of free Cd~(2+) (3%-52%) and Zn~(2+) (11%-72%) in soil solutions were generally higher than those of Cu~(2+) (0.2%-30%) and Pb~(2+) (0.6%-10%).Among the key soil solution properties,dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations.Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (K_p) and DOC did not show any significant influence on K_p.

  6. Degradation kinetics of ptaquiloside in soil and soil solution

    DEFF Research Database (Denmark)

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun

    2008-01-01

    by clay silicates. Ptaquiloside appeared to be stable in all soil solutions, in which no degradation was observed within a period of 28 d, in strong contrast to previous studies of hydrolysis rates in artificial aqueous electrolytes. The present study predicts that the risk of PTA leaching is controlled...

  7. COMPARISON OF DIFFERENT EXTRACTION METHODS REPRESENTING AVAILABLE AND TOTAL CONCENTRATIONS OF Cd, Cu, Fe, Mn and Zn IN SOIL

    Directory of Open Access Journals (Sweden)

    Vladimir Ivezić

    2013-06-01

    Full Text Available Various extraction methods are used to predict plant uptake of trace metals. Most commonly it is total concentration that is used for risk assessment and evaluation of trace metal availability. However, recent studies showed that total concentration is a poor indicator of availability while concentrations in soil solution show good correlation with plant uptake. Present study was conducted on magricultural soils with low levels of trace metals where 45 soil samples were collected from different soil types. The main objective was to compare four different extraction methods and examine how total and reactive (EDTA trace metal concentrations correlate ,with soil solution concentration (in this study determined by water extraction. The samples were analyzed by four extraction methods: strong acid extraction (ultra-pure HNO3 extraction and aqua regia, weak acid extraction by EDTA and the most available fraction, fraction in soil solution, were represented by water extraction (weakest extractant. Five elements were investigated (Cd, Cu, Fe, Mn and Zn. Water extraction significantly correlated with EDTA extraction for Cu, Fe and Mn, while total extraction (HNO3 extraction and aqua regia correlated significantly with water extraction only for Cu. No correlation between water extraction and total extraction confirmed poor role of total concentration as an indicator of availability. EDTA extraction can be used to represent reactive pool of trace metals in soil but it should be also taken with caution when using it to describe available fraction.

  8. Soil erosion in Iran: Issues and solutions

    Science.gov (United States)

    Hamidreza Sadeghi, Seyed; Cerdà, Artemi

    2015-04-01

    Iran currently faces many soil erosion-related problems (see citations below). These issues are resulted from some inherent characteristic and anthropogenic triggering forces. Nowadays, the latter plays more important rule to accelerate the erosion with further emphasis on soil erosion-prone arid and semi arid regions of the country. This contribution attempts to identify and describe the existing main reasons behind accelerated soil erosion in Iran. Appropriate solutions viz. structural and non-structural approaches will be then advised to combat or minimise the problems. Iran can be used as a pilot research site to understand the soil erosion processes in semiarid, arid and mountainous terrain and our research will review the scientific literature and will give an insight of the soil erosion rates in the main factors of the soil erosion in Iran. Key words: Anthropogenic Erosion, Land Degradation; Sediment Management; Sediment Problems Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Aghili Nategh, N., Hemmat, A., & Sadeghi, M. (2014). Assessing confined and semi-confined compression curves of highly calcareous remolded soil amended with farmyard manure. Journal of Terramechanics, 53, 75-82. Arekhi, S., Bolourani, A. D., Shabani, A., Fathizad, H., Ahamdy-Asbchin, S. 2012. Mapping Soil Erosion and Sediment Yield Susceptibility using RUSLE, Remote Sensing and GIS (Case study: Cham Gardalan Watershed, Iran). Advances in Environmental Biology, 6(1), 109-124. Arekhi, S., Shabani, A., Rostamizad, G. 2012. Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran). Arabian Journal of Geosciences, 5(6), 1259-1267.Sadeghi, S. H., Moosavi, V., Karami, A., Behnia, N. 2012. Soil erosion assessment and prioritization of affecting factors at plot

  9. Infiltration into soils: Conceptual approaches and solutions

    Science.gov (United States)

    Assouline, Shmuel

    2013-04-01

    Infiltration is a key process in aspects of hydrology, agricultural and civil engineering, irrigation design, and soil and water conservation. It is complex, depending on soil and rainfall properties and initial and boundary conditions within the flow domain. During the last century, a great deal of effort has been invested to understand the physics of infiltration and to develop quantitative predictors of infiltration dynamics. Jean-Yves Parlange and Wilfried Brutsaert have made seminal contributions, especially in the area of infiltration theory and related analytical solutions to the flow equations. This review retraces the landmark discoveries and the evolution of the conceptual approaches and the mathematical solutions applied to the problem of infiltration into porous media, highlighting the pivotal contributions of Parlange and Brutsaert. A historical retrospective of physical models of infiltration is followed by the presentation of mathematical methods leading to analytical solutions of the flow equations. This review then addresses the time compression approximation developed to estimate infiltration at the transition between preponding and postponding conditions. Finally, the effects of special conditions, such as the presence of air and heterogeneity in soil properties, on infiltration are considered.

  10. Comparison of three DNA extraction methods for recovery of soil protist DNA.

    Science.gov (United States)

    Santos, Susana S; Nielsen, Tue Kjærgaard; Hansen, Lars H; Winding, Anne

    2015-08-01

    The use of molecular methods to investigate protist communities in soil is in rapid development this decade. Molecular analysis of soil protist communities is usually dependant on direct genomic DNA extraction from soil and inefficient or differential DNA extraction of protist DNA can lead to bias in downstream community analysis. Three commonly used soil DNA extraction methods have been tested on soil samples from three European Long-Term Observatories (LTOs) with different land-use and three protist cultures belonging to different phylogenetic groups in different growth stages. The methods tested were: ISOm-11063 (a version of the ISO-11063 method modified to include a FastPrep ®-24 mechanical lysis step), GnS-GII (developed by the GenoSol platform to extract soil DNA in large-scale soil surveys) and a commercial DNA extraction kit - Power Lyzer™ PowerSoil® DNA Isolation Kit (MoBio). DNA yield and quality were evaluated along with DNA suitability for amplification of 18S rDNA fragments by PCR. On soil samples, ISOm-11063 yields significantly higher DNA for two of the three soil samples, however, MoBio extraction favors DNA quality. This method was also more effective to recover copies of 18S rDNA numbers from all soil types. In addition and despite the lower yields, higher DNA quality was observed with DNA extracted from protist cultures with the MoBio method. Likewise, a bead-beating step shows to be a good solution for DNA extraction of soil protists, since the recovery of DNA from protist cultures and from the different soil samples with the ISOm method proved to be efficient in recovering PCR-amplifiable DNA. This study showed that soil DNA extraction methods provide biased results towards the cyst stages of protist organism. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Soil solution chemistry of a fly ash-, poultry litter-, and sewage sludge-amended soil

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, B.P.; Miller, W.P.

    2000-04-01

    Mixing coal fly ash (FA) with organic wastes to provide balanced soil amendments offers a potential viable use of this industrial by-product. When such materials are land-applied to supply nutrients for agronomic crops, trace element contaminant solubility must be evaluated. In this study, major and trace element soil solution concentrations arising from application of fly ash, organic wastes, and mixtures of the two were compared in a laboratory incubation. Two fly ashes, broiler poultry litter (PL), municipal sewage sludge (SS), and mixtures of FA with either PL or SS were mixed with a Cecil sandy loam (fine, kaolinitic, thermic Typic Kanhapludult) at rates of 32.3, 8.1, and 16.1 g kg{sup {minus}1} soil for FA, PL, and SS, respectively. Treatments were incubated at 22 C at 17% moisture content and soil solution was periodically extracted by centrifugation over 33 d. Initial soil solution concentrations of As, Mo, Se, and Cu were significantly greater in FA/OL treatments than the respective FA-only treatments. For Cu, increased solution concentrations were attributable to increased loading rates in FA/PL mixtures. Solution Cu concentrations were strongly correlated with dissolved C (R{sup 2} > 0.96) in all PL treatments. Significant interactive effects for solution Mo and Se concentrations were observed for the FA/PL and may have resulted from the increased pH and competing anion concentrations of these treatments. Solution As concentrations showed a significant interactive effect for one FA/PL mixture. For the individual treatments, As was more soluble in the Pl treatment than either FA treatment. Except for soluble Se from on FA/SS mixture, trace element solubility in the FA/SS mixtures was not significantly different than the respective FA-only treatment.

  12. Extraction of copper from bacterial leach solution using LIX98

    Institute of Scientific and Technical Information of China (English)

    柳建设; 邱冠周; 葛玉卿; 徐竞

    2002-01-01

    Extraction of copper from bacterial leach solution using Lix984 had been performed.It was found that the main factors influencing extraction yield of copper are the phase ratio and the concentration of extractant,following the pH of solution and extraction time and the order of factors influencing the separation rate is the pH of solution,the concentration of extractant,the extraction time and the phase ratio.The best conditions obtained by the orthogonal tests are as follows: the extractant concentration 4%,extraction time 3 min,phase ratio 1∶1,pH of solution 2.

  13. Extraction of nerve agent VX from soils.

    Science.gov (United States)

    Montauban, Cécile; Bégos, Arlette; Bellier, Bruno

    2004-05-15

    The development and optimization of a method allowing the extraction of intact organophosphorus chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX) from several types of soils are presented here. This involved the selection of an appropriate buffer to bring the sample to a pH close to the pK(a) of VX but sufficiently low to avoid its basic hydrolysis. Buffering with Tris (pH 9) and subsequent extraction of the aqueous layer by a 85:15 (v/v) hexane/dichloromethane mixture allows rapid and sensitive flame photometric detection of VX at spiking levels lower than 10 microg x g(-1), even after 3 months of aging. Extraction yields were close to 60% in complex matrixes. This method also allows recovery and identification of a characteristic degradation product of VX, bis(2-diisopropylaminoethyl) disulfide, which appears to be formed during the aging process. The performance of this method is far better than that of OPCW reference operating procedure, which does not allow extraction of detectable amounts of VX (spiked at 10 microg x g(-1)) in one of the soils used for this study.

  14. Soil metaproteomics – Comparative evaluation of protein extraction protocols

    OpenAIRE

    Keiblinger, Katharina M.; Wilhartitz, Inés C.; Schneider, Thomas; Roschitzki, Bernd; Schmid, Emanuel; Eberl, Leo; Riedel, Kathrin; Zechmeister-Boltenstern, Sophie

    2012-01-01

    Metaproteomics and its potential applications are very promising to study microbial activity in environmental samples and to obtain a deeper understanding of microbial interactions. However, due to the complexity of soil samples the exhaustive extraction of proteins is a major challenge. We compared soil protein extraction protocols in terms of their protein extraction efficiency for two different soil types. Four different protein extraction procedures were applied based on (a) SDS extractio...

  15. Process for the extraction of strontium from acidic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, E.P.; Dietz, M.L.

    1993-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  16. Metal extraction from the artificially contaminated soil using supercritical CO2 with mixed ligands.

    Science.gov (United States)

    Park, Kwangheon; Lee, Jeongken; Sung, Jinhyun

    2013-04-01

    Supercritical fluids have good penetrating power with a high capacity to dissolve certain solutes in the fluid itself, making it applicable for soil cleaning. Supercritical CO2 along with mixed ligands has been used for cleaning artificially contaminated soil. The extraction of metal from the soil was successful, and the molar ratio of ligands to the extracted metal was as low as 3. Complicated structures with a large surface area of the real soil seemed to cause the lower efficiency. Reduced efficiency was also observed over time after the sample preparation, indicating the possibility of chemisorption of the metal ion onto the soil. The use of supercritical CO2 with dissolved mixed ligands was sufficient to extract metal from the soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Soil metaproteomics - Comparative evaluation of protein extraction protocols.

    Science.gov (United States)

    Keiblinger, Katharina M; Wilhartitz, Inés C; Schneider, Thomas; Roschitzki, Bernd; Schmid, Emanuel; Eberl, Leo; Riedel, Kathrin; Zechmeister-Boltenstern, Sophie

    2012-11-01

    Metaproteomics and its potential applications are very promising to study microbial activity in environmental samples and to obtain a deeper understanding of microbial interactions. However, due to the complexity of soil samples the exhaustive extraction of proteins is a major challenge. We compared soil protein extraction protocols in terms of their protein extraction efficiency for two different soil types. Four different protein extraction procedures were applied based on (a) SDS extraction without phenol, (b) NaOH and subsequent phenol extraction, (c) SDS-phenol extraction and (d) SDS-phenol extraction with prior washing steps. To assess the suitability of these methods for the functional analysis of the soil metaproteome, they were applied to a potting soil high in organic matter and a forest soil. Proteins were analyzed by two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) and the number of unique spectra as well as the number of assigned proteins for each of the respective protocols was compared. In both soil types, extraction with SDS-phenol (c) resulted in "high" numbers of proteins. Moreover, a spiking experiment was conducted to evaluate protein recovery. To this end sterilized forest soil was amended with proteins from pure cultures of Pectobacterium carotovorum and Aspergillus nidulans. The protein recovery in the spiking experiment was almost 50%. Our study demonstrates that a critical evaluation of the extraction protocol is crucial for the quality of the metaproteomics data, especially in highly complex samples like natural soils.

  18. Successive DNA extractions improve characterization of soil microbial communities

    Directory of Open Access Journals (Sweden)

    Mauricio R. Dimitrov

    2017-02-01

    Full Text Available Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing and comparing soil microbial communities are based on a single DNA extraction, which may not lead to a representative recovery of DNA from all organisms present in the soil. The use of successive DNA extractions might improve soil microbial characterization, but the benefit of this approach has only been limitedly studied. To determine whether successive DNA extractions of the same soil sample would lead to different observations in terms of microbial abundance and community composition, we performed three successive extractions, with two widely used commercial kits, on a range of clay and sandy soils. Successive extractions increased DNA yield considerably (1–374%, as well as total bacterial and fungal abundances in most of the soil samples. Analysis of the 16S and 18S ribosomal RNA genes using 454-pyrosequencing, revealed that microbial community composition (taxonomic groups observed in the successive DNA extractions were similar. However, successive DNA extractions did reveal several additional microbial groups. For some soil samples, shifts in microbial community composition were observed, mainly due to shifts in relative abundance of a number of microbial groups. Our results highlight that performing successive DNA extractions optimize DNA yield, and can lead to a better picture of overall community composition.

  19. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    Science.gov (United States)

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.

  20. Methods for microbial DNA extraction from soil for PCR amplification

    OpenAIRE

    Yeates C; Gillings, MR; Davison AD; Altavilla N; Veal DA

    1998-01-01

    Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1). DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol pr...

  1. Influências da temperatura de armazenamento e de extratores na determinação de glomalina em solos Paraibanos Influences of storage temperatures and extraction solutions on the determination of glomalin in Paraiban soils

    Directory of Open Access Journals (Sweden)

    Carla da Silva Sousa

    2011-12-01

    Full Text Available Fungos micorrízicos arbusculares (FMA produzem glomalina, uma glicoproteína que contribui na formação de agregados estáveis, no seqüestro de metais pesais e como um reservatório de C e N nos solos. Solo, clima, espécie fúngica, vegetação, sistema de uso do solo e práticas de manejo agrícola influenciam na quantidade de glomalina produzida pelos FMA. Foram avaliadas a eficiência de extratores e o efeito da temperatura de armazenamento das amostras sobre a quantidade de glomalina extraída de um Neossolo Flúvico e de um Luvissolo, localizado na região semiárida Paraibana, Nordeste do Brasil. Os teores de glomalina foram quantificados logo após a coleta das amostras em campo e 15 meses após partes delas serem mantidas em temperatura ambiente (± 25 ºC ou em refrigerador (± 4 ºC. Na quantificação foram testadas duas soluções extratoras: citrato de sódio e pirofosfato de sódio, (ambas a 20 mM; pH 7,0. As amostras armazenadas em refrigerador apresentaram até 47,6% mais glomalina que as mantidas em temperatura ambiente. Não foram observadas diferenças significativas entre as quantidades extraídas com citrato de sódio e com pirofosfato de sódio. Para uma quantificação mais precisa da glomalina, recomenda-se a refrigeração das amostras de solo após a coleta em campo.Arbuscular mycorrhizal fungi (AMF produce glomalin, a glycoprotein that contributes to the formation of stable aggregates, to the sequestration of heavy metals and as a pool of C and N in soils. Soil, climate, fungi specie, vegetation type, land use system, and crop management practices influence the amount of glomalin deposited by the AMF. The efficiency of two extraction solutions and the effect of two storage temperature on the amount of glomalin were determined in samples of a Fluvic Neosol and a Luvisol, located in the semi-arid area of Paraiba state, Northeast Brazil. Glomalin contents were quantified soon after sampling and 15 months after storing

  2. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE

  3. Supercritical Fluid Extraction of Aflatoxin B 1 from Soil

    Science.gov (United States)

    This research describes the development of a Supercritical Fluid Extraction (SFE) method to recover aflatoxin B1 from fortified soil. The effects of temperature, pressure, modifier (identity and percentage), and extraction type were assessed. Using the optimized SFE conditions, ...

  4. Supercritical Fluid Extraction of Aflatoxin B 1 from Soil

    Science.gov (United States)

    This research describes the development of a Supercritical Fluid Extraction (SFE) method to recover aflatoxin B1 from fortified soil. The effects of temperature, pressure, modifier (identity and percentage), and extraction type were assessed. Using the optimized SFE conditions, ...

  5. Studies on the extraction of sulfonamides from agricultural soils.

    Science.gov (United States)

    Raich-Montiu, J; Beltrán, J L; Prat, M D; Granados, M

    2010-05-01

    The extraction of six sulfonamides (sulfadiazine, sulfadimidine, sulfathiazole, sulfachloropiridazine, sulfadimethoxine, and sulfaquinoxaline) from soils with different physicochemical characteristics and at several aging times was investigated. Conventional mechanical shaking, microwave-assisted extraction, ultrasound probe-assisted extraction and pressurized liquid extraction techniques were evaluated. The four techniques provided similar results when applied to freshly contaminated soils. However, microwave-assisted extraction was the most suitable to extract sulfonamide aged residues from soils. Microwave-assisted extraction was applied to eight soils aged for 3 months, using acetonitrile:buffer pH 9 (20:80) as the extraction solvent, and recoveries ranged from 15-25% for STZ to 42-64% for SDM.

  6. Optimization of an effective extraction procedure for the analysis of microcystins in soils and lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wei [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Li Lin [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Gan Nanqin [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Song Lirong [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China)]. E-mail: lrsong@ihb.ac.cn

    2006-09-15

    Microcystin analysis in sediments and soils is considered very difficult due to low recovery for extraction. This is the primary limiting factor for understanding the fate of toxins in the interface between water and sediment in both the aquatic ecosystem as well as in soils. In the present study, a wide range of extraction solvents were evaluated over a wide range of pH, extraction approaches and equilibration time to optimize an effective extraction procedure for the analysis of microcystins in soils and lake sediments. The number of extractions required and acids in extraction solutions were also studied. In this procedure, EDTA-sodium pyrophosphate solution was selected as an extraction solvent based on the adsorption mechanism study. The optimized procedure proved to be highly efficient and achieved over 90% recovery. Finally, the developed procedure was applied to field soil and sediment sample collected from Chinese lakes during bloom seasons and microcystins were determined in six of ten samples. - Efficiency of extraction of microcystins from soil and sediment was greatly increased.

  7. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community.

    Science.gov (United States)

    Cang, Long; Zhou, Dong-Mei; Alshawabkeh, Akram N; Chen, Hai-Feng

    2007-04-02

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary.

  8. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Zhou Dongmei [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)]. E-mail: dmzhou@issas.ac.cn; Alshawabkeh, Akram N. [Department of Civil and Environmental Engineering, Northeastern University, Boston, MA (United States); Chen Haifeng [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2007-04-02

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary.

  9. Comparison of soil solution sampling techniques to assess metal fluxes from contaminated soil to groundwater.

    Science.gov (United States)

    Coutelot, F; Sappin-Didier, V; Keller, C; Atteia, O

    2014-12-01

    The unsaturated zone plays a major role in elemental fluxes in terrestrial ecosystems. A representative chemical analysis of soil pore water is required for the interpretation of soil chemical phenomena and particularly to assess Trace Elements (TEs) mobility. This requires an optimal sampling system to avoid modification of the extracted soil water chemistry and allow for an accurate estimation of solute fluxes. In this paper, the chemical composition of soil solutions sampled by Rhizon® samplers connected to a standard syringe was compared to two other types of suction probes (Rhizon® + vacuum tube and Rhizon® + diverted flow system). We investigated the effects of different vacuum application procedures on concentrations of spiked elements (Cr, As, Zn) mixed as powder into the first 20 cm of 100-cm columns and non-spiked elements (Ca, Na, Mg) concentrations in two types of columns (SiO2 sand and a mixture of kaolinite + SiO2 sand substrates). Rhizon® was installed at different depths. The metals concentrations showed that (i) in sand, peak concentrations cannot be correctly sampled, thus the flux cannot be estimated, and the errors can easily reach a factor 2; (ii) in sand + clay columns, peak concentrations were larger, indicating that they could be sampled but, due to sorption on clay, it was not possible to compare fluxes at different depths. The different samplers tested were not able to reflect the elemental flux to groundwater and, although the Rhizon® + syringe device was more accurate, the best solution remains to be the use of a lysimeter, whose bottom is kept continuously at a suction close to the one existing in the soil.

  10. Successive DNA extractions improve characterization of soil microbial communities

    NARCIS (Netherlands)

    Dimitrov, M.R.; Veraart, A.J.; De Hollander, M.; Smidt, H.; van Veen, J.A.; Kuramae, E.E.

    2017-01-01

    Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing

  11. Successive DNA extractions improve characterization of soil microbial communities

    NARCIS (Netherlands)

    Rocha Dimitrov, Mauricio; Veraart, Annelies J.; Hollander, de Mattias; Smidt, Hauke; Veen, van Johannes A.; Kuramae, Eiko E.

    2017-01-01

    Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies

  12. Oxygen extraction from lunar soil by fluorination

    Science.gov (United States)

    Seboldt, W.; Lingner, S.; Hoernes, S.; Grimmeisen, W.

    1991-01-01

    Mining and processing of lunar material could possibly lead to more cost-efficient scenarios for permanent presence of man in space and on the Moon. Production of oxygen for use as propellant seems especially important. Different candidate processes for oxygen-extraction from lunar soil were proposed, of which the reduction of ilmenite by hydrogen was studied most. This process, however, needs the concentration of ilmenite from lunar regolith to a large extent and releases oxygen only with low efficiency. Another possibility - the fluorination method - which works with lunar bulk material as feedstock is discussed. Liberation of oxygen from silicate or oxide materials by fluorination methods has been applied in geoscience since the early sixties. The fact that even at moderate temperatures 98 to 100 percent yields can be attained, suggests that fluorination of lunar regolith could be an effective way of propellant production. Lunar soil contains about 50 percent oxygen by weight which is gained nearly completely through this process as O2 gas. The second-most element Si is liberated as gaseous SiF4. It could be used for production of Si-metal and fluorine-recycling. All other main elements of lunar soil will be converted into solid fluorides which also can be used for metal-production and fluorine-recycling. Preliminary results of small scale experiments with different materials are discussed, giving information on specific oxygen-yields and amounts of by-products as functions of temperature. These experiments were performed with an already existing fluorine extraction and collection device at the University of Bonn, normally used for determination of oxygen-isotopic abundances. Optimum conditions, especially concerning energy consumption, are investigated. Extrapolation of the experimental results to large industrial-type plants on the Moon is tried and seems to be promising at first sight. The recycling of the fluorine is, however, crucial for the process. It

  13. Direct Cellular Lysis/Protein Extraction Protocol for Soil Metaproteomics

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Jansson, Janet [Lawrence Berkeley National Laboratory (LBNL); Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Chavarria, Krystle L. [Lawrence Berkeley National Laboratory (LBNL); Tom, Lauren M [Lawrence Berkeley National Laboratory (LBNL); Brodie, Eoin L. [Lawrence Berkeley National Laboratory (LBNL); Hettich, Robert {Bob} L [ORNL

    2010-01-01

    We present a novel direct protocol for deep proteome characterization of microorganisms in soil. The method employs thermally assisted detergent-based cellular lysis (SDS) of soil samples, followed by TCA precipitation for proteome extraction/cleanup prior to liquid chromatography-mass spectrometric characterization. This approach was developed and optimized using different soils inoculated with genome-sequenced bacteria (Gram-negative Pseudomonas putida or Gram-positive Arthrobacter chlorophenolicus). Direct soil protein extraction was compared to protein extraction from cells isolated from the soil matrix prior to lysis (indirect method). Each approach resulted in identification of greater than 500 unique proteins, with a wide range in molecular mass and functional categories. To our knowledge, this SDS-TCA approach enables the deepest proteome characterizations of microbes in soil to date, without significant biases in protein size, localization, or functional category compared to pure cultures. This protocol should provide a powerful tool for ecological studies of soil microbial communities.

  14. Direct cellular lysis/protein extraction protocol for soil metaproteomics.

    Science.gov (United States)

    Chourey, Karuna; Jansson, Janet; VerBerkmoes, Nathan; Shah, Manesh; Chavarria, Krystle L; Tom, Lauren M; Brodie, Eoin L; Hettich, Robert L

    2010-12-03

    We present a novel direct protocol for deep proteome characterization of microorganisms in soil. The method employs thermally assisted detergent-based cellular lysis (SDS) of soil samples, followed by TCA precipitation for proteome extraction/cleanup prior to liquid chromatography-mass spectrometric characterization. This approach was developed and optimized using different soils inoculated with genome-sequenced bacteria (Gram-negative Pseudomonas putida or Gram-positive Arthrobacter chlorophenolicus). Direct soil protein extraction was compared to protein extraction from cells isolated from the soil matrix prior to lysis (indirect method). Each approach resulted in identification of greater than 500 unique proteins, with a wide range in molecular mass and functional categories. To our knowledge, this SDS-TCA approach enables the deepest proteome characterizations of microbes in soil to date, without significant biases in protein size, localization, or functional category compared to pure cultures. This protocol should provide a powerful tool for ecological studies of soil microbial communities.

  15. Microstructure and hardness of bovine enamel in roselle extract solution

    Science.gov (United States)

    Dame, M. T.; Noerdin, A.; Indrani, D. J.

    2017-08-01

    The aim of this study was to analyze the effect of roselle extract solution on the microstructure and hardness of bovine enamel. Ten bovine teeth and a 5% concentration of roselle extract solution were prepared. Immersions of each bovine tooth in roselle extract solution were conducted up to 60 minutes. The bovine enamel surface was characterized in hardness and microscopy. It was apparent that the initial hardness was 328 KHN, and after immersion in 15 and 60 min, the values decrease to 57.4 KHN and 11 KHN, respectively. Scanning electron microscopy (SEM) revealed changes in enamel rods after immersion in the roselle extract solution.

  16. Methods for microbial DNA extraction from soil for PCR amplification

    Directory of Open Access Journals (Sweden)

    Yeates C

    1998-01-01

    Full Text Available Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1. DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size.

  17. A comparison between heavy metals released from soil and its efficient speciation extracted by sequential extraction procedure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui

    2008-01-01

    A simulating experiment was carried out on the interaction between natural precipitation and soil. The results demonstrated that the contents of heavy metals (V, Co, Cr, and Ni) released from soil into the solution under Earth's surface conditions are higher than the contents of those metals bonded to exchangeable species, which were extracted by sequential extraction procedure recommended by Tessier and others in 1979. It is demonstrated that the metals bonded to other 3 species (carbonate, Fe-Mn oxide, and organic matter) except those bonded to the exchangeable species in efficient speciation can be released under the Earth's surface conditions, when pH=4 in the reaction system, and the higher correlation coefficient indicated that the concentrations of heavy metals released from soil into the solution vary approximately with reaction time in terms of index regulations.

  18. Supercritical Fluid Extraction of Plutonium and Americium from Soil

    Energy Technology Data Exchange (ETDEWEB)

    Fox, R.V.; Mincher, B.J.

    2002-05-23

    Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65 C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% {+-} 6.0 extraction of americium and 69% {+-} 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% {+-} 3.0 extraction of americium and 83% {+-} 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95 C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil.

  19. Microbial protein in soil: influence of extraction method and C amendment on extraction and recovery.

    Science.gov (United States)

    Taylor, Erin B; Williams, Mark A

    2010-02-01

    The capacity to study the content and resolve the dynamics of the proteome of diverse microbial communities would help to revolutionize the way microbiologists study the function and activity of microorganisms in soil. To better understand the limitations of a proteomic approach to studying soil microbial communities, we characterized extractable soil microbial proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Two methods were utilized to extract proteins from microorganisms residing in a Quitman and Benfield soil: (1) direct extraction of bulk protein from soil and (2) separation of the microorganisms from soil using density gradient centrifugation and subsequent extraction (DGC-EXT) of microbial protein. In addition, glucose and toluene amendments to soil were used to stimulate the growth of a subset of the microbial community. A bacterial culture and bovine serum albumin (BSA) were added to the soil to qualitatively assess their recovery following extraction. Direct extraction and resolution of microbial proteins using SDS-PAGE generally resulted in smeared and unresolved banding patterns on gels. DGC-EXT of microbial protein from soil followed by separation using SDS-PAGE, however, did resolve six to 10 bands in the Benfield but not the Quitman soil. DGC-EXT of microbial protein, but not direct extraction following the addition of glucose and toluene, markedly increased the number of bands (approximately 40) on the gels in both Benfield and Quitman soils. Low recoveries of added culture and BSA proteins using the direct extraction method suggest that proteins either bind to soil organic matter and mineral particles or that partial degradation takes place during extraction. Interestingly, DGC may have been preferentially selected for actively growing cells, as gauged by the 10-100x lower cy19:0/18:1omega7 ratio of the fatty acid methyl esters in the isolated community compared to that for the whole soil. DGC can be used to

  20. Modelling multicomponent solute transport in structured soils

    NARCIS (Netherlands)

    Beinum, van G.W.

    2007-01-01

    The mobility of contaminants in soil is an important factor in determining their ability to spread into the wider environment. For non-volatile substances, transport within the soil is generally dominated by transport of dissolved fractions in the soil water phase, via either diffusion or convection

  1. Solute transport in cracking clay soils

    NARCIS (Netherlands)

    Bronswijk, J.J.B.; Ritsema, C.J.; Oostindie, K.; Hamminga, P.

    1996-01-01

    A bromide tracer applied to a cracked clay soil was adsorbed in the soil matrix close to the soil surface. Upon subsequent precipitation, a small part of the bromide dissolved and flowed rapidly through cracks to the subsoil and the groundwater. As a result, the groundwater and the drain discharge

  2. Solvent extraction of chlorinated compounds from soils and hydrodechlorination of the extract phase.

    Science.gov (United States)

    Murena, Fabio; Gioia, Francesco

    2009-03-15

    The remediation of soils contaminated with chlorinated compounds was investigated. The process consists of solvent extraction followed by catalytic hydroprocessing (hydrodechlorination) of the extract phase. A mixture of ethylacetate-acetone-water (E-A-W) was adopted as solvent in the extraction process. Tests of extraction of chlorobenzene from a model contaminated soil were carried out and the Langmuir adsorption equation was characterized. The solvent, contaminated with different chlorinated compounds was then hydrotreated with a Pd/C catalyst. The chlorinated compounds tested are: chlorobenzene, hexachlorobenzene and hexachloroethane at various initial concentrations. The reaction runs were carried out at room temperature and at a hydrogen pressure of 1bar. Hydrotreating of these compounds takes place according to a Langmuir-Hinshelwood mechanism whose kinetic parameters were determined. The experiments show that high destruction efficiencies may be reached in reasonably short times, particularly for hexachloroethane. Longer times are necessary for the aromatic compounds (chlorobenzene and hexachlorobenzene) for which the CCl bond is much stronger than that in the aliphatic compound. Time for a 95% destruction efficiency for all experimental runs was determined. A noteworthy finding is that ethylacetate and acetone do not undergo any reaction during hydrotreating. Thus the treated extract solution may be recycled inasmuch as it conserves its full extracting capacity towards chlorinated compounds. A limitation in recycling is the inhibiting effect of benzene on the HDCl rate: benzene produced by HDCl of chlorinated compounds, accumulates in the solvent mixture in the event of recycling. Simulation of the process with the recycling of the solvent was carried out, accounting for the inhibiting effect of benzene.

  3. Using DTPA-extractable soil fraction to assess the bioconcentration factor of plants in phytoremediation of urban soils

    Science.gov (United States)

    Rodríguez-Bocanegra, Javier; Roca, Núria; Tume, Pedro; Bech, Jaume

    2017-04-01

    Urban soils may be highly contaminated with potentially toxic metals, as a result of intensive anthropogenic activities. Developing cities are increasing the number of lands where is practiced the urban agriculture. In this way, it is necessary to assess the part of heavy metals that is transferred to plants in order to a) know the potential health risk that represent soils and b) know the relation soil-plant to assess the ability of these plants to remove heavy metals from soil. Nowadays, to assess the bioconcentration factor (BF) of plants in phytoremediation, the pseudototal o total concentration has been used by many authors. Two different urban soils with similar pH and carbonates content but with different pollution degree were phytoremediated with different plant species. Urban soil from one Barcelona district (Spain), the most contaminated soil, showed an extractability of Cu, Pb and Zn of 9.6, 6.7 and 5.8% of the total fraction respectively. The soil from Talcahuano city (Chile), with contents of heavy metals slightly above the background upper limit, present values of 15.5, 13.5 and 12% of the total fraction of studied heavy metals. Furthermore, a peri-urban analysed soil from Azul (Argentina) also showed an elevated extractability with values of 24, 13.5 and 14% of the Cu, Pb and Zn contents respectively. These soils presented more extractability than other disturbed soils, like for example, soils from mine areas. The urban soils present more developed soil with an interaction between solution and solid phase in polluted systems. The most important soil surface functional groups include the basal plane of phyllosilicates and metal hydroxyls at edge sites of clay minerals, iron oxyhydroxides, manganese oxyhydroxides and organic matter. The interaction between solution and solid phase in polluted urban systems tends to form labile associations and pollutants are more readily mobilized because their bonds with soil particles are weaker. Clay and organic

  4. Biodegradability of soil water soluble organic carbon extracted from seven different soils

    Institute of Scientific and Technical Information of China (English)

    SCAGLIA Barbara; ADANI Fabrizio

    2009-01-01

    Water soluble organic carbon (WSOC) is considered the most mobile and reactive soil carbon source and its characterization is an important issue for soil ecology study. A biodegradability test was set up to study WSOC extracted from 7 soils differently managed. WSOC was extracted from soil with water (soil/water ratio of 1:2, W/V) for 30 min, and then tested for biodegradability by a liquid state respirometric test. Result obtained confirmed the finding that WSOC biodegradability depended on both land use and management practice. These results suggested the biodegradability test as suitable method to characterize WSOC, adding useful information to soil fertility.

  5. Extraction Efficiency of Belonolaimus longicaudatus from Sandy Soil.

    Science.gov (United States)

    McSorley, R; Frederick, J J

    1991-10-01

    Numbers of Belonolaimus longicaudatus extracted from sandy soils (91-92% sand) by sieving and centrifugation were only 40-55% of those extracted by sieving and incubation on a Baermann tray. Residues normally discarded at each step of the sieving plus Baermann tray extraction procedure were examined for nematodes to obtain estimates of extraction efficiencies. For third-stage and fourth-stage juveniles, males, and females, estimates of extraction efficiency ranged from 60 to 65% in one experiment and 73 to 82% in another. Estimated extraction efficiencies for second-stage juveniles were lower (33% in one experiment, 67% in another) due to losses during sieving. When sterilized soil was seeded with known numbers of B. longicaudatus, 60% of second-stage juveniles and 68-76% of other stages were recovered. Most stages of B. longicaudatus could be extracted from these soils by sieving plus Baermann incubation with an efficiency of 60-70%.

  6. Laser stimulated extraction of Pd from solution with uranyl

    Energy Technology Data Exchange (ETDEWEB)

    Vlasov, M.; Mironov, S. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Krynetsky, B.; Kukhtenko, A.; Prokhorov, A.; Zhidkov, A.

    1995-03-01

    Have been investigated process of the extraction of metal palladium from solution Pd{sup 2}+HClO{sub 4}+(UO{sub 2}{sup 2+}) by radiation excimer XeCl-laser ({lambda}=308 nm). By optimal parameters of solution efficiency of extraction was about 100%. Have been discussed processes reduction of palladium by resonance laser action. (author).

  7. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, Sascha R.A.; van der Ham, Aloysius G.J.; Schuur, Boelo

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  8. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  9. Sequential Extraction of Aluminum and Iron from Acidic Soils by Chemical Selective Dissolution Methods

    Institute of Scientific and Technical Information of China (English)

    HEJIZHENG; A.VIOLANTE; 等

    1998-01-01

    Potassium chloride, Na-pyrophosphate,CuCl2,NH4-oxalate,dithionit-citrate-bicarbonate(DCB) and Na-citrate solutions were employed to etract aluminum(Al) and iron(Fe) sequentially and separately from 15 acidic soils located at the Mangshan Mountains,Hunan Province,China,Many evidences showed that separate pyrophosphate extracted mainly KCl-extractable Al,organo-Al complexes and some inorganic Al compounds,whereas separate CuCl2 extracted KCl-extractable Al and some organo-Al complexes,CuCl2 extracted much less amounts of Al than pyrophosphate did from the soils .Separate oxalate did not extract all KCl-pyrophosphate-CuCl2-oxalate seuentially extractable Al and Fe ,Also,separate DCB did not extract all KCl-pyrophosphate-CuCl2-oxalate-DCB sequentially extractable Al. The forms of Al extacted by oxalate and DCB from the soils were majorly noncrystalline.The interlayered materials of 1.4-nm intergrade minerals of the soils were attributed mainly to hydroxy Al polymers.

  10. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass.

    Science.gov (United States)

    Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J

    2010-02-01

    The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants.

  11. Effect of Alkaline-Stabilised Sewage Sludge on Extractable Organic Carbon and Copper in Soils

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An incubation experiment was conducted to evaluate the potential for water contamination with sludgederived organic substances and copper following land application of alkaline-stabilised sewage sludge. Two contrasting sludge-amended soils were studied. Both soils were previously treated with urban and rural alkaline biosolids separately at sludge application rates of 0, 30 and 120 t ha-1 fresh product. The air-dried soil/sludge mixtures were wetted with distilled water, maintained at 40 % of water-holding capacity and equilibrated for three weeks at 4 ℃ before extraction. Subsamples were extracted with either distilled water or 0.5 mol L-1 K2SO4 solution. The concentrations of organic C in the aqueous and chemical extracts were determined directly with a total organic carbon (TOC) analyser. The concentrations of Cu in the two extracts were also determined by atomic absorption spectrophotometry. The relationship between the two extractable organic C fractions was examined, together with that between extractable organic C concentration and extractable Cu concentration. Application of alkaline biosolids increased the concentrations of soil mobile organic substances and Cu. The results are discussed in terms of a possible increase in the potential for leaching of sludge-derived organics and Cu in the sludge-amended soils

  12. Effect of ageing on benzo[a]pyrene extractability in contrasting soils

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Luchun [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Liu, Yanju; Palanisami, Thavamani; Dong, Zhaomin; Mallavarapu, Megharaj [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Semple, Kirk T. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-10-15

    Highlights: • In vitro assessment of B[a]P in contaminated soils using 4 different methods. • An exponential kinetic model fits well with the extractability data. • Fitting parameter and {sup 14}C residue correlates with key soil properties. • Fractionation of B[a]P was obtained based on extractability by extractants. - Abstract: Changes in benzo[a]pyrene (B[a]P) extractability over 160 days ageing in four contrasting soils varying in organic matter content and clay mineralogy were investigated using dichloromethane: acetone 1:1 (DCM/Ace), 60 mM hydroxypropyl-β-cyclodextrin (HPCD) solution, 1-butanol (BuOH) and Milli-Q water. The B[a]P extractability by the four methods decreased with ageing and a first-order exponential model could be used to describe the kinetics of release. Correlation of the kinetic rate constant with major soil properties showed a significant effect of clay and sand contents and pore volume fraction (<6 nm) on sequestration of the desorbable fraction (by HPCD) and the water-extractable fraction. Analysis of {sup 14}C-B[a]P in soils after ageing showed a limited loss of B[a]P via degradation. Fractionation of B[a]P pools associated with the soil matrix was analysed according to extractability of B[a]P by the different extraction methods. A summary of the different fractions is proposed for the illustration of the effect of ageing on different B[a]P-bound fractions in soils. This study provides a better understanding of the B[a]P ageing process associated with different fractions and also emphasises the extraction capacity of the different methods employed.

  13. Removal of Phenol from Dilute Solutions by Predispersed Solvent Extraction

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Predispersed solvent extraction (PDSE) is a new method for separating solutes from aqueous solution by solvent extraction and one which has shown promise for extraction from extremely dilute solution very efficient and very quick. The use of colloidal liquid aphrons in predispersed solvent extraction may ameliorate the problems such as emulsion formation, reduction of interfacial mass transfer and low interfacial mass transfer areas in solvent extraction process. In present paper, colloidal liquid aphrons are successfully generated using kerosene as a solvent, tributyl phosphate(TBP) as an extractant, sodium dodecyl benzene sulphate(SDBS) as surfactant in aqueous phase and Tween-80 in oil phase. Extraction of phenol from dilute solution was studied by using colloidal liquid aphrons and colloidal gas aphrons in a semi-batch extraction column. It has been found that the PDSE process is more suitable for extraction of dilute solutions. It has also been discovered that the PDSE process has a great advantage over traditional single-stage extraction process.

  14. Solvent extraction of vanadium from sulfuric acid solution

    Institute of Scientific and Technical Information of China (English)

    WANG Mingyu; ZHANG Guiqing; WANG Xuewen; ZHANG Jialiang

    2009-01-01

    The behaviour of vanadium(V) extracted from sulfuric acid solution was investigated using Cyanex 923 as an cxtractant. The effects of the concentration of Cyanex 923 and the pH of the solution were studied. The extraction of vanadium(V) increases with the increase of Cyanex 923 concentration and shaking time. Cyanex 923 can extract vanadium(V) fi'om sulfuric acid solution at low pH conditions, and the best pH conditions for exuaction of vanadium(V) are at pH 1.0-2.0. The species extracted into the organic phase is VO2HSO4 with one molecule of Cyanex 923. Equilibrium studies were used to assess the extraction efficiency of vanadium(V) recovery from the sulfuric acid solution.

  15. Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan H.

    2010-05-01

    Previous studies examining organic compounds that may cause water-repellent behaviour of soils have typically focussed on analysing only the lipophilic fraction of extracted material. This study aimed to provide a more comprehensive examination by applying single- and sequential-accelerated solvent extraction (ASE), separation and analysis by GC/MS of the total solvent extracts of three soils taken from under eucalypt vegetation with different levels of water repellency. Water repellency increased in all the soils after extraction with DCM:MeOH (95:5), but was eliminated with iso-propanol/ammonia (95:5). Quantities of major lipid compound classes varied between solvents and soils. Iso-propanol/ammonia (95:5) solvent released saccharides, glycerol, aromatic acids and other polar organic compounds, which were more abundant in fractionated extracts from the single extraction and the third step sequential ASE extraction, than in the extracts from the DCM:MeOH ASE solvent. Dominant compounds extracted from all soils were long-chain alkanols (>C22), palmitic acid, C29 alkane, β-sitosterol, terpenes, terpenoids and other polar compounds. The soil with smallest repellency lacked >C18 fatty acids and had smallest concentrations of alkanols (C26, C28 and C30) and alkanes (C29, C31), but a greater abundance of more complex polar compounds than the more repellent soils. We therefore speculate that the above compounds play an important role in determining the water repellency of the soils tested. The results suggest that one-stage and sequential ASE extractions with iso-propanol:ammonia and subsequent fractionation of extracts are a useful approach in providing a comprehensive assessment of the potential compounds involved in causing soil water repellency.

  16. Model analysis of mechanisms controlling pneumatic soil vapor extraction

    DEFF Research Database (Denmark)

    Høier, Camilla Kruse; Sonnenborg, Torben Obel; Jensen, Karsten Høgh;

    2009-01-01

    The efficiency of traditional soil venting or soil vapor extraction (SVE) highly depends on the architecture of the subsurface because imposed advective air flow tends to bypass low-permeable contaminated areas. Pneumatic SVE is a technique developed to enhance remediation efficiency of heterogen...... level the pneumatic venting technology is superior to the traditional technique, and that the method is particularly efficient in cases where large permeability contrasts exist between soil units in the subsurface.......The efficiency of traditional soil venting or soil vapor extraction (SVE) highly depends on the architecture of the subsurface because imposed advective air flow tends to bypass low-permeable contaminated areas. Pneumatic SVE is a technique developed to enhance remediation efficiency...... of heterogeneous soils by enforcing large fluctuating pressure fronts through the contaminated area. Laboratory experiments have suggested that pneumatic SVE considerably improves the recovery rate from low-permeable units. We have analyzed the experimental results using a numerical code and quantified...

  17. Modeling supercritical fluid extraction process involving solute-solid interaction

    Energy Technology Data Exchange (ETDEWEB)

    Goto, M.; Roy, B. Kodama, A.; Hirose, T. [Kumamoto Univ., Kumamoto (Japan)

    1998-04-01

    Extraction or leaching of solute from natural solid material is a mass transfer process involving dissolution or release of solutes from a solid matrix. Interaction between the solute and solid matrix often influences the supercritical fluid extraction process. A model accounting for the solute-solid interaction as well as mass transfer is developed. The BET equation is used to incorporate the interaction and the solubility of solutes into the local equilibrium in the model. Experimental data for the supercritical extraction of essential oil and cuticular wax from peppermint leaves are successfully analyzed by the model. The effects of parameters on the extraction behavior are demonstrated to illustrate the concept of the model. 18 refs., 5 figs., 1 tab.

  18. Modelling trends in soil solution concentrations under five forest-soil combinations in the Netherlands

    NARCIS (Netherlands)

    Salm, van der C.; Vries, de W.; Kros, J.

    1996-01-01

    The influence of forest and soil properties on changes in soil solution concentration upon a reduction deposition was examined for five forest-soil combinations with the dynamic RESAM model. Predicted concentrations decreased in the direction Douglas fir - Scotch pine - oak, due to decreased filteri

  19. Prediction of reducible soil iron content from iron extraction data

    NARCIS (Netherlands)

    Bodegom, van P.M.; Reeven, van J.; Denier van der Gon, H.A.C.

    2003-01-01

    Soils contain various iron compounds that differ in solubility, reducibility and extractability. Moreover, the contribution of the various iron compounds to total iron (Fe) and total Fe concentrations differs highly among soils. As a result, the total reducible Fe content can also differ among

  20. System of extraction of volatiles from soil using microwave processes

    Science.gov (United States)

    Ethridge, Edwin C. (Inventor); Kaukler, William F. (Inventor)

    2013-01-01

    A device for the extraction and collection of volatiles from soil or planetary regolith. The device utilizes core drilled holes to gain access to underlying volatiles below the surface. Microwave energy beamed into the holes penetrates through the soil or regolith to heat it, and thereby produces vapor by sublimation. The device confines and transports volatiles to a cold trap for collection.

  1. Selenium speciation and extractability in Dutch agricultural soils

    NARCIS (Netherlands)

    Supriatin, Supriatin; Weng, Liping; Comans, Rob N.J.

    2015-01-01

    The study aimed to understand selenium (Se) speciation and extractability in Dutch agricultural soils. Top soil samples were taken from 42 grassland fields and 41 arable land fields in the Netherlands. Total Se contents measured in aqua regia were between 0.12 and 1.97mgkg-1(on average

  2. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    Groundwater risk assessment of contaminated soils implies determination of the solute concentration leaching out of the soil. Determination based on estimation techniques or simple experimental batch approach has proven inadequate. Two chemical equilibrium soil column leaching tests...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...... to measure solute phase concentration of PAHs in contaminated soils. Overall a reliable and reproducable system for determining solute concentration of a wide range of organic compounds in contaminated soils has been developed....

  3. Mild extractability and bioavailability of polycyclic aromatic hydrocarbons in soil

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Alexander, M.

    1999-12-01

    A study was conducted to determine the relationship between bioavailability of unaged and aged polycyclic aromatic hydrocarbons (PAHs) in soil and the amounts detected by mild solvent extraction. More aged than unaged anthracene remained in Lima loam following introduction of earthworms (Eisenia foetida), a mixed culture containing anthracene-degrading microorganisms, or earthworms or wheat after bacterial biodegradation of the compound. Aging decreased the percentage of anthracene recovered by mild extraction with n-butanol from soil following introduction of earthworms, growth of wheat, biodegradation by bacteria, or when maintained sterile. Biodegradation resulted in a marked decrease in the percentage of aged and unaged anthracene recovered from soil by mild extraction with n-butanol or ethyl acetate. Aging of fluoranthene and pyrene decreased the amount removed by mild extraction with n-butanol, ethyl acetate, and propanol. The uptake of aged and unaged anthracene, fluoranthene, and pyrene by earthworms was correlated with the amounts recovered from soil by mild extraction with n-butanol, propanol, and ethyl acetate. The retention of aged and unaged anthracene by wheat and barley was correlated with the amounts recovered from soil by the same procedure. The authors suggest that mild extraction with organic solvents can be used to predict the bioavailability of PAHs in soil.

  4. [Extraction of alpha-cypermethrin from aqueous methanol solutions].

    Science.gov (United States)

    Shormanov, V K; Chigareva, E N; Belousova, O V

    2010-01-01

    Alpha cypermethrin was extracted from aqueous methanol solutions using hydrophobic organic solvents. The efficiency of extraction was shown to depend on the chemical nature of the solvent, the water to methanol ratio, and saturation of the aqueous methanol layer with an electrolyte. Optimal extraction of alpha-cypermethrin was achieved using toluene as the solvent under desalinization conditions. The extraction factor for the removal of the sought amount of alpha-cypermethrin from the water-methanol solution (4:1) using various solvents was calculated.

  5. Difficultly Extractable Fixed Ammonium in Some Soils of China

    Institute of Scientific and Technical Information of China (English)

    CHENBIYUN; CHENGLILI; 等

    1999-01-01

    Ninety-three soil samples and 19 sedimentary rock samples collected from 21 provinces of China were analyzed for their contents of fixed ammonium and total N by Kjeldahl-HF method.Results showed that amount of difficultly extractable fixed ammonium(the fixed ammonium that is not determinable by Kjeldahl procedures commonly used for soils) in soils ranged from 0 to 202 mg kg-1,It was generally more than 50 mg kg-1 in soils in Changji and Turpan districts,Xinjiang,accounting for 3.2%-36.8% with an average of 13.9% of the total N.For some Orthents derived from purple shale and purple sandstone in Sichuan and Hunan provinces and Chao soils derived from secondary loess in Henan Province and Ningxia Autonomous Region it was generally around 30 mg kg-1,accounting for 4%-7% of the total soil N,and for most of the rest of soils studied,with the exception of some subsoils,no or trace difficultly extractable fixed ammonium could be detected.It was sugested that the difficultly extractable fixed ammonium was originated from parent rock,and for slightly weathered soils derived from parent materials rich in this form of N the Kjeldahl method might give underestimation of total soil N.

  6. Supercritical Fluid Extraction of Plutonium and Americium from Soil

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Robert Vincent; Mincher, Bruce Jay

    2002-08-01

    Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65°C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% ± 6.0 extraction of americium and 69% ± 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% ± 3.0 extraction of americium and 83% ± 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95°C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil.

  7. Selenium speciation and extractability in Dutch agricultural soils.

    Science.gov (United States)

    Supriatin, Supriatin; Weng, Liping; Comans, Rob N J

    2015-11-01

    The study aimed to understand selenium (Se) speciation and extractability in Dutch agricultural soils. Top soil samples were taken from 42 grassland fields and 41 arable land fields in the Netherlands. Total Se contents measured in aqua regia were between 0.12 and 1.97 mg kg(-1) (on average 0.58 mg kg(-1)). Organic Se after NaOCl oxidation-extraction accounted for on average 82% of total Se, whereas inorganic selenite (selenate was not measurable) measured in ammonium oxalate extraction using HPLC-ICP-MS accounted for on average 5% of total Se. The predominance of organic Se in the soils is supported by the positive correlations between total Se (aqua regia) and total soil organic matter content, and Se and organic C content in all the other extractions performed in this study. The amount of Se extracted followed the order of aqua regia > 1 M NaOCl (pH8) > 0.1 M NaOH>ammonium oxalate (pH3) > hot water>0.43 M HNO3 > 0.01 M CaCl2. None of these extractions selectively extracts only inorganic Se, and relative to other extractions 0.43 M HNO3 extraction contains the lowest fraction of organic Se, followed by ammonium oxalate extraction. In the 0.1M NaOH extraction, the hydrophobic neutral (HON) fraction of soil organic matter is richer in Se than in the hydrophilic (Hy) and humic acid (HA) fractions. The organic matter extracted in 0.01 M CaCl2 and hot water is in general richer in Se compared to the organic matter extracted in 0.1M NaOH, and other extractions (HNO3, ammonium oxalate, NaOCl, and aqua regia). Although the extractability of Se follows to a large extent the extractability of soil organic carbon, there is several time variations in the Se to organic C ratios, reflecting the changes in composition of organic matter extracted. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Use of Organic Solvents to Extract Organochlorine Pesticides (OCPs) from Aged Contaminated Soils

    Institute of Scientific and Technical Information of China (English)

    YE Mao; JIN Xin; JIANG Xin; YANG Xing-Lun; SUN Ming-Ming; BIAN Yong-Rong; WANG Fang; GU Cheng-Gang; WEI Hai-Jiang; SONG Yang; WANG Lei

    2013-01-01

    Problems associated with organochlorine pesticide (OCP)-contaminated sites in China have received wide attention.To solve such problems,innovative ex-situ methods of site remediation are urgently needed.We investigated the feasibility of the extraction method with different organic solvents,ethanol,1-propanol,and three fractions of petroleum ether,using a soil collected from Wujiang (WJ),China,a region with long-term contamination of dichlorodiphenyltrichloroethanes (DDTs).We evaluated different influential factors,including organic solvent concentration,washing time,mixing speed,solution-to-soil ratio,and washing temperature,on the removal of DDTs from the WJ soil.A set of relatively better parameters were selected for extraction with 100 mL L-1 petroleum ether (60-90 ℃):washing time of 180 min,mixing speed of 100 r min-1,solution-to-soil ratio of 10:1,and washing temperature of 50 ℃.These selected parameters were also applied on three other seriously OCP-polluted soils.Results demonstrated their broad-spectrum effectiveness and excellent OCP extraction performance on the contaminated soils with different characteristics.

  9. Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry.

    Science.gov (United States)

    Turner, Benjamin L; Newman, Susan; Reddy, K Ramesh

    2006-05-15

    Accurate information on the chemical nature of soil phosphorus is essential for understanding its bioavailability and fate in wetland ecosystems. Solution phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy was used to assess the conventional colorimetric procedure for phosphorus speciation in alkaline extracts of organic soils from the Florida Everglades. Molybdate colorimetry markedly overestimated organic phosphorus by between 30 and 54% compared to NMR spectroscopy. This was due in large part to the association of inorganic phosphate with organic matter, although the error was exacerbated in some samples by the presence of pyrophosphate, an inorganic polyphosphate that is not detected by colorimetry. The results have important implications for our understanding of phosphorus biogeochemistry in wetlands and suggest that alkaline extraction and solution 31p NMR spectroscopy is the only accurate method for quantifying organic phosphorus in wetland soils.

  10. Extraction of heavy metals from soils using biodegradable chelating agents.

    Science.gov (United States)

    Tandy, Susan; Bossart, Karin; Mueller, Roland; Ritschel, Jens; Hauser, Lukas; Schulin, Rainer; Nowack, Bernd

    2004-02-01

    Metal pollution of soils is widespread across the globe, and the clean up of these soils is a difficulttask. One possible remediation technique is ex-situ soil washing using chelating agents. Ethylenediaminetetraacetic acid (EDTA) is a very effective chelating agent for this purpose but has the disadvantage that it is quite persistent in the environment due to its low biodegradability. The aim of our work was to investigate the biodegradable chelating agents [S,S]-ethylenediaminedisuccinic acid (EDDS), iminodisuccinic acid (IDSA), methylglycine diacetic acid (MGDA), and nitrilotriacetic acid (NTA) as potential alternatives and compare them with EDTA for effectiveness. Kinetic experiments showed for all metals and soils that 24 h was the optimum extraction time. Longer times only gave minor additional benefits for heavy metal extraction but an unwanted increase in iron mobilization. For Cu at pH 7, the order of the extraction efficiency for equimolar ratios of chelating agent to metal was EDDS > NTA> IDSA > MGDA > EDTA and for Zn it was NTA > EDDS > EDTA >MGDA > IDSA. The comparatively low efficiency of EDTA resulted from competition between the heavy metals and co-extracted Ca. For Pb the order of extraction was EDTA > NTA >EDDS due to the much stronger complexation of Pb by EDTA compared to EDDS. At higher concentration of complexing agent, less difference between the agents was found and less pH dependence. There was an increase in heavy metal extraction with decreasing pH, but this was offset by an increase in Ca and Fe extraction. In sequential extractions EDDS extracted metals almost exclusively from the exchangeable, mobile, and Mn-oxide fractions. We conclude that the extraction with EDDS at pH 7 showed the best compromise between extraction efficiency for Cu, Zn, and Pb and loss of Ca and Fe from the soil.

  11. Optimization of sodium extraction from soil by using a central composite design (CCD and determination of soil sodium content by ion selective electrodes

    Directory of Open Access Journals (Sweden)

    Sevinç Karadağ

    2016-04-01

    Full Text Available Rapid determination of sodium (Na ions in soil samples using ion selective electrodes (ISE was investigated in this study. The compatibility of ISEs with soil extraction solution is a challenging subject as various effects such as pH, ionic strength and other interferences have to be considered as well as efficiency of the extraction solution. Because almost every type of sodium salt is soluble in water, and the pH of water is suitable for ISE studies, it was chosen as the soil extractant. Firstly, the extraction parameters were optimized by using a central composite design (CCD, secondly thirty agricultural soil samples were extracted with water and the extracts were measured by Na-ISE in a previously developed flow system. The results were compared with ion chromatography (IC as the reference method, and the regression analysis between IC and ISE results yielded a high correlation (R² = 0.9408. It was concluded that, ion selective electrodes can be used with water as an extraction solution for rapid determination of sodium in soil samples.

  12. Extracting Quantitative Data from Lunar Soil Spectra

    Science.gov (United States)

    Noble, S. K.; Pieters, C. M.; Hiroi, T.

    2005-01-01

    Using the modified Gaussian model (MGM) developed by Sunshine et al. [1] we compared the spectral properties of the Lunar Soil Characterization Consortium (LSCC) suite of lunar soils [2,3] with their petrologic and chemical compositions to obtain quantitative data. Our initial work on Apollo 17 soils [4] suggested that useful compositional data could be elicited from high quality soil spectra. We are now able to expand upon those results with the full suite of LSCC soils that allows us to explore a much wider range of compositions and maturity states. The model is shown to be sensitive to pyroxene abundance and can evaluate the relative portion of high-Ca and low-Ca pyroxenes in the soils. In addition, the dataset has provided unexpected insights into the nature and causes of absorption bands in lunar soils. For example, it was found that two distinct absorption bands are required in the 1.2 m region of the spectrum. Neither of these bands can be attributed to plagioclase or agglutinates, but both appear to be largely due to pyroxene.

  13. Residual soil DNA extraction increases the discriminatory power between samples.

    Science.gov (United States)

    Young, Jennifer M; Weyrich, Laura S; Clarke, Laurence J; Cooper, Alan

    2015-06-01

    Forensic soil analysis relies on capturing an accurate and reproducible representation of the diversity from limited quantities of soil; however, inefficient DNA extraction can markedly alter the taxonomic abundance. The performance of a standard commercial DNA extraction kit (MOBIO PowerSoil DNA Isolation kit) and three modified protocols of this kit: soil pellet re-extraction (RE); an additional 24-h lysis incubation step at room temperature (RT); and 24-h lysis incubation step at 55°C (55) were compared using high-throughput sequencing of the internal transcribed spacer I ribosomal DNA. DNA yield was not correlated with fungal diversity and the four DNA extraction methods displayed distinct fungal community profiles for individual samples, with some phyla detected exclusively using the modified methods. Application of a 24 h lysis step will provide a more complete inventory of fungal biodiversity, and re-extraction of the residual soil pellet offers a novel tool for increasing discriminatory power between forensic soil samples.

  14. Role of Various Extractants in Removing Group-IIB Elements of Soils Incubated with EDTA

    Directory of Open Access Journals (Sweden)

    Tanmoy Karak

    2004-01-01

    Full Text Available This paper presents the results of an experimental investigation undertaken to evaluate different extractant solutions viz. HCl, Mg(NO32, and DTPA with the range of concentration from 0.001 to 0.1N after incubation with group-IIB metals (Zn, Cd, and Hg and EDTA to understand the capability to remove Zn, Cd, and Hg from soils. Two noncontaminated soils, one acidic (GHL and the other alkaline (KAP, in reaction were taken from an agricultural field of West Bengal, India for this investigation. Experiments were conducted on these two soils spiked with ZnII, CdII, and HgII in concentrations of 612, 321, and 215 mg/kg for soil GHL and 778, 298, and 157 mg/kg for soil KAP, respectively, which simulate typical electroplating waste contamination. The removal of Zn, Cd, and Hg in soil GHL within the range of HCl concentrations was 8.2–16.5, 12.2–19.1, and 4.3–6.9 whereas these were 6.5–7.6, 8.5–14.1, and 3.2–5.2 in soil KAP. The removal of Zn, Cd, and Hg in soil GHL within the range of Mg(NO32 concentrations were 12.2–28.5, 19.1–24.6, and 18.2–19.1 whereas these were 9.1–12.1, 8.3–12.1, and 10.6–48.1 in soil KAP. For DTPA extractant, the percent removal of metal was found to be significantly higher than the other two extractants, which corroborates that DTPA is a better extractant for soil cleaning.

  15. PAH desorption from river floodplain soils using supercritical fluid extraction.

    Science.gov (United States)

    Yang, Yi; Cajthaml, Tomás; Hofmann, Thilo

    2008-12-01

    Sequential supercritical fluid extraction (SFE) was performed in order to estimate desorption of PAHs from river floodplain soils which contain coal and coal-derived particles. Original soils, soils' light fractions (rhoextractable contaminants ranged from decades for 2-4-ring PAHs and hundreds of years for 5-6-ring PAHs. We demonstrate that, despite high soil PAH concentrations which are due to coal and coal-derived particles, the general environmental risk is reduced by the very slow and extremely slow desorption rates.

  16. The extraction of uranium using graphene aerogel loading organic solution.

    Science.gov (United States)

    Chen, Mumei; Li, Zheng; Li, Jihao; Li, Jingye; Li, Qingnuan; Zhang, Lan

    2017-05-01

    A new approach for uranium extraction employing graphene aerogel (GA) as a skeleton loading organic solution (GA-LOS) is proposed and investigated. Firstly, the GA with super-hydrophobicity and high organic solution absorption capacity was fabricated by one-step reduction and self-assembly of graphene oxide with ethylenediamine. By adsorbing Tri-n-butyl phosphate (TBP)/n-dodecane solution to prepare GA-LOS, the extraction of U(VI) from nitric acid medium using GA-LOS was investigated and compared with conventional solvent extraction. It is found that the GA-LOS method can provide several advantages over conventional solvent extraction and adsorption due to the elimination of aqueous-organic mixing-separation procedures and easy solid-liquid separation. Furthermore, it also possesses higher extraction capacity (the saturated extraction capacity of GA loading TBP for U(VI) was 316.3mgg(-1) ) and lower consumption of organic diluents, leading to less organic waste. Moreover, the stability of GA-LOS in aqueous solution and cycling test were also studied, and it shows a remarkable regeneration capability, making it an ideal candidate for metal extraction from aqueous solution.

  17. Experimental PCR Data on Soil DNA Extracts

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Bacillus species and B. anthracis presence/absence data were determined in 4,770 soil samples collected across the contiguous United States, in cooperation with the...

  18. Experimental PCR Data on Soil DNA Extracts

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Bacillus species and B. anthracis presence/absence data were determined in 4,770 soil samples collected across the contiguous United States, in cooperation with the...

  19. Hafnium extraction from acidic chloride solutions by Cyanex 923

    Energy Technology Data Exchange (ETDEWEB)

    El-Ammouri, E.; Distin, P.A. [McGill Univ., Montreal (Canada)

    1996-08-01

    Hafnium extraction from hydrochloric acid/lithium chloride solutions into Cyanex 923 in kerosene has been studied. Variables investigated were hydrochloric acid, total chloride and hafnium concentrations in the aqueous phase, and extractant/modifier (isodecanol) levels in the organic phase. Hafnium is considered to load as the tetrachloride complex forming a disolvate with Cyanex 923. Results are compared with equivalent data for zirconium extraction. 14 refs., 7 figs., 2 tabs.

  20. Assessment of bioavailable organic phosphorus in tropical forest soils by organic acid extraction and phosphatase hydrolysis.

    Science.gov (United States)

    Darch, Tegan; Blackwell, Martin S A; Chadwick, David; Haygarth, Philip M; Hawkins, Jane M B; Turner, Benjamin L

    2016-12-15

    Soil organic phosphorus contributes to the nutrition of tropical trees, but is not accounted for in standard soil phosphorus tests. Plants and microbes can release organic anions to solubilize organic phosphorus from soil surfaces, and synthesize phosphatases to release inorganic phosphate from the solubilized compounds. We developed a procedure to estimate bioavailable organic phosphorus in tropical forest soils by simulating the secretion processes of organic acids and phosphatases. Five lowland tropical forest soils with contrasting properties (pH 4.4-6.1, total P 86-429 mg P kg(- 1)) were extracted with 2 mM citric acid (i.e., 10 μmol g(- 1), approximating rhizosphere concentrations) adjusted to soil pH in a 4:1 solution to soil ratio for 1 h. Three phosphatase enzymes were then added to the soil extract to determine the forms of hydrolysable organic phosphorus. Total phosphorus extracted by the procedure ranged between 3.22 and 8.06 mg P kg(- 1) (mean 5.55 ± 0.42 mg P kg(- 1)), of which on average three quarters was unreactive phosphorus (i.e., organic phosphorus plus inorganic polyphosphate). Of the enzyme-hydrolysable unreactive phosphorus, 28% was simple phosphomonoesters hydrolyzed by phosphomonoesterase from bovine intestinal mucosa, a further 18% was phosphodiesters hydrolyzed by a combination of nuclease from Penicillium citrinum and phosphomonoesterase, and the remaining 51% was hydrolyzed by a broad-spectrum phytase from wheat. We conclude that soil organic phosphorus can be solubilized and hydrolyzed by a combination of organic acids and phosphatase enzymes in lowland tropical forest soils, indicating that this pathway could make a significant contribution to biological phosphorus acquisition in tropical forests. Furthermore, we have developed a method that can be used to assess the bioavailability of this soil organic phosphorus.

  1. Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Nagissa; Slater, Greg F.; Fulthorpe, Roberta R.

    2011-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are in the environment and are carcinogenic, teratogenic and mutagenic. Their hydrophobic structure gives them low water solubility and makes them readily absorbed onto soils and sediments, where they persists until they are degraded. Microbial degradation of PAHs has been well documented and is thought to be an important process in remediating contaminated sediments and soils. Obtaining high quality purified DNA is an essential requirement for the successful DNA amplifications that underlie all subsequent procedures. Several commercial DNA extraction kits exist that provide consistent solutions for the central problems - cell lysis and humic acid removal. This study compared four commercial DNA extraction kits to extract pure, high quality bacterial and eukaryotic DNA from PAH contaminated soils and concluded that they can be used on a wide variety of soils, including heavily contaminated soils. The PowerSoil kit was the most effective and reliable.

  2. Soil solution interactions may limit Pb remediation using P amendments in an urban soil.

    Science.gov (United States)

    Obrycki, John F; Scheckel, Kirk G; Basta, Nicholas T

    2017-01-01

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg(-1) was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organic acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm(-1), potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. More research is needed to characterize soil solutions in Pb contaminated urban soils to identify where P treatments might be effective and when competing cations, such as Ca, Fe, and Zn may limit low rate P applications for treating Pb soils.

  3. Soil solution interactions may limit Pb remediation using P amendments in an urban soil

    Energy Technology Data Exchange (ETDEWEB)

    Obrycki, John F.; Scheckel, Kirk G.; Basta, Nicholas T. (OSU); (EPA)

    2017-01-01

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg-1 was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organic acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm-1, potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. More research is needed to characterize soil solutions in Pb contaminated urban soils to identify where P treatments might be effective and when competing cations, such as Ca, Fe, and Zn may limit low rate P applications for treating Pb soils.

  4. ADSORPTION OF GOLD ON TBP EXTRACTING RESIN FROM HCl SOLUTION

    Institute of Scientific and Technical Information of China (English)

    GaoHaoqi; CaoZhikai; 等

    1998-01-01

    Adsorption of gold on TBP extracting resin from HCl solution was researched.All the effects of factors,such as solution acidity,TBP content,temperature,etc.,on adsorption equilibrium were discussed and the equilibrium equation was formulated.The breakthough time of adsorption process with fixed bed was studied through experiment.

  5. Chelators effect on soil Cu extractability and uptake by Elsholtzia splendens

    Institute of Scientific and Technical Information of China (English)

    姜理英; 杨肖娥

    2004-01-01

    Phytoremediation is emerging as a potential cost-effective solution for remediation of contaminated soils, and bioavailability of metal in the soil for plant uptake is an important factor for successful phytoremediation.This study aimedat investigating the ability of EDTA and citric acid for enhancing soil bioavailability of Cu and phytoremediation by E1sholtzia splendens in two types of soils contaminated with heavy metals [i.e. mined soil from copper mining area (MS), and paddy soil (PS) polluted by copper refining].The results showed that addition of 2.5 mmol/kg EDTA significantly increased the H2O extractable Cu concentration from 1.20 to 15.78mg/kg in MS and from 0.26 to 15.72mg/kg in PS,and that shoot Cu concentration increased 4-fold and 8-fold as compared to the control.There was no significant difference between the treatment with 5.0mmol/kg EDTA and that with 2.5mmol/kg EDTA, probably because that 2.5mmol/kg EDTA was enough for elevating Cu bioavailability to the maximum level.As compared with the control, citric acid had no marked effect on both soil extractable Cu and shoot Cu concentration or accumulation. The results indicated that EDTA addition can increase the potential and efficiency of Cu phytoextraction by E.splendens in polluted soils.

  6. Chelators effect on soil Cu extractability and uptake by Elsholtzia splendens

    Institute of Scientific and Technical Information of China (English)

    姜理英; 杨肖娥

    2004-01-01

    Phytoremediation is emerging as a potential cost-effective solution for remediation of contaminated soils, and bioavailability of metal in the soil for plant uptake is an important factor for successful phytoremediation. This study aimed at investigating the ability of EDTA and citric acid for enhancing soil bioavailability of Cu and phytoremediation by Elsholtzia splendens in two types of soils contaminated with heavy metals [i.e. mined soil from copper mining area (MS), and paddy soil (PS) polluted by copper refining]. The results showed that addition of 2.5 mmol/kg EDTA significantly increased the H2O extractable Cu concentration from 1.20 to 15.78 mg/kg in MS and from 0.26 to 15.72 mg/kg in PS, and that shoot Cu concentration increased 4-fold and 8-fold as compared to the control. There was no significant difference between the treatment with 5.0 mmol/kg EDTA and that with 2.5 mmol/kg EDTA, probably because that 2.5 mmol/kg EDTA was enough for elevating Cu bioavailability to the maximum level. As compared with the control, citric acid had no marked effect on both soil extractable Cu and shoot Cu concentration or accumulation. The results indicated that EDTA addition can increase the potential and efficiency of Cu phytoextraction by E. splendens in polluted soils.

  7. Dinâmica de íons em solo ácido lixiviado com extratos de resíduos de adubos verdes e soluções puras de ácidos orgânicos Dynamic of ions in acid soil leached with green manure residues extracts and pure solutions of organic acids

    Directory of Open Access Journals (Sweden)

    Júlio Cezar Franchini

    1999-12-01

    Full Text Available A influência da aplicação de resíduos vegetais na dinâmica de íons em solos ácidos é pouco conhecida. Neste estudo, a mobilidade de íons em amostra do horizonte Bw de um Latossolo Vermelho-Escuro álico lixiviado com soluções puras de ácidos cítrico e succínico e extratos aquosos de resíduos de nabo forrageiro (Raphanus sativus e aveia-preta (Avena strigosa foi avaliada em colunas de solo (5, 10, 20 e 40 cm de altura por 4 cm de diâmetro. Após a percolação das soluções e extratos pelas colunas de solo determinaram-se, nas soluções efluentes, os teores de Ca (Ca s, Mg (Mg s, K (Ks, Al total (Al st, orgânico (Al so, monomérico (Al sm e carbono orgânico dissolvido. No solo, foram determinados os teores trocáveis de Ca (Ca tr, Mg (Mg tr, K (Ktr e Al (Al tr e o pH (CaCl2. Os ácidos cítrico e succínico aumentaram os teores de Al st e Ca s, respectivamente, causando reduções nas frações trocáveis desses elementos no solo. O extrato de aveia-preta foi mais efetivo na remoção do Ca tr e o de nabo forrageiro na do Al tr. O decréscimo de Ca tr e Al tr foi seguido do aumento do Ktr. A formação de complexos entre Ca s e Al tr com compostos orgânicos de baixo peso molecular foi sugerida como o provável mecanismo responsável pela mobilidade dos íons polivalentes no subsolo de solos ácidos após a aplicação dos extratos de resíduos vegetais e das soluções puras de ácidos orgânicos.The influence of green manure residues addition in the dynamic of ions in acid soils is not well known. In this study, ion mobility in a sample of the Bw horizon of an Dark-Red Latosol (Oxisol, leached with citric and succinic acid pure solutions and with aqueous residue extracts of black oats (Avena strigosa and oil seed radish (Raphanus sativus were evaluated in soil columns (5, 10, 20, and 40 cm long by 4 cm diameter. After the solutions and extracts passed through the soil columns, the following parameters were determined

  8. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  9. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  10. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    Directory of Open Access Journals (Sweden)

    Christopher Ash

    Full Text Available Shredded card (SC was assessed for use as a sorbent of potentially toxic elements (PTE carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water. We further assessed SC for retention of PTE, using acidified water (pH 3.4. Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49 were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC. In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC. In water, only Pb showed high sorption (191x more Pb in leachate without SC. In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil, and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC. A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption. SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing.

  11. Arsenic in the rhizosphere soil solution of ferns.

    Science.gov (United States)

    Wei, Chaoyang; Zheng, Huan; Yu, Jiangping

    2012-12-01

    The aim of this study was to explore the evidence of arsenic hyperaccumulation in plant rhizosphere solutions. Six common fern plants were selected and grown in three types of substrate: arsenic (As) -tailings, As-spiked soil, and soil-As-tailing composites. A rhizobox was designed with an in-situ collection of soil solutions to analyze changes in the As concentration and valence as well as the pH, dissolved organic carbon (DOC) and total nitrogen (TN). Arsenite composed less than 20% of the total As, and As depletion was consistent with N depletion in the rhizosphere solutions of the various treatments. The As concentrations in the rhizosphere and non-rhizosphere solutions in the presence of plants were lower than in the respective controls without plants, except for in the As-spiked soils. The DOC concentrations were invariably higher in the rhizosphere versus non-rhizosphere solutions from the various plants; however, no significant increase in the DOC content was observed in Pteris vittata, in which only a slight decrease in pH appeared in the rhizosphere compared to non-rhizosphere solutions. The results showed that As reduction by plant roots was limited, acidification-induced solubilization was not the mechanism for As hyperaccumulation.

  12. Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process

    DEFF Research Database (Denmark)

    Dias-Ferreira, Celia; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2015-01-01

    Seven electrodialytic experiments were conducted using ammonium citrate as enhancing agent to remediate copper and chromium-contaminated soil from a wood-preservation site. The purpose was to investigate the effect of current density (0.2, 1.0 and 1.5 mA cm−2), concentration of enhancing agent (0...... using too high current densities can be a waste of energy. Desorption rate is important and both remediation time and ammonium citrate concentration are relevant parameters. It was possible to collect soil solution samples following an adaptation of the experimental set-up to ensure continuous supply...... of ammonium citrate to the soil in order to keep it saturated during the remediation. Monitoring soil solution gives valuable information on the evolution of remediation and helps deciding when the soil is remediated. Final concentrations in the soil ranged from 220 to 360 mg Cu kg−1 (removals: 78...

  13. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil

    NARCIS (Netherlands)

    Zutphen, M. van; Heron, G.; Enfield, C.G.; Christensen, T.H.

    1998-01-01

    A 2D-laboratory box experiment (12 x 56 x 116 cm) was conducted to simulate the enhancement of soil vapor extraction by the application of low frequency electrical heating Uoule heating) for the remediation of a low permeable, silty soil contaminated with trichloroethylene. Joule heating enlarged th

  14. Extraction of rare earth elements from a contaminated cropland soil using nitric acid, citric acid, and EDTA.

    Science.gov (United States)

    Tang, Hailong; Shuai, Weitao; Wang, Xiaojing; Liu, Yangsheng

    2017-08-01

    Rare earth elements (REEs) contamination to the surrounding soil has increased the concerns of health risk to the local residents. Soil washing was first attempted in our study to remediate REEs-contaminated cropland soil using nitric acid, citric acid, and ethylene diamine tetraacetic acid (EDTA) for soil decontamination and possible recovery of REEs. The extraction time, washing agent concentration, and pH value of the washing solution were optimized. The sequential extraction analysis proposed by Tessier was adopted to study the speciation changes of the REEs before and after soil washing. The extract containing citric acid was dried to obtain solid for the X-ray fluorescence (XRF) analysis. The results revealed that the optimal extraction time was 72 h, and the REEs extraction efficiency increased as the agent concentration increased from 0.01 to 0.1 mol/L. EDTA was efficient to extract REEs over a wide range of pH values, while citric acid was around pH 6.0. Under optimized conditions, the average extraction efficiencies of the major REEs in the contaminated soil were 70.96%, 64.38%, and 62.12% by EDTA, nitric acid, and citric acid, respectively. The sequential extraction analyses revealed that most soil-bounded REEs were mobilized or extracted except for those in the residual fraction. Under a comprehensive consideration of the extraction efficiency and the environmental impact, citric acid was recommended as the most suitable agent for extraction of the REEs from the contaminated cropland soils. The XRF analysis revealed that Mn, Al, Si, Pb, Fe, and REEs were the major elements in the extract indicating a possibile recovery of the REEs.

  15. Cadmium and zinc in plants and soil solutions from contaminated soils

    DEFF Research Database (Denmark)

    Lorenz, S.E.; Hamon, R.E.; Holm, P.E.;

    1997-01-01

    In an experiment using ten heavy metal-contaminated soils from six European countries, soil solution was sampled by water displacement before and after the growth of radish. Concentrations of Cd, Zn and other elements in solution (K, Ca, Mg, Mn) generally decreased during plant growth, probably...... because of uptake by plants and the subsequent redistribution of ions onto soil exchange sites at lower ionic strength. Speciation analysis by a resin exchange method showed that most Cd and Zn in non-rhizospbere solutions was present as Cd2+ and Zn2+; respectively. The proportion of free ions.......70, respectively). This suggests that the great variability among soils in the solubility of Zn affected the rate of release of Zn into solution, and thus Zn uptake. There was no such effect for Cd, for which solubility varied much less. Furthermore, the plants may have partly controlled Zn uptake, as they took up...

  16. Proficiency testing of growing media, soil improvers, soils, and nutrient solutions

    NARCIS (Netherlands)

    Kreij, de C.; Wever, G.

    2005-01-01

    At Applied Plant Research two (interlaboratory) proficiency tests for (peat-based) growing media, soil improvers, soil, and nutrient solution were being organized; one for the national and one for the European methods. Data were compiled according to ISO 5725. Reports containing all data, where the

  17. Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process

    DEFF Research Database (Denmark)

    Dias-Ferreira, Celia; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2015-01-01

    .25, 0.5 and 1.0 M) and remediation times (21, 42 and 117 d) for the removal of Cu and Cr from a calcareous soil. To gain insight on metal behavior, soil solution was periodically collected using suction cups. It was seen that current densities higher than 1.0 mA cm−2 did not increase removal and thus...

  18. Selective Removal of Uranium from the Washing Solution of Uranium-Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Han, G. S.; Kim, G. N.; Koo, D. S.; Jeong, J. W.; Choi, J. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This study examined selective removal methods of uranium from the waste solution by ion exchange resins or solvent extraction methods to reduce amount of the 2{sup nd} waste. Alamine-336, known as an excellent extraction reagent of uranium from the leaching solution of uranium ore, did not remove uranium from the acidic washing solution of soil. Uranyl ions in the acidic waste solution were sorbed on ampholyte resin with a high sorption efficiency, and desorbed from the resin by a washing with 0.5 M Na{sub 2}CO{sub 3} solution at 60 .deg. C. However, the uranium dissolved in the sulfuric acid solution was not sorbed onto the strong anion exchanger resins. A great amount of uranium-contaminated (U-contaminated) soil had been generated from the decommissioning of a uranium conversion plant. Our group has developed a decontamination process with washing and electrokinetic methods to decrease the amount of waste to be disposed of. However, this process generates a large amount of waste solution containing various metal ions.

  19. The applicability of Accelerated Solvent Extraction (ASE) to extract lipid biomarkers from soils

    NARCIS (Netherlands)

    B. Jansen; K.G.J. Nierop; M.C. Kotte; P. de Voogt; J.M. Verstraten

    2006-01-01

    We investigated the ability of accelerated solvent extraction (ASE) to extract selected lipid biomarkers (C-19=C-34 n-alkanes, n-alcohols and n-fatty acids as well as dehydroabietic acid and P-sitosterol) from a sandy soil profile under Corsican pine. Two organic layers (moss and F1) as well as two

  20. Necessity of Purification during Bacterial DNA Extraction with Environmental Soils.

    Science.gov (United States)

    Lim, Hyun Jeong; Choi, Jung-Hyun; Son, Ahjeong

    2017-08-08

    Complexity and heterogeneity of soil samples have often implied the inclusion of purification steps in conventional DNA extraction for PCR assays. Unfortunately the purification steps are also time and labor intensive. Therefore the necessity of DNA purification was re-visited and investigated for a variety of environmental soil samples that contained various amounts of PCR inhibitors. Bead beating and centrifugation was used as the baseline (without purification) method for DNA extraction. Its performance was compared with that of conventional DNA extraction kit (with purification). The necessity criteria for DNA purification were established with environmental soil samples. Using lysis conditions at 3000 rpm for 3 minutes with 0.1 mm glass beads, centrifugation time of 10 minutes and 1:10 dilution ratio, the baseline method outperformed conventional DNA extraction on cell seeded sand samples. Further investigation with PCR inhibitors (i.e., humic acids, clay, and magnesium) showed that sand samples containing less than 10 ug/g humic acids and 70% clay may not require purifications. Interestingly, the inhibition pattern of magnesium ion was different from other inhibitors due to the complexation interaction of magnesium ion with DNA fragments. It was concluded that DNA extraction method without purification is suitable for soil samples that have less than 10 ug/g of humic acids, less than 70% clay content and less than 0.01% magnesium ion content.

  1. Pyrophosphate coupling with chelant-enhanced soil flushing of field contaminated soils for heavy metal extraction.

    Science.gov (United States)

    Yan, Dickson Y S; Lo, Irene M C

    2012-01-15

    This study investigated the influence of flushing duration, [S,S]-ethylenediaminedisuccinic acid (EDDS) dosage, humic acid and various combinations of ethylenediaminetetraacetic acid (EDTA), EDDS and tetrasodium pyrophosphate (Na(4)P(2)O(7)) on metal extraction during soil flushing, through column experiments. A lesser extent of enhancement in metal extraction efficiencies was found when the flushing duration and the dosage of EDDS was doubled, compared to their efficiencies measured at pore volume 100. Metal extraction efficiency was mainly influenced by the initial metal distribution in the soils rather than the flushing duration and the EDDS-to-metal molar ratio. Humic acid of less than 10mg/L as dissolved organic carbon (DOC) posed an insignificant effect on metal extraction during EDDS enhanced soil flushing. The extraction rate of Ni by EDTA and EDDS was time dependent, and was initially fast in the case of EDDS, whereas it was slow for EDTA. However, the overall Ni extraction efficiency by EDTA was higher when the flushing time was longer. Na(4)P(2)O(7) promoted the mineral dissolution which enhanced the metal extraction as a result of soil disruption. The order of metal extraction by Na(4)P(2)O(7) was Ni>Cr>Cu, probably be due to the different affinities between metals and P(2)O(7)(4-). Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Reactive Extraction of Alcohols from Apolar Hydrocarbons with Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aqueous solutions are evaluated as sustainable reactive extraction solvents for the recovery of monohydroxyl alcohols (benzyl alcohol, 1-hexanol, cyclohexanol) present in few-percent concentrations in apolar hydrocarbons (toluene, n-hexane, and cyclohexane) by considering two approaches. An aqueous solution containing a reactive extractant, like borate salts, borate complexes, a monosalt of dicarboxylic acid,hydroxypropyl-cyclodextrins, and silver nitrate, shows limited potential to be used. Another approach, in which the alcohol is chemically modified prior to the extraction into an easy-extractable form, in this case a monoesterlcarboxylic acid, shows much more potential. An environmentally benign aqueous solution of sodium hydrogen carbonate can provide a distribution ratio of benzyl alcohol up to 200, leaving the solubility of the organic solvent in the aqueous solution unchanged relative to pure water and therefore increasing the selectivity with two orders of magnitude. The modification of aromatic, cyclo-aliphatic, and linear aliphatic alcohols can be performed efficiently in the apolar organic solvent without need for a catalyst. The recovery of the modified alcohol can be performed by back-extraction in combination with a spontaneous hydrolysis.

  3. Rapid quantification of polycyclic aromatic hydrocarbons in hydroxypropyl-{beta}-cyclodextrin (HPCD) soil extracts by synchronous fluorescence spectroscopy (SFS)

    Energy Technology Data Exchange (ETDEWEB)

    Hua Guoxiong [School of Biology and Psychology, Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: gh15@st-andrews.ac.uk; Broderick, John [School of Biology and Psychology, Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Semple, Kirk T. [Department of Environmental Science, Faculty of Science and Technology, University of Lancaster, Lancaster LA1 4YQ (United Kingdom); Killham, Ken [School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU (United Kingdom); Singleton, Ian [School of Biology and Psychology, Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2007-07-15

    Synchronous fluorescence spectroscopy (SFS) was directly applied to rapidly quantify selected polycyclic aromatic hydrocarbons (PAHs: benzo[a]pyrene and pyrene) in aqueous hydroxypropyl-{beta}-cyclodextrin (HPCD) soil extract solutions from a variety of aged contaminated soils containing four different PAHs. The method was optimized and validated. The results show that SFS can be used to analyse benzo[a]pyrene and pyrene in HPCD based soil extracts with high sensitivity and selectivity. The linear calibration ranges were 4.0 x 10{sup -6}-1.0 x 10{sup -3} mM for benzo[a]pyrene and 6.0 x 10{sup -6}-1.2 x 10{sup -3} mM for pyrene in 10 mM HPCD aqueous solution alone. The detection limits according to the error propagation theory for benzo[a]pyrene and pyrene were 3.9 x 10{sup -6} and 5.4 x 10{sup -6} mM, respectively. A good agreement between SFS and HPLC was reached for both determinations of PAHs in HPCD alone and in soil HPCD extracts. Hence, SFS is a potential means to simplify the present non-exhaustive hydroxypropyl-{beta}-cyclodextrin (HPCD)-based extraction technique for the evaluation of PAH bioavailability in soil. - SFS can be used to rapidly quantify selected PAHs in soil extracts and to simplify the non-exhaustive HPCD-based extraction technique for the evaluation of PAH bioavailability.

  4. Comparison of single and sequential extraction procedures for the study of rare earth elements remobilisation in different types of soils

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Chebrolu Rama Mohan [Geological Survey of India, Hyderabad 500068 (India); Sahuquillo, Angels [Universitat de Barcelona, Department de Quimica Analitica, Marti i Franques, 1-11, E-08028 Barcelona (Spain); Lopez-Sanchez, Jose Fermin, E-mail: fermin.lopez@ub.edu [Universitat de Barcelona, Department de Quimica Analitica, Marti i Franques, 1-11, E-08028 Barcelona (Spain)

    2010-03-10

    With the continual increase in the utilisation of rare earth elements (REE) for industrial and agricultural purposes, research into the environmental and biogeochemical behaviour of REE had attracted much interest in recent times. This study principally describes the distribution of REE in four different types of soils like lateritic soil (S-1), in situ natural soil (S-2), soil contaminated by mining activity (S-3) and accidentally polluted soil (S-4) utilizing the optimised BCR sequential extraction procedure and partial extractions with various types of single extractants such as unbuffered salt solutions 0.1 M NaNO{sub 3}, 0.01 M CaCl{sub 2}, 1 M NH{sub 4}NO{sub 3}; complexing agents 0.005 M DTPA and 0.05 M EDTA; acid solutions 0.43 M CH{sub 3}COOH and 1 M HCl. Comparison of the sum of the four BCR fractions, which included an aqua regia attack on the residue, with the pseudo-total aqua regia digest values to assess the accuracy of the BCR partioning approach has been undertaken. Partial extraction results with several single extractants have also been reported for all the REE elements including yttrium which have been analysed by the optimised BCR procedure. Results obtained after 24 h extraction with each of the single extractant have also been discussed. The extraction with 1 M HCl during 24 h yielded similar quantities of REE as those released under the combined steps of 1, 2 and 3 of the BCR sequential extraction for all the four different type of soil samples indicating that this reagent can be used successfully to estimate the total extractable contents of REE in various types of soil samples.

  5. Extractive removal of chromium (VI) from industrial waste solution.

    Science.gov (United States)

    Agrawal, Archana; Pal, Chandana; Sahu, K K

    2008-11-30

    Extractive removal of Cr (VI) was carried out from chloride solutions using cyanex 923 mixed with kerosene. The efficiency of this extractant was studied under various experimental conditions, such as concentration of different mineral acids in the aqueous phase, concentration of cyanex 923 and Cr (VI) present in the initial aqueous feed, temperature and time of extraction, organic to aqueous (O/A) phase ratio. Percentage Cr (VI) extraction decreases with the increase in temperature at varying concentration of cyanex 923. The interference of the impurities usually associated with Cr (VI) such as Cr (III), Cu, Ni, Fe (II), Zn, Chloride and sulphate, etc., were examined under the optimized conditions and only Zn was found to interfere. Under the optimum experimental conditions 98.6-99.9% of Cr (VI) was extracted in 3-5 min at O/A of 2 with the initial feed concentration of 1g/L of Cr (VI). The extracted Cr (VI) was quantitatively stripped with 1M NaOH and the organic phase obtained after the stripping of Cr (VI) was washed with dilute HCl solution to neutralize any NaOH trapped/adhered to the solvent and then with distilled water. This regenerated solvent was reused in succeeding extraction of chromium (VI). Finally a few experiments were performed with the synthetic effluent from an electroplating industry.

  6. Development of soft extraction method for structural characterization of boreal forest soil proteins with MALDI-TOF/MS

    Science.gov (United States)

    Kanerva, Sanna; Ketola, Raimo A.; Kitunen, Veikko; Smolander, Aino; Kotiaho, Tapio

    2010-05-01

    by phenol extraction was essential prior to measurement of total proteins; there seemed to be a lot of compounds in crude soil extracts that interfere with the analysis of total proteins, causing overestimation in protein concentration. pH of the buffer solution did not seem to be very crucial for the extractability of soil natural proteins, but at the higher pH, the amount of interfering compounds increased. However, the recovery of BSA added was clearly higher at the higher pH. When the protein precipitates were analyzed with MALDI-TOF/MS, a large curve, most likely formed from wide peaks of several compounds, indicate that most of the compounds in the precipitate were structures of proteins.

  7. Direct Extraction and Amplification of DNA from Soil.

    Science.gov (United States)

    Trevors, Jack T.; Leung, K.

    1998-01-01

    Presents an exercise that describes the direct extraction and purification of DNA from a small soil sample. Also discusses the subsequent amplification of a 343-bp Tn7 transposate A gene fragment (tnsA) from a strain of Pseudomonas aureofaciens 3732RNL11. Contains 21 references. (DDR)

  8. Direct Extraction and Amplification of DNA from Soil.

    Science.gov (United States)

    Trevors, Jack T.; Leung, K.

    1998-01-01

    Presents an exercise that describes the direct extraction and purification of DNA from a small soil sample. Also discusses the subsequent amplification of a 343-bp Tn7 transposate A gene fragment (tnsA) from a strain of Pseudomonas aureofaciens 3732RNL11. Contains 21 references. (DDR)

  9. Remediation of sandy soils using surfactant solutions and foams.

    Science.gov (United States)

    Couto, Hudson J B; Massarani, Guilio; Biscaia, Evaristo C; Sant'Anna, Geraldo L

    2009-05-30

    Remediation of sandy soils contaminated with diesel oil was investigated in bench-scale experiments. Surfactant solution, regular foams and colloidal gas aphrons were used as remediation fluids. An experimental design technique was used to investigate the effect of relevant process variables on remediation efficiency. Soils prepared with different average particle sizes (0.04-0.12 cm) and contaminated with different diesel oil contents (40-80 g/kg) were used in experiments conducted with remediation fluids. A mathematical model was proposed allowing for the determination of oil removal rate-constant (k(v)) and oil content remaining in the soil after remediation (C(of)) as well as estimation of the percentage of oil removed. Oil removal efficiencies obtained under the central experimental design conditions were 96%, 88% and 35% for aphrons, regular foams and surfactant solutions, respectively. High removal efficiencies were obtained using regular foams and aphrons, demanding small amounts of surfactant.

  10. Efficiency of solvent extraction methods for the determination of methyl mercury in forest soils.

    Science.gov (United States)

    Qian, J; Skyllberg, U; Tu, Q; Bleam, W F; Frech, W

    2000-07-01

    Methyl mercury was determined by gas chromatography, microwave induced plasma, atomic emission spectrometry (GC-MIP-AES) using two different methods. One was based on extraction of mercury species into toluene, pre-concentration by evaporation and butylation of methyl mercury with a Grignard reagent followed by determination. With the other, methyl mercury was extracted into dichloromethane and back extracted into water followed by in situ ethylation, collection of ethylated mercury species on Tenax and determination. The accuracy of the entire procedure based on butylation was validated for the individual steps involved in the method. Methyl mercury added to various types of soil samples showed an overall average recovery of 87.5%. Reduced recovery was only caused by losses of methyl mercury during extraction into toluene and during pre-concentration by evaporation. The extraction of methyl mercury added to the soil was therefore quantitative. Since it is not possible to directly determine the extraction efficiency of incipient methyl mercury, the extraction efficiency of total mercury with an acidified solution containing CuSO4 and KBr was compared with high-pressure microwave acid digestion. The solvent extraction efficiency was 93%. For the IAEA 356 sediment certified reference material, mercury was less efficiently extracted and determined methyl mercury concentrations were below the certified value. Incomplete extraction could be explained by the presence of a large part of inorganic sulfides, as determined by x-ray absorption near-edge structure spectroscopy (XANES). Analyses of sediment reference material CRM 580 gave results in agreement with the certified value. The butylation method gave a detection limit for methyl mercury of 0.1 ng g(-1), calculated as three times the standard deviation for repeated analysis of soil samples. Lower values were obtained with the ethylation method. The precision, expressed as RSD for concentrations 20 times above the

  11. Soil properties and preferential solute transport at the field scale

    DEFF Research Database (Denmark)

    Koestel, J K; Minh, Luong Nhat; Nørgaard, Trine

    An important fraction of water flow and solute transport through soil takes place through preferential flow paths. Although this had been already observed in the nineteenth century, it had been forgotten by the scientific community until it was rediscovered during the 1970s. The awareness...... of the relevance of preferential flow was broadly re-established in the community by the early 1990s. However, since then, the notion remains widespread among soil scientists that the occurrence and strength of preferential flow cannot be predicted from measurable proxy variables such as soil properties or land...... management practices (e.g. Beven, K., 1991, modeling preferential flow - an uncertain future, Preferential Flow, 1-11). In our study, we present evidence that disproves this notion. We evaluated breakthrough curve experiments under a constant irrigation rate of 1 cm/h conducted on 65 soil columns (20 cm...

  12. Reactive Extraction of Alcohols from Apolar Hydrocarbons with Aqueous Solutions

    NARCIS (Netherlands)

    Kuzmanovic, B.; Kuipers, N.J.M.; de Haan, A.B.; Kwant, Gerard

    2006-01-01

    The aqueous solutions are evaluated as sustainable reactive extraction solvents for the recovery of monohydroxyl alcohols (benzyl alcohol, 1-hexanol, cyclohexanol) present in few-percent concentrations in apolar hydrocarbons (toluene, n-hexane, and cyclohexane) by considering two approaches. An aque

  13. Reactive Extraction of Alcohols from Apolar Hydrocarbons with Aqueous Solutions

    NARCIS (Netherlands)

    Kuzmanovic, Boris; Kuipers, Norbert J.M.; Haan, de André B.; Kwant, Gerard

    2006-01-01

    The aqueous solutions are evaluated as sustainable reactive extraction solvents for the recovery of monohydroxyl alcohols (benzyl alcohol, 1-hexanol, cyclohexanol) present in few-percent concentrations in apolar hydrocarbons (toluene, n-hexane, and cyclohexane) by considering two approaches. An aque

  14. Solute transport scales in an unsaturated stony soil

    Science.gov (United States)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Dyck, Miles; Basile, Angelo; Lamaddalena, Nicola; Kassab, Mohamed; Comegna, Vincenzo

    2011-06-01

    Solute transport parameters are known to be scale-dependent due mainly to the increasing scale of heterogeneities with transport distance and with the lateral extent of the transport field examined. Based on a transect solute transport experiment, in this paper we studied this scale dependence by distinguishing three different scales with different homogeneity degrees of the porous medium: the observation scale, transport scale and transect scale. The main objective was to extend the approach proposed by van Wesenbeeck and Kachanoski to evaluating the role of textural heterogeneities on the transition from the observation scale to the transport scale. The approach is based on the scale dependence of transport moments estimated from solute concentrations distributions. In our study, these moments were calculated starting from time normalized resident concentrations measured by time domain reflectometry (TDR) probes at three depths in 37 soil sites 1 m apart along a transect during a steady state transport experiment. The Generalized Transfer Function (GTF) was used to describe the evolution of apparent solute spreading along the soil profile at each observation site by analyzing the propagation of the moments of the concentration distributions. Spectral analysis was used to quantify the relationship between the solid phase heterogeneities (namely, texture and stones) and the scale dependence of the solute transport parameters. Coupling the two approaches allowed us to identify two different transport scales (around 4-5 m and 20 m, respectively) mainly induced by the spatial pattern of soil textural properties. The analysis showed that the larger transport scale is mainly determined by the skeleton pattern of variability. Our analysis showed that the organization in hierarchical levels of soil variability may have major effects on the differences between solute transport behavior at transport scale and transect scale, as the transect scale parameters will include

  15. The effects of electrolysis on operational solutions in electromembrane extraction: The role of acceptor solution.

    Science.gov (United States)

    Kubáň, Pavel; Boček, Petr

    2015-06-12

    Fundamental operational principle and instrumental set-up of electromembrane extraction (EME) suggest that electrolysis may play an important role in this recently developed micro-extraction technique. In the present study, the effect of electrolysis in EME is described comprehensively for the first time and it is demonstrated that electrolysis considerably influences EME performance. Micro-electromembrane extraction (μ-EME) across free liquid membrane formed by 1-pentanol was utilized for real-time monitoring of the electrolytically induced changes in composition of μ-EME solutions. These changes were visualized with a set of acid-base indicators. Changes in colours of their aqueous solutions revealed serious variations in their pH values, which occurred within seconds to minutes of the μ-EME process. Variations of up to eight pH units were observed for indicator solutions initially prepared in 1, 5 and 10mM hydrochloric acid. No or only negligible pH changes (less than 0.15 pH unit) were observed for indicator solutions prepared in 50 and 100mM acetic acid demonstrating that initial composition of the aqueous solutions was the crucial parameter. These results were also confirmed by theoretical calculations of maximum pH variations in the solutions, which were based on total electric charge transfers measured in the μ-EME systems, and by exact measurements of their pH values after μ-EMEs. Acceptor solutions that, in the current practice, consist predominantly of low concentrations of strong mineral acids or alkali hydroxides may thus not always ensure adequate EME performance, which was manifested by decrease in extraction recoveries of a basic drug papaverine. A suitable remedy to the observed effects is the application of acceptor solutions containing high concentrations of weak acids or bases. These solutions not only eliminate the decrease in recoveries but also serve well as matrices of extracted samples for subsequent analysis by capillary

  16. Recyclable bio-reagent for rapid and selective extraction of contaminants from soil

    Energy Technology Data Exchange (ETDEWEB)

    Lomasney, H.L. [ISOTRON Corp., New Orleans, LA (United States)

    1997-10-01

    This Phase I Small Business Innovation Research program is confirming the effectiveness of a bio-reagent to cost-effectively and selectively extract a wide range of heavy metals and radionuclide contaminants from soil. This bioreagent solution, developed by ISOTRON{reg_sign} Corporation (New Orleans, LA), is flushed through the soil and recycled after flowing through an electrokinetic separation module, also developed by ISOTRON{reg_sign}. The process is ex situ, and the soil remains in its transport container through the decontamination process. The transport container can be a fiberglass box, or a bulk bag or {open_quotes}super sack.{close_quotes} Rocks, vegetation, roots, etc. need not be removed. High clay content soils are accommodated. The process provides rapid injection of reagent solution, and when needed, sand is introduced to speed up the heap leach step. The concentrated waste form is eventually solidified. The bio-reagent is essentially a natural product, therefore any solubizer residual in soil is not expected to cause regulatory concern. The Phase I work will confirm the effectiveness of this bio-reagent on a wide range of contaminants, and the engineering parameters that are needed to carry out a full-scale demonstration of the process. ISOTRON{reg_sign} scientists will work with contaminated soil from Los Alamos National Laboratory. LANL is in the process of decontaminating and decommissioning more than 300 sites within its complex, many of which contain heavy metals or radionuclides; some are mixed wastes containing TCE, PCB, and metals.

  17. Mild and Moderate Extraction Methods to Assess Potentially Available Soil Organic Nitrogen

    Directory of Open Access Journals (Sweden)

    Bruno Boscov Braos

    Full Text Available ABSTRACT The use of chemical methods to assess the soil organic nitrogen (N potentially available to plants is not a common practice in Brazil. However, associated with others, this tool might improve efficiency in the use of waste and nitrogen fertilizers. In our study, chemical methods were tested to assess potentially available soil N in samples of 17 representative soils of the western plateau of the state of São Paulo (10 Oxisols and 7 Ultisols. Available soil N was extracted from the collected soil samples using moderate (ISNT-Illinois Soil Nitrogen Test and mild (hot water and heated solutions of 2 mol L-1 KCl and 0.01 mol L-1 CaCl2 extraction methods. The levels of potentially available N obtained from these chemical methods were correlated with dry matter (DM and N uptake (Nup by corn plants grown in pots in a greenhouse experiment carried out with the same 17 soil samples. The ISNT method showed the highest available N extraction capacity, whereas hot water showed the lowest capacity, followed closely by the hot 0.01 mol L-1 CaCl2 solution. Despite the differences among the quantities of available N extracted, the methods correlated with each other and with DM and Nup, but the values from the ISNT method showed the lowest correlation with plant variables (rDM = 0.67** and rNup = 0.81**. Procedures of extraction with water or 0.01 mol L-1 CaCl2 heated for 16 h, and 2 mol L-1 KCl heated for 4 h, resulted in similar correlation values (r with plant DM and Nup. Thus, water (rDM = 0.77** and rNup = 0.90** and 0.01 mol L-1 CaCl2 (rDM = 0.82** and rNup = 0.93** heated for 16 h can be recommended as the best options for N extraction.considering the possibility for predicting N availability, lower generation of waste, and lower cost of analysis.

  18. An Experimental Method to Quantify Extractable Amino Acids in Soils from Southeast China

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-you; WU Liang-huan; CAO Xiao-chuang; Sarkar Animesh; ZHU Yuan-hong

    2013-01-01

    The extraction and comparison of soil amino acids using different extractants (deionized water, K2SO4, Na2SO4, NaCl, KCl) were reported. Results showed that 0.5 mol L-1 K2SO4 with a 5 times extraction was a better method to assess the concentration of extractable amino acids in soils. The total amino acids extracted from soil planted for tea were similar to the total inorganic nitrogen. While they extracted from vegetable soil and paddy soil were much lower than the total inorganic nitrogen.

  19. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review.

    Science.gov (United States)

    Trellu, Clément; Mousset, Emmanuel; Pechaud, Yoan; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The release of hydrophobic organoxenobiotics such as polycyclic aromatic hydrocarbons, petroleum hydrocarbons or polychlorobiphenyls results in long-term contamination of soils and groundwaters. This constitutes a common concern as these compounds have high potential toxicological impact. Therefore, the development of cost-effective processes with high pollutant removal efficiency is a major challenge for researchers and soil remediation companies. Soil washing (SW) and soil flushing (SF) processes enhanced by the use of extracting agents (surfactants, biosurfactants, cyclodextrins etc.) are conceivable and efficient approaches. However, this generates high strength effluents containing large amount of extracting agent. For the treatment of these SW/SF solutions, the goal is to remove target pollutants and to recover extracting agents for further SW/SF steps. Heterogeneous photocatalysis, technologies based on Fenton reaction chemistry (including homogeneous photocatalysis such as photo-Fenton), ozonation, electrochemical processes and biological treatments have been investigated. Main advantages and drawbacks as well as target pollutant removal mechanisms are reviewed and compared. Promising integrated treatments, particularly the use of a selective adsorption step of target pollutants and the combination of advanced oxidation processes with biological treatments, are also discussed.

  20. Evaluation of a simple, non-alkaline extraction protocol to quantify soil ergosterol

    NARCIS (Netherlands)

    De Ridder-Duine, A.S.; Smant, W.; Van der Wal, A.; Van Veen, J.A.; De Boer, W.

    2006-01-01

    Quantification of soil ergosterol is increasingly used as an estimate for soil fungal biomass. Several methods for extraction of ergosterol from soil have been published, perhaps the simplest being that described by Gong, P., Guan, X., Witter, E. [2001. A rapid method to extract ergosterol from soil

  1. Extraction DNA from Activated Sludge-Comparing with Soil Sample

    Institute of Scientific and Technical Information of China (English)

    谢冰; 奚旦立; 陈季华

    2003-01-01

    DNA directly extraction from activated sludge and soil sample with enzyme lyses methods was investigated in this paper. DNA yield from activated sludge was 3.0 mg/g. VLSS, and 28.2-43.8 μg/g soil respectively. The resulting DNA is suitable for PCR.By studied methods, higher quality and quantity of sludge DNA could be obtained rapidly and inexpensively from large number of samples, and the PCR product obtained from this protocol was not affected by contaminated higher concentration of heavy metals.

  2. Soil Degradation in India: Challenges and Potential Solutions

    Directory of Open Access Journals (Sweden)

    Ranjan Bhattacharyya

    2015-03-01

    Full Text Available Soil degradation in India is estimated to be occurring on 147 million hectares (Mha of land, including 94 Mha from water erosion, 16 Mha from acidification, 14 Mha from flooding, 9 Mha from wind erosion, 6 Mha from salinity, and 7 Mha from a combination of factors. This is extremely serious because India supports 18% of the world’s human population and 15% of the world’s livestock population, but has only 2.4% of the world’s land area. Despite its low proportional land area, India ranks second worldwide in farm output. Agriculture, forestry, and fisheries account for 17% of the gross domestic product and employs about 50% of the total workforce of the country. Causes of soil degradation are both natural and human-induced. Natural causes include earthquakes, tsunamis, droughts, avalanches, landslides, volcanic eruptions, floods, tornadoes, and wildfires. Human-induced soil degradation results from land clearing and deforestation, inappropriate agricultural practices, improper management of industrial effluents and wastes, over-grazing, careless management of forests, surface mining, urban sprawl, and commercial/industrial development. Inappropriate agricultural practices include excessive tillage and use of heavy machinery, excessive and unbalanced use of inorganic fertilizers, poor irrigation and water management techniques, pesticide overuse, inadequate crop residue and/or organic carbon inputs, and poor crop cycle planning. Some underlying social causes of soil degradation in India are land shortage, decline in per capita land availability, economic pressure on land, land tenancy, poverty, and population increase. In this review of land degradation in India, we summarize (1 the main causes of soil degradation in different agro-climatic regions; (2 research results documenting both soil degradation and soil health improvement in various agricultural systems; and (3 potential solutions to improve soil health in different regions using a

  3. Cadmium phytoavailability in soils and evaluation of extractant effectiveness using an isotope technique

    Directory of Open Access Journals (Sweden)

    Fernando Guerra

    2014-10-01

    Full Text Available Large areas of land are nowadays contaminated by heavy metals and, it is therefore, important to monitor their levels in soils. Vegetables act as transfer mechanisms of such contaminants from soils to higher levels in the food chain. In this study, we aimed to evaluate the effectiveness of chemical extractants by the L-value method for Cd phytoavailability using the 109Cd radionuclide. In a greenhouse experiment, rocket plants (Eruca sativa L. were cultivated in pots with samples from Typic Hapludox and Typic Quartzipsamment soils. Cadmium concentrations ranging from 0 to 16 mg kg-1 were added to a 200 mL solution containing 148 kBq 109Cd. The available Cd in the soil was extracted by DTPA, Mehlich-1, Mehlich-3, and a mixture of organic acids (acetic, citric, lactic, and oxalic acids. Cd concentrations were determined by atomic absorption spectrophotometry, and 109Cd radionuclide activity was measured by low-level β-counting. The dry matter yield was not influenced by Cd rates, but the Cd content and accumulation in shoots had a positive linear correlation. Generally, Cd was extracted in higher quantities by Mehlich-1 followed by DTPA, Mehlich-3, and organic acids. A linear correlation was found between the chemical extractants and Cd accumulation in shoots for both soils. According to the L Ratio, the extractants based on strong acids and chelating agents presented low efficiency regarding Cd phytoavailability. The organic acids, which presented values close to the L-value, may provide a promising method for evaluating environmental contaminants.

  4. Possibility of cerium extraction from solutions by inorganic redoxite

    Energy Technology Data Exchange (ETDEWEB)

    Vol' khin, V.V.; L' vovich, B.I.; Kalyuzhnyj, A.V. (Permskij Politekhnicheskij Inst. (USSR))

    1981-01-01

    Ce(3) extraction process from aqueous solutions (0.01 n solution of Ce/sub 2/(SO/sub 4/)/sub 3/) by NiOOH hydroxide, used as an inorganic redox-sorbent (redoxite), is studied. Porocess has been carried out under static and dynamic conditions at 295+-2 K. During the interaction of Ce(3) ions with NiOOH redox potential of the (PHI) system changes insignificantly. The PHI value is determined mainly by redox potential of the NiOOH Ni/sup 2 +/ pair and depends on pH and Ni/sup 2 +/ ions activity in solution. Experimental results testify to considerable complete transition of Ce(3) ions from solution into solid phase. After the interaction completing PHI jump is observed and redox potential of the system is determined by the CeO(OH)/sub 2//Ce/sup 3 +/ pair.

  5. Detection of trinitrotoluene (TNT) extracted from soil using a surface plasmon resonance (SPR)-based sensor platform

    Science.gov (United States)

    Strong, Anita A.; Stimpson, Donald I.; Bartholomew, Dwight U.; Jenkins, Thomas F.; Elkind, Jerome L.

    1999-08-01

    An antibody-based competition assay has been developed using a surface plasmon resonance (SPR) sensor platform for the detection of trinitrotoluene (TNT) in soil extract solutions. The objective of this work is to develop a sensor-based assay technology to use in the field for real- time detection of land mines. This immunoassay combines very simple bio-film attachment procedures and a low-cost SPR sensor design to detect TNT in soil extracts. The active bio-surface is a coating of bovine serum albumin that has been decorated with trinitrobenzene groups. A blind study on extracts from a large soil matrix was recently performed and result from this study will be presented. Potential interferant studied included 2,4-dinitrophenol, 2,4- dinitrotoluene, ammonium nitrate, and 2,4- dichlorophenoxyacetic acid. Cross-reactivity with dinitrotoluene will be discussed. Also, plans to reach sensitivity levels of 1ppb TNT in soil will be described.

  6. Studies on Oxidation States of Cobalt Extracted from Soils with EDTA·HOAc·NH4OAc

    Institute of Scientific and Technical Information of China (English)

    CAIZU-CONG; LIUZHENG

    1991-01-01

    A method determining di-and tri-valent cobalt extracted from soils with EDTA·HOAc·NH4OAc solution (pH4.65) was developed based on the difference of the stability constants of Co(II) EDTA and Co(III) EDTA.Analytical results indicated that soil cobalt existed in both two oxidation states,i.e.,di-and tri-valent cobalt.Extractable di-valent cobalt in 60 soil samples collected from various soils in China ranged from 0.02 ppm to 3.54ppm,with the mean of 0.62ppm,and extractable tri-valent cobalt from 0.04 ppm to 27.65ppm,with the mean of 2.93ppm.

  7. Sequential Application of Soil Vapor Extraction and Bioremediation Processes for the Remediation of Ethylbenzene-Contaminated Soils

    DEFF Research Database (Denmark)

    Soares, António Carlos Alves; Pinho, Maria Teresa; Albergaria, José Tomás;

    2012-01-01

    Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application...

  8. Determination of Decabrominated Diphenyl Ether in Soils by Soxhlet Extraction and High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Xing-Jian Yang

    2013-01-01

    Full Text Available This study described the development of a method based on soxhlet extraction combining high performance liquid chromatography (soxhlet-HPLC for the accurate detection of BDE-209 in soils. The solvent effect of working standard solutions in HPLC was discussed. Results showed that 1 : 1 of methanol and acetone was the optimal condition which could totally dissolve the BDE-209 in environmental samples and avoid the decrease of the peak area and the peak deformation difference of BDE-209 in HPLC. The preliminary experiment was conducted on the configured grassland (1 μg/g to validate the method feasibility. The method produced reliable reproducibility, simulated soils (n=4 RSD 1.0%, and was further verified by the analysis e-waste contaminated soils, RSD range 5.9–11.4%. The contamination level of BDE-209 in burning site was consistent with the previous study of Longtang town but lower than Guiyu town, and higher concentration of BDE-209 in paddy field mainly resulted from the long-standing disassembling area nearby. This accurate and fast method was successfully developed to extract and analyze BDE-209 in soil samples, showing its potential use for replacing GC to determinate BDE-209 in soil samples.

  9. Effects of Water Solutions on Extracting Green Tea Leaves

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2013-01-01

    Full Text Available This study investigates the effects of water solutions on the antioxidant content of green tea leaf extracts. Green teas prepared with tap water and distilled water were compared with respect to four antioxidant assays: total phenol content, reducing power, DMPD assay, and trolox equivalent antioxidant capacity assay. The results indicate that green tea prepared with distilled water exhibits higher antioxidant activity than that made with tap water. The high performance liquid chromatography showed that major constituents of green tea were found in higher concentrations in tea made with distilled water than in that made with tap water. This could be due to less calcium fixation in leaves and small water clusters. Water solutions composed of less mineralisation are more effective in promoting the quality of green tea leaf extracts.

  10. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate

    Energy Technology Data Exchange (ETDEWEB)

    Labanowski, Jerome [INRA, UR 251 Unite PESSAC, RD 10, F-78026 Versailles Cedex (France); Monna, Fabrice [ARTeHIS, UMR 5594 CNRS, Univ. de Bourgogne Centre des Sciences de la Terre, Bat. Gabriel, F-21000 Dijon (France); Bermond, Alain [AgroParis Tech., Laboratoire de Chimie Analytique, 16 rue C. Bernard, 75231 Paris Cedex 05 (France); Cambier, Philippe; Fernandez, Christelle; Lamy, Isabelle [INRA, UR 251 Unite PESSAC, RD 10, F-78026 Versailles Cedex (France); Oort, Folkert van [INRA, UR 251 Unite PESSAC, RD 10, F-78026 Versailles Cedex (France)], E-mail: vanoort@versailles.inra.fr

    2008-04-15

    Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (Q{sub M1}) and less labile (Q{sub M2}). In citrate extractions, total extractability (Q{sub M1} + Q{sub M2}) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar Q{sub M1}/Q{sub M2} ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth. - Kinetically defined metal fractions mimic mobility aspects of heavy metals.

  11. Solute-matrix and Solute-Solute Interactions during Supercritical Fluid Extraction of Sea Buckthorn Leaves

    OpenAIRE

    Sajfrtová, M. (Marie); Sovová, H. (Helena)

    2012-01-01

    In this work, the SFE was applied to extract selected medicinal substances from sea buckthorn (Hippophae rhamnoides L.) leaves at different conditions (pressure 20-28 MPa, temperature 40-60 °C and ethanol concentration in CO2 0-6.9 wt. %) influencing solvent power of CO2. Interest was focused on the leaf oleoresin (total extract) and its minor components (fat soluble vitamins and carotenoids). The yield of polar component was still steadily increasing at the moment when the extraction is al...

  12. Proteins identified from care solution extractions of silicone hydrogels.

    Science.gov (United States)

    Emch, Andrew J; Nichols, Jason J

    2009-02-01

    The purpose of this study was to investigate the quantity and identify the proteins extracted from two different types of silicone hydrogel contact lenses by several multipurpose care solutions after 1 day of wear. Ten subjects were recruited to wear galyfilcon A lenses (Acuvue Advance, Vistakon) followed by lotrafilcon B lenses (O2 Optix, CIBA Vision) each for four consecutive days. Each day, subjects inserted a new pair of lenses for 8 h of wear after which both lenses were removed using forceps (lenses were not rubbed or rinsed after removal). Lenses were pooled in one of four commercially available care solutions for a 24-h soak followed by precipitation, resuspension in water, and quantification by Bradford assay and identification by mass spectrometry. Protein recovery from care solutions was as follows (quantities are in microg/lens): AQuify (galyfilcon A: 0.56, lotrafilcon B: 1.24), Complete MoisturePlus (galyfilcon A: 1.44, lotrafilcon B: 1.47), Opti-Free Express (galyfilcon A: 2.31, lotrafilcon B: 5.67), and ReNu MoistureLoc (galyfilcon A: 1.17, lotrafilcon B: 4.38). For each care solution, greater quantities of protein were removed from lotrafilcon B (3.19 +/- 2.19 microg/lens) than from galyfilcon A (1.37 +/- 0.72 microg/lens). Lactoferrin, lysozyme, and lipocalin were the most commonly identified, whereas various keratin compounds and other unique proteins were also detected. Opti-Free Express was consistently associated with the more efficient removal of proteins from these silicone hydrogels. More total protein was removed from lotrafilcon B than from galyfilcon A (approximately 2 x more protein) for all four care solutions, and 12 total unique protein species were recovered from galyfilcon A, whereas only 10 were recovered from lotrafilcon B. The higher quantities of protein extracted from lotrafilcon B may be due to stronger protein binding with this material and/or to differences in solution efficacy.

  13. Chemical extraction to assess the bioavailability of chlorobenzenes in soil with different aging periods

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang; Wang, Fang; Yang, Xinglun; Liu, Cuiying; Jin, Xin; Jiang, Xin [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Kengara, Fredrick Orori [Maseno Univ. (Kenya). Dept. of Chemistry

    2011-12-15

    Bioavailability is mainly influenced by aging and desorption of contaminants in soil. The purpose of this study was to investigate the desorption kinetics of chlorobenzenes (CBs) in soil and to investigate whether chemical extractions are suitable for the bioavailability assessment of CBs in soil. A soil spiked with CBs and aged for different periods was extracted with Tenax, hydroxypropyl-{beta}-cyclodextrin (HPCD), and butanol to assess the bioavailability of CBs in soil, respectively. Earthworm (Eisenia foetida) accumulation was used as bioassay in parallel experiments to evaluate the chemical extractions. The results showed that desorption of CBs from soil with consecutive Tenax extraction fitted into triphasic kinetics model. Different chemical methods extracted different amounts of CBs over different aging periods. For hexachlorobenzene (HCB), the extraction efficiency was in the order of butanol > Tenax-6h > HPCD extraction, while the order of butanol > HPCD > Tenax-6h extraction for pentachlorobenzene (PeCB). The bioaccumulation by earthworm decreased with increasing aging period and was significantly higher for HCB than for PeCB (p < 0.05). Earthworm accumulated CBs correlated well with all the three chemical extracted CBs. However, HPCD extraction showed the converse extraction tendency with earthworm uptake of CBs. Chemical extraction could be used to assess the bioavailability of contaminants in soil; however, they were method and compound specific. Tenax and butanol extractions were more reliable than HPCD extraction for bioavailability assessment of the tested CBs and the soil used since they showed the consistent extraction tendency with earthworm uptake of CBs.

  14. [Chemical form changes of exogenous water solution fluoride and bioavailability in tea garden soil].

    Science.gov (United States)

    Cai, Hui-Mei; Peng, Chuan-Yi; Chen, Jing; Hou, Ru-Yan; Wan, Xiao-Chun

    2013-11-01

    Pot experiments and the sequential extraction method were conducted to study the chemical form changes of exogenous water solution fluoride in tea garden soil and their contribution to fluoride accumulation of tea plant. The results showed that the background concentration of all chemical forms of fluoride had little changes with time treatment, which was in a relatively stable state. The exogenous water solution fluoride adding to the soils was rapidly transformed to other fractions. Under the 10 mg x kg(-1) fluoride treatment, the concentration of water solution fluoride increased firstly and then decreased with time treatment, the concentration of organic matter fluoride and Fe/Mn oxides fluoride decreased, the concentration of exchangeable fluoride was not different before and after the treatment (P > 0.05), and the concentration of residual fluoride was in a relatively stable state; under the 200 mg x kg(-1) fluoride treatment, the concentration of water solution fluoride, Fe/Mn oxides fluoride and organic matter fluoride decreased with time treatment, the concentration of exchangeable fluoride increased firstly and then decreased, showed no difference before and after the treatment (P > 0.05), and the concentration of residual fluoride increased, with some differences compared with 10 mg x kg(-1) fluoride treatment. The concentration of total fluoride in root, stem and leaf had significant differences under 0-10 mg x kg(-1) fluoride treatment (P 0.05). Step regression analysis suggested the contribution of all chemical forms of fluoride to the concentration of water solution fluoride and total fluoride of root, stem and leaf had some differences, there was a remarkable regression relationship among the content of total fluoride in leaf and water solution fluoride, organic matter fluoride, Fe/Mn oxides fluoride and residual fluoride in soil, however, no significant difference for water solution fluoride of leaf was found.

  15. A method suitable for DNA extraction from humus-rich soil.

    Science.gov (United States)

    Miao, Tianjin; Gao, Song; Jiang, Shengwei; Kan, Guoshi; Liu, Pengju; Wu, Xianming; An, Yingfeng; Yao, Shuo

    2014-11-01

    A rapid and convenient method for extracting DNA from soil is presented. Soil DNA is extracted by direct cell lysis in the presence of EDTA, SDS, phenol, chloroform and isoamyl alcohol (3-methyl-1-butanol) followed by precipitation with 2-propanol. The extracted DNA is purified by modified DNA purification kit and DNA gel extraction kit. With this method, DNA extracted from humus-rich dark brown forest soil was free from humic substances and, therefore, could be used for efficient PCR amplification and restriction digestion. In contrast, DNA sample extracted with the traditional CTAB-based method had lower yield and purity, and no DNA could be extracted from the same soil sample with a commonly-used commercial soil DNA isolation kit. In addition, this method is time-saving and convenient, providing an efficient choice especially for DNA extraction from humus-rich soils.

  16. Influence of indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study.

    Science.gov (United States)

    Kim, Kwon-Rae; Owens, Gary; Kwon, Soon-lk

    2010-01-01

    This study investigated the influence of Indian mustard (Brassica juncea) root exudation on soil solution properties (pH, dissolved organic carbon (DOC), metal solubility) in the rhizosphere using a rhizobox. Measurement was conducted following the cultivation of Indian mustard in the rhizobox filled four different types of heavy metal contaminated soils (two alkaline soils and two acidic soils). The growth of Indian mustard resulted in a significant increase (by 0.6 pH units) in rhizosphere soil solution pH of acidic soils and only a slight increase (alkaline soils. Furthermore, the DOC concentration increased by 17-156 mg/L in the rhizosphere regardless of soil type and the extent of contamination, demonstrating the exudation of DOC from root. Ion chromatographic determination showed a marked increase in the total dissolved organic acids (OAs) in rhizosphere. While root exudates were observed in all soils, the amount of DOC and OAs in soil solution varied considerably amongst different soils, resulting in significant changes to soil solution metals in the rhizosphere. For example, the soil solution Cd, Cu, Pb, and Zn concentrations increased in the rhizosphere of alkaline soils compared to bulk soil following plant cultivation. In contrast, the soluble concentrations of Cd, Pb, and Zn in acidic soils decreased in rhizosphere soil when compared to bulk soils. Besides the influence of pH and DOC on metal solubility, the increase of heavy metal concentration having high stability constant such as Cu and Pb resulted in a release of Cd and Zn from solid phase to liquid phase.

  17. Role of phosphate and Fe-oxides on the acid-aided extraction efficiency and readsorption of As in field-aged soil.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Moon, Seheum; Kim, Young-Jin; Nam, Kyoungphile

    2015-12-30

    This study was conducted to investigate arsenic (As) readsorption phenomenon in acid-treated soil using phosphate as a competing ion. Three field-aged soils (i.e., S1, paddy soil; S2, field soil; S3, forest soil) originally contaminated with As ranging from 30 to 59 mg/kg-soil were collected from a former smelter site. When 0.2M hydrochloric acid (HCl) alone was used as an extraction solution, As bound to iron (Fe) oxides was removed but significant amount of the released As was readsorbed onto residual Fe-oxides, yielding low As extraction efficiency of 11-27%. Readsorption of the released As seemed to occur preferentially on amorphous Fe-oxides. In contrast, As extraction efficiency was greatly increased by 0.2M HCl solution supplemented with monopotassium phosphate (KH2PO4), which was greatly influenced by the molar ratio of acid to phosphate. In addition, by the extraction solution with an optimal ratio of 0.2M HCl/0.1M KH2PO4, As extraction efficiency differed with soil types, showing 79.6, 44.1, and 61.0% in S1, S2, and S3, respectively. The reason can be ascribed to the blocking of the available As readsorption sites by phosphate ions, the sites seemed to mainly reside on the residual amorphous Fe-oxides in soil. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Feasibility Study of the Use of Thiosulfate as Extractant Agent in the Electrokinetic Remediation of a Soil Contaminated by Mercury from Almadén

    DEFF Research Database (Denmark)

    Subires-Muñoz, José Diego; García-Rubio, Ana; Vereda-Alonso, Carlos

    2010-01-01

    Natural soils are rather complex, making the predictability of the behavior of some remediation techniques very complicated. In this paper, the remediation of a Hg contaminated soil close to Almadén using a thiosulfate solution as extractant agent is studied. In addition, the use of the BCR...

  19. Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions.

    Science.gov (United States)

    Ngo, Lien K; Pinch, Benjamin M; Bennett, William W; Teasdale, Peter R; Jolley, Dianne F

    2016-09-01

    The enrichment of soil arsenic (As) and antimony (Sb) is putting increasing pressure on the environment and human health. The biogeochemical behaviour of Sb and its uptake mechanisms by plants are poorly understood and generally assumed to be similar to that of As. In this study, the lability of As and Sb under agricultural conditions in historically contaminated soils was assessed. Soils were prepared by mixing historically As and Sb-contaminated soil with an uncontaminated soil at different ratios. The lability of As and Sb in the soils was assessed using various approaches: the diffusive gradients in thin films technique (DGT) (as CDGT), soil solution analysis, and sequential extraction procedure (SEP). Lability was compared to the bioaccumulation of As and Sb by various compartments of radish (Raphanus sativus) grown in these soils in a pot experiment. Irrespective of the method, all of the labile fractions showed that both As and Sb were firmly bound to the solid phases, and that Sb was less mobile than As, although total soil Sb concentrations were higher than total soil As. The bioassay demonstrated low bioaccumulation of As and Sb into R. sativus due to their low lability of As and Sb in soils and that there are likely to be differences in their mechanisms of uptake. As accumulated in R. sativus roots was much higher (2.5-21 times) than that of Sb, while the Sb translocated from roots to shoots was approximately 2.5 times higher than that of As. As and Sb in R. sativus tissues were strongly correlated with their labile concentrations measured by DGT, soil solution, and SEP. These techniques are useful measures for predicting bioavailable As and Sb in the historically contaminated soil to R. sativus. This is the first study to demonstrate the suitability of DGT to measure labile Sb in soils.

  20. Chemistry of soil solutions under different kinds of vegetation in the vicinity of a thermal power station

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Sanjurjo, M.J.; Alvarez, E.; Vega, V.F.; Garcia Rodeja, E. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain). Dept. de Edafologia y Quimica Agricola

    1998-12-01

    The paper discusses the influence of atmospheric deposition on the chemical characteristics of soil solutions in a small catchment area in NW Spain. The soils, were sampled from seven sites supporting different forms of vegetation (deciduous and pine forest and heath). Soil solutions were extracted, by the column displacement method, from soil samples collected monthly from March 1992 until November 1993. The most common ions in all horizons were Cl{sup -} and Na{sup +} due to marine influence. In the surface horizons (0-10 cm), relatively high concentrations of SO{sub 4}{sup 2-} (150-380 {mu}mol) and Zn (similar to 2 {mu} mol) were obtained, with good correlation between the two ions. These results, along with the prevalence of inorganic forms of Al(50-90% of total Al), were related to the effects of acidic deposition in the catchment area.

  1. Effects of Natural Environmental Changes on Soil-Vapor Extraction Rates

    Energy Technology Data Exchange (ETDEWEB)

    Martins, S; Gregory, S

    2006-03-23

    Remediation by soil-vapor extraction has been used for over a decade at Lawrence Livermore National Laboratory (LLNL). We have found that natural changes in environmental conditions affect the rate of soil-vapor extraction. Data on flow rate observations collected over this time are compared to in-situ measurements of several different environmental parameters (soil-gas pressure, soil-temperature, soil-moisture, Electrical Resistance Tomography (ERT), rainfall and barometric pressure). Environmental changes that lead to increased soil-moisture are associated with reduced soil-vapor extraction flow rates. We have found that the use of higher extraction vacuums combined with dual-phase extraction can help to increase pneumatic conductivity when vadose zone saturation is a problem. Daily changes in barometric pressure and soil-gas temperature were found to change flow rate measurements by as much as 10% over the course of a day.

  2. Assessment of a sequential extraction protocol by examining solution chemistry and mineralogical evolution

    Science.gov (United States)

    Maubec, Nicolas; Pauwels, Hélène; Noël, Hervé; Bourrat, Xavier

    2015-04-01

    Knowledge of the behavior of heavy metals, such as copper and zinc in sediments, is a key factor to improve the management of rivers. The mobility of these metals, which may be harmful to the environment, depends directly on their concentration and speciation , which in turn depend on physico-chemical parameters such as mineralogy of the sediment fraction, pH, redox potential, salinity etc ... (Anderson et al., 2000; Sterckeman et al., 2004; Van Oort et al., 2008). Several methods based on chemical extractions are currently applied to assess the behavior of heavy metals in soils and sediments. Among them, sequential extraction procedure is widely used in soil and sediment science and provides details about the origin, biological and physicochemical availability, mobilization and transports of trace metals elements. It is based on the use of a series of extracting reagents to extract selectively heavy metals according to their association within the solid phase (Cornu and Clozel, 2000) including the following different fraction : exchangeable, bound to carbonates, associated to oxides (reducible fraction), linked to organic matter and sulfides (oxidizable fraction) as well as silicate minerals so called residual fraction (Hickey and Kittrick, 1984; Tessier et al., 1979). Consequently sequential extraction method is expected to simulate a lot of potential natural and anthropogenic modifications of environmental conditions (Arey et al., 1999; Brannon and Patrick, 1987; Hickey and Kittrick, 1984; La Force et al., 1999; Tessier et al., 1979). For three decades, a large number of protocols has been proposed, characterized by specific reagents and experimental conditions (concentrations, number of steps, extraction orders and solid/solution ratio) (Das et al., 1995; Gomez Ariza et al., 2000; Quevauviller et al., 1994; Rauret, 1998; Tack and Verloo, 1995), but it appeared that several of them suffer from a lack of selectivity of applied reagents: besides target ones, some

  3. Changes in the extractability of heavy metals on the interaction of sewage sludge with soil

    Energy Technology Data Exchange (ETDEWEB)

    Wollan, E.; Beckett, P.H.T.

    1979-11-01

    To understand better the effects of heavy metals on crops grown on agricultural land, the extractabilities of zinc, copper, and nickel from soil amended with various amounts of sewage sludge were studied. The preparation of sludge-soil mixtures is described, and four experimental trials that measured the amounts of extractable zinc, copper, and nickel at different time intervals are reported. Chemical interactions between sludge and soil are considered. The amounts of copper, nickel, and zinc that could be extracted from the soils were shown to vary according to the time of extraction and in proportion to the sludge/soil ratio. (44 graphs, 25 references, 3 tables)

  4. Extraction Pattern of Arsenic Species with Mineral Composition in Contaminated Soils in Korea

    Science.gov (United States)

    Park, M.; Shin, M.; Yoon, H.; Kim, Y.; Kim, K.; Ko, I.

    2006-12-01

    Specific determination of various arsenic species is gaining increasing attention because the toxicity of arsenic differs with chemical forms such as organic (MMA, DMA) or inorganic (arsenite, arsenate). Knowledge of extraction method for arsenic speciation in contaminated soils then notified and tested by many researchers. However, the analytical technique for separation of different arsenic species has been always challenging in different environmental samples. A achieving correct analytical results and resolving the lowest detection limit is also desirable. Extraction method for arsenic speciation have been studied by many researchers with the use of a variety of extractants such as H3PO4, HCl, Na2CO3, EDTA 'in soils and sediments including plenty of clay. We, in this study, reported a benign extraction method and presented the pattern of arsenic in contaminated soils of different mineral compositions. Soil samples were collected from tailings of 2 places (Kyungbuk, Jeonnam); both were from abandoned metal mines in Korea. Samples were air dried at room temperature and separated by mechanical sieving to three fractions (2mm_200 μm, 200_64μm, arsenic analysis used by KBSI method and modified Garcia-Manyes method for arsenic speciation. We extracted arsenic species from the soils by using a mixture of 1M phosphoric acid and 0.1% ascorbic acid. 0.2g of sample was placed in microwave digestion vessels along with 10ml extraction solution and treated for 15min at 60w microwave power. After the microwave stage, the contents were transferred to 30ml sample bottles and diluted to 16ml with deionized water, then centrifuged for 15min at 2500rpm. Total arsenic concentration of sample was analyzed by using ICP-AES (ICP-OES, Ultima2C, Jobin Yvon) and the arsenic species were analyzed by hyphenated system, SPE-HG-ICP-AES. To identify the mineral phases in bulk soil samples, we used XRD (Phillips X'Pert MPD) under 40kV/30mA condition. XRD data was collected between 5 and 70

  5. Faster extraction of heavy metals from soils using vacuum and ultrasonic energy.

    Science.gov (United States)

    Pontes, Fernanda V M; Carneiro, Manuel C; de da Souza, Evelyn M F; da Silva, Lílian I D; Monteiro, Maria Inês C; Neto, Arnaldo A

    2013-01-01

    A fast vacuum- and ultrasound-assisted acid extraction of Co, Cu, Fe, Mn, Pb, and Zn from soils using a homemade system has been investigated. Preliminarily, a full factorial design with two levels and three variables (extracting agent, extraction temperature, and sonication time) was applied to optimize the extraction conditions (without vacuum) for some heavy metals (Cu, Mn, Pb, and Zn). The best results were obtained with a 3:1 HCI extraction solution, temperature of 80 degrees C, and time of 2 h. As this sonication time was too long, a vacuum pump was used to produce air bubbles in order to increase the contact between the sample and the extracting agent and to prevent the sample sedimentation. This improvement drastically reduced the sonication time to 2 min. Under these conditions, Co, Cu, Mn, and Zn were totally extracted (recoveries of 86-99%), while recoveries of 73-76 and 74% were obtained for Fe and Pb, respectively. The LOD values using flame atomic absorption spectrometry for determination of Co, Cu, Fe, Mn, Pb, and Zn were 3.2, 7.5, 37.5, 7.5, 22.5, and 3.8 micro glg, respectively. The RSDs were lower than 11% (n = 3).

  6. Control of the extraction procedures on the response of DOC concentration and composition to soil temperature increase

    Science.gov (United States)

    Lambert, Thibault; Pierson-Wickmann, Anne-Catherine; Gruau, Gérard; Jaffrézic, Anne; Jeanneau, Laurent; Racape, Armelle

    2014-05-01

    Dissolved organic carbon (DOC) leached from soils is a crucial component of the terrestrial C cycling and a major source for DOC export at the landscape scale by stream and river waters. In the context of global warming, it is necessary to understand how changes in soil temperature will impact the DOC dynamic in soils, but this remains a matter of debate. We conducted a series of experiments in order to study both biological and physical processes involved in soil DOC production and mobilisation at different temperatures. Two experiments of DOC extraction were conducted at different temperatures: (i) soil solution percolation through a soil column and (ii) soil solution agitation in jars, which are both commonly used in the literature. The organo-mineral horizon of a wetland soil was incubated during 14 days at temperature ranging from 4 to 30 ° C. Along with DOC concentrations, changes in DOC composition were assessed by monitoring the natural stable carbon isotopic composition of (δ13C) and the specific ultra violet absorbance (SUVA) of DOC. The results showed strong differences between the two extraction procedures in term of DOC response to temperature rise, both in concentration and composition. DOC released by percolation through soil column displayed a strong concentration increase with increasing temperature. Whatever the temperature, a low SUVA and relatively high δ13C values indicated a release of molecules with lower aromaticity and lower molecular weight the two first days than after. On the contrary, DOC extracted by agitation in jars showed minor changes in both concentrations and composition along the incubation. The difference observed between soil leaching and batch incubation can mainly be explained by the extraction procedures. Indeed, the percolation procedure favors transfer from the micro-porosity to the macro-porosity pool between two successive leaching, whereas agitation procedure releases DOC produced and accumulated in the whole soil

  7. A method to extract soil water for stable isotope analysis

    Science.gov (United States)

    Revesz, K.; Woods, P.H.

    1990-01-01

    A method has been developed to extract soil water for determination of deuterium (D) and 18O content. The principle of this method is based on the observation that water and toluene form an azeotropic mixture at 84.1??C, but are completely immiscible at ambient temperature. In a specially designed distillation apparatus, the soil water is distilled at 84.1??C with toluene and is separated quantitatively in the collecting funnel at ambient temperature. Traces of toluene are removed and the sample can be analyzed by mass spectrometry. Kerosene may be substituted for toluene. The accuracy of this technique is ?? 2 and ?? 0.2???, respectively, for ??D and ??18O. Reduced accuracy is obtained at low water contents. ?? 1990.

  8. A new extraction method to assess the environmental availability of ciprofloxacin in agricultural soils amended with exogenous organic matter.

    Science.gov (United States)

    Goulas, Anaïs; Haudin, Claire-Sophie; Bergheaud, Valérie; Dumény, Valérie; Ferhi, Sabrina; Nélieu, Sylvie; Bourdat-Deschamps, Marjolaine; Benoit, Pierre

    2016-12-01

    Fluoroquinolone antibiotics such as ciprofloxacin can be found in soils receiving exogenous organic matter (EOM). Their long-term behavior in EOM-amended soils and their level of biodegradability are not well understood partly due to a lack of methods to estimate their environmental availability. We performed different aqueous extractions to quantify the available fraction of (14)C-ciprofloxacin in soils amended with a compost of sewage sludge and green wastes or a farmyard manure contaminated at relevant environmental concentrations. After minimizing (14)C-ciprofloxacin losses by adsorption on laboratory vessel tubes, three out of eleven different aqueous solutions were selected, i.e., Borax, Na2EDTA and 2-hydroxypropyl-β-cyclodextrin. During 28 d of incubation, the non-extractable fractions were very high in all samples, i.e., 57-67% of the initial (14)C-activity, and the availability of the antibiotic was very low, explaining its low biodegradation. A maximum of 6.3% of the initial (14)C-activity was extracted from soil/compost mixtures with the Na2EDTA solution, and 7.2% from soil/manure mixtures with the Borax solution. The available fraction level was stable over the incubation in soil/compost mixtures but slightly varied in soil/manure mixtures following the organic matter decomposition. The choice of different soft extractants highlighted different sorption mechanisms controlling the environmental availability of ciprofloxacin, where the pH and the quality of the applied EOM appeared to be determinant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of atmospheric deposition nitrogen flux and its composition on soil solution chemistry from a red soil farmland, southeast China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; Chan, Andrew; Mao, Jingdong

    2015-12-01

    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.

  10. Removal of low molecular organic acids from aqueous solutions with reactive extraction

    National Research Council Canada - National Science Library

    Dominika Szternel; Magdalena Regel-Rosocka; Maciej Wiśniewski

    2013-01-01

    ...) from aqueous solutions with reactive extraction. The results specifically show that the extraction efficiency of acids depends on the type of extractant, diluents of the organic phase and the initial pH of the aqueous phase...

  11. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    designing and operating remediation systems. Simple and accurate models for estimating soil properties from soil parameters that are easy to measure are useful in connection with preliminary remedial investigations and evaluation of remedial technologies. In this work simple models for predicting transport...

  12. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data

    Energy Technology Data Exchange (ETDEWEB)

    Pauget, B.; Gimbert, F., E-mail: frederic.gimbert@univ-fcomte.fr; Scheifler, R.; Coeurdassier, M.; Vaufleury, A. de

    2012-08-01

    Although soil characteristics modulate metal mobility and bioavailability to organisms, they are often ignored in the risk assessment of metal transfer. This paper aims to determine the ability of chemical methods to assess and predict cadmium (Cd), lead (Pb) and zinc (Zn) environmental bioavailability to the land snail Cantareus aspersus. Snails were exposed in the laboratory for 28 days to 17 soils from around a former smelter. The soils were selected for their range of pH, organic matter, clay content, and Cd, Pb and Zn concentrations. The influence of soil properties on environmental availability (estimated using HF-HClO{sub 4}, EDTA, CaCl{sub 2}, NH{sub 4}NO{sub 3}, NaNO{sub 3}, free ion activity and total dissolved metal concentration in soil solution) and on environmental bioavailability (modelled using accumulation kinetics) was identified. Among the seven chemical methods, only the EDTA and the total soil concentration can be used to assess Cd and Pb environmental bioavailability to snails (r Superscript-Two {sub adj} = 0.67 and 0.77, respectively). For Zn, none of the chemical methods were suitable. Taking into account the influence of the soil characteristics (pH and CEC) allows a better prediction of Cd and Pb environmental bioavailability (r Superscript-Two {sub adj} = 0.82 and 0.83, respectively). Even though alone none of the chemical methods tested could assess Zn environmental bioavailability to snails, the addition of pH, iron and aluminium oxides allowed the variation of assimilation fluxes to be predicted. A conceptual and practical method to use soil characteristics for risk assessment is proposed based on these results. We conclude that as yet there is no universal chemical method to predict metal environmental bioavailability to snails, and that the soil factors having the greatest impact depend on the metal considered. - Highlights: Black-Right-Pointing-Pointer New approach to identify chemical methods able to predict metal bioavailability

  13. Calixarene-entrapped nanoemulsion for uranium extraction from contaminated solutions.

    Science.gov (United States)

    Spagnul, Aurélie; Bouvier-Capely, Céline; Phan, Guillaume; Rebière, François; Fattal, Elias

    2010-03-01

    Accidental cutaneous contamination by actinides such as uranium occurring to nuclear power plant workers can lead to their dissemination in other tissues and induce severe damages. Until now, no specific emergency treatment for such contamination has been developed. The aim of the present work was to formulate a tricarboxylic calix[6]arene molecule, known to exhibit good affinity and selectivity for complexing uranium, within a topical delivery system for the treatment of skin contamination. Since calixarene was shown to reduce oil/water interfacial tension, we have designed an oil-in-water nanoemulsion, taking advantage of the small droplet size offering a high contact surface with the contaminated aqueous medium. Characterization of the calixarene nanoemulsion was performed by determination of the oily droplet size, zeta potential and pH, measured as a function of the calixarene concentration. The obtained results have confirmed the surface localization of calixarene molecules being potentially available to extract uranyl ions from an aqueous contaminated solution. In a preliminary experiments, the calixarene nanoemulsion was used for the removal of free uranium from an aqueous contaminated solution. Results showed that the calixarene nanoemulsion extracted up to 80 +/- 5% of uranium, which demonstrates the potential interest of this delivery system for uranium skin decontamination.

  14. Effect of DNA extraction procedure, repeated extraction and ethidium monoazide (EMA)/propidium monoazide (PMA) treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil.

    Science.gov (United States)

    Wagner, Andreas O; Praeg, Nadine; Reitschuler, Christoph; Illmer, Paul

    2015-09-01

    Different DNA extraction protocols were evaluated on a reference soil. A wide difference was found in the total extractable DNA as derived from different extraction protocols. Concerning the DNA yield phenol-chloroform-isomyl alcohol extraction resulted in high DNA yield but also in a remarkable co-extraction of contaminants making PCR from undiluted DNA extracts impossible. By comparison of two different extraction kits, the Macherey&Nagel SoilExtract II kit resulted in the highest DNA yields when buffer SL1 and the enhancer solution were applied. The enhancer solution not only significantly increased the DNA yield but also the amount of co-extracted contaminates, whereas additional disintegration strategies did not. Although a three times repeated DNA extraction increased the total amount of extracted DNA, microbial fingerprints were merely affected. However, with the 5th extraction this changed. A reduction of total DGGE band numbers was observed for archaea and fungi, whereas for bacteria the diversity increased. The application of ethidium monoazide (EMA) or propidium monoazide (PMA) treatment aiming on the selective removal of soil DNA derived from cells lacking cell wall integrity resulted in a significant reduction of total extracted DNA, however, the hypothesized effect on microbial fingerprints failed to appear indicating the need for further investigations.

  15. Preparation of nanoparticles of Magnolia bark extract by rapid expansion from supercritical solution into aqueous solutions.

    Science.gov (United States)

    He, Shuai; Zhou, Benjie; Zhang, Shouyao; Lei, Zhengjie; Zhang, Zhongyi

    2011-01-01

    A rapid expansion from supercritical solution into aqueous solution (RESSAS) technology was presented for the micronization of Chinese medicinal material. Magnolia bark extract (MBE) obtained by supercritical carbon dioxide (scCO₂) extraction technology was chosen as the experimental material. RESSAS process produced 303.0 nm nanoparticles (size distribution, 243.6-320.5 nm), which was significantly smaller than the 55.3 µm particles (size distribution, 8.3-102.4 µm) prepared by conventional mechanical milling. The effect of process parameters, including extraction temperature (30 °C, 40 °C, 50 °C), extraction pressure (200, 250, 300 bar) and nozzle size (50, 100, 200 µm), on the size distribution of nanoparticles was investigated. The characteristics of nanoparticles and materials were also studied by scanning electron microscopy (SEM) and laser light scattering (LLS). This study demonstrates that RESSAS is applicable for preparing nanoparticles of MBE at low operating temperature; the process is simple without any residual solvent.

  16. Hydrothermal Carbonization: a feasible solution to convert biomass to soil?

    Science.gov (United States)

    Tesch, Walter; Tesch, Petra; Pfeifer, Christoph

    2013-04-01

    The erosion of fertile soil is a severe problem arising right after peak oil (Myers 1996). That this issue is not only a problem of arid countries is shown by the fact that even the European Commission defined certain milestones to address the problem of soil erosion in Europe (European Commission 2011). The application of bio-char produced by torrefaction or pyrolysis for the remediation, revegetation and restoration of depleted soils started to gain momentum recently (Rillig 2010, Lehmann 2011, Beesley 2011). Hydrothermal carbonization (HTC) is a promising thermo-chemical process that can be applied to convert organic feedstock into fertile soil and water, two resources which are of high value in regions being vulnerable to erosion. The great advantage of HTC is that organic feedstock (e.g. organic waste) can be used without any special pretreatment (e.g. drying) and so far no restrictions have been found regarding the composition of the organic matter. By applying HTC the organic material is processed along a defined pathway in the Van Krevelen plot (Behrendt 2006). By stopping the process at an early stage a nutritious rich material can be obtained, which is known to be similar to terra preta. Considering that HTC-coal is rich in functional groups and can be derived from the process under "wet" conditions, it can be expected that it shall allow soil bacteria to settle more easily compared to the bio-char derived by torrefaction or pyrolysis. In addition, up to 10 tons process water per ton organic waste can be gained (Vorlop 2009). Thus, as organic waste, loss of fertile soil and water scarcity becomes a serious issue within the European Union, hydrothermal carbonization can provide a feasible solution to address these issues of our near future. The presentation reviews the different types of feedstock investigated for the HTC-Process so far and gives an overview on the current stage of development of this technology. References Beesley L., Moreno-Jiménez E

  17. Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions

    Science.gov (United States)

    Chiou, C.T.; Shoup, T.D.; Porter, P.E.

    1985-01-01

    Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral contents. In aqueous systems, observed sorptive characteristics suggest that solute partitioning into the soil-humic phase is the primary mechanism of soil uptake. By contrast, data obtained from organic solutions on dehydrated soil partitioning into humic phase and adsorption by soil minerals is influenced by the soil-moisture content and by the solvent medium from which the solute is sorbed. ?? 1985.

  18. Determination of flumequine and oxolinic acid in sediments and soils by microwave-assisted extraction and liquid chromatography-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Prat, M.D. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain)]. E-mail: mdprat@ub.edu; Ramil, D. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain); Compano, R. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain); Hernandez-Arteseros, J.A. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain); Granados, M. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain)

    2006-05-17

    A method is reported for the determination of the quinolones oxolinic acid and flumequine in aquatic sediments and agricultural soils. The analytes are extracted by liquid-liquid partitioning between a sample homogenated in an aqueous buffer solution and dichloromethane. Microwave-assisted extraction (MAE) was tested to improve the speed and efficiency of the extraction process. The parameters affecting the efficiency of MAE, such as irradiation time and temperature, were studied. The clean-up consists of back-extraction in 1 M sodium hydroxide. The determination is carried out by reversed phase liquid chromatography on an octyl silica-based column and fluorimetric detection. The optimised method was applied to the analysis of two sediments and one agricultural soil spiked with the analytes. The absolute recovery rates for the whole process range from 79% to 94% (RSD 3-7%), and detection limits are in the low {mu}g kg{sup -1} level.

  19. Supercritical fluid extraction (SFE) of PCBs and organochlorine pesticides from soil. Comparison with conventional extraction methods and optimization for real soil samples

    NARCIS (Netherlands)

    Velde EG van der; Ramlal MR; Kootstra PR; Liem AKD; LOC

    1995-01-01

    This report describes the first results of Supercritical Fluid Extraction (SFE) as technique for the extraction of organic components from soil. SFE is based on the extraction properties of supercritical fluids - in this case CO2 - having liquidlike as well as gaslike behaviour as their low

  20. Mathematical simulation of soil vapor extraction systems: Model development and numerical examples

    Science.gov (United States)

    Rathfelder, Klaus; Yeh, William W.-G.; Mackay, Douglas

    1991-12-01

    This paper describes the development of a numerical model for prediction of soil vapor extraction processes. The major emphasis is placed on field-scale predictions with the objective to advance development of planning tools for design and operation of venting systems. The numerical model solves two-dimensional flow and transport equations for general n-component contaminant mixtures. Flow is limited to the gas phase and local equilibrium partitioning is assumed in tracking contaminants in the immiscible fluid, water, gas, and solid phase. Model predictions compared favorably with analytical solutions and multicomponent column venting experiments. Sensitivity analysis indicates equilibrium phase partitioning is a good assumption in modeling organic liquid volatilization occurring in field venting operations. Mass transfer rates in volatilization from the water phase and contaminant desorption are potentially rate limiting. Simulations of hypothetical field-scale problems show efficiency of venting operations is most sensitive to vapor pressure and the magnitude and distribution of soil permeability.

  1. Development of Novel Method for Rapid Extract of Radionuclides from Solution Using Polymer Ligand Film

    Science.gov (United States)

    Rim, Jung H.

    than recovery. PLFs were also tested using blind quality control samples and the activities were accurately measured. It is important to point out that PLFs were consistently susceptible to analytes penetrating and depositing below the surface. The internal radiation within the body of PLF is mostly contained and did not cause excessive self-attenuation and peak broadening in alpha spectroscopy. The analyte penetration issue was beneficial in the destructive analysis. H2DEH[MDP] PLF was tested with environmental samples to fully understand the capabilities and limitations of the PLF in relevant environments. The extraction system was very effective in extracting plutonium from environmental water collected from Mortandad Canyon at Los Alamos National Laboratory with minimal sample processing. Soil samples were tougher to process than the water samples. Analytes were first leached from the soil matrixes using nitric acid before processing with PLF. This approach had a limitation in extracting plutonium using PLF. The soil samples from Mortandad Canyon, which are about 1% iron by weight, were effectively processed with the PLF system. Even with certain limitations of the PLF extraction system, this technique was able to considerably decrease the sample analysis time. The entire environmental sample was analyzed within one to two days. The decrease in time can be attributed to the fact that PLF is replacing column chromatography and electrodeposition with a single step for preparing alpha spectrometry samples. The two-step process of column chromatography and electrodeposition takes a couple days to a week to complete depending on the sample. The decrease in time and the simplified procedure make this technique a unique solution for application to nuclear forensics and emergency response. A large number of samples can be quickly analyzed and selective samples can be further analyzed with more sensitive techniques based on the initial data. The deployment of a PLF system

  2. Selective Extraction of Organic Contaminants from Soil Using Pressurised Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Rozita Osman

    2013-01-01

    Full Text Available This study focuses on the application of sorbents in pressurised liquid extraction (PLE cell to establish a selective extraction of a variety of organic contaminants (polycyclic aromatic hydrocarbons (PAHs, chlorpyrifos, phenol, pentachlorophenol, and sterols from soil. The selectivity and efficiency of each sorbent depend on the properties of the material, extracting solvent, capacity factor, organic compounds of interest, and PLE operating parameters (temperature, pressure, and extraction time. Several sorbents (silica, alumina, and Florisil were evaluated and with the proper choice of solvents, polar and nonpolar compounds were successfully separated in two fractions. Nonpolar compounds (PAHs, chlorpyrifos, and pentachlorophenol were recovered in the first fraction using a polar sorbent such as Florisil or alumina, and n-hexane as eluting solvent, while more polar compounds (phenol and sterols were recovered in the second fraction using methanol. Silica (5 g was found to be effective for selective extraction with the satisfactory recoveries for all compounds (PAHs from 87.1–96.2%, chlorpyrifos 102.9%, sterols from 93.7–100.5%, phenol 91.9%, and pentachlorophenol 106.2%. The efficiency and precision of this extraction approach and the existing EPA Method 3545 were compared.

  3. Time and moisture effects on total and bioavailable copper in soil water extracts

    DEFF Research Database (Denmark)

    Tom-Petersen, Andreas; Hansen, H.C.B.; Nybroe, O.

    2004-01-01

    between total metal content and metal toxicity calls for integrated chemical and biological analysis. The aim of this work was to determine time- and moisture-dependent changes in total water-extractable Cu as well as bioavailable Cu in soil water extracts. Measurements of total water-extractable copper...... to increase with time. The moisture content of the soil was important for Cu retention. Dry soil had higher [Cu](tot) concentrations than humid soil, but the [Cu](bio) to [Cu](tot) ratio was lower in the dry soil. Alternating drying and wetting did not lead to a more rapid Cu retention than observed under...

  4. An Analytical Solution for One-Dimensional Water Infiltration and Redistribution in Unsaturated Soil

    Institute of Scientific and Technical Information of China (English)

    WANG Quan-Jiu; R. HORTON; FAN Jun

    2009-01-01

    Soil infiltration and redistribution are important processes in field water cycle, and it is necessary to develop a simple model to describe the processes. In this study, an algebraic solution for one-dimensional water infiltration and redistribution without evaporation in unsaturated soil was developed based on Richards equation. The algebraic solution had three parameters, namely, the saturated water conductivity, the comprehensive shape coefficient of the soil water content distribution, and the soil suction allocation coefficient. To analyze the physical features of these parameters, a relationship between the Green-Ampt model and the algebraic solution was established. The three parameters were estimated based on experimental observations, whereas the soil water content and the water infiltration duration were calculated using the algebraic solution. The calculated soil water content and infiltration duration were compared with the experimental observations, and the results indicated that the algebraic solution accurately described the unsaturated soil water flow processes.

  5. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils.

    Science.gov (United States)

    Senthilkumar, P; Prince, W S P M; Sivakumar, S; Subbhuraam, C V

    2005-09-01

    Soil and plant samples (root and shoot) of Prosopis juliflora were collected in the vicinity of metal based foundry units in Coimbatore and assessed for their heavy metal content (Cu and Cd) to ascertain the use of P. juliflora as a green solution to decontaminate soils contaminated with Cu and Cd. The results showed that Cu and Cd content was much higher in plant components compared to their extractable level in the soil. Furthermore, there exist a strong correlation between the distance of the sources of industrial units and accumulation of heavy metals in plants. Accumulation of Cd in roots is comparatively higher than that of shoots. However, in case of Cu no such clear trend is seen. Considering the accumulation efficiency and tolerance of P. juliflora to Cd and Cu, this plant can be explored further for the decontamination of metal polluted soils. On the other hand, in view of heavy metal accumulate the practice of providing foliage and pods as fodder for live stock should be avoided.

  6. Extraction of amino acids from soils and sediments with superheated water

    Science.gov (United States)

    Cheng, C. N.; Ponnamperuma, C.

    1974-01-01

    A method of extraction for amino acids from soils and sediments involving superheated water has been investigated. About 75-97 per cent of the amino acids contained in four soils of a soil profile from Illinois were extracted by this method. Deep penetration of water into soil aggregates and partial hydrolysis of peptide bonds during this extraction by water at high temperature are likely mechanisms responsible for the release of amino acids from samples. This extraction method does not require subsequent desalting treatments when analyses are carried out with an ion-exchange amino acid analyzer.

  7. Comparative study on the allergenicity of different Litopenaeus vannamei extract solutions

    Science.gov (United States)

    Wu, Lisha; Lin, Haixin; Wang, Guoying; Lu, Zongchao; Chen, Guanzhi; Lin, Hong; Li, Zhenxing

    2013-11-01

    Allergen extracts are widely used for allergy diagnosis and treatment. The application of shrimp extract is hampered due to the low protein concentration and the inconsistent allergenicity. Extracting solutions are considered to be the primary limiting factor of protein extraction from crustaceans. This study aimed to select an optimal solution for shrimp protein extraction by comparing the allergenicity of different shrimp extracts. The effect of 7 existing or modified extracting solutions were evaluated, including the glycerol-NaCl solution, the glycerol Cocaine's solution, the buffered saline solution, the Cocaine's solution, the Glucose leaching solution, 1 mol L-1 KCl solution, and 0.01 mol L-1 phosphate buffered saline solution with and without dithiothreitolor (DTT). The quantitative (protein concentration) and qualitative parameters (SDS-PAGE protein patterns and immuno-reactivity) were determined using the sodium dodecyl sulfate polyacrylamide gel electrophoresis, enzyme linked immunosorbent assay and immunoblotting assay. Results showed that the 1 mol L-1 KCl solution with DTT was optimal for shrimp protein extraction, which yielded high concentration and allergenicity in the protein extract, including major and minor allergens. The 1 mol L-1 KCl solution with DDT is proposed for preparation of shrimp extract and associated allergy diagnosis, as well as potential applications for other crustaceans.

  8. Comparative Study on the Allergenicity of Different Litopenaeus vannamei Extract Solutions

    Institute of Scientific and Technical Information of China (English)

    WU Lisha; LIN Haixin; WANG Guoying; LU Zongchao; CHEN Guanzhi; LIN Hong; LI Zhenxing

    2014-01-01

    Allergen extracts are widely used for allergy diagnosis and treatment. The application of shrimp extract is hampered due to the low protein concentration and the inconsistent allergenicity. Extracting solutions are considered to be the primary limiting factor of protein extraction from crustaceans. This study aimed to select an optimal solution for shrimp protein extraction by com-paring the allergenicity of different shrimp extracts. The effect of 7 existing or modified extracting solutions were evaluated, includ-ing the glycerol-NaCl solution, the glycerol Cocaine’s solution, the buffered saline solution, the Cocaine’s solution, the Glucose leaching solution, 1 mol L-1 KCl solution, and 0.01 mol L-1 phosphate buffered saline solution with and without dithiothreitolor (DTT). The quantitative (protein concentration) and qualitative parameters (SDS-PAGE protein patterns and immuno-reactivity) were deter-mined using the sodium dodecyl sulfate polyacrylamide gel electrophoresis, enzyme linked immunosorbent assay and immunoblotting assay. Results showed that the 1 mol L-1 KCl solution with DTT was optimal for shrimp protein extraction, which yielded high con-centration and allergenicity in the protein extract, including major and minor allergens. The 1 mol L-1 KCl solution with DDT is pro-posed for preparation of shrimp extract and associated allergy diagnosis, as well as potential applications for other crustaceans.

  9. Comparison of commercial kits for the extraction of DNA from paddy soils.

    Science.gov (United States)

    Knauth, S; Schmidt, H; Tippkötter, R

    2013-03-01

    The objective of this study was to compare the extraction efficiency of commercial DNA kits by evaluating the quantity and purity of DNA extracts obtained from paddy soils. DNA was extracted from three paddy soils using the FastDNA® SPIN kit for soil (FD), the innuSPEED soil DNA kit (INS) and the NucleoSpin® soil kit (NSP). DNA extracts were analysed by agarose gel electrophoresis and UV spectroscopy. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses were conducted to evaluate the potential bias of the DNA extractions on fingerprinting techniques. Regarding the quantity and the purity of the extracted DNA, the NSP kit was detected superior to the FD kit, while the INS kit failed to extract detectable amounts of DNA. DGGE fingerprints generated from PCR products (FD, NSP) showed high levels of similarity for the amplified 16S rRNA genes of methanogenic archaea (>95%) and bacteria (up to 100%) in each soil. This study suggested that the recently introduced NSP kit allowed for the adjustment of the lysis buffer composition to the soil of interest and is at least equivalent to the well-established FD kit for the extraction of DNA from paddy soils. The choice of commercial kits (FD, INS, NSP) has been of great importance regarding the quantity and purity of DNA extracted from paddy soils in this study. The composition of the cell lysis buffer represented a key component for successful extractions of DNA from different soils. The possibility of adjusting the lysis buffer to the soil of interest as well as the reproducibility of DGGE banding patterns makes the recently introduced NSP kit a strong competitor to the well-established FD kit for the extraction of DNA from paddy soils. © 2012 The Society for Applied Microbiology.

  10. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    Science.gov (United States)

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  11. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    Science.gov (United States)

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  12. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits.

  13. Effects of Pig Slurry Application and Crops on Phosphorus Content in Soil and the Chemical Species in Solution

    Directory of Open Access Journals (Sweden)

    Lessandro De Conti

    2015-06-01

    Full Text Available The application of pig slurry rates and plant cultivation can modify the soil phosphorus (P content and distribution of chemical species in solution. The purpose of this study was to evaluate the total P, available P and P in solution, and the distribution of chemical P species in solution, in a soil under longstanding pig slurry applications and crop cultivation. The study was carried out in soil columns with undisturbed structure, collected in an experiment conducted for eight years in the experimental unit of the Universidade Federal de Santa Maria (UFSM, Santa Maria (RS. The soil was an Argissolo Vermelho distrófico arênico (Typic Hapludalf, subjected to applications of 0, 20, 40, and 80 m3 ha-1 pig slurry. Soil samples were collected from the layers 0-5, 5-10, 10-20, 20-30, 30-40, and 40-60 cm, before and after black oat and maize grown in a greenhouse, for the determination of available P, total P and P in the soil solution. In the solution, the concentration of the major cations, anions, dissolved organic carbon (DOC, and pH were determined. The distribution of chemical P species was determined by software Visual Minteq. The 21 pig slurry applications increased the total P content in the soil to a depth of 40 cm, and the P extracted by Mehlich-1 and from the solution to a depth of 30 cm. Successive applications of pig slurry changed the balance between the solid and liquid phases in the surface soil layers, increasing the proportion of the total amount of P present in the soil solution, aside from changing the chemical species in the solution, reducing the percentage complexed with Al and increasing the one complexed with Ca and Mg in the layers 0-5 and 5-10 cm. Black oat and maize cultivation increased pH in the solution, thereby increasing the proportion of HPO42- and reducing H2PO4- species.

  14. Extractability of Cu in Alkaline Biosolids-Amended Soils as Influenced by γ-Irradiation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An incubation experiment was conducted to investigate the microbial biomass associated Cu in four contrasting soils to which an alkaline stabilised sewage sludge cake was applied. The organisms of sludgeamended and control soils were killed using γ-irradiation technique, and the aqueous and acid-extractable Cu concentrations were determined. Addition of the sludge product increased significantly the concentration of both the aqueous and dilute HOAc-extractable Cu in all the irradiated soils compared to the non-sterilised sludge/soil mixtures, but the increase was more pronounced in the dilute acid-extractable Cu, indicating that the Cu rendered extractable in water and dilute acetic acid by γ-irradiation existed in the both soil liquid and solid phases. The additional increase in extractable Cu following the biocidal treatment is likely to be due to release of Cu from the same fraction of soil microbial biomass.

  15. Evaluation of extraction methods for hexavalent chromium determination in dusts, ashes, and soils

    Science.gov (United States)

    Wolf, Ruth E.; Wilson, Stephen A.

    2010-01-01

    One of the difficulties in performing speciation analyses on solid samples is finding a suitable extraction method. Traditional methods for extraction of hexavalent chromium, Cr(VI), in soils, such as SW846 Method 3060A, can be tedious and are not always compatible with some determination methods. For example, the phosphate and high levels of carbonate and magnesium present in the U.S. Environmental Protection Agency (USEPA) Method 3060A digestion for Cr(VI) were found to be incompatible with the High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS) detection method used by our laboratory. Modification of Method 3060A by eliminating the use of the phosphate buffer provided improved performance with the detection method, however dilutions are still necessary to achieve good chromatographic separation and detection of Cr(VI). An ultrasonic extraction method using a 1 mM Na2CO3 - 9 mM NaHCO3 buffer solution, adapted from Occupational Safety and Health Administration (OSHA) Method ID215, has been used with good results for the determination of Cr(VI) in air filters. The average recovery obtained for BCR-545 - Welding Dust Loaded on Filter (IRMM, Belgium) using this method was 99 percent (1.2 percent relative standard deviation) with no conversion of Cr(VI) to Cr(III) during the extraction process. This ultrasonic method has the potential for use with other sample matrices, such as ashes and soils. Preliminary investigations using NIST 2701 (Hexavalent Chromium in Contaminated Soil) loaded onto quartz filters showed promising results with approximately 90 percent recovery of the certified Cr(VI) value. Additional testing has been done using NIST 2701 and NIST 2700 using different presentation methods. Extraction efficiency of bulk presentation, where small portions of the sample are added to the bottom of the extraction vessel, will be compared with supported presentation, where small portions of the sample are loaded onto a

  16. Batch liquid-liquid extraction of phenol from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Palma, M.S.A.; Shibata, C. [Department of Biochemical Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo-SP (Brazil); Paiva, J.L. [Department of Chemical Engineering, Polytechnical School, University of Sao Paulo, Sao Paulo-SP (Brazil); Zilli, M. [Department of Chemical and Process Engineering, University of Genoa, Genoa (Italy); Converti, A.

    2010-01-15

    The aim of this work is the study of batch liquid-liquid extraction of phenol from aqueous solutions in a bench-scale well-mixed reactor. The influence of the ratio of phase volumes, temperature, and rotational speed on phenol removal (0.72-1.1 % w/w) was investigated using methyl isobutyl ketone as an extracting solvent. For this purpose, the ratio of phase volumes were set at 0.1 and 0.2, the temperature at 10, 20, and 30 C, and the rotational speed at 300, 400, and 500 rpm. A physical model based on the material balance of the phases as well as the equation of mass flux between the phases allowed the estimation of the overall coefficient of mass transfer coupled with the superficial area. Moreover, it proved to fit, satisfactorily well, the experimental data of residual phenol concentration in the organic phase versus time under all the conditions investigated. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. Extraction of heavy metals from e-waste contaminated soils using EDDS

    Institute of Scientific and Technical Information of China (English)

    Renxiu Yang; Chunling Luo; Gan Zhang; Xiangdong Li; Zhenguo Shen

    2012-01-01

    Environmental contamination due to uncontrolled e-waste recycling activities is drawing increasing attention in the world.Extraction of these metals with biodegradable chelant [S,S]-ethylenediaminedisuccinic acid (EDDS) and the factors influencing extraction efficacy were investigated in the present study.Results showed that the addition of EDDS at low pH (5.5) produced higher metal extraction than that at high pH (8.0) solution.Metal speciation analysis indicated that Cu was completely complexed with EDDS at different pH conditions with various amounts of EDDS applied.For Pb and Zn,at low EDDS dose of 0.304 mol/kg soil,they were present as Pband Zn-EDDS.However,at high EDDS dose of 1.26 mol/kg soil,most of Pb was bound with dissolved organic matter.Ca and A1 were found to be strong competitors for trace metals to EDDS at low application dose and low pH condition.

  18. Extraction of heavy metals from e-waste contaminated soils using EDDS.

    Science.gov (United States)

    Yang, Renxiu; Luo, Chunling; Zhang, Gan; Li, Xiangdong; Shen, Zhenguo

    2012-01-01

    Environmental contamination due to uncontrolled e-waste recycling activities is drawing increasing attention in the world. Extraction of these metals with biodegradable chelant [S,S]-ethylenediaminedisuccinic acid (EDDS) and the factors influencing extraction efficacy were investigated in the present study. Results showed that the addition of EDDS at low pH (5.5) produced higher metal extraction than that at high pH (8.0) solution. Metal speciation analysis indicated that Cu was completely complexed with EDDS at different pH conditions with various amounts of EDDS applied. For Pb and Zn, at low EDDS dose of 0.304 mol/kg soil, they were present as Pb- and Zn-EDDS. However, at high EDDS dose of 1.26 mol/kg soil, most of Pb was bound with dissolved organic matter. Ca and Al were found to be strong competitors for trace metals to EDDS at low application dose and low pH condition.

  19. Speciation of Se and DOC in soil solution and their relation to Se bioavailability.

    NARCIS (Netherlands)

    Weng, L.P.; Vega, F.A.; Supriatin, S.; Bussink, W.; Riemsdijk, van W.H.

    2011-01-01

    A 0.01 M CaCl2 extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciat

  20. Bias in bacterial diversity as a result of Nycodenz extraction from bulk soil

    DEFF Research Database (Denmark)

    Holmsgaard, Peter Nikolai; Norman, Anders; Hede, Simon Christian

    2011-01-01

    , DNA was extracted directly from soil, from NDC-extracted cells, and from the soil pellets left after NDC. Bacterial diversity was assessed by PCR amplification of the V4-V6 regions of the 16S rRNA from the extracted DNA followed by sample-tagged amplicon-pyrosequencing using the 454 Genome Sequencer......Nycodenz density centrifugation (NDC) is an isolation method that allows extraction of both culturable and unculturable bacterial cells from soil, to be used in further downstream analysis; however, to date there has been a lack of information concerning the efficiency of this method. The aim...... of this study was therefore to investigate the overall efficiency of NDC extractions from soil and to identify sampling bias, if any. Bacterial cells were extracted from three soil plots from the Danish CRUCIAL field trial using an already established NDC protocol. To evaluate all aspects of the NDC procedure...

  1. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    This report describes the formulation, numerical development, and use of a multiphase, multicomponent, biodegradation model designed to simulate physical, chemical, and biological interactions occurring primarily in field scale soil vapor extraction (SVE) and bioventing (B...

  2. Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Krasimir, E-mail: kivanov1@abv.bg [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria); Zaprjanova, Penka [Tobacco and Tobacco Products Institute, Plovdiv (Bulgaria); Petkova, Milena [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria); Stefanova, Violeta; Kmetov, Veselin; Georgieva, Deyana [Department of Analytical Chemistry, Plovdiv University ' Paisii Hilendarski,' Plovdiv (Bulgaria); Angelova, Violina [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria)

    2012-05-15

    The most widely used method for determination of total phosphorus in soils is perchloric acid digestion, followed by a colorimetric assay to measure the concentration of P in solution. The first part of this study compares an alternative digestion method, using aqua regia (ISO 11466 and EPA Method 3052), with perchloric acid digestion procedure, and also compares inductively coupled plasma mass spectroscopy (ICP-MS) with colorimetry for the measurement of P on the basis of five internationally certified standard soils and 20 real-life soils with widely different extractability of phosphorus. The phosphorus concentration was determined by means of the reduced phosphomolybdenum blue and ICP-MS. The relationship between methods has been examined statistically. Good agreement of the results from colorimetry and ICP-MS was established for all certified soils. The microwave-assisted digestion with aqua regia was comparable, both in precision and accuracy, with the hot plate aqua regia method. The phosphorus concentration found with the HF + HClO{sub 4} digestion method was in good agreement with the certified mean values, while the superiority in extracting phosphorus, when compared to other methods, was obvious. Soil testing for plant-available phosphorus in Bulgaria and many European countries is most commonly conducted using acid Ca-lactate extraction (Egner-Riehm test) and alkaline sodium bicarbonate extraction (BDS ISO 11263:2002), based on Olsen test, followed by a colorimetric assay to measure the concentration of P in solution. The second part of this study reports the differences between Egner-Riehm test and BDS ISO 11263:2002 measured colorimetrically and by ICP-MS. Fifty soils were selected from South Bulgaria to represent a wide range of soil properties. It was established that ICP-MS consistently yielded significantly higher P concentrations than the colorimetric method in both extraction tests, and the relative differences were greatest in soils with lower

  3. Development and assessment of an efficient numerical solution of the richard's equation including root extraction by plants

    Science.gov (United States)

    Varado, N.; Braud, I.; Ross, P. J.

    2003-04-01

    A new numerical method for solving the 1D Richard's equation has been proposed by P. Ross (Agronomy J., 2003, in press). The Kirchhoff transform or degree of saturation is used instead of the classical matrix potential. The solution can be used both for saturated or non saturated soils. Hydraulic properties are described using the Brooks and Corey model. The soil is discretized into layers. Their thickness can be larger than in classical matrix potential methods, due to the use of a time and space varying weighing procedure for the calculation of fluxes between layers. This allows the use of a non iterative procedure, ensuring a very fast numerical solution. Extensive tests showed that the new method was very accurate for bare soils. The next step was the addition of a root extraction module in order to account for plant transpiration. Two root water uptake modules with compensation mechanisms in case of water stress were chosen from the literature. They express the transpiration source term in the Richards equation as a linear function of a potential transpiration and take into account water stress and its effects on plant transpiration. These modules were proposed first by Lai and Katul (Adv. Water Resour., 2000) and Li et al. (J. Hydrol., 2001). The new version of the model has been tested in a systematic way with several soils characteristics, climate forcings, and evapotranspiration calculation. Like the tests without vegetation, the SiSPAT (Simple Soil Plant Atmosphere Transfer) model was considered as a reference after implementation of the same roots modules. The numerical solution was also tested using a soybean data set. The variations and the cumulative values like drainage, water content, real transpiration and real evapotranspiration were in a good agreement with the SiSPAT modelling, with a relative error of less than 3%. The error on soil evaporation remained important (about 20%) on low cumulative values (less than 20mm), i.e. when LAI was close to

  4. In-Situ Containment and Extraction of Volatile Soil Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Varvel, Mark Darrell

    2005-12-27

    The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.

  5. Ultrasonic Extraction and TLC Determination of Glyphosate in the Spiked Red Soils

    Directory of Open Access Journals (Sweden)

    Sandra Babić

    2005-09-01

    Full Text Available Pesticides that get into soil bind mostly to its solid phase by physical or chemical processes. In the valley of the Neretva River the use of herbicides, especially of glyphosate is widespread and sometimes uncontrolled. In this work ultrasonic solvent extraction (USE followed by thin-layer chromatography (TLC was applied for determining glyphosate presence in soil. The experiments were conducted with two characterised soil types. The impact of soil composition on extraction efficiency is discussed. Chemical analysis showed that soil 1 contained much more iron and aluminium oxides than soil 2, which was richer in humic substances. Low glyphosate efficiency (ca 44 % in both soils could be attributed either to its binding to iron and aluminium oxides (soil 1, or to chemisorption on humic macromolecules (soil 2.

  6. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    OpenAIRE

    R Michael Lehman; Cynthia A. Cambardella; Diane E. Stott; Veronica Acosta-Martinez; Manter, Daniel K.; Jeffrey S. Buyer; Jude E. Maul; Smith, Jeffrey L.; Harold P. Collins; Jonathan J. Halvorson; Kremer, Robert J.; Jonathan G. Lundgren; Tom F. Ducey; Jin, Virginia L.; Douglas L. Karlen

    2015-01-01

    Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms), characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil ...

  7. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions.

    Science.gov (United States)

    Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile

    2015-01-01

    This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils.

  8. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  9. Nitrate concentrations in soil solutions below Danish forests

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Raulund-Rasmussen, Karsten; Gundersen, Per;

    1999-01-01

    had higher concentrations than forest-type 'other woodland'), (3) soil-type (humus soils showed above average concentrations, and fine textured soils had higher concentrations than coarse textured soils), and (4) sampling time. Unlike other investigations, there was no significant effect of tree...

  10. Soil sampling and extraction methods with possible application to pear thrips (Thysanoptera: Thripidae)

    Science.gov (United States)

    John E. Bater

    1991-01-01

    Techniques are described for the sampling and extraction of microarthropods from soil and the potential of these methods to extract the larval stages of the pear thrips, Taeniothrips inconsequens (Uzel), from soil cores taken in sugar maple stands. Also described is a design for an emergence trap that could be used to estimate adult thrips...

  11. An efficient and cost-effective method for DNA extraction from athalassohaline soil using a newly formulated cell extraction buffer.

    Science.gov (United States)

    Narayan, Avinash; Jain, Kunal; Shah, Amita R; Madamwar, Datta

    2016-06-01

    The present study describes the rapid and efficient indirect lysis method for environmental DNA extraction from athalassohaline soil by newly formulated cell extraction buffer. The available methods are mostly based on direct lysis which leads to DNA shearing and co-extraction of extra cellular DNA that influences the community and functional analysis. Moreover, during extraction of DNA by direct lysis from athalassohaline soil, it was observed that, upon addition of poly ethylene glycol (PEG), isopropanol or absolute ethanol for precipitation of DNA, salt precipitates out and affecting DNA yield significantly. Therefore, indirect lysis method was optimized for extraction of environmental DNA from such soil containing high salts and low microbial biomass (CFU 4.3 × 10(4) per gram soil) using newly formulated cell extraction buffer in combination with low and high speed centrifugation. The cell extraction buffer composition and its concentration were optimized and PEG 8000 (1 %; w/v) and 1 M NaCl gave maximum cell mass for DNA extraction. The cell extraction efficiency was assessed with acridine orange staining of soil samples before and after cell extraction. The efficiency, reproducibility and purity of extracted DNA by newly developed procedure were compared with previously recognized methods and kits having different protocols including indirect lysis. The extracted environmental DNA showed better yield (5.6 ± 0.7 μg g(-1)) along with high purity ratios. The purity of DNA was validated by assessing its usability in various molecular techniques like restriction enzyme digestion, amplification of 16S rRNA gene using PCR and UV-Visible spectroscopy analysis.

  12. Rapid extraction of PCDD/Fs from soil and fly ash samples. Pressurized fluid extraction (PFE) and microwave-assisted extraction (MAE)

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, P.; Fabrellas, B. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)

    2004-09-15

    The main reference extraction method in the analysis of polychlorinated dibenzop- dioxins and dibenzofurans (PCDD/Fs) is still the Soxhlet extraction. But it requires long extraction times (up to 24 hs), large volumes of hazardous organic solvents (100-300 ml) and its automation is limited. Pressurized Fluid Extraction (PFE) and Microwave-Assisted Extraction (MAE) are two relatively new extraction techniques that reduce the time and the volume of solvent required for extraction. However, very different PFE extraction conditions are found for the same enviromental matrices in the literature. MAE is not a extraction technique very applied for the analysis of PCDD/Fs yet, although it is used for the determination of other organic compounds, such as PCBs and PAHs. In this study, PFE and MAE extraction conditions were optimized to determine PCDDs y PCDFs in fly ash and soil/sediment samples. Conventional Soxhlet extraction with toluene was used to compare the extraction efficiency of both techniques.

  13. Use of partition and redistribution indexes for heavy metal soil distribution after contamination with a multi-element solution

    Energy Technology Data Exchange (ETDEWEB)

    Miretzky, Patricia; Munoz, Carolina; Carrillo-Chavez, Alejandro [Universidad Nacional Autonoma de Mexico, Queretaro (Mexico). Centro de Geociencias; Rodriguez Avendano, Monica [Universidad Autonoma de Queretaro (Mexico). Dept. de Quimica Ambiental

    2011-06-15

    Purpose: Tessier's sequential extraction method is usually used to study metal parting among different phases in soils. The main objective of this study was to determine the redistribution of trace metals which were added simultaneously to a sandy loam soil by use of the fractional distribution and reduced partition indexes and the risk of assessment code (RAC). Materials and methods: Tessier's sequential extraction method was performed on the soil sample. After each extraction, the suspension was subjected to centrifugation and then filtrated. Heavy metal concentrations were determined in each fraction by inductively coupled plasma mass spectrometry. Also, the independent soil total metal concentrations were determined to assess metal recovery. To study the possible redistribution of heavy metals, the soil sample was contacted with a multi-element solution. Afterward, the Tessier's scheme was performed. Results and discussion: The metal distribution pattern showed that the exchangeable fraction carried a very small percentage of the heavy metals, and the less mobile fractions the higher percentages. After metal enrichment, the metal content of the more mobile fractions was higher than for the natural soil. Results indicated that Cu was the most mobile whereas Zn, Ni, and Pb were less mobile. Application of the RAC index showed that Cu had to be considered highly dangerous, and Cd and Cr presented medium risk. After metal enrichment, the soil had a larger affinity for Cr. RAC values indicated an environmental high risk for Cr, Co, and Ni and a very high risk for Cu, Zn, Cd, and Pb. The I R values of heavy metals in the natural soil confirmed that Zn, Ni, and Pb were the more strongly bound to the soil components, and Cu presented higher bioavailability. Whereas, in the metal-loaded soil, the I R values confirmed that Cr was the more strongly bound, and Pb, the more weakly bound. The I R values showed that in the loaded soil, the amount of metals in

  14. Soil Vapor Extraction System Optimization, Transition, and Closure Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Becker, Dave; Simon, Michelle A.; Oostrom, Martinus; Rice, Amy K.; Johnson, Christian D.

    2013-02-08

    Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. A diminishing rate of contaminant extraction over time is typically observed due to 1) diminishing contaminant mass, and/or 2) slow rates of removal for contamination in low-permeability zones. After a SVE system begins to show indications of diminishing contaminant removal rate, SVE performance needs to be evaluated to determine whether the system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. This guidance specifically addresses the elements of this type of performance assessment. While not specifically presented, the approach and analyses in this guidance could also be applied at the onset of remediation selection for a site as a way to evaluate current or future impacts to groundwater from vadose zone contamination. The guidance presented here builds from existing guidance for SVE design, operation, optimization, and closure from the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, and the Air Force Center for Engineering and the Environment. The purpose of the material herein is to clarify and focus on the specific actions and decisions related to SVE optimization, transition, and/or closure.

  15. Extraction Mechanism of La3+ from Hydrochloric Acid Solution Using Cyanex 302

    Institute of Scientific and Technical Information of China (English)

    乌东北; 牛春吉; 李德谦

    2004-01-01

    The solvent extraction of La3+ from hydrochloric acid solutions was investigated using bis(2, 4, 4-trimethylpentyl) monothiophosphinic acid(Cyanex 302, HL) as an extractant. The effect of equilibrium of aqueous acidity on extraction of La3+ using Cyanex 302 in different diluents was discussed. The effects of extractant concentration and chloride ion on the extraction reaction were also studied. Stoichiometry of the extraction reactions and the nature of metal complexes formed were determined using slope analysis technique and IR measurement.

  16. Solvent-extractable lipids in an acid andic forest soil; variations with dept and season

    NARCIS (Netherlands)

    Naafs, Derck Ferdinand Werner; Bergen, P.F. van; Boogert, S.J.; Leeuw, J.W. de

    2004-01-01

    Total lipid extracts from an acid andic soil profile located on Madeira Island (Portugal) were analysed using gas chromatography (GC) and GC–mass spectrometry (GC/MS). The profile was covered mainly by grass. Bulk soil characteristics determined included soil pH (H2O) ranging from 4.5 to 4.0 and TOC

  17. Recovery of Minerals in Martian Soils Via Supercritical Fluid Extraction

    Science.gov (United States)

    Debelak, Kenneth A.; Roth, John A.

    2001-03-01

    We are investigating the use of supercritical fluids to extract mineral and/or carbonaceous material from Martian surface soils and its igneous crust. Two candidate supercritical fluids are carbon dioxide and water. The Martian atmosphere is composed mostly of carbon dioxide (approx. 95.3%) and could therefore provide an in-situ source of carbon dioxide. Water, although present in the Martian atmosphere at only approx. 0.03%, is also a candidate supercritical solvent. Previous work done with supercritical fluids has focused primarily on their solvating properties with organic compounds. Interestingly, the first work reported by Hannay and Hogarth at a meeting of the Royal Society of London in 1879 observed that increasing or decreasing the pressure caused several inorganic salts e.g., cobalt chloride, potassium iodide, and potassium bromide, to dissolve or precipitate in supercritical ethanol. In high-pressure boilers, silica, present in most boiler feed waters, is dissolved in supercritical steam and transported as dissolved silica to the turbine blades. As the pressure is reduced the silica precipitates onto the turbine blades eventually requiring the shutdown of the generator. In supercritical water oxidation processes for waste treatment, dissolved salts present a similar problem. The solubility of silicon dioxide (SiO2) in supercritical water is shown. The solubility curve has a shape characteristic of supercritical systems. At a high pressure (greater than 1750 atmospheres) increasing the temperature results in an increase in solubility of silica, while at low pressures, less than 400 atm., the solubility decreases as temperature increases. There are only a few studies in the literature where supercritical fluids are used in extractive metallurgy. Bolt modified the Mond process in which supercritical carbon monoxide was used to produce nickel carbonyl (Ni(CO)4). Tolley and Tester studied the solubility of titanium tetrachloride (TiCl4) in supercritical CO2

  18. Solute leaching in a sandy soil with a water-repellent surface layer: a simulation.

    NARCIS (Netherlands)

    Rooij, de G.H.; Vries, de P.

    1996-01-01

    Many sandy soils in the Netherlands have a water-repellent surface layer covering a wettable soil with a shallow groundwater table. Fingers form in the water-repellent surface layer and rapidly transport water and solutes to the wettable soil in which the streamlines diverge. Although several field

  19. Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution

    NARCIS (Netherlands)

    Koopmans, G.F.; Hiemstra, T.; Regelink, I.C.; Molleman, B.; Comans, R.N.J.

    2015-01-01

    Manufactured metallic silver nanoparticles (AgNP) are intensively utilized in consumer products and this will inevitably lead to their release to soils. To assess the environmental risks of AgNP in soils, quantification of both their concentration and size in soil solution is essential. We developed

  20. Soil DNA Extraction Procedure Influences Protist 18S rRNA Gene Community Profiling Outcome

    DEFF Research Database (Denmark)

    Santos, Susana S; Nunes, Inês; Nielsen, Tue Kjærgaard

    2017-01-01

    Advances in sequencing technologies allow deeper studies of the soil protist diversity and function. However, little attention has been given to the impact of the chosen soil DNA extraction procedure to the overall results. We examined the effect of three acknowledged DNA recovery methods, two ma...... high replication reproducibility. A comprehensive understanding of the DNA extraction techniques impact on soil protist diversity can enable more accurate diversity assays....

  1. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth.

    Science.gov (United States)

    Gong, Zongqiang; Li, Peijun; Wilke, B M; Alef, Kassem

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soil, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth of A. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oil addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oil in the soils was proved by the soil organic carbon content.

  2. Multitracer and filter-separated half-cell method for measuring solute diffusion in undisturbed soil

    DEFF Research Database (Denmark)

    Lægdsmand, Mette; Møldrup, Per; Schjønning, Per

    2010-01-01

    Solute diffusion controls important processes in soils: plant uptake of nutrients, sorption-desorption processes, degradation of organic matter, and leaching of radionuclides through clay barriers. We developed a new method for measuring the solute diffusivity (solute diffusion coefficient...... in the soil relative to water) in intact soil samples (the Multiple Tracer, Filter Separated half-cell method using a Dynamic Model for parameter estimation [MT-FS-DM]). The MT-FS-DM method consists of half-cell diffusion of two pairs of counterdiffusing anionic tracers and a parameter estimation scheme...... that the MT-FS-DM method provided reliable results. We compared diffusivities measured on a sandy loam soil using the MT-FS-DM method with diffusivities from six sandy loam test soils from the literature. The new method can be used to estimate solute diffusivity in intact structured soil and provides a more...

  3. Distributions and concentrations of thallium in Korean soils determined by single and sequential extraction procedures.

    Science.gov (United States)

    Lee, Jin-Ho; Kim, Dong-Jin; Ahn, Byung-Koo

    2015-06-01

    The objectives of this study were to investigate the distribution of thallium in soils collected near suspected areas such as cement plants, active and closed mines, and smelters and to examine the extraction of thallium in the soils using 19 single chemical and sequential chemical extraction procedures. Thallium concentrations in soils near cement plants were distributed between 1.20 and 12.91 mg kg(-1). However, soils near mines and smelters contained relatively low thallium concentrations ranging from 0.18 to 1.09 mg kg(-1). Thallium extractability with 19 single chemical extractants from selected soils near cement plants ranged from 0.10% to 8.20% of the total thallium concentration. In particular, 1.0 M NH4Cl, 1.0 M (NH4)2SO4, and 1.0 M CH3COONH4 extracted more thallium than other extractants. Sequential fractionation results of thallium from different soils such as industrially and artificially contaminated soils varied with the soil properties, especially soil pH and the duration of thallium contamination.

  4. Total phenol content and antioxidant activity of water solutions of plant extracts

    OpenAIRE

    Kopjar, Mirela; Piližota, Vlasta; Hribar, J.; Simčić, M.

    2009-01-01

    Water solutions of extracts were investigated for total phenol content, flavonoid content and antioxidant activity. Susceptibility to degradation of water solutions of plant extracts, under light and in the dark, during storage at room temperature was investigated in order to determine their stability prior to their application for fortification of food products. Large dispersion of total phenol (TP) content in the investigated model solutions of selected extracts (olive leaves, green tea, re...

  5. Aluminum extractability in red soils as influenced by land use patterns

    Institute of Scientific and Technical Information of China (English)

    叶兰军; 谢正苗; 黄昌勇; 徐建明

    2002-01-01

    This study on the effect of land use on soil quality in relation to forms and toxicity of aluminum in red soils (Ultisol) in southeast China showed that in general, the extractable order for soil active aluminum by four extractants was: NaOH 0.5 mol/L > HCl 1 mol/L > NH4Ac 1 mol/L > KCl 1 mol/L . Different uses of the red soils, developed from Quarternary red clay with the similar hydrogeological environment, greatly affected the amount of active aluminum, especially the exchangeable Al3+. The order of exchangeable Al3+ (Al mg/kg) in the red soils with different land uses was: barren land (740) > tea garden (663) > peach garden (432) > citrus garden (234) > paddy soil (127). The content of water soluble aluminum in the red soils was highly sensitive to soil acidity.

  6. Synergistic effects of the combination of oxalate and ascorbate on arsenic extraction from contaminated soils.

    Science.gov (United States)

    Lee, Jae-Cheol; Kim, Eun Jung; Baek, Kitae

    2017-02-01

    Arsenic is often associated with iron oxides in soils due to its high affinity with iron oxides and the abundance of iron oxides in the environment. Dissolution of iron oxides can subsequently release arsenic associated with them into the environment, which results in the increase of arsenic mobility in the soil environment. In this study, arsenic extraction from soils via the dissolution of iron oxides was investigated using oxalate, ascorbate, and their combination in order to effectively remediate arsenic-contaminated soils. Oxalate mainly extracted iron from soils via a ligand-promoted reaction, while ascorbate extracted iron mainly via a reductive reaction. Arsenic extractions from soils by oxalate and ascorbate were shown to behave similarly to iron extractions, indicating the concurrent release of arsenic adsorbed on iron oxides upon the dissolution of iron oxides. The combination of oxalate and ascorbate greatly increased arsenic extraction, indicating the synergistic effects of the combination of oxalate and ascorbate on iron and arsenic extraction from soils. Oxalate and ascorbate are naturally-occurring organic reagents that have chelating and reducing capacity. Therefore, the use of oxalate and ascorbate is environmentally friendly and effective for the remediation of arsenic-contaminated soils.

  7. Rapid metal extractability tests from polluted mining soils by ultrasound probe sonication and microwave-assisted extraction systems.

    Science.gov (United States)

    García-Salgado, Sara; Quijano, M Ángeles

    2016-12-01

    Ultrasonic probe sonication (UPS) and microwave-assisted extraction (MAE) were used for rapid single extraction of Cd, Cr, Cu, Ni, Pb, and Zn from soils polluted by former mining activities (Mónica Mine, Bustarviejo, NW Madrid, Spain), using 0.01 mol L(-1) calcium chloride (CaCl2), 0.43 mol L(-1) acetic acid (CH3COOH), and 0.05 mol L(-1) ethylenediaminetetraacetic acid (EDTA) at pH 7 as extracting agents. The optimum extraction conditions by UPS consisted of an extraction time of 2 min for both CaCl2 and EDTA extractions and 15 min for CH3COOH extraction, at 30% ultrasound (US) amplitude, whereas in the case of MAE, they consisted of 5 min at 50 °C for both CaCl2 and EDTA extractions and 15 min at 120 °C for CH3COOH extraction. Extractable concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The proposed methods were compared with a reduced version of the corresponding single extraction procedures proposed by the Standards, Measurements and Testing Programme (SM&T). The results obtained showed a great variability on extraction percentages, depending on the metal, the total concentration level and the soil sample, reaching high values in some areas. However, the correlation analysis showed that total concentration is the most relevant factor for element extractability in these soil samples. From the results obtained, the application of the accelerated extraction procedures, such as MAE and UPS, could be considered a useful approach to evaluate rapidly the extractability of the metals studied.

  8. Soil clean up by vapour extraction: parametrical study; Depollution des sols par extraction sous pression reduite: etude de quelques parametres

    Energy Technology Data Exchange (ETDEWEB)

    Dutheil, C.

    2003-05-15

    Soil vapour extraction is a treatment process for soils polluted by volatile organic compounds. Its principle relies on the circulation of gaseous flow in soil by the application of a depression of some hundreds milli-bars. A parametrical study has been led on a soil artificially polluted by tri-chloro-ethene. It shows that the gaseous flow rate has a slight influence on pollutants extraction yield. This is due to rate limited mass transfer processes. Soil moisture plays a negative role on treatment efficiency because of the reduction of the porosity available for the gas circulation. Tests have been performed on a soil polluted by a complex mixture of organic pollutants to elaborate a methodology of technical feasibility assessment. This methodology aims at identifying and limiting risks of site rehabilitation failure. Tests results show that soil vapour extraction was inadequate to treat the soil tested in this study because of the strong affinity between a dense organic phase (grease) and chlorinated solvents. (author)

  9. Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Ian J. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Semple, Kirk T. [Department of Environmental Sciences, Lancaster University, LA1 4YQ (United Kingdom); Hare, Rina [Alcontrol Laboratories, Chester CH5 3US (United Kingdom); Reid, Brian J. [Alcontrol Laboratories, Chester CH5 3US (United Kingdom)]. E-mail: b.reid@uea.ac.uk

    2006-11-15

    In this study, an aqueous-based hydroxypropyl-{beta}-cyclodextrin (HPCD) extraction technique was assessed for its capacity to determine the microbially degradable fraction of mono- and polycyclic aromatic hydrocarbons in four dissimilar soils. A linear relationship (slope = 0.90; R {sup 2} = 0.89), approaching 1:1 between predicted and observed phenanthrene mineralization, was demonstrated for the cyclodextrin extraction; however, the water only extraction underestimated the microbially available fraction by a factor of three (slope = 3.35; R {sup 2} = 0.64). With respect to determining the mineralizable fraction of p-cresol in soils, the cyclodextrin extraction (slope = 0.94; R {sup 2} = 0.84) was more appropriate than the water extraction (slope = 1.50; R {sup 2} = 0.36). Collectively, these results suggested that the cyclodextrin extraction technique was suitable for the prediction of the mineralizable fraction of representative PAHs and phenols present in dissimilar soils following increasing soil-contaminant contact times. The assessment of the microbial availability of contaminants in soils is important for a more representative evaluation of soil contamination. - An aqueous-based HPCD extraction technique was more appropriate than the water extraction in prediction of the mineralizable fraction of phenanthrene and p-cresol present in a range of dissimilar soils.

  10. Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique.

    Science.gov (United States)

    Papadopoulos, Apostolos; Paton, Graeme I; Reid, Brian J; Semple, Kirk T

    2007-06-01

    Biodegradation has been identified as a major loss process for organic contaminants in soils and, as a result, microbial strategies have been developed for the remediation of contaminated land. Prediction of the biodegradable fraction would be important for determining bioremediation end-points in the clean-up of contaminated land. The aim of this study was to investigate the ability of a cyclodextrin extraction to predict the extent to which polycyclic aromatic hydrocarbons (PAHs) would be degraded microbiologically in field contaminated soils; further testing the robustness and reproducibility of this extraction in chemically complex systems. Dichloromethane and hydroxypropyl-beta-cyclodextrin (HPCD) extractable fractions were measured together with the PAH biodegradable fraction in each of the six field contaminated soils. The amounts of PAHs degraded by the catabolic activity of the indigenous microflora in each of the soils were correlated with HPCD-extractable PAH concentrations. The regressions showed that the amounts of lower molecular weight PAHs extracted by the HPCD were not significantly (P > 0.05) different to the amounts that were degraded. However, higher molecular weight PAHs that were extracted by HPCD did differ significantly (P PAHs, overall the correlations between the HPCD extractable fraction and the microbially degradable fraction were very close, with mean values of the slope of line for the six soils equalling 1. This study further describes the robust and reproducible nature of the aqueous-based soil extraction technique reliably measuring the extent to which PAHs will be microbially degraded in soil.

  11. Comparison of two sequential extraction procedures for uranium fractionation in contaminated soils.

    Science.gov (United States)

    Vandenhove, Hildegarde; Vanhoudt, Nathalie; Duquène, Lise; Antunes, Kenny; Wannijn, Jean

    2014-11-01

    Two sequential extraction procedures were carried out on six soils with different chemical properties and contamination history to estimate the partitioning of uranium (U) between different soil fractions. The first standard method (method of Schultz) was specifically developed for actinides, while the second one (method of Rauret) was initially created for heavy metals. Reproducibility of both methods was compared by means of the coefficient of variation (CV). A soil-to-plant transfer experiment was also carried out with ryegrass to verify if one of the extracted fractions efficiently predicted plant uptake. In artificially contaminated soils, most of the U was retrieved from the exchangeable and the carbonates fractions. In soils with high natural levels of U or contaminated by industrial activity, most of the U was found in the less available fractions. Different U concentrations were found in the fractions which were supposed to be comparable in the two methods. Extracted fractions following Schultz differentiated more strongly between the tested soils but no relationships with soil parameters could be established. As expected, the highest U transfer factors (TF) were observed for ryegrass grown on artificially contaminated soils and the lowest on soils with high natural concentrations or industrial contamination, in agreement with the extraction procedures. No good relation was found between the soil-to-shoot TF and the extracted U concentrations. On the other hand, the U concentration in the roots, the U concentration in the shoots and the soil-to-root TF are well correlated to the U concentration determined in the first extracted fractions (so called exchangeable fractions) from the method of Schultz. We conclude that the extraction method according to Schultz should be preferably used for U, and that the exchangeable fraction can be proposed as a potential indicator to evaluate plant uptake in soils.

  12. Comparison of solvent mixtures for pressurized solvent extraction of soil fatty acid biomarkers.

    Science.gov (United States)

    Jeannotte, Richard; Hamel, Chantal; Jabaji, Suha; Whalen, Joann K

    2008-10-19

    The extraction and transesterification of soil lipids into fatty acid methyl esters (FAMEs) is a useful technique for studying soil microbial communities. The objective of this study was to find the best solvent mixture to extract soil lipids with a pressurized solvent extractor system. Four solvent mixtures were selected for testing: chloroform:methanol:phosphate buffer (1:2:0.8, v/v/v), chloroform:methanol (1:2, v/v), hexane:2-propanol (3:2, v/v) and acetone. Soils were from agricultural fields and had a wide range of clay, organic matter and microbial biomass contents. Total lipid fatty acid methyl esters (TL-FAMEs) were the extractable soil lipids identified and quantified with gas chromatography and flame ionization detection. Concentrations of TL-FAMEs ranged from 57.3 to 542.2 nmole g(-1) soil (dry weight basis). The highest concentrations of TL-FAMEs were extracted with chloroform:methanol:buffer or chloroform:methanol mixtures than with the hexane:2-propanol or acetone solvents. The concentrations of TL-FAMEs in chemical groups, including saturated, branched, mono- and poly-unsaturated and hydroxy fatty acids were assessed, and biological groups (soil bacteria, mycorrhizal fungi, saprophytic fungi and higher plants) was distinguished. The extraction efficiency for the chemical and biological groups followed the general trend of: chloroform:methanol:buffer> or =chloroform:methanol>hexane:2-propanol=acetone. Discriminant analysis revealed differences in TL-FAME profiles based on the solvent mixture and the soil type. Although solvent mixtures containing chloroform and methanol were the most efficient for extracting lipids from the agricultural soils in this study, soil properties and the lipid groups to be studied should be considered when selecting a solvent mixture. According to our knowledge, this is the first report of soil lipid extraction with hexane:2-propanol or acetone in a pressurized solvent extraction system.

  13. AVAILABILITY OF COPPER AND ZINC IN SOILS EVALUATED BY SEQUENTIAL EXTRACTION PROCEDURE (BCR

    Directory of Open Access Journals (Sweden)

    Lucilia Alves Linhares

    2009-07-01

    Full Text Available In environmental studies, knowledge of the chemical forms of copper and zinc and the relationships with the levels available, are important for predicting the elements behavior in the soil-plant system. To assess the distribution of copper and zinc in soils of Minas Gerais State and their relations with their availability, an experiment was carried out on samples from six natural soils at two depths. The soil samples were incubated with the elements of interest and subjected to sequential extraction for separation of the elements in six fractions defined operationally. The results showed that the technique provided valuable information regarding the interaction of copper and zinc in soil and their speciation in various fractions of soils. There was a larger distribution of zinc in the exchangeable fraction and residual, while copper was preferably associated to more stable chemical forms, that is, related to reducible and residual forms. The nearly null extractions of copper and zinc from the soluble fraction and the exchangeable Argilúvico Chernosol (soil 2 and Tb eutrophic Haplic Cambisol (soil 3 systems correspond to the soil-metal system with the largest retention and lower availability of the elements in these soils. The predominance of copper and zinc associated mainly with the soluble and exchangeable fractions in Cambisol (soil 4 and latosol orthic Quartzarenic Neosol (soil 6 showed increased mobility and availability of the metals in more acidic and sandy soil when compared with the other soils.

  14. Influence of EDDS on metal speciation in soil extracts: measurement and mechanistic multicomponent modeling.

    Science.gov (United States)

    Koopmans, Gerwin F; Schenkeveld, Walter D C; Song, Jing; Luo, Yongming; Japenga, Jan; Temminghoff, Erwin J M

    2008-02-15

    The use of the [S,S]-isomer of EDDS to enhance phytoextraction has been proposed for the remediation of heavy metal contaminated soils. Speciation of metals in soil solution in the presence of EDDS and dissolved organic matter (DOM) received, however, almost no attention, whereas metal speciation plays an important role in relation to uptake of metals by plants. We investigated the influence of EDDS on speciation of dissolved metals in batch extraction experiments using fourfield-contaminated soils with pH varying between 4.7 and 7.2. Free metal concentrations were determined with the Donnan membrane technique, and compared with results obtained with the chemical speciation program ECOSAT and the NICA-Donnan model using a multicomponent approach. Addition of EDDS increased total metal concentrations in our soil extracts by a factor between 1.1 and 32 (Al), 2.1-48 (Cu), 1.1-109 (Fe), 1.1-5.5 (Ni), and 1.3-17 (Zn). In general, Al, Cu, Fe, and Zn had the largest total concentrations in the EDDS-treated extracts, but the contribution of these metals to the sum of total metal concentrations varied significantly between our soils. Free metal concentrations varied between 7.0 and 8.9 (pCd2+), 3.9-9.9 (pCu2+), 6.3-10.2 (pNi2+), and 5.2-7.0 (pZn2+). Addition of EDDS decreased free metal concentrations by a factor between 1.4 and 1.9 (Cd), 3.4-216 (Cu), 1.3-186 (Ni), and 1.3-3.3 (Zn). Model predictions of free metal concentrations were very good, and predicted values were mostly within 1 order of magnitude difference from the measured concentrations. A multicomponent approach had to be used in our model calculations, because competition between Fe and other metals for binding with EDDS was important. This was done by including the solubility of metal oxides in our model calculations. Multicomponent models can be used in chelant-assisted phytoextraction experiments to predict the speciation of dissolved metals and to increase the understanding of metal uptake by plants.

  15. Genesis and solution chemistry of acid sulfate soils in Thailand

    NARCIS (Netherlands)

    Breemen, van N.

    1976-01-01

    To study short-term and long-term chemical processes in periodically flooded acid sulfate soils in the Bangkok Plain and in various smaller coastal plains along the Gulf of Thailand, 16 acid sulfate soils and one non-acid marine soil were examined for distribution of iron-sulfur compounds, elemental

  16. Genesis and solution chemistry of acid sulfate soils in Thailand

    NARCIS (Netherlands)

    Breemen, van N.

    1976-01-01

    To study short-term and long-term chemical processes in periodically flooded acid sulfate soils in the Bangkok Plain and in various smaller coastal plains along the Gulf of Thailand, 16 acid sulfate soils and one non-acid marine soil were examined for distribution of iron-sulfur compounds, elemental

  17. Intercomparison of Lab-Based Soil Water Extraction Methods for Stable Water Isotope Analysis

    Science.gov (United States)

    Pratt, D.; Orlowski, N.; McDonnell, J.

    2016-12-01

    The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of five common lab-based soil water extraction techniques: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and cryogenic extraction. We applied five extraction methods to two physicochemically different standard soil types (silty sand and clayey loam) that were oven-dried and rewetted with water of known isotopic composition at three different gravimetric water contents (8, 20, and 30%). We tested the null hypothisis that all extraction techniques would provide the same isotopic result independent from soil type and water content. Our results showed that the extraction technique had a significant effect on the soil water isotopic composition. Each method exhibited deviations from spiked reference water, with soil type and water content showing a secondary effect. Cryogenic extraction showed the largest deviations from the reference water, whereas mechanical squeezing and centrifugation provided the closest match to the reference water for both soil types. We also compared results for each extraction technique that produced liquid water on both an OA-ICOS and IRMS; differences between them were negligible.

  18. Uncertainties in detecting decadal change in extractable soil elements in Northern Forests

    Science.gov (United States)

    Bartlett, O.; Bailey, S. W.; Ducey, M. J.

    2016-12-01

    Northern Forest ecosystems have been or are being impacted by land use change, forest harvesting, acid deposition, atmospheric CO2 enrichment, and climate change. Each of these has the potential to modify soil forming processes, and the resulting chemical stocks. Horizontal and vertical variations in concentrations complicate determination of temporal change. This study evaluates sample design, sample size, and differences among observers as sources of uncertainty when quantifying soil temporal change over regional scales. Forty permanent, northern hardwood, monitoring plots were established on the White Mountain National Forest in central New Hampshire and western Maine. Soil pits were characterized and sampled by genetic horizon at plot center in 2001 and resampled again in 2014 two-meters on contour from the original sampling location. Each soil horizon was characterized by depth, color, texture, structure, consistency, boundaries, coarse fragments, and roots from the forest floor to the upper C horizon, the relatively unaltered glacial till parent material. Laboratory analyses included pH in 0.01 M CaCl2 solution and extractable Ca, Mg, Na, K, Al, Mn, and P in 1 M NH4OAc solution buffered at pH 4.8. Significant elemental differences were identified by genetic horizon from paired t-tests (p ≤ 0.05) indicate temporal change across the study region. Power analysis, 0.9 power (α = 0.05), revealed sampling size was appropriate within this region to detect concentration change by genetic horizon using a stratified sample design based on topographic metrics. There were no significant differences between observers' descriptions of physical properties. As physical properties would not be expected to change over a decade, this suggests spatial variation in physical properties between the pairs of sampling pits did not detract from our ability to detect temporal change. These results suggest that resampling efforts within a site, repeated across a region, to quantify

  19. Limitations and recommendations for successful DNA extraction from forensic soil samples: a review.

    Science.gov (United States)

    Young, Jennifer M; Rawlence, Nicolas J; Weyrich, Laura S; Cooper, Alan

    2014-05-01

    Soil is commonly used in forensic casework to provide discriminatory power to link a suspect to a crime scene. Standard analyses examine the intrinsic properties of soils, including mineralogy, geophysics, texture and colour; however, soils can also support a vast amount of organisms, which can be examined using DNA fingerprinting techniques. Many previous genetic analyses have relied on patterns of fragment length variation produced by amplification of unidentified taxa in the soil extract. In contrast, the development of advanced DNA sequencing technologies now provides the ability to generate a detailed picture of soil microbial communities and the taxa present, allowing for improved discrimination between samples. However, DNA must be efficiently extracted from the complex soil matrix to achieve accurate and reproducible DNA sequencing results, and extraction efficacy is highly dependent on the soil type and method used. As a result, a consideration of soil properties is important when estimating the likelihood of successful DNA extraction. This would include a basic understanding of soil components, their interactions with DNA molecules and the factors that affect such interactions. This review highlights some important considerations required prior to DNA extraction and discusses the use of common chemical reagents in soil DNA extraction protocols to achieve maximum efficacy. Together, the information presented here is designed to facilitate informed decisions about the most appropriate sampling and extraction methodology, relevant both to the soil type and the details of a specific forensic case, to ensure sufficient DNA yield and enable successful analysis. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Non-aqueous phase liquid spreading during soil vapor extraction

    Science.gov (United States)

    Kneafsey, Timothy J.; Hunt, James R.

    2004-02-01

    Many non-aqueous phase liquids (NAPLs) are expected to spread at the air-water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enhance the SVE contaminant recovery compared to conditions where the liquid does not spread. Experiments were conducted with spreading volatile oils hexane and heptane in wet porous media and capillary tubes, where spreading was observed at the scale of centimeters. Within porous medium columns up to a meter in height containing stagnant gas, spreading was less than ten centimeters and did not contribute significantly to hexane volatilization. Water film thinning and oil film pinning may have prevented significant oil film spreading, and thus did not enhance SVE at the scale of a meter. The experiments performed indicate that volatile oil spreading at the field scale is unlikely to contribute significantly to the efficiency of SVE.

  1. Solution of a rigid disk on saturated soil considering consolidation and rheology

    Institute of Scientific and Technical Information of China (English)

    GAO Shao-wu; WANG Jian-hua; ZHOU Xiang-lian

    2005-01-01

    The problem of a rigid disk acting with normal force on saturated soil was studied using Biot consolidation theory and integral equation method and the Merchant model to describe the saturated soil rheology. Using integral transform techniques,general solutions of Biot consolidation functions and the dual integral equations of a rigid disk on saturated soil were established based on the boundary conditions. These equations can be simplified using Laplace-Hankel and Abel transform methods. The numerical solutions of the integral equations, and the corresponding inversion transform were used to obtain the settlement and contact stresses of the rigid disk. Numerical examples showed that the soil settlement is small if only consolidation is considered,so the soil rheology must be taken into account to calculate the soil settlement. Numerical solution of Hankel inverse transform is also given in this paper.

  2. Efficient removal of naphthalene-2-ol from aqueous solutions by solvent extraction.

    Science.gov (United States)

    Shao, Jingjing; Cheng, Yan; Yang, Chunping; Zeng, Guangming; Liu, Wencan; Jiao, Panpan; He, Huijun

    2016-09-01

    Naphthalene-2-ol is a typical biologically recalcitrant pollutant in dye wastewater. Solvent extraction of naphthalene-2-ol from aqueous solutions using mixed solvents was investigated. Various extractants and diluents were evaluated, and the effects of volume ratio of extractant to diluent, initial pH, initial concentration of naphthalene-2-ol in aqueous solution, extraction time, temperature, volume ratio of organic phase to aqueous phase (O/A), stirring rate and extraction stages, on extraction efficiency were examined separately. Regeneration and reuse of the spent extractant were also investigated. Results showed that tributyl phosphate (TBP) achieved 98% extraction efficiency for naphthalene-2-ol in a single stage extraction, the highest among the 12 extractants evaluated. Extraction efficiency was optimized when cyclohexane and n-octane were used as diluents. The solvent combination of 20% TBP, 20% n-octanol and 60% cyclohexane (V/V) obtained the maximum extraction efficiency for naphthalene-2-ol, 99.3%, within 20min using three cross-current extraction stages under the following extraction conditions: O/A ratio of 1:1, initial pH of 3, 25°C and stirring rate of 150r/min. Recovery of mixed solvents was achieved by using 15% (W/W) NaOH solution at an O:A ratio of 1:1 and a contact time of 15min. The mixed solvents achieved an extraction capacity for naphthalene-2-ol stably higher than 90% during five cycles after regeneration.

  3. Comparison of Soxhlet and Shake Extraction of Polycyclic Aromatic Hydrocarbons from Coal Tar Polluted Soils Sampled in the Field

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Holst, Helle; Christensen, Thomas Højlund

    1994-01-01

    This study compares three extraction methods for PAHs in coal tar polluted soil: 3-times repeated shaking of the soil with dichloromethane-methanol (1:1), Soxhlet extraction with dichloromethane, and Soxhlet extraction with dichloromethane followed by Soxhlet extraction with methanol....... The extraction efficiencies were determined for ten selected PAHs in triplicate samples of six soils sampled at former gasworks sites. The samples covered a wide range of PAH concentrations, from 0.6 to 397 mg/kg soil. Soxhlet extraction with dichloromethane followed by Soxhlet extraction with methanol...

  4. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Chung, E-mail: ccliu@niu.edu.tw [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China); Chen, Guan-Bu [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China)

    2013-01-15

    Highlights: ► Increases in acidity, washing frequency, and operational temperature enhance the Cd removal. ► Approximately 80% of Cd can be removed from the soil by dissolved organic matter (DOM) washing. ► The DOM washing can moderate the loss of soil fertility. ► The DOM washing will have a great improvement if we employ NaOH, KOH, Ca(OH){sub 2}, and Mg(OH){sub 2} to prepare the DOM solution together. -- Abstract: Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg{sup −1}) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L{sup −1} DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (N-NH{sub 4}) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively.

  5. Metal extraction from Cetraria islandica (L. Ach. lichen using low pH solutions

    Directory of Open Access Journals (Sweden)

    ANA A. CUCULOVIC

    2008-04-01

    Full Text Available Extraction of metals (K, Al, Ca, Mg, Fe, Cu, Ba, Zn, Mn and Sr from dry Cetraria islandica (L. Ach. lichen was performed using solutions similar to acid rain (solution A – H2SO4–HNO3–(NH42SO4 and solution B – H2SO4–HNO3–(NH42SO4–NH4NO3. The pH values of these solutions were 2.00, 2.58, 2.87, 3.28, and 3.75. Five consecutive extractions were performed with each solution. In all solutions, the extracted metal content, except Cu and Ca, was the highest in the first extract. The highest percentage of the metals desorbed in the first extraction was obtained using solutions with low pH values, 2.00, 2.58, and 2.87. The lowest percentage in the first extraction was obtained using solutions with pH 3.28 and 3.75, indicating influence of the H+ ion on the extraction. According to the results obtained, the investigated metals form two groups. The first group includes K, Al, Ca, Mg, and Fe. They were extracted in each of the five extractions at each of the pH values. The second group includes Ba, Zn, Mn, Cu, and Sr, which were not all extracted at each pH value. The first group yielded three types of extraction curves when the logarithms of extracted metal amounts were plotted as a function of the number of successive extractions. These effects indicate that three different positions (centres of metal ion accumulation exist in the lichen (due to sorption, complex formation, or other processes present in the tissues.

  6. Evaluation of extraction solutions for biochemical analyses of the proteins in rice grains.

    Science.gov (United States)

    Lang, Gang-hua; Kagiya, Yukari; Ohnishi-Kameyama, Mayumi; Kitta, Kazumi

    2013-01-01

    The influence of different extraction solutions on the proteins extracted from rice grains was investigated. The largest amounts of salt-soluble proteins were extracted with solutions supplemented with Tris-HCl at pH 8.0. Rice allergens were analyzed by multiplex immunodetection. Except for α-globulin extracted with the solutions at pH 8.0, which showed a low-molecular-weight band besides the main band, no significant solution-dependent difference among the allergens was found. Total proteins were extracted with four kinds of solution. The extraction of the basic subunit of glutelin was found to be SDS-dependent, and more protein was obtained with extraction solutions supplemented with SDS. The contents of α-globulin and α-amylase/trypsin inhibitors were higher in the extracts without SDS than with SDS. We conclude from the present data that, in order to obtain comparable data from rice grain salt-soluble and total protein analyses, differences in the protein extraction efficiency of solutions used should be taken into consideration.

  7. From solid to liquid: Assessing the release of carbon from soil into solution in response to forest management

    Science.gov (United States)

    James, J. N.; Gross, C. D.; Butman, D. E.; Harrison, R. B.

    2016-12-01

    Dissolved organic matter (DOM) is a crucial conduit for internal cycling of carbon within soils as well as for the transfer of organic matter out of soil and into aquatic systems. Little is known about how the quantity, quality, lability and chemical characteristics of DOM changes in response to human management of forest soils. To examine the processes that release soil organic matter (SOM) into solution, we gathered samples from adjacent native and industrially managed Eucalyptus grandis plantation forests across Sao Paulo State, Brazil and from adjacent old-growth and Douglas-fir (Pseudotsuga menzisii) plantation forests in the coastal Pacific Northwest. Samples from each soil horizon were taken from soil profiles excavated to at least 1.5 m at each site. Water extractable organic matter (WEOM) was extracted twice from each sample using 0.5 M K2SO4 and Milli-Q water to quantify both dissolved and exchange phase organic matter. These extracts were measured for total organic carbon (TOC), 13C and 14C, and chemical characteristics were assessed by fluorescence spectroscopy (EEMs and SUVA254). At the same time, solid phase characteristics of the soil samples were quantified, including bulk density, pH, total carbon and nitrogen, microbial biomass, and 13C and 14C. Characterization of bulk SOM was undertaken by Fourier Transform Infrared Spectroscopy (FTIR) by subtracting mineral matrix spectra of each sample from the bulk spectra. Organic matter lability was assessed by incubations using difference in TOC for WEOM extracts and repeated measurement of CO2 efflux for bulk SOM. All together, these analyses permit a unique snapshot of the natural separation of organic matter from solid into liquid phase through the entire soil profile. Initial results reveal that small but measureable quantities of WEOM may be released from deep B and C horizons in soil, and that this material is labile to microbial decomposition. By identifying differences in SOM and DOM cycling due to

  8. Sequential diffusion of ammonium and nitrate from soil extracts to a polytetrafluoroethylene trap for 15N determination

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1991-01-01

    A novel diffusion method was used for preparation of NH4+- and NO3--N samples from soil extracts for N-15 determination. Ammonium, and nitrate following reduction to ammonia, are allowed to diffuse to an acid-wetted glass filter enclosed in polytetrafluoroethylene tape. The method was evaluated...... with simulated soil extracts obtained using 50 ml of 2 M potassium chloride solution containing 130-mu-g of NH4+-N (2.3 atom% N-15) and 120-mu-g of NO3--N (natural N-15 abundance). No cross-over in the N-15 abundances of NH4+-N and NO3--N was observed, indicating a quantitative diffusion process (72 h, 25......-degrees-C). Owing to the presence of inorganic nitrogen impurities in the potassium chloride, the N-15 enrichments should be corrected for the blank nitrogen content....

  9. Applications of Fertilizer Cations Affect Cadmium and Zinc Concentrations in Soil Solutions and Uptake by Plants

    DEFF Research Database (Denmark)

    Lorenz, S. E.; Hamon, R. E.; McGrath, S. P.

    1994-01-01

    A pot experiment was conducted to study changes over time of Cd and Zn in soil solution and in plants. Radish was grown in a soil which had been contaminated with heavy metals prior to 1961. Constant amounts of a fertilizer solution (NH4N03, KN03) were added daily. Soil solution was obtained...... at intervals by displacement with water. The cumulative additions of small amounts of fertilizers were made equal to the plants' requirements at the final harvest but were found to exceed them during most of the experiment. Excess fertilizers caused substantial increases of major (K, Ca, Mg) and heavy...... was independent of their concentrations in solution. It is concluded that, in order to study effects of plants on heavy-metal availability and obtain soil solution that has not been altered by fertilizer ions, nutrients must be added according to the needs and growth of the plants. This could be achieved...

  10. Field-scale evaluation of water fluxes and manure solution leaching in feedlot pen soils.

    Science.gov (United States)

    García, Ana R; Maisonnave, Roberto; Massobrio, Marcelo J; Fabrizio de Iorio, Alicia R

    2012-01-01

    Accumulation of beef cattle manure on feedlot pen surfaces generates large amounts of dissolved solutes that can be mobilized by water fluxes, affecting surface and groundwater quality. Our objective was to examine the long-term impacts of a beef cattle feeding operation on water fluxes and manure leaching in feedlot pens located on sandy loam soils of the subhumid Sandy Pampa region in Argentina. Bulk density, gravimetric moisture content, and chloride concentration were quantified. Rain simulation trials were performed to estimate infiltration and runoff rates. Using chloride ion as a tracer, profile analysis techniques were applied to estimate the soil moisture flux and manure conservative chemical components leaching rates. An organic stratum was found over the surface of the pen soil, separated from the underlying soil by a highly compacted thin layer (the manure-soil interface). The soil beneath the organic layer showed greater bulk density in the A horizon than in the control soil and had greater moisture content. Greater concentrations of chloride were found as a consequence of the partial sealing of the manure-soil interface. Surface runoff was the dominant process in the feedlot pen soil, whereas infiltration was the main process in control soil. Soil moisture flux beneath pens decreased substantially after 15 yr of activity. The estimated minimum leaching rate of chloride was 13 times faster than the estimated soil moisture flux. This difference suggests that chloride ions are not exclusively transported by advective flow under our conditions but also by solute diffusion and preferential flow.

  11. Selective Extraction Methods for Aluminium, Iron and Organic Carbon from Montane Volcanic Ash Soils

    Institute of Scientific and Technical Information of China (English)

    B. JANSEN; F. H. TONNEIJCK; J. M. VERSTRATEN

    2011-01-01

    Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle.Given the central role of A1 and Fe in stabilizing organic matter in volcanic ash soils,we assessed various extraction methods of A1,Fe,and C fractions from montane volcanic ash soils in northern Ecuador,aiming at elucidating the role of A1 and Fe in stabilizing soil organic matter (SOM).We found extractions with cold sodium hydroxide,ammonium oxalate/oxalic acid,sodium pyrophosphate,and sodium tetraborate to be particularly useful.Combination of these methods yielded information about the role of the mineral phase in stabilizing organic matter and the differences in type and degree of complexation of organic matter with Al and Fe in the various horizons and soil profiles.Sodium tetraborate extraction proved the only soft extraction method that yielded simultaneous information about the Al,Fe,and C fractions extracted.It also appeared to differentiate between SOM fractions of different stability.The fractions of copper chloride- and potassium chloride-extractable A1 were useful in assessing the total reactive and toxic Al fractions,respectively.The classical subdivision of organic matter into humic acids,fulvic acids,and humin added little useful information.The use of fulvic acids as a proxy for mobile organic matter as done in several model-based approaches seems invalid in the soils studied.

  12. Calibration of KE C Value in Acidic Red Soils with Fumigation-Extraction Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Commonly used KEC value (0.45) of the fumigation-extraction (FE) method was obtained on the basis of temperate neutral soils. To ascertain its applicability to acidic red soils widespread in southern China and other subtropical regions, the KEC value was investigated based on 8 acidic red soils by in situ labelling of native soil microorganisms using 14C-labelled glucose. Realistic KEC value for red soils could be obtained by in situ 14C-labelling as long as an incubation period of 72 h is adopted after addition of 14C glucose to soil. The single KEC values for the eight red soils ranged from 0.27 to 0.35 and averaged 0.31. Lower KEC value obtained in red soils probably resulted from different soil quality, compared with other types of soil,which causes possible changes in microbial community structure and extractability of cellular component.Microbial biomass C contents of the eight red soils measured using a unique and constant KEC value of 0.45 decreased by 22.2%~40% in comparison to those using variable KEC values. The results suggest that microbial biomass C would be significantly underestimated using the present KEC value and a calibration of the KEC value is necessary for red soils.``

  13. [Extraction of 2-amino-4-nitrophenol and 4-phenylphenol from aqueous solutions].

    Science.gov (United States)

    Fursova, I A; Shormanov, V K

    2002-01-01

    The authors provide the results of extraction of 2-amino-4-nitrophenol and 4-phenilphenol from aqueous solutions by five organic soluvants. The dependence of the extraction degree on some factors (nature of extragent, pH of aqueous phase medium, extragents saturation with water) was established. Necessary extraction rate for isolation of preset quality of the test substances was calculated.

  14. Extraction mechanics in lingual orthodontics: Challenges and solutions

    Directory of Open Access Journals (Sweden)

    Tushar M Hegde

    2016-01-01

    Full Text Available The 21st century has witnessed a slow but sure incorporation of lingual orthodontic protocols into the orthodontic mainstream. Extraction mechanics with lingual orthodontic appliance poses challenges to even the most experienced clinician. This article is a case series of three cases treated by extraction mechanics in a detailed and sequential manner.

  15. Extraction mechanics in lingual orthodontics: Challenges and solutions

    OpenAIRE

    Tushar M Hegde; Viraj Doshi

    2016-01-01

    The 21st century has witnessed a slow but sure incorporation of lingual orthodontic protocols into the orthodontic mainstream. Extraction mechanics with lingual orthodontic appliance poses challenges to even the most experienced clinician. This article is a case series of three cases treated by extraction mechanics in a detailed and sequential manner.

  16. Extraction and preconcentration of copper from water, soils, lubricating oils and plant materials and its subsequent determination by atomic-absorption spectrophotometry.

    Science.gov (United States)

    Ejaz, M; Shamus-Zuha; Dil, W; Akhtar, A; Chaudhri, S A

    1981-07-01

    The extraction and preconcentration of the cupric thiocyanate complex with 4-(5-nonyl)pyridine in benzene is possible from neutral or up to 2M HCl, 0.5M HNO(3) or 0.25M H(2)SO(4) solutions. The method has considerable advantages over previously recommended extraction procedures because of selectivity, completeness of extraction in a single operation, short contact period, minimum amount of complexing agents needed and wide tolerance to various solution parameters. The complex formed from as little as 1 mug of copper can be extracted quantitatively into 1 ml of the organic phase from 500 ml of natural water. An extraction method is described which in combination with AAS can be used to determine copper in water, soils, fresh and used lubricating oils and plant-ash solutions down to the ng/ml or ng/g level.

  17. Extraction methods for recovery of volatile organic compounds from fortified dry soils

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, M.M.; Zimmerman, J.H. [Lockheed Martin Environmental Services, Las Vegas, NV (United States); Schumacher, B.A. [Environmental Protection Agency, Las Vegas, NV (United States)

    1996-09-01

    Recovery of 8 volatile organic compounds (VOCs) from dry soils, each fortified at 800 ng/g soil, was studied in relation to the extraction method and time of extraction. Extraction procedures studied on 2 desiccator-dried soils were modifications of EPA low- and high-level purge-and-trap extractions (SW-846 Method 5030A): treatment 1, unmodified low-level procedure; treatment 2, 18 h water presoak followed by low-level procedure; treatment 3, 24 h methanol extract at room temperature followed by high-level procedure; and treatment 4, 24 h methanol extract at 65{degrees}C followed by high-level procedure. VOC recoveries from replicate soil samples increased in the treatment order 1 through 4. With Charleston soil (8% clay and 3.8% organic carbon), highly significant differences (p {le} 0.001) in recoveries among treatments were observed for trichloroethene (TCE), tetrachloroethene (PCE), toluene, ethylbenzene, and o-xylene, with 2- to 3-fold increased recoveries between treatments 1 and 3. With Hayesville soil (32% clay and 0.2% organic carbon), significant improvements (p{le}0.05) in recoveries of toluene, ethylbenzene, o-oxylene, 1,1,1-trichloroethane, TCE, and PCE were observed for heated methanol (treatment 4) rather than water extraction (treatment 1), but the increases were less than 2-fold. 19 refs., 1 fig., 5 tabs.

  18. Soil solution interactions may limit Pb remediation using P amendments in an urban soil

    Science.gov (United States)

    Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg-1 was amended in a laboratory study with bone meal and triple super phospha...

  19. Mechanism of gold solvent extraction from aurocyanide solution by quaternary amines: models of extracting species based on hydrogen bonding

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The mechanism of gold solvent extraction from KAu(CN)2 solution was investigated by means of FTIR, EXAFS, ICP and radioactive tracer methods. Two extraction systems were studied, namely N263-tributyl phosphate(TBP)-n-dodecane and N263-iso-octanol-n-dodecane. High-reso- lution FT IR spectroscopy indicated that the CN stretching vibrations of the two extraction systems differred greatly. In order to interpret the significant difference in CN stretching vibrations, two extracting species models are proposed supramolecular structures based on the formation of hydrogen bonds between Au(CN)2- and modifiers such as TBP and iso-octanol.

  20. Characterization of interactions between soil solid phase and soil solution in the initial ecosystem development phase

    Science.gov (United States)

    Zimmermann, Claudia; Schaaf, Wolfgang

    2010-05-01

    In the initial phase of soil formation interactions between solid and liquid phases and processes like mineral weathering, formation of reactive surfaces and accumulation of organic matter play a decisive role in developing soil properties. As part of the Transregional Collaborative Research Centre (SFB/TRR 38) 'Patterns and processes of initial ecosystem development' in an artificial catchment, these interactions are studied at the catchment 'Chicken Creek' (Gerwin et al. 2009). To link the interactions between soil solid phase and soil solution at the micro-scale with observed processes at the catchment scale, microcosm experiments under controlled laboratory conditions were carried out. Main objectives were to determine the transformation processes of C and N from litter decomposition within the gaseous, liquid and solid phase, the interaction with mineral surfaces and its role for the establishment of biogeochemical cycles. The microcosm experiments were established in a climate chamber at constant 10 ° C. In total 48 soil columns (diameter: 14.4 cm; height: 30 cm) were filled with two different quaternary substrates (sand and loamy sand) representing the textural variation within the catchment at a bulk density of 1.4-1.5 g*cm-3. The columns were automatically irrigated four times a day with 6.6 ml each (corresponding to 600 mm*yr-1). The gaseous phase in the headspace of the microcosms was analysed continuously for CO2 and N2O contents. C and N transformation processes were studied using 13C and 15N labelled litter of two different plant species occurring at the catchment (Lotus corniculatus, Calamagrostis epigejos) that was incorporated into the microcosm surface. All treatments including a control ran with four replicates over a period of 40 weeks. Two additional microcosms act as pure litter controls where substrate was replaced by glass pearls. Litter and substrate were analysed before and after the experiment. Percolate was continuously collected and

  1. Method for solvent extraction with near-equal density solutions

    Science.gov (United States)

    Birdwell, Joseph F.; Randolph, John D.; Singh, S. Paul

    2001-01-01

    Disclosed is a modified centrifugal contactor for separating solutions of near equal density. The modified contactor has a pressure differential establishing means that allows the application of a pressure differential across fluid in the rotor of the contactor. The pressure differential is such that it causes the boundary between solutions of near-equal density to shift, thereby facilitating separation of the phases. Also disclosed is a method of separating solutions of near-equal density.

  2. Aggregation in Organic Solutions of Malonamides: Consequences for Water Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Meridiano, Y.; Berthon, L.; Crozes, X.; Sorel, C. [CEA ValRho, DEN DRCP SCPS LCSE, F-30207 Bagnols Sur Ceze, (France); Dannus, P. [CEA Saclay, INSTN UEIN, F-91191 Gif Sur Yvette, (France); Antonio, M.R.; Chiarizia, R. [Argonne Natl Lab, CSE Div, Argonne, IL 60439 (United States); Zemb, T. [CEA CNRS UM2 ENSCM, Inst Chin Separat Marcoule, Bagnols Sur Ceze, (France)

    2009-07-01

    The molecular organization of N, N'-dimethyl-N, N'-dioctyl-hexyl-ethoxy-malonamide (DMDOHEMA), the current reference extractant for the DIAMEX (Diamide Extraction) process, is correlated with its water extraction properties from neutral media. The aggregation of DMDOHEMA in n-heptane was investigated by vapor pressure osmometry (VPO) and the aggregate speciation characterized by combined small-angle neutron and X-ray scattering (SANS and SAXS, respectively). Two approaches were taken to model the aggregation of the diamide and the water extraction as a function of the diamide concentration by taking into account a single aggregation equilibrium with an average aggregation number N equal to 4.28 {+-} 0.05; and a competition between two types of aggregates in the organic phase, namely, aggregates of the reverse micelle type with 4 diamides per aggregate, and an oligomeric structure composed of about 10 diamide molecules which appears at high extractant concentration ({>=} 1 mol/L). In both cases, the supramolecular speciation representing the monomers/aggregates distribution was determined, and for each supramolecular organization, a solubilization parameter was calculated using the Sergievskii-Dannus relationship. Thus, the correlation between the two types of micellization of the diamide and the extraction of water into the organic phase was demonstrated. The larger aggregates can extract about five times more water than monomers. (authors)

  3. Improving Griffith's protocol for co-extraction of microbial DNA and RNA in adsorptive soils

    DEFF Research Database (Denmark)

    Paulin, Mélanie Marie; Nicolaisen, Mette Haubjerg; Jacobsen, Carsten Suhr

    2013-01-01

    Quantification of microbial gene expression is increasingly being used to study key functions in soil microbial communities, yet major limitations still exist for efficient extraction of nucleic acids, especially RNA for transcript analysis, from this complex matrix. We present an improved......-time PCR on both the RNA (after conversion to cDNA) and the DNA fraction of the extracts. Non-adsorptive soils were characterized by low clay content and/or high phosphate content, whereas adsorptive soils had clay contents above 20% and/or a strong presence of divalent Ca in combination with high p...... extraction protocol that was optimized by: i) including an adsorption-site competitor prior to cell lysis to decrease adsorption of nucleic acids to soil particles, and ii) optimizing the PEG concentration used for nucleic acid precipitation. The extraction efficiency was determined using quantitative real...

  4. Use of extracts from oyster shell and soil for cultivation of Spirulina maxima.

    Science.gov (United States)

    Jung, Joo-Young; Kim, Sunmin; Lee, Hansol; Kim, Kyochan; Kim, Woong; Park, Min S; Kwon, Jong-Hee; Yang, Ji-Won

    2014-12-01

    Calcium ion and trace metals play important roles in various metabolisms of photosynthetic organisms. In this study, simple methods were developed to extract calcium ion and micronutrients from oyster shell and common soil, and the prepared extracts were tested as a replacement of the corresponding chemicals that are essential for growth of microalgae. The oyster shell and soil were treated with 0.1 M sodium hydroxide or with 10 % hydrogen peroxide, respectively. The potential application of these natural sources to cultivation was investigated with Spirulina maxima. When compared to standard Zarrouk medium, the Spirulina maxima cultivated in a modified Zarrouk media with elements from oyster shell and soil extract exhibited increases in biomass, chlorophyll, and phycocyanin by 17, 16, and 64 %, respectively. These results indicate that the extracts of oyster shell and soil provide sufficient amounts of calcium and trace metals for successful cultivation of Spirulina maxima.

  5. Relative extraction ratio (RER) for arsenic and heavy metals in soils and tailings from various metal mines, Korea.

    Science.gov (United States)

    Son, Hye Ok; Jung, Myung Chae

    2011-01-01

    This study focused on the evaluation of leaching behaviours for arsenic and heavy metals (Cd, Cu, Ni, Pb and Zn) in soils and tailings contaminated by mining activities. Ten representative mine soils were taken at four representative metal mines in Korea. To evaluate the leaching characteristics of the samples, eight extraction methods were adapted namely 0.1 M HCl, 0.5 M HCl, 1.0 M HCl, 3.0 M HCl, Korean Standard Leaching Procedure for waste materials (KSLP), Synthetic Precipitation Leaching Procedure (SPLP), Toxicity Characteristic Leaching Procedure (TCLP) and aqua regia extraction (AR) methods. In order to compare element concentrations as extraction methods, relative extraction ratios (RERs, %), defined as element concentration extracted by the individual leaching method divided by that extracted by aqua regia based on USEPA method 3050B, were calculated. Although the RER values can vary upon sample types and elements, they increase with increasing ionic strength of each extracting solution. Thus, the RER for arsenic and heavy metals in the samples increased in the order of KSLP extraction method, the RER values for Cd and Zn were relatively higher than those for As, Cu, Ni and Pb. This may be due to differences in geochemical behaviour of each element, namely high solubility of Cd and Zn and low solubility of As, Cu, Ni and Pb in surface environment. Thus, the extraction results can give important information on the degree and extent of arsenic and heavy metal dispersion in the surface environment.

  6. Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils.

    Science.gov (United States)

    Sui, Hong; Hua, Zhengtao; Li, Xingang; Li, Hong; Wu, Guozhong

    2014-05-01

    Petroleum ether was used to extract petroleum hydrocarbons from soils collected from six oil fields with different history of exploratory and contamination. It was capable of fast removing 76-94 % of the total petroleum hydrocarbons including 25 alkanes (C11-C35) and 16 US EPA priority polycyclic aromatic hydrocarbons from soils at room temperature. The partial least squares analysis indicated that the solvent extraction efficiencies were positively correlated with soil organic matter, cation exchange capacity, moisture, pH, and sand content of soils, while negative effects were observed in the properties reflecting the molecular size (e.g., molecular weight and number of carbon atoms) and hydrophobicity (e.g., water solubility, octanol-water partition coefficient, soil organic carbon partition coefficient) of hydrocarbons. The high concentration of weathered crude oil at the order of 10(5) mg kg(-1) in this study was demonstrated adverse for solvent extraction by providing an obvious nonaqueous phase liquid phase for hydrocarbon sinking and increasing the sequestration of soluble hydrocarbons in the insoluble oil fractions during weathering. A full picture of the mass distribution and transport mechanism of petroleum contaminants in soils will ultimately require a variety of studies to gain insights into the dynamic interactions between environmental indicator hydrocarbons and their host oil matrix.

  7. Releasing Pattern of Applied Phosphorus and Distribution Change of Phosphorus Fractions in the Acid Upland Soils with Successive Resin Extraction

    Directory of Open Access Journals (Sweden)

    Arief Hartono

    2008-05-01

    Full Text Available The releasing pattern of applied P in the acid upland soils and the soil properties influencing the pattern were studied. Surface horizons of six acid upland soils from Sumatra, Java and Kalimantan were used in this study. The releasing pattern of applied P (300 mg P kg-1 of these soils were studied by successive resin extraction. P fractionation was conducted to evaluate which fractions released P to the soil solution after successive resin extraction. The cumulative of resin-Pinorganic (Pi release of soils was fitted to the first order kinetic. Regression analyses using factor scores obtained from the previous principal components analyses was applied to determine soil properties influencing P releasing pattern. The results suggested that the maximum P release was significantly (P < 0.05 increased by acidity plus 1.4 nm mineral-related factor (PC2 i.e. exchangeable Al and 1.4 nm minerals (smectite and vermiculite and decreased by oxide related factor (PC1 i.e. aluminum (Al plus 1/2 iron (Fe (by ammonium oxalate, crystalline Al and Fe oxides, cation exchange capacity, and clay content. P fractionation analysis after successive resin extraction showed that both labile and less labile in the form of NaHCO3-Pi and NaOH-Pi fractions, respectively, can be transformed into resin-Pi when in the most labile resin-Pi is depleted. Most of P released in high oxides soils were from NaOH-Pi fraction while in low oxides soils were from NaHCO3-Pi. P release from the former fraction resulted in the maximum P release lower than that of the latter one. When NaHCO3-Pi was high, NaOH-Pi was relatively more stable than NaHCO3-Pi despite resin-Pi removal. NaHCO3-Pi and NaOH-Pi are very important P fractions in replenishing resin-Pi in these acid upland soils.

  8. Extractability and bioavailability of Pb and As in historically contaminated orchard soil: effects of compost amendments.

    Science.gov (United States)

    Fleming, Margaret; Tai, Yiping; Zhuang, Ping; McBride, Murray B

    2013-06-01

    The availability of Pb and As in an historically contaminated orchard soil, after amendment with compost and aging in the field, was determined by single-step chemical extraction with 1.0 M ammonium acetate at pH 4.8, sequential extraction using the modified BCR test, and a redworm bioassay in the laboratory. The efficiency of soil Pb extraction by ammonium acetate was greater at higher total soil Pb but was reduced by compost amendment. Conversely, the extraction efficiency of total soil As increased with compost amendment, but was not sensitive to total soil As. The redworm bioassay indicated Pb (but not As) bioavailability to be reduced by soil amendment with compost, a result consistent with the ammonium acetate extraction test but not reflected in modified BCR test. Electron microprobe studies of the orchard soil revealed Pb and As to be spatially associated in discrete particles along with phosphorus and iron. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The variability of standard artificial soils: Behaviour, extractability and bioavailability of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, Jakub, E-mail: hofman@recetox.muni.cz [Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno CZ-62500 (Czech Republic); Hovorková, Ivana [Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno CZ-62500 (Czech Republic); Semple, Kirk T. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2014-01-15

    Highlights: • Artificial soils from different laboratories revealed different fates, behaviour and bioavailability of lindane and phenanthrene. • Lindane behaviour was related to organic carbon. • Phenanthrene behaviour was significantly affected by degrading microorganisms from peat. • Sterilization of artificial soils might reduce unwanted variability. -- Abstract: Artificial soil is an important standard medium and reference material for soil ecotoxicity bioassays. Recent studies have documented the significant variability of their basic properties among different laboratories. Our study investigated (i) the variability of ten artificial soils from different laboratories by means of the fate, extractability and bioavailability of phenanthrene and lindane, and (ii) the relationships of these results to soil properties and ageing. Soils were spiked with {sup 14}C-phenanthrene and {sup 14}C-lindane, and the total residues, fractions extractable by hydroxypropyl-β-cyclodextrin, and the fractions of phenanthrene mineralizable by bacteria were determined after 1, 14, 28 and 56 days. Significant temporal changes in total residues and extractable and mineralizable fractions were observed for phenanthrene, resulting in large differences between soils after 56 days. Phenanthrene mineralization by indigenous peat microorganisms was suggested as the main driver of that, outweighing the effects of organic matter. Lindane total residues and extractability displayed much smaller changes over time and smaller differences between soils related to organic matter. Roughly estimated, the variability between the artificial soils was comparable to natural soils. The implications of such variability for the results of toxicity tests and risk assessment decisions should be identified. We also suggested that the sterilization of artificial soils might reduce unwanted variability.

  10. QUANTITATIVE ELISA OF POLYCHLORINATED BIPHENYLS IN AN OILY SOIL MATRIX USING SUPERCRITICAL FLUID EXTRACTION

    Science.gov (United States)

    Soil samples from the GenCorp Lawrence Brownfields site were analyzed with a commercial semi-quantitative enzyme-linked immunosorbent assay (ELISA) using a methanol shake extraction. Many of the soil samples were extremely oily, with total petroleum hydrocarbon levels up to 240...

  11. A novel technique using the Hendrickx centrifuge for extracting winter sporangia of Synchytrium endobioticum from soil

    NARCIS (Netherlands)

    Wander, J.G.N.; Berg, van den W.; Boogert, van den P.H.J.F.; Lamers, J.G.; Leeuwen, van G.C.M.; Hendrickx, G.; Bonants, P.J.M.

    2007-01-01

    A zonal centrifugation method, known as the Hendrickx centrifuge technique, was tested for routine detection of winter sporangia of Synchytrium endobioticum in soil. In four experiments the ability of the Hendrickx centrifuge to extract the sporangia from soil was compared with a method used by the

  12. Root water extraction and limiting soil hydraulic conditions estimated by numerical simulation

    NARCIS (Netherlands)

    Jong van Lier, de Q.; Metselaar, K.; Dam, van J.C.

    2006-01-01

    Root density, soil hydraulic functions, and hydraulic head gradients play an important role in the determination of transpiration-rate-limiting soil water contents. We developed an implicit numerical root water extraction model to solve the Richards equation for the modeling of radial root water

  13. Emerging Technology Summary. ACID EXTRACTION TREATMENT SYSTEM FOR TREATMENT OF METAL CONTAMINATED SOILS

    Science.gov (United States)

    The Acid Extraction Treatment System (AETS) is intended to reduce the concentrations and/or teachability of heavy metals in contaminated soils so the soil can be returned to the site from which it originated. The objective of the project was to determine the effectiveness and com...

  14. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    Directory of Open Access Journals (Sweden)

    D.C.A. Leite

    2014-01-01

    Full Text Available Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit, the PowerSoil® DNA Isolation Kit (PS kit and the ZR Soil Microbe DNA Kit MiniprepTM (ZR kit, for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples.

  15. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    Science.gov (United States)

    Leite, D.C.A.; Balieiro, F.C.; Pires, C.A.; Madari, B.E.; Rosado, A.S.; Coutinho, H.L.C.; Peixoto, R.S.

    2014-01-01

    Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples. PMID:24948928

  16. Estimation of mercury speciation in soil standard reference materials with different extraction methods by ion chromatography coupled with ICP-MS.

    Science.gov (United States)

    Park, Misun; Yoon, Hyeon; Yoon, Cheolho; Yu, Jae-Young

    2011-01-01

    Analytical methods for the speciation of mercury, based on microwave extraction and sonication extraction, have been tested to determine the inorganic mercury and methyl mercury contents in two standard soil reference materials: SRM 2710 Montana Soil and BCR 580 estuarine sediment. Prior to applying the speciation extraction methods, the mineral compositions were analyzed via XRD analysis, with SRM 2710 shown to be composed mostly of aluminum silicate minerals, while carbonate minerals were the major constituent in BCR 580. Two extraction methods, microwave and sonication, were tested for the analysis and recovery efficiency of total mercury. The accuracy and efficiency of each extraction method was also compared. In the analysis of total mercury, the microwave extraction method, with using methanol and HCl as extractants, was better for SRM2710, while the application of the sonication extraction method was more efficient for the calcite-based BCR 580. The results showed good separation and recovery efficiencies, with values reaching 100% of those estimated. The sonication method was selected for the speciation of mercury, especially in BCR 580. An extraction solution comprising of a 1:1 mixture of methanol and HCl was used for the sonication extraction of BCR 580, with the resulting extractants analyzed by IC-HG-ICP-MS for methyl mercury and inorganic mercury. As a simple, rapid, sensitive, and accurate method, sonication extraction was found to be satisfactory.

  17. Cadmium speciation assessed by voltammetry, ion exchange and geochemical calculation in soil solutions collected after soil rewetting.

    Science.gov (United States)

    Cornu, J Y; Parat, C; Schneider, A; Authier, L; Dauthieu, M; Sappin-Didier, V; Denaix, L

    2009-07-01

    Analytical techniques and speciation models have been developed to characterize the speciation of Cd in soil solution. They provide an estimate of operationally defined species of Cd that need to be compared, especially for soil solutions highly concentrated in organic matter as are the solutions collected after soil rewetting. This work deals with the comparison between the speciation of Cd measured by anodic stripping voltammetry (ASV) and ion exchange and the speciation of Cd calculated using Visual MINTEQ. The aim of this study was to quantify and explain the differences in Cd speciation observed between the three approaches. Cd speciation was assessed in soil solutions collected 4, 8, 24, 48, 96 and 144h after the rewetting of an air-dried contaminated soil. To optimize the computed speciation of Cd, other physico-chemical parameters were followed (e.g. pH, ionic strength and the concentrations of major anions, major cations and dissolved organic carbon) and a brief characterisation of dissolved organic matter (DOM) was performed. The discrepancy between model predictions and analytical measurements highlighted the need for caution in the interpretation of geochemical speciated data for Cd. The major result of this study was that a characterization of DOM based on its specific UV-absorbance at 254 nm improved the accuracy of model predictions. Another finding is that labile Cd complexes, even organic, may have been included in the electrochemically labile fraction of Cd measured by ASV.

  18. Effect of dissolved organic matter composition on metal speciation in soil solutions

    NARCIS (Netherlands)

    Ren, Zong Ling; Tella, Marie; Bravin, M.N.; Comans, R.N.J.; Dai, Jun; Garnier, Jean Marie; Sivry, Yann; Doelsch, Emmanuel; Straathof, Angela; Benedetti, M.F.

    2015-01-01

    Knowledge of the speciation of heavy metals and the role of dissolved organic matter (DOM) in soil solution is a key to understand metal mobility and ecotoxicity. In this study, soil column-Donnan membrane technique (SC-DMT) was used to measure metal speciation of Cd, Cu, Ni, Pb, and Zn in eighte

  19. Influence of PAH speciation in soils on vegetative uptake of PAHs using successive extraction.

    Science.gov (United States)

    Zhang, Juan; Fan, Shu-Kai

    2016-12-15

    Polycyclic aromatic hydrocarbon (PAH) speciation in soils and the relationship between PAH speciation in soils and the accumulation of PAHs in vegetables have rarely been reported. In this study, the organic solvent extractable PAHs in soils, PAHs that bind to endogenetic soil humus, soil properties, and PAHs in B. chinensis were comprehensively studied. Mobile fulvic acid (FA) and crude humin preferred adsorbing 3-ring and 4-ring PAHs whereas stable humic acid (HA) preferred adsorbing 5-ring PAHs. The PAH speciation in soils was in the order of organic solvent extractable PAHs (59.08%)>humin-bound PAHs (26.20%)>FA-bound PAHs (10.03%)>HA-bound PAHs (4.68%). The relative amounts of FA-bound PAHs versus HA-bound PAHs were linked to soil type. FA-bound PAHs and humin mineral-bound PAHs had a positive correlation with fine particles and were preferentially accumulated in B. chinensis. Other speciation was preferentially retained in soils and adsorbed onto the surface of and within coarse particles. The PAHs in vegetables were ideally forecasted using solvent extractable PAHs, FA-bound PAHs, and soil properties (silt, moisture, and pH). The FA-bound PAHs were more soluble in water and can be easily taken up by plants together with water and nutrients.

  20. Comparison of different extraction solutions for the analysis of allergens in hen's egg.

    Science.gov (United States)

    Hildebrandt, S; Steinhart, H; Paschke, A

    2008-06-01

    An important requirement for the correct procedure of allergen analysis in hen's egg is to obtain complete and unaltered protein extracts. Besides the aim of a quantitative extraction of the allergens from the matrix, it is equally important not to alter their allergenic potential during the extraction process. This paper describes and compares six extraction solutions for the analysis of whole-egg proteins and allergens. These requirements were examined via protein determination according to Bradford [Bradford, M. M. (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 72, 248-254] and Kjeldahl [Meyer, A. H. (2006). Lebensmittelrecht, Verlag C.H. Beck München, Stand: 1. February 2006, § 64, Lebensmittel- und Futtermittelgesetzbuch, Amtliche Sammlung von Untersuchungsmethoden, Nr. L 06.00-7] as well as the EAST-inhibition method. It could be demonstrated that the extraction with a urea solution (8M) led to significant interferences during the protein determination, and substantially reduced the allergenic potential of egg proteins. With all other extraction solutions adequate protein contents could be extracted. The highest protein content was achieved by the extraction with phosphate buffered saline followed by a Tween 20 solution, physiological saline, water, and acetate buffer. The results show that none of these extracts - except for the urea solution (8M) - was altered in its' allergenic potential.

  1. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth

    Institute of Scientific and Technical Information of China (English)

    GONG Zongqiang; LI Peijun; B.M.Wilke; Kassem Alef

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soft for a remediation purpose, with some of the oft remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soft was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soft properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soft, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth ofA. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oft addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oft in the soils was proved by the soft organic carbon content.

  2. Three-dimensional Solute Transport Modeling in Coupled Soil and Plant Root Systems

    OpenAIRE

    2014-01-01

    Many environmental and agricultural challenges rely on the proper understanding of water flow and solute transport in soils, for example the carbon cycle, crop growth, irrigation scheduling or fate of pollutants in subsoil. Current modeling approaches typically simulate plant uptake via empirical approaches, which neglect the three-dimensional (3D) root architecture. Yet, nowadays 3D soil-root water and solute models on plant-scale exist, which can be used for assessing the impact of root arc...

  3. Benzo(a)pyrene accumulation in soils of technogenic emission zone by subcritical water extraction method

    Science.gov (United States)

    Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun

    2016-04-01

    The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds

  4. PNEUMATIC PUMP TEST FOR DESIGN OF SOIL VACUUM EXTRACTION

    Science.gov (United States)

    In-situ pneumatic pumping tests were performed to estimate the pneumatic permeability at a site containing soils contaminated with aviation gasoline. Determination of pneumatic permeability was necessary to evaluate soil-air discharge or pore volume exchange rates. Pressure propa...

  5. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    Directory of Open Access Journals (Sweden)

    R. Michael Lehman

    2015-01-01

    Full Text Available Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms, characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i increase nutrient availability for production of high yielding, high quality crops; (ii protect crops from pests, pathogens, weeds; and (iii manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation.

  6. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook.

    Science.gov (United States)

    Kirchmann, Holger; Börjesson, Gunnar; Kätterer, Thomas; Cohen, Yariv

    2017-03-01

    The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic

  7. Optimization of extraction procedures for ecotoxicity analyses: Use of TNT contaminated soil as a model

    Energy Technology Data Exchange (ETDEWEB)

    Sunahara, G.I.; Renoux, A.Y.; Dodard, S.; Paquet, L.; Hawari, J. [BRI, Montreal, Quebec (Canada); Ampleman, G.; Lavigne, J.; Thiboutot, S. [DREV, Courcelette, Quebec (Canada)

    1995-12-31

    The environmental impact of energetic substances (TNT, RDX, GAP, NC) in soil is being examined using ecotoxicity bioassays. An extraction method was characterized to optimize bioassay assessment of TNT toxicity in different soil types. Using the Microtox{trademark} (Photobacterium phosphoreum) assay and non-extracted samples, TNT was most acutely toxic (IC{sub 50} = 1--9 PPM) followed by RDX and GAP; NC did not show obvious toxicity (probably due to solubility limitations). TNT (in 0.25% DMSO) yielded an IC{sub 50} 0.98 + 0.10 (SD) ppm. The 96h-EC{sub 50} (Selenastrum capricornutum growth inhibition) of TNT (1. 1 ppm) was higher than GAP and RDX; NC was not apparently toxic (probably due to solubility limitations). Soil samples (sand or a silt-sand mix) were spiked with either 2,000 or 20,000 mg TNT/kg soil, and were adjusted to 20% moisture. Samples were later mixed with acetonitrile, sonicated, and then treated with CaCl{sub 2} before filtration, HPLC and ecotoxicity analyses. Results indicated that: the recovery of TNT from soil (97.51% {+-} 2.78) was independent of the type of soil or moisture content; CaCl{sub 2} interfered with TNT toxicity and acetonitrile extracts could not be used directly for algal testing. When TNT extracts were diluted to fixed concentrations, similar TNT-induced ecotoxicities were generally observed and suggested that, apart from the expected effects of TNT concentrations in the soil, the soil texture and the moisture effects were minimal. The extraction procedure permits HPLC analyses as well as ecotoxicity testing and minimizes secondary soil matrix effects. Studies will be conducted to study the toxic effects of other energetic substances present in soil using this approach.

  8. Liberação de cálcio e magnésio por cápsulas porosas de porcelana usadas na extração de solução do solo Calcium and magnesium release by porous ceramic cups used to extract soil solution

    Directory of Open Access Journals (Sweden)

    R. H. Silva

    2004-08-01

    Full Text Available O uso de cápsulas porosas para extração de solução do solo é interessante por ser um ensaio não-destrutivo. Entretanto, persistem dúvidas sobre a liberação de íons da própria cápsula, que podem contaminar a solução extraída. Foram realizados testes na Faculdade de Ciências Agronômicas/UNESP, Botucatu (SP, com o objetivo de verificar a liberação de Ca e de Mg por cápsulas porosas de porcelana. No primeiro, foram empregados quatro tratamentos: T1 - lavagem das cápsulas com água destilada, forçando sua passagem pelas cápsulas, utilizando uma bomba a vácuo; T2 - lavagem das cápsulas com HCl 0,1 mol L-1, forçando sua passagem pelas cápsulas, utilizando uma bomba a vácuo; T3 - lavagem das cápsulas com água destilada, sem vácuo, e T4 - lavagem das cápsulas com HCl 0,1 mol L-1, sem vácuo, em um tempo de imersão de 24 h (para T3 e T4. No segundo teste, as cápsulas tratadas com HCl 0,1 mol L-1 no primeiro teste foram lavadas com água destilada novamente e deixadas de molho em água destilada e deionizada durante 45 min. Após estes procedimentos, as cápsulas foram imersas em água destilada, tomando-se alícotas desta solução para determinação de pH e dos teores de Ca e Mg após contato com as cápsulas por 0; 0,5; 1,0; 2,0; 4,0 e 24 h. Cada tratamento teve quatro repetições. Não se observou liberação significativa de Ca e Mg das cápsulas porosas para a solução, quando foram preparadas utilizando-se da passagem de HCl 0,1 mol L-1 a vácuo e água destilada, e deixadas, a seguir, em água destilada e deionizada durante 4 h.The use of porous cups to extract soil solution is interesting because it is a non destructive method. However, there are some uncertainties regarding the possible release of ions from the cups that would contaminate the extracted solution. An experiment was carried out at the College of Agricultural Sciences/UNESP, Botucatu, State of São Paulo (Brazil to evaluate the Ca and Mg release

  9. Impact of Soil Water Flux on Vadose Zone Solute Transport Parameters

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The transport processes of solutes in two soil columns filled with undisturbed soil material collected from an unsaturated sandy aquifer formation in Belgium subjected to a variable upper boundary condition were identified from breakthrough curves measured by means of time domain refiectometry (TDR). Solute breakthrough was measured with 3 TDR probes inserted into each soil column at three different depths at a 10 minutes time interval. In addition, soil water content and pressure head were measured at 3 different depths. Analytical solute transport models were used to estimate the solute dispersion coefficient and average pore-water velocity from the observed breakthrough curves. The results showed that the analytical solutions were suitable in fitting the observed solute transport. The dispersion coefficient was found to be a function of the soil depth and average pore-water velocity, imposed by the soil water flux. The mobile moisture content on the other hand was not correlated with the average pore-water velocity and the dispersion coefficient.

  10. Soil and Solution Based Assessments of Weathering along a Hillslope Transect in Coastal California

    Science.gov (United States)

    Yoo, K.; Sanderman, J.; Mudd, S. M.; Amundson, R.

    2007-12-01

    Understanding the genesis of hillslope soils is challenging. They are the products of geomorphic, hydrologic, and geochemical processes that are interacting among themselves and are affected by the soils they shape. Our goal is to mechanically and quantitatively integrate the soil production and transport, chemical weathering of minerals, and solute fluxes with the observed topographic variation of soil elemental compositions. We studied a grass covered hillslope in coastal California where geomorphic processes of soil production and transport are well characterized. The parent material is clay-rich sandstone and bioturbation drives the slope- dependent soil transport. 10 sites were excavated to the depth of 10-20 cm beyond the soil-saprolite boundary, and soil and saprolite samples were collected for total chemical analyses of major elements. Soil solution was sampled throughout the year at multiple depths at 6 hillslope locations, along with outflow stream samples. We report that long term weathering rates, determined by the enrichment of weathering resistant element (Zr), are approximately proportional to soil production rates, whereas solute measurements indicate fastest chemical weathering rate near the toeslope where the soil production rate is lowest due to the thick soils. In saprolite, the Zr enrichment increased with increasing soil thickness, a trend consistent with the fact that soil production rate declines with soil thickness. If we assume mineral residence time in the saprolite increases with a decreasing conversion rate of saprolite to soil, the saprolite residence time may explain the greater degrees of saprolite chemical alteration in the depositional slope. Comparisons of elemental compositions of the soils and saprolite suggest that less than 10 % of the original saprolite mass has been lost via dissolution and leaching during the soil formation. Despite the mass losses of most elements, phosphorous and calcium appear to be selectively retained

  11. Extraction of bitumen, crude oil and its products from tar sand and contaminated sandy soil under effect of ultrasound.

    Science.gov (United States)

    Abramov, O V; Abramov, V O; Myasnikov, S K; Mullakaev, M S

    2009-03-01

    In the present paper, the kinetics of the water extraction of bitumen from tar sand and crude oil or residual fuel oil from model contaminated soils under the effect of ultrasound is studied. The influence of process temperature, ultrasound power, the nature, and properties of the components of heterogeneous mixtures being separated, and the concentration of added alkaline reagents on the rate and degree of oil recovery is investigated. A functional form of the dependencies of separation efficiency on the mean size of solid particles and the temperature of a working medium is found. Optimum concentrations of reagents in the process solution are determined. It is shown that the spent solution of sodium silicate can be multiply used for separation, its reuse even speeding up the yield of oil in the initial period. Taking into account obtained results, a multipurpose pilot plant with a flow-type reactor for ultrasonic extraction of petroleum and its products from contaminated soils was manufactured and tested. During tests, the purification of sandy soil contaminated with residual fuel oil was carried out which verified the results of laboratory studies.

  12. Biotoxicity of Mars soils: 2. Survival of Bacillus subtilis and Enterococcus faecalis in aqueous extracts derived from six Mars analog soils

    Science.gov (United States)

    Schuerger, Andrew C.; Ming, Doug W.; Golden, D. C.

    2017-07-01

    The search for an extant microbiota on Mars depends on exploring sites that contain transient or permanent liquid water near the surface. Examples of possible sites for liquid water may be active recurring slope lineae (RSL) and fluid inclusions in ice or salt deposits. The presence of saline fluids on Mars will act to depress the freezing points of liquid water to as low as ‒60 °C, potentially permitting the metabolism and growth of halophilic microorganisms to temperatures significantly below the freezing point of pure water at 0 °C. In order to predict the potential risks of forward contamination by Earth microorganisms to subsurface sites on Mars with liquid brines, experiments were designed to characterize the short-term survival of two bacteria in aqueous soil solutions from six analog soils. The term ''soil'' is used here to denote any loose, unconsolidated matrix with no implications for the presence or absence of organics or biology. The analog soils were previously described (Schuerger et al., 2012, Planetary Space Sci., 72, 91-101), and represented crushed Basalt (benign control), Salt, Acid, Alkaline, Aeolian, and Phoenix analogs on Mars. The survival rates of spores of Bacillus subtilis and vegetative cells of Enterococcus faecalis were tested in soil solutions from each analog at 24, 0, or ‒70 °C for time periods up to 28 d. Survival of dormant spores of B. subtilis were mostly unaffected by incubation in the aqueous extracts of all six Mars analogs. In contrast, survival rates of E. faecalis cells were suppressed by all soil solutions when incubated at 24 °C but improved at 0 and ‒70 °C, except for assays in the Salt and Acid soil solutions in which most cells were killed. Results suggest that Earth microorganisms that form spores may persist in liquid brines on Mars better than non-spore forming species, and thus, spore-forming species may pose a potential forward contamination risk to sites with liquid brines.

  13. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS.

    Science.gov (United States)

    Favorito, Jessica E; Luxton, Todd P; Eick, Matthew J; Grossl, Paul R

    2017-10-01

    Selenium is a trace element found in western US soils, where ingestion of Se-accumulating plants has resulted in livestock fatalities. Therefore, a reliable understanding of Se speciation and bioavailability is critical for effective mitigation. Sequential extraction procedures (SEP) are often employed to examine Se phases and speciation in contaminated soils but may be limited by experimental conditions. We examined the validity of a SEP using X-ray absorption spectroscopy (XAS) for both whole and a sequence of extracted soils. The sequence included removal of soluble, PO4-extractable, carbonate, amorphous Fe-oxide, crystalline Fe-oxide, organic, and residual Se forms. For whole soils, XANES analyses indicated Se(0) and Se(-II) predominated, with lower amounts of Se(IV) present, related to carbonates and Fe-oxides. Oxidized Se species were more elevated and residual/elemental Se was lower than previous SEP results from ICP-AES suggested. For soils from the SEP sequence, XANES results indicated only partial recovery of carbonate, Fe-oxide and organic Se. This suggests Se was incompletely removed during designated extractions, possibly due to lack of mineral solubilization or reagent specificity. Selenium fractions associated with Fe-oxides were reduced in amount or removed after using hydroxylamine HCl for most soils examined. XANES results indicate partial dissolution of solid-phases may occur during extraction processes. This study demonstrates why precautions should be taken to improve the validity of SEPs. Mineralogical and chemical characterizations should be completed prior to SEP implementation to identify extractable phases or mineral components that may influence extraction effectiveness. Sequential extraction procedures can be appropriately tailored for reliable quantification of speciation in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Application of off-gas treatment technology to soil vapour extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Karp, G. S.; Harvey, E. M.; McKee, R. C. E. [O`Connor Associates Environmental Inc., Oakville, ON (Canada); Lucas, W. P. [Commenco Systems Inc., Concord, ON (Canada)

    1995-12-31

    Various off-gas treatment technologies, including carbon adsorption, thermal incineration, UV oxidation, bio-reactors, combustion and catalytic oxidation were investigated as means to remediate sub-surface soils contaminated with petroleum hydrocarbons or volatile organic compounds. The primary objective was to determine the most cost-effective portable off-gas treatment technology for a typical soil vapour extraction system. Advantages, disadvantages and relative costs of each technology were summarized. Catalytic oxidation was found to be the most cost-effective method for off-gas treatment for the specified soil vapour extraction systems.

  15. Extraction studies of cobalt (Ⅱ) and nickel (Ⅱ) from chloride solution using PC88A

    Institute of Scientific and Technical Information of China (English)

    LUO Lin; WEI Jian-hong; WU Gen-yi; F. TOYOHISA; S. ATSUSHI

    2006-01-01

    Solvent extraction study of cobalt and nickel were carried out from a chloride solution with a high ratio of Co to Ni using the sodium salt of PC88A as extractant diluted in kerosene. The solution was generated in batches by leaching a tungsten super alloy scraps. The results show that extraction rate of metal ions increases with increase of aqueous phase pH value. The pH0.5 value difference of 1.40 with PC88A indicates the possible separation of cobalt and nickel. Increase of the concentration of the solvent can enhance the percentage extraction of both metal ions. Improvement of temperature is beneficial to extraction separation of cobalt and nickel. Extraction and stripping processes were also studied in a cross-current solvent extraction unit and the results were also given.

  16. Separation of Indium and Iron from Dilute Sulphate Solutions with a Phosphorous Mixer Extractant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The phosphorous mixer introduced could replace D2EHPA as an extractant applied in the extraction of indium. The extraction properties of the phosphorous mixer were studied. The influences of extractant concentration, organic/aqueous (O/A) phase ratio, equilibrium time, and pH value of the feed solutions on the extraction of indium and separation of indium-iron were investigated experimentally. Under the best operating conditions, more than 98% of indium was extracted through two-stage counter-current extraction. The optimizing condition of indium extraction is determined as follows: O/A = 1∶(9€?2) in volume ratio; 30% PPD in sulphonated kerosene; pH of the feed, about 0.6; equilibrium time, 3€? min. The extractant has good reusing and anti-aging properties.

  17. Study of the separation of zirconium and hafnium from nitric solutions by solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Janubia Cristina B.S.; Rocha, Laura R.T.; Morais, Carlos Antonio de, E-mail: jcbsa@cdtn.br, E-mail: lrtr@cdtn.br, E-mail: cmorais@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, BH (Brazil)

    2013-07-01

    This paper describes the study of the separation of Zr and Hf in nitric and hydrochloric media by solvent extraction technique. As aqueous phase, solutions prepared from the Zr and Hf hydroxides and the liquor generated from the product of the alkaline fusion of the zircon were used. The content of Zr and Hf in these solutions were 15 g/L and 0.6 g/L Hf respectively, and its acidity was varied between 1.0 and 10 mol/L. The effect of the acid extractants (DEHPA, IONQUEST®801 and CYANEX®272), solvating extractants (TBP and CYANEX®923) and basic extractants (PRIMENE®JTM, ALAMINE®336 and ALIQUAT®336), all of them diluted in dodecane, was investigated. In the solutions of the basic extractants, 5.0% of tridecanol was added as a modifier agent. Among the extractants investigated, the TBP in a nitric medium showed the best performance in the separation of the Zr/Hf. For acid extractants a high extraction was observed, however, with low selectivity. With the basic extractants no metals extraction was observed under the conditions investigated. The best results were obtained with the liquor generated from the product of alkaline fusion of zircon at acidity 7.0 mol/L and nitrate concentration of 9.2 mol/L. Under these conditions an extraction percentage of 91.6% for Zr and of 12.1% for Hf and a separation factor of Zr/Hf of 79.3 was obtained. (author)

  18. Low-temperature liquid-liquid extraction of phenols from aqueous solutions with hydrophilic mixtures of extractants

    Science.gov (United States)

    Rudakov, O. B.; Khorokhordina, E. A.; Preobrazhenskii, M. A.; Rudakova, L. V.

    2016-08-01

    The volume ratios in acetonitrile-ethyl acetate (90 : 10, 95 : 5), acetonitrile-isopropanol-ethyl acetate (70 : 15 : 15, 80 : 5 : 15), and isopropanol-1-butanol (50 : 50) mixtures were determined. Their mixing with water (1 : 1) and storage at-10°C led to partitioning into two immiscible liquid phases without formation of the ice phase. The mixtures were shown to be useful as hydrophilic extractants in low-temperature liquidliquid extraction of phenol from aqueous solutions.

  19. Disturbance of water-extractable phosphorus determination by colloidal particles in a heavy clay soil from the Netherlands

    NARCIS (Netherlands)

    Koopmans, G.F.; Chardon, W.J.; Salm, van der C.

    2005-01-01

    Received for publication January 25, 2005. Water extraction methods are widely used to extract phosphorus (P) from soils for both agronomic and environmental purposes. Both the presence of soil colloids in soil water filtrates, and the contribution of colloidal P to the molybdate-reactive phosphorus

  20. Remediation of methyl iodide in aqueous solution and soils amended with thiourea.

    Science.gov (United States)

    Zheng, Wei; Papiernik, Sharon K; Guo, Mingxin; Yates, Scott R

    2004-02-15

    Methyl iodide (MeI) is considered a very promising fumigant alternative to methyl bromide (MeBr) for controlling soil-borne pests. Because atmospheric emission of highly volatile fumigants contributes to air pollution, feasible strategies to reduce emissions are urgently needed. In this study, thiourea (a nitrification inhibitor) was shown to accelerate the degradation of MeI in soil and water. In aqueous solution, the reaction between MeI and thiourea was independent of pH, although the rate of MeI hydrolysis increased in alkaline solution. Substantial increases in the rate of MeI dissipation were observed in thiourea-amended soils. Transformation of MeI by thiourea in aqueous solution was by a single chemical reaction process, while MeI degradation in thiourea-amended soil apparently involved a catalytic mechanism. The electron delocalization between the thiourea molecule and the surfaces of soil particles is energetically favorable and would increase the nucleophilic reactivity of the thiono group toward MeI, resulting in an enhancement of the dissipation rate. The soil half-life for MeI was reduced from >300 h for unamended soils to only a few hours in soil or sand amended with thiourea at a 2:1 molar ratio (thiourea:MeI). The MeI transformation rate in thiourea-amended soil increased with increasing soil temperature and decreasing soil moisture. Therefore, spraying thiourea on the soil surface to form a "reactive surface barrier" may be an effective and innovative strategy for controlling fumigant emissions to the atmosphere and for improving environmental protection.

  1. Bioavailability and ecotoxicity of arsenic species in solution culture and soil system: implications to remediation.

    Science.gov (United States)

    Bolan, Nanthi; Mahimairaja, Santiago; Kunhikrishnan, Anitha; Seshadri, Balaji; Thangarajan, Ramya

    2015-06-01

    In this work, bioavailability and ecotoxicity of arsenite (As(III)) and arsenate (As(V)) species were compared between solution culture and soil system. Firstly, the adsorption of As(III) and As(V) was compared using a number of non-allophanic and allophanic soils. Secondly, the bioavailability and ecotoxicity were examined using germination, phytoavailability, earthworm, and soil microbial activity tests. Both As-spiked soils and As-contaminated sheep dip soils were used to test bioavailability and ecotoxicity. The sheep dip soil which contained predominantly As(V) species was subject to flooding to reduce As(V) to As(III) and then used along with the control treatment soil to compare the bioavailability between As species. Adsorption of As(V) was much higher than that of As(III), and the difference in adsorption between these two species was more pronounced in the allophanic than non-allophanic soils. In the solution culture, there was no significant difference in bioavailability and ecotoxicity, as measured by germination and phytoavailability tests, between these two As species. Whereas in the As-spiked soils, the bioavailability and ecotoxicity were higher for As(III) than As(V), and the difference was more pronounced in the allophanic than non-allophanic soils. Bioavailability of As increased with the flooding of the sheep dip soils which may be attributed to the reduction of As(V) to As(III) species. The results in this study have demonstrated that while in solution, the bioavailability and ecotoxicity do not vary between As(III) and As(V), in soils, the latter species is less bioavailable than the former species because As(V) is more strongly retained than As(III). Since the bioavailability and ecotoxicity of As depend on the nature of As species present in the environment, risk-based remediation approach should aim at controlling the dynamics of As transformation.

  2. Extraction of 229Th From 233U Solution

    Institute of Scientific and Technical Information of China (English)

    XIAO; Guo-ping; ZHAO; Li-fei

    2013-01-01

    A two-step separation procedure for preparation of 229Th tracer from 233U was developed using CL-TBP and TEVA extraction chromatography.The decontamination factor of uranium from thorium is larger than 4.6×106.After separation,the content of 233U in uranium fraction was measured by ID-ICP-MS,

  3. Influence of EDDS on metal speciation in soil extracts: Measurement and mechanistic multicomponent modeling

    NARCIS (Netherlands)

    Koopmans, G.F.; Schenkeveld, W.D.C.; Song, J.; Luo, Y.; Japenga, J.; Temminghoff, E.J.M.

    2008-01-01

    The use of the [S,S]-isomer of EDDS to enhance phytoextraction has been proposed for the remediation of heavy metal contaminated soils. Speciation of metals in soil solution in the presence of EDDS and dissolved organic matter (DOM) received, however, almost no attention, whereas metal speciation pl

  4. Influence of EDDS on metal speciation in soil extracts: Measurement and mechanistic multicomponent modeling

    NARCIS (Netherlands)

    Koopmans, G.F.; Schenkeveld, W.D.C.; Song, J.; Luo, Y.; Japenga, J.; Temminghoff, E.J.M.

    2008-01-01

    The use of the [S,S]-isomer of EDDS to enhance phytoextraction has been proposed for the remediation of heavy metal contaminated soils. Speciation of metals in soil solution in the presence of EDDS and dissolved organic matter (DOM) received, however, almost no attention, whereas metal speciation pl

  5. CFD Extraction Tool for TecPlot From DPLR Solutions

    Science.gov (United States)

    Norman, David

    2013-01-01

    This invention is a TecPlot macro of a computer program in the TecPlot programming language that processes data from DPLR solutions in TecPlot format. DPLR (Data-Parallel Line Relaxation) is a NASA computational fluid dynamics (CFD) code, and TecPlot is a commercial CFD post-processing tool. The Tec- Plot data is in SI units (same as DPLR output). The invention converts the SI units into British units. The macro modifies the TecPlot data with unit conversions, and adds some extra calculations. After unit conversions, the macro cuts a slice, and adds vectors on the current plot for output format. The macro can also process surface solutions. Existing solutions use manual conversion and superposition. The conversion is complicated because it must be applied to a range of inter-related scalars and vectors to describe a 2D or 3D flow field. It processes the CFD solution to create superposition/comparison of scalars and vectors. The existing manual solution is cumbersome, open to errors, slow, and cannot be inserted into an automated process. This invention is quick and easy to use, and can be inserted into an automated data-processing algorithm.

  6. Desorption of organophosphorous pesticides from soil with wastewater and surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Soriano, M. C.; Mingorance, M. D.; Pena, A.

    2009-07-01

    Surfactants can be introduced in the environment by wastewater discharge, point-charge pollution or deliberate action, e. g. to remediate contaminated soil or groundwater. The irrigation of soil with wastewater containing surfactants may modify pesticide desorption from soil, thus affecting their affecting their environmental fate. Desorption from soil of the plain of Granada (South-eastern Spain) of two organophosphorous pesticides, diazinon and dimethoate, differing in solubility and hydrophobicity, has been evaluated in the presence of different surfactant aqueous solutions and municipal wastewater. (Author)

  7. Thermal alteration of water extractable organic matter in climosequence soils from the Sierra Nevada, California

    Science.gov (United States)

    Santos, Fernanda; Russell, David; Berhe, Asmeret Asefaw

    2016-11-01

    In the next decades, the influence of wildfires in controlling the cycling and composition of soil organic matter (SOM) globally and in the western U.S. is expected to grow. While the impact of fires on bulk SOM has been extensively studied, the extent at which heating of soil affects the soluble component of SOM remains unclear. Here we investigated the thermal transformations of water-extractable organic matter (WEOM) by examining the changes in the distribution of carbon (C) functional groups in WEOM from soils heated at low and intermediate temperatures. WEOM (exported from soils to rivers in the Sierra Nevada and beyond.

  8. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction.

    Science.gov (United States)

    Crean, Daniel E; Livens, Francis R; Sajih, Mustafa; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C

    2013-12-15

    Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42-50% total DU extracted), citric acid (30-42% total DU) and sulphuric acid (13-19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68-87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents.

  9. Advantages and limitations of chemical extraction tests to predict mercury soil-plant transfer in soil risk evaluations.

    Science.gov (United States)

    Monteiro, R J R; Rodrigues, S M; Cruz, N; Henriques, B; Duarte, A C; Römkens, P F A M; Pereira, E

    2016-07-01

    In this study, we compared the size of the mobile Hg pool in soil to those obtained by extractions using 2 M HNO3, 5 M HNO3, and 2 M HCl. This was done to evaluate their suitability to be used as proxies in view of Hg uptake by ryegrass. Total levels of Hg in soil ranged from 0.66 to 70 mg kg(-1) (median 17 mg kg(-1)), and concentrations of Hg extracted increased in the order: mobile Hg tests explained between 66 and 86 % of the variability of Hg contents in ryegrass shoots. Results indicated that all methods tested here can be used to estimate the plant total Hg pool at contaminated areas and can be used in first tier soil risk evaluations. This study also indicates that a relevant part of Hg in plants is from deposition of soil particles and that splashing of soil can be more significant for plant contamination than actual uptake processes. Graphical Abstract Illustration of potential mercury soil-plant transfer routes.

  10. Mechanism of gold solvent extraction from aurocyanide solution by quaternary amines: models of extracting species based on hydrogen bonding

    Institute of Scientific and Technical Information of China (English)

    马刚; 闫文飞; 陈景; 严纯华; 高宏成; 周维金; 施鼐; 吴谨光; 徐光宪; 黄昆; 余建民; 崔宁

    2000-01-01

    The mechanism of gold solvent extraction from KAu(CN)2 solution was investigated by means of FTIR, EXAFS, ICP and radioactive tracer methods. Two extraction systems were studied, namely N263-tributyl phosphate(TBP)-n-dodecane and N263-iso-octanol-n-dodecane. High-resolution FT IR spectroscopy indicated that the CN stretching vibrations of the two extraction systems differred greatly. In order to interpret the significant difference in CN stretching vibrations, twoextracting species models are proposed——supramolecular structures based on the formation ofhydrogen bonds between Au(CN)2- and modifiers such as TBP and iso-octanol.

  11. Effects of aqueous soil-biochar extracts on representative aquatic organisms: a first evaluation

    Science.gov (United States)

    Bastos, A. C.; Abrantes, N.; Prodana, M.; Verheijen, F.; Keizer, J. J.; Soares, A. M. V. M.; Loureiro, S.

    2012-04-01

    Increasing considerations of biochar application to soils has raised concerns over implications to overall environmental quality, associated to some of its components. The heterogeneity of biochar composition is well documented in relation to co-existing chemical species, as a function of feedstock and pyrolysis conditions. Robust ecotoxicology studies with focus on bioavailable biochar components in soil remain scarce and have only started to emerge. This pilot study provides an insight into the potential ecotoxicological effects of aqueous extracts of biochar-amended soil on a range of aquatic organisms (Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna), using a battery of standard aquatic bioassays. The use of such bioassays in environmental risk assessment of soil-biochar elutriates is here suggested as a crucial tool, to bridge the gap between biochar's 'inert' fraction in soil and that bioavailable to edaphic organisms. Aqueous extracts were obtained from LUFA 2.2 standard soil (control) and following amendment with pine biochar at common field application rates (80 ton ha-1). Acute exposure to soil-biochar extracts allowed estimating toxicity parameters and developing dose-response curves for all tested species, through well-established methodological guidelines. The bioluminescent bacteria V. fischeri showed negligible EC50 (effect concentration corresponding to 50% luminescence decline) values in the MICROTOX® basic test (independent of exposure time), suggesting low susceptibility to soil-biochar extracts. Mild toxicity was also observed in the microalgae P. subcapitata growth inhibition test, where significant deleterious effects on growth rate occurred only at the highest (100%) extract concentration (pecotoxicological approach, has shown relevance. Preliminary results suggest potential trophic unbalances in aquatic systems, as a result of exposure to leachates from biochar-amended soils.

  12. Simultaneous multielement extraction with the Mehlich-1 solution for Southern Brazilian soils determined by ICP-OES and the effects on the nutrients recommendations to crops Extração multielementar simultânea com a solução de Mehlich-1 para solos do sul do Brasil e determinação por espectrofotometria de emissão ótica por plasma induzido e os efeitos nas recomendações de adubação para as culturas

    Directory of Open Access Journals (Sweden)

    Leandro Bortolon

    2010-02-01

    Full Text Available The amounts of macro (P, K, Ca and Mg and micronutrients (Cu and Zn extracted with the Mehlich-1 (M1 solution, by the 1.0 mol L-1 KCl (KCl and with the 0.1 mol L-1 HCl (HCl for representative soil types of the Rio Grande do Sul state (Brazil were compared with those extracted with the Mehlich-1 solution determined with the inductively coupled plasma optical emission spectroscopy (ICP. The amounts of nutrients extracted by the different methods showed high correlation coefficients. On average, the Mehlich-1 solution extracted similar amounts of P, determined with colorimetric and ICP methods, and, K determined with emission and ICP. The amounts of Ca and Mg extracted with the Mehlich-1 solution, determined by ICP, were similar to those extracted with the KCl solution determined by the atomic absorption spectrophotometry. The amounts of Cu and Zn extracted with the Mehlich-1 solution, determined by the ICP, were higher than those extracted with the 0.1 mol L-1 HCl determined by the atomic absorption spectrophotometry. The results indicate that the Mehlich-1 solution and ICP can be used for simultaneous multielement extraction and determination for Southern Brazilian soils. However, a conversion factor for values interpretation is needed. The use of the conversion factor to determine the K availability index in soils is adequate and does not affect the K recommendations for crops in southern Brazilian soils.As quantidades de macro (P, K, Ca e Mg e micronutrientes (Cu e Zn extraídos com a solução de Mehlich-1 (M1, por KCl 1,0 mol L-1 (KCl e com o HCl 0,1 mol L-1 (HCl, em solos representativos do Rio Grande do Sul, foram comparadas com as quantidades de nutrientes extraídos com a solução de Mehlich-1 determinados por espectrofotometria de emissão ótica por plasma induzido (ICP-OES. Os teores de nutrientes extraídos pelos diferentes métodos tiveram alto grau de correlação. Em média, a solução de Mehlich-1 extraiu quantidades semelhantes

  13. Impact of historical mining assessed in soils by kinetic extraction and lead isotopic ratios

    Energy Technology Data Exchange (ETDEWEB)

    Camizuli, E., E-mail: estelle.camizuli@u-bourgogne.fr [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Monna, F. [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Bermond, A.; Manouchehri, N.; Besançon, S. [Institut des sciences et industries du vivant et de l' environnement (AgroParisTech), Laboratoire de Chimie Analytique, 16, rue Claude Bernard, 75231 Paris Cedex 05 (France); Losno, R. [UMR 7583, LISA, Universités Paris 7-Paris 12 — CNRS, 61 av. du Gal de Gaulle, 94010 Créteil Cedex (France); Oort, F. van [UR 251, Pessac, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, RD 10, 78026 Versailles Cedex (France); Labanowski, J. [UMR 7285, IC2MP, Université de Poitiers — CNRS, 4, rue Michel Brunet, 86022 Poitiers (France); Perreira, A. [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Chateau, C. [UFR SVTE, Université de Bourgogne, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Alibert, P. [UMR 6282, Biogeosciences, Université de Bourgogne — CNRS, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France)

    2014-02-01

    The aim of this study is to estimate the long-term behaviour of trace metals, in two soils differently impacted by past mining. Topsoils from two 1 km{sup 2} zones in the forested Morvan massif (France) were sampled to assess the spatial distribution of Cd, Cu, Pb and Zn. The first zone had been contaminated by historical mining. As expected, it exhibits higher trace-metal levels and greater spatial heterogeneity than the second non-contaminated zone, supposed to represent the local background. One soil profile from each zone was investigated in detail to estimate metal behaviour, and hence, bioavailability. Kinetic extractions were performed using EDTA on three samples: the A horizon from both soil profiles and the B horizon from the contaminated soil. For all three samples, kinetic extractions can be modelled by two first-order reactions. Similar kinetic behaviour was observed for all metals, but more metal was extracted from the contaminated A horizon than from the B horizon. More surprising is the general predominance of the residual fraction over the “labile” and “less labile” pools. Past anthropogenic inputs may have percolated over time through the soil profiles because of acidic pH conditions. Stable organo-metallic complexes may also have been formed over time, reducing metal availability. These processes are not mutually exclusive. After kinetic extraction, the lead isotopic compositions of the samples exhibited different signatures, related to contamination history and intrinsic soil parameters. However, no variation in lead signature was observed during the extraction experiment, demonstrating that the “labile” and “less labile” lead pools do not differ in terms of origin. Even if trace metals resulting from past mining and metallurgy persist in soils long after these activities have ceased, kinetic extractions suggest that metals, at least for these particular forest soils, do not represent a threat for biota. - Highlights: • Trace

  14. Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions.

    Science.gov (United States)

    Chan-Cupul, Wilberth; Heredia-Abarca, Gabriela; Rodríguez-Vázquez, Refugio

    2016-01-01

    This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g(-1)) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 2(4) factorial experimental design. The Trametes maxima-Paecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein(-1), H2O2 = 6.2 mg L(-1)) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein(-1), H2O2 = 4.0 mg L(-1)). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.

  15. Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community

    NARCIS (Netherlands)

    Duarte, G.F.; Rosado, A.S.; Keijzer-Wolters, A.C.; Elsas, van J.D.

    1998-01-01

    A method for the indirect (cell extraction followed by nucleic acid extraction) isolation of bacterial ribosomal RNA (rRNA) and genomic DNA from soil was developed. The protocol allowed for the rapid parallel extraction of genomic DNA as well as small and large ribosomal subunit RNA from four soils

  16. Evaluation of the Single Dilute (0.43 M) Nitric Acid Extraction to Determine Geochemically Reactive Elements in Soil

    NARCIS (Netherlands)

    Groenenberg, Jan E.; Römkens, Paul F.A.M.; Zomeren, van André; Rodrigues, S.M.; Comans, Rob N.J.

    2017-01-01

    Recently a dilute nitric acid extraction (0.43 M) was adopted by ISO (ISO-17586:2016) as standard for extraction of geochemically reactive elements in soil and soil like materials. Here we evaluate the performance of this extraction for a wide range of elements by mechanistic geochemical modeling

  17. Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community

    NARCIS (Netherlands)

    Duarte, G.F.; Rosado, A.S.; Keijzer-Wolters, A.C.; Elsas, van J.D.

    1998-01-01

    A method for the indirect (cell extraction followed by nucleic acid extraction) isolation of bacterial ribosomal RNA (rRNA) and genomic DNA from soil was developed. The protocol allowed for the rapid parallel extraction of genomic DNA as well as small and large ribosomal subunit RNA from four soils

  18. Effectiveness of a rock phosphate solubilizing fungus to increase soil solution phosphate impaired by the soil phosphate sorption capacity

    Directory of Open Access Journals (Sweden)

    Nelson Walter Osorio Vega

    2015-06-01

    Full Text Available Available phosphate (P deficiency in tropical soils has been recognized as a major factor that limits soil quality and plant performance. To overcome this, it is necessary to add high amounts of soluble P-fertilizers; however, this is inefficient and costly. Alternatively, rock phosphates (RP can be used, but their low reactivity limits their use. Phosphate solubilizing microorganisms (PSM can enhance RP dissolution and, thus, improve the RP agronomic effectiveness as fertilizer. Nonetheless, their effectiveness may be impaired by the soil P fixation capacity. An experiment was carried out to assess the in vitro effectiveness of the fungus Mortierella sp. to dissolve RP in an axenic culture medium and, thus, enhance the solution P concentration in the presence of aliquots of soils with contrasting P fixation capacity. The results showed that the fungus was capable of lowering the medium pH from 7.7 to 3.0 and, thus, dissolving the RP. The presence of soil aliquots in the medium controlled the effectiveness of the fungus to increase the concentration of the soluble P. In the presence of soils with a low or medium P sorption capacity, the concentration of the soluble P was high (63.8-146.6 mg L-1 in comparison with the inoculated (soilless treatment (50.0 mg L-1 and the uninoculated control (0.7 mg L-1. By contrast, with very-high P fixing soil aliquots, the concentration of the soluble P was very low (3.6-33.1 mg L-1; in addition, in these soils, the fungus immobilized more P into its mycelia than in soils with a low or medium P fixation capacity. The capacity of a soil to fix P seems to be a good predictor for the effectiveness of this fungus to increase the soluble P concentration via RP dissolution.

  19. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction

    Energy Technology Data Exchange (ETDEWEB)

    Crean, Daniel E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Livens, Francis R.; Sajih, Mustafa [Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Stennett, Martin C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Grolimund, Daniel; Borca, Camelia N. [Swiss Light Source, Paul Scherrer Institute, Villigen (Switzerland); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom)

    2013-12-15

    Highlights: • Batch leaching was examined to remediate soils contaminated with munitions depleted uranium. • Site specific maximum extraction was 42–50% total U in single batch with NH{sub 4}HCO{sub 3}. • Analysis of residues revealed partial leaching and secondary carbonate phases. • Sequential batch leaching alternating between NH{sub 4}HCO{sub 3} and citric acid was designed. • Site specific extraction was increased to 68–87% total U in three batch steps. -- Abstract: Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42–50% total DU extracted), citric acid (30–42% total DU) and sulphuric acid (13–19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68–87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents.

  20. Factors influencing the extraction of pharmaceuticals from sewage sludge and soil: an experimental design approach.

    Science.gov (United States)

    Ferhi, Sabrina; Bourdat-Deschamps, Marjolaine; Daudin, Jean-Jacques; Houot, Sabine; Nélieu, Sylvie

    2016-09-01

    Pharmaceuticals can enter the environment when organic waste products are recycled on agricultural soils. The extraction of pharmaceuticals is a challenging step in their analysis. The very different extraction conditions proposed in the literature make the choice of the right method for multi-residue analysis difficult. This study aimed at evaluating, with experimental design methodology, the influence of the nature, pH and composition of the extraction medium on the extraction recovery of 14 pharmaceuticals, including 8 antibiotics, from soil and sewage sludge. Preliminary experimental designs showed that acetonitrile and citrate-phosphate buffer were the best extractants. Then, a response surface design demonstrated that many cross-product and squared terms had significant effects, explaining the shapes of the response surfaces. It also allowed optimising the pharmaceutical recoveries in soil and sludge. The optimal conditions were interpreted considering the ionisation states of the compounds, their solubility in the extraction medium and their interactions with the solid matrix. To perform the analysis, a compromise was made for each matrix. After a QuEChERS purification, the samples were analysed by online SPE-UHPLC-MS-MS. Both methods were simple and economical. They were validated with the accuracy profile methodology for soil and sludge and characterised for another type of soil, digested sludge and composted sludge. Trueness globally ranged between 80 and 120 % recovery, and inter- and intra-day precisions were globally below 20 % relative standard deviation. Various pharmaceuticals were present in environmental samples, with concentration levels ranging from a few micrograms per kilogramme up to thousands of micrograms per kilogramme. Graphical abstract Influence of the extraction medium on the extraction recovery of 14 pharmaceuticals. Influence of the ionisation state, the solubility and the interactions of pharmaceuticals with solid matrix. Analysis

  1. Availability of heavy metals in contaminated soil evidenced by chemical extractants

    Directory of Open Access Journals (Sweden)

    Maria Ligia de Souza Silva

    2012-06-01

    Full Text Available Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.

  2. 2-Phase groundwater and soil vapor extraction site test at McClellan AFB

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, C.; Kingsley, G.B.; Lawrence J. [Radian Corp., Sacramento, CA (United States)] [and others

    1995-09-01

    The innovative 2-phase extraction technique is a method recently patented by Xerox Corporation for simultaneously extracting contaminated groundwater and soil vapor from the subsurface. The 2-phase technique is primarily applicable to those sites with semipermeable soils containing volatile organic compound (VOC) contamination in both soils and groundwater. This technique has several distinct advantages over either conventional soil vapor extraction or groundwater extraction, because it can: cut the dollar per-contaminant-pound cleanup costs by an order of magnitude; simplify the extraction and treatment of both contaminated water and vapor; and shorten remediation times. The U.S. EPA and the Air Force elected to conduct an EPA Site test of the 2-phase Extraction technology at McClellan results indicate: The groundwater flow rate is twice that of the pump-and-treat system. The mass of contaminants from a single well removed increased from 130 lbs/year to more than 5,000 lbs/year, over 30 times more than the pump-and treat rate, with potential for even higher removal rates: 5,000 to 8,000 pounds of contaminants per year. Up to 95% of the contamination was extracted in the vapor phase, where it could be treated more easily and efficiently.

  3. Linking selective chemical extraction of iron oxyhydroxides to arsenic bioaccessibility in soil.

    Science.gov (United States)

    Palumbo-Roe, Barbara; Wragg, Joanna; Cave, Mark

    2015-12-01

    The relationship between As bioaccessibility using the physiologically based extraction test (PBET) and As extracted by hydroxylamine hydrochloride (HH), targeting the dissolution of amorphous Fe oxyhydroxides, is established in soils from the British Geological Survey Geochemical Baseline Survey of SW England, UK, to represent low As background and high As mineralised/mined soils. The HH-extracted As was of the same order of magnitude as the As extracted in the bioaccessibility test and proved to be a better estimate of bioaccessible As than total As (bioaccessible As - total As: r = 0.955; bioaccessible As - HH-extracted As: r = 0.974; p-values = 0.000). These results provide a means of estimating soil As bioaccessibility on the basis of the HH extraction. Further selective extraction data, using hydrochloride acid that seeks to dissolve both amorphous and crystalline Fe oxyhydroxides, indicates a decrease in the As bioaccessible fraction with the increase of the soil Fe oxyhydroxide crystallinity.

  4. Nonlinear analytical solution for one-dimensional consolidation of soft soil under cyclic loading

    Institute of Scientific and Technical Information of China (English)

    XIE Kang-he; QI Tian; DONG Ya-qin

    2006-01-01

    This paper presents an analytical solution for one-dimensional consolidation of soft soil under some common types of cyclic loading such as trapezoidal cyclic loading, based on the assumptions proposed by Davis and Raymond (1965) that the decrease in permeability is proportional to the decrease in compressibility during the consolidation process of the soil and that the distribution of initial effective stress is constant with depth. It is verified by the existing analytical solutions in special cases. Using the solution obtained, some diagrams are prepared and the relevant consolidation behavior is investigated.

  5. Soil solution chemistry at one mountain beech (Fagus sylvatica L. CONECOFOR plot, 1999 to 2005

    Directory of Open Access Journals (Sweden)

    Guia Cecchini

    2013-11-01

    Full Text Available Soil solution monitoring aims to understand various temporal scales of soil processes. The first eight years of observation in ABR1 Level II site have brought significant elements of understanding about the shorter temporal scales. It is suggested that certain solutes, regularly produced by forest floor microbial processes, are transferred to the highly mobile portion of the soil solution by a non linear process, producing irregular pulses and creating a strong high frequency component. Seasonal processes remain nonetheless detectable after simple and rough filtering. A multi-year trend of diminished nitrate mineralization and increased pH of forest floor solutions is possible. It is estimated that much more accurate analysis will be possible in a relatively short time span of further monitoring.

  6. Extraction and Characterization of Humic Acids and Humin Fractions from a Black Soil of China

    Institute of Scientific and Technical Information of China (English)

    XING Bao-Shan; LIU Ju-Dong; LIU Xiao-Bing; HAN Xiao-Zeng

    2005-01-01

    Twenty-three progressive extractions were performed to study individual humic acids (Has) and humin fractions from a typical black soil (Mollisol) in Heilongjiang Province, China using elemental analysis and spectroscopic techniques. After 23 HA extractions the residue was separated into high and low organic carbon humin fractions. HA yield was the highest for the first extraction and then gradually decreased with further extractions. Organic carbon (OC) of the humin fractions accounted for 58% of total OC even after 23 successive HA extractions. In addition, the atomic C/H ratio decreased during the course of extraction while C/O increased; the E4/E6 ratio from the UV analysis decreased with further extraction while E2/Ea increased; the band assigned to aliphatic carbon (2 930 cm-1) in the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra gradually increased with progressive extraction; the calculated ratio of the sum of aromatic carbon peak heights to that of aliphatic carbon peak heights from DRIFTS spectra declined with extractions; and nuclear magnetic resonance (NMR) data suggested that HA aliphatic carbons increased with extractions while aromatic carbons decreased. Thus, hydrophobicity and aliphaticity of Has increased with extractions while polarity and aromaticity decreased. These data showed substantial chemical, structural, and molecular differences among the 23 Has and two humin fractions. Therefore, these results may help explain why soil and sediment humin fractions have high sorption capacity for organic contaminants.

  7. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    Science.gov (United States)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single

  8. Determination of tobramycin in soil by HPLC with ultrasonic-assisted extraction and solid-phase extraction.

    Science.gov (United States)

    He, Shun; Chen, Qiyou; Sun, Yan; Zhu, Yuncong; Luo, Laixin; Li, Jianqiang; Cao, Yongsong

    2011-04-15

    Pharmaceuticals residues in the environment have become a growing scientific interest worldwide. In the light of the possible harmful effects of tobramycin, a rapid and sensitive analytical method for determination of tobramycin in soil was developed. The extraction and purification methods, derivatization conditions, and chromatographic conditions in the determination of tobramycin in soil have been fully investigated. Extraction was carried out by a combination of vortex mixer and ultrasonic oscillation using acetone/water as the extraction agent. The extract was concentrated to 1 mL and passed through the C(18) SPE cartridge rinsed with water (3 mL), methanol (3 mL). The derivatization procedure was followed by the reaction of tobramycin with 4-Chloro-3,5-dinitrobenzotrifluoride at 60°C for 10 min in pH 9.0 H(3)BO(3)-Na(2)B(4)O(7) medium. The labeled tobramycin was determined by high performance liquid chromatography at 245 nm. Separation was accomplished within 15 min in gradient elution mode with trifluoroacetic acid in mobile phase as ion-pair reagent. The correlation coefficient for the method was 0.9999 in concentrations ranging from 0.10 to 100.0 μg/g. The limit of detection was 0.02 μg/g for tobramycin in soil at a signal-to-noise ratio of 3. The calculated recoveries of the proposed method were from 78.0 to 91.0% and RSDs were 3.38-9.79% in the application to the quantitative determination of tobramycin in all types of soil. The method will help to establish adequate monitoring of tobramycin residue in soil and make the contribution to environmental behavior evaluation.

  9. Selective extraction of zinc from sulfate leach solution of zinc ore

    Institute of Scientific and Technical Information of China (English)

    覃文庆; 蓝卓越; 黎维中; 邱冠周

    2003-01-01

    Selective extraction of zinc from sulfate leach solution of zinc ore was studied.D2EHPA dissolved in260# kerosene was used as extractant.The pH-extraction isotherms show the extraction order of D2EHPA for metals is Fe3+>Zn2+>Ca2+>Al3+>Mn2+>Cu2+>Cd2+>Co2+>Ni2+>Mg2+(pH0.5).This confirms that Fe3+ ispreferentially extracted before the extraction of zinc.Extraction experiments were carried out with varying the extractant content,equilibration time,aqueous pH and phase ratio,and the solvent extraction of zinc with sodium saltof D2EHPA were also investigated.Some impurity co-extracted into the zinc loaded organic phase was efficiently removed by scrub,and the Fe3+ was hardly stripped from organic phase by sulfuric acid,hence zinc was separatedfrom Fe3+ by selective stripping.A pregnant zinc sulfate solution with low contaminants was obtained by selectivesolvent extraction.

  10. Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes--a transition regime between bioventing and soil vapour extraction.

    Science.gov (United States)

    Magalhães, S M C; Ferreira Jorge, R M; Castro, P M L

    2009-10-30

    Bioventing has emerged as one of the most cost-effective in situ technologies available to address petroleum light-hydrocarbon spills, one of the most common sources of soil pollution. However, the major drawback associated with this technology is the extended treatment time often required. The present study aimed to illustrate how an intended air-injection bioventing technology can be transformed into a soil vapour extraction effort when the air flow rates are pushed to a stripping mode, thus leading to the treatment of the off-gas resulting from volatilisation. As such, a combination of an air-injection bioventing system and a biotrickling filter was applied for the treatment of contaminated soil, the latter aiming at the treatment of the emissions resulting from the bioventing process. With a moisture content of 10%, soil contaminated with toluene at two different concentrations, namely 2 and 14 mg g soil(-1), were treated successfully using an air-injection bioventing system at a constant air flow rate of ca. 0.13 dm(3) min(-1), which led to the removal of ca. 99% toluene, after a period of ca. 5 days of treatment. A biotrickling filter was simultaneously used to treat the outlet gas emissions, which presented average removal efficiencies of ca. 86%. The proposed combination of biotechnologies proved to be an efficient solution for the decontamination process, when an excessive air flow rate was applied, reducing both the soil contamination and the outlet gas emissions, whilst being able to reduce the treatment time required by bioventing only.

  11. Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives.

    Science.gov (United States)

    Zhang, Tao; Liu, Jun-Min; Huang, Xiong-Fei; Xia, Bing; Su, Cheng-Yong; Luo, Guo-Fan; Xu, Yao-Wei; Wu, Ying-Xin; Mao, Zong-Wan; Qiu, Rong-Liang

    2013-11-15

    Soil washing is one of the few permanent treatment alternatives for removing metal contaminants. Ethylenediaminetetraacetic acid (EDTA) and its salts can substantially increase heavy metal removal from contaminated soils and have been extensively studied for soil washing. However, EDTA has a poor utilization ratio due to its low selectivity resulting from the competition between soil major cations and trace metal ions for chelation. The present study evaluated the potential for soil washing using EDTA and three of its derivatives: CDTA (trans-1,2-cyclohexanediaminetetraacetic acid), BDTA (benzyldiaminetetraacetic acid), and PDTA (phenyldiaminetetraacetic acid), which contain a cylcohexane ring, a benzyl group, and a phenyl group, respectively. Titration results showed that PDTA had the highest stability constants for Cu(2+) and Ni(2+) and the highest overall selectivity for trace metals over major cations. Equilibrium batch experiments were conducted to evaluate the efficacy of the EDTA derivatives at extracting Cu(2+), Zn(2+), Ni(2+), Pb(2+), Ca(2+), and Fe(3+) from a contaminated soil. At pH 7.0, PDTA extracted 1.5 times more Cu(2+) than did EDTA, but only 75% as much Ca(2+). Although CDTA was a strong chelator of heavy metal ions, its overall selectivity was lower and comparable to that of EDTA. BDTA was the least effective extractant because its stability constants with heavy metals were low. PDTA is potentially a practical washing agent for soils contaminated with trace metals.

  12. Continuous-flow fractionation of selenium in contaminated sediment and soil samples using rotating coiled column and microcolumn extraction.

    Science.gov (United States)

    Savonina, Elena Yu; Fedotov, Petr S; Wennrich, Rainer

    2012-01-15

    Dynamic fractionation is considered to be an attractive alternative to conventional batch sequential extraction procedures for partitioning of trace metals and metalloids in environmental solid samples. This paper reports the first results on the continuous-flow dynamic fractionation of selenium using two different extraction systems, a microcolumn (MC) packed with the solid sample and a rotating coiled column (RCC) in which the particulate matter is retained under the action of centrifugal forces. The eluents (leachants) were applied in correspondence with a four-step sequential extraction scheme for selenium addressing "soluble", "adsorbed", "organically bound", and "elemental" Se fractions extractable by distilled water, phosphate buffer, tetramethylammonium hydroxide, and sodium sulphite solutions, respectively. Selenium was determined in the effluent by using an inductively coupled plasma atomic emission spectrometer. Contaminated creek sediment and dumped waste (soil) samples from the abandoned mining area were used to evaluate resemblances and discrepancies of two continuous-flow methods for Se fractionation. In general, similar trends were found for Se distribution between extractable and residual fractions. However, for the dumped waste sample which is rich in organic matter, the extraction in RCC provided more effective recovery of environmentally relevant Se forms (the first three leachable fractions). The most evident deviation was observed for "adsorbed" Se (recoveries by RCC and MC are 43 and 7 mg kg(-1), respectively). The data obtained were correlated with peculiarities of samples under investigation and operational principles of RCC and MC.

  13. Reflux extraction and analysis of polyethylene wax in soil

    Institute of Scientific and Technical Information of China (English)

    XIONG Xiao-li; CHEN Cheng; LUO Xue-gang

    2014-01-01

    An efficient reflux extraction of polyethylene wax (PEW) in soil is presented, followed by molecular structure characterization methods to explore its degradation mechanism. To more realistically simulate the actual degradation of PE film powders in soil, low density PE (M=5 000) powders, being used as simulated PEW residue sample, were uniformly mixed with soil and then recovered by reflux extraction with decahydronaphthalen (decalin) at 90°C for 60 min. The average recovery of PEW from fortified soils was 96.5%with the developed reflux extraction procedure. The recovered PEW residue samples were characterized by infrared spectroscopy (IR), element analysis (EA), X-ray fluorescence (XFR), and high-temperature gel permeation chromatography (GPC). The results from spectra analysis show that there were no significant changes in molecular structures and molecular mass distribution of PEW samples after the reflux extraction, which demonstrate the reliability of this method. These results also indicate that the reflux extraction procedure and analytical methods of characterization could serve as a novel measurement technique to evaluate the degradation of low-density PE powders in soil over time.

  14. Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions.

    Science.gov (United States)

    Neculita, Carmen-Mihaela; Zagury, Gérald J; Deschênes, Louise

    2005-01-01

    A four-step novel sequential extraction procedure (SEP) was developed to assess Hg fractionation and mobility in three highly contaminated soils from chlor-alkali plants (CAPs). The SEP was validated using a certified reference material (CRM) and pure Hg compounds. Total, volatile, and methyl Hg concentrations were also determined using single extractions. Mercury was separated into four fractions defined as water-soluble (F1), exchangeable (F2) (0.5 M NH4Ac-EDTA and 1 M CaCl2 were tested), organic (F3) (successive extractions with 0.2 M NaOH and CH3COOH 4% [v/v]), and residual (F4) (HNO3 + H2SO4 + HClO4). The soil characterization revealed extremely contaminated (295 +/- 18 to 11 500 +/- 500 mg Hg kg(-1)) coarse-grained sandy soils having an alkaline pH (7.9-9.1), high chloride concentrations (5-35 mg kg(-1)), and very low organic carbon content (0.00-18.2 g kg(-1)). Methyl Hg concentrations were low (0.2-19.3 microg kg(-1)) in all soils. Sequential extractions indicated that the majority of the Hg was associated with the residual fraction (F4). In Soils 1 and 3, however, high percentages (88-98%) of the total Hg were present as volatile Hg. Therefore, in these two soils, a high proportion of volatile Hg was present in the residual fraction. The nonresidual fraction (F1 + F2 + F3) was most abundant in Soil 1 (14-42%), suggesting a higher availability of Hg in this soil. The developed and validated SEP was reproducible and efficient for highly contaminated samples. Recovery ranged between 93 and 98% for the CRM and 70 and 130% for the CAP-contaminated soils.

  15. Influence of soil water repellency on runoff and solute loss from New Zealand pasture

    Science.gov (United States)

    Jeyakumar, P.; Müller, K.; Deurer, M.; van den Dijssel, C.; Mason, K.; Green, S.; Clothier, B. E.

    2012-04-01

    Soil water repellency (SWR) has been reported in New Zealand, but knowledge on its importance for the country's economy and environment is limited. Our recent survey on the occurrence of SWR under pasture across the North Island of New Zealand showed that most soils exhibited SWR when dry independent of climate but influenced by the soil order. SWR is discussed as an important soil surface condition enhancing run-off and the transfer of fertilizers and pesticides from agricultural land into waterways. So far, the impact of SWR on run-off has rarely been measured. We developed a laboratory-scale run-off measurement apparatus (ROMA) to quantify directly the impact of SWR on run-off from undisturbed soil slabs. We compared the run-off resulting from the run-on of water with that resulting from an ethanol (30% v/v) solution, which is a fully-wetting liquid even in severely hydrophobic soils. Thus, the experiments with the ethanol solution can be understood as a proxy measure of the wetting-up behaviour of hydrophilic soils. We conducted ROMA run-off experiments with air-dried soil slabs (460 mm long x 190 mm wide x 50 mm deep) collected from pastoral sites, representing three major soil orders in the North Island: Recent Soil (Fluvisol), Gley Soil (Gleysol), and Organic Soil (Histosol), with water followed by the ethanol solution at a run-on rate of 60 mm/h. Bromide was applied at 80 kg KBr/ha prior to the water experiments to assess potential solute losses via run-off. The air-dried soils had a high degree and persistence of SWR (contact angles, 97, 98 and 104° , and potential water drop penetration times, 42, 54 and 231 min for the Fluvisol, Gleysol and Histosol, respectively). Under identical soil and experimental conditions, water generated run-off from all soils, but in the experiments with the ethanol solution, the entire ethanol solution infiltrated into the soils. The ranking of the run-off coefficients of the soils directly reflected their ranking in

  16. The State of Soil Degradation in Sub-Saharan Africa: Baselines, Trajectories, and Solutions

    Directory of Open Access Journals (Sweden)

    Katherine Tully

    2015-05-01

    Full Text Available The primary cause of soil degradation in sub-Saharan Africa (SSA is expansion and intensification of agriculture in efforts to feed its growing population. Effective solutions will support resilient systems, and must cut across agricultural, environmental, and socioeconomic objectives. While many studies compare and contrast the effects of different management practices on soil properties, soil degradation can only be evaluated within a specific temporal and spatial context using multiple indicators. The extent and rate of soil degradation in SSA is still under debate as there are no reliable data, just gross estimates. Nevertheless, certain soils are losing their ability to provide food and essential ecosystem services, and we know that soil fertility depletion is the primary cause. We synthesize data from studies that examined degradation in SSA at broad spatial and temporal scales and quantified multiple soil degradation indicators, and we found clear indications of degradation across multiple indicators. However, different indicators have different trajectories—pH and cation exchange capacity tend to decline linearly, and soil organic carbon and yields non-linearly. Future research should focus on how soil degradation in SSA leads to changes in ecosystem services, and how to manage these soils now and in the future.

  17. Selective pressurized liquid extraction for the analysis of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans in soil.

    Science.gov (United States)

    Klees, Marcel; Bogatzki, Corinna; Hiester, Ernst

    2016-10-14

    During this study a high throughout selective pressurized liquid extraction (SPLE) method was developed and validated for the simultaneous extraction of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/PCDFs) and polychlorinated biphenyls (PCBs) from soil. To that end, extraction rates of PCBs from soil utilizing different extraction solvents and different extraction temperatures were investigated whereas extraction rates were comparable for toluene, n-hexane and dichloromethane (extraction conditions for all utilized solvents: 33mL PLE extraction cell, extraction temperature: 110°C, static extraction time: 5min, flush volume: 60%, purge 90s). Ratios of native PCBs and PCDD/PCDFs congener concentrations after Soxhlet and selective pressurized liquid extraction (SPLE) showed that SPLE is an alternative sample preparation step for the simultaneous determination of PCDD/PCDFs and PCBs in soil. Additional clean-up steps for the separation of PCBs and PCDD/PCDFs utilizing alumina were performed in order to avoid interferences between the component classes.

  18. Trends in soil solution dissolved organic carbon (DOC) concentrations across European forests

    Science.gov (United States)

    Camino-Serrano, Marta; Graf Pannatier, Elisabeth; Vicca, Sara; Luyssaert, Sebastiaan; Jonard, Mathieu; Ciais, Philippe; Guenet, Bertrand; Gielen, Bert; Peñuelas, Josep; Sardans, Jordi; Waldner, Peter; Etzold, Sophia; Cecchini, Guia; Clarke, Nicholas; Galić, Zoran; Gandois, Laure; Hansen, Karin; Johnson, Jim; Klinck, Uwe; Lachmanová, Zora; Lindroos, Antti-Jussi; Meesenburg, Henning; Nieminen, Tiina M.; Sanders, Tanja G. M.; Sawicka, Kasia; Seidling, Walter; Thimonier, Anne; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Janssens, Ivan A.

    2016-10-01

    Dissolved organic carbon (DOC) in surface waters is connected to DOC in soil solution through hydrological pathways. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site studies have failed so far to establish consistent trends in soil solution DOC, whereas increasing concentrations in European surface waters over the past decades appear to be the norm, possibly as a result of recovery from acidification. The objectives of this study were therefore to understand the long-term trends of soil solution DOC from a large number of European forests (ICP Forests Level II plots) and determine their main physico-chemical and biological controls. We applied trend analysis at two levels: (1) to the entire European dataset and (2) to the individual time series and related trends with plot characteristics, i.e., soil and vegetation properties, soil solution chemistry and atmospheric deposition loads. Analyses of the entire dataset showed an overall increasing trend in DOC concentrations in the organic layers, but, at individual plots and depths, there was no clear overall trend in soil solution DOC. The rate change in soil solution DOC ranged between -16.8 and +23 % yr-1 (median = +0.4 % yr-1) across Europe. The non-significant trends (40 %) outnumbered the increasing (35 %) and decreasing trends (25 %) across the 97 ICP Forests Level II sites. By means of multivariate statistics, we found increasing trends in DOC concentrations with increasing mean nitrate (NO3-) deposition and increasing trends in DOC concentrations with decreasing mean sulfate (SO42-) deposition, with the magnitude of these relationships depending on plot deposition history. While the attribution of increasing trends in DOC to the reduction of SO42- deposition could be confirmed in low to medium N deposition areas, in agreement with observations in surface waters, this was not the case in high N deposition areas. In

  19. Water, solute and heat transport in the soil: the Australian connection

    Science.gov (United States)

    Knight, John

    2016-04-01

    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  20. An Analytical Solution for Cylindrical Concrete Tank on Deformable Soil

    Directory of Open Access Journals (Sweden)

    Shirish Vichare

    2010-07-01

    Full Text Available Cylindrical concrete tanks are commonly used in wastewater treatment plants. These are usually clarifier tanks. Design codes of practice provide methods to calculate design forces in the wall and raft of such tanks. These methods neglect self-weight of tank material and assume extreme, namely ‘fixed’ and ‘hinged’ conditions for the wall bottom. However, when founded on deformable soil, the actual condition at the wall bottom is neither fixed nor hinged. Further, the self-weight of the tank wall does affect the design forces. Thus, it is required to offer better insight of the combined effect of deformable soil and bottom raft stiffness on the design forces induced in such cylindrical concrete tanks. A systematic analytical method based on fundamental equations of shells is presented in this paper. Important observations on variation of design forces across the wall and the raft with different soil conditions are given. Set of commonly used tanks, are analysed using equations developed in the paper and are appended at the end.

  1. Assessment of bias associated with incomplete extraction of microbial DNA from soil.

    Science.gov (United States)

    Feinstein, Larry M; Sul, Woo Jun; Blackwood, Christopher B

    2009-08-01

    DNA extraction bias is a frequently cited but poorly understood limitation of molecular characterizations of environmental microbial communities. To assess the bias of a commonly used soil DNA extraction kit, we varied the cell lysis protocol and conducted multiple extractions on subsamples of clay, sand, and organic soils. DNA, as well as bacterial and fungal ribosomal gene copies as measured by quantitative PCR, continued to be isolated in successive extractions. When terminal restriction fragment length polymorphism was used, a significant shift in community composition due to extraction bias was detected for bacteria but not for fungi. Pyrosequencing indicated that the relative abundances of sequences from rarely cultivated groups such as Acidobacteria, Gemmatimonades, and Verrucomicrobia were higher in the first extraction than in the sixth but that the reverse was true for Proteobacteria and Actinobacteria. This suggests that the well-known phylum-level bacterial cultivation bias may be partially exaggerated by DNA extraction bias. We conclude that bias can be adequately reduced in many situations by pooling three successive extractions, and additional measures should be considered when divergent soil types are compared or when comprehensive community analysis is necessary.

  2. Characterization of a Polyacrylamide Solution Used for Remediation of Petroleum Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Jongwon Jung

    2016-01-01

    Full Text Available Biopolymers are viewed as effective and eco-friendly agents in soil modification. This study focuses on the wettability analysis of polyacrylamide (PAM solutions for soil remediation. The contact angle, surface tension, and viscosity of PAM solutions were experimentally evaluated in air- and decane-biopolymer solution systems. Furthermore, a micromodel was used to investigate the pore-scale displacement phenomena during the injection of the PAM solution in decane and or air saturated pores. The contact angle of the PAM solution linearly increases with increasing concentration in air but not in decane. The surface tension between the PAM solution and air decreases at increasing concentration. The viscosity of the PAM solution is highly dependent on the concentration of the solution, shear rate, and temperature. Low flow rate and low concentration result in a low displacement ratio level, which is defined as the volume ratio between the injected and the defended fluids in the pores. The displacement ratio is higher for PAM solutions than distilled water; however, a higher concentration does not necessarily guarantees a higher displacement ratio. Soil remediation could be conducted cost-efficiently at high flow rates but with moderate concentration levels.

  3. Washing of Petroleum and Arsenic Contaminated Soil with Ultrasound and Alkali Phosphate Solution

    Science.gov (United States)

    Lee, Jung Hwa; Kim, Jae Gon; Cho, Yong-chan; Chon, Chul-Min; Nam, In-Hyun; Keum, Mi Jung

    2015-04-01

    Soil washing of fine textured soil has been a challenging remedial strategy due to its low remediation efficiency. We adapted ultrasound and dispersion solution to increase the remediation efficiency of the soil washing. The ultrasound and dispersion agent may enhance the dispersion of the aggregate into individual particles and may enhance release of contaminants from the aggregate. We collected the arsenic (As) contaminated silt loam soil from a smelting site, spiked with 1% of diesel and incubated for 6 months. We tested the dispersion rate and the release of diesel with the incubated soil at various pH and concentrations of orthophosphate, pyrophosphate and hexametaphosphate with or without the ultrasound of 28 kHz and 400 W. The As concentrations of coarse (> medium silt) and fine (soil washing was turned out to be pH 11_10 mM Na-hexametaphosphate with the ultrasound. The concentration of total petroleum hydrocarbon of the incubated soil reduced from 3101.3 mg kg-1 to 14.0 mg kg-1 after 10 minute washing at the optimum condition. The fine fraction had much higher As concentration than the coarse fraction: 44.4 mg kg-1 for the fine fraction and 14.4 mg kg-1 for the coarse fraction. The results of this study indicate that the ultrasound and alkali phosphate solution increase the soil washing efficiency and can be a promising technology for the remediation of fine textured contaminated soils. Key Words : Ultrasound, Phosphate solution, Soil washing, Mixed contaminants

  4. Occurrence of non extractable pesticide residues in physical and chemical fractions of two soils

    Science.gov (United States)

    Andreou, Kostas; Semple, Kirk; Jones, Kevin

    2010-05-01

    Soils are considered to be a significant sink for organic contaminants, including pesticides, in the environment. Understanding the distribution and localisation of aged pesticide residues in soil is of great importance for assessing the mobility and availability of these chemicals in the environment. This study aimed to characterise the distribution of radiolabeled herbicide isoproturon and the radiolabeled insecticides diazinon and cypermethrin in two organically managed soils. The soils were spiked and aged under laboratory conditions for 17 months. The labile fraction of the pesticides residues was recovered in CaCl2 (0.01M) and then subjected to physical size fractionation using sedimentation and centrifugation steps, with >20μm, 20-2μm and 2-0.1μm soil factions collected. Further, the distribution of the pesticide residues in the organic matter of the fractionated soil was investigated using a sequential alkaline extraction (0.1N NaOH) into humic and fulvic acid and humin. Soil fractions of 20-2μm and 2-0.1μm had the largest burden of the 14C-residues. Different soil constituents have different capacities to form non-extractable residues. Soil solid fractions of 20-2 µm and pesticide residues than the coarser fraction (>20 µm). Fulvic acid showed to play a vital role in the formation and stabilisation of non-extractable 14C-pesticide residues in most cases.Assessment of the likelihood of the pesticide residues to become available to soil biota requires an understanding of the structure of the SOM matrix and the definition of the kinetics of the pesticide residues in different SOM pools as a function of the time.

  5. Extracting DNA of nematodes communities from Argentine Pampas agricultural soils

    Directory of Open Access Journals (Sweden)

    Eduardo A. Mondino

    2015-06-01

    Full Text Available We examined four strategies (Tris/EDTA, sodium dodecyl sulfate, Chelex 100 resin and cetyltrimethylammonium bromide -CTAB- for extracting nucleic acid (DNA from communities of nematodes. Nematodes were isolated from an agricultural area under different management of long-term crop rotation experiment from Argentina during three seasons. After DNA extraction, Polymerase Chain Reaction-amplifications were performed and considered as indicators of successful DNA extraction. The CTAB combined with proteinase K and phenol-chloroform-isoamyl alcohol was the unique successful method because positive amplifications were obtained by using both eukaryotic and nematode specific primers. This work could contribute to biodiversity studies of nematodes on agroecosystems.

  6. Extracting DNA of nematodes communities from Argentine Pampas agricultural soils.

    Science.gov (United States)

    Mondino, Eduardo A; Covacevich, Fernanda; Studdert, Guillermo A; Pimentel, João P; Berbara, Ricardo L L

    2015-01-01

    We examined four strategies (Tris/EDTA, sodium dodecyl sulfate, Chelex 100 resin and cetyltrimethylammonium bromide -CTAB-) for extracting nucleic acid (DNA) from communities of nematodes. Nematodes were isolated from an agricultural area under different management of long-term crop rotation experiment from Argentina during three seasons. After DNA extraction, Polymerase Chain Reaction-amplifications were performed and considered as indicators of successful DNA extraction. The CTAB combined with proteinase K and phenol-chloroform-isoamyl alcohol was the unique successful method because positive amplifications were obtained by using both eukaryotic and nematode specific primers. This work could contribute to biodiversity studies of nematodes on agroecosystems.

  7. Adsorption of Acrylonitrile on Some Soils and Minerals from Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    WUDE-YI; N.MATSUE; 等

    1993-01-01

    Equilibrium and kinetic studies have been made on the adsorption of acrylonitrile(CH2=CHCN) on three soils and four minerals from aqueous solutions.It was shown that the organic matter was the major factor affecting the adsorption process in the soils.The conformity of the equilibrium data to linear type(one soil) and Langmuir type(two soils) isotherms indicated that different mechanisms were involved in the adsorption.This behavior appears bo be related to the hydrophobicity of soil organic matter due to their composition and E4/E6 ratio of humic acids.The adsorption kinetics were also different among the soils,indicating the difference in porosity of organic matter among the soils,and the kinetics strongly affected the adsorption capacity of soils for acrylonitrile.Acrylonitrile was slightly adsorbed from aqueous solutions on pyrophyllite with electrically neutral and hydrophobic nature,and practically not on montmorillonite and kaolinite saturated with Ca.However,much higher adsorption occurred on the zeolitized coal ash,probably caused by high organic carbon content(107g/kg).

  8. Sequential extraction method for speciation of arsenate and arsenite in mineral soils.

    Science.gov (United States)

    Huang, Jen-How; Kretzschmar, Ruben

    2010-07-01

    A novel sequential extraction method for the speciation of As(III) and As(V) in oxic and anoxic mineral soils was developed and tested. The procedure consists of seven extraction steps targeting various As pools ranging from weakly adsorbed to well-crystalline species. Each step was specifically designed to preserve the As(III) and As(V) redox states, e.g., by complexation of As(III) with diethyldithiocarbamate or pyrrolidinedithiocarbamate, using mild reductive (NH(2)OH.HCl) or oxidative (hot HNO(3)) extractions, and complexing (Fe(3+) with Cl(-), acetate, and oxalate) or precipitating (S(2-) with Hg(2+)) matrix elements, which may cause As redox transformations. Using high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) for the quantification of dissolved As(III) and As(V) in the extracts, the detection limit for each step was in the range of 1.0-75 ng As/g, depending on the extraction matrix. Thus, the procedure is also well-suited for As speciation in soils or sediments with low As concentrations, where analyses by X-ray absorption spectroscopy (XAS) may be difficult. The entire extraction sequence can be performed under normal atmosphere, which greatly simplifies sample handling. The proposed method was tested using model minerals spiked with As(III) or As(V), two strongly As-polluted soil previously characterized for As speciation by XAS, and three less-polluted soils.

  9. Extraction of arsenic from a soil in the blackfoot disease endemic area with ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chang-Yu [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Peng, Ching-Yu [Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105 (United States); Wang, Hong-Chung [Division of Chest Medicine, Department of Medicine, Veterans General Hospital-Kaohsiung, Kaohsiung 81362, Taiwan (China); Kang, Hsu-Ya [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Paul Wang, H., E-mail: wanghp@mail.ncku.edu.tw [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2011-10-01

    Speciation of arsenic extracted with room temperature ionic liquids (RTILs) ([bmim][BF{sub 4}] (1-butyl-3-methylimidazolium tetrafluoroborate) and [bmim][PF{sub 6}] (1-butyl-3-methylimidazolium hexafluorophosphate)) from an As-humic acid (As-HA) complex contaminated soil (As-HA/soil) in a blackfoot disease endemic area has been studied by X-ray absorption (near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS)) spectroscopy. About 45% of arsenic in the As-HA/soil can be extracted with [bmim][BF{sub 4}] while the relatively less hydrophilic [bmim][PF{sub 6}] extracts 25% of arsenic. The extracted arsenic in the [bmim][BF{sub 4}] and [bmim][PF{sub 6}] from the As-HA/soil possesses mainly As(III) species, suggesting that at least two reaction paths may be involved in the extraction process: (1) splitting of As-HA and (2) reduction of As(V) to As(III). The refined EXAFS spectra also indicate that the As(III) extracted in the RTILs possesses the AsO{sub 2}{sup -} structure, which has the As-O bond distances of 1.77-1.79 A and coordination numbers of 4.0-4.2.

  10. Corn (Zea mays growth in petroleum contaminated soil, remediated with orange (Citrus sinensis peel extract

    Directory of Open Access Journals (Sweden)

    Tomás Darío Marín Veláquez

    2016-09-01

    Full Text Available Soil pollution has a strong impact when oil activity takes place within a savanna ecosystem. Any oil spill affects agricultural soils. Biostimulation with orange peel extract (Citrus sinensis is an alternative for remediation of soil contaminated with crude oil and in this research the corn plant (Zea mays was used as a biomarker of contamination level of a savanna soil after their treatment. Three samples of savannah soil contaminated with oil light crude were treated with dissolutions 1, 3 and 5% of extract of orange peel in water at a dose of 150 mL per kg of soil treated. The content of oils and fats was measured every 7 days, up to 42 days. Corn seeds were planted in soil samples, their growth was measured every 5 days for a period of 35 consecutive days, comparing their growth with seeds planted in a soil sample without contamination. According to an analysis of rank contrast, the plant growth was statistically the same in all samples up to 20 days; from there, evident differences regarding the pattern were shown.

  11. Evaluation of degree of readsorption of radionuclides during sequential extraction in soil: comparison between batch and dynamic extraction systems

    DEFF Research Database (Denmark)

    Petersen, Roongrat; Hansen, Elo Harald; Hou, Xiaolin

    Sequential extraction techniques have been widely used to fractionate metals in solid samples (soils, sediments, solid wastes, etc.) due to their leachability. The results are useful for obtaining information about bioavailability, potential mobility and transport of element in natural environments...... developed in our laboratory for heavy metal fractionation has shown the reduction of readsorption problem in comparison with the batch techniques. Moreover, the system shows many advantages over the batch system such as speed of extraction, simple procedure, fully automatic, less risk of contamination....... However, the techniques have an important problem with redistribution as a result of readsorption of dissolved analytes onto the remaining solids phases during extraction. Many authors have demonstrated the readsorption problem and inaccuracy from it. In our previous work, a dynamic extraction system...

  12. Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ahring, Birgitte Kiær; Ottosen, Lisbeth M.

    2007-01-01

    The implementation of soil washing technology for the treatment of heavy metal contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy metal contaminated sludge. In this work, the feasibility of combining electrodialytic remediation with heterotrophic leaching...... for decontamination of the sludge was investigated. The ability of 11 organic acids to extract Pb from the fine fraction of contaminated soil (grains ... was tested. Five of the acids showed the ability to extract Ph from the soil fines in excess of the effect caused solely by pH changes. Addition of the acids, however, severely impeded EDR, hence promotion of EDR by combination with heterotrophic leaching was rejected. In contrast, enhancement of EDR...

  13. Quick and efficient extraction of uranium from a contaminated solution by a calixarene nanoemulsion.

    Science.gov (United States)

    Spagnul, Aurélie; Bouvier-Capely, Céline; Adam, Marc; Phan, Guillaume; Rebière, François; Fattal, Elias

    2010-10-15

    This work aims to evaluate the efficiency of a calixarene emulsion for uranium extraction from a contaminated solution prior to apply such a delivery system to uranium skin decontamination. For this purpose, various experimental parameters that can influence the efficiency of the calixarene emulsion on uranium extraction were determined. The results show that the calixarene nanoemulsion effect can be observed after a very short time of contact with uranium-contaminated solution (5 min) and that it is still efficient in case of small volumes of contaminated solution. The pH of the contaminated solution was found to be the most important parameter affecting the calixarene nanoemulsion efficiency with a dramatic reduction of the uranium extraction rate in case of acidification of the contaminated medium. This lack of efficiency can be overcome by buffering the nanoemulsion continuous phase. The obtained results reveal that the calixarene nanoemulsion could represent a promising system for the emergency treatment of uranium cutaneous contamination.

  14. Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tfaily, Malak M.; Chu, Rosalie K.; Toyoda, Jason; Toli?, Nikola; Robinson, Errol W.; Pa?a-Toli?, Ljiljana; Hess, Nancy J.

    2017-03-31

    A vast number of organic compounds are present in soil organic matter (SOM) and play an important role in the terrestrial carbon cycle, facilitate interactions between organisms, and represent a sink for atmospheric CO2. The diversity of different SOM compounds and their molecular characteristics is a function of the organic source material and biogeochemical history. By understanding how SOM composition changes with sources and the processes by which it is biogeochemically altered in different terrestrial ecosystems, it may be possible to predict nutrient and carbon cycling, response to system perturbations, and impact of climate change will have on SOM composition. In this study, a sequential chemical extraction procedure was developed to reveal the diversity of organic matter (OM) in different ecosystems and was compared to the previously published protocol using parallel solvent extraction (PSE). We compared six extraction methods using three sample types, peat soil, spruce forest soil and river sediment, so as to select the best method for extracting a representative fraction of organic matter from soils and sediments from a wide range of ecosystems. We estimated the extraction yield of dissolved organic carbon (DOC) by total organic carbon analysis, and measured the composition of extracted OM using high resolution mass spectrometry. This study showed that OM composition depends primarily on soil and sediment characteristics. Two sequential extraction protocols, progressing from polar to non-polar solvents, were found to provide the highest number and diversity of organic compounds extracted from the soil and sediments. Water (H2O) is the first solvent used for both protocols followed by either co-extraction with methanol-chloroform (MeOH-CHCl3) mixture, or acetonitrile (ACN) and CHCl3 sequentially. The sequential extraction protocol developed in this study offers improved sensitivity, and requires less sample compared to the PSE workflow where a new sample

  15. Variability in soil micronutrients extracted by DTPA and Mehlich-3 at the plot scale in an acidic environment

    Science.gov (United States)

    Paz-Ferreiro, Jorge; Lado, Marcos; de Abreu, Cleide A.

    2014-05-01

    Land use practices affect soil properties and nutrient supply. Very limited data are available on micronutrient extractability in northwest Spain. The aim of this study was to analyse long-term effects of land use on the concentration, variability and spatial distribution of soil nutrients. To this end, neighboring forest and cultivated stands were compared. The study was carried out in an acid, rich in organic matter soil developed over sediments at the province of Lugo, northwestern of Spain. Adjacent plots with a surface of 100 m2 were marked on regular square grids with 2-m spacing. Fe, Mn, Zn and Cu were extracted both by Mehlich-3 and DTPA solutions and determined by ICP-MS. General soil chemical and physical properties were routinely analyzed. In arable land, microelement concentration ranges were as follows: Fe (100 and 135 mg kg-1), Mn (7.6 and 21.5 mg kg-1), Zn (0.6 and 3.7 mg kg-1), and Cu (0.2 and 0.7 mg kg-1). In forest land, these ranges were: Fe (62 and 309 mg kg-1), Mn (0.2 and 2.1 mg kg-1), Zn (0.2 and 2.9 mg kg-1), and Cu (0.1 and 0.2 mg kg-1). With the exception of Fe-DTPA, microelement concentrations extracted both with DTPA and Mehlich-3 were higher in the cultivated than in the forest stand. Coefficients of variation were higher for the microelement content of the soil under forest. Principal component analysis was performed to evaluate associations between extractable microelements and general physico-chemical properties. At the studied scale, nutrient management was the main factor affecting the agricultural site, whereas soil-plant interactions were probably responsible for the higher variation within the forest site. Patterns of spatial variability of the studied nutrients at the small plot scale also were assessed by geostatistical techniques. Results were discussed in the frame of sustainable land use and organic matter decline with conventional tillage and sustainable land use

  16. Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain.

    Science.gov (United States)

    Kidd, P S; Monterroso, C

    2005-01-05

    The efficiency of Alyssum serpyllifolium ssp. lusitanicum (Brassicaceae) for use in phytoextraction of polymetallic contaminated soils was evaluated. A. serpyllifolium was grown on two mine-spoil soils (MS1 and MS2): MS1 is contaminated with Cr (283 mg kg(-1)) and MS2 is moderately contaminated with Cr (263 mg kg(-1)), Cu (264 mg kg(-1)), Pb (1433 mg kg(-1)) and Zn (377 mg kg(-1)). Soils were limed to about pH 6.0 (MS1/Ca and MS2/Ca) or limed and amended with NPK fertilisers (MS1/NPK and MS2/NPK). Biomass was reduced on MS2/Ca due to Cu phytotoxicity. Fertilisation increased biomass by 10-fold on MS1/NPK, but root growth was reduced by 7-fold compared with MS1/Ca. Plants accumulated Mn, Ni and Zn in shoots, and both metal content and transportation were generally greater in MS2 than in MS1. Zinc bioaccumulation factors (BF, shoot([metal])/soil([metal])) were significantly greater in MS2 than in MS1. However, metal yields were greatest in plants grown on MS1/NPK. Concentrations of EDTA-, NH(4)Cl- and Mehlich 3 (M3)-extractable Mn and Zn were greater after plant growth. Concentrations of M3-extractable Cr, Ni, Pb and Zn were increased at the rhizosphere. Sequential extractions showed changes in the metal distribution among different soil fractions after growth. This could reflect the buffering capacity of these soils or the plants' ability to mobilise metals from less plant-available soil pools. Results suggest that A. serpyllifolium could be suitable for phytoextraction uses in polymetallic-contaminated soils, provided Cu concentrations were not phytotoxic. However, further optimisation of growth and metal extraction are required.

  17. Comparison of Methanol and Tetraglyme as Extraction Solvents for Determination of Volatile Organics in Soil

    Science.gov (United States)

    1987-11-01

    determining volatile organics in soil can be classified into thefollowing groups: 1. Static or dynamic headspace analysis 2. Solvent extraction-direct...methods based on the dynamic headspace method whereby the volatiles are stripped from a soil/water slurry using a conventional purge-and-trap instrument...651. Brazell, R.S. and MP. Maskarinec (1981) Dynamic headspace analysis of solid waste materials. Journal of High Resolution Chromatography and

  18. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  19. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  20. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater. PMID:24587723

  1. EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)

    Science.gov (United States)

    Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

  2. EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)

    Science.gov (United States)

    Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

  3. The validation of forensic DNA extraction systems to utilize soil contaminated biological evidence.

    Science.gov (United States)

    Kasu, Mohaimin; Shires, Karen

    2015-07-01

    The production of full DNA profiles from biological evidence found in soil has a high failure rate due largely to the inhibitory substance humic acid (HA). Abundant in various natural soils, HA co-extracts with DNA during extraction and inhibits DNA profiling by binding to the molecular components of the genotyping assay. To successfully utilize traces of soil contaminated evidence, such as that found at many murder and rape crime scenes in South Africa, a reliable HA removal extraction system would often be selected based on previous validation studies. However, for many standard forensic DNA extraction systems, peer-reviewed publications detailing the efficacy on soil evidence is either lacking or is incomplete. Consequently, these sample types are often not collected or fail to yield suitable DNA material due to the use of unsuitable methodology. The aim of this study was to validate the common forensic DNA collection and extraction systems used in South Africa, namely DNA IQ, FTA elute and Nucleosave for processing blood and saliva contaminated with HA. A forensic appropriate volume of biological evidence was spiked with HA (0, 0.5, 1.5 and 2.5 mg/ml) and processed through each extraction protocol for the evaluation of HA removal using QPCR and STR-genotyping. The DNA IQ magnetic bead system effectively removed HA from highly contaminated blood and saliva, and generated consistently acceptable STR profiles from both artificially spiked samples and crude soil samples. This system is highly recommended for use on soil-contaminated evidence over the cellulose card-based systems currently being preferentially used for DNA sample collection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Microwave Acid Extraction to Analyze K and Mg Reserves in the Clay Fraction of Soils

    Directory of Open Access Journals (Sweden)

    Araína Hulmann Batista

    Full Text Available ABSTRACT: Extraction of K and Mg with boiling 1 mol L-1 HNO3 in an open system for predicting K and Mg uptake by plants is a method of low reproducibility. The aim of this study was to compare the extraction capacity of different acid methods relative to hydrofluoric acid extraction for K and Mg. A further objective was to develop a chemical extraction method using a closed system (microwave for nonexchangeable and structural forms of these nutrients in order to replace the traditional method of extraction with boiling HNO3 on a hot plate (open system. The EPA 3051A method can be used to estimate the total content of K in the clay fraction of soils developed from carbonate and phyllite/mica schist rocks. In the clay fraction of soils developed from basalt, recoveries of K by the EPA 3051A (pseudo-total method were higher than for the EPA 3052 (total hydrofluoric extraction method. The relative abundance of K and Mg for soils in carbonate rocks, phyllite/mica schist, granite/gneiss, and basalt determined by aqua regia digestion is unreliable. The method using 1 mol L-1 HNO3 in an closed system (microwave showed potential for replacing the classical method of extraction of nonexchangeable forms of K (boiling 1 mol L-1 HNO3 in an open system - hot plate and reduced the loss of Si by volatilization.

  5. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions.

    Science.gov (United States)

    DeJong, Jason T; Soga, Kenichi; Banwart, Steven A; Whalley, W Richard; Ginn, Timothy R; Nelson, Douglas C; Mortensen, Brina M; Martinez, Brian C; Barkouki, Tammer

    2011-01-06

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming-these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that 'soil engineering in vivo', wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon-effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized.

  6. Evaluation of an approach for the characterization of reactive and available pools of 20 potentially toxic elements in soils: Part II – Solid-solution partition relationships and ion activity in soil solutions

    NARCIS (Netherlands)

    Rodrigues, S.M.; Henriques, B.; Ferreira da Silva, E.; Pereira, M.E.; Duarte, A.C.; Groenenberg, J.E.; Romkens, P.F.A.M.

    2010-01-01

    To assess environmental risks related to contaminants in soil it is essential to predict the available pool of inorganic contaminants at regional scales, accounting for differences between soils from variable geologic and climatic origins. An approach composed of a well-accepted soil extraction proc

  7. Influence of Fluoride Addition on the Composition of Solutions in Equilibrium with Acid Soils

    Institute of Scientific and Technical Information of China (English)

    A. ROMAR; C. GAGO; M. L. FERN(A)NDEZ-MARCOS; E. (A)LVAREZ

    2009-01-01

    Atmospheric emissions of fluoride from an aluminium smelter-alumina refinery located on the northern coast of Galicia, NW Spain, increase the content of fluorine in soils and vegetation in the vicinity of the complex. The effects of the addition of fluoride solutions on the chemical properties of soil samples from the area surrounding the complex were investigated in laboratory experiments. Addition of fluoride to soils resulted in increases in pH and concentrations of Fe, A1, and organic matter in the equilibrium solutions and decreases in concentrations of Ca, Mg, and K. No consistent effects were observed on the Cu, Mg, or Zn concentrations. Most of the Al in solution was bound to organic matter. Within the fraction "labile aluminium", the concentration of Al-OH complexes decreased and the Al-F complexes increased, especially AlF3 and AlF4, which are less toxic than Al3+ and Al-OH species.

  8. Potential application of synchronous fluorescence spectroscopy to determine benzo[a]pyrene in soil extracts

    Energy Technology Data Exchange (ETDEWEB)

    Hua Guoxiong [School of Biology, Institute for Research on the Environment and Sustainability, Devonshire Building, University of Newcastle upon Tyne, NE1 7RU (United Kingdom); Killham, Ken [Department of Plant and Soil Science, Cruickshank Building, University of Aberdeen, AB24 3UU (United Kingdom); Singleton, Ian [School of Biology, Institute for Research on the Environment and Sustainability, Devonshire Building, University of Newcastle upon Tyne, NE1 7RU (United Kingdom)]. E-mail: ian.singleton@ncl.ac.uk

    2006-01-15

    Benzo[a]pyrene (BaP) is a significant environmental pollutant and rapid, accurate methods to quantify this compound in soil for both research and environmental investigation purposes are required. In this work, solvent extracts from five contrasting soils spiked with four different polycyclic aromatic hydrocarbons (PAHs) were rapidly analysed by using a synchronous fluorescence spectroscopy (SFS) method. The SFS method was validated using HPLC with ultraviolet detection. A good correlation for the quantification of BaP in soil extracts by the two methods was observed. The detection limit of the SFS method was 1.6 x 10{sup -9} g/ml in CTAB micellar medium (7.8 mmol/l). The work demonstrates that SFS has potential as a sensitive, accurate, rapid, simple and economic methodology and an efficient alternative to HPLC for fast confirmation and quantification of BaP in complex soil extracts. - Synchronous fluorescence spectroscopy has potential as a method for confirmation of benzo[a]pyrene in soil extracts.

  9. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil.

    Directory of Open Access Journals (Sweden)

    Brian France

    Full Text Available Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping and post-decon to determine that the site is free of contamination (clearance sampling. Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation.

  10. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil

    Science.gov (United States)

    France, Brian; Bell, William; Chang, Emily; Scholten, Trudy

    2015-01-01

    Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping) and post-decon to determine that the site is free of contamination (clearance sampling). Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil) were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation. PMID:26714315

  11. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil.

    Science.gov (United States)

    France, Brian; Bell, William; Chang, Emily; Scholten, Trudy

    2015-01-01

    Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping) and post-decon to determine that the site is free of contamination (clearance sampling). Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil) were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation.

  12. Divergence of compost extract and bio-organic manure effects on lucerne plant and soil

    Directory of Open Access Journals (Sweden)

    Haiyan Ren

    2017-09-01

    Full Text Available Aim Application of organic materials into agricultural systems enhances plant growth and yields, and improves soil fertility and structure. This study aimed to examine the effects of “compost extract (CE”, a soil conditioner, and bio-organic manure (BOM on the growth of lucerne (Medicago sativa, and compare the efficiency between BOM (including numbers of microorganisms and CE (including no added microorganisms. Method A greenhouse experiment was conducted with four soil amendment treatments (control, BOM, CE and CEBOM, and was arranged in a completely randomized design with 10 replicates for each treatment. Plant biomass, nutritive value and rhizobia efficacy as well as soil characteristics were monitored. Result CE rather than BOM application showed a positive effect on plant growth and soil properties when compared with the control. Lucerne nodulation responded equally to CE addition and rhizobium inoculation. CE alone and in combination with BOM significantly increased plant growth and soil microbial activities and improved soil structure. The synergistic effects of CE and BOM indicate that applying CE and BOM together could increase their efficiency, leading to higher economic returns and improved soil health. However, CE alone is more effective for legume growth since nodulation was suppressed by nitrogen input from BOM. CE had a higher efficiency than BOM for enriching soil indigenous microorganisms instead of adding microorganisms and favouring plant nodulation.

  13. Extraction of an urease-active organo-complex from soil.

    Science.gov (United States)

    Burns, R. G.; El-Sayed, M. H.; Mclaren, A. D.

    1972-01-01

    Description of an extraction from a Dublin clay loam soil of a colloidal organic matter complex that is urease active and, by X-ray analysis, free of clays. Urease activity in the clay-free precipitates, as in the soil, was not destroyed by the activity of an added proteolytic enzyme, pronase. This is attributed to the circumstance that native soil urease resides in organic colloidal particles with pores large enough for water, urea, ammonia, and carbon dioxide to pass freely, but nevertheless small enough to exclude pronase.

  14. Image Analysis of Soil Micromorphology: Feature Extraction, Segmentation, and Quality Inference

    Directory of Open Access Journals (Sweden)

    Petros Maragos

    2004-06-01

    Full Text Available We present an automated system that we have developed for estimation of the bioecological quality of soils using various image analysis methodologies. Its goal is to analyze soilsection images, extract features related to their micromorphology, and relate the visual features to various degrees of soil fertility inferred from biochemical characteristics of the soil. The image methodologies used range from low-level image processing tasks, such as nonlinear enhancement, multiscale analysis, geometric feature detection, and size distributions, to object-oriented analysis, such as segmentation, region texture, and shape analysis.

  15. Field scale variability of solute transport parameters and related soil properties

    Directory of Open Access Journals (Sweden)

    B. Lennartz

    1997-01-01

    Full Text Available The spatial variability of transport parameters has to be taken into account for a reliable assessment of solute behaviour in natural field soils. Two field sites were studied by collecting 24 and 36 small undisturbed soil columns at an uniform grid of 15 m spacing. Displacement experiments were conducted in these columns with bromide traced water under unsaturated steady state transport conditions. Measured breakthrough curves (BTCs were evaluated with the simple convective-dispersive equation (CDE. The solute mobility index (MI calculated as the ratio of measured to fitted pore water velocity and the dispersion coefficient (D were used to classify bromide breakthrough behaviour. Experimental BTCs were classified into two groups: type I curves expressed classical solute behaviour while type II curves were characterised by the occurrence of a bromide concentration maximum before 0.35 pore volumes of effluent (MI<0.35 resulting from preferential flow conditions. Six columns from site A and 8 from site B were identified as preferential. Frequency distributions of the transport parameters (MI and D of both sites were either extremely skewed or bimodal. Log-transformation did not lead to a normal distribution in any case. Contour maps of bromide mass flux at certain time steps indicated the clustering of preferential flow regions at both sites. Differences in the extent of preferential flow between sites seemed to be governed by soil structure. Linear cross correlations among transport parameters and independently measured soil properties revealed relations between solute mobility and volumetric soil water content at time of sampling, texture and organic carbon content. The volumetric field soil water content, a simple measure characterising the soil hydraulic behaviour at the sampling location, was found to be a highly sensitive parameter with respect to solute mobility and preferential flow situations. Almost no relation was found between solute

  16. Effect of Organic Materials on Speciation of Cooper in Soil Solution

    Institute of Scientific and Technical Information of China (English)

    WANGGUO; CHENJIANBIN; 等

    1999-01-01

    Incubation of two soils,a red soil derived from granodiorte and a fluvo-aquic soil from alluvial deposit,with rice straw,Chinese milk vetch and pig manure under submerged condition were conducted to study the species of Cu in soil solutions as affected by the organic materials.The organic materials increased total soluble Cu by raising dissolved organic carbon(DOC) in soil solution when the solution pH values were below the range in which Cu deposited quickly.When the solution pH rose to this rage,the increase of DOC did not raise total soluble Cu.Total soluble Cu in all the treatments dropped with incubation time.After adding organic materials labile Cu dropped with incubation time and decreased sharply in the pH range of Cu precipitation.Addition of organic materials enhanced slowly labile Cu but depressed the ratio of labile Cu to total soluble Cu.Slowly labile Cu decreased with incubation time.Sepwise multiple linear regression analysis showed that total soluble Cu was positively correlated with Eh and DOC(P=0.0025),labile Cu was negatively correlated with pH(P=0.0118),and slowly labile Cu was positively correlated with Eh and DOC(P=0.0022).Both the labile and slowly labile Cu were correlated with total soluble Cu at extremely significant levels.

  17. Growing Gardens in Shrinking Cities: A Solution to the Soil Lead Problem?

    Directory of Open Access Journals (Sweden)

    Kirsten Schwarz

    2016-02-01

    Full Text Available As cities shrink, they often leave a patchwork of vacancy on the landscape. The maintenance of vacant lands and eventual transformation to sustainable land uses is a challenge all cities face, but one that is particularly pronounced in shrinking cities. Vacant lands can support sustainability initiatives, specifically the expansion of urban gardens and local food production. However, many shrinking cities are the same aging cities that have experienced the highest soil lead burdens from their industrial past as well as the historic use of lead-based paint and leaded gasoline. Elevated soil lead is often viewed as a barrier to urban agriculture and managing for multiple ecosystem services, including food production and reduced soil lead exposure, remains a challenge. In this paper, we argue that a shift in framing the soil lead and gardening issue from potential conflict to potential solution can advance both urban sustainability goals and support healthy gardening efforts. Urban gardening as a potential solution to the soil lead problem stems from investment in place and is realized through multiple activities, in particular (1 soil management, including soil testing and the addition of amendments, and (2 social network and community building that leverages resources and knowledge.

  18. An Improved Method for Soil DNA Extraction to Study the Microbial Assortment within Rhizospheric Region.

    Science.gov (United States)

    Fatima, Faria; Pathak, Neelam; Rastogi Verma, Smita

    2014-01-01

    The need for identification of soil microbial community mainly depends on direct extraction of DNA from soil, a multifaceted environment that is a major pool for microbial genetic diversity. The soil DNA extraction procedures usually suffer from two major problems, namely, inappropriate rupturing of cells and contamination with humic substances. In the present study, five protocols for single type of rhizospheric soil were investigated and their comparison indicated that the inclusion of 120 mM phosphate buffered saline (PBS) for washing and mannitol in the lysis buffer allowed the processing of soil sample in minimal time with no specific equipment requirement. Furthermore, DNA purity and yield were also improved, which allowed the exploitation of genetic potential of soil microbes within soil sample thereby facilitating the amplification of metagenomic DNA. The effectiveness of methods was analyzed using random amplification of polymorphic DNA. The banding patterns revealed that both the abundance and the composition of indigenous microbial community depend on the DNA recovery method.

  19. An improved protocol for DNA extraction from alkaline soil and sediment samples for constructing metagenomic libraries.

    Science.gov (United States)

    Verma, Digvijay; Satyanarayana, T

    2011-09-01

    An improved single-step protocol has been developed for extracting pure community humic substance-free DNA from alkaline soils and sediments. The method is based on direct cell lysis in the presence of powdered activated charcoal and polyvinylpolypyrrolidone followed by precipitation with polyethyleneglycol and isopropanol. The strategy allows simultaneous isolation and purification of DNA while minimizing the loss of DNA with respect to other available protocols for metagenomic DNA extraction. Moreover, the purity levels are significant, which are difficult to attain with any of the methods reported in the literature for DNA extraction from soils. The DNA thus extracted was free from humic substances and, therefore, could be processed for restriction digestion, PCR amplification as well as for the construction of metagenomic libraries.

  20. Solvent extraction of copper and zinc from bioleaching solutions with LIX984 and D2EHPA

    Institute of Scientific and Technical Information of China (English)

    LAN Zhuo-yue; HU Yue-hua; LIU Jian-she; WANG Jun

    2005-01-01

    The solvent extraction of copper and zinc from the bioleaching solutions of low-grade sulfide ores with LIX984 and D2EHPA was investigated. The influences of extractant content, aqueous pH value, phase ratio and equilibration time on metals extraction were studied. The results show that LIX984 has a higher selectivity for copper than for iron, zinc and other metals, and has the copper extraction rate above 97%,while the zinc and iron extraction rate is less than 1.6% respectively. Zinc extraction is carried out following the copper extraction from the raffinate. The zinc extraction with di(2-ethylhexyl) phosphoric acid(D2EHPA) is low due to its poor cation exchange. A sodium salt of D2EHPA is used and the zinc extraction rate is enhanced to above 98%. Though iron (Ⅲ) is strongly extracted before the extraction of zinc by D2EHPA, it is difficult to strip iron from the organic phase by sulfuric acid. The zinc stripping rate is above 99% with 100 g/L sulfuric acid, while that of iron is 0.16%. Hence, the separation of zinc from iron can be achieved by the selective stripping.

  1. Recovery of nickel, cobalt, copper and zinc in sulphate and chloride solutions using synergistic solvent extraction

    Institute of Scientific and Technical Information of China (English)

    Chu Yong Cheng; Keith R. Barnard; Wensheng Zhang; Zhaowu Zhu; Yoko Pranolo

    2016-01-01

    A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia. These in-clude (1) Versatic 10/CLX50 system for the separation of Ni from Ca in sulphate solutions, (2) Versatic 10/4PC system for the separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (3) Cyanex 471X/HRJ-4277 system for the separation of Zn from Cd in sulphate solutions, (4) Versatic 10/LIX63 system for the separation of Co from Mn/Mg/Ca in sulphate solutions, (5) Versatic 10/LIX63/TBP system for separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (6) Versatic 10/LIX63 system for the separation of cobalt from nickel in sulphate solutions by difference in kinetics, (7) Cyanex 272/LIX84 system for the separation of Cu/Fe/Zn from Ni/Co in sulphate solutions, (8) Versatic 10/LIX63/TBP system to recover Cu/Ni from strong chloride solutions, and (9) Versatic 10/LIX63 system to separate Cu from Fe in strong chloride solutions. The synergistic effect on metal separation and efficiency is presented and possible industrial applications are demonstrated. The chemical stability of selected SSX systems is also reported.

  2. A rapid fractionation method for heavy metals in soil by continuous-flow sequential extraction assisted by focused microwaves.

    Science.gov (United States)

    Nakazato, Tetsuya; Akasaka, Mikio; Tao, Hiroaki

    2006-11-01

    A microwave-assisted continuous-flow sequential extraction system was developed for rapid fractionation analysis of heavy metals in soil. Insertion of pressure-adjusted air between the extractants provided stable flows of the extractants without mutual mixing and back-pressure influence of a column packed with soil, thereby facilitating reliable continuous-flow extractions. In addition, use of pure water as a pumping solvent removed metal contamination because of direct contact between corrosive extractants and the pump containing metallic materials. Focused microwave irradiation to the soil accelerated the selective extractions of the acid-soluble and reducible fractions of heavy metals in soil in the first and second steps of the sequential extraction conditions, as defined by the Commission of the European Bureau of Reference (BCR). The microwave-assisted continuous-flow extraction provided high correlations in amounts of six heavy metals except Zn in the first step and Cu in the second step extracted from a reference sludge soil, BCR CRM 483, with a conventional batchwise extraction proposed by BCR; continuous-flow extraction assisted by conductive heating provided lower correlations for all the six metals. The proposed method drastically reduced the time required for the sequence extraction to ca. 65 min without losing accuracy and precision of the fractionation analysis of heavy metals in soil, whereas the BCR batchwise method requires ca. 33 h.

  3. The effectiveness of surface liming in ameliorating the phytotoxic effects of soil contaminated by copper acid leach pad solution in an arid ecosystem

    Science.gov (United States)

    Golos, Peter

    2016-04-01

    Revegetation of sites following soil contamination can be challenging especially in identifying the most effective method for ameliorating phytotoxic effects in arid ecosystems. This study at a copper mine in the Great Sandy Desert of Western Australia investigated vegetation restoration of a site contaminated by acid (H2SO4) leach pad solution. Elevated soil copper at low soil pH is phytotoxic to plant roots inhibiting root elongation. In arid ecosystems where rapid root growth is crucial for seedling survival post germination physical or chemical barriers to root growth need to be identified and ameliorated. Initial attempt at rehabilitation of contaminated site with hydrated lime (CaOH2) at 2 tonnes/ha followed by ripping to 30 cm depth then seeding was ineffective as successful seedling emergence was followed by over 90% seedling mortality which was 10-fold greater than seedling mortality in an uncontaminated reference site. High mortality was attributed to seedling roots being impededed as soil water was more than 3-fold greater at 5 to 40 cm depth in contaminated site than reference site. In response to high seedling mortality after emergence test pits were dug to 1 m deep to collect soil samples at 10 cm intervals for phytotoxicity testing and to measure soil pH-CaCl2, copper (DPTA ion extraction), electrical conductivity and gravimetric water content in three replicate pits at three replicate sites. Also, soil impedance was measured down the soil profile at 5 cm intervals at six replicate points/pit. For phytotoxicity testing soil samples were placed into three replicate plastic pots/sample and seeded with 10 seeds of Avena sativa and watered daily. Seedlings were harvested after at least two weeks after seedling emergence and rooting depth in pots measured. There was no difference in seedling emergence and survival of seedlings between contaminated and uncontaminated soil samples however mean seedling root growth was significantly lower in soil samples

  4. The potential for solubilizing agents to enhance the remediation of hydrophobic organic solutes in soil-water suspensions. [Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Laha, S.; Liu, Z.; Edwards, D.; Luthy, R.G.

    1991-02-01

    This paper discusses the feasibility for use of surfactant solubilizing agents to enhance the solubility and the rate of microbial degradation of hydrophobic organic solutes in soil-water suspensions. Hydrophobic organic contaminants are strongly sorbed to soil or sediment material, and as a consequence the rate of microbial degradation may depend greatly on the desorption of the sorbed-phase contaminant and the accessibility of the contaminant to soil microorganisms. Chemical solubilizing agents may enhance the rate of hydrophobic organic solute degradation by increasing the rate of solute desorption from soil and the extent of solute partitioning to the aqueous phase. The presentation will review on-going research on: surfactant solubilization of polycyclic aromatic hydrocarbon (PAH) compounds in clean water, and in soil-water suspensions; and experiments to assess if the addition of surfactant to soil-water suspension results in faster rate of mineralization of PAH compounds in soil.

  5. The potential for solubilizing agents to enhance the remediation of hydrophobic organic solutes in soil-water suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Laha, S.; Liu, Z.; Edwards, D.; Luthy, R.G.

    1991-02-01

    This paper discusses the feasibility for use of surfactant solubilizing agents to enhance the solubility and the rate of microbial degradation of hydrophobic organic solutes in soil-water suspensions. Hydrophobic organic contaminants are strongly sorbed to soil or sediment material, and as a consequence the rate of microbial degradation may depend greatly on the desorption of the sorbed-phase contaminant and the accessibility of the contaminant to soil microorganisms. Chemical solubilizing agents may enhance the rate of hydrophobic organic solute degradation by increasing the rate of solute desorption from soil and the extent of solute partitioning to the aqueous phase. The presentation will review on-going research on: surfactant solubilization of polycyclic aromatic hydrocarbon (PAH) compounds in clean water, and in soil-water suspensions; and experiments to assess if the addition of surfactant to soil-water suspension results in faster rate of mineralization of PAH compounds in soil.

  6. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: Arsenic extraction by reducing agents and combination of reducing and chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Jung [Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Lee, Jae-Cheol [Department of Environmental Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Baek, Kitae, E-mail: kbaek@jbnu.ac.kr [Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Department of Environmental Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of)

    2015-02-11

    Highlights: • Abiotic reductive extraction of As from contaminated soils was studied. • Oxalate/ascorbate were effective in extracting As bound to amorphous iron oxides. • Reducing agents were not effective in extracting As bound to crystalline oxides. • Reductive As extraction was greatly enhanced by complexation. • Combination of dithionite and EDTA could extract about 90% of the total As. - Abstract: Abiotic reductive extraction of arsenic from contaminated soils was studied with various reducing agents and combinations of reducing and chelating agents in order to remediate arsenic-contaminated soils. Oxalate and ascorbic acid were effective to extract arsenic from soil in which arsenic was associated with amorphous iron oxides, but they were not effective to extract arsenic from soils in which arsenic was bound to crystalline oxides or those in which arsenic was mainly present as a scorodite phase. An X-ray photoelectron spectroscopy study showed that iron oxides present in soils were transformed to Fe(II,III) or Fe(II) oxide forms such as magnetite (Fe{sub 3}O{sub 4}, Fe{sup II}Fe{sub 2}{sup III}O{sub 4}) by reduction with dithionite. Thus, arsenic extraction by dithionite was not effective due to the re-adsorption of arsenic to the newly formed iron oxide phase. Combination of chelating agents with reducing agents greatly improved arsenic extraction from soil samples. About 90% of the total arsenic could be extracted from all soil samples by using a combination of dithionite and EDTA. Chelating agents form strong complexation with iron, which can prevent precipitation of a new iron oxide phase and also enhance iron oxide dissolution via a non-reductive dissolution pathway.

  7. A mass-balance model to separate and quantify colloidal and solute redistributions in soil

    Science.gov (United States)

    Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.

    2011-01-01

    Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.

  8. Solvent extraction of cadmium and zinc from sulphate solutions: Comparison of mechanical agitation and ultrasonic irradiation.

    Science.gov (United States)

    Daryabor, Mahboubeh; Ahmadi, Ali; Zilouei, Hamid

    2017-01-01

    This research was conducted to evaluate the potential of ultrasonic irradiation during the solvent extraction of metals, and comparing its efficiency with a mechanically stirred system (MSSX). The simultaneous extraction of zinc and cadmium from sulphate solutions was investigated by di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an organic extractant which was diluted (20%) in kerosene at the organic: aqueous phase ratio of 1:1 and the temperature of 25°C. The influence of some critical parameters, including contact time, solution pH, ultrasonic power, and zinc/cadmium ratio were investigated on the extraction of the metals. Results show that D2EHPA selectively extract zinc rather than cadmium in both mechanically and ultrasonically mixed systems. It was also found that increase of ultrasonic power from 10 to 120W cause a small decrease in zinc extraction; while, at low and high levels of the induced power, cadmium extraction was significantly decreased. Results also show that maximum extraction amounts of zinc (88.7%) and cadmium (68.2%) by the MSSX system occurred at the pH of 3 and the contact times of 3 and 20min, respectively. Although capability of extraction in the ultrasonically assisted solvent extraction (USAX) system for both metals was higher, the selectivity was lower than that of MSSX system under different conditions especially in high zinc/cadmium ratios. It can be concluded that physical effects (i.e. mixing) inducing at low ultrasonic powers (below 60W) mainly results in increasing solvent extraction rate, while the chemical actions applied at the higher powers have a negative outcome on the extraction rate particularly for cadmium.

  9. Hard cap espresso extraction-stir bar preconcentration of polychlorinated biphenyls in soil and sediments.

    Science.gov (United States)

    Gallart-Mateu, Daniel; Pastor, Agustín; de la Guardia, Miguel; Armenta, Sergio; Esteve-Turrillas, Francesc A

    2017-02-01

    A Nespresso(©) hard cap espresso machine has been employed for the quantitative extraction of polychlorinated biphenyls (PCBs) from sediments and soils. Sample extraction was performed from five grams of sample in less than 40 s, with 200 mL ethanol 40% (v/v) in water and PCBs were concentrated using stir bar sorptive extraction (SBSE) and determined by thermal desorption-gas chromatography-tandem mass spectrometry (TD-GC-MS-MS). Eleven PCB congeners (28, 52, 77, 80, 81, 101, 118, 138, 153,169, and 180) were determined in soils and sediments with limits of quantification in the 0.03-0.08 ng g(-1) range. Extraction efficiency was established by the analysis of soil samples spiked with the studied PCBs at concentrations from 0.1 to 10.0 ng g(-1), obtaining quantitative recoveries from 81 to 120% and an adequate precision with relative standard deviations lower than 20%. Certified reference materials and natural samples were analyzed by the proposed hard cap espresso extraction and results were compared with those provided by a reference procedure based on pressurized solvent extraction, obtaining statistically comparable results. Therefore, the use of a hard cap espresso machine in tandem with SBSE and TD-GC-MS-MS allowed a simple, sensitive and quantitative determination of PCBs.

  10. Kinetics of electrodialytic extraction of Pb and soil cations from a slurry of contaminated soil fines

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ottosen, Lisbeth M.; Ferreira, Célia;

    2006-01-01

    The objective of this work was to investigate the kinetics of Pb removal from soil-fines during electrodialytic remediation in suspension, and study the simultaneous dissolution of common soil cations (Al, Ca, Fe, Mg, Mn, Na and K). This was done to evaluate the possibilities within control......-removal was obtained. During the first phase dissolution of carbonates was the prevailing process, resulting in a corresponding loss of soil-mass. During this phase, the investigated ions accounted for the major current transfer, while, as remediation proceeded hydrogen-ions increasingly dominated the transfer. During...

  11. Two decades of chemical imaging of solutes in sediments and soils

    DEFF Research Database (Denmark)

    Santner, Jakob; Larsen, Morten; Kreuzeder, Andreas;

    2015-01-01

    -called sandwich sensors for multianalyte measurements. Here we review the capabilities and limitations of the chemical imaging methods that are currently at hand, using a number of case studies, and provide an outlook on potential future developments for two-dimensional solute imaging in soils and sediments.......The increasing appreciation of the small-scale (sub-mm) heterogeneity of biogeochemical processes in sediments, wetlands and soils has led to the development of several methods for high-resolution two-dimensional imaging of solute distribution in porewaters. Over the past decades, localised...... sampling of solutes (diffusive equilibration in thin films, diffusive gradients in thin films) followed by planar luminescent sensors (planar optodes) have been used as analytical tools for studies on solute distribution and dynamics. These approaches have provided new conceptual and quantitative...

  12. Towards an understanding of solvent extraction--electroanalytical characterization of chloride-leaching solutions.

    Science.gov (United States)

    Paiva, A P; Abrantes, L M

    2001-08-01

    Solvent extraction has been employed to purify media simulating chloride-leaching solutions resulting from complex sulfide concentrate processing, and cyclic voltammetry (CV) has been chosen to characterize those hydrometallurgical aqueous phases. The possibilities of the CV technique were investigated by the evaluation of the adequacy of a specific organic extractant, triisobutylphosphine sulfide, aimed to efficiently and selectively extract silver from a complex chloride medium, additionally containing tenfold to 40-fold molar concentrations of iron, copper and lead. The influence of the oxidation state of the metallic ions present in the feed solution, namely Cu(II) and Cu(I), is considered. The possibilities of CV analysis for the characterization of stripping solutions are also illustrated.

  13. Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil.

    Science.gov (United States)

    Zhang, Tao; Wei, Hang; Yang, Xiu-Hong; Xia, Bing; Liu, Jun-Min; Su, Cheng-Yong; Qiu, Rong-Liang

    2014-08-01

    The development of more selective chelators for the washing of heavy metal contaminated soil is desirable in order to avoid excessive dissolution of soil minerals. Speciation and mobility of Cu, Zn, Pb, and Ni in a contaminated soil washed with phenyldiaminetetraacetic acid (PDTA), a derivative of EDTA, were investigated by batch leaching test using a range of soil washing conditions followed by sequential extraction. With appropriate washing conditions, PDTA significantly enhanced extraction of Cu from the contaminated soil. The primary mechanisms of Cu extraction by PDTA were complexation-promoted dissolution of soil Cu and increased dissolution of soil organic matter (SOM). PDTA showed high selectivity for Cu(II) over soil component cations (Ca(II), Mg(II), Fe(III), Mn(II), Al(III)), especially at lower liquid-to-soil ratios under PDTA deficiency, thus avoiding unwanted dissolution of soil minerals during the soil washing process which can degrade soil structure and interfere with future land use. PDTA-enhanced soil washing increased the exchangeable fractions of Cu, Zn, and Pb and decreased their residual fractions, compared to their levels in unwashed soil.

  14. Accelerated solvent extraction combined with dispersive liquid-liquid microextraction before gas chromatography with mass spectrometry for the sensitive determination of phenols in soil samples.

    Science.gov (United States)

    Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song

    2015-05-01

    A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples.

  15. Empirical modeling of heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils.

    Science.gov (United States)

    Yip, Theo C M; Tsang, Daniel C W; Ng, Kelvin T W; Lo, Irene M C

    2009-01-01

    The effectiveness of using biodegradable EDDS (S,S-ethylenediaminedisuccinic acid) for metal extraction has drawn increasing attention in recent years. In this study, an empirical model, which utilized the initial metal distribution in soils and a set of parameter values independently determined from sequential extraction, was developed for estimating the time-dependent heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils. The model simulation provided a satisfactory description of the experimental results of the 7-d extraction kinetics of Cu, Zn, and Pb in both artificially contaminated and field-contaminated soils. Thus, independent and prior assessment of extraction efficiency would be available to facilitate the engineering applications of EDDS. Furthermore, a simple empirical equation using the initial metal distribution was also proposed to estimate the extraction efficiency at equilibrium. It was found that, for the same type of soils, higher extraction efficiency was achieved in multi-metal contaminated soils than in single-metal contaminated soils. The differences were 4-9%, 9-16%, and 21-31% for Cu, Zn, and Pb, respectively, probably due to the larger proportion of exchangeable and carbonate fractions of sorbed Zn and Pb in multi-metal contaminated soils. EDDS-promoted mineral dissolution, on the other hand, was more significant in multi-metal contaminated soils as a result of the higher EDDS concentration applied to the soils of higher total metal content.

  16. Removal of copper from copper-contaminated river water and aqueous solutions using Methylobacterium extorquens modified Erzurum clayey soil

    National Research Council Canada - National Science Library

    Neslihan Celebi; Hayrunnisa Nadaroglu; Ekrem Kalkan; Recep Kotan

    2016-01-01

    ... adsorbent materials for the removal of copper from aqueous solution. The copper concentrations in the samples of the polluted river water and CuCl solutions treated by the natural and bacteria-modified Erzurum clayey soil (ECS...

  17. Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof

    Science.gov (United States)

    Snyder, Seth W.; Lin, Yupo J.; Hestekin' Jamie A.; Henry, Michael P.; Pujado, Peter; Oroskar, Anil; Kulprathipanja, Santi; Randhava, Sarabjit

    2010-09-21

    The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

  18. Tannin-Metal Interactions in Soils: An Incubation-Extraction Approach in Hill-Land Environments

    Science.gov (United States)

    Gonzalez, J. M.; Halvorson, J. J.

    2007-12-01

    Tannins, plant polyphenols known to react with proteins, metals and soil organic matter, are commonly found in the vegetation growing in Appalachian hill-lands. Establishing silvopastoral grazing systems in these environments is a means for improving productivity however the fate of tannins in soils and, in particular, the effect on solubility/mobility of metals in soils is poorly understood. Soils from forest and pasture systems were sampled from two depths, treated with tannic acid or related phenolic compounds, and analyzed for metals in solution. The amount of Mn and Ca detected in solution varied among the different phenolic treatments, highest for gallic acid, and was also influenced by depth and land use. As expected, the Ca content in solution was correlated with the electrical conductivity (EC) and the Mn content was correlated with the redox potential in solution. Interestingly, the EC was also correlated with both Mn content and redox potential. The higher Ca content found in solution may result from the low pH of the phenolic compounds. The higher Mn in solution may result from the redox reaction of Mn (IV) oxides with the phenolic compounds, producing soluble Mn2+ and quinones. These quinones are very reactive compounds that can self-polymerize and/or copolymerize with other biomolecules, such as amino-containing compounds and carbohydrates, to form humic-like substances. Successful management of silvopastures, requires an understanding of factors that affect the quality and quantity of plant secondary compounds like tannins entering soil not only to increase forage productivity but also to enhance formation/stabilization of soil organic matter to increase nutrient cycling and reduce the toxicity risk of some metals such as Mn.

  19. Quantity and nature of water-extractable organic matter from sandy loam soils with potato cropping managements

    Science.gov (United States)

    Water-extractable organic matter (WEOM) is part of the soil labile organic matter components. In this work, we evaluated the level and nature of soil WEOM from a long-term (6-year) potato crop rotation field experiment. The contents of water-extractable organic C (WEOC) were higher in continuous pot...

  20. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method.

    Science.gov (United States)

    Campbell, Ellen R; Warsko, Kayla; Davidson, Anna-Marie; Bill Campbell, Wilbur H

    2015-01-01

    Measurement of ortho-phosphate in soil extracts usually involves sending dried samples of soil to a laboratory for analysis and waiting several weeks for the results. Phosphate determination methods often involve use of strong acids, heavy metals, and organic dyes. To overcome limitations of this approach, we have developed a phosphate determination method which can be carried out in the field to obtain results on the spot. This new method uses: •Small volumes.•An enzymatic reaction.•Green chemistry. First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL) is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1)], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app.

  1. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method

    Science.gov (United States)

    Campbell, Ellen R.; Warsko, Kayla; Davidson, Anna-Marie; (Bill) Campbell, Wilbur H.

    2015-01-01

    Measurement of ortho-phosphate in soil extracts usually involves sending dried samples of soil to a laboratory for analysis and waiting several weeks for the results. Phosphate determination methods often involve use of strong acids, heavy metals, and organic dyes. To overcome limitations of this approach, we have developed a phosphate determination method which can be carried out in the field to obtain results on the spot. This new method uses: • Small volumes. • An enzymatic reaction. • Green chemistry. First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL) is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1)], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app. PMID:26150991

  2. Vacuum extraction based response equipment for recovery of fresh fuel spills from soil.

    Science.gov (United States)

    Halmemies, Sakari; Gröndahl, Siri; Arffman, Mika; Nenonen, Keijo; Tuhkanen, Tuula

    2003-02-28

    Accidental overturns of fuel tankers can have, depending on soil types, severe consequences. This applies, particularly in areas of shallow soils where the groundwater is located 2-4m below the ground surface. By rapid, vacuum extraction based recovery emergency services, which would normally be the first to arrive on the scene, could minimize consequences of fresh fuel spills and even prevent groundwater contamination, the primary purpose of emergency response. Powerful vacuum extraction-based response (PER), equipment has been developed to recover freshly spilt volatile fuels from the soil, primary by emergency services, but also by other trained responders. The main components of mobile PER-equipment are perforated extraction pipes, a recovery vacuum tank, a vacuum pump and an incinerator. The PER-equipment has been tested in summer and sub-zero winter conditions, and in both cases 50-80% of fresh gasoline spilled into sandy soil was recovered during the first 2h of operation. Gasoline was recovered in both liquid and vapor form, and hydrocarbon vapors were destroyed by controlled incineration at a safe distance from the spill. Recovery of less volatile diesel oil is not so effective from the sandy soil, but about 30% of it could be pumped from a fresh pool directly after a seepage time of 15 min.

  3. Studies on extraction of beryllium from thiocyanate solutions by quaternary ammonium halides.

    Science.gov (United States)

    El-Yamani, I S; El-Messieh, E N

    A 0.4M tricaprylmethylammonium chloride solution in n-hexane was used for the quantitative extraction of beryllium from hydrochloric acid (pH 3) and 5M potassium thiocyanate. Beryllium was stripped from the organic phase with 1M sodium hydroxide, then determined volumetrically with bismuthyl perchlorate and bromocresol green indicator. Beryllium was extracted in presence of a large number of elements which are usually associated with it in beryl and in fission products of nuclear fuel.

  4. Decontamination of Metal Ions in Soil by Supercritical CO{sub 2} Extraction with Catecholamine Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Kim, Hakwon; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The role of fuel cladding and reactor vessels is to help prevent the leakage of radioactive materials, including the fission products. However, if these shielding materials are damaged by a severe disaster such as the Fukushima Accident, radioactive materials could leak outside of a power plant site. Indeed, after the Fukushima Accident, radioactive materials have been detected in air and water samples. The air and water pollution lead to soil pollution, which is particularly difficult to decontaminate, as soil pollution has several types that vary according to the characteristics of a pollutant or its area. The existing decontamination methods generate a secondary waste owing to use of chemical toxicity solvents. It is also disadvantageous due to the additional cost of handling them. Therefore, new effective decontamination methods that reduce the use of toxicity solvents are necessary. For example, using supercritical CO{sub 2} has been studied as a new decontamination method. This study examines the method of decontaminating metallic ions inside of the soil using supercritical CO{sub 2} and a catecholamine compound. This study examined the effects of extracting metallic ions inside the soil using supercritical CO{sub 2} and catecholamine as the ligand. Based on these results, it is evident that when only the extraction agent was used, there was no extraction effect and that only when the ligand, co-ligand, and additive were used together was there an extraction effect. Following this, the optimal extraction-agent ratio was confirmed using varying amounts of extraction agents. The most effective extraction ratio of ligand to co-ligand was 1:2 in E-9 when 0.3 ml of H{sub 2}O were added.

  5. Bias in bacterial diversity as a result of Nycodenz extraction from bulk soil

    DEFF Research Database (Denmark)

    Holmsgaard, Peter Nikolai; Norman, Anders; Hede, Simon Christian

    2011-01-01

    FLX system. Sequences were processed and analyzed using the Ribosomal Database Project's (RDP) Pyrosequencing Pipeline tools. In this study, we show that extraction of bacteria from soil using NDC can result in significant biases in the form of either over- or underrepresentation of specific bacterial...... to cover 95% of the bacterial biodiversity, the equivalent of one full standard GS FLX run....

  6. Effect of harsh or mild extraction of soil on pesticide leaching to groundwater

    NARCIS (Netherlands)

    Boesten, Jos J.T.I.

    2016-01-01

    Assessment of leaching to groundwater is an important aspect of pesticide risk assessment. The first leaching tier usually consists of simulations with leaching scenarios based on pesticide- soil properties derived from laboratory studies. Because the extractability of pesticide residues in such

  7. Effect of DNA extraction method on the apparent microbial diversity of soil

    NARCIS (Netherlands)

    Inceoglu, Oezguel; Hoogwout, Eelco F.; Hill, Patrick; van Elsas, Jan Dirk

    Four extraction methods, including a novel one, were compared for their efficiencies in producing DNA from three contrasting agricultural soils. Molecular analyses (PCR-denaturing gradient gel electrophoresis [DGGE] and clone libraries) focusing on different microbial groups were used as assessment

  8. Enhanced method for microbial community DNA extraction and purification from agricultural yellow loess soil.

    Science.gov (United States)

    Kathiravan, Mathur Nadarajan; Gim, Geun Ho; Ryu, Jaewon; Kim, Pyung Il; Lee, Chul Won; Kim, Si Wouk

    2015-11-01

    In this study, novel DNA extraction and purification methods were developed to obtain high-quantity and reliable quality DNA from the microbial community of agricultural yellow loess soil samples. The efficiencies of five different soil DNAextraction protocols were evaluated on the basis of DNA yield, quality and DNA shearing. Our suggested extraction method, which used CTAB, EDTA and cell membrane lytic enzymes in the extraction followed by DNA precipitation using isopropanol, yielded a maximum DNA content of 42.28 ± 5.59 µg/g soil. In addition, among the five different purification protocols, the acid-treated polyvinyl polypyrrolidone (PVPP) spin column purification method yielded high-quality DNA and recovered 91% of DNA from the crude DNA. Spectrophotometry revealed that the ultraviolet A 260/A 230 and A 260/A 280 absorbance ratios of the purified DNA were 1.82 ± 0.03 and 1.94 ± 0.05, respectively. PCR-based 16S rRNA amplification showed clear bands at ~1.5 kb with acid-treated PVPP-purified DNA templates. In conclusion, our suggested extraction and purification protocols can be used to recover high concentration, high purity, and high-molecular-weight DNA from clay and silica-rich agricultural soil samples.

  9. ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY

    Science.gov (United States)

    A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...

  10. Determination of Polychlorinated Biphenyls in Soil and Sediment by Selective Pressurized Liquid Extraction with Immunochemical Detection

    Science.gov (United States)

    A selective liquid pressurized extraction (SPLE) method was developed as a streamlined sample preparation/cleanup procedure for determining Aroclors and coplanar polychlorinated biphenyls (PCBs) in soil and sediment matrices. The SPLE method was coupled with an enzyme-linked imm...

  11. Effect of DNA extraction method on the apparent microbial diversity of soil

    NARCIS (Netherlands)

    Inceoglu, Oezguel; Hoogwout, Eelco F.; Hill, Patrick; van Elsas, Jan Dirk

    2010-01-01

    Four extraction methods, including a novel one, were compared for their efficiencies in producing DNA from three contrasting agricultural soils. Molecular analyses (PCR-denaturing gradient gel electrophoresis [DGGE] and clone libraries) focusing on different microbial groups were used as assessment

  12. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection

    Science.gov (United States)

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T.; Carr, Christopher E.

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars.

  13. ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY

    Science.gov (United States)

    A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...

  14. Assessing the phytoavailability of dieldrin residues in charcoal-amended soil using tenax extraction.

    Science.gov (United States)

    Hilber, Isabel; Bucheli, Thomas D; Wyss, Gabriela S; Schulin, Rainer

    2009-05-27

    Consecutive and single Tenax extractions were applied to characterize the effectiveness of activated charcoal (AC) amendments to reduce the phytoavailability of dieldrin in a natively contaminated horticultural soil. Dieldrin desorption from untreated and 800 mg(AC) kg(-1) soil was well described by a model with three dieldrin fractions of different kinetics: a rapidly (F(rap)), slowly (F(slow)), and very slowly (F(v.slow)) desorbing fraction. The AC amendment resulted in a transfer of dieldrin from the F(slow) to the F(v.slow) fraction. The F(v.slow) increased by nearly 10% compared to the control soil. Dieldrin extractability by Tenax from AC amended soils was not influenced by the cultivation of cucumber plants indicating the stability of this remediation technique. Dieldrin extractability by Tenax at the beginning of plant growth correlated only weakly with the dieldrin content of the cucumbers at harvest. Therefore, the potential of Tenax extractions to predict the uptake of dieldrin by cucumbers appears to be limited.

  15. Biodegradation of Unsymmetrical Dimethylhydrazine in Solution and Soil by Bacteria Isolated from Activated Sludge

    Directory of Open Access Journals (Sweden)

    Qili Liao

    2016-03-01

    Full Text Available The biodegradation effect and pathway of unsymmetrical dimethylhydrazine (UDMH, which is a major rocket propellant with highly toxic properties, with two strains isolated from the acclimated activated sludge were investigated in solution and in soil. The results demonstrated that Stenotrophomonas sp. M12 (M12 was able to degrade UDMH of 50 mg·L−1 as the sole carbon source in aqueous mineral salt medium (MSM, but could not degrade UDMH in soil. Comamonas sp. P4 (P4 barely degraded UDMH of 50 mg·L−1 as the sole carbon source in aqueous MSM, but the degrading capacity of P4 could be improved by the addition of an extra carbon source. Meanwhile, P4 was able to degrade UDMH of 100–600 mg·kg−1 in the soil. The degradation of UDMH in the soil was influenced by organic matter, autochthonous microorganisms, and metal ions. UDMH could inhibit metabolism of M12 and P4, and the inhibition influence was more severe in aqueous MSM than in soil. Oxygen content was important for M12 biodegrading UDMH, and co-metabolism helped P4 to self-detoxify and self-recover. The main intermediates of UDMH were identified by Gas Chromatography-Mass Spectrometer (GC/MS qualitative analysis, and the concentrations of UDMH and its important transformation products were determined in solution and soil. According to the determination results, the synchronous degradation theory was proposed, and the degradation pathway was discussed.

  16. [Mouthwash solutions with microencapsuled natural extracts: Efficiency for dental plaque and gingivitis].

    Science.gov (United States)

    Vervelle, A; Mouhyi, J; Del Corso, M; Hippolyte, M-P; Sammartino, G; Dohan Ehrenfest, D M

    2010-06-01

    Mouthwash solutions are mainly used for their antiseptic properties. They currently include synthetic agents (chlorhexidine, triclosan, etc.) or essential oils (especially Listerine). Many natural extracts may also be used. These associate both antiseptic effects and direct action on host response, due to their antioxidant, immunoregulatory, analgesic, buffering, or healing properties. The best known are avocado oil, manuka oil, propolis oil, grapefruit seed extract, pycnogenol, aloe vera, Q10 coenzyme, green tea, and megamin. The development of new technologies, such as microencapsulation (GingiNat concept), may allow an in situ slow release of active ingredients during several hours, and open new perspectives for mouthwash solutions.

  17. Extraction of DNA from human embryos after long-term preservation in formalin and Bouin's solutions.

    Science.gov (United States)

    Nagai, Momoko; Minegishi, Katsura; Komada, Munekazu; Tsuchiya, Maiko; Kameda, Tomomi; Yamada, Shigehito

    2016-05-01

    The "Kyoto Collection of Human Embryos" at Kyoto University was begun in 1961. Although morphological analyses of samples in the Kyoto Collection have been performed, these embryos have been considered difficult to genetically analyze because they have been preserved in formalin or Bouin's solution for 20-50 years. Owing to the recent advances in molecular biology, it has become possible to extract DNA from long-term fixed tissues. The purpose of this study was to extract DNA from wet preparations of human embryo samples after long-term preservation in fixing solution. We optimized the DNA extraction protocol to be suitable for tissues that have been damaged by long-term fixation, including DNA-protein crosslinking damage. Diluting Li2 CO3 with 70% ethanol effectively removed picric acid from samples fixed in Bouin's solution. Additionally, 20.0 mg/mL proteinase was valuable to lyse the long-term fixed samples. The extracted DNA was checked with PCR amplification using several sets of primers and sequence analysis. The PCR products included at least 295- and 838-bp amplicons. These results show that the extracted DNA is applicable for genetic analyses, and indicate that old embryos in the Kyoto Collection should be made available for future studies. The protocol described in this study can successfully extract DNA from old specimens and, with improvements, should be applicable in research aiming to understand the molecular mechanisms of human congenital anomalies. © 2015 Japanese Teratology Society.

  18. Extraction of cobalt(II) from aqueous solution by N,N'-carbonyl difatty amides

    Institute of Scientific and Technical Information of China (English)

    Emad A. Jaffar Al-Mulla; Khalid Waleed S. Al-Janabi

    2011-01-01

    The development of economic and environmentally friendly extractants to recover cobalt metal is required due to the increasing demand for this metal. In this study, solvent extraction of Co(Ⅱ) from aqueous solution using a mixture of N,N'-carbonyl difatty amides (CDFAs) synthesised from palm oil as the extractant was carried out. The effects of various parameters such as acid, contact time, extractant concentration, metal ion concentration and stripping agent and the separation of Co(Ⅱ) from other metal ions such as Fe(Ⅱ), Ni(Ⅱ), Zn(Ⅲ) and Cd(Ⅱ) were investigated. It was found that the extraction of Co(Ⅱ) into the organic phase involved the formation of 1:1 complexes. Co(Ⅱ) was successfully separated from commonly associated metal ions such as Fe(Ⅱ), Ni(Ⅱ), Zn(Ⅲ) and Cd(Ⅱ). Co(Ⅱ) stripping from the loaded organic phase was studied in aqueous solution. These results are useful to recover Co(Ⅱ) from aqueous solution utilising (CDFAs) as an extractant.

  19. TESVE model for design of soil vapor extraction systems with thermal enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Ghuman, A. [Lowney Associates, Mountain View, CA (United States); Wong, K. [Air Force, McClellan AFB, CA (United States); Singh, S. [URS Consultants, Inc., Sacramento, CA (United States)

    1994-12-31

    Soil vapor extraction (SVE) is a popular and effective technology for removal of volatile organic compounds (VOCs), from the subsurface soils. The performance of SVE systems is based on three key parameters: the rate of mass removal, the time required to achieve cleanup goals, and the cost of cleanup. These performance parameters depend on physical and chemical factors such as the rate and pattern of air flow through the affected soils, contaminant type, and the degree of partitioning between the vapor-, liquid-, dissolved- and adsorbed- phase. The effectiveness of SVE can be enhanced by raising the soil temperature. This is done using various methods including electrical heating, and hot air volatilization. TESVE (Thermally-Enhanced Soil Vapor Extraction), a multi-component, non-isothermal, three dimensional software model, is a powerful tool in evaluating the feasibility of SVE, optimizing design, predicting performance, and, ultimately reducing cleanup costs. The TESVE model was run for a SVE site at McClellan Air Force Base, California. Four SVE design scenarios were modeled for removal of trichloroethylene (TCE) from the subsurface soil.

  20. A method for analyzing the δ18O of resin-extractable soil inorganic phosphate.

    Science.gov (United States)

    Weiner, Tal; Mazeh, Shunit; Tamburini, Federica; Frossard, Emmanuel; Bernasconi, Stefano M; Chiti, Tommaso; Angert, Alon

    2011-03-15

    Improved tools for tracing phosphate transformations in soils are much needed, and can lead to a better understanding of the terrestrial phosphorus cycle. The oxygen stable isotopes in soil phosphate are still not exploited in this regard. Here we present a method for measuring the oxygen stable isotopes in a fraction of the soil phosphate which is rapidly available to plants, the resin-extractable P. This method is based on extracting available phosphate from the soil with anion-exchange membranes, soil organic matter removal by a resin, purification by precipitation as cerium phosphate, and finally precipitation as silver phosphate. The purified silver phosphate samples are then measured by a high-temperature elemental analyzer (HT-EA) coupled in continuous flow mode to an isotope ratio mass spectrometer. Testing the method with Mediterranean and semi-arid soils showed no artifacts, as well as good reproducibility in the same order as that of the HT-EA analytical uncertainty (0.3‰). Copyright © 2011 John Wiley & Sons, Ltd.

  1. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method

    Directory of Open Access Journals (Sweden)

    Ellen R. Campbell

    2015-01-01

    First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app.

  2. Hydroxypropyl-beta-cyclodextrin as non-exhaustive extractant for organochlorine pesticides and polychlorinated biphenyls in muck soil

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Fiona [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario, L0L 1N0 (Canada); Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4 (Canada); Bidleman, Terry F., E-mail: terry.bidleman@ec.gc.c [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario, L0L 1N0 (Canada)

    2010-05-15

    Hydroxypropyl-beta-cyclodextrin (HPCD) was used as a non-exhaustive extractant for organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) in muck soil. An optimized extraction method was developed which involved using a HPCD to soil mass ratio of 5.8 with a single extraction period of 20 h. An aging experiment was performed by spiking a muck soil with {sup 13}C-labeled OCs and non-labeled PCBs. The soil was extracted with the optimized HPCD method and Soxhlet apparatus with dichloromethane over 550 d periodically. The HPCD extractability of the spiked OCs was greater than of the native OCs. A decreased in HPCD extractability was observed for the spiked OCs after 550 d of aging and their extractability approached those of the natives. The partition coefficient between HPCD and soil (log K{sub CD-Soil}) was negatively correlated with the octanol-water partition coefficient (log K{sub OW}) with r{sup 2} = 0.67 and p < 0.05. - The effect of aging on the extractability of organochlorine chemicals in muck soil was investigated using hydroxypropyl-beta-cyclodextrin as a mild extractant.

  3. In situ sampling of small volumes of soil solution using modified micro-suction cups

    NARCIS (Netherlands)

    Shen, Jianbo; Hoffland, E.

    2007-01-01

    Two modified designs of micro-pore-water samplers were tested for their capacity to collect unbiased soil solution samples containing zinc and citrate. The samplers had either ceramic or polyethersulfone (PES) suction cups. Laboratory tests of the micro-samplers were conducted using (a) standard sol

  4. TRANSOL, a dynamic simulation model for transport and transformation of solutes in soils

    NARCIS (Netherlands)

    Kroes, J.G.; Rijtema, P.E.

    1996-01-01

    The dynamic simulation model TRANSOL has been developed to fulfil the need for a tool to analyse leaching of solutes from the soil surface to groundwater and surface waters. A description is given of the modelled processes: conversion, formation, cropuptake, precipitation, equilibrium and non-equili

  5. Desorption of two organophosphorous pesticides from soil with wastewater and surfactant solutions.

    Science.gov (United States)

    Hernández-Soriano, M C; Mingorance, M D; Peña, A

    2012-03-01

    A batch test was used to evaluate the extent of desorption of diazinon and dimethoate, preadsorbed on a calcareous agricultural soil, representative of the Mediterranean area. Urban wastewater from a secondary treatment and seven surfactant solutions, at concentrations ranging from 0.75 mg L(-1) to 10 gL(-1), were used. The surfactants assayed were cationic (hexadecyl trimethyl ammonium bromide (HD)), anionic (sodium dodecyl sulfate (SDS), Aerosol 22 (A22) and Biopower (BP)), and nonionic (Tween 80 (TW), Triton X 100 (TX) and Glucopon 600 (G600)). Desorption of dimethoate was either not affected or only slightly by the nonionic and anionic surfactants tested, while desorption of diazinon from the soil was only enhanced by A22, BP and TW. This desorption increase correlated significantly with the surfactant concentration of the solution used for desorption and with the concurrent increase in the supernatant of the dissolved organic carbon, in particular that originating from the surfactant. This parameter did not vary with the use of SDS, G600 and TX. The cationic surfactant HD was retained on the soil surface, as confirmed by an increase in soil organic carbon, resulting in a fall in desorption rate for both pesticides. Comparing treatment by wastewater with control water, there was no difference in desorption rate for either pesticide. Mixed TW/anionic surfactant solutions either did not modify or slightly increased desorption of both pesticides in comparison with individual surfactant solutions.

  6. Weak Solution to a Parabolic Nonlinear System Arising in Biological Dynamic in the Soil

    Directory of Open Access Journals (Sweden)

    Côme Goudjo

    2011-01-01

    Full Text Available We study a nonlinear parabolic system governing the biological dynamic in the soil. We prove global existence (in time and uniqueness of weak and positive solution for this reaction-diffusion semilinear system in a bounded domain, completed with homogeneous Neumann boundary conditions and positive initial conditions.

  7. TNT and RDX degradation and extraction from contaminated soil using subcritical water.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Shin, Moon-Su; Jo, Young-Tae; Park, Jeong-Hun

    2015-01-01

    The use of explosives either for industrial or military operations have resulted in the environmental pollution, poses ecological and health hazard. In this work, a subcritical water extraction (SCWE) process at laboratory scale was used at varying water temperature (100-175 °C) and flow rate (0.5-1.5 mL min(-1)), to treat 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) contaminated soil, to reveal information with respect to the explosives removal (based on the analyses of soil residue after extraction), and degradation performance (based on the analyses of water extracts) of this process. Continuous flow subcritical water has been considered on removal of explosives to avoid the repartitioning of non-degraded compounds to the soil upon cooling which usually occurs in the batch system. In the SCWE experiments, near complete degradation of both TNT and RDX was observed at 175 °C based on analysis of water extracts and soil. Test results also indicated that TNT removal of >99% and a complete RDX removal were achieved by this process, when the operating conditions were 1 mL min(-1), and treatment time of 20 min, after the temperature reached 175 °C. HPLC-UV and ion chromatography analysis confirmed that the explosives underwent for degradation. The low concentration of explosives found in the process wastewater indicates that water recycling may be viable, to treat additional soil. Our results have shown in the remediation of explosives contaminated soil, the effectiveness of the continuous flow SCWE process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The status of phosphorus in Thai soils and P evaluation using EDTA-NaF extraction method

    Directory of Open Access Journals (Sweden)

    Toru Matoh

    2003-07-01

    Full Text Available Although the available P extracted by Bray II method in tropical soil is low, most of tropical plants can grow well. The objective of this study was to study P status and to evaluate the available P extracted by EDTA-NaF method. Top soil and sub soil of 10 dominant soil series in Thailand were analyzed for some chemical properties and characterization of the forms of phosphorus using EDTA-NaF extraction and successive phosphorus extraction by the modified Sekiya method. The soil total P concentration was 38-1137 mg P2O5 kg-1. The available Bray II-P was very low to high (1-76 mg P2O5 kg-1, and it approximated 0.17-12% of the total P. Iron and aluminum phosphates were the main fraction of inorganic P in acid soil, whereas Ca phosphates were in calcareous soils. Organic P content accounted for 33-67% and most of them were bound with Fe and Al in acid soils and Ca in calcareous soils. P extracted by EDTA-NaF reagent was obviously larger than that of Bray II reagent. The EDTA-NaF extracted P [high molecular weight organic P (HMWP+ inorganic P (EDTA ext Pi] was 7-46% and 1-6% of total P in acid soils and calcareous soils respectively. The EDTA ext Pi tended to be larger than HMWP except in Tk soil. The total amount of extracted P correlated well with Al-Pi and Fe-Pi which were the main fraction of inorganic P. It also correlated with HMWP, but HMWP did not correlate with organic P determine by ignition method and Ca-Po, Fe-Po and Al-Po. The EDTA-NaF method may be suitable for P evaluation in the soils which have high amounts of Fe-Pi, Al -Pi and organic P widely distributed in Thailand.

  9. Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil.

    Science.gov (United States)

    Korzeniowska, Jolanta; Stanislawska-Glubiak, Ewa

    2017-06-01

    The aim of the study was to compare the usefulness of 1 M HCl with aqua regia, EDTA, and CaCl2 for the extraction of phytoavailable forms of Cu, Ni, and Zn on coarse-textured soils contaminated with these metals. Two microplot experiments were used for the studies. Reed canary grass (Phalaris arundinacea), maize (Zea mays), willow (Salix viminalis), spartina (Spartina pectinata), and miscanthus (Miscanthus × giganteus) were used as test plants. They were grown on soil artificially spiked with Cu, Ni, and Zn. The experimental design included a control and three increasing doses of metals. Microplots (1 m(2) × 1 m deep) were filled with sandy soil (clay-6%, pH 5.5, Corg-0.8%). Metals in the form of sulfates were dissolved in water and applied to the plot using a hand liquid sprayer. During the harvest, samples were collected from aboveground parts, roots, and the soil and then tested for their Cu, Zn, and Ni contents. The metal content of the soil was determined using four tested extractants. It was found that Cu and Ni were accumulated in roots in bigger amounts than Zn. The usefulness of the extractants was evaluated based on the correlation between the content of metals in the soil and the plant (n = 32). This study demonstrated that 1 M HCl, aqua regia, and EDTA were more efficient or equally useful for the assessment of the phytoavailability of Cu, Ni, and Zn as CaCl2. Due to the ease of performing determinations and their low cost, 1 M HCl can be recommended to assess the excess of Cu, Ni, and Zn in the coarse-textured soils.

  10. Contribution of microorganisms to non-extractable residue formation during biodegradation of ibuprofen in soil

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Karolina M., E-mail: karolina.nowak@ufz.de [UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig (Germany); Department of Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Girardi, Cristobal; Miltner, Anja [UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig (Germany); Gehre, Matthias [UFZ, Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstraße 15, 04318 Leipzig (Germany); Schäffer, Andreas [Department of Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Kästner, Matthias [UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig (Germany)

    2013-02-15

    Non-extractable residues (NER) formed during biodegradation of organic contaminants in soil are considered to be mainly composed of parent compounds or their primary metabolites with hazardous potential. However, in the case of biodegradable organic compounds, the soil NER may also contain microbial biomass components, for example fatty acids (FA) and amino acids (AA). After cell death, these biomolecules are subsequently incorporated into non-living soil organic matter (SOM) and are stabilised ultimately forming hardly extractable residues of biogenic origin. We investigated biodegradation of {sup 13}C{sub 6}-ibuprofen, in particular the metabolic incorporation of the {sup 13}C-label into FA and AA and their fate in soil over 90 days. {sup 13}C-FA and {sup 13}C-AA amounts in the living microbial biomass fraction initially increased, then decreased over time and were continuously incorporated into the non-living SOM pool. The {sup 13}C-FA in the non-living SOM remained stable from day 59 whereas the contents of {sup 13}C-AA slightly increased until the end. After 90 days, nearly all NER were biogenic as they were made up almost completely by natural biomass compounds. The presented data demonstrated that the potential environmental risks related to the ibuprofen-derived NER are overestimated. - Highlights: ► Biogenic residue formation during microbial degradation of ibuprofen was studied. ► Nearly all non-extractable residues derived from ibuprofen were biogenic. ► Fatty acids and amino acids formed biogenic non-extractable residues and were stabilised in soil. ► Environmental risks of ibuprofen-derived non-extractable residues are overestimated.

  11. EVALUATION OF GEOCHEMICAL QUALITY CONTROL IN DETERMINATION OF Mn IN SOILS USING A SEQUENTIAL CHEMICAL EXTRACTION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Sequential chemical extraction procedure has been widely used to partition particulate trace metals into various fractions and to describe the distribution and the statue of trace metals in geo-environment. One sequential chemical extraction procedure was employed here to partition various fractions of Mn in soils. The experiment was designed with quality controlling concept in order to show sampling and analytical error. Experimental results obtained on duplicate analysis of all soil samples demonstrated that the precision was less than 10% (at 95% confidence level). The accuracy was estimated by comparing the accepted total concentration of Mn in standard reference materials (SRMs) with the measured sum of the individual fractions. The recovery of Mn from SRM1 and SRM2 was 94.1% and 98.4% , respectively. The detection limit, accuracy and precision of the sequential chemical extraction procedure were discussed in detailed. All the results suggest that the trueness of the analytical method is satisfactory.

  12. Relationships between spruce plantation age, solute and soil chemistry in Hafren forest

    Directory of Open Access Journals (Sweden)

    P. A. Stevens

    1997-01-01

    Full Text Available Rain, throughfall, soil waters from surface peaty O horizon and deeper mineral B horizon, and stream water, were collected every four weeks for one year in a moorland catchment, and in four forested catchments. The four forested catchments represented an age sequence of first rotation Sitka spruce plantations, aged 14, 28, 37 and 53 years. All water samples were analysed for all major solutes, including dissolved organic nitrogen (DON-N; stream water and B horizon soil waters were also subjected to aluminium speciation. In each catchment, soil samples were collected on one occasion and pH was measured. Concentrations of most solutes were substantially higher in the 37 year old forest stand than in the moorland catchment, with intermediate concentrations in the two younger stands and 53 year old stand. In particular, higher nitrate-N concentrations were found in the soils and streams of the older forests, although these concentrations tended to be highest in the 37 year old stand. Acid neutralizing capacity (ANC of soil waters was lower in the B horizon of the forest stands than in the moorland, and tended to decline with increasing forest age. Soil water from both O and B horizons was most acid in the 37 year old stand, and the water from the soil O horizon in all four forest stands was more acid than that in moorland sites. The pH of the soil itself (as measured in a deionised water slurry was lower in the forest stands than in moorland, although trends with forest age were complex.

  13. Solute Spreading in Variably Saturated, Spatially Heterogeneous Formations: The Role of Water Saturation and Soil Texture

    Science.gov (United States)

    Russo, David

    2017-04-01

    Solute spreading provoked by the spatial heterogeneity in the soil hydraulic properties, and expressed in terms of the macrodispersion tensor, D, plays an important role in solute transport on the field scale. Under variably saturated flow conditions, quantification of D is rather complicated inasmuch as the relevant flow parameters, which depend on the formation properties, depend also on flow-controlled attributes in a highly nonlinear fashion, which, in turn, depends on the soil texture of the formation. The situation may be further complicated when the formation contains inclusions of different soil material and its hydraulic properties follow a bimodal distribution. The present talk focuses on the quantification of D in bimodal, heterogeneous, variably saturated formations, viewed as mixtures of two populations (background soil and embedded soil) of differing spatial structures. Two distinct cases are considered; in the first case, the texture of the embedded soil is finer than that of the background soil, while the second case conists of the reverse situation. First-order, Lagrangian stochastic analyses of vadose zone transport were used to invesigate the combined effect of the texture of the embedded soil and the mean pressure head on solute spreading in these formations. Results of the first-order analysis suggest that the embedded soil material may act as a capture zone for the solute particles, and, consequently, may enhance solute spreading in a manner which depends on both the texture of the embedded soil and the mean pressure head. In the first case, when the formation is relatively wet, the capture zone stems from the fine-textured embedded soil. In the second case, when the formation is relatively dry, the capture zone stems from coarse-textured embedded soil associated with very low unsaturated conductivity, which, in turn, may divert the flow into preferential flow paths around the coarse-texture, soil inclusions. Important finding of the first

  14. Two decades of chemical imaging of solutes in sediments and soils

    DEFF Research Database (Denmark)

    Santner, Jakob; Larsen, Morten; Kreuzeder, Andreas;

    2015-01-01

    sampling of solutes (diffusive equilibration in thin films, diffusive gradients in thin films) followed by planar luminescent sensors (planar optodes) have been used as analytical tools for studies on solute distribution and dynamics. These approaches have provided new conceptual and quantitative......-called sandwich sensors for multianalyte measurements. Here we review the capabilities and limitations of the chemical imaging methods that are currently at hand, using a number of case studies, and provide an outlook on potential future developments for two-dimensional solute imaging in soils and sediments....

  15. Extraction equilibrium of indium(III) from nitric acid solutions by di(2-ethylhexyl)phosphoric acid dissolved in kerosene

    National Research Council Canada - National Science Library

    Tsai, Hung-Sheng; Tsai, Teh-Hua

    2012-01-01

    The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied...

  16. Arsenic bioaccessibility in contaminated soils: Coupling in vitro assays with sequential and HNO3 extraction.

    Science.gov (United States)

    Li, Shi-Wei; Li, Jie; Li, Hong-Bo; Naidu, Ravi; Ma, L Q

    2015-09-15

    Arsenic bioaccessibility varies with in vitro methods and soils. Four assays including unified BARGE method (UBM), Solubility Bioaccessibility Research Consortium method (SBRC), in vitro gastrointestinal method (IVG), and physiologically based extraction test (PBET), were used to determine As bioaccessibility in 11 contaminated soils (22-4,172 mg kg(-1)). The objective was to understand how bioaccessible As by different methods was related to different As pools based on sequential extraction and 0.43 M HNO3 extraction. Arsenic bioaccessibility was 7.6-25, 2.3-49, 7.3-44, and 1.3-38% in gastric phase (GP), and 5.7-53, 0.46-33, 2.3-42, and 0.86-43% in intestinal phase (IP) for UBM, SBRC, IVG, and PBET, respectively, with HNO3-extractable As being 0.90-60%. Based on sequential extraction, As was primarily associated with amorphous (AF3; 17-79%) and crystallized Fe/Al oxides (CF4; 6.4-73%) while non-specifically sorbed (NS1), specifically sorbed (SS2), and residual fractions (RS5) were 0-10%, 3.4-20% and 3.2-25%. Significant correlation was found between As bioaccessibility by PBET and NS1+SS2 (R(2) = 0.55-0.69), and UBM-GP and NS1 + SS2 + AF3 (R(2) = 0.58), indicating PBET mostly targeted As in NS1+SS2 whereas UBM in NS1 + SS2 + AF3. HNO3-extractable As was correlated to bioaccessible As by four methods (R(2) = 0.42-0.72) with SBRC-GP having the best correlation. The fact that different methods targeted different As fractions in soils suggested the importance of validation by animal test. Our data suggested that HNO3 may have potential to determine bioaccessible As in soils. Published by Elsevier B.V.

  17. Changes to Extractable Soil Amino Compounds Under Elevated CO2 and Ozone in an Aspen Plantation

    Science.gov (United States)

    Top, S. M.; Filley, T. R.; Zhang, X.

    2011-12-01

    Forests growing under elevated concentrations of atmospheric CO2 and ozone exhibit changes to root and foliar chemistry and quality that are related to changes in physiology, N limitation, and leaf damage. Additionally, there are documented changes to the activity of some understory invertebrate populations, and a variety of responses to soil organic matter ranging from accrual in the upper few centimeters to loss of soil C and N over the upper 20 cm. Under such conditions, however, the cycling of specific amino compounds is poorly understood. Knowledge of the role that new plant N plays in supporting soil microbial populations and soil C and N dynamics is important to fully understand relationships between N limitation under elevated CO2-induced productivity increases and available organic N pools in soil. We investigated the composition and concentration of hydrolysable amino compounds (amino acids and amino sugars) in litter, roots, soil, and earthworm fecal matter from the free-air CO2 enrichment (FACE) sites at Rhinelander, WI. Under elevated CO2 amino acids, when normalized to total N, exhibited change in both amount (decrease) and composition among roots (amino acids showed only minor changes with depth in the ambient and ozone treatments. Ozonated rings exhibited a lower release of amino compounds (with respect to total N) compared to ambient and elevated CO2, which may suggest poorer quality input. For soil organic matter extractable amino acids (normalized to total soil N) exhibited changes similar to roots among the treatment. These results indicate that CO2 and ozone significantly influence amino compound dynamics in both soil and input which should impact the overall ability to decompose and preserve soils in such environments.

  18. Factors controlling spatial variability of DOC concentrations in soil solution at European level

    Science.gov (United States)

    Camino Serrano, Marta; Janssens, Ivan; Luyssaert, Sebastiaan; Gielen, Bert; Guenet, Bertrand; De Vos, Bruno; Ciais, Philippe

    2013-04-01

    The lateral transport of dissolved organic carbon (DOC) is an important and not well-understood process linking terrestrial and aquatic ecosystems. Up to day very few Earth System Models (ESMs) represent explicitly this process despite its crucial role in the global carbon cycle. However, to be able to integrate DOC leaching in ESMs, more accurate information is needed in order to better understand and predict DOC dynamics. DOC concentrations mainly vary by geographical location, soil and vegetation types, topography, season and climate. Within this framework, a database was designed to compile data on DOC in soil solution at different depths in different ecosystems around the world, with special focus on European sites. The database contains information on 349 sites, with 304 being forest, gathered from published literature and datasets accessible on the internet. A substantial dataset was provided by International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). The database also includes other meta-data related to the sites, such as land cover, soil properties, climate, annual water balance and other soil solution parameters. The analysis of the database has been focused on: 1) the study of the environmental and physical factors that are acting as drivers of DOC concentrations changes in soil solution across sites at European level , and 2) the DOC distribution through the soil profile and how this varies with different vegetation types and soil properties. The preliminary results show that variables related to biological processes (Dry weight of the organic layer, for example) are the most important in explaining the spatial distribution of the DOC concentration in soil solution at the European scale. However, the interactions between variables are complex and we will need further analysis in order to draw more robust conclusions. With regards to the vertical profile of DOC, we found that there is a

  19. Exact solutions to the continuous-quality equation for soil organic matter turnover.

    Science.gov (United States)

    Bosatta, Ernesto; Agren, Göran I

    2003-09-07

    All living systems depend on transformations of elements between different states. In particular, the transformation of dead organic matter in the soil (SOM) by decomposers (microbes) releases elements incorporated in SOM and makes the elements available anew to plants. A major problem in analysing and describing this process is that SOM, as the result of the decomposer activity, is a mixture of a very large number of molecules with widely differing chemical and physical properties. The continuous-quality equation (CQE) is a general equation describing this complexity by assigning a continuous-quality variable to each carbon atom in SOM. The use of CQE has been impeded by its complicated mathematics. Here, we show by deriving exact solutions that, at least for some specific cases, there exist solutions to CQE. These exact solutions show that previous approximations have overestimated the rate by which litter decomposes and as a consequence underestimated steady state SOM amounts. The exact and approximate solutions also differ with respect to the parameter space in which they yield finite steady-state SOM amounts. The latter point is important because temperature is one of the parameters and climatic change may move the solution from a region of the parameter space with infinite steady-state SOM to a region of finite steady-state SOM, with potentially large changes in soil carbon stores. We also show that the solution satisfies the Chapman-Kolmogorov theorem. The importance of this is that it provides efficient algorithms for numerical solutions.

  20. Efficient DNA extraction from nail clippings using the protease solution from Cucumis melo.

    Science.gov (United States)

    Yoshida-Yamamoto, Shumi; Nishimura, Sayaka; Okuno, Teruko; Rakuman, Miki; Takii, Yukio

    2010-09-01

    Owing to the increasing importance of genomic information, obtaining genomic DNA easily from biological specimens has become more and more important. This article proposes an efficient method for obtaining genomic DNA from nail clippings. Nail clippings can be easily obtained, are thermostable and easy to transport, and have low infectivity. The drawback of their use, however, has been the difficulty of extracting genomic material from them. We have overcome this obstacle using the protease solution obtained from Cucumis melo. The keratinolytic activity of the protease solution was 1.78-fold higher than that of proteinase K, which is commonly used to degrade keratin. With the protease solution, three times more DNA was extracted than when proteinase K was used. In order to verify the integrity of the extracted DNA, genotype analysis on 170 subjects was performed by both PCR-RFLP and Real Time PCR. The results of the genotyping showed that the extracted DNA was suitable for genotyping analysis. In conclusion, we have developed an efficient extraction method for using nail clippings as a genome source and a research tool in molecular epidemiology, medical diagnostics, and forensic science.

  1. Plant extracts, metaldehyde and saline solutions on the population control of Bradybaena similaris

    Directory of Open Access Journals (Sweden)

    Junir Antonio Lutinski

    2016-08-01

    Full Text Available ABSTRACT: This study aimed to test the efficiency of plant extracts, metaldehyde and saline solutions, as alternatives to the population control of the snail Bradybaena similaris , and to investigate the effect of the plant extracts in reducing the damage of the snail on Brassica oleracea . The experiments were performed at the Entomology Laboratory of the Universidade Comunitária da Região de Chapecó (Unochapecó, using a random experimental design with nine treatments in triplicate. Five adult individuals of B. similaris were subjected to each trial, totaling 135 snails. The following treatments were tested: cinnamon ( Melia azedarach , timbó ( Ateleia glazioveana , rosemary ( Rosmarinus officinalis , mate herb ( Ilex paraguariensis , two concentrations of metaldehyde (3% and 5%, two concentrations of salt solution (5% and 10 %, and a control treatment (distilled water. To evaluate the survival of B. similaris it was checked the treatments every 24 hours, over four consecutive days. The results revealed that the two concentrations of metaldehyde were fully efficient, that the saline solution (10% had and intermediate efficiency, and that all other treatments were not effective. The treatment with the M. azedarach extract induced a higher consumption of B. oleracea , while the saline solution at 10% and the extracts of R. officinalis and I. paraguariensis inhibited leaf consumption.

  2. Biochar as a sorbent for chlorinated hydrocarbons - sorption and extraction experiments in single and bi-solute systems

    Science.gov (United States)

    Schreiter, Inga J.; Wefer-Roehl, Annette; Graber, Ellen R.; Schüth, Christoph

    2017-04-01

    Biochar (BC) is increasingly deemed a potential sorbent for contaminants in soil and water remediation, and brownfield restoration. In this study, sorption and extraction experiments were performed to assess the potential of three different BCs to sorb and retain the chlorinated hydrocarbons trichloroethylene (TCE) and tetrachloroethylene (PCE). BCs studied were produced from wood chips, grain husk, and cattle manure at 450 °C. A commercially available activated carbon (AC) served as a reference. The sorption behaviour was studied in batch experiments in single solute and bi-solute systems. Resulting isotherms were fitted to the Freundlich model. To assess the desorption behaviour, a five-step extraction scheme (water at 40°C, water at 80°C, methanol at 50°C, toluene at 50°C, and n-hexane at 50°) was developed, utilizing Accelerated Solvent Extraction