WorldWideScience

Sample records for extracted proton beam

  1. On the energy dependence of proton beam extraction with a bent crystal

    CERN Document Server

    Arduini, Gianluigi; Fidecaro, Giuseppe; Gyr, Marcel; Herr, Werner; Klem, J T; Mikkelsen, U; Weisse, E

    1998-01-01

    Proton beam extraction from the CERN SPS by means of a bent silicon crystal is reported at three different energies, 14 GeV, 120 GeV and 270 GeV. The experimental results are compared to computer simulations which contain a sound model of the SPS accelerator as well as the channeling phenomena in bent crystals. The overall energy dependence of crystal assisted proton beam extraction is understood and provides the basis to discuss such a scheme for future accelerators.

  2. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    Science.gov (United States)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  3. Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron

    CERN Document Server

    Garcia, J B

    2011-01-01

    The proton beams used for the fixed target physics at the Super Proton Synchrotron (SPS) are extracted from the Proton Synchrotron ( PS) by a multiturn technique called continuous transfer (CT). During the CT extraction, large losses are observed in locations where the machine aperture should be large enough to accommodate the circulating beam. This limits the maximum intensity deliverable due to the induced stray radiation outside the PS tunnel. Scattered particles from the interaction with the electrostatic septum are identified as the possible source of these losses. This article presents a detailed study aiming to understand the origin of losses and propose possible cures. The simulations could reproduce accurately the beam loss pattern measured in real machine operation and determine the beam shaving, intrinsic to the extraction process, as the cause for the unexpected losses. Since these losses are unavoidable, the proposed solution implies a new optics scheme displacing the losses to a region with bett...

  4. On the energy dependence of proton beam extraction with a bent crystal

    Science.gov (United States)

    Arduini, G.; Elsener, K.; Fidecaro, G.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Weisse, E.

    1998-03-01

    Proton beam extraction from the CERN SPS by means of a bent silicon crystal is reported at three different energies, 14 GeV, 120 GeV and 270 GeV. The experimental results are compared to computer simulations which contain a sound model of the SPS accelerator as well as the channeling phenomena in bent crystals. The overall energy dependence of crystal assisted proton beam extraction is understood and provides the basis to discuss such a scheme for future accelerators. © 1998

  5. Monitoring the extracted proton beam at the SPS

    CERN Multimedia

    1977-01-01

    Fluorescent screens in front of the target positions allow a precise adjustement in front of them. A similar photo was recorded at the beam dump at the beam injection into the SPS, see Weekly Bulletin of April 1976.

  6. High efficiency multi-pass proton beam extraction with a bent crystal at the SPS

    Science.gov (United States)

    Altuna, X.; Bussa, M. P.; Carboni, G.; Dehning, B.; Elsener, K.; Ferrari, A.; Fidecaro, G.; Freund, A.; Guinand, R.; Gyr, M.; Herr, W.; Klem, J.; Laffin, M.; Lanceri, L.; Mikkelsen, U.; Møller, S. P.; Scandale, W.; Tosello, F.; Uggerhøj, E.; Vuagnin, G.; Weisse, E.; Weisz, S.

    1995-02-01

    Recent measurements of 120 GeV proton extraction by means of a bent silicon crystal at the CERN-SPS accelerator are summarized. The existence of multi-pass extraction has been proven by blocking first-pass extraction: using a crystal covered with an amorphous layer, extracted beam with high efficiency was observed, which provides a direct proof for the importance of the multi-pass mechanism. This opens new possibilities in the design and optimization of a bent crystal extraction scheme.

  7. Proton and Pb ion beam extraction experiments with bent crystals at the CERN-SPS

    CERN Document Server

    Elsener, K; Klem, J T; CERN. Geneva. SPS and LEP Division

    1997-01-01

    Extraction of particle beams from the CERN-SPS using bent silicon crystals is described. A summary of the early results is given. Emphasis is on the recent experiments, in particular on the energy dependence of proton extraction at 14, 120 and 270 GeV. 'U-shaped' crystals of different thickness and with a different miscut angle have been compared at 120 GeV. Non-linear excitation of the beam was used in one experiment, with the aim to achieve larger impact parameters - the results show a particular behaviour in the tails of the beam. Finally, the first experimental result on extraction of a 22 TeV fully stripped Pb ion beam with a bent crystal is also described.

  8. Transverse beam splitting made operational: Key features of the multiturn extraction at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    A. Huschauer

    2017-06-01

    Full Text Available Following a successful commissioning period, the multiturn extraction (MTE at the CERN Proton Synchrotron (PS has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS since September 2015. This exceptional extraction technique was proposed to replace the long-serving continuous transfer (CT extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of nonlinear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and nonlinear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. This paper focuses on these key features including the use of the transverse damper and the septum shadowing, which allowed a transition from the MTE study to a mature operational extraction scheme.

  9. Transverse beam splitting made operational: Recent progress of the multi-turn extraction at the CERN proton synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Borburgh, Jan; Damjanovic, Sanja; Gilardoni, Simone; Giovannozzi, Massimo; Hourican, Michael; Kahle, Karsten; Michels, Olivier; Sterbini, Guido; Hernalsteens, Cedric; Le Godec, Gilles

    2016-01-01

    Following a successful commissioning period, the Multi-Turn Extraction (MTE) at the CERN Proton Synchrotron (PS) has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS) since September 2015. This exceptional extraction technique was proposed to replace the long-serving Continuous Transfer (CT) extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of non-linear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and non-linear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. The results of the related experimental and simulation studies, a summary ...

  10. MARS Tracking Simulations for the Mu2e Slow Extracted Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Nagaslaev, Vladimir [Fermilab; Rakhno, Igor [Fermilab

    2015-06-01

    Particle tracking taking into account interactions with fields and materials is necessary for proper evaluation of the resonant extraction losses and geometry optimization for the extraction beam line. This paper describes the tracking simulations for the Mu2e Resonant Extraction and discusses the geometry choices made based on these simulations.

  11. Observation and comparative analysis of proton beam extraction or collimation by different planar channels of a bent crystal

    Directory of Open Access Journals (Sweden)

    A. G. Afonin

    2012-08-01

    Full Text Available In the experiment the efficiency of the 50 GeV proton beam extraction from accelerator by means of a bent crystal as a function of crystal orientation was measured. This allowed one to make a comparative analysis of efficiencies of high-energy protons deflection by different crystal atomic planes with different values of the electrostatic field. The results of simulation of high-energy protons deflection by means of crystal atomic planes and crystal atomic strings are also presented in the article. In the case of planar channeling the simulation shows a good agreement with experimental data. In the case of proton motion in the regime of stochastic scattering by bent atomic strings the simulation shows that angles of particle deflection are much greater than the critical channeling angle.

  12. Investigation of regime of intensive extraction of proton beam by curved crystal during simultaneous operation with internal targets on IHEP-U-70 accelerator

    CERN Document Server

    Afonin, A G; Galjaev, A N; Gres, V N; Grishina, S Y; Zapolskii, V N; Zelenov, B A; Kotov, V I; Maisheev, V A; Medvedev, V A; Minchenko, A V; Terekhov, V I; Troyanov, E F; Fedotov, Y S; Chesnokov, Yu A

    2002-01-01

    On describes a technique to extract proton beam from the IHEP U-70 synchrotron using a silicon curved crystal at simultaneous operation of several internal targets. The optimal range of crystal angles of curvature constitutes 0.5-2.5 mrad, beam length - 2-5 mm. The intensity range of the extracted beam may vary depending on the requirements imposed by physical experimental facilities ranging from 10 sup 7 up to 6.0 x 10 sup 1 sup 1 protons per U-70 operation cycle. The elaborated technique to extract accelerated beam by short crystals extends essentially possibilities to conduct physical researches using an accelerator

  13. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  14. MTN magnet for the SPS extracted beam.

    CERN Multimedia

    1976-01-01

    This type of dipole magnet was used in the extracted beam lines of the North Area. It shows an opening for three different proton beam lines: a primary extracted proton beam, split by an upstream magnetic beam splitter (see photo 7612017) into three separated beams passes through different parts of its aperture: right, left up, left down. These magnets were designed to be concrete-insulated for radiation resistance. F. Streun stands on the right.

  15. Conceptual design of proton beam window

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Kaminaga, Masanori; Terada, Atsuhiko; Ishikura, Syuichi; Kinoshita, Hidetaka; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In a MW-scale neutron scattering facility coupled with a high-intensity proton accelerator, a proton beam window is installed as the boundary between a high vacuum region of the proton beam transport line and a helium environment around the target assembly working as a neutron source. The window is cooled by water so as to remove high volumetric heat generated by the proton beam. A concept of the flat-type proton beam window consisting of two plates of 3 mm thick was proposed, which was found to be feasible under the proton beam power of 5 MW through thermal-hydraulic and structural strength analyses. (authors)

  16. High Intensity Secondary Beams Driven by Protons

    CERN Document Server

    Galambos, John; Nagaitsev, Sergei

    2013-01-01

    As part of the Intensity Frontier effort within the 2013 Community Summer Study, a workshop on the proton machine capabilities was held (High Intensity Secondary Beams Driven by Proton Beams) April 17-20, 2013 at Brookhaven National Laboratory in Upton, NY. Primary aims of the workshop were to understand: 1) the beam requirements for proposed high intensity proton beam based measurements; 2) the capabilities of existing world-wide high power proton machines; 3) proton facility upgrade plans and proposals for new facilities; 4) and to document the R&D needs for proton accelerators and target systems needed to support proposed intensity frontier measurements. These questions are addressed in this summary.

  17. BEAM SCRUBBING FOR RHIC POLARIZED PROTON RUN.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,S.Y.FISCHER,W.HUANG,H.ROSER,T.

    2004-07-05

    One of the intensity limiting factor of RHIC polarized proton beam is the electron cloud induced pressure rise. A beam scrubbing study shows that with a reasonable period of time of running high intensity 112-bunch proton beam, the pressure rise can be reduced, allowing higher beam intensity.

  18. The clinical case for proton beam therapy

    Directory of Open Access Journals (Sweden)

    Foote Robert L

    2012-10-01

    Full Text Available Abstract Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. Summary sentence Proton beam therapy is a technically advanced and promising form of radiation therapy.

  19. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2010-09-21

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  20. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  1. Energy spectrum control for modulated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N. [Midwest Proton Radiotherapy Institute, Bloomington, Indiana 47408 and University Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States); Proton Therapy, Inc., Colton, California 92324 (United States); Indiana University Cyclotron Facility, Bloomington, Indiana 47408 (United States); Midwest Proton Radiotherapy Institute, Bloomington, Indiana 47408 and University Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States); Midwest Proton Radiotherapy Institute, Bloomington, Indiana 47408 (United States); University Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States) and Westdeutsches Protonentherapiezentrum, Universitaetsklinikum, Hufelandstrasse 55, 45147 Essen (Germany); Midwest Proton Radiotherapy Institute, Bloomington, Indiana 47408 (United States); University Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States) and ProCure Treatment Centers, Inc., Bloomington, Indiana 47404 (United States)

    2009-06-15

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to {+-}21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than {+-}3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.

  2. Energy spectrum control for modulated proton beams

    Science.gov (United States)

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N.

    2009-01-01

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to ±21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than ±3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies. PMID:19610318

  3. Polarized proton beams since the ZGS

    Energy Technology Data Exchange (ETDEWEB)

    Krisch, A.D.

    1994-12-31

    The author discusses research involving polarized proton beams since the ZGS`s demise. He begins by reminding the attendee that in 1973 the ZGS accelerated the world`s first high energy polarized proton beam; all in attendance at this meeting can be proud of this accomplishment. A few ZGS polarized proton beam experiments were done in the early 1970`s; then from about 1976 until 1 October 1979, the majority of the ZGS running time was polarized running. A great deal of fundamental physics was done with the polarized beam when the ZGS ran as a dedicated polarized proton beam from about Fall 1977 until it shut down on 1 October 1979. The newly created polarization enthusiats then dispersed; some spread polarized seeds al over the world by polarizing beams elsewhere; some wound up running the High Energy and SSC programs at DOE.

  4. Beam stripping extraction from the VINCY cyclotron

    Directory of Open Access Journals (Sweden)

    Ristić-Đurović Jasna L.

    2006-01-01

    Full Text Available The extraction system of a cyclotron guides an ion beam from a spiral acceleration orbit, through an extraction trajectory, into a high energy transport line. The two methods commonly used to direct an ion into the extraction path are deflection, by the electric field of an electrostatic deflector, and ion stripping, by a thin carbon foil. Compared to the electrostatic deflector system, the stripping extraction provides a fast and easy change of the extracted ion energy and is easier to manufacture operate, and maintain. However, the extraction trajectory and dynamics of an ion beam after stripping are highly dependant on the ion energy and specific charge. Thus, when a multipurpose machine such as the VINCY Cyclotron is concerned, it is far from easy to deliver a variety of ion beams into the same high energy transport line and at the same time preserve a reasonable compactness of the extraction system. The front side stripping extraction system of the VINCY Cyclotron provides high (~70 MeV and mid (~30 MeV energy protons, as well as a number of heavy ions in broad energy ranges. The back side stripping extraction system extracts low energy protons (~18 MeV and enables their simultaneous use with high energy protons at the front side of the machine.

  5. Design Study for Pulsed Proton Beam Generation

    Directory of Open Access Journals (Sweden)

    Han-Sung Kim

    2016-02-01

    Full Text Available Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

  6. Polarizing a stored proton beam by spin-flip?

    Energy Technology Data Exchange (ETDEWEB)

    Oellers, Dieter Gerd Christian

    2010-04-15

    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections {sigma} {sub parallel} and {sigma} {sub perpendicular} {sub to} are deduced using the likelihood method. (orig.)

  7. First results on proton extraction from the CERN-SPS with a bent crystal

    Science.gov (United States)

    Akbari, H.; Altuna, X.; Bardin, S.; Bellazzini, R.; Biryukov, V.; Brez, A.; Bussa, M. P.; Busso, L.; Calcaterra, A.; Carboni, G.; Costantini, F.; de Sangro, R.; Elsener, K.; Ferioli, F.; Ferrari, A.; Ferri, G. P.; Ferroni, F.; Fidecaro, G.; Freund, A.; Guinand, R.; Gyr, M.; Herr, W.; Hilaire, A.; Jensen, B. N.; Klem, J.; Lanceri, L.; Maier, K.; Massai, M. M.; Mertens, V.; Møller, S. P.; Morganti, S.; Palamara, O.; Peraire, S.; Petrera, S.; Placidi, M.; Santacesaria, R.; Scandale, W.; Schmidt, R.; Taratin, A. M.; Tosello, F.; Uggerhøj, E.; Vettermann, B.; Vita, P. F.; Vuagnin, G.; Weisse, E.; Weisz, S.

    1993-09-01

    The feasibility of extracting protons from the halo of a high energy beam by means of a bent silicon crystal has been investigated. Protons diffusing from a GeV beam circulating in the SPS at CERN have been extracted at an angle of 8.5 mrad. Efficiencies of abour 10 percent, orders of magnitude higher than the values achieved previously, have been measured. The present results are promising in view of beam extraction from future multi-TeV proton accelerators.

  8. Splitting of high power, cw proton beams

    CERN Document Server

    Facco, Alberto; Berkovits, Dan; Yamane, Isao

    2007-01-01

    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  9. Principles and practice of proton beam therapy

    CERN Document Server

    Das, Indra J

    2015-01-01

    Commissioned by The American Association of Physicists in Medicine (AAPM) for their June 2015 Summer School, this is the first AAPM monograph printed in full color. Proton therapy has been used in radiation therapy for over 70 years, but within the last decade its use in clinics has grown exponentially. This book fills in the proton therapy gap by focusing on the physics of proton therapy, including beam production, proton interactions, biology, dosimetry, treatment planning, quality assurance, commissioning, motion management, and uncertainties. Chapters are written by the world's leading medical physicists who work at the pioneering proton treatment centers around the globe. They share their understandings after years of experience treating thousands of patients. Case studies involving specific cancer treatments show that there is some art to proton therapy as well as state-of-the-art science. Even though the focus lies on proton therapy, the content provided is also valuable to heavy charged particle th...

  10. Neutron beams from protons on beryllium.

    Science.gov (United States)

    Bewley, D K; Meulders, J P; Octave-Prignot, M; Page, B C

    1980-09-01

    Measurements of dose rate and penetration in water have been made for neutron beams produced by 30--75 MeV protons on beryllium. The effects of Polythene filters added on the target side of the collimator have also been studied. A neutron beam comparable with a photon beam from a 4--8 MeV linear accelerator can be produced with p/Be neutrons plus 5 cm Polythene filtrations, with protons in the range 50--75 MeV. This is a more economical method than use of the d/Be reaction.

  11. Fan-beam intensity modulated proton therapy

    Science.gov (United States)

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-01-01

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  12. Proton beam therapy how protons are revolutionizing cancer treatment

    CERN Document Server

    Yajnik, Santosh

    2013-01-01

    Proton beam therapy is an emerging technology with promise of revolutionizing the treatment of cancer. While nearly half of all patients diagnosed with cancer in the US receive radiation therapy, the majority is delivered via electron accelerators, where photons are used to irradiate cancerous tissue. Because of the physical properties of photon beams, photons may deposit energy along their entire path length through the body. On the other hand, a proton beam directed at a tumor travels in a straight trajectory towards its target, gives off most of its energy at a defined depth called the Bragg peak, and then stops. While photons often deposit more energy within the healthy tissues of the body than within the cancer itself, protons can deposit most of their cancer-killing energy within the area of the tumor. As a result, in the properly selected patients, proton beam therapy has the ability to improve cure rates by increasing the dose delivered to the tumor and simultaneously reduce side-effects by decreasing...

  13. SPS Beam Steering for LHC Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, Eliana [Fermilab; Bartosik, Hannes [CERN; Cornelis, Karel [CERN; Norderhaug Drøsdal, Lene [CERN; Goddard, Brennan [CERN; Kain, Verena [CERN; Meddahi, Malika [CERN; Papaphilippou, Yannis [CERN; Wenninger, Jorg [CERN

    2014-07-01

    The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.

  14. SPS Beam Steering for LHC Extraction

    CERN Document Server

    Gianfelice Wendt, E; Cornelis, K; Norderhaug Drosdal, L; Goddard, B; Kain, V; Meddahi, M; Papaphilippou, Y; Wenninger, J

    2014-01-01

    Beside producing beams for fixed target operation, the CERN Super Proton Synchrotron (SPS) accelerates beams for injection into the Large Hadron Collider (LHC). During the 2012-2013 run drifts of the extracted beam horizontal trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. The feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, has been therefore investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed. As the observed drift is mainly horizontal, the horizontal plane only will be considered.

  15. Compensation techniques in NIRS proton beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Akanuma, A. (Univ. of Tokyo, Japan); Majima, H.; Furukawa, S.

    1982-09-01

    Proton beam has the dose distribution advantage in radiation therapy, although it has little advantage in biological effects. One of the best advantages is its sharp fall off of dose after the peak. With proton beam, therefore, the dose can be given just to cover a target volume and potentially no dose is delivered thereafter in the beam direction. To utilize this advantage, bolus techniques in conjunction with CT scanning are employed in NIRS proton beam radiation therapy planning. A patient receives CT scanning first so that the target volume can be clearly marked and the radiation direction and fixation method can be determined. At the same time bolus dimensions are calculated. The bolus frames are made with dental paraffin sheets according to the dimensions. The paraffin frame is replaced with dental resin. Alginate (a dental impression material with favorable physical density and skin surface contact) is now employed for the bolus material. With fixation device and bolus on, which are constructed individually, the patient receives CT scanning again prior to a proton beam treatment in order to prove the devices are suitable. Alginate has to be poured into the frame right before each treatments. Further investigations are required to find better bolus materials and easier construction methods.

  16. Method and apparatus for laser-controlled proton beam radiology

    Science.gov (United States)

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  17. Beam Phase Detection for Proton Therapy Accelerators

    CERN Document Server

    Aminov, Bachtior; Getta, Markus; Kolesov, Sergej; Pupeter, Nico; Stephani, Thomas; Timmer, J

    2005-01-01

    The industrial application of proton cyclotrons for medical applications has become one of the important contributions of accelerator physics during the last years. This paper describes an advanced vector demodulating technique used for non-destructive measurements of beam intensity and beam phase over 360°. A computer controlled I/Q-based phase detector with a very large dynamic range of 70 dB permits the monitoring of beam intensity, phase and eventually energy for wide range of beam currents down to -130 dBm. In order to avoid interference from the fundamental cyclotron frequency the phase detection is performed at the second harmonic frequency. A digital low pass filter with adjustable bandwidth and steepness is implemented to improve accuracy. With a sensitivity of the capacitive pickup in the beam line of 30 nV per nA of proton beam current at 250 MeV, accurate phase and intensity measurements can be performed with beam currents down to 3.3 nA.

  18. Beam forming system modernization at the MMF linac proton injector

    CERN Document Server

    Derbilov, V I; Nikulin, E S; Frolov, O T

    2001-01-01

    The isolation improvements of the beam forming system (BFS) of the MMF linac proton injector ion source are reported. The mean beam current and,accordingly, BFS electrode heating were increased when the MMF linac has began to operate regularly in long beam sessions with 50 Hz pulse repetition rate. That is why the BFS electrode high-voltage isolation that was made previously as two consequently and rigidly glued solid cylinder insulators has lost mechanical and electric durability. The substitution of large (160 mm) diameter cylinder insulator for four small diameter (20 mm) tubular rods has improved vacuum conditions in the space of beam forming and has allowed to operate without failures when beam currents being up to 250 mA and extraction and focusing voltage being up to 25 and 40 kV respectively. Moreover,the construction provides the opportunity of electrode axial move. The insulators are free from electrode thermal expansion mechanical efforts in a transverse direction.

  19. Energy Production Demonstrator for Megawatt Proton Beams

    CERN Document Server

    Pronskikh, Vitaly S; Novitski, Igor; Tyutyunnikov, Sergey I

    2014-01-01

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however...

  20. Measurement of / values using proton beam

    Indian Academy of Sciences (India)

    G A V Ramanamurthy; K Ramachandra Rao; Y Rama Krishna; P Venkateswarlu; K Bhaskara Rao; P V Ramana Rao; S Venkata Ratnam; V Seshagiri Rao; G J Nagaraju; S Bhuloka Reddy

    2001-05-01

    The / intensity ratios are measured in some 3 shell elements by using a 2 MeV proton beam along with a high resolution Si(Li) detector. The present / intensity ratios are in good agreement with Scofield modified theoretical values, thus supporting the basic assumptions in that theory. From the present / intensity ratios, it is evident that due to chemical effects, the experimental / intensity ratios will be increased while they will be decreased due to the presence of simultaneous -shell vacancies which are produced due to proton excitation.

  1. Development of ion/proton beam equipment for industrial uses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ho; Lee, J. H.; Cho, Y. S.; Joo, P. K.; Kang, S. S.; Song, W. S.; Kim, H. J.; Chang, G. H.; Bang, S. W

    1999-12-01

    KAERI has possessed design and fabrication technologies of various ion sources including Duoplasmatron and DuoPiGatron developed by R and D projects of the long-term nuclear technology development program. In order to industrialize ion beam equipments utilizing these ion sources, a technology transfer project for a technology transfer project for a domestic firm has been performed. Under this project, engineers of the firm have been trained through classroom lectures of ion beam principles and OJT, an ion/proton beam equipment (DEMO equipment) has been designed, assembled and commissioned jointly with the engineers. Quality of the ion sources has been quantified, and technologies for ion beam equipment construction, functional test and application research have been developed. The DEMO equipment, which consists of an ion source, power supplies, vacuum, cooling and target systems, has been fabricated and tested to secure stability and reliability for industrial uses. Various characteristic tests including high voltage insulation, beam extraction, beam current measuring, etc. have been performed. This DEMO can be utilized for ion sources development as well as ion beam process development for various industrial products. Engineers of the firm have been trained for the industrialization of ion beam equipment and joined in beam application technology development to create industrial needs of beam equipment. (author)

  2. Beam energy dependence of two-proton correlations at the AGS

    CERN Document Server

    Panitkin, S Y; Alexander, J; Anderson, M; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D; Chance, J; Chung, J; Cole, B; Crowe, K M; Das, A; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A; Hjort, E; Huo, L; Justice, M; Kaplan, M; Keane, D; Kintner, J C; Klay, J L; Krofcheck, D; Lacey, R A; Lisa, M A; Liu, H; Liu, Y; McGrath, R; Milosevich, Z; Odyniec, Grazyna Janina; Olson, D; Pinkenburg, C H; Porile, N T; Rai, G; Ritter, H G; Romero, J; Scharenberg, R P; Schröder, L; Srivastava, B; Stone, N; Symons, T J M; Wang, S; Whitfield, J; Wienold, T; Witt, R; Wood, L; Yang, X; Zhang, W; Zhang, Y

    1999-01-01

    First measurements of the beam energy dependence of the two proton correlation function in central Au+Au collisions are performed by the E895 Collaboration at the BNL AGS. No significant changes with beam energy were observed. The imaging technique of Brown-Danielewicz is used in order to extract information about the space-time content of the proton source at freeze-out. Extracted source functions show peculiar enhancement at low relative separation.

  3. Spin flipping a stored polarized proton beam

    Science.gov (United States)

    Caussyn, D. D.; Derbenev, Ya. S.; Ellison, T. J.; Lee, S. Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E. J.; von Przewoski, B.; Blinov, B. B.; Chu, C. M.; Courant, E. D.; Crandell, D. A.; Kaufman, W. A.; Krisch, A. D.; Nurushev, T. S.; Phelps, R. A.; Ratner, L. G.; Wong, V. K.; Ohmori, C.

    1994-11-01

    We recently studied the spin flipping of a vertically polarized, stored 139-MeV proton beam. To flip the spin, we induced an rf depolarizing resonance by sweeping our rf solenoid magnet's frequency through the resonance frequency. With multiple spin flips, we found a polarization loss of 0.0000+/-0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions. Minimizing the depolarization during each spin flip is especially important because frequent spin flipping could significantly reduce the systematic errors in stored polarized-beam experiments.

  4. Proton extraction from the CERN SPS using bent silicon crystals

    Science.gov (United States)

    Elsener, K.; Fidecaro, G.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Møller, S. P.; Uggerhøj, E.; Vuagnin, G.; Weisse, E.

    1996-10-01

    The extraction of high energy particles from a circular accelerator by means of channeling in bent crystals is an attractive alternative to classical extraction schemes, in particular for high energy proton colliders where a classical scheme becomes expensive and incompatible with normal operation. This paper reviews the ongoing extraction experiments at the CERN-SPS with bent silicon crystals. It describes the principles of beam extraction by means of a bent crystal and the different extraction schemes used: first- and multi-pass extraction and the methods to create diffusion. The limitations in tuning the accelerator to the desired impact parameters and crucial items concerning crystal preparation, bending and pre-alignment are discussed. The experimental procedures including an overview of the detection of circulating and extracted beam are given. Finally, the paper summarizes the results of these experiments together with ideas for future developments.

  5. Mechanical response of proton beam irradiated nitinol

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Naveed [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan); Ghauri, I.M., E-mail: ijaz.phys@gmail.co [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan); Mubarik, F.E.; Amin, F. [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan)

    2011-01-01

    The present investigation deals with the study of mechanical behavior of proton beam irradiated nitinol at room temperature. The specimens in austenitic phase were irradiated over periods of 15, 30, 45 and 60 min at room temperature using 2 MeV proton beam obtained from Pelletron accelerator. The stress-strain curves of both unirradiated and irradiated specimens were obtained using a universal testing machine at room temperature. The results of the experiment show that an intermediate rhombohedral (R) phase has been introduced between austenite and martensite phase, which resulted in the suppression of direct transformation from austenite to martensite (A-M). Stresses required to start R-phase ({sigma}{sub RS}) and martensitic phase ({sigma}{sub MS}) were observed to decrease with increase in exposure time. The hardness tests of samples before and after irradiation were also carried out using Vickers hardness tester. The comparison reveals that the hardness is higher in irradiated specimens than that of the unirradiated one. The increase in hardness is quite sharp in specimens irradiated for 15 min, which then increases linearly as the exposure time is increased up to 60 min. The generation of R-phase, variations in the transformation stresses {sigma}{sub RS} and {sigma}{sub MS} and increase in hardness of irradiated nitinol may be attributed to lattice disorder and associated changes in crystal structure induced by proton beam irradiation.

  6. LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.

    2006-06-23

    Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.

  7. Beam commissioning for a superconducting proton linac

    Science.gov (United States)

    Wang, Zhi-Jun; He, Yuan; Jia, Huan; Dou, Wei-ping; Chen, Wei-long; Zhang, X. L.; Liu, Shu-hui; Feng, Chi; Tao, Yue; Wang, Wang-sheng; Wu, Jian-qiang; Zhang, Sheng-hu; Zhao, Hong-Wei

    2016-12-01

    To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS) system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today's nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS) proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW) superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  8. Energy Loss of Proton in Extraction Window

    Institute of Scientific and Technical Information of China (English)

    LIU; Bao-jie; ZENG; Zi-qiang

    2015-01-01

    The particle is transported in vacuum in accelerator,and is exported through extraction windows.The Kapton foil is used in a 3 MeV proton accelerator.The energy loss of 3 MeV proton is calculated when it comes through Kapton foil of different thicknesses with Monte Carlo method.The energy loss of 3 MeV proton in

  9. Proton beam modification of lead white pigments

    Energy Technology Data Exchange (ETDEWEB)

    Beck, L., E-mail: lucile.beck@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Centre de recherche et de restauration des musées de France (C2RMF), Palais du Louvre – Porte des Lions, 14 quai François Mitterrand, 75001 Paris (France); Gutiérrez, P.C. [Centre de recherche et de restauration des musées de France (C2RMF), Palais du Louvre – Porte des Lions, 14 quai François Mitterrand, 75001 Paris (France); Centro de Micro-Análisis de Materiales (CMAM), Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Miserque, F. [CEA, DEN, DPC/SCCME/LECA, 91191 Gif-sur-Yvette (France); Thomé, L. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), CNRS/IN2P3 et Université Paris-Sud, Bât. 108, 91405 Orsay (France)

    2013-07-15

    Pigments and paint materials are known to be sensitive to particle irradiation. Occasionally, the analysis of paintings by PIXE can induce a slight or dark stain depending on the experimental conditions (beam current, dose, particle energy). In order to understand this discoloration, we have irradiated various types of art white pigments – lead white (hydrocerussite and basic lead sulfate), gypsum, calcite, zinc oxide and titanium oxide – with an external 3 MeV proton micro-beam commonly used for PIXE experiments. We have observed various sensitivities depending on the pigment. No visible change occurs for calcite and titanium oxide, whereas lead white pigments are very sensitive. For the majority of the studied compounds, the discoloration is proportional to the beam current and charge. The damage induced by proton beam irradiation in lead white pigments was studied by micro-Raman and XPS spectroscopies. Structural modifications and dehydration were detected. Damage recovery was investigated by thermal treatment and UV-light irradiation. The discoloration disappeared after one week of UV illumination, showing that PIXE experiments could be safely undertaken for pigments and paintings.

  10. Turn-By Beam Extraction during Acceleration in a Synchrotron

    Science.gov (United States)

    Tsoupas, Nicholaos; Trbojevic, Dejan

    2014-02-01

    A synchrotron to accelerate protons or carbon ions for medical applications is being designed at Brookhaven National Laboratory (BNL). Single beam bunches with maximum beam energy of 1.18 GeV and 400 MeV/u for protons and carbon ions respectively will be extracted from the synchrotron at 15 Hz. For protons, the maximum required energy for irradiating a tumor is ˜206 MeV. A pencil-like proton beam containing ˜5.4×107 p/bunch delivers a therapeutic dose of 2.5 Gy in ˜1.5 minutes to treat a tumor of 1 liter volume. It will take ˜80 minutes with bunches containing 4.5×104 ions/bunch to deliver the same dose of 2.5 Gy with a 400 MeV/u pencil-like carbon beam. This extended treatment time when using carbon ions is not acceptable. In addition, the synchrotron cannot be controlled with a beam bunch containing such a low number of carbon ions. To overcome these two problems of the extended treatment time and the low bunch intensity required for the treatment when carbon ions are used, we have devised a method to “peel” the required 4.5×104 carbon-ions/bunch from the accelerating carbon beam bunch containing ˜108 ions/bunch and deliver them to the tumor on a “turn-by-turn” basis. Unlike other methods of beam extraction from a synchrotron, such as resonance extraction, this method does not allow for any beam losses during the extraction and the carbon beam can be peeled off in less than 15 ms during the acceleration or deceleration cycle of the synchrotron. Thus, this turn-by-turn beam extraction method provides beam with variable energy and precisely controlled beam current during the 30 ms acceleration or deceleration time.

  11. Deflection of proton beams by crystal miscut surface

    CERN Document Server

    Babaev, A A; Dabagov, S B

    2014-01-01

    First computer experiment results on proton beam deflection by the crystal miscut surface are presented. The phenomenology of proton channeling and quasichanneling has been applied to describe new features of the beam deflection. The analysis predicts efficient beam deflection by the acute crystal end due to repelling miscut potential.

  12. Beam instrumentation for fast kicker extraction at COSY-Juelich

    Science.gov (United States)

    Dietrich, J.; Bojowald, J.; Labus, H.; Lawin, H.; Mohos, I.

    2000-11-01

    In the cooler synchrotron COSY two kinds of beam extraction were foreseen and realized: resonant extraction and stochastic extraction. Now a fast beam extraction for the new experiment JESSICA (Jülich Experimental Spallation Target Setup in COSY Area) is of great importance for prototyping the high power target of the European Spallation Source. First experiments using the kicker, originally installed for diagnostic purposes in the COSY ring, are reported. Special emphasis is given for beam diagnostics developments in the extraction beamline for measuring intensive fast proton pulses. To measure beam current and time structure a wall current monitor was installed in the extraction beam line. For more sensitive measurements in a wide range a so called universal spill measurement device, consisting of scintillators and an ionization chamber are developed.

  13. Collimator for the SPS extracted beam

    CERN Multimedia

    1976-01-01

    This is a water cooled copper collimator (TCSA) which has exactly the shape of the cross section of the downstream magnetic beam splitter. Parts of the blown up primary proton beam pass above/below and left through this collimator. A small part of the protons is absorbed in the thin copper wedges. In this way the downstream magnetic splitter of the same cross section receives already a beam where its magnetic wedges are no longer hit by protons. The upstream, water cooled collimator, more resistant to protons, has cast a 'shadow' onto the downstream magnetic splitter, less resistant to protons. Gualtero Del Torre stands on the left.

  14. New techniques in hadrontherapy: intensity modulated proton beams.

    Science.gov (United States)

    Cella, L; Lomax, A; Miralbell, R

    2001-01-01

    Inverse planning and intensity modulated (IM) X-ray beam treatment techniques can achieve significant improvements in dose distributions comparable to those obtained with forward planned proton beams. However, intensity modulation can also be applied to proton beams and further optimization in dose distribution can reasonably be expected. A comparative planning exercise between IM X-rays and IM proton beams was carried out on two different tumor cases: a pediatric rhabdomyosarcoma and a prostate cancer. Both IM X-rays and IM protons achieved equally homogenous coverage of the target volume in the two tumor sites. Predicted NTCPs were equally low for both treatment techniques. Nevertheless, a reduced low-to-medium dose to the organs at risk and a lesser integral non-target mean dose for IM protons in the two cases favored the use of IM proton beams.

  15. Transverse beam shape measurements of intense proton beams using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  16. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  17. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: emmazhang103@gmail.com [China Institute of Atomic Energy (China); Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming [China Institute of Atomic Energy (China); Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir [BEST Cyclotron Inc (Canada)

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN–LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  18. Proton beam therapy in Japan: current and future status.

    Science.gov (United States)

    Sakurai, Hideyuki; Ishikawa, Hitoshi; Okumura, Toshiyuki

    2016-10-01

    The number of patients treated by proton beam therapy in Japan since 2000 has increased; in 2016, 11 proton facilities were available to treat patients. Notably, proton beam therapy is very useful for pediatric cancer; since the pediatric radiation dose to normal tissues should be reduced as much as possible because of the effect of radiation on growth, intellectual development, endocrine organ function and secondary cancer development. Hepatocellular carcinoma is common in Asia, and most of the studies of proton beam therapy for liver cancer have been reported by Japanese investigators. Proton beam therapy is also a standard treatment for nasal and paranasal lesions and lesions at the base of the skull, because the radiation dose to critical organs such as the eyes, optic nerves and central nervous system can be reduced with proton beam therapy. For prostate cancer, comparative studies that address adverse effects, safety, patient quality of life and socioeconomic issues should be performed to determine the appropriate use of proton beam therapy for prostate cancer. Regarding new proton beam therapy applications, experience with proton beam therapy combined with chemotherapy is limited, although favorable outcomes have been recently reported for locally advanced lung cancer, esophageal cancer and pancreatic cancer. Therefore, 'chemoproton' therapy appears to be a very attractive field for further clinical investigations. In conclusion, there are cost issues and considerations regarding national insurance for the use of proton beam therapy in Japan. Further studies and discussions are needed to address the use of proton beam therapy for several types of cancers, and for maintaining the quality of life of patients while retaining a high cure rate.

  19. Compact Measurement Station for Low Energy Proton Beams

    CERN Document Server

    Yildiz, H.

    2017-01-01

    A compact, remote controlled, cost efficient diagnostic station has been developed to measure the charge, the profile and the emittance for low energy proton beams. It has been installed and tested in the proton beam line of the Project Prometheus at SANAEM of the Turkish Atomic Energy Authority.

  20. Upgrading prostate cancer following proton beam therapy

    Directory of Open Access Journals (Sweden)

    Jennifer K Logan

    2015-01-01

    Full Text Available Pre- and post-radiation therapy (RT effects on prostate histology have not been rigorously studied, but there appears to be a correlation between escalating radiation dosage and increasing post-RT histologic changes. Despite this dose-response relationship, radiation-induced changes may be heterogenous among different patients and even within a single tumor. When assessing residual tumor it is important to understand biopsy evaluation in the post-RT setting. We present the case of a poorly differentiated prostate adenocarcinoma following proton beam RT in a 45-year-old man with pre-RT Gleason 4 + 3 = 7 disease diagnosed in the setting of an elevated serum prostate-specific antigen level.

  1. Upgrading prostate cancer following proton beam therapy.

    Science.gov (United States)

    Logan, Jennifer K; Rais-Bahrami, Soroush; Merino, Maria J; Pinto, Peter A

    2015-01-01

    Pre- and post-radiation therapy (RT) effects on prostate histology have not been rigorously studied, but there appears to be a correlation between escalating radiation dosage and increasing post-RT histologic changes. Despite this dose-response relationship, radiation-induced changes may be heterogenous among different patients and even within a single tumor. When assessing residual tumor it is important to understand biopsy evaluation in the post-RT setting. We present the case of a poorly differentiated prostate adenocarcinoma following proton beam RT in a 45-year-old man with pre-RT Gleason 4 + 3 = 7 disease diagnosed in the setting of an elevated serum prostate-specific antigen level.

  2. Possibility of high efficient beam extraction from the CERN SPS with a bent crystal. Simulation results

    Science.gov (United States)

    Scandale, W.; Kovalenko, A. D.; Taratin, A. M.

    2017-03-01

    The extraction of the SPS beam of 270 GeV/c protons assisted by a bent crystal was studied by simulation. Two methods for delivering the SPS beam onto a crystal were considered: transverse diffusion and orbit bump of the beam. It was shown that the main condition for high efficient beam extraction with a bent crystal, which is a small divergence of the incident beam, can be fulfilled. Extraction efficiency up to 99% can be reached for both methods of the beam delivering. The irradiation of the electrostatic septum wires during the beam extraction can be considerably reduced.

  3. Polarized proton beam for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  4. EURISOL 100 kW Target Stations Operation and Implications for its Proton Driver Beam

    CERN Document Server

    Noah, Etam; Lettry, Jacques; Lindroos, Mats; Stora, Thierry

    EURISOL, the next European radioactive ion beam (RIB) facility calls for the development of target and ion source assemblies to dissipate deposited heat and to extract and ionize isotopes of interest efficiently. The EURISOL 100 kW direct targets should be designed for a goal lifetime of up to three weeks. Target operation from the moment it is installed on a target station until its exhaustion involves several phases with specific proton beam intensity requirements. This paper discusses operation of the 100 kW targets within the ongoing EURISOL Design Study, with an emphasis on the requirements for the proton driver beam.

  5. Determination of the scalar polarizabilities of the proton using beam asymmetry $\\Sigma_{3}$ in Compton scattering

    CERN Document Server

    Sokhoyan, V; Mornacchi, E; McGovern, J A; Krupina, N; Afzal, F; Ahrens, J; Akondi, C S; Annand, J R M; Arends, H J; Beck, R; Braghieri, A; Briscoe, W J; Cividini, F; Collicott, C; Costanza, S; Denig, A; Dieterle, M; Ferretti, M; Gardner, S; Garni, S; Glazier, D I; Glowa, D; Gradl, W; Gurevich, G; Hamilton, D; Hornidge, D; Huber, G M; Käser, A; Kashevarov, V L; Keshelashvili, I; Kondratiev, R; Korolija, M; Krusche, B; Lensky, V; Linturi, J; Lisin, V; Livingston, K; MacGregor, I J D; Macrae, R; Manley, D M; Martel, P P; Middleton, D G; Miskimen, R; Mushkarenkov, A; Neiser, A; Oberle, M; Spina, H Ortega; Ostrick, M; Ott, P; Otte, P B; Oussena, B; Paudyal, D; Pedroni, P; Polonski, A; Polyansky, V; Prakhov, S; Rajabi, A; Rostomyan, T; Sarty, A; Schumann, S; Steffen, O; Strakovsky, I I; Strandberg, B; Strub, T; Supek, I; Thiel, M; Thomas, A; Unverzagt, M; Wagner, S; Watts, D P; Wettig, J; Witthauer, L; Werthmüller, D; Wolfes, M; Zana, L

    2016-01-01

    The scalar dipole polarizabilities, $\\alpha_{E1}$ and $\\beta_{M1}$, are fundamental properties related to the internal dynamics of the nucleon. The currently accepted values of the proton polarizabilities were determined by fitting to unpolarized proton Compton scattering cross section data. The measurement of the beam asymmetry $\\Sigma_{3}$ in a certain kinematical range provides an alternative approach to the extraction of the scalar polarizabilities. At the Mainz Microtron (MAMI) the beam asymmetry was measured for Compton scattering below pion photoproduction threshold for the first time. The results are compared with model calculations and the influence of the experimental data on the extraction of the scalar polarizabilities is determined.

  6. Proton beam generation of whistler waves in the earth's foreshock

    Science.gov (United States)

    Wong, H. K.; Goldstein, M. L.

    1987-01-01

    It is shown that proton beams, often observed upstream of the earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T (perpendicular)/T(parallel) much greater than 1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the '1-Hz' waves often seen in the earth's foreshock.

  7. Simulation of Proton Beam Effects in Thin Insulating Films

    Directory of Open Access Journals (Sweden)

    Ljubinko Timotijevic

    2013-01-01

    Full Text Available Effects of exposing several insulators, commonly used for various purposes in integrated circuits, to beams of protons have been investigated. Materials considered include silicon dioxide, silicon nitride, aluminium nitride, alumina, and polycarbonate (Lexan. The passage of proton beams through ultrathin layers of these materials has been modeled by Monte Carlo simulations of particle transport. Parameters that have been varied in simulations include proton energy and insulating layer thickness. Materials are compared according to both ionizing and nonionizing effects produced by the passage of protons.

  8. Single-Plane Magnetically Focused Elongated Small Field Proton Beams.

    Science.gov (United States)

    McAuley, Grant A; Slater, James M; Wroe, Andrew J

    2015-08-01

    We previously performed Monte Carlo simulations of magnetically focused proton beams shaped by a single quadrapole magnet and thereby created narrow elongated beams with superior dose delivery characteristics (compared to collimated beams) suitable for targets of similar geometry. The present study seeks to experimentally validate these simulations using a focusing magnet consisting of 24 segments of samarium cobalt permanent magnetic material adhered into a hollow cylinder. Proton beams with properties relevant to clinical radiosurgery applications were delivered through the magnet to a water tank containing a diode detector or radiochromic film. Dose profiles were analyzed and compared with analogous Monte Carlo simulations. The focused beams produced elongated beam spots with high elliptical symmetry, indicative of magnet quality. Experimental data showed good agreement with simulations, affirming the utility of Monte Carlo simulations as a tool to model the inherent complexity of a magnetic focusing system. Compared to target-matched unfocused simulations, focused beams showed larger peak to entrance ratios (26% to 38%) and focused simulations showed a two-fold increase in beam delivery efficiency. These advantages can be attributed to the magnetic acceleration of protons in the transverse plane that tends to counteract the particle outscatter that leads to degradation of peak to entrance performance in small field proton beams. Our results have important clinical implications and suggest rare earth focusing magnet assemblies are feasible and could reduce skin dose and beam number while delivering enhanced dose to narrow elongated targets (eg, in and around the spinal cord) in less time compared to collimated beams.

  9. An online, energy-resolving beam profile detector for laser-driven proton beams

    Science.gov (United States)

    Metzkes, J.; Zeil, K.; Kraft, S. D.; Karsch, L.; Sobiella, M.; Rehwald, M.; Obst, L.; Schlenvoigt, H.-P.; Schramm, U.

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ˜4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  10. Using Stable Distributions to Characterize Proton Pencil Beams

    CERN Document Server

    Heuvel, Frank Van den; Schreuder, Niek; George, Ben

    2016-01-01

    Purpose: To introduce and evaluate the use of stable distributions as a means of describing the behavior of charged particle pencil beams in a medium, with specific emphasis on proton beam scanning (PBS). Methods: The proton pencil beams of a clinically commissioned proton treatment facility are replicated in a Monte Carlo simulation system (FLUKA). For each available energy the beam deposition in water medium is characterized by the dose deposition. Using an alpha--stable distribution methodology each beam with a nominal energy $E$ is characterized by the lateral spread at depth $z$: $S(z;\\alpha,\\gamma,E)$ and a total energy deposition $I_D(z)$. The beams are then described as a function of the variation of the parameters at depth. Finally, an implementation in a freely available open source dose calculation suite (matRad, DKFZ, Heidelberg, Germany) is proposed. Results: Quantitatively, the fit of the stable distributions, compared to those implemented in standard treatment planning systems, are equivalent. ...

  11. Off-axis dose distribution for rectangle proton beam

    Institute of Scientific and Technical Information of China (English)

    Gou Cheng-Jun; Luo Zheng-Ming; Huang Chu-Ye; Feng Xiao-Ning; Wu Zhang-Wen

    2008-01-01

    This paper modifies an analytical algorithm originally developed for electron dose calculations to evaluate the off-axis dose distribution of rectangle proton beam. This spatial distribution could be described by Fermi-Eyges theory since a proton undergoes small-angle scattering when it passes through medium. Predictions of the algorithm for relative off-axis dose distribution by a 6 cm 6 cm initial monoenergetic proton beam are compared with the results from the published Monte Carlo simulations. The excellent levcl of agreement between the results of these two methods of dose calculation (< 2%) demonstrates that the off-axis dose distribution from rectangle proton beam may be computed with high accuracy using this algorithm. The results also prompts the necessity to consider the off-axis distribution when the proton is applied to clinical radiotherapy since the penumbra is significant at the distal of its range (about 0.6 cm at the Bragg-peak depth).

  12. Proton G_E/G_M from beam-target asymmetry

    CERN Document Server

    Jones, M K; Ahmidouch, A; Asaturyan, R; Bloch, Felix; Böglin, W; Bosted, P; Carasco, C C; Carlini, R; Cha, J; Chen, J P; Christy, M E; Cole, L; Coman, L; Crabb, D; Danagulyan, S; Day, D; Dunne, J; Elaasar, M; Ent, R; Fenker, H; Frlez, E; Gaskell, D; Gan, L; Gómez, J; Hu, B; Jourdan, J; Keith, C; Keppel, C E; Khandaker, M; Klein, A; Kramer, L; Liang, Y; Lichtenstadt, J; Lindgren, R; Mack, D; McKee, P; McNulty, D; Meekins, D; Mkrtchyan, H; Nasseripour, R; Niculescu, I; Normand, K; Norum, B; Pocanic, D; Prok, Y; Raue, B; Reinhold, J; Roche, J; Rohe, D; Rondon, Oscar A; Savvinov, N; Sawatzky, B; Seely, M; Sick, I; Slifer, K J; Smith, C; Smith, G; Stepanyan, S; Tang, L; Tajima, S; Testa, G; Vulcan, W; Wang, K; Warren, G; Wesselmann, F R; Wood, S; Yan, C; Yuan, L; Yun, J; Zeier, M; Zhu, H

    2006-01-01

    The ratio of the proton's electric to magnetic form factor, G_E/G_M, can be extracted in elastic electron-proton scattering by measuring either cross sections, beam-target asymmetry or recoil polarization. Separate determinations of G_E/G_M by cross sections and recoil polarization observables disagree for Q^2 > 1 (GeV/c)^2. Measurement by a third technique might uncover an unknown systematic error in either of the previous measurements. The beam-target asymmetry has been measured for elastic electron-proton scattering at Q^2 = 1.51 (GeV/c)^2 for target spin orientation aligned perpendicular to the beam momentum direction. This is the largest Q^2 at which G_E/G_M has been determined by a beam-target asymmetry experiment. The result, \\muG_E/G_M = 0.884 +/- 0.027 +/- 0.029, is compared to previous world data.

  13. Polarizing a stored proton beam by spin flip?

    CERN Document Server

    Oellers, D; Barsov, S; Bechstedt, U; Benati, P; Bertelli, S; Chiladze, D; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Dietrich, J; Dolfus, N; Dymov, S; Engels, R; Erven, W; Garishvili, A; Gebel, R; Goslawski, P; Grigoryev, K; Hadamek, H; Kacharava, A; Khoukaz, A; Kulikov, A; Langenberg, G; Lehrach, A; Lenisa, P; Lomidze, N; Lorentz, B; Macharashvili, G; Maier, R; Martin, S; Merzliakov, S; Meshkov, I N; Meyer, H O; Mielke, M; Mikirtychiants, M; Mikirtychiants, S; Nass, A; Nekipelov, M; Nikolaev, N N; Nioradze, M; d'Orsaneo, G; Papenbrock, M; Prasuhn, D; Rathmann, F; Sarkadi, J; Schleichert, R; Smirnov, A; Seyfarth, H; Sowinski, J; Spoelgen, D; Stancari, G; Stancari, M; Statera, M; Steffens, E; Stein, H J; Stockhorst, H; Straatmann, H; Ströher, H; Tabidze, M; Tagliente, G; Engblom, P Thoerngren; Trusov, S; Vasilyev, A; Weidemann, Chr; Welsch, D; Wieder, P; Wüstner, P; Zupranski, P

    2009-01-01

    We discuss polarizing a proton beam in a storage ring, either by selective removal or by spin flip of the stored ions. Prompted by recent, conflicting calculations, we have carried out a measurement of the spin flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam. This invalidates a recent proposal to use co-moving polarized positrons to polarize a stored antiproton beam.

  14. Interaction of Macro-particles with LHC proton beam

    CERN Document Server

    Zimmermann, F; Xagkoni, A

    2010-01-01

    We study the interaction of macro-particles residing inside the LHC vacuum chamber, e.g. soot or thermalinsulation fragments, with the circulating LHC proton beam. The coupled equations governing the motion and charging rate of metallic or dielectric micron-size macroparticles are solved numerically to determine the time spent by such “dust” particles close to the path of the beam as well as the resulting proton-beam losses, which could lead to a quench of superconducting magnets and, thereby, to a premature beam abort.

  15. Computer simulations of a low energy proton beam tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Milhoretto, E.; Schelin, H.R.; Setti, J.A.P.; Denyak, V.; Paschuk, S.A.; Basilio, A.C.; Rocha, R.; Ribeiro Junior, S. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Curso de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial (CPGEI)]. E-mails: sergei@utfpr.edu.br; edneymilhoretto@yahoo.com; schelin@cpgei.cefetpr.br; Evseev, I.; Yevseyeva, O. [Universidade Estadual do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil)]. E-mail: evseev@iprj.uerj.br; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graducao em Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mail: ricardo@lin.ufrj.br; Vinagre Filho, U.M. [Instituto de Energia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2007-07-01

    This work presents the recent development of a low energy proton beam tomograph. The proton tomograph prototype (involving UTFPR, UERJ, UFRJ and IEN/CNEN) has been installed and tested at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to optimize the performance of the scattered proton beam and its aluminum collimator energy losses. The computer code simulates the tomographic measurements with two aluminum collimators (variable aperture from 0.2 mm to 0.4 mm in diameter and variable thickness from 4 mm to 8 mm), a water phantom and a Si(Li) detector. The analysis of the exit beam energy spectra in comparison with a perfectly collimated proton beam made it possible to achieve the best quality of reconstructed tomographic images of water phantom. (author)

  16. Intense high-quality medical proton beams via laser fields

    CERN Document Server

    Galow, Benjamin J; Keitel, Christoph H

    2010-01-01

    Simulations based on the coupled relativistic equations of motion show that protons stemming from laserplasma processes can be efficiently post-accelerated employing crossed pulsed laser beams focused to spot radii on the order of the laser wavelength. We demonstrate that the crossed beams produce quasi-monoenergetic accelerated protons with kinetic energies exceeding 200 MeV, small energy spreads of about 1% and high densities as required for hadron cancer therapy.

  17. MEIC Proton Beam Formation with a Low Energy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  18. Collimator scatter and 2D dosimetry in small proton beams

    NARCIS (Netherlands)

    van Luijk, P.; van 't Veld, A.A.; Zelle, H.D.; Schippers, J.M.

    2001-01-01

    Monte Carlo simulations have been performed to determine the influence of collimator-scattered protons from a 150 MeV proton beam on the dose distribution behind a collimator. Slit-shaped collimators with apertures between 2 and 20 mm have been simulated. The Monte Carlo code GEANT 3.21 has been val

  19. Laser-accelerated proton beams as a new particle source

    Energy Technology Data Exchange (ETDEWEB)

    Nuernberg, Frank

    2010-11-15

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (10{sup 12} W/cm{sup 2}) prior to the main pulse ({proportional_to}ns), an optimum pre-plasma density scale length of 60 {mu}m is generated leading to an enhancement of the maximum proton energy ({proportional_to}25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 {mu}m foil irradiated with an intensity of 10{sup 19} W/cm{sup 2} onto a 60 {mu}m spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and

  20. Beam studies for the Proton Improvement Plan (PIP) -- reducing beam loss at the Fermilab Booster

    CERN Document Server

    Seiya, K; Johnson, D E; Kapin, V V; Pellico, W A; Tan, C Y; Tesarek, R J

    2015-01-01

    The Fermilab Booster is being upgraded under the Proton Improvement Plan (PIP) to be capable of providing a proton flux of $2.25^{17}$ protons per hour. The intensity per cycle will remain at the present operational $4.3^{12}$ protons per pulse, however the Booster beam cycle rate is going to be increased from 7.5 Hz to 15 Hz. One of the biggest challenges is to maintain the present beam loss power while the doubling the beam flux. Under PIP, there has been a large effort in beam studies and simulations to better understand the mechanisms of the beam loss. The goal is to reduce it by half by correcting and controlling the beam dynamics and by improving operational systems through hardware upgrades. This paper is going to present the recent beam study results and status of the Booster operations.

  1. Some Features of Transverse Instability of Partly Compensated Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Vadim Dudnikov

    2001-10-23

    suppression of generation and accumulation of secondary particles is a traditional method for suppression the transverse electron-proton instability: improve the vacuum, use a gap in beam for electron removing, use cleaning electrodes, suppressing secondary emission. But opposite solution is also possible. Transverse e-p instability in proton rings can be damped by increasing beam density and the rate of secondary particles generation above a threshold level, with decrease of the unstable wavelength below a transverse beam size. In high current Proton Storage Rings (PSR) such as, the LANSCE PSR it is possible to reach this island of stability by multiturn, concentrated charge exchange injection without painting and by enhanced generation of secondary plasma. This possibility was demonstrated in smaller scale PSR at the INP, Novosibirisk [1]. Damping of the e-p instability allowed to accumulate a coasting, space charge compensated, circulating proton beam with intensity, corresponding to the Laslett tune shift of {Delta}{nu} = 5 in the ring with original tune of {nu} = 0.85. In the other PSR transverse instability of bunched beam was damped by a simple feed back [2,3]. In this article they discuss experimental observations of transverse instability of proton beams in different accelerators and storage rings and consider methods to damp the instability. The presented experimental dates could be useful for verification of computer simulation tools developed for investigation of space charge effects and beam instabilities in realistic conditions [4,5].

  2. Effect of Proton Beam on Cancer Progressive and Metastatic Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Y. H.; Nam, K. S.; Oh, Y. H.; Kim, M. K.; Kim, M. Y.; Jang, J. S. [Dongguk University, Seoul (Korea, Republic of)

    2008-04-15

    The purpose of this study was to investigate the effect of proton beam on enzymes for promotion/progression of carcinogenesis and metastasis of malignant tumor cells to clarify proton beam-specific biological effects. The changes of cancer chemopreventive enzymes in human colorectal adenocarcinoma HT-29 cells irradiated with proton beams were tested by measuring the activities of quinine reductase (QR), glutathione S-transferase (GST), and ornithine decarboxylase (ODC), glutathione (GSH) levels, and expression of cyclooxygenase-2 (COX-2). We also examined the effect of proton beam on the ODC activity and expression of COX-2 in human breast cancer cell. We then assessed the metastatic capabilities of HT-29 and MDA-MB-231 cells irradiated with proton beam by measuring the invasiveness of cells through Matrigel-coated membrane and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP activity in MDA-MB-231 and HT-29 cells. QR activity of irradiated HT-29 cells was slightly increased. Proton irradiation at dose of 32 Gy in HT-29 cells increased GST activity by 1.23-fold. In addition GSH levels in HT-29 cells was significantly increased 1.23- (p<0.05), 1.32- (p<0.01) and 1.34-fold (p<0.01) with the proton irradiation at doses of 8, 16 and 32 Gy, respectively. These results suggest that colon cancer chemopreventive activity was increased with the proton irradiation by increasing QR and GST activities and GSH levels and inhibiting ODC activity. Proton ion irradiation decreased the invasiveness of TPA-treated HT-29 cells and MDA-MB-231 cells through Matrigel-coated membrane. Proton ion irradiation pretreatment decreased TPA-induced MMP activity in MDA-MB-231 and HT-29 cells. Further studies are necessary to investigate if these findings could be translated to in vivo situations

  3. Fast 2D phantom dosimetry for scanning proton beams

    NARCIS (Netherlands)

    Boon, SN; van Luijk, P; Schippers, JM; Meertens, H; Denis, JM; Vynckier, S; Medin, J; Grusell, E

    1998-01-01

    A quality control system especially designed for dosimetry in scanning proton beams has been designed and tested. The system consists of a scintillating screen (Gd2O2S:Tb), mounted at the beam-exit side of a phantom, and observed by a low noise CCD camera with a long integration time. The purpose of

  4. Pencil beam proton radiography using a multilayer ionization chamber

    NARCIS (Netherlands)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-01-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (+/- 0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a

  5. Therapeutic study of proton beam in vascular disease animal models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. M.; Jang, K. H.; Kim, M. J.; Choi, J. H. [Kyungpook National University, Daegu (Korea, Republic of)

    2010-04-15

    We previously reported that proton beam inhibited angiogenic vessels in zebrafish and that proton induced cancer cell apoptosis via p53 induction as well as caspase-3 activity. In this study, we performed to identity the effect of candidate chemicals on the angiogenic inhibition in vitro and in vivo (zebrafish Flk1:EGFP transgenic fish). And we treated small cell lung adenocarcinoma cell line, A549 cells with proton beam in combination with angiogenic inhibitors we found in this study. By the MTT assay, we performed cell viability assay with cancer cells and we investigated that HIF-1{alpha} induction by proton beam by the western blot analysis. We found novel anti-angiogenic chemicals from traditional herb. That is decursin, and glyceollins from the Angelica gigas, and soy bean. Decrusin and glyceollins inhibited VEGF- or bFGF-induced endothelial cell proliferation, migration and zebrafish microvessel development. Moreover, glyceollins inhibited hypoxia-induced HIF-1{alpha} in a dose dependent manner. However, proton beam itself did not induce HIF-1{alpha} whereas it increased HIF-1{alpha} stability under hypoxia. Even proton beam induced cell death of A549 small cell lung carcinoma cells but the combination of decrusin or glyceollins did not increase the cancer cell death

  6. CT based treatment planning system of proton beam therapy for ocular melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Takashi E-mail: tnakano@med.gunma-u.ac.jp; Kanai, Tatsuaki; Furukawa, Shigeo; Shibayama, Kouichi; Sato, Sinichiro; Hiraoka, Takeshi; Morita, Shinroku; Tsujii, Hirohiko

    2003-09-01

    A computed tomography (CT) based treatment planning system of proton beam therapy was established specially for ocular melanoma treatment. A technique of collimated proton beams with maximum energy of 70 MeV are applied for treatment for ocular melanoma. The vertical proton beam line has a range modulator for spreading beams out, a multi-leaf collimator, an aperture, light beam localizer, field light, and X-ray verification system. The treatment planning program includes; eye model, selecting the best direction of gaze, designing the shape of aperture, determining the proton range and range modulation necessary to encompass the target volume, and indicating the relative positions of the eyes, beam center and creation of beam aperture. Tumor contours are extracted from CT/MRI images of 1 mm thickness by assistant by various information of fundus photography and ultrasonography. The CT image-based treatment system for ocular melanoma is useful for Japanese patients as having thick choroid membrane in terms of dose sparing to skin and normal organs in the eye. The characteristics of the system and merits/demerits were reported.

  7. CT based treatment planning system of proton beam therapy for ocular melanoma

    Science.gov (United States)

    Nakano, Takashi; Kanai, Tatsuaki; Furukawa, Shigeo; Shibayama, Kouichi; Sato, Sinichiro; Hiraoka, Takeshi; Morita, Shinroku; Tsujii, Hirohiko

    2003-09-01

    A computed tomography (CT) based treatment planning system of proton beam therapy was established specially for ocular melanoma treatment. A technique of collimated proton beams with maximum energy of 70 MeV are applied for treatment for ocular melanoma. The vertical proton beam line has a range modulator for spreading beams out, a multi-leaf collimator, an aperture, light beam localizer, field light, and X-ray verification system. The treatment planning program includes; eye model, selecting the best direction of gaze, designing the shape of aperture, determining the proton range and range modulation necessary to encompass the target volume, and indicating the relative positions of the eyes, beam center and creation of beam aperture. Tumor contours are extracted from CT/MRI images of 1 mm thickness by assistant by various information of fundus photography and ultrasonography. The CT image-based treatment system for ocular melanoma is useful for Japanese patients as having thick choroid membrane in terms of dose sparing to skin and normal organs in the eye. The characteristics of the system and merits/demerits were reported.

  8. The external proton beam lines and the splitter systems of the CERN SPS

    CERN Document Server

    Evans, Lyndon R; Ijspeert, Albert; de Raad, Bastiaan; Siegel, N; Weisse, E

    1977-01-01

    The exploitation of the CERN Super Proton Synchrotron (SPS) is based on two experimental areas, the West Area and the North Area. The West Area consists of the West Experimental Hall, fed by a slow ejected proton beam of 200 GeV/c maximum momentum and a Neutrino Facility which is fed by protons of 400 GeV/c. Several important detectors are installed in the West Area, the Omega spectrometer, the Big European Bubble Chamber and the heavy liquid bubble chamber Gargamelle. The North Area has been built for physics at 400 GeV/c. At present it consists of two experimental halls, a large multipurpose hall and a smaller hall dedicated to muon physics. The protons are extracted from the SPS in two of the six long straight sections (LSS) and are transported from the underground machine through a system of tunnels to the external targets. Both the beam lines to the West and North Area contain beam splitting stations which divide the slow extracted proton beam into three branches. (0 refs).

  9. Space charge compensation in low energy proton beams

    CERN Document Server

    Ismail, A B; Uriot, D; Pichoff, N

    2004-01-01

    High power accelerators are being studied for several projects including accelerator driven neutron or neutrino sources. The low energy part of these facilities has to be carefully optimized to match the beam requirements of the higher energy parts. In this low energy part, the space charge self force, induced by a high intensity beam, has to be carefully managed. This nonlinear force can generate a high irreversible emittance growth of the beam. To reduce space charge effects, neutralization of the beam charge can be done by capturing some particles of the ionised residual gas in the vacuum chamber. This space charge compensation (SCC) regime complicates the dynamic study. Modelling the beam behaviour in such regime would be a significant contribution to the development of high intensity accelerators. Numerical and experimental study of SCC is in progress on the Saclay High Intensity Proton Injector. Experimental measurements and 2D/3D simulations of proton beam SCC will be presented.

  10. Proton-beam writing channel based on an electrostatic accelerator

    Science.gov (United States)

    Lapin, A. S.; Rebrov, V. A.; Kolin'ko, S. V.; Salivon, V. F.; Ponomarev, A. G.

    2016-09-01

    We have described the structure of the proton-beam writing channel as a continuation of a nuclear scanning microprobe channel. The problem of the accuracy of positioning a probe by constructing a new high-frequency electrostatic scanning system has been solved. Special attention has been paid to designing the probe-forming system and its various configurations have been considered. The probe-forming system that best corresponds to the conditions of the lithographic process has been found based on solving the problem of optimizing proton beam formation. A system for controlling beam scanning using multifunctional module of integrated programmable logic systems has been developed.

  11. Indirect self-modulation instability measurement concept for the AWAKE proton beam

    Science.gov (United States)

    Turner, M.; Petrenko, A.; Biskup, B.; Burger, S.; Gschwendtner, E.; Lotov, K. V.; Mazzoni, S.; Vincke, H.

    2016-09-01

    AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV / c proton beam from the CERN SPS (longitudinal beam size σz = 12 cm) which will be sent into a 10 m long plasma section with a nominal density of ≈ 7 ×1014 atoms /cm3 (plasma wavelength λp = 1.2 mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plasma, information about the occurrence of the self-modulation instability (SMI) can be inferred. In particular we show that measuring defocused protons with an angle of 1 mrad corresponds to having electric fields in the order of GV/m and fully developed self-modulation of the proton bunch. Additionally, by measuring the defocused beam edge of the self-modulated bunch, information about the growth rate of the instability can be extracted. If hosing instability occurs, it could be detected by measuring a non-uniform defocused beam shape with changing radius. Using a 1 mm thick Chromox scintillation screen for imaging of the self-modulated proton bunch, an edge resolution of 0.6 mm and hence an SMI saturation point resolution of 1.2 m can be achieved.

  12. Fundamental Studies on the Use of Laser-Driven Proton Beams for Fast Ignition

    Science.gov (United States)

    McGuffey, C.; Kim, J.; Beg, F. N.; Wei, M. S.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Theobald, W.; Habara, H.; Tanaka, K.; Yabuuchi, T.; Foord, M. E.; Patel, P. K.; McLean, H. S.; Roth, M.; McKenna, P.

    2015-11-01

    A short-pulse-laser-driven intense proton beam remains a candidate for Fast Ignition heater due to its focusability and high current. However, the proton current density necessary for FI in practice has never been produced in the laboratory and there are many physics issues that should be addressed using current and near-term facilities. For example, the extraction of sufficient proton charge from the short-pulse laser target could be evaluated with the multi-kilojoule NIF ARC laser. Transport of the beam through matter, such as a cone tip, and deposition in the fuel must be considered carefully as it will isochorically heat any material it enters and produce a rapidly-evolving, warm dense matter state with uncertain transport and stopping properties. Here we share experimental measurements of the proton spectra after passing through metal cones and foils taken with the kilojoule-class, multi-picosecond OMEGA EP and LFEX lasers. We also present complementary PIC simulations of beam generation and transport to and in the foils. Upcoming experiments to further evaluate proton beam performance in proton FI will also be outlined. This work was supported by the DOE/NNSA NLUF program, Contract DE-NA0002034 and by the AFOSR under Contract FA9550-14-1-0346.

  13. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  14. Beam dynamics simulation of a double pass proton linear accelerator

    Science.gov (United States)

    Hwang, Kilean; Qiang, Ji

    2017-04-01

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015, 10.1016/j.nima.2015.05.056)] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  15. The development of MEMS device packaging technology using proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon, J. W.; Kong, Y. J.; Kim, E. H.; Kim, H. S.; No, S. J. [Dankook Univ., Yongin (Korea, Republic of)

    2006-05-15

    Wafer-bonding techniques are key issues for the commercialization of MEMS(MicroElectroMechanical Systems) devices. The anodic bonding method and the wafer direct-bonding method are well-known major techniques for wafer bonding. Due to the anodic bonding method includes high voltage processes above 1.5 kV, the MEMS devices can be damaged during the bonding process or malfunctioned while long-term operation. On the other hand, since the wafer direct-bonding method includes a high temperature processes above 1000 .deg. C, temperature-sensitive materials and integrated circuits will be damaged or degraded during the bonding processes. Therefore, high-temperature bonding processes are not applicable for fabricating or packaging devices where temperature-sensitive materials exist. During the past few years, much effort has been undertaken to find a reliable bonding process that can be conducted at a low temperature. Unfortunately, these new bonding processes depend highly on the bonding material, surface treatment and surface flatness. In this research, a new packaging method using proton beam irradiation is proposed. While the energy loss caused in an irradiated material by X-rays or electron beams decreases with the surface distance, the energy loss caused by proton beams has a maximum value at the Bragg peak. Thus, the localized energy produced at the Bragg peak of the proton beams can be used to bond pyrex glass on a silicon wafer, so the MEMS damage is expected to be minimized. The localized heating caused by as well as the penetration depth, or the proton beam has been investigated. The energy absorbed in a stack of pyrex glass/silicon wafers due to proton-beam irradiation was numerically calculated for various proton energies by using the SRIM program. The energy loss was shown to be sufficiently localized at the interface between the pyrex glass and the silicon wafer. Proton beam irradiation was performed in the common environment of room temperature and

  16. The Beam Position System of the CERN Neutrino to Gran Sasso Proton Beam Line

    CERN Document Server

    Bogey, T

    2008-01-01

    The CERN Neutrino to Gran Sasso (CNGS) experiment uses 400GeV protons extracted from the SPS, which travel along 825 meters of beam line before reaching the CNGS target. This beam line is equipped with 23 BPMs capable of measuring both the horizontal and vertical position of the beam. The final BPM is linked to the target station and due to radiation constraints has been designed to work in air. This contribution will give an overview of the BPMs used in the transfer line. It will also provide a detailed explanation of their logarithmic amplifier based acquisition electronics, which consists of an autotriggered sequencer controlling an integrator, the A/D conversion and the Manchester encoded transmission of the digital data to the surface. At the surface the digital data is acquired using the Digital Acquisition Board (DAB) developed by TRIUMF (Canada) for the LHC BPM system. Results from both laboratory measurements and beam measurements during the 2006 CNGS run will also be presented.

  17. Comment on ‘Proton beam monitor chamber calibration’

    Science.gov (United States)

    Palmans, Hugo; Vatnitsky, Stanislav M.

    2016-09-01

    We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that {{k}Q} -values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961-71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication.

  18. Magnet Design for the ISIS Second Target Station Proton Beam Line

    CERN Document Server

    Thomas, Chris; Jago, Stephen

    2005-01-01

    The ISIS facility, based at the Rutherford Appleton Laboratory in the UK, is an intense source of neutrons and muons for condensed matter research. The accelerator facility delivers an 800 MeV proton beam of 2.5x1013 protons per pulse at 50 Hz to the present target station. As part of a facility upgrade, it is planned to share the source with a second, 10 Hz, target station. The beam line supplying this target will extract from the existing target station beam line. Electromagnetic Finite Element Modelling techniques have been used to design the magnets required to meet the specified beam line optics. Kicker, septum, dipole, quadrupole, and steering magnets are covered. The magnet design process, involving 2D and 3D modelling, the calculation of ideal shims and chamfers, choice of steel, design of conducting coils, handling of heating issues and eddy current effects, is discussed.

  19. Using Polarized Beams to Investigate the Spin of the Proton

    Science.gov (United States)

    Trentalange, Stephen

    2013-10-01

    The spin of the proton has been investigated with polarized beams and targets for decades and has led to our current picture of the kinematic and partonic structure of the proton's spin. Historically, this picture has relied heavily on data from Deep Inelastic Scattering of polarized leptons and is still mainly influenced by this framework. Over the past decade, operation of the RHIC/AGS has vastly increased the amount of data from collisions of polarized proton beams. Much theoretical and experimental work has been done to understand such probes as pions, jets, and Z/Ws especially with the STAR, PHENIX, BRAHMS, AnDY and pp2pp detectors. I will present an overview of the capabilities of the RHIC complex and demonstrate how measurements from many experiments are complementing and expanding our understanding of the proton spin.

  20. Multi turn beam extraction from synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Tsoupas, Nicholaos

    2017-01-24

    This disclosure relates to apparatuses and methods for the extraction of particle beams while maintaining the energy levels and precision of the particles and the particle beam. Apparatuses and methods for extracting a charged particle beam from a central orbit in a synchrotron are provided, in which a particle beam is deflected from the central orbit. Parts of the deflected particle beam passes through a stripping foil placed in at least parts of the deflected path such that the particles that pass through the foil are stripped of at least one electron. The electron stripped particles and the non-stripped particles may be separated magnetically.

  1. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams

  2. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Still, D A; Valishev, A; Vorobiev, L G; Assmann, R; Kabantsev, A

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  3. Fabrication of BIT thick films patterned by proton beam writing

    Science.gov (United States)

    Yamaguchi, Masaki; Watanabe, Kazuki; Nishikawa, Hiroyuki; Masuda, Yoichiro

    2017-07-01

    In this study, we fabricated thick films with polyvinylpyrrolidone (PVP) added to bismuth titanate (Bi4Ti3O12) to form a lead-free ferroelectric material. We examined the direct patterning of these materials by using proton-beam irradiation. When 50% PVP was added to the organic source solution, the c-axis orientation was promoted and cracks were suppressed due to stress relaxation. In addition, a dot and an arbitrary-shape micro-pattern were formed on bismuth-titanate thick film by micromachining using a proton beam.

  4. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    Science.gov (United States)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  5. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    Science.gov (United States)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  6. Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.

    Science.gov (United States)

    Oborn, B M; Dowdell, S; Metcalfe, P E; Crozier, S; Mohan, R; Keall, P J

    2015-05-01

    This paper investigates, via magnetic modeling and Monte Carlo simulation, the ability to deliver proton beams to the treatment zone inside a split-bore MRI-guided proton therapy system. Field maps from a split-bore 1 T MRI-Linac system are used as input to geant4 Monte Carlo simulations which model the trajectory of proton beams during their paths to the isocenter of the treatment area. Both inline (along the MRI bore) and perpendicular (through the split-bore gap) orientations are simulated. Monoenergetic parallel and diverging beams of energy 90, 195, and 300 MeV starting from 1.5 and 5 m above isocenter are modeled. A phase space file detailing a 2D calibration pattern is used to set the particle starting positions, and their spatial location as they cross isocenter is recorded. No beam scattering, collimation, or modulation of the proton beams is modeled. In the inline orientation, the radial symmetry of the solenoidal style fringe field acts to rotate the protons around the beam's central axis. For protons starting at 1.5 m from isocenter, this rotation is 19° (90 MeV) and 9.8° (300 MeV). A minor focusing toward the beam's central axis is also seen, but only significant, i.e., 2 mm shift at 150 mm off-axis, for 90 MeV protons. For the perpendicular orientation, the main MRI field and near fringe field act as the strongest to deflect the protons in a consistent direction. When starting from 1.5 m above isocenter shifts of 135 mm (90 MeV) and 65 mm (300 MeV) were observed. Further to this, off-axis protons are slightly deflected toward or away from the central axis in the direction perpendicular to the main deflection direction. This leads to a distortion of the phase space pattern, not just a shift. This distortion increases from zero at the central axis to 10 mm (90 MeV) and 5 mm (300 MeV) for a proton 150 mm off-axis. In both orientations, there is a small but subtle difference in the deflection and distortion pattern between protons fired parallel to the

  7. Technical Note: Using experimentally determined proton spot scanning timing parameters to accurately model beam delivery time.

    Science.gov (United States)

    Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin

    2017-08-04

    To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (TBDT ) were compared with the BDTs recorded in the treatment delivery log files (TLog ): ∆t = TLog -TBDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may provide

  8. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    Science.gov (United States)

    Delferrière, O.; De Menezes, D.

    2004-05-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D+ extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D+ ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H+ beam emittance will be compared with experimental measurements.

  9. Proton Radiography to Improve Proton Radiotherapy : Simulation Study at Different Proton Beam Energies

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; van Goethem, Marc-Jan; van der Graaf, Emiel; van Beuzekom, Martin; Visser, Jan; Brandenburg, Sijtze

    2016-01-01

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a patie

  10. TECHNOLOGIES FOR DELIVERY OF PROTON AND ION BEAMS FOR RADIOTHERAPY

    CERN Document Server

    Owen, H; Alonso, J; Mackay, R

    2014-01-01

    Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.

  11. Technologies for Delivery of Proton and Ion Beams for Radiotherapy

    CERN Document Server

    Owen, Hywel; Alonso, Jose; MacKay, Ranald

    2013-01-01

    Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.

  12. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Science.gov (United States)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  13. ALPtraum: ALP production in proton beam dump experiments

    CERN Document Server

    Döbrich, Babette; Kahlhoefer, Felix; Ringwald, Andreas; Schmidt-Hoberg, Kai

    2016-01-01

    With their high beam energy and intensity, existing and near-future proton beam dumps provide an excellent opportunity to search for new very weakly coupled particles in the MeV to GeV mass range. One particularly interesting example is a so-called axion-like particle (ALP), i.e. a pseudoscalar coupled to two photons. The challenge in proton beam dumps is to reliably calculate the production of the new particles from the interactions of two composite objects, the proton and the target atoms. In this work we argue that Primakoff production of ALPs proceeds in a momentum range where production rates and angular distributions can be determined to sufficient precision using simple electromagnetic form factors. Reanalysing past proton beam dump experiments for this production channel, we derive novel constraints on the parameter space for ALPs. We show that the NA62 experiment at CERN could probe unexplored parameter space by running in 'dump mode' for a few days and discuss opportunities for future experiments su...

  14. ALPtraum. ALP production in proton beam dump experiments

    Energy Technology Data Exchange (ETDEWEB)

    Doebrich, Babette [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Kahlhoefer, Felix; Ringwald, Andreas; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-12-15

    With their high beam energy and intensity, existing and near-future proton beam dumps provide an excellent opportunity to search for new very weakly coupled particles in the MeV to GeV mass range. One particularly interesting example is a so-called axion-like particle (ALP), i.e. a pseudoscalar coupled to two photons. The challenge in proton beam dumps is to reliably calculate the production of the new particles from the interactions of two composite objects, the proton and the target atoms. In this work we argue that Primakoff production of ALPs proceeds in a momentum range where production rates and angular distributions can be determined to sufficient precision using simple electromagnetic form factors. Reanalysing past proton beam dump experiments for this production channel, we derive novel constraints on the parameter space for ALPs. We show that the NA62 experiment at CERN could probe unexplored parameter space by running in 'dump mode' for a few days and discuss opportunities for future experiments such as SHiP.

  15. The Development of MEMS Device Packaging Technology using Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, J. W.; Kim, E. H.; Kim, C. Y.; Lee, D. H.; Sa, S. H. [Dankuk Univ., Seoul (Korea, Republic of)

    2007-04-15

    Microelectromechanical systems (MEMS) are the integration of mechanical elements, sensors, actuators, and electronics on a common silicon substrate through microfabrication technology. One of the major issues in MEMS is to obtain a reliable packaging. Since conventional packaging technologies for MEMS require high temperatures and high voltages, packaging failures are frequently involved. In order to realize a reliable packaging, we propose a novel packaging technology for MEMS devices using proton beams; proton beams lose their energies inside the irradiated matter and the maximum energy loss is placed at the Bragg peak. By bonding two materials using the locally deposited heat near the Bragg peak, the packaging damage can be minimized. The energies of the proton beam energies were chosen by the calculation of the stopping and range of ions in matter(SRIM) and the heat analysis was carried out by using the analysis system (ANSYS). For experiments, proton-beam irradiation was performed at room temperature and atmospheric pressure. The energies were 8 {approx} 45 MeV and the currents were 1 {approx} 30 {mu}A. The experimental results show good agreements with the simulation results; melting were found inside the irradiated acrylic block at the corresponding Bragg peaks, and bondings were achieved at the interface between two aluminum plates. We believe that this technique has the potential application in the pyrex-silicon bonding for MEMS packaging.

  16. Proton Drivers for neutrino beams and other high intensity applications

    CERN Document Server

    Garoby, R; Koseki, T; Thomason, J

    2013-01-01

    CERN, Fermilab, J-PARC and RAL tentatively plan to have proton accelerators delivering multi-MW of beam power in view of enhancing their physics reach especially in the domain of neutrinos. These plans are described, together with their benefits for other applications.

  17. EPR/alanine dosimetry for two therapeutic proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Marrale, Maurizio, E-mail: maurizio.marrale@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Carlino, Antonio [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); EBG MedAustron GmbH, Marie Curie-Straße 5, A-2700 Wiener Neustadt (Austria); Gallo, Salvatore [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Laboratorio PH3DRA, Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); Longo, Anna; Panzeca, Salvatore [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony [Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a “quenching” effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for “in vivo” dosimetry in clinical proton beams.

  18. Beam loss monitors comparison at the CERN Proton Synchrotron

    CERN Document Server

    Gilardoni, S S; Effinger, E; Gil-Flores, J; Wienands, U

    2011-01-01

    CERN is planning the renovation and upgrade of the beam loss detection system for the Proton Synchrotron (PS). Improved performance in speed–to be able to monitor beam loss on a bunch-by-bunch basis–and in longterm stability–to reduce or avoid the need for periodic calibration–are aimed for. To select the most suitable technology, different detectors were benchmarked in the machine with respect to the same beam loss. The characteristics of the different detectors, the results of the measurement campaign and their suitability as future monitors for the PS are presented.

  19. Characterization of uniform scanning proton beams with analytical models

    Science.gov (United States)

    Demez, Nebi

    Tissue equivalent phantoms have an important place in radiation therapy planning and delivery. They have been manufactured for use in conventional radiotherapy. Their tissue equivalency for proton beams is currently in active investigation. The Bragg-Kleeman rule was used to calculate water equivalent thickness (WET) for available tissue equivalent phantoms from CIRS (Norfolk, VA, USA). WET's of those phantoms were also measured using proton beams at Hampton University Proton Therapy Institute (HUPTI). WET measurements and calculations are in good agreement within ˜1% accuracy except for high Z phantoms. Proton beams were also characterized with an analytical proton dose calculation model, Proton Loss Model (PLM) [26], to investigate protons interactions in water and those phantoms. Depth-dose and lateral dose profiles of protons in water and in those phantoms were calculated, measured, and compared. Water Equivalent Spreadness (WES) was also investigated for those phantoms using the formula for scattering power ratio. Because WES is independent of incident energy of protons, it is possible to estimate spreadness of protons in different media by just knowing WES. Measurements are usually taken for configuration of the treatment planning system (TPS). This study attempted to achieve commissioning data for uniform scanning proton planning with analytical methods, PLM, which have been verified with published measurements and Monte Carlo calculations. Depth doses and lateral profiles calculated by PLM were compared with measurements via the gamma analysis method. While gamma analysis shows that depth doses are in >90% agreement with measured depth doses, the agreement falls to <80% for some lateral profiles. PLM data were imported into the TPS (PLM-TPS). PLM-TPS was tested with different patient cases. The PLM-TPS treatment plans for 5 prostate cases show acceptable agreement. The Planning Treatment Volume (PTV) coverage was 100 % with PLM-TPS except for one case in

  20. FIDDLING CARBON STRINGS WITH POLARIZED PROTON BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, H.; KURITA, K.

    2006-05-01

    An innovative polarimeter based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region was first tested in the Brookhaven AGS successfully. CNI Polarimeters were then installed in the AGS and both RHIC rings. The polarimeter consists of ultra-thin carbon targets and silicon strip detectors. The waveform digitizers are used for signal readout, which allows deadtime-less data processing on the fly. Polarimeters are crucial instrumentation for the RHIC spin physics program. This paper summarizes the polarimeter design issues and operation results.

  1. Studies of scintillator response to 60 MeV protons in a proton beam imaging system

    Directory of Open Access Journals (Sweden)

    Rydygier Marzena

    2015-09-01

    Full Text Available A Proton Beam Imaging System (ProBImS is under development at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN. The ProBImS will be used to optimize beam delivery at IFJ PAN proton therapy facilities, delivering two-dimensional distributions of beam profiles. The system consists of a scintillator, optical tract and a sensitive CCD camera which digitally records the light emitted from the proton-irradiated scintillator. The optical system, imaging data transfer and control software have already been developed. Here, we report preliminary results of an evaluation of the DuPont Hi-speed thick back screen EJ 000128 scintillator to determine its applicability in our imaging system. In order to optimize the light conversion with respect to the dose locally deposited by the proton beam in the scintillation detector, we have studied the response of the DuPont scintillator in terms of linearity of dose response, uniformity of light emission and decay rate of background light after deposition of a high dose in the scintillator. We found a linear dependence of scintillator light output vs. beam intensity by showing the intensity of the recorded images to be proportional to the dose deposited in the scintillator volume.

  2. Indirect Self-Modulation Instability Measurement Concept for the AWAKE Proton Beam

    CERN Document Server

    Turner, M; Biskup, B; Burger, S; Gschwendtner, E; Lotov, K V; Mazzoni, S; Vincke, H

    2016-01-01

    AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV/c proton beam from the CERN SPS (longitudinal beam size sigma_z = 12 mm) which will be sent into a 10 m long plasma section with a nominal density of approx. 7x10^14 atoms/cm3 (plasma wavelength lambda_p = 1.2mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plasma, information about the occurrence of the self-modulation instability (SMI) can be inferred. In particular we show that measuring defocused protons with an angle of 1 mrad corresponds to having electric fields in the order of GV/m and fully developed self-modulation of the proton bunch. Additionally, by measuring the defocused beam edge of the self-modulated bunch, information about the growth rate of the instability can be extracted. If hosing instability occurs, it could be detected by measuring a non-uniform defo...

  3. FNAL Proton Source High Intensity Operations and Beam Loss Control

    CERN Document Server

    Garcia, F G

    2014-01-01

    The 40-year-old Fermilab Proton Source machines, constituted by the Pre-Injector, Linac and the synchrotron Booster, have been the workhorse of the Fermi National Accelerator Laboratory (Fermilab). During this time, the High Energy Physics Program has demanded an increase in proton throughput, especially during the past decade with the beginning of the neutrino program at Fermilab. In order to achieve a successful program, major upgrades and changes were made in Booster. Once again, the Proton Source has been charged to double their beam throughput, while maintain the present residual activation levels, to meet the laboratory Intensity Frontier program goals until new machines are built and operational to replace the Proton Source machines. This paper discusses the present performance of Booster and the plans involved in reaching even higher intensities.

  4. Hadrontherapy: Cancer Treatment With Proton and Carbon Beams

    Science.gov (United States)

    Amaldi, Ugo; Kraft, Gerhard

    Sixty years ago accelerator pioneer Robert Wilson published the paper in which he proposed using protons for cancer therapy. The introduction of protontherapy has been very slow, but in the last 10 years the field is booming and five companies offer turn-key centres. Fully stripped ions leave much more energy in the nuclei of the traversed cells than protons of the same range and are thus effective in controlling radio-resistant tumours which cannot be controlled neither with X-rays nor with protons. Paying particular attention to the European contributions, this contribution shortly reviews the history and the developments of carbon ion therapy, a recent chapter of the "hadrontherapy" which covers also radiotherapy with proton and neutron beams.

  5. Ionscan: scanning and control software for proton beam writing

    Science.gov (United States)

    Bettiol, A. A.; Udalagama, C. N. B.; Kan, J. A. van; Watt, F.

    2005-04-01

    The proton beam writing technique relies on a precise beam scanning and control system that offers a simple yet flexible interface for the fabrication and design of microstructures. At the Centre for Ion Beam Applications, National University of Singapore, we have developed a suite of programs, collectively known as Ionscan, that cater for the specific needs of proton beam writing. The new version of Ionscan is developed using the Microsoft Visual C++. NET development environment in conjunction with a National Instruments analog output card and NI-DAQ drivers. With the benefit of the experience gained in proton beam writing over the years, numerous enhancements and new features have been added to the scanning software since the first version of the program that was developed using LabVIEW [A.A. Bettiol, J.A. van Khan, T.C. Sum, F. Watt, Nucl. Instr. and Meth. B 181 (2001) 49]. These include the ability to perform combined stage and magnetic (or electrostatic) scanning, which is particularly useful for the fabrication of long waveguides and microfluidic channels over lengths of up to 2.5 cm. Other enhancements include the addition of the Ionutils program which gives the user the ability to design basic structures using an ASCII file format that was developed. This format contains basic information on the shape to be irradiated including the way in which it is scanned.

  6. High Brightness Proton Beams for LHC: Needs and Means

    CERN Document Server

    Benedikt, Michael; High Energy High Intensity Hadron Beams (HHH 2004)

    2005-01-01

    Experiments [1, 2] have proven that the LHC injector chain can deliver a proton beam with the nominal characteristics (bunch intensity Nb=1.15E11 protons per bunch (ppb) in normalised rms transverse emittances of 3.5 mm.mrad), but cannot reach the ultimate performance (1.7E11 ppb in the same emittances). Moreover, in the longer term, an even higher beam brightness is required by all methods considered for increasing the LHC luminosity beyond the present ultimate level. Improvements and/or new processes are therefore needed, especially in the low energy accelerators. A number of solutions have already been imagined for the PS complex that involve new linac(s) or/and sophisticated beam gymnastics. The present capabilities and limitations of the accelerator chain are described. The needs of the possible LHC luminosity upgrades are outlined, the proposed improvements are explained and their features and performance are compared.

  7. Stability Issues of the Mu2e Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2009-05-01

    Stability issues of the mu2e proton beam are discussed. These include space-charge distortion of bunch shape, microwave instabilities, mode-coupling instabilities, head-tail instabilities, as well as electron-cloud effects. We have studied several beam stability issues of the proton beam heading to the target for the mu2e experiment. We find bunch-shape distortions driven by the space charge force is reasonably small, and longitudinal microwave instability will unlikely to occur. Electron-cloud buildup, with density up to {rho}{sub e} {approx} 2 x 10{sup 12} m{sup -3} in the Accumulator, can probably drive head-tail instabilities. However, these, together with the instabilities driven by the resistive-wall impedance can be avoided by restricting the chromaticity to larger than {approx} 0.2. TMCI will not occur even when the electron-cloud wake is included.

  8. Implementation of the proposed multi-turn extraction at the CERN Proton Synchrotron

    CERN Document Server

    Giovannozzi, Massimo

    2006-01-01

    Following the positive results of the three-year measurement campaign at the CERN Proton Synchrotron, concerning beam splitting with stable islands in the transverse phase space, a study of a possible implementation of the proposed Multi-Turn Extraction (MTE) was undertaken. The novel approach would allow a substantial reduction of beam losses, with respect to the present scheme, when delivering the high-intensity proton beams required for the planned CERN Neutrino to Gran Sasso Project (CNGS). Major modifications to the ring layout are foreseen, such as a new design of the extraction bumps including also the installation of three additional kickers to create a closed-bump over the five turns used to extract the split beam. The ring aperture was reviewed and improvements proposed to reduce possible beam losses during beam splitting and extraction. The goal consists of implementing the proposed changes by the end of the 2007/2008 PS shutdown and to commission the novel extraction during the 2008 physics run.

  9. Simulation studies of macroparticles falling into the LHC Proton Beam

    CERN Document Server

    Fuster Martinez, N; Zimmermann, F; Baer, T; Giovannozzi, M; Holzer, E B; Nebot Del Busto, E; Nordt, A; Sapinski, M; Yang, Z

    2011-01-01

    We report updated simulations on the interaction of macroparticles falling from the top of the vacuum chamber into the circulating LHC proton beam. The path and charge state of micron size micro-particles are computed together with the resulting beam losses, which — if high enough — can lead to the local quench of superconducting (SC) magnets. The simulated time evolution of the beam loss is compared with observations in order to constrain some macroparticle parameters. We also discuss the possibility of a “multiple crossing” by the same macroparticle, the effect of a strong dipole field, and the dependence of peak loss rate and loss duration on beam current and on beam size.

  10. Distribution uniformity of laser-accelerated proton beams

    Science.gov (United States)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-09-01

    Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)

  11. Studies of a proton phase beam monitor for range verification in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Werner, T.; Golnik, C.; Enghardt, W.; Petzoldt, J.; Kormoll, T.; Pausch, G. [Technische Universitaet Dresden, OncoRay, PF 41, 01307 Dresden, (Germany); Straessner, A. [Technische Universitaet Dresden, Institute for Nuclear and Particle Physics, Zellescher Weg 19, 01069 Dresden, (Germany); Roemer, K.; Dreyer, A.; Hueso-Gonzalez, F.; Enghardt, W. [Helmholtz-Zentrum Dresden-Rossendorf, PF 510 119, 01314 Dresden, (Germany)

    2015-07-01

    A primary subject of the present research in particle therapy is to ensure the precise irradiation of the target volume. The prompt gamma timing (PGT) method provides one possibility for in vivo range verification during the irradiation of patients. Prompt gamma rays with high energies are emitted promptly due to nuclear reactions of protons with tissue. The arrival time of these gammas to the detector reflects the stopping process of the primary protons in tissue and are directly correlated to the range. Due to the time resolution of the detector and the proton bunch time spread, as well as drifts of the bunch phase with respect to the accelerator frequency, timing spectra are smeared out and compromise the accuracy of range information intended for future clinical applications. Nevertheless, counteracting this limitation and recovering range information from the PGT measured spectra, corrections using a phase beam monitor can be performed. A first prototype of phase beam monitor was tested at GSI Darmstadt, where measurements of the energy profile of the ion bunches were performed. At the ELBE accelerator Helmholtz-Zentrum Dresden-Rossendorf (HZDR), set up to provide bremsstrahlung photons in very short pulses, a constant fraction algorithm for the incoming digital signals was evaluated, which is used for optimizing the time resolution. Studies of scattering experiments with different thin targets and detector positions are accomplished at Oncoray Dresden, where a clinical proton beam is available. These experiments allow a basic characterization of the proton bunch structure and the detection yield. (authors)

  12. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  13. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  14. Laser-driven generation of ultra-intense proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J.; Jablonski, S.; Kubkowska, M.; Parys, P.; Rosinski, M.; Wolowski, J. [EURATOM, Inst Plasma Phys and Laser Microfus, PL-00908 Warsaw (Poland); Antici, P.; Fuchs, J.; Mancic, A. [UPMC, LULI, Ecole Polytech, CNRS, CEA, F-91128 Palaiseau (France); Szydlowski, A. [Andrzej Soltan Inst Nucl Studies, Otwock (Poland)

    2010-07-01

    The results of experimental and numerical studies of high-intensity proton beam generation driven by a short laser pulse of relativistic intensity are reported. In the experiment, a 350 fs laser pulse of 1.06 or 0.53 m wavelength and intensity up to 2*10{sup 19} Wcm{sup -2} irradiated a thin (0.6-2{mu}m) plastic (PS) or Au/PS (plastic covered by 0.2{mu}m Au front layer) target along the target normal. The effect of laser intensity, the target structure and the laser wavelength on the proton beam parameters and laser-protons energy conversion efficiency were examined. Both the measurements and one-dimensional particle-in-cell simulations showed that MeV proton beams of intensity 10{sup 18}Wcm{sup -2} and current density 10{sup 12}Acm{sup -2} at the source can be produced when the laser intensity-wavelength squared product I{sub L{lambda}}{sup 2} is 10{sup 19}Wcm{sup -2}m{sup 2} and the laser-target interaction conditions approach the skin-layer ponderomotive acceleration (SLPA) requirements. The simulations also proved that at I{sub L{lambda}}{sup 2} {>=} 5*10{sup 19}Wcm{sup -2}m{sup 2} and {lambda} {<=} 0.53{mu}m, SLPA clearly prevails over other acceleration mechanisms and it can produce multi-MeV proton beams of extremely high intensities above 10{sup 20}Wcm{sup -2}. (authors)

  15. Scattering effect in proton beam windows at spallation targets

    CERN Document Server

    Meng, C; Jing, H T

    2010-01-01

    Proton beam window (PBW) is a boundary wall between a high vacuum area in the proton beam line and the helium atmosphere in a helium vessel at a high beam power target. The thermal and mechanical problems of the PBW have been studied in other spallation neutron sources; however, the scattering effect in PBW is seldom reported in literature but it may pose serious problems for the target design if not well treated. This paper will report the simulation studies of the scattering effect in PBW. Different materials and different structures of PBW are discussed. Taking CSNS as an example, a thin single-layer aluminum alloy PBW with edge cooling has been chosen for CSNS-I and CSNS-II, and a sandwiched aluminum alloy PBW has been chosen for CSNS-III. Simulations results of the scattering effect in the presence of beam uniformization at target by using non-linear magnets at the different CSNS PBWs are presented. The simulations show that the scattering effect at PBW is very important in the beam loss and the beam dis...

  16. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  17. Improved design of proton source and low energy beam transport line for European Spallation Source

    Science.gov (United States)

    Neri, L.; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Torrisi, G.; Cheymol, B.; Ponton, A.; Galatà, A.; Patti, G.; Gozzo, A.; Lega, L.; Ciavola, G.

    2014-02-01

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  18. Laser-Accelerated Proton Beams as a New Particle Source

    OpenAIRE

    Nürnberg, Frank

    2010-01-01

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. Today's high power, ultrashort pulse laser systems are capable of achieving laser intensities up to 10^21 W/cm^2. When focused onto thin foil targets, extremely high field gradients of the order of TV/m are produced on the rear side of the target resulting in the acceleration of protons to multi-MeV energies with an exponential spectrum including up to 10^13 particles. This a...

  19. A beam optics study of the biomedical beam line at a proton therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Chong Cheoul [National Center for Inter-University Research Facilities, Seoul National University, Sillim-dong, Gwanak, Seoul (Korea, Republic of); Kim, Jong-Won [Research Institute and Hospital, National Cancer Center, 809 Madu-dong, Ilsan-gu, Koyang, Kyonggi 410 769 (Korea, Republic of)], E-mail: jwkim@ncc.re.kr

    2007-10-15

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam.

  20. Final Results from the Novel Multi-turn Extraction Studies at CERN Proton Synchrotron

    CERN Document Server

    Cappi, R; Giovannozzi, Massimo; Martini, M; Métral, E; Müller, A S; Steerenberg, R

    2005-01-01

    Recently a novel approach to perform multi-turn extraction was proposed based on beam splitting in the transverse phase space by means of trapping inside stable islands. An experimental campaign was launched since the year 2002 to assess the feasibility of such an extraction scheme at the CERN Proton Synchrotron. During the year 2004 run, a high-intensity single-bunch beam was successfully split and the generated beamlets separated without any measurable losses. The latest experimental results are presented and discussed in details in this paper. These achievements represent a substantial step forward with respect to what achieved in previous years, as only a low-intensity bunch could be split without losses. Furthermore, this opens the possibility of using such a technique for routine operation with the high-intensity proton beams required for the planned CERN Neutrino to Gran Sasso Project.

  1. Proton beam generation of oblique whistler waves

    Science.gov (United States)

    Wong, H. K.; Goldstein, M. L.

    1988-01-01

    It is known that ion beams are capable of generating whistler waves that propagate parallel to the mean magnetic field. Such waves may have been observed both upstream of the earth's bow shock and in the vicinity of comets. Previous analyses are extended to include propagation oblique to the mean magnetic field. The instability is generated by the perpendicular component of free energy in the ions, which can arise either via a temperature anisotropy or via a gyrating distribution. In the former case, the generation of whistler waves is confined to a fairly narrow cone of propagation directions centered about parallel propagation; in the latter case, the maximum growth of the instability can occur at fairly large obliquities (theta equal to about 50 deg).

  2. Extraction of the proton charge radius from experiments

    CERN Document Server

    Kelkar, N G; Nowakowski, M

    2016-01-01

    Static properties of hadrons such as their radii and other moments of the electric and magnetic distributions can only be extracted using theoretical methods and not directly measured from experiments. As a result, discrepancies between the extracted values from different precision measurements can exist. The proton charge radius, $r_p$, which is either extracted from electron proton elastic scattering data or from hydrogen atom spectroscopy seems to be no exception. The value $r_p = 0.84087(39)$ fm extracted from muonic hydrogen spectroscopy is about 4% smaller than that obtained from electron proton scattering or standard hydrogen spectroscopy. The resolution of this so called proton radius puzzle has been attempted in many different ways over the past six years. The present article reviews these attempts with a focus on the methods of extracting the radius.

  3. The Beam Profile Monitoring System for the CERN IRRAD Proton Facility

    CERN Document Server

    Ravotti, F; Glaser, M; Matli, E; Pezzullo, G; Gan, K K; Kagan, H; Smith, S; Warner, J D

    2016-01-01

    To perform proton irradiation experiments, CERN built during LS1 a new irradiation facility in the East Area at the Proton Synchrotron accelerator. At this facility, named IR-RAD, a high-intensity 24 GeV/c proton beam is used. During beam steering and irradiation, the intensity and the transverse profile of the proton beam are monitored online with custom-made Beam Profile Monitor (BPM) devices. In this work, we present the design and the architecture of the IRRAD BPM system, some results on its performance with the proton beam, as well as its planned grades.

  4. Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac

    Science.gov (United States)

    Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude

    2016-02-01

    Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences

  5. Proton beam micromachining on PMMA, Foturan and CR-39 materials

    CERN Document Server

    Rajta, I; Kiss, A Z; Gomez-Morilla, I; Abraham, M H

    2003-01-01

    Proton Beam Micromachining was demonstrated at the Institute of Nuclear Research of the Hungarian Academy of Sciences using three different types of resists: PMMA, Foturan and CR-39 type Solid State Nuclear Track Detector material. Irradiations have been performed on the nuclear microprobe facility at ATOMKI. The beam scanning was done using a National Instruments (NI) card (model 6711), and the new C++ version of the program IonScan, developed specifically for PBM applications called IonScan 2.0. (R.P.)

  6. Proton beam irradiation and hyperthermia. Effects on experimental choroidal melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, K.G.; Svitra, P.P.; Seddon, J.M.; Albert, D.M.; Gragoudas, E.S.; Koehler, A.M.; Coleman, D.J.; Torpey, J.; Lizzi, F.L.; Driller, J.

    1985-12-01

    Ultrasonically induced hyperthermia (4.75 MHz) and proton irradiation (160 meV) were evaluated alone and combined to treat experimental choroidal melanoma in 58 rabbit eyes. Threshold tumoricidal doses were established for each modality. Therapy was performed combining subthreshold doses of heat and radiation. Focused ultrasonic energy via an external beam was found to deliver well-localized heat to an intraocular tumor. Ectopic temperature elevations due to soft-tissue-bone interfaces were alleviated by modifying beam alignment. The results indicate that hyperthermia (43 degrees C for one hour) potentiated the tumoricidal effects of radiation, while sparing normal ocular structures. Therefore, we believe that experimental hyperthermia is suitable as an adjuvant treatment modality. This shows that ultrasound hyperthermia has the potential to increase the efficacy of proton irradiation by lowering radiation doses and thus decreasing posttreatment ocular morbidity in human intraocular malignancies.

  7. Magnetically scanned proton therapy beams: rationales and principles

    Science.gov (United States)

    Jones, D. T. L.; Schreuder, A. N.

    2001-06-01

    High-energy proton therapy is finding increased application in radiation oncology because of the unique physical characteristics of proton beams which allow superior conformation of the high-dose region to the target volume. The standard method of "painting" the required dose over the target volume is to use passive mechanical means involving multiple scattering and variable thickness absorbers. However, this technique dose not allow proximal surface dose conformation which can only be achieved using beam scanning techniques. Apart from reducing the integral dose, intensity modulation and inverse planning are possible, there is less activation of the surroundings and no field-specific modification devices are required. However, scanning systems are very complicated and there are very high instantaneous dose rates which require sophisticated control systems.

  8. Dense monoenergetic proton beams from chirped laser-plasma interaction

    CERN Document Server

    Galow, Benjamin J; Liseykina, Tatyana V; Harman, Zoltan; Keitel, Christoph H

    2011-01-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen plasma cell is studied analytically and by means of particle-in-cell simulations, respectively. Feasibility of generating ultra-intense (10^7 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1 %) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10^21 W/cm^2.

  9. Dense monoenergetic proton beams from chirped laser-plasma interaction.

    Science.gov (United States)

    Galow, Benjamin J; Salamin, Yousef I; Liseykina, Tatyana V; Harman, Zoltán; Keitel, Christoph H

    2011-10-28

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (10(7) particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10(21) W/cm(2).

  10. Dense monoenergetic proton beams from chirped laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Liseykina, Tatyana V. [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2012-07-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. Feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.

  11. Dense monoenergetic proton beams from chirped laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianxing; Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2013-07-01

    Interactions of linearly and radially polarized frequency-chirped laser pulses with single protons and hydrogen gas targets are studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.

  12. Studies of beam heating of proton beam profile monitor SEM's

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovich, Zarko; Osiecki, Thomas H.; Kopp, Sacha E.; /Texas U.

    2005-05-01

    The authors present calculations of the expected temperature rise of proton beam profile monitors due to beam heating. The profile monitors are secondary emission monitors (SEM's) to be made of Titanium foils. The heating is studied to understand whether there is any loss of tension or alignment of such devices. Additionally, calculations of thermally-induced dynamic stress are presented. Ti foil is compared to other materials and also to wire SEM's. The calculations were initially performed for the NuMI beam, where the per-pulse intensity is quite high; for completeness the calculations are also performed for other beam energies and intensities.

  13. Non-Linear Beam Transport System for the LENS 7 MeV Proton Beam

    CERN Document Server

    Jones, William P; Derenchuk, Vladimir Peter; Rinckel, Thomas; Solberg, Keith

    2005-01-01

    A beam transport system has been designed to carry a high-intensity low-emittance proton beam from the exit of the RFQ-DTL acceleration system of the Indiana University Low Energy Neutron System (LENS)* to the neutron production target. The goal of the design was to provide a beam of uniform density over a 3cm by 3cm area at the target. Two octupole magnets** are employed in the beam line to provide the necessary beam phase space manipulations to achieve this goal. First order calculations were done using TRANSPORT and second order calculations have been performed using TURTLE. Second order simulations have been done using both a Gaussian beam distribution and a particle set generated by calculations of beam transport through the RFQ-DTL using PARMILA. Comparison of the design characteristics with initial measurements from the LENS commissioning process will be made.

  14. Beam asymmetry in near threshold omega photoproduction off the proton

    CERN Document Server

    Klein, Frank; Bacelar, J C S; Bantes, B; Bartholomy, O; Bayadilov, D; Beck, R; Beloglasov, Yu A; Castelijns, R; Credé, V; Dutz, H; Ehmanns, A; Elsner, D; Essig, K; Ewald, R; Fabry, I; Fuchs, M; Funke, C; Gregor, R; Gridnev, A B; Gutz, E; Hoffgen, S; Hoffmeister, P; Horn, I; Jaegle, I; Junkersfeld, J; Kalinowsky, H; Kammer, S; Kleber, V; Klein, Friedrich; Klempt, E; Konrad, M; Kotulla, M; Krusche, B; Lang, M; Löhner, H; Lopatin, I V; Lotz, J; Lugert, S; Menze, D; Mertens, T; Messchendorp, J G; Metag, V; Morales, C; Nanova, M; Nikonov, V A; Novinski, D; Novotny, R; Ostrick, M; Pant, L M; Van Pee, H; Pfeiffer, M; Radkov, A; Roy, A; Sarantsev, A V; Schadmand, S; Schmidt, C; Schmieden, H; Schoch, B; Shende, S V; Sokhoyan, V; Sule, A; Sumachev, V V; Szczepanek, T; Thoma, U; Trnka, D; Varma, R; Walther, D; Weinheimer, C; Wendel, C

    2008-01-01

    The photoproduction of omega mesons off protons has been studied at the Bonn ELSA accelerator from threshold to E_gamma = 1700 MeV. Linearly polarized beams were produced via coherent bremsstrahlung. Large photon asymmtries in excess of 50% were obtained, whereas the pion asymmetries from omega \\to pi^0 gamma are close to zero. The asymmetries do characteristically depend on Theta_{cm} rather than |t| and indicate s-channel resonance formation on top of t-channel exchange processes.

  15. Generating monoenergetic proton beam by using circularly polarlzed laser

    Institute of Scientific and Technical Information of China (English)

    LIU Bi-Cheng; YAN Xue-Qing; LIN Chen; Lu Yuan-Rong; GUO Zhi-Yu; FANG Jia-Xun; SHENG Zheng-Ming; LI Yu-Tong; CHEN Jia-Er

    2009-01-01

    The interaction of ultrashort intense circularly polarized laser with ultra thin overdense foil is studied by particle-in-cell simulation and analytic model.It is found that with the balance between pondermotive force and electrostatic force,highly quasi-monoenergetic proton beam can be generated by Phase Stable Acceleration(PSA)process.As in conventional accelerators,ion will be accelerated and bunched up in the longitudinal direction at the same time.

  16. Technical Note: Spot characteristic stability for proton pencil beam scanning.

    Science.gov (United States)

    Chen, Chin-Cheng; Chang, Chang; Moyers, Michael F; Gao, Mingcheng; Mah, Dennis

    2016-02-01

    The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0-226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  17. Proton external beam in the TANDAR Accelerator; Haz externo de protones en el acelerador TANDAR

    Energy Technology Data Exchange (ETDEWEB)

    Rey, R.; Schuff, J.A.; Perez de la Hoz, A.; Debray, M.E.; Hojman, D.; Kreiner, A.J.; Kesque, J.M.; Saint-Martin, G.; Oppezzo, O.; Bernaola, O.A.; Molinari, B.L.; Duran, H.A.; Policastro, L.; Palmieri, M.; Ibanez, J.; Stoliar, P.; Mazal, A.; Caraballo, M.E.; Burlon, A.; Cardona, M.A.; Vazquez, M.E.; Salfity, M.F.; Ozafran, M.J.; Naab, F.; Levinton, G.; Davidson, M.; Buhler, M. [Departamento de Fisica, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, C.P. 1650 San Martin, Buenos Aires (Argentina)

    1998-12-31

    An external proton beam has been obtained in the TANDAR accelerator with radiological and biomedical purposes. The protons have excellent physical properties for their use in radiotherapy allowing a very good accuracy in the dose spatial distribution inside the tissue so in the side direction as in depth owing to the presence of Bragg curve. The advantage of the accuracy in the dose localization with proton therapy is good documented (M. Wagner, Med. Phys. 9, 749 (1982); M. Goitein and F. Chen, Med. Phys. 10, 831 (1983); M.R. Raju, Rad. Res. 145, 391 (1996)). It was obtained external proton beams with energies between 15-25 MeV, currents between 2-10 p A and a uniform transversal sections of 40 mm{sup 2} approximately. It was realized dosimetric evaluations with CR39 and Makrofol foliation. The irradiations over biological material contained experiences In vivo with laboratory animals, cellular and bacterial crops. It was fixed the optimal conditions of position and immobilization of the Wistar rats breeding for the In vivo studies. It was chosen dilutions and sowing techniques adequate for the exposition at the cellular and bacterial crops beam. (Author)

  18. Control of the slow extraction process in a dedicated proton synchrotron for hadron therapy

    CERN Document Server

    Molodozhentsev, A Yu

    1999-01-01

    The ring design of the synchrotron for cancer treatment, based on the third-order resonant extraction, was been performed to meet the special medical requirements. The uniformity of the slow extracted beam from the proton synchrotron is the main requirement on the beam quality determined by the medical application. The smooth extraction during at least 400 msec should be realized for the `raster' scanning of tumours. Control of the slow extraction over the whole spill time is discussed in this report. To keep all lattice functions of the ring constant during the extraction a slow movement of the accelerated particles into the resonance can be used. To reduce degradation of the uniformity of the extracted beam by ripples from the power converters of the magnetic elements, the RF empty-bucket channeling method should be utilized. This method allows reduce the ripple influence during slow extraction. Both methods are analyzed to control the slow extraction for the dedicated proton synchrotron. The main parameter...

  19. Proteomic analysis of proton beam irradiated human melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sylwia Kedracka-Krok

    Full Text Available Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH, (ii cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70, (iii cell metabolism (TIM, GAPDH, VCP, and (iv cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B. A substantial decrease (2.3 x was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma.

  20. Proton Beam Intensity Upgrades for the Neutrino Program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab

    2016-12-15

    Fermilab is committed to upgrading its accelerator complex towards the intensity frontier to pursue HEP research in the neutrino sector and beyond. The upgrade has two steps: 1) the Proton Improvement Plan (PIP), which is underway, has its primary goal to start providing 700 kW beam power on NOvA target by the end of 2017 and 2) the foreseen PIP–II will replace the existing LINAC, a 400 MeV injector to the Booster, by an 800 MeV superconducting LINAC by the middle of next decade, with output beam intensity from the Booster increased significantly and the beam power on the NOvA target increased to <1.2 MW. In any case, the Fermilab Booster is going to play a very significant role for the next two decades. In this context, we have recently developed and commissioned an innovative beam injection scheme for the Booster called "early injection scheme". This scheme is already in operation and has a potential to increase the Booster beam intensity from the PIP design goal by a considerable amount with a reduced beam emittance and beam loss. In this paper, we will present results from our experience from the new scheme in operation, current status and future plans.

  1. Proton G_E/G_M from beam-target asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Mark Jones; Aram Aghalaryan; Abdellah Ahmidouch; Razmik Asaturyan; Frederic Bloch; Werner Boeglin; Peter Bosted; Cedric Carasco; Roger Carlini; Jinseok Cha; Jian-Ping Chen; Michael Christy; Leon Cole; Luminita Coman; Donald Crabb; Samuel Danagoulian; Donal Day; James Dunne; Mostafa Elaasar; Rolf Ent; Howard Fenker; Emil Frlez; David Gaskell; Liping Gan; Javier Gomez; Bitao Hu; Juerg Jourdan; Christopher Keith; Cynthia Keppel; Mahbubul Khandaker; Andreas Klein; Laird Kramer; Yongguang Liang; Jechiel Lichtenstadt; Richard Lindgren; David Mack; Paul McKee; Dustin McNulty; David Meekins; Hamlet Mkrtchyan; Rakhsha Nasseripour; Maria-Ioana Niculescu; Kristoff Normand; Blaine Norum; Dinko Pocanic; Yelena Prok; Brian Raue; Joerg Reinhold; Julie Roche; Daniela Rohe; Oscar Rondon-Aramayo; Nikolai Savvinov; Bradley Sawatzky; Mikell Seely; Ingo Sick; Karl Slifer; C. Smith; Gregory Smith; S. Stepanyan; Liguang Tang; Shigeyuki Tajima; Giuseppe Testa; William Vulcan; Kebin Wang; Glen Warren; Frank Wesselmann; Stephen Wood; Chen Yan; Lulin Yuan; Junho Yun; Markus Zeier; Hong Guo Zhu

    2006-07-06

    The ratio of the proton's electric to magnetic form factor, G{sub E}/G{sub M}, can be extracted in elastic electron-proton scattering by measuring either cross sections, beam-target asymmetry or recoil polarization. Separate determinations of G{sub E}/G{sub M} by cross sections and recoil polarization observables disagree for Q{sup 2} > 1 (GeV/c){sup 2}. Measurement by a third technique might uncover an unknown systematic error in either of the previous measurements. The beam-target asymmetry has been measured for elastic electron-proton scattering at Q{sup 2} = 1.51 (GeV/c){sup 2} for target spin orientation aligned perpendicular to the beam momentum direction. This is the largest Q{sup 2} at which G{sub E}/G{sub M} has been determined by a beam-target asymmetry experiment. The result, {mu}G{sub E}/G{sub M} = 0.884 +/- 0.027 +/- 0.029, is compared to previous world data.

  2. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage

    Science.gov (United States)

    Barberio, M.; Veltri, S.; Scisciò, M.; Antici, P.

    2017-01-01

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient. PMID:28266496

  3. Tissue equivalence of some phantom materials for proton beams

    CERN Document Server

    Vasiliev, V N; Riazantsev, O B; Khaybullin, V G; Samarin, S I; Uglov, A S

    2010-01-01

    Tissue and water equivalence of some phantom materials originally developed for conventional radiation therapy was investigated on the ITEP medical proton beam facility. The proton CSDA range in three variants of Plastic Water, lung, adipose, muscle and compact bone substitute materials (CIRS Inc., USA) was measured by a silicon diode as well as the residual proton range in liquid water after passing a slab of each material under investigation. In addition, the proton range in five materials of known elemental composition was calculated by Monte Carlo technique. The obtained results were compared with reference data from ICRU report 49 for respective biological tissues and water. A total uncertainty of the proton range ratios was estimated to be from 0.9 to 1.5% (1SD). Within these uncertainties, Plastic Water, Plastic Water LR, Plastic Water DT, muscle and compact bone demonstrated a good agreement with the reference data. The range in adipose and lung substitutes is a few percents lower than that in the res...

  4. Direct-current proton-beam measurements at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, J.; Stevens, R.R.; Schneider, J.D.; Zaugg, T.

    1994-08-01

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H{sub 2} gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos is given.

  5. Proton radiography to improve proton radiotherapy: Simulation study at different proton beam energies

    CERN Document Server

    Biegun, A K; van Goethem, M-J; van der Graaf, E R; van Beuzekom, M; Visser, J; Brandenburg, S

    2016-01-01

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a patient of typically 3-4\\% and even up to 10\\% in region containing bone~\\cite{USchneider1995,USchneider1996,WSchneider2000,GCirrone2007,HPaganetti2012,TPlautz2014,GLandry2013,JSchuemann2014}. As a consequence, part of a tumor may receive no dose, or a very high dose can be delivered in healthy ti\\-ssues and organs at risks~(e.g. brain stem)~\\cite{ACKnopf2013}. A transmission radiograph of high-energy protons measuring proton stopping powers directly will allow to reduce these uncertainties, and thus improve the quality of treatment. The best way to obtain a sufficiently accurate radiograph is by tracking individual protons traversing the phantom (patient)~\\cite{GCirrone2007,TPlautz2014,VSipala2013}. In our simulations ...

  6. Measurements of an ion beam diameter extracted into air through a large-bore metal capillary

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y.; Umigishi, M. [Graduate School of Humanities and Sciences, Nara Women’s University, Nara 630-8506 (Japan); Ishii, K.; Ogawa, H. [Department of Physics, Nara Women’s University, Nara 630-8506 (Japan)

    2015-07-01

    To extract an ion beam into air, the technique using a single macro-capillary has been paid attention. We have expanded the bore of the metal capillary up to 500 μm∅ inlet diameter to increase the beam intensity and have measured the intensity distributions of the extracted 3 MeV proton beam. Furthermore, we have tilted the capillary angle and measured the intensity distributions of the ion beam. In this article, we will present the experimental results together with the simulation which takes the tilt angles of the capillary into account.

  7. Determining Beam Parameters in a Storage Ring with a Cylindrical Hodoscope using Elastic Proton-Proton Scattering

    CERN Document Server

    Rohdjess, H; Bisplinghoff, J; Bollmann, R; Büsser, K; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Gasthuber, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Igelbrink, M; Langkau, R; Maier, R; Mosel, F; Müller, M; Muenstermann, M; Prasuhn, D; Von Rossen, P; Scheid, H; Schirm, N; Schwandt, F; Scobel, W; Trelle, H J; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    2004-01-01

    The EDDA-Detector at the Cooler-Synchrotron COSY/J\\"ulich has been operated with an internal CH$_2$ fiber target to measure proton-proton elastic scattering differential cross sections. For the data analysis knowledge of beam parameters, like position, width and angle, are indispensable. We have developed a method to obtain these values with high precision from the azimuthal and polar angles of the ejectiles only, by exploiting the coplanarity of the two final state protons with the beam and the kinematic correlation. The formalism is described and results for beam parameters obtained during beam acceleration are given.

  8. Numerical Simulations of Tungsten Targets Hit by LHC Proton Beam

    CERN Document Server

    Peroni, L; Bertarelli, A; Dallocchio, A

    2011-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in a single beam of LHC particle accelerator is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area with a typical value of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage for high energy and high intensity occurs in a regime where practical experience does not exist. The interaction between high energy particle beams and metals induces a sudden non uniform temperature increase. This provokes a dynamic response of the structure entailing thermal stress waves and thermally induced vibrations or even the failure of the component. This study is performed in order to estimate the damage on a tungsten component due to the impact with a proton ...

  9. Resonant beam behavior studies in the Proton Storage Ring

    Directory of Open Access Journals (Sweden)

    S. Cousineau

    2003-07-01

    Full Text Available We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR at Los Alamos National Laboratory. We investigate the profile broadening through detailed particle-in-cell simulations of several experiments and obtain results in good agreement with the measurements. We interpret these results within the framework of coherent resonance theory. With increasing intensity, our simulations show strong evidence for the presence of a quadrupole-mode resonance of the beam envelope with the lattice in the vertical plane. Specifically, we observe incoherent tunes crossing integer values, and large amplitude, nearly periodic envelope oscillations. At the highest operating intensities, we observe a continuing relaxation of the beam through space charge forces leading to emittance growth. The increase of emittance commences when the beam parameters encounter an envelope stop band. Once the stop band is reached, the emittance growth balances the intensity increase to maintain the beam near the stop band edge. Additionally, we investigate the potential benefit of a stop band correction to the high intensity PSR beam.

  10. Negative ion beam extraction in ROBIN

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Gourab, E-mail: bansal@ipr.res.in [Institute for Plasma Research (IPR), Bhat, Gandhinagar, Gujarat 382428 (India); Gahlaut, Agrajit; Soni, Jignesh; Pandya, Kaushal; Parmar, Kanu G.; Pandey, Ravi; Vuppugalla, Mahesh; Prajapati, Bhavesh; Patel, Amee; Mistery, Hiren [Institute for Plasma Research (IPR), Bhat, Gandhinagar, Gujarat 382428 (India); Chakraborty, Arun; Bandyopadhyay, Mainak; Singh, Mahendrajit J.; Phukan, Arindam; Yadav, Ratnakar K.; Parmar, Deepak [ITER-India, Institute for Plasma Research, A-29, Sector 25, GIDC, Gandhinagar, Gujarat 380025 (India)

    2013-10-15

    Highlights: ► A RF based negative hydrogen ion beam test bed has been set up at IPR, India. ► Ion source has been successfully commissioned and three campaigns of plasma production have been carried out. ► Extraction system (35 kV) has been installed and commissioning has been initiated. Negative ion beam extraction is immediate milestone. -- Abstract: The RF based single driver −ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 10{sup 12} cm{sup −3} is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm{sup 2} as observed in BATMAN. In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 10{sup 11} cm{sup −3} has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated.

  11. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment

    Science.gov (United States)

    Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook

    2017-01-01

    While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also

  12. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment.

    Science.gov (United States)

    Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook

    2017-01-21

    While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also

  13. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction...... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....

  14. A feasibility study of H{sup -} beam extraction technique using YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro; Hasegawa, Kazuo; Ikeda, Yujiro; Oigawa, Hiroyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Aoki, Nobutada [Toshiba Power System Co., Ltd. (Japan); Nakagawa, Satoshi [Toshiba Co., Tokyo (Japan)

    2002-12-01

    Under a framework of JAERI-KEK joint project of high intensity proton accelerator, as for research and develop of the accelerator driven nuclear transmutation of the long lived radioactive nuclide, it is planed to built the Transmutation Physics Experiment Facility (TEF-P) and the Transmutation Engineering Experiment Facility (TEF-E). The TEF-P is used for the experiments for subcritical system coupled with a spallation neutron target bombarded with 600-MeV proton beam accelerated by the LINAC. To limit the maximum thermal power less than 500 W at the TEF-P, an incident beam power should be less than 10 W. On the contrary, at the TEF-E, high power beam of 200 kW is requested. Both high and low power beams are demanded for the transmutation facilities. It is difficult to deliver a low power beam to the TEF-P. Conventional beam extraction technique with a thin foil, is not desirable because the scattering of the beam at the foil requires the massive shield. Therefore, we study a new technique to extract a small portion of the beam precisely from the high intensity beam by using a laser beam. By a laser beam, H{sup -} in the beam from LINAC is partially changed to H{sup 0} beam so that a low current H{sup 0} beam can be obtained. As the cross section of the charge exchange reaction for H{sup -} ions has a peak around at a wave length of 1 {mu}m for photons, YAG laser is suitable for this charge exchange because of its 1.06 {mu}m wave length. It is derived that 10 W beam for 600-MeV proton can be extracted by the YAG laser with power of 2 J for each pulse of 25 Hz. By this technique, the pulse width for the extracted beam can be controlled by changing the time width of laser irradiation. When a charge exchanger having the beam collide point existing in straight section, a background beam current of projectile, however, will be increased due to the interaction with the residual gas in the beam duct. Thus, a charge exchanger is devised having the beam collide point in a

  15. Resist materials for proton beam writing: A review

    Science.gov (United States)

    van Kan, J. A.; Malar, P.; Wang, Y. H.

    2014-08-01

    Proton beam writing (PBW) is a lithographic technique that has been developed since the mid 1990s, initially in Singapore followed by several groups around the world. MeV protons while penetrating materials will maintain a practically straight path. During the continued slowing down of a proton in material it will mainly interact with substrate electrons and transfer a small amount of energy to each electron, the induced secondary electrons will modify the molecular structure of resist within a few nanometers around the proton track. The recent demonstration of high aspect ratio sub 20 nm lithography in HSQ shows the potential of PBW. To explore the full capabilities of PBW, the understanding of the interaction of fast protons with different resist materials is important. Here we give an update of the growing number of resist materials that have been evaluated for PBW. In particular we evaluate the exposure and development strategies for the most promising resist materials like PMMA, HSQ, SU-8 and AR-P and compare their characteristics with respect to properties such as contrast and sensitivity. Besides an updated literature survey we also present new findings on AR-P and PMGI resists. Since PBW is a direct write technology it is important to look for fast ways to replicate micro and nanostructures. In this respect we will discuss the suitability and performance of several resists for Ni electroplating for mold fabrication in nano imprint technologies. We will summarize with an overview of proton resist characteristics like sensitivity, contrast, aspect ratio and suitability for electroplating.

  16. Surface, structural and tensile properties of proton beam irradiated zirconium

    Science.gov (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  17. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    Science.gov (United States)

    Aytac Kipergil, Esra; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet

    2017-03-02

    It has been reported that acoustic waves are generated when a high energy pulsed proton beam is deposited in a small volume within tissue. One possible application of the proton induced acoustics is to get a real-time feedback for intratreatment adjustments by monitoring such acoustic waves. High spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution to the proton induced acoustic wave is presented to reveal the dependence of signal on beam parameters, and then combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration, and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of proton-acoustic signals. Our results show that smaller spill time of proton beam upsurges the amplitude of acoustic wave for constant number of protons, and hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  18. Proton extraction from the SPS with a bent crystal

    Science.gov (United States)

    Ferroni, F.; Akbari, H.; Altuna, X.; Bardin, S.; Bellazzini, R.; Biryukov, V.; Brez, A.; Bussa, M. P.; Busso, L.; Calcaterra, A.; Carboni, G.; Costantini, F.; De Sangro, R.; Elsener, K.; Ferioli, G.; Ferrari, A.; Ferri, G. P.; Ferroni, F.; Fidecaro, G.; Freund, A.; Guinand, R.; Gyr, M.; Herr, W.; Hilaire, A.; Jensen, B. N.; Klem, J.; Lanceri, L.; Maier, K.; Massai, M. M.; Mertens, V.; Moller, S. P.; Morganti, S.; Palamara, O.; Peraire, S.; Petrera, S.; Placidi, M.; Santacesaria, R.; Scandale, W.; Schmidt, R.; Taratin, A. M.; Tosello, F.; Uggerhoj, E.; Vetterman, B.; Vita, P. E.; Vuagnin, G.; Weisse, E.; Weisz, S.; RD22 Collaboration

    1994-11-01

    The RD22 Collaboration has performed several measurements on the extraction of protons from the CERN-SPS by planar channeling in bent silicon monocrystals. Extraction efficiencies of about 10% have been routinely achieved for a bending angle of 8.5 mrad with the SPS running at 120 GeV.

  19. Pitfalls of tungsten multileaf collimator in proton beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States) and Indiana University Health Proton Therapy Center (Formerly Midwest Proton Radiotherapy Institute), Bloomington, Indiana 47408 (United States)

    2011-12-15

    Purpose: Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. Methods: Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H*(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. Results: With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H*(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 x 10{sup 4} Bq cm{sup -3} at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 x 10{sup 6} Bq cm{sup -3} after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase

  20. Polarimeters for the AGS polarized-proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed.

  1. The effects of the RHIC E-lenses magnetic structure layout on the proton beam trajectory

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X.; Pikin, A.; Luo, Y.; Okamura, M.; Fischer, W.; Gupta, R.; Hock, J.; Raparia, D.

    2011-03-28

    We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed in RHIC IR10. First, the layout of these two E-lenses is introduced. Then the effects of e-lenses on proton beam are discussed. For example, the transverse fields of the e-lens bending solenoids and the fringe field of the main solenoids will shift the proton beam. For the effects of the e-lens on proton beam trajectory, we calculate the transverse kicks that the proton beam receives in the electron lens via Opera at first. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.

  2. Fabrication of phosphor micro-grids using proton beam lithography.

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo (University of Padova and INFN, Padova, Italy); Antolak, Arlyn J.; Provencio, Paula Polyak; Doyle, Barney Lee; Malmqvist, Klas (Lund Institute of Technology, Lund, Sweden); Hearne, Sean Joseph; Nilsson, Christer (Lund Institute of Technology, Lund, Sweden); Kristiansson, Per (Lund Institute of Technology, Lund, Sweden); Wegden, Marie (Lund Institute of Technology, Lund, Sweden); Elfman, Mikael (Lund Institute of Technology, Lund, Sweden); Pallon, Jan (Lund Institute of Technology, Lund, Sweden); Auzelyte, Vaida (Lund Institute of Technology, Lund, Sweden)

    2005-07-01

    A new nuclear microscopy technique called ion photon emission microscopy or IPEM was recently invented. IPEM allows analysis involving single ions, such as ion beam induced charge (IBIC) or single event upset (SEU) imaging using a slightly modified optical microscope. The spatial resolution of IPEM is currently limited to more than 10 {micro}m by the scattering and reflection of ion-induced photons, i.e. light blooming or spreading, in the ionoluminescent phosphor layer. We are developing a 'Microscopic Gridded Phosphor' (also called Black Matrix) where the phosphor nanocrystals are confined within the gaps of a micrometer scale opaque grid, which limits the amount of detrimental light blooming. MeV-energy proton beam lithography is ideally suited to lithographically form masks for the grid because of high aspect ratio, pattern density and sub-micron resolution of this technique. In brief, the fabrication of the grids was made in the following manner: (1) a MeV proton beam focused to 1.5-2 {micro}m directly fabricated a matrix of pillars in a 15 {micro}m thick SU-8 lithographic resist; (2) 7:1 aspect ratio pillars were then formed by developing the proton exposed area; (3) Ni (Au) was electrochemically deposited onto Cu-coated Si from a sulfamate bath (or buffered CN bath); (4) the SU-8 pillars were removed by chemical etching; finally (5) the metal micro-grid was freed from its substrate by etching the underlying Cu layer. Our proposed metal micro-grids promise an order-of-magnitude improvement in the resolution of IPEM.

  3. Adjuvant Ab Interno Tumor Treatment After Proton Beam Irradiation.

    Science.gov (United States)

    Seibel, Ira; Riechardt, Aline I; Heufelder, Jens; Cordini, Dino; Joussen, Antonia M

    2017-06-01

    This study was performed to show long-term outcomes concerning globe preservation in uveal melanoma patients after proton beam therapy with the main focus on outcomes according to different adjuvant ab interno surgical procedures. Retrospective cohort study. All patients treated with primary proton beam therapy for choroidal or ciliary body melanoma between June 1998 and June 2015 were included. A total of 2499 patients underwent primary proton beam therapy, with local tumor control and globe preservation rates of 95.9% and 94.8% after 5 years, respectively. A total of 110 (4.4%) patients required secondary enucleation. Unresponsive neovascular glaucoma was the leading cause of secondary enucleation in 78 of the 2499 patients (3.1%). The 5-year enucleation-free survival rate was 94.8% in the endoresection group, 94.3% in the endodrainage group, and 93.5% in the comparator group. The log-rank test showed P = .014 (comparator group vs endoresection group) and P = .06 (comparator group vs endodrainage-vitrectomy group). Patients treated with endoresection or endodrainage-vitrectomy developed less radiation retinopathy (30.5% and 37.4% after 5 years, P = .001 and P = .048 [Kaplan-Meier], respectively) and less neovascular glaucoma (11.6% and 21.3% after 5 years, P = .001 and P = .01 [Kaplan-Meier], respectively) compared with the comparator group (52.3% radiation retinopathy and 57.8% neovascular glaucoma after 5 years). This study suggests that in larger tumors the enucleation and neovascular glaucoma rates might be reduced by adjuvant surgical procedures. Although endoresection is the most promising adjuvant treatment option, the endodrainage-vitrectomy is recommended in patients who are ineligible for endoresection. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Thermal hydraulic studies of spallation target for one-way coupled Indian accelerator driven systems with low energy proton beam

    Indian Academy of Sciences (India)

    V Mantha; A K Mohanty; P Satyamurthy

    2007-02-01

    BARC has recently proposed a one-way coupled ADS reactor. This reactor requires typically ∼ 1 GeV proton beam with 2 mA of current. Approximately 8 kW of heat is deposited in the window of the target. Circulating liquid metal target (lead/lead-bismuth-eutectic) has to extract this heat and this is a critical R&D problem to be solved. At present there are very few accelerators, which can give few mA and high-energy proton beam. However, accelerators with low energy and hundreds of micro-ampere current are commercially available. In view of this, it is proposed in this paper to simulate beam window heating of ∼ 8 kW in the target with low-energy proton beam. Detailed thermal analysis in the spallation and window region has been carried out to study the capability of heat extraction by circulating LBE for a typical target loop with a proton beam of 30 MeV energy and current of 0.267 mA. The heat deposition study is carried out using FLUKA code and flow analysis by CFD code. The detailed analysis of this work is presented in this paper.

  5. Design of Air-Cooled Beam Dump for Extraction Line of PS Booster

    CERN Document Server

    Perillo-Marcone, A; Venturi, V; Antonakakis, T; Vlachoudis, V; Nowak, E; Mason, G; Battistin, M; Czapski, M; Sgobba, S

    2013-01-01

    A new beam dump has been designed, which withstands the future proton beam extracted from the Proton Syncrotron Booster (PSB) at CERN, consisting of up to 1E14 protons per pulse at 2 GeV after its upgrade in 2018/2019. In order to be able to efficiently release the deposited heat, the new dump will be made out of a single cylindrical block of a copper alloy and cooled by forced ventilation. In order to determine the energy density distribution deposited by the beam in the dump, Monte Carlo simulations were performed using FLUKA, and thermomechanical analyses carried out by importing the energy density into Ansys. In addition, CFD simulations of the airflow were carried out in order to accurately estimate the heat transfer convection coefficient on the surface of the dump. This paper describes the design process and highlights the constraints of integrating a new dump for increased beam power into the existing facility.

  6. Horizontal dilution refrigerator for use in intense proton beams

    CERN Document Server

    Bywater, J A; Crabb, D G

    1982-01-01

    A fast loading high-power horizontal dilution refrigerator insert has been built for use in the Michigan polarized proton target (PPT V). This PPT will be used in measurements of spin effects in high P/sub perpendicular to / elastic p-p scattering at the Brookhaven AGS. The cooling power is compared with the existing interchangeable /sup 3/He evaporation insert, and with similar dilution refrigerators at CERN and Bonn. The relative merits of these two types of refrigerators in absorbing the heat loads of high intensity beams is discussed.

  7. Proton beam writing of three-dimensional microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Vanga, S.K., E-mail: sudheer@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Bettiol, A.A. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

    2013-07-01

    Optical micro cavities exhibit high quality factors due to the circulation of resonant optical fields within the cavity. Polymers are good materials for the fabrication of micro cavities for practical applications due to the availability of various refractive indices and their low cost. Polymer micro cavities generally yield low Q-factors compared to semiconductor materials because of inherent material absorption losses, and their Q-factors are limited by the low index contrast between the polymer and the substrate material. In the present work, three dimensional micro cavities were fabricated in SU-8 using proton beam writing to enhance the index contrast by isolating the cavities from the substrate.

  8. A Device for a Proton Beam Energy Control for Radiotherapy

    CERN Document Server

    Agapov, A V; Molokanov, A G; Shvidkii, S V

    2004-01-01

    A Medical-Technical Facility for hadron radiotherapy based on DLNP JINR phasotron has been constructed and put into operation. Upgrading of methods, hardware and software for radiotherapy is one of the main tasks for further development of the Facility. This article concerns one of the fields of this work, that is the development of equipment for dynamic irradiation of deep lying target - the construction of a device for the proton beam energy control and measurement of its depth-dose curve in a treatment room.

  9. Technical Note: Spot characteristic stability for proton pencil beam scanning

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chin-Cheng, E-mail: chen.ccc@gmail.com; Chang, Chang; Mah, Dennis [ProCure Treatment Center, Somerset, New Jersey 08873 (United States); Moyers, Michael F. [ProCure Treatment Center, Somerset, New Jersey 08873 and Shanghai Proton and Heavy Ion Center, Shanghai 201321 (China); Gao, Mingcheng [CDH Proton Center, Warrenville, Illinois 60555 (United States)

    2016-02-15

    Purpose: The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. Methods: A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0–226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Results: Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. Conclusions: For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  10. Search for Dark Matter with LHC proton Beam Dump

    CERN Document Server

    Kumar, Ashok; Sharma, Archana

    2016-01-01

    Dark Matter (DM) comprising particles in the mass range of a few MeV to GeV is waiting to be explored, given the many theoretical models accommodating cosmological abundance. We hereby propose an experiment with the LHC proton beam of 7 TeV striking onto the beam dump target, emitting neutrinos and possibly, Dark Matter candidates. This experiment would also permit to observe signatures involving elastic and inelastic processes involving DM candidates, electrons and strongly interacting particles present in nuclei of the dump target. There will be residual neutrino background present in each of these signatures, hence the proposed experimental detector sub-systems would be such that they would involve as final states, elastically or inelasticity scattered, standard model particles. The bump or the excess in the tail of the kinematic distributions will eventually give us glimpse of presence of new particles which could possibly be Dark Matter candidates. Given the parameters of the LHC machine, the sensitivity...

  11. Time profile of the slowly extracted beam

    CERN Document Server

    Pullia, M

    1997-01-01

    An important spin-off from accelerators is the use of synchrotrons for cancer therapy. For this application a precise control of the slow extraction is needed to satisfy the medical specifications for the online measurement and control of the delivered dose. This has led to a renewed interest in the basic theory of third-order resonance extraction. In the present paper, an analytic study of the time profile of the extracted beam is made by first considering the time profile of an elementary strip of monoenergetic particles from the side of the shrinking stable triangle. This basic result is then used to predict the characteristics of the spills for the most common extraction configurations. The influence of ripples whose period is comparable to the transit time of a particle in the resonance is also analyzed. Simulations of the extraction process that confirm the analytic study are included.

  12. Effect of the electron lenses on the RHIC proton beam closed orbit

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X.; Luo, Y.; Pikin, A.; Okamura, M.; Fischer, W.; Montag, C.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2011-02-01

    We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed at RHIC IR10. The transverse fields of the E-lenses bending solenoids and the fringe field of the main solenoids will shift the proton beam. We calculate the transverse kicks that the proton beam receives in the electron lens via Opera. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.

  13. Bunching high intensity proton beams with a CH-DTL

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Malte; Claessens, Christine; Heilmann, Manuel; Hinrichs, Ole; Koser, Daniel; Meusel, Oliver; Noll, Daniel; Podlech, Holger; Ratzinger, Ulrich; Seibel, Anja [Institut fuer Angewandte Physik, Goethe-Universitaet Frankfurt am Main (Germany)

    2014-07-01

    The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) will provide ultra short neutron pulses at high intensities and repetition rates. The facility is under construction with an expected first beam by the end of 2014. A 5-Gap CH rebuncher is installed behind a coupled RFQ/IH-DTL combination at the end of the LINAC section between two magnetic quadrupole triplets. It will be used for varying the final energy between 1.8 and 2.2 MeV, as well as for focusing the proton beam bunch longitudinally, to compensate RF defocusing effects and huge space charge forces at currents up to 200 mA at the final stage of extension. Therefore high current beam dynamic simulations are in progress. They include benchmarking of different beam dynamic codes like LORASR, TraceWin and Bender (a new PIC tracking code developed at IAP), as well as validating the results by measurements. Detailed error tolerance studies, thermal simulations and examination of multipole field impact, due to the cavity geometry, are also done. Furthermore, this CH rebuncher serves as prototype for CH cavity operation at MYRRHA (Belgium), an Accelerator Driven System (ADS) for transmutation of high level nuclear waste. After copper-plating the cavity, RF conditioning will start in spring 2014.

  14. Fabrication of a microreactor by proton beam writing technique

    Science.gov (United States)

    Huszank, R.; Szilasi, S. Z.; Vad, K.; Rajta, I.

    2009-06-01

    Microreactors are innovative and promising tools in technology nowadays because of their advantages compared to the conventional-scale reactors. These advantages include vast improvements in surface to volume ratio, energy efficiency, reaction speed and yield and increased control of reaction conditions, to name a few examples. The high resolution capability of the micromachining technique utilizing accelerated ion beams in the fabrication technology of microreactors has not yet been taken advantage of. In this work we present the design of a prototype micro-electrochemical cell of 1.5 μL volume (2.5 × 2.5 × 0.240 mm) created with a 3 MeV proton microbeam. The cell can be separated into two half-cells with a suitable membrane applicable to galvanic or fuel cells as well. We deposited gold electrodes on both of the half-cells. The operability of the device was demonstrated by electric current flow between the two electrodes in this micro-electrochemical cell containing a simple electrolyte solution. We used a polycapillary film to separate the two half-cells, hindering the mixing of the anolyte and catholyte solutions. As a result of the minimal mixing caused by the polycapillary film, this cell design can be suitable for electro-synthesis. Due to the high resolution of proton beam writing, it is planned to reduce the dimensions of this kind of microreactor.

  15. TU-A-BRE-01: The Relative Biological Effectiveness of Proton Beams Relative to Photon Beams

    Energy Technology Data Exchange (ETDEWEB)

    Paganetti, H [Massachusetts General Hospital ' Harvard Medical School, Boston, MA (United States); Stewart, R [University of Washington, Seattle, WA (United States); Carabe-Fernandez, A [Hospital of the University of Pennsylvania, Philadelphia, PA (United States)

    2014-06-15

    Proton therapy patients receive a 10% lower physical dose than the dose administered using photons, i.e. the proton relative biological effectiveness (RBE) is 1.1 in comparison to high-energy photons. The use of a generic, spatially invariant RBE within tumor targets and normal tissue structures disregards a large body of evidence indicating that proton RBE tends to increase with increasing linear energy transfer (LET). Because the doseaveraged proton LET in the distal edge of a spread out Bragg peak (SOBP) is larger than the LET in the plateau region or proximal edge of a SOBP, the use of a spatially invariant RBE is not well justified from a mechanistic point of view. On the other hand, the available clinical data on local tumor control rates and early or late side effects do not provide strong evidence against the continued use of a constant and spatially invariant clinical RBE. The only potential downside to the ongoing use of a constant RBE of 1.1 seems to be that we are missing a potential opportunity to enhance the therapeutic ratio, i.e., design proton therapy treatments in ways that exploit, rather than mitigate, spatial variations in proton RBE. Speakers in this symposium will: 1-review the laboratory and clinical evidence for and against the continued use of a spatially invariant RBE of 1.1, 2-examine some of the putative mechanisms connecting spatial variations in particle LET to estimates of the proton RBE at the molecular, cellular and tissue levels 3-assess the possible clinical significance of incorporating models for spatial variations in proton RBE into treatment planning systems. 4-discuss treatment planning and delivery techniques that will exploit the spatial variations of RBE within proton beams. Learning Objectives: To review laboratory and clinical evidence for and against the continued use of a constant RBE of 1.1 To understand major mechanisms connecting proton LET to RBE at the molecular, cellular and tissue levels. To quantify the

  16. Studies of a Target System for a 4-MW, 24-GeV Proton Beam

    CERN Multimedia

    2002-01-01

    We propose to perform a proof-of-principle test of a target station suitable for a Neutrino Factory or Muon Collider source using a 24-GeV proton beam incident on a target consisting of a free mercury jet that is inside a 15- T capture solenoid magnet. This test could be performed in the TT2A tunnel of the nTOF proton line (upstream of the spallation target). The tests would require only $\\approx$ 100 fast-extracted pulses of full PS intensity, delivered in a pulse-on-demand mode of operation over about 2 weeks. The main piece of apparatus is the LN2-precooled, 15- T copper magnet of total volume slightly over 1 m$^{3}$ with a 15-cm-diameter warm bore. The principle diagnostic is a high-speed optical camera. The mercury jet is part of a closed mercury loop that includes an insert into the bore of the magnet.

  17. PERFORMANCE ANALYSIS OF MULTI-TURN EXTRACTION FROM THE PROTON SYNCHROTRON TO THE SUPER PROTON SYNCHROTRON

    CERN Document Server

    Abernethy, Samuel

    2016-01-01

    Within CERN's accelerator complex, the extraction from the Proton Synchrotron to the Super Proton Synchrotron has been done using the so-called ``Continuous Transfer" (CT) method since the 1970's. A new technique, known as Multi-Turn Extraction (MTE), has now been implemented and is in full operation. This report examines a holistic performance analysis of the novel technique in multiple aspects of the accelerator complex, as well as a direct comparison with its predecessor, CT, from the implementation of MTE in 2010 until the end of 2015.

  18. ISABELLE: a 400 x 400 GeV proton--proton colliding beam facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    A conceptual design report is presented for the construction of an Intersecting Storage Accelerator, ISABELLE, to be located at Brookhaven National Laboratory. At this major research facility beams of protons with energies up to 400 GeV will be collided in six experimental areas. At each area particle physicists will install detector apparatus to study the interaction and reaction products for such very high energy collisions. The proposal results from several years of study and development work on such a facility. Topics discussed include: (1) introduction and summary of the proposal; (2) physics at ISABELLE (including physics objectives and typical experiments and detectors); description of ISABELLE (overview; magnetic ring structure and lattice characteristics; performance; beam transfer, stacking, and acceleration; magnet system; refrigeration system; vacuum system; power supplies, instrumentation, and control system; physical plant and experimental halls; and operation and safety); and (3) cost estimate and schedule.

  19. Beam tests on a proton linac booster for hadron therapy

    CERN Document Server

    De Martinis, C; Berra, P; Birattari, C; Calabretta, L; Crandall, K; Giove, D; Masullo, M R; Mauri, M; Rosso, E; Rovelli, A; Serafini, L; Szeless, Balázs; Toet, D Z; Vaccaro, Vittorio G; Weiss, M; Zennaro, R

    2002-01-01

    LIBO is a 3 GHz modular side-coupled proton linac booster designed to deliver beam energies up to 200 MeV, as required for the therapy of deep seated tumours. The injected beam of 50 to 70 MeV is produced by a cyclotron like those in several hospitals and research institutes. A full-scale prototype of the first module with an input/output energy of 62/74 MeV, respectively, was designed and built in 1999 and 2000. Full power RF tests were carried out successfully at CERN using a test facility at LIL at the end of the year 2000. In order to prove the feasibility of the acceleration process, an experimental setup with this module was installed at the INFN Laboratorio Nazionale del Sud (LNS) in Catania during 2001. The superconducting cyclotron provided the 62 MeV test beam. A compact solid-state RF modulator with a 4 MW klystron, made available by IBA-Scanditronix, was put into operation to power the linac. In this paper the main features of the accelerator are reviewed and the experimental results obtained duri...

  20. Full-beam performances of a PET detector with synchrotron therapeutic proton beams

    Science.gov (United States)

    Piliero, M. A.; Pennazio, F.; Bisogni, M. G.; Camarlinghi, N.; Cerello, P. G.; Del Guerra, A.; Ferrero, V.; Fiorina, E.; Giraudo, G.; Morrocchi, M.; Peroni, C.; Pirrone, G.; Sportelli, G.; Wheadon, R.

    2016-12-01

    Treatment quality assessment is a crucial feature for both present and next-generation ion therapy facilities. Several approaches are being explored, based on prompt radiation emission or on PET signals by {β+} -decaying isotopes generated by beam interactions with the body. In-beam PET monitoring at synchrotron-based ion therapy facilities has already been performed, either based on inter-spill data only, to avoid the influence of the prompt radiation, or including both in-spill and inter-spill data. However, the PET images either suffer of poor statistics (inter-spill) or are more influenced by the background induced by prompt radiation (in-spill). Both those problems are expected to worsen for accelerators with improved duty cycle where the inter-spill interval is reduced to shorten the treatment time. With the aim of assessing the detector performance and developing techniques for background reduction, a test of an in-beam PET detector prototype was performed at the CNAO synchrotron-based ion therapy facility in full-beam acquisition modality. Data taken with proton beams impinging on PMMA phantoms showed the system acquisition capability and the resulting activity distribution, separately reconstructed for the in-spill and the inter-spill data. The coincidence time resolution for in-spill and inter-spill data shows a good agreement, with a slight deterioration during the spill. The data selection technique allows the identification and rejection of most of the background originated during the beam delivery. The activity range difference between two different proton beam energies (68 and 72 MeV) was measured and found to be in sub-millimeter agreement with the expected result. However, a slightly longer (2 mm) absolute profile length is obtained for in-spill data when compared to inter-spill data.

  1. Development of the beam extraction synchronization system at the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Seiya, K.; Chaurize, S.; Drennan, C.C.; Pellico, W.; Sullivan, T.; Triplett, A.K.; Waller, A.M.

    2015-11-01

    The new beam extraction synchronization control system called “Magnetic Cogging” was developed at the Fermilab Booster and it replaces a system called “RF Cogging” as part of the Proton Improvement Plan (PIP).[1] The flux throughput goal for the PIP is 2.2×10{sup 17} protons per hour, which is double the present flux. The flux increase will be accomplished by doubling the number of beam cycles which, in turn, will double the beam loss in the Booster accelerator if nothing else is done. The Booster accelerates beam from 400 MeV to 8 GeV and extracts it to the Main Injector (MI) or Recycler Ring (RR). Cogging controls the beam extraction gap position which is created early in the Booster cycle and synchronizes the gap to the rising edge of the Booster extraction kicker and the MI/RR injection kicker. The RF Cogging system controls the gap position by changing only the radial position of the beam thus limiting the beam aperture and creating beam loss due to beam scraping. The Magnetic Cogging system controls the gap position with the magnetic field of the dipole correctors while the radial position feedback keeps the beam on a central orbit. Also with Magnetic Cogging the gap creation can occur earlier in the Booster cycle when the removed particles are at a lower energy. Thus Magnetic Cogging reduces the deposited energy of the lost particles (beam energy loss) and results in less beam loss activation. Energy loss was reduced by 40% by moving the gap creation energy from 700 MeV to 400 MeV when the Booster Cogging system was switched from RF Cogging to Magnetic Cogging in March 2015.

  2. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB.

    Science.gov (United States)

    Ren, Haitao; Pozdeyev, Eduard; Lund, Steven M; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-01

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  3. Effects of ultra-intense laser driven proton beam on the hydriding property of palladium

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroshi, E-mail: abe.hiroshi10@jaea.go.jp [Environment and Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Orimo, Satoshi [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa-shi, Kyoto-fu 619-0215 (Japan); Kishimoto, Masahiko; Aone, Shigeo; Uchida, Hirohisa [Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Daido, Hiroyuki [Advanced Photon Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa-shi, Kyoto-fu 619-0215 (Japan); Applied Laser Technology Institute, Tsuruga Head Office, Japan Atomic Energy Agency, Kizaki, Tsuruga-shi, Fukui-ken 914-8585 (Japan); Ohshima, Takeshi [Environment and Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2013-07-15

    We investigated the effect of ion irradiation using an ultra-intense laser driven proton beam (UILDPB) method, by which proton beams with energy spectra can be created, on the hydrogen absorption rate of palladium (Pd). The Pd samples were irradiated with proton beams with the maximum energy of 2 MeV and 4 MeV at room temperature. The initial hydrogen absorption rate of Pd was measured before and after proton irradiation. The improvement of the initial hydrogen absorption by the UILDPB irradiation was confirmed.

  4. Mutant breeding of ornamental trees for creating variations with high value using Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. J.; Lim, J. H.; Woo, S. M.; Hwang, M. J.; Pyo, S. H.; Woo, J. S. [Phygen Co., Daejeon (Korea, Republic of)

    2009-04-15

    It is necessary to induce the improved strains of ornamental plants with more disease-resistant and useful for landscape or phytoremediation. Mutation breeding has played an important role in crop improvement, and more than 2,000 mutant cultivars have been released. For the induction of mutation, gamma rays and X-rays are widely used as a mutagen. Proton beam had higher energy than -ray and worked with localized strength, so that proton-beam radiation could be valuable tool to induce useful strains of ornamental plants. Proton ion beam irradiation was used to induce a useful mutant in rice, chrysanthemum, carnation, and so on in Japan. Also, proton ion beam was used to select a useful host strain, in polyhydroxybutyrate (PHB), a member of biodegradable plastic, could be overproduced in Korea. Therefore, we surmise that the effects of proton beam is different from those of gamma rays and X-rays, and we expect proton beam to be a new mutagen. This research was conducted to investigate the proton-beam radiation sensitivity and seed germination rate of the various ornamental plants like as Albizia julibrissin, Ficus religiosa, Rhus chinensis, Sorbaria sorbilfolia and Spiraea chinensis, to survey the quantitative characteristics of proton beam induced strains. To induce the variants of ornamental plants, seeds were irradiated at the dose of 0{approx}2kGy of proton beam at room temperature. Proton beam energy level was 45 MeV and was irradiated at dose of 0{approx}2kGy by MC-50 Cyclotron. After irradiation, to assess the effects of proton beam on radiation sensitivity and morphological changes of the plants and the seed germination rate were analysed. By the proton beam radiation, the germination rate decreased at the higher dose. The other hand, the germination rate of Rhus chinensis increased the dose higher, so that it need to investigate the germination rate over 2kGy radiation. The effects of mutation induction by proton beam irradiation on seeds in Lagerstroemia

  5. Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Benedikt, Michael

    With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...

  6. Reducing the extraction loss via laser notching the H- beam at the Booster injection revolution frequency

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi; Ankenbrandt, Charles M.; /Fermilab

    2005-05-01

    With the requirement for more protons per hour from Booster, the radiation is a limiting factor. Laser notching the H{sup -} beam at the Booster injection revolution frequency and properly aligning those notches on top of each other at the injection and relative to the trigger of firing extraction kickers can remove most of the extraction loss caused by the slow rise time of the kicker field.

  7. Transgenerational effects of proton beam irradiation on Caenorhabditis elegans germline apoptosis.

    Science.gov (United States)

    Min, Hyemin; Sung, Minhee; Son, Miseol; Kawasaki, Ichiro; Shim, Yhong-Hee

    2017-08-26

    When treating cancer using radiation therapy, it is critical to increase patient survival rates and to reduce side effects. In this respect, proton beam radiation treatment performs better than other radiation treatments because of its high target specificity. However, complications still remain after proton beam radiation treatment. Among them, the risk to progeny after irradiation of their parents is a major concern. In this study, we analyzed the transgenerational effects of proton beam irradiation using the model organism Caenorhabditis. elegans. We found that germline apoptosis increased after proton beam irradiation and its effects were sustained transgenerationally. Moreover, we identified that a germline-specific histone methyltransferase component, SET-2, has a critical role in transmitting the transgenerational effect on germline apoptosis to the next generation after proton beam irradiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Crosslinking of polyamide-6 initiated by proton beam irradiation

    Science.gov (United States)

    Porubská, Mária; Szöllös, Ondrej; Janigová, Ivica; Jomová, Klaudia; Chodák, Ivan

    2017-04-01

    Initiation of crosslinking of polyamide-6 (PA6) by proton beam irradiation was investigated for a virgin material as well as for PA6 containing up to 5 wt% of triallyl cyanurate (TAC) as a crosslinking coagent. The gel point was found to be 144 and 40 kGy for virgin PA6 and for PA6 with 1 wt% of TAC, while for higher TAC content gel content was determined to be around zero absorbed dose. The ratio between crosslinking and scission of macroradicals formed by irradiation was found to be around 0.65 regardless on presence or absence of TAC and its concentration. The more detailed discussion on chemical processes as well as on final structure formation after irradiation is based on data from differential scanning calorimetry, detecting a decrease of both lamellar thickness and crystalline portion, but an increase of glass transition temperature.

  9. Single cell electroporation using proton beam fabricated biochips

    Science.gov (United States)

    Homhuan, S.; Zhang, B.; Sheu, F.-S.; Bettiol, A. A.; Watt, F.

    2010-05-01

    We report the design and fabrication of a novel single cell electroporation biochip fabricated by the Proton Beam Writing technique (PBW), a new technique capable of direct-writing high-aspect-ratio nano and microstructures. The biochip features nickel micro-electrodes with straight-side walls between which individual cells are positioned. By applying electrical impulses across the electrodes, SYTOX® Green nucleic acid stain is incorporated into mouse neuroblastoma (N2a) cells. When the stain binds with DNA inside the cell nucleus, green fluorescence is observed upon excitation from a halogen lamp. Three parameters; electric field strength, pulse duration, and the number of pulses have been considered and optimized for the single cell electroporation. The results show that our biochip gives successfully electroporated cells . This single cell electroporation system represents a promising method for investigating the introduction of a wide variety of fluorophores, nanoparticles, quantum dots, DNAs and proteins into cells.

  10. Three-dimensional metamaterials fabricated using Proton Beam Writing

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A., E-mail: a.bettiol@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Turaga, S.P.; Yan, Y.; Vanga, S.K. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Chiam, S.Y. [NUS High School for Maths and Science, 20 Clementi Avenue 1, Singapore 129957 (Singapore)

    2013-07-01

    Proton Beam Writing (PBW) is a direct write lithographic technique that has recently been applied to the fabrication of three dimensional metamaterials. In this work, we show that the unique capabilities of PBW, namely the ability to fabricate arrays of high resolution, high aspect ratio microstructures in polymer or replicated into metal, is well suited to metamaterials research. We have also developed a novel method for selectively electroless plating silver directly onto polymer structures that were fabricated using PBW. This method opens up new avenues for utilizing PBW for making metamaterials and other sub-wavelength metallic structures. Several potential applications of three dimensional metamaterials fabricated using PBW are discussed, including sensing and negative refractive index materials.

  11. Special diagnostic methods and beam loss control on high intensity proton synchrotrons and storage rings Circular proton accelerator

    CERN Document Server

    Warsop, C M

    2002-01-01

    Two topics concerning high intensity, medium energy, circular proton accelerators have been studied: specialist diagnostics and beam loss control. The use of specially configured, low intensity diagnostic beams to help measure, understand and control high intensity beams is described. The ideas are developed and demonstrated on the ISIS 800 MeV, high intensity proton synchrotron at the Rutherford Appleton Laboratory in the UK. It is shown that these techniques make much new and valuable information available, which is particularly useful in achieving the precise beam optimisation required for low and controlled losses. Beam loss control in the proposed European Spallation Source (ESS) accumulator rings is studied. The expected losses are summarised, and a design for the beam collimation system presented. A new code for the simulation of loss control is outlined, and then used to test the collimation system under most foreseeable conditions. It is expected that the required loss control levels will be achievab...

  12. K*(892)+ production in proton-proton collisions at E_beam = 3.5 GeV

    CERN Document Server

    Agakishiev, G; Belver, D; Belyaev, A; Berger-Chen, J C; Blanco, A; Böhmer, M; Boyard, J L; Cabanelas, P; Chernenko, S; Dybczak, A; Epple, E; Fabbietti, L; Fateev, O; Finocchiaro, P; Fonte, P; Friese, J; Fröhlich, I; Galatyuk, T; Garzón, J A; Gernhäuser, R; Göbel, K; Golubeva, M; González-Díaz, D; Guber, F; Gumberidze, M; Heinz, T; Hennino, T; Holzmann, R; Ierusalimov, A; Iori, I; Ivashkin, A; Jurkovic, M; Kämpfer, B; Karavicheva, T; Koenig, I; Koenig, W; Kolb, B W; Korcyl, G; Kornakov, G; Kotte, R; Krása, A; Krizek, F; Krücken, R; Kuc, H; Kühn, W; Kugler, A; Kunz, T; Kurepin, A; Ladygin, V; Lalik, R; Lapidus, K; Lebedev, A; Lopes, L; Lorenz, M; Maier, L; Mangiarotti, A; Markert, J; Metag, V; Michel, J; Mihaylov, D; Müntz, C; Münzer, R; Naumann, L; Pachmayer, Y C; Palka, M; Parpottas, Y; Pechenov, V; Pechenova, O; Pietraszko, J; Przygoda, W; Ramstein, B; Reshetin, A; Rustamov, A; Sadovsky, A; Salabura, P; Schmah, A; Schwab, E; Siebenson, J; Sobolev, Yu G; Spataro, S; Spruck, B; Ströbele, H; Stroth, J; Sturm, C; Svoboda, O; Tarantola, A; Teilab, K; Tlusty, P; Traxler, M; Tsertos, H; Vasiliev, T; Wagner, V; Weber, M; Wendisch, C; Wüstenfeld, J; Yurevich, S; Zanevsky, Y

    2015-01-01

    We present results on the K*(892)+ production in proton-proton collisions at a beam energy of E = 3.5 GeV, which is hitherto the lowest energy at which this mesonic resonance has been observed in nucleon-nucleon reactions. The data are interpreted within a two-channel model that includes the 3-body production of K*(892)+ associated with the Lambda- or Sigma-hyperon. The relative contributions of both channels are estimated. Besides the total cross section sigma(p+p -> K*(892)+ + X) = 9.5 +- 0.9 +1.1 -0.9 +- 0.7 mub, that adds a new data point to the excitation function of the K*(892)+ production in the region of low excess energy, transverse momenta and angular spectra are extracted and compared with the predictions of the two-channel model. The spin characteristics of K*(892)+ are discussed as well in terms of the spin-alignment.

  13. Fast pencil beam dose calculation for proton therapy using a double-Gaussian beam model

    Directory of Open Access Journals (Sweden)

    Joakim eda Silva

    2015-12-01

    Full Text Available The highly conformal dose distributions produced by scanned proton pencil beams are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a pencil beam algorithm running on graphics processing units (GPUs intended specifically for online dose calculation. Here we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such pencil beam algorithm for proton therapy running on a GPU. We employ two different parametrizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of pencil beams in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included whilst prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Further, the calculation time is relatively unaffected by the parametrization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  14. Proton beam therapy for malignancy in Bloom syndrome.

    Science.gov (United States)

    Mizumoto, M; Hashii, H; Senarita, M; Sakai, S; Wada, T; Okumura, T; Tsuboi, K; Sakurai, H

    2013-04-01

    Bloom syndrome is a DNA repair disorder that is hypersensitive to radiotherapy. We describe the first case in which proton beam therapy (PBT) was used in a patient with Bloom syndrome to treat oropharyngeal cancer. The patient was a 32-year-old woman with Bloom syndrome who was diagnosed with oropharyngeal cancer staged as T2N2bM0 poorly differentiated squamous cell carcinoma. The primary tumor was located on the right tongue base and extended to the right lateral pharyngeal wall. Several right upper region lymph nodes were positive for metastases. We selected PBT in anticipation of dose reduction to normal tissue. The clinical target volume was defined as the area of the primary tumor and lymph node metastases plus an 8-mm margin. After treatment with 36 GyE (Gray equivalent) in 20 fractions (4-5 fractions per week), dietary intake was decreased by mucositis and intravenous hyperalimentation was started. Termination of treatment for 2.5 weeks was required to relieve mucositis. Administration of 59.4 GyE in 33 fractions markedly reduced the size of the primary tumor, but also caused moderate mucositis that required termination of PBT. One month later, lung metastases and breast cancer developed and the patient died 9 months after PBT. At this time the reduction in size of the primary tumor was maintained without severe late toxicity. We obtained almost complete response for a radiosensitive patient with a deficiency of DNA repair, indicating the excellent dose concentration of proton beam therapy.

  15. Use of proton beams with breast prostheses and tissue expanders

    Energy Technology Data Exchange (ETDEWEB)

    Moyers, Michael F., E-mail: MFMoyers@roadrunner.com [ProCure Proton Therapy Center, Somerset, NJ (United States); Mah, Dennis; Boyer, Sean P.; Chang, Chang [ProCure Proton Therapy Center, Somerset, NJ (United States); Pankuch, Mark [ProCure Proton Therapy Center, Warrenville, IL (United States)

    2014-04-01

    Since the early 2000s, a small but rapidly increasing number of patients with breast cancer have been treated with proton beams. Some of these patients have had breast prostheses or tissue expanders in place during their courses of treatment. Procedures must be implemented to plan the treatments of these patients. The density, kilovoltage x-ray computed tomography numbers (kVXCTNs), and proton relative linear stopping powers (pRLSPs) were calculated and measured for several test sample devices. The calculated and measured kVXCTNs of saline were 1% and 2.4% higher than the values for distilled water while the calculated RLSP for saline was within 0.2% of the value for distilled water. The measured kVXCTN and pRLSP of the silicone filling material for the test samples were approximately 1120 and 0.935, respectively. The conversion of kVXCTNs to pRLSPs by the treatment planning system standard tissue conversion function is adequate for saline-filled devices but for silicone-filled devices manual reassignment of the pRLSPs is required.

  16. Use of proton beams with breast prostheses and tissue expanders.

    Science.gov (United States)

    Moyers, Michael F; Mah, Dennis; Boyer, Sean P; Chang, Chang; Pankuch, Mark

    2014-01-01

    Since the early 2000s, a small but rapidly increasing number of patients with breast cancer have been treated with proton beams. Some of these patients have had breast prostheses or tissue expanders in place during their courses of treatment. Procedures must be implemented to plan the treatments of these patients. The density, kilovoltage x-ray computed tomography numbers (kVXCTNs), and proton relative linear stopping powers (pRLSPs) were calculated and measured for several test sample devices. The calculated and measured kVXCTNs of saline were 1% and 2.4% higher than the values for distilled water while the calculated RLSP for saline was within 0.2% of the value for distilled water. The measured kVXCTN and pRLSP of the silicone filling material for the test samples were approximately 1120 and 0.935, respectively. The conversion of kVXCTNs to pRLSPs by the treatment planning system standard tissue conversion function is adequate for saline-filled devices but for silicone-filled devices manual reassignment of the pRLSPs is required. © 2013 Published by American Association of Medical Dosimetrists on behalf of American Association of Medical Dosimetrists.

  17. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept

    Science.gov (United States)

    Gomà, Carles; Safai, Sairos; Vörös, Sándor

    2017-06-01

    This paper describes a novel approach to the reference dosimetry of proton pencil beams based on dose-area product (DAPw ). It depicts the calibration of a large-diameter plane-parallel ionization chamber in terms of dose-area product in a 60Co beam, the Monte Carlo calculation of beam quality correction factors—in terms of dose-area product—in proton beams, the Monte Carlo calculation of nuclear halo correction factors, and the experimental determination of DAPw of a single proton pencil beam. This new approach to reference dosimetry proves to be feasible, as it yields DAPw values in agreement with the standard and well-established approach of determining the absorbed dose to water at the centre of a broad homogeneous field generated by the superposition of regularly-spaced proton pencil beams.

  18. Beam commission of the high intensity proton source developed at INFN-LNS for the European Spallation Source

    Science.gov (United States)

    Neri, L.; Celona, L.; Gammino, S.; Miraglia, A.; Leonardi, O.; Castro, G.; Torrisi, G.; Mascali, D.; Mazzaglia, M.; Allegra, L.; Amato, A.; Calabrese, G.; Caruso, A.; Chines, F.; Gallo, G.; Longhitano, A.; Manno, G.; Marletta, S.; Maugeri, A.; Passarello, S.; Pastore, G.; Seminara, A.; Spartà, A.; Vinciguerra, S.

    2017-07-01

    At the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund.

  19. Automated Beam Loss Monitoring System At Extraction From U-70

    CERN Document Server

    Afonin, A G; Baranov, V T; Gres, V N; Shaposhnikov, P A; Terekhov, V I; Uglekov, V Ya

    2004-01-01

    This paper presents a description of the new beam loss monitoring system built and comissioned to detect beam losses in the IHEP extraction area at 16 places of interest. It yields information about possible beam interception by extraction elements over each mode of extracting. Multiple measurements with resolution 10ms are possible to study the dynamic processes over the slow extraction. This system is a part of the U-70 Control System.

  20. LHC beam dumping system Extraction channel layout and acceptance

    CERN Document Server

    Goddard, B; Uythoven, J; Veness, R; Weterings, W

    2003-01-01

    The LHC beam dumping system must safely abort the LHC beams under all conditions, including those resulting from abnormal behaviour of machine elements or subsystems of the beam dumping system itself. The extraction channels must provide sufficient aperture both for the circulating and extracted beams, over the whole energy range and under various beam parameters. These requirements impose tight constraints on the tolerances of various extraction channel components, and also on the allowed range of beam positions in the region of these components. Operation of the beam dumping system under various fault states has been considered, and the resulting apertures calculated. After describing briefly the beam dumping system and the extraction channel geometry, the various assumptions made in the analysis are presented, before deriving tolerance limits for the relevant equipment and beam parameters.

  1. DC proton beam measurements in a single-solenoid low-energy beam transport system

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, R.R. Jr.; Schafstall, P.; Schneider, J.D.; Sherman, J.; Zaugg, T. [Los Alamos National Lab., NM (United States); Taylor, T. [AECL Research, Chalk River, Ontario (Canada). Chalk River Labs.

    1994-09-01

    High current, CW proton accelerators are being considered for a number of applications including disposition of nuclear wastes, reduction of fissionable nuclear material inventories, safe production of critical nuclear materials, and energy production. All these applications require the development of high current, reliable, hydrogen ion injectors. In 1986, a program using CW RFQ technology was undertaken at CRL in collaboration with LANL and was continued there until 1993. During this time, an accelerator was built which produced 600 keV, 75 mA and 1,250 keV, 55 mA CW proton beams. The present program at Los Alamos using this accelerator is aimed at continuing the CRL work to demonstrate long-term reliability. In the present work, the authors are seeking to determine the optimal match to and the current limit of the 1,250-keV RFQ. This paper discusses the characterization of the 50 keV beams at the exit of the single-solenoid LEBT and presents both the experimental measurements and the beam simulations done to model this system.

  2. kQ factors for ionization chamber dosimetry in clinical proton beams.

    Science.gov (United States)

    Vatnitsky, S M; Siebers, J V; Miller, D W

    1996-01-01

    We discuss a formalism for clinical proton beam dosimetry based on the use of ionization chamber absorbed dose-to-water calibration and beam quality correction factors. A quantity kQ, the beam quality correction factor, is defined which corrects the absorbed dose-to-water calibration factor ND,w in a reference beam of quality Q0 to that in a user's beam of quality Q1. This study of proton beam quality correction factors used 60Co (kQ gamma) and proton (kQp) reference beams. The kQ gamma factors were measured using combined water calorimetry and ionometry for PTW and Capintec-Farmer-type ionization chambers, and were computed from standard dosimetry protocols. Agreement between measured and calculated kQ gamma values for both chambers was found within 1.2% in the plateau region for a monoenergetic 250-MeV beam and within 1.8% at the spread-out Bragg peak for a 155-MeV range-modulated beam. Comparison of absorbed doses to water determined in the range-modulated 155-MeV beam was performed with the PTW chamber using three calibration methods: Ngas calibration (AAPM Report 16), ND,w,gamma calibration in a 60Co beam in conjunction with a kQ gamma factor, and ND,w,p calibration in a proton beam in conjunction with a kQp factor. Absorbed doses to water obtained with the three methods agreed within 2% when ionization chamber dosimetry data were analyzed using the proton W-value for air from the AAPM Report 16 and the ICRU 49 proton stopping powers. The use of the proton-calibrated reference ionization chamber, in conjunction with the beam quality correction factor kQp, significantly reduced the systematic uncertainty of the absorbed dose determination.

  3. SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Das, I; Andersen, A [Indiana University- School of Medicine, Indianapolis, IN (United States); Coutinho, L [Procure Proton Therapy Center, Somerset, NJ (United States)

    2015-06-15

    Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factor (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose.

  4. Two-Pion Production in Proton-Proton Collisions with Polarized Beam

    CERN Document Server

    El-Bary, S Abd; Bilger, R; Brinkmann, K -Th; Clement, H; Dietrich, M; Doroshkevich, E; Dshemuchadse, S; Erhardt, A; Eyrich, W; Filippi, A; Freiesleben, H; Fritsch, M; Geyer, R; Gillitzer, A; Hanhart, C; Hauffe, J; Haug, K; Hesselbarth, D; Jaekel, R; Jakob, B; Karsch, L; Kilian, K; Koch, H; Kress, J; Kuhlmann, E; Marcello, S; Marwinski, S; Meier, R; Möller, K; Morsch, H P; Naumann, Lutz; Ritman, J; Roderburg, E; Schoenmeier, P; Schulte-Wissermann, M; Schroeder, W; Steinke, M; Stinzing, F; Sun, G Y; Waechter, J; Wagner, G J; Wagner, M; Weidlich, U; Wilms, A; Wintz, P; Wirth, S; Zhang, G; Zupranski, P

    2008-01-01

    The two-pion production reaction $\\vec{p}p\\to pp\\pi^+\\pi^-$ was measured with a polarized proton beam at $T_p \\approx$ 750 and 800 MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed pulse technique for Quirl and central calorimeter provided positive $\\pi^+$ identification in addition to the standard particle identification, energy determination as well as time-of-flight and angle measurements. Thus all four-momenta of the emerging particles could be determined with 1-4 overconstraints. Total and differential cross sections as well as angular distributions of the vector analyzing power have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find significant analyzing power values up to $A_y$ = 0.3.

  5. Induction of surface modification of polytetrafluoroethylene with proton ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Noh, I. S.; Kim, H. R.; Choi, Y. J.; Park, H. S. [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2007-04-15

    Cardiovascular disease is one of the leading causes of the death in the USA and developed countries. More than 570,000 artery bypass graft surgeries per USA are performed each year, though percutaneous devices have abounded in extreme cases. Based on the surgery follow-ups, large diameter expanded polytetrafluoroethylene (ePTFE) (>5 mm) are clinically employed with good results but its clinical applications in smaller vessels is still problematic due to thrombosis and neointima formation. Achievement of high patency grafts has been to some extent achieved by numerous methods of surface modification techniques, but its results are less than its initial hopes. As examples, endothelial cells coated on the luminal surface of ePTFE has demonstrated limited success after recirculation. Surface modifications of PTFE film with either argon ion beam or UV light from Xe-excimer lamp were reported to increase its interaction with vascular endothelial cell. Surface modification of poly(lactide-co-glycolide)[PLGA] is also very important in tissue engineering, in where induction of its initial high cellular adhesion and spreading is a critical step for development of tissue engineering medical products. We previously reported tissue engineering of the hybrid ePTFE scaffold by seeding smooth muscle cells and subsequently evaluation of its tissue regeneration behaviors and stabilities with circulation of pulsatile flow. To improve its tissue engineering more quickly, we here performed surface modification of ePTFE and porous PLGA scaffold and evaluated its subsequent chemical and biological properties after treating its surface with low energy ion beams. The porous ePTFE was prepared in a round shape (diameter = 1 cm) and dried after organic solvent extraction for ion beam treatment. Another porous PLGA layers (d = 1 cm, t = 1 cm with approximately 92% porosity) were fabricated and treated its surface by irradiating low energy either nitrogen or argon ion beams (1 keV, 1x1015 ions

  6. ISABELLE: a proton-proton colliding beam facility. [Proposal for the construction of ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-04-01

    A proposal is presented for the construction of an Intersecting Storage Accelerator, ISABELLE, to be located at Brookhaven National Laboratory. At this major research facility, colliding beams of protons will be produced and studied by particle physicists. This proposal combines the interests of these particle physicists in exploring a new energy regime with the challenge of building a new research instrument. The proposal results from several years of considering such devices in parallel with extensive developmental work. The proposal is divided into several major parts. Following an introduction is an overall summary of the proposal covering its highlights. Part II contains a thorough discussion of the physics objectives that can be addressed by the storage ring. It begins with an explanation of current theoretical concepts that occupy the curiosity of high energy physicists. Then follows a brief discussion of possible experiments that might be assembled at the interaction regions to test these concepts. The third part of the proposal goes into the details of the design of the intersecting storage accelerators. It begins with a description of the entire facility and the design of the magnet ring structure. The processes of proton beam accumulation and acceleration are thoroughly described. The discussion then turns to the design of the components and subsystems for the accelerator. The accelerator elements are described followed by a description of the physical plant. The cost estimate and time scales are displayed in Part IV. Here the estimate has been based on the experience gained from working with the prototype units at the laboratory. The appendices are an important part of the proposal. The parameter list for the 200 x 200 GeV ISABELLE is carefully documented. An example of a possible research program can be found in an appendix. The performance of prototype units is documented in one of the appendices.

  7. Dynamics of laser-driven proton beam focusing and transport into solid density matter

    Science.gov (United States)

    Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.

    2016-10-01

    Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.

  8. Optimal Design of Proposed 800 MeV Proton Cyclotron Beam Dynamics

    Institute of Scientific and Technical Information of China (English)

    YANG; Jian-jun; LI; Ming; ZHANG; Tian-jue; SONG; Guo-fang; AN; Shi-zhong

    2015-01-01

    The high intensity beam dynamic simulation shows that the theoretic beam current limit of the original design version of the 800 MeV proton cyclotron CYCIEA-800is 1mA.In order to further improve the current limit and reduce beam losses in the cyclotron,the layout of the cyclotron

  9. Structure modification and medical application of the natural products by proton beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. W.; Park, J. K.; Kang, J. E.; Shin, S. C.; Ahn, J. H.; Lee, E. S. [Dongguk University, Gyeongju (Korea, Republic of)

    2008-04-15

    This study was performed for the investigation of changes of constituent contents of Korean ginseng (Panax genseng C.A. Meyer) after proton beam irradiation (Beam energy from MC-50 cyclotron : 36.5MeV) with beam range of 500 - 10000Gy

  10. Short-lived positron emitters in beam-on PET imaging during proton therapy

    NARCIS (Netherlands)

    Dendooven, P.; Buitenhuis, H. J. T.; Diblen, F.; Heeres, P. N.; Biegun, A. K.; Fiedler, F.; van Goethem, M-J; van der Graaf, E. R.; Brandenburg, Sijtze

    2015-01-01

    The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option, provid

  11. Quality assurance of proton beams using a multilayer ionization chamber system

    Energy Technology Data Exchange (ETDEWEB)

    Dhanesar, Sandeep; Sahoo, Narayan; Kerr, Matthew; Taylor, M. Brad; Summers, Paige; Zhu, X. Ronald; Poenisch, Falk; Gillin, Michael [Department of Radiation Physics and Proton Therapy Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 (United States); Department of Radiation Physics and Proton Therapy Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 and The University of Texas at Houston Graduate School of Biomedical Sciences, 6767 Bertner Avenue, S3.8344, Houston, Texas 77030 (United States); Department of Radiation Physics and Proton Therapy Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 (United States); Department of Radiation Physics and Proton Therapy Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 and The University of Texas at Houston Graduate School of Biomedical Sciences, 6767 Bertner Avenue, S3.8344, Houston, Texas 77030 (United States)

    2013-09-15

    Purpose: The measurement of percentage depth-dose (PDD) distributions for the quality assurance of clinical proton beams is most commonly performed with a computerized water tank dosimetry system with ionization chamber, commonly referred to as water tank. Although the accuracy and reproducibility of this method is well established, it can be time-consuming if a large number of measurements are required. In this work the authors evaluate the linearity, reproducibility, sensitivity to field size, accuracy, and time-savings of another system: the Zebra, a multilayer ionization chamber system.Methods: The Zebra, consisting of 180 parallel-plate ionization chambers with 2 mm resolution, was used to measure depth-dose distributions. The measurements were performed for scattered and scanned proton pencil beams of multiple energies delivered by the Hitachi PROBEAT synchrotron-based delivery system. For scattered beams, the Zebra-measured depth-dose distributions were compared with those measured with the water tank. The principal descriptors extracted for comparisons were: range, the depth of the distal 90% dose; spread-out Bragg peak (SOBP) length, the region between the proximal 95% and distal 90% dose; and distal-dose fall off (DDF), the region between the distal 80% and 20% dose. For scanned beams, the Zebra-measured ranges were compared with those acquired using a Bragg peak chamber during commissioning.Results: The Zebra demonstrated better than 1% reproducibility and monitor unit linearity. The response of the Zebra was found to be sensitive to radiation field sizes greater than 12.5 × 12.5 cm; hence, the measurements used to determine accuracy were performed using a field size of 10 × 10 cm. For the scattered proton beams, PDD distributions showed 1.5% agreement within the SOBP, and 3.8% outside. Range values agreed within −0.1 ± 0.4 mm, with a maximum deviation of 1.2 mm. SOBP length values agreed within 0 ± 2 mm, with a maximum deviation of 6 mm. DDF

  12. Magnetic fields and beam optics studies of a 250 MeV superconducting proton radiotherapy cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Won [Research Institute and Hospital, National Cancer Center, 809 Madu-dong, Koyang, Kyonggi (Korea, Republic of)], E-mail: jwkim@ncc.re.kr

    2007-11-21

    A 250 MeV superconducting cyclotron for the proton radiation therapy was designed at the Michigan State University (MSU) for use at the Paul Scherrer Institut. This work was based on the conceptual design carried out at the MSU in 1994. The previous design was refined to finalize the magnet configuration and to optimally arrange cyclotron elements for the actual construction. The spiral angle of the pole was reduced, the new hill-edges and valley shims being introduced. The magnetic fields were highly isochronized using a least square fitting routine involving a schematic shimming scheme. The resulting reference field was adequate for the elaborate study of beam optics. The optics simulation predicted that extraction efficiency of above 80% was achievable for a beam with the initial phase width of 20{sup o}. The vertical deflector was investigated located in the central region to control the beam intensity with tracking of beam phase spaces. Some measurement results for the constructed cyclotron were found in a good agreement with those of the optics study.

  13. Note: Proton microbeam formation with continuously variable kinetic energy using a compact system for three-dimensional proton beam writing

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, T., E-mail: ohkubo.takeru@jaea.go.jp; Ishii, Y. [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2015-03-15

    A compact focused gaseous ion beam system has been developed to form proton microbeams of a few hundreds of keV with a penetration depth of micrometer range in 3-dimensional proton beam writing. Proton microbeams with kinetic energies of 100-140 keV were experimentally formed on the same point at a constant ratio of the kinetic energy of the object side to that of the image side. The experimental results indicate that the beam diameters were measured to be almost constant at approximately 6 μm at the same point with the kinetic energy range. These characteristics of the system were experimentally and numerically demonstrated to be maintained as long as the ratio was constant.

  14. High aspect ratio 3D nanopatterning using Proton Beam Writing

    Science.gov (United States)

    van Kan, Jeroen A.

    2009-03-01

    Proton beam writing (PBW) is a new direct write lithography using MeV protons, and is unique because of its ability to fabricate 3D structures of high aspect ratio structures directly in resist material like PMMA, SU-8 and HSQ. The introduction by CIBA, Singapore of a dedicated PBW facility, capable of writing at the micro- and nano- scale has facilitated high aspect ratio nanostructuring. PBW has demontrated high aspect ratio walls in HSQ down to the 20nm level. In recent experiments details down to sub 20 nm have been achieved in PMMA. Monte-Carlo calculations have shown that structuring down to the nanometer level is feasible. All this is possible because of the virtual absence of proximity effects (unwanted resist exposure by stray secondary electrons). The design and performance of this unique nanoprobe facility will be discussed. Two potential fields of application (eg nanofluidics and nanowire integration) of PBW will be discussed. Currently nanofluidics devices have typically only one critical dimension below 100 nm. Here we will introduce PBW as a powerful technique to fabricate molds for replication of PDMS nanofluidic circuits down to the sub 100 nm level in two dimensions. Initial chips with dimension down to 150 nm have successfully been used to study DNA folding in quasi-1d nanochannels in tandem with fluorescence imaging. Since the size of these PDMS nanochannels is not limited by the PDMS or PBW further miniaturization down to the sub 100 nm level is a realistic goal and initial results will be discussed. Nanowires are a potential building block for nano-electronic devices, and one critical problem is the integration of nanowires to form contacts. Porous alumina templates and high energy ion-tracks have been used for the production of nanowire templates in a random orientation. Since PBW is the only true 3D direct write nanolithographic technique it can be used to fabricate nanowire templates in a controlled manner.

  15. Geant4 simulation of clinical proton and carbon ion beams for the treatment of ocular melanomas with the full 3-D pencil beam scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Edoardo; Riccardi, Cristina; Rimoldi, Adele; Tamborini, Aurora [University of Pavia and the INFN section of Pavia, via Bassi 6, 27100 Pavia (Italy); Piersimoni, Pierluigi [Division of Radiation Research, Loma Linda University, Loma Linda, CA 92354 (United States); Ciocca, Mario [Medical Physics Unit, CNAO Foundation, Strada Campeggi 53, 27100 Pavia (Italy)

    2015-07-01

    This work investigates the possibility to use carbon ion beams delivered with active scanning modality, for the treatment of ocular melanomas at the Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia. The radiotherapy with carbon ions offers many advantages with respect to the radiotherapy with protons or photons, such as a higher relative radio-biological effectiveness (RBE) and a dose release better localized to the tumor. The Monte Carlo (MC) Geant4 10.00 patch-03 toolkit is used to reproduce the complete CNAO extraction beam line, including all the active and passive components characterizing it. The simulation of proton and carbon ion beams and radiation scanned field is validated against CNAO experimental data. For the irradiation study of the ocular melanoma an eye-detector, representing a model of a human eye, is implemented in the simulation. Each element of the eye is reproduced with its chemical and physical properties. Inside the eye-detector a realistic tumor volume is placed and used as the irradiation target. A comparison between protons and carbon ions eye irradiations allows to study possible treatment benefits if carbon ions are used instead of protons. (authors)

  16. Induction of cancer cell death by proton beam in tumor hypoxic region

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. M.; Heo, T. R.; Lee, K. B.; Jang, K. H.; Kim, H. N.; Lee, S. H.; Jeong, M. H. [Kyungpook National University, Daegu (Korea, Republic of)

    2008-04-15

    Proton beam has been applied to treat various tumor patients in clinical studies. However, it is still undefined whether proton radiation can inhibit the blood vessel formation and induce the cell death in vascular endothelial cells in growing organs. The aim of this study are first, to develop an optimal animal model for the observation of blood vessel development with low dose of proton beam and second, to investigate the effect of low dose proton beam on the inhibition of blood vessel formation induced by hypoxic conditions. In this study, flk1-GFP transgenic zebrafish embryos were used to directly visualize and determine the inhibition of blood vessels by low dose (1, 2, 5 Gy) of proton beam with spread out Bragg peak (SOBP). And we observed cell death by acridine orange staining at 96 hours post fertilization (hpf) stage of embryos after proton irradiation. We also compared the effects of proton beam with those of gamma-ray. An antioxidant, N-acetyl cystein (NAC) was used to investigate whether reactive oxygen species (ROS) were involved in the cell deaths induced by proton irradiation. Irradiated flk-1-GFP transgenic embryos with proton beam irradiation (35 MeV, spread out Bragg peak, SOBP) demonstrated a marked inhibition of embryonic growth and an altered fluorescent blood vessel development in the trunk region. When the cells with DNA damage in the irradiated zebrafish were stained with acridine orange, green fluorescent cell death spots were increased in trunk regions compared to non-irradiated control embryos. Proton beam also significantly increased the cell death rate in human umbilical vein endothelial cells (HUVEC), but pretreatment of N-acetyl cystein (NAC), an antioxidant, recovered the proton-induced cell death rate (p<0.01). Moreover, pretreatment of NAC abrogated the effect of proton beam on the inhibition of trunk vessel development and malformation of trunk truncation. From this study, we found that proton radiation therapy can inhibit the

  17. The precision of respiratory-gated delivery of synchrotron-based pulsed beam proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsunashima, Yoshikazu; Vedam, Sastry; Dong Lei; Balter, Peter; Mohan, Radhe [Department of Radiation Physics, Unit 94, University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Umezawa, Masumi, E-mail: ytsunash@mdanderson.or [Accelerator System Group Medical System Project, Hitachi, Ltd, Energy and Environmental Systems Laboratory, 2-1, Omika-cho 7-chome, Hitachi-shi, Ibaraki-ken 319-1221 (Japan)

    2010-12-21

    A synchrotron-based proton therapy system operates in a low repetition rate pulsed beam delivery mode. Unlike cyclotron-based beam delivery, there is no guarantee that a synchrotron beam can be delivered effectively or precisely under the respiratory-gated mode. To evaluate the performance of gated synchrotron treatment, we simulated proton beam delivery in the synchrotron-based respiratory-gated mode using realistic patient breathing signals. Parameters used in the simulation were respiratory motion traces (70 traces from 24 patients), respiratory gate levels (10%, 20% and 30% duty cycles at the exhalation phase) and synchrotron magnet excitation cycles (T{sub cyc}) (fixed T{sub cyc} mode: 2.7, 3.0-6.0 s and each patient breathing cycle, and variable T{sub cyc} mode). The simulations were computed according to the breathing trace in which the proton beams were delivered. In the shorter fixed T{sub cyc} (<4 s), most of the proton beams were delivered uniformly to the target during the entire expiration phase of the respiratory cycle. In the longer fixed T{sub cyc} (>4 s) and the variable T{sub cyc} mode, the proton beams were not consistently delivered during the end-expiration phase of the respiratory cycle. However we found that the longer and variable T{sub cyc} operation modes delivered proton beams more precisely during irregular breathing.

  18. Proton Beam Therapy and Concurrent Chemotherapy for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Steven H., E-mail: shlin@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Komaki, Ritsuko; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wei, Caimiao [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Myles, Bevan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Guo Xiaomao [Department of Radiation Oncology, Fudan University Cancer Hospital, Shanghai (China); Palmer, Matthew [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Swisher, Stephen G.; Hofstetter, Wayne L. [Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cox, James D. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-01

    Purpose: Proton beam therapy (PBT) is a promising modality for the management of thoracic malignancies. We report our preliminary experience of treating esophageal cancer patients with concurrent chemotherapy (CChT) and PBT (CChT/PBT) at MD Anderson Cancer Center. Methods and Materials: This is an analysis of 62 esophageal cancer patients enrolled on a prospective study evaluating normal tissue toxicity from CChT/PBT from 2006 to 2010. Patients were treated with passive scattering PBT with two- or three-field beam arrangement using 180 to 250 MV protons. We used the Kaplan-Meier method to assess time-to-event outcomes and compared the distributions between groups using the log-rank test. Results: The median follow-up time was 20.1 months for survivors. The median age was 68 years (range, 38-86). Most patients were males (82%) who had adenocarcinomas (76%) and Stage II-III disease (84%). The median radiation dose was 50.4 Gy (RBE [relative biologic equivalence]) (range, 36-57.6). The most common grade 2 to 3 acute toxicities from CChT/PBT were esophagitis (46.8%), fatigue (43.6%), nausea (33.9%), anorexia (30.1%), and radiation dermatitis (16.1%). There were two cases of grade 2 and 3 radiation pneumonitis and two cases of grade 5 toxicities. A total of 29 patients (46.8%) received preoperative CChT/PBT, with one postoperative death. The pathologic complete response (pCR) rate for the surgical cohort was 28%, and the pCR and near CR rates (0%-1% residual cells) were 50%. While there were significantly fewer local-regional recurrences in the preoperative group (3/29) than in the definitive CChT/PBT group (16/33) (log-rank test, p = 0.005), there were no differences in distant metastatic (DM)-free interval or overall survival (OS) between the two groups. Conclusions: This is the first report of patients treated with PBT/CChT for esophageal cancer. Our data suggest that this modality is associated with a few severe toxicities, but the pathologic response and clinical

  19. SU-E-T-439: Fundamental Verification of Respiratory-Gated Spot Scanning Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hamano, H; Yamakawa, T [Graduate School of Health Sciences, Fujita Health University, Toyoake (Japan); Hayashi, N; Kato, H [School of Health Sciences, Fujita Health University, Tayoake (Japan); Yasui, K [Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya (Japan)

    2015-06-15

    Purpose: The spot-scanning proton beam irradiation with respiratory gating technique provides quite well dose distribution and requires both dosimetric and geometric verification prior to clinical implementation. The purpose of this study is to evaluate the impact of gating irradiation as a fundamental verification. Methods: We evaluated field width, flatness, symmetry, and penumbra in the gated and non-gated proton beams. The respiration motion was distinguished into 3 patterns: 10, 20, and 30 mm. We compared these contents between the gated and non-gated beams. A 200 MeV proton beam from PROBEAT-III unit (Hitachi Co.Ltd) was used in this study. Respiratory gating irradiation was performed by Quasar phantom (MODUS medical devices) with a combination of dedicated respiratory gating system (ANZAI Medical Corporation). For radiochromic film dosimetry, the calibration curve was created with Gafchromic EBT3 film (Ashland) on FilmQA Pro 2014 (Ashland) as film analysis software. Results: The film was calibrated at the middle of spread out Bragg peak in passive proton beam. The field width, flatness and penumbra in non-gated proton irradiation with respiratory motion were larger than those of reference beam without respiratory motion: the maximum errors of the field width, flatness and penumbra in respiratory motion of 30 mm were 1.75% and 40.3% and 39.7%, respectively. The errors of flatness and penumbra in gating beam (motion: 30 mm, gating rate: 25%) were 0.0% and 2.91%, respectively. The results of symmetry in all proton beams with gating technique were within 0.6%. Conclusion: The field width, flatness, symmetry and penumbra were improved with the gating technique in proton beam. The spot scanning proton beam with gating technique is feasible for the motioned target.

  20. MO-F-CAMPUS-J-01: Acoustic Range Verification of Proton Beams: Simulation of Heterogeneity and Clinical Proton Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K; Sehgal, C; Avery, S [Univ Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: Through simulation, to assess acoustic-based range verification of proton beams (protoacoustics) under clinical conditions. Methods: Pressure waves generated by the energy deposition of a 150 MeV, 8 mm FWHM pulsed pencil proton beam were numerically simulated through two Methods: 1) For a homogeneous water medium, an analytical wave-equation solution was used to calculate the time-dependent pressure measured at detector points surrounding the proton Bragg peak. 2) For heterogeneity studies, a CT tissue image was used to calculate the proton dose deposition and define the acoustic properties of the voxels through which numerical pressure wave propagation was simulated with the k-Wave matlab toolbox. The simulations were used to assess the dependence of the acoustic amplitude and range-verification accuracy on proton pulse rise time and tissue heterogeneity. Results: As the proton pulse rise time is increased from 1 to 40 µs, the amplitude of the expected acoustic emission decreases (a 60% drop distal to the Bragg peak), the central frequency of the expected signal decreases (from 45 to 6 kHz), and the accuracy of the range-verification decreases (from <1 mm to 16 mm at 5 cm distal to the Bragg peak). For a 300 nA pulse, the expected pressure range is on the order of 0.1 Pa, which is observable with commercial detectors. For the heterogeneous medium, our test case shows that pressure waves emitted by an anterior pencil beam directed into the abdomen and detected posteriorly can determine the Bragg peak range to an accuracy of <2mm for a 1 µs proton pulse. Conclusion: For proton pulses with fast rise-times, protoacoustics is a promising potential method for monitoring penetration depth through heterogeneous tissue. The loss of range-verification accuracy with increasing rise-times, however, suggests the need for comparisons to modeling to improve accuracy for slower cyclotron proton sources.

  1. Geant4 simulations of proton beam transport through a carbon or beryllium degrader and following a beam line

    NARCIS (Netherlands)

    van Goethem, M. J.; van der Meer, R.; Reist, H. W.; Schippers, J. M.

    2009-01-01

    Monte Carlo simulations based on the Geant4 simulation toolkit were performed for the carbon wedge degrader used in the beam line at the Center of Proton Therapy of the Paul Scherrer Institute (PSI). The simulations are part of the beam line studies for the development and understanding of the GANTR

  2. A feasibility study of H sup - beam extraction technique using YAG laser

    CERN Document Server

    Meigo, S I; Hasegawa, K; Ikeda, Y; Nakagawa, S; Oigawa, H

    2002-01-01

    Under a framework of JAERI-KEK joint project of high intensity proton accelerator, as for research and develop of the accelerator driven nuclear transmutation of the long lived radioactive nuclide, it is planed to built the Transmutation Physics Experiment Facility (TEF-P) and the Transmutation Engineering Experiment Facility (TEF-E). The TEF-P is used for the experiments for subcritical system coupled with a spallation neutron target bombarded with 600-MeV proton beam accelerated by the LINAC. To limit the maximum thermal power less than 500 W at the TEF-P, an incident beam power should be less than 10 W. On the contrary, at the TEF-E, high power beam of 200 kW is requested. Both high and low power beams are demanded for the transmutation facilities. It is difficult to deliver a low power beam to the TEF-P. Conventional beam extraction technique with a thin foil, is not desirable because the scattering of the beam at the foil requires the massive shield. Therefore, we study a new technique to extract a small...

  3. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams

    Science.gov (United States)

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-01

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing 22Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3-5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy.

  4. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    Science.gov (United States)

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    proton kinetic energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility.

  5. An Approach to Extract the Spin Transfer to in Polarized Proton-Proton Collision

    Institute of Scientific and Technical Information of China (English)

    HAN Ran; YE Hong-Xue; LIANG Yu-Tie; MAO Ya-Jun

    2008-01-01

    We introduce an approach to extract the spin transfer to (A) in polarized proton-proton collision, based on the relation between single spin asymmetry and the polarization of (A) production. With 4 × 106 (A) events simulated for a PHENIX detector system, DLL = 0.1598 ± 0.0343 is retrieved by the approach and it agrees very well with the input value of 0.1429. The approach is further tested and confirmed with 'bunch shuffling' method for the simulated events as well as experimental events collected at PHENIX in 2003. It is concluded that one can correctly extract the spin transfer without detailed understanding of acceptance correction even if the correction is significantly large in PHENIX experiment by using the approach described here. The method can be generally used for spin transfer study.

  6. Decursin was Accelerated Human Lung Cancer Cell Death Caused by Proton Beam Irradiation via Blocking the p42/44 MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Ra, Se Jin; Kim, Kye Ryung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Decursin, which is one of the extract of Angelica gigas Nakai root, has been traditionally used in Korean folk medicine as a tonic and for treatment of anemia and other common diseases. There are some reports about the pharmacological properties of decursin showing anti-bacterial and anti-amnestic effect, depression of cardiac contraction, antitumor and anti-angiogenic activity. Cell death induced by proton beam is identified as apoptosis. The study investigated that genes involved in apoptosis are checked by RT-PCR and used LET instead of SPBP of proton beam. Apoptosis is the tight regulated by multi-protein action in physiological cell death program. Proton therapy is an attractive approach for the treatment of deep-seated tumor. Recently, many researchers tried to new therapeutic strategy, combination of proton therapy and chemotherapy, in order to increase therapeutic effect. In this study, we investigate whether decursin can accelerate effect of human lung cell apoptosis in proton irradiated cancer cells

  7. SRAM single event upset calculation and test using protons in the secondary beam in the BEPC

    Institute of Scientific and Technical Information of China (English)

    Wang Yuanming; Guo Hongxia; Zhang Fengqi; Zhang Keying; Chen Wei; Luo Yinhong; Guo Xiaoqiang

    2011-01-01

    The protons in the secondary beam in the Beijing Electron Positron Collider (BEPC) are first analyzed and a large proportion at the energy of 50 100 MeV supply a source gap of high energy protons.In this study,the proton energy spectrum of the secondary beam was obtained and a model for calculating the proton single event upset (SEU) cross section of a static random access memory (SRAM) cell has been presented in the BEPC secondary beam proton radiation environment.The proton SEU cross section for different characteristic dimensions has been calculated.The test of SRAM SEU cross sections has been designed,and a good linear relation between SEUs in SRAM and the fluence was found,which is evidence that an SEU has taken place in the SRAM.The SEU cross sections were measured in SRAM with different dimensions.The test result shows that the SEU cross section per bit will decrease with the decrease of the characteristic dimensions of the device,while the total SEU cross section still increases upon the increase of device capacity.The test data accords with the calculation results,so the high-energy proton SEU test on the proton beam in the BEPC secondary beam could be conducted.

  8. Energy compensation of slow extracted beams with RF acceleration

    Science.gov (United States)

    Fujimoto, Tetsuya; Souda, Hikaru; Torikoshi, Masami; Kanai, Tatsuaki; Yamada, Satoru; Noda, Koji

    2016-03-01

    In a conventional carbon-ion radiotherapy facility, a carbon-ion beam is typically accelerated up to an optimum energy, slowly extracted from a synchrotron ring by a resonant slow extraction method, and ultimately delivered to a patient through a beam-delivery system. At Japan's Gunma University, a method employing slow-beam extraction along with beam-acceleration has been adopted. This method slightly alters the extracted-beam's energy owing to the acceleration component of the process, which subsequently results in a residual-range variation of approximately 2 mm in water-equivalent length. However, this range variation does not disturb a distal dose distribution with broad-beam methods such as the single beam-wobbling method. With the pencil-beam 3D scanning method, however, such a range variation disturbs a distal dose distribution because the variation is comparable to slice thickness. Therefore, for pencil-beam 3D scanning, an energy compensation method for a slow extracted beam is proposed in this paper. This method can compensate for the aforementioned energy variances by controlling net energy losses through a rotatable energy absorber set fixed between the synchrotron exit channel and the isocenter. Experimental results demonstrate that beam energies can be maintained constant, as originally hypothesized. Moreover, energy-absorber positions were found to be significantly enhanced by optimizing beam optics for reducing beam-size growth by implementation of the multiple-scattering effect option.

  9. Nonlinear perturbative particle simulation studies of the electron-proton two-stream instability in high intensity proton beams

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2003-01-01

    Full Text Available Two-stream instabilities in intense charged particle beams, described self-consistently by the nonlinear Vlasov-Maxwell equations, are studied using a 3D multispecies perturbative particle simulation method. The recently developed Beam Equilibrium, Stability and Transport code is used to simulate the linear and nonlinear properties of the electron-proton (e-p two-stream instability observed in the Proton Storage Ring (PSR experiment for a long, coasting beam. Simulations in a parameter regime characteristic of the PSR experiment show that the e-p instability has a dipole-mode structure, and that the growth rate is an increasing function of beam intensity, but a decreasing function of the longitudinal momentum spread. It is also shown that the instability threshold decreases with increasing fractional charge neutralization and increases with increasing axial momentum spread of the beam particles. In the nonlinear phase, the simulations show that the proton density perturbation first saturates at a relatively low level and subsequently grows to a higher level. Finally, the nonlinear space-charge-induced transverse tune spread, which introduces a major growth-rate reduction effect on the e-p instability, is studied for self-consistent equilibrium populations of protons and electrons.

  10. Structural design study of a proton beam window for a 1-MW spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Terada, Atsuhiko; Maekawa, Fujio; Meigo, Shin-ichiro; Kaminaga, Masanori; Ishikura, Syuichi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to manufacture, and the other, curved-type that has high stress resistivity. As a part of design study for the windows, evaluation of strength of structure and thermal hydraulic analysis were conducted. As a result, it was found that sufficient heat removal was assured with uniform water flow at the window, and stress caused by internal water pressure and thermal stress could be maintained below allowable stress values. Accordingly, it was confirmed that the proton beam window designs were feasible. (author)

  11. Research advances in proton beam therapy for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    DAI Shuyang

    2013-10-01

    Full Text Available Hepatocellular carcinoma (HCC, one of the most common malignancies with high prevalence and mortality rate, usually results in poor prognosis and limited survival. A comprehensive analysis on the number and location of tumors, Child-Pugh grade, and Barcelona Clinic Liver Cancer stage will help the development of suitable treatment programs and improve prediction of prognosis. A majority of patients are complicated by cirrhosis, enlarged tumor, multiple lesions, vascular invasion, and even cancer embolus in the portal vein. With the growth of knowledge about the radiation tolerance of normal tissue and the advances in radiotherapy techniques, radiotherapy has become an important tool for step-down therapy and adjuvant therapy for liver cancer. Proton beam therapy (PBT is emerging as a novel radiotherapy for the management of HCC, which, benefiting from the effect of Bragg Peak from PBT, effectively decreases the toxicity of traditional radiotherapies to the liver and does little harm to the uninvolved liver tissue or the surrounding structures while intensifying the destruction in targeted malignant lesions. Furthermore, several previous studies on the treatment of HCC with PBT revealed excellent local control. The distinctive biophysical attributes of PBT in the treatment of HCC, as well as the available literature regarding clinical outcomes and toxicity of using PBT for HCC, are reviewed. Current evidence provides limited indications for PBT, which suggests that further study on the relationship between liver function and PBT is required to gain further insight into its indication and standardization.

  12. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    Science.gov (United States)

    Green, J. S.; Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.; Rusby, D.; Wilson, L.

    2014-05-01

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ˜1021 W cm-2 was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.

  13. Neutralization principles for the Extraction and Transport of Ion Beams

    CERN Document Server

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  14. Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities

    Science.gov (United States)

    Stefan, V. Alexander

    2011-04-01

    The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.

  15. Measurement of the \\Sigma\\ beam asymmetry for the \\omega\\ photo-production off the proton and the neutron at GRAAL

    CERN Document Server

    Vegna, V; Bartalini, O; Bellini, V; Boquet, J P; Capogni, M; Casano, L E; Castoldi, M; Curciarello, F; De Leo, V; Didelez, J P; Di Salvo, R; Fantini, A; Franco, D; Gervino, G; Ghio, F; Giardina, G; Girolami, B; Giusa, A; Lapik, A; Sandri, P Levi; Lleres, A; Mammoliti, F; Mandaglio, G; Manganaro, M; Moricciani, D; Mushkarenkov, A; Nedorezov, V; Randieri, C; Rebreyend, D; Rudnev, N; Russo, G; Schaerf, C; Sperduto, M L; Sutera, M C; Turinge, A; Zonta, I

    2013-01-01

    We report on new measurements of the beam asymmetry for \\omega\\ photo-production on proton and neutron in Hydrogen and Deuterium targets from the GRAAL collaboration. The beam asymmetry values are extracted from the reaction threshold (E_{\\gamma} = 1.1 GeV in the free nucleon kinematics) up to 1.5 GeV of incoming photon energy. For the first time both the radiative and the three-pion decay channels are simultaneously investigated on the free proton. Results from the two decay channels are in agreement and provide important constraints for the determination of resonant state contributions to the \\omega\\ production mechanism. First experimental results on the deuteron allow the extraction of the \\Sigma\\ beam asymmetry on quasi-free nucleons. Comparison of the results for free and quasi-free kinematics on the proton shows a generally reasonable agreement, similar to the findings in pseudo-scalar meson photo-production reactions. For the first time measurements on quasi-free neutrons are available, showing that b...

  16. First tests for an online treatment monitoring system with in-beam PET for proton therapy

    CERN Document Server

    Kraan, Aafke C; Belcari, N; Camarlinghi, N; Cappucci, F; Ciocca, M; Ferrari, A; Ferretti, S; Mairani, A; Molinelli, S; Pullia, M; Retico, A; Sala, P; Sportelli, G; Del Guerra, A; Rosso, V

    2014-01-01

    PET imaging is a non-invasive technique for particle range verification in proton therapy. It is based on measuring the beta+ annihilations caused by nuclear interactions of the protons in the patient. In this work we present measurements for proton range verification in phantoms, performed at the CNAO particle therapy treatment center in Pavia, Italy, with our 10 x 10 cm^2 planar PET prototype DoPET. PMMA phantoms were irradiated with mono-energetic proton beams and clinical treatment plans, and PET data were acquired during and shortly after proton irradiation. We created 1-D profiles of the beta+ activity along the proton beam-axis, and evaluated the difference between the proximal rise and the distal fall-off position of the activity distribution. A good agreement with FLUKA Monte Carlo predictions was obtained. We also assessed the system response when the PMMA phantom contained an air cavity. The system was able to detect these cavities quickly after irradiation.

  17. First tests for an online treatment monitoring system with in-beam PET for proton therapy

    Science.gov (United States)

    Kraan, A. C.; Battistoni, G.; Belcari, N.; Camarlinghi, N.; Cappucci, F.; Ciocca, M.; Ferrari, A.; Ferretti, S.; Mairani, A.; Molinelli, S.; Pullia, M.; Retico, A.; Sala, P.; Sportelli, G.; Del Guerra, A.; Rosso, V.

    2015-01-01

    PET imaging is a non-invasive technique for particle range verification in proton therapy. It is based on measuring the β+ annihilations caused by nuclear interactions of the protons in the patient. In this work we present measurements for proton range verification in phantoms, performed at the CNAO particle therapy treatment center in Pavia, Italy, with our 10 × 10 cm2 planar PET prototype DoPET. PMMA phantoms were irradiated with mono-energetic proton beams and clinical treatment plans, and PET data were acquired during and shortly after proton irradiation. We created 1-D profiles of the β+ activity along the proton beam-axis, and evaluated the difference between the proximal rise and the distal fall-off position of the activity distribution. A good agreement with FLUKA Monte Carlo predictions was obtained. We also assessed the system response when the PMMA phantom contained an air cavity. The system was able to detect these cavities quickly after irradiation.

  18. Preliminary Comparison of the Response of LHC Tertiary Collimators to Proton and Ion Beam Impacts

    CERN Document Server

    Cauchi, M; Bertarelli, A; Carra, F; Cerutti, F; Lari, L; Mollicone, P; Sammut, N

    2013-01-01

    The CERN Large Hadron Collider is designed to bring into collision protons as well as heavy ions. Accidents involving impacts on collimators can happen for both species. The interaction of lead ions with matter differs to that of protons, thus making this scenario a new interesting case to study as it can result in different damage aspects on the collimator. This paper will present a preliminary comparison of the response of collimators to proton and ion beam impacts.

  19. Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification.

    Science.gov (United States)

    Polf, Jerimy C; Avery, Stephen; Mackin, Dennis S; Beddar, Sam

    2015-09-21

    The purpose of this paper is to evaluate the ability of a prototype Compton camera (CC) to measure prompt gamma rays (PG) emitted during delivery of clinical proton pencil beams for prompt gamma imaging (PGI) as a means of providing in vivo verification of the delivered proton radiotherapy beams. A water phantom was irradiated with clinical 114 MeV and 150 MeV proton pencil beams. Up to 500 cGy of dose was delivered per irradiation using clinical beam currents. The prototype CC was placed 15 cm from the beam central axis and PGs from 0.2 MeV up to 6.5 MeV were measured during irradiation. From the measured data (2D) images of the PG emission were reconstructed. (1D) profiles were extracted from the PG images and compared to measured depth dose curves of the delivered proton pencil beams. The CC was able to measure PG emission during delivery of both 114 MeV and 150 MeV proton beams at clinical beam currents. 2D images of the PG emission were reconstructed for single 150 MeV proton pencil beams as well as for a 5   ×   5 cm mono-energetic layer of 114 MeV pencil beams. Shifts in the Bragg peak (BP) range were detectable on the 2D images. 1D profiles extracted from the PG images show that the distal falloff of the PG emission profile lined up well with the distal BP falloff. Shifts as small as 3 mm in the beam range could be detected from the 1D PG profiles with an accuracy of 1.5 mm or better. However, with the current CC prototype, a dose of 400 cGy was required to acquire adequate PG signal for 2D PG image reconstruction. It was possible to measure PG interactions with our prototype CC during delivery of proton pencil beams at clinical dose rates. Images of the PG emission could be reconstructed and shifts in the BP range were detectable. Therefore PGI with a CC for in vivo range verification during proton treatment delivery is feasible. However, improvements in the prototype CC detection efficiency and reconstruction algorithms are necessary

  20. Potential proton beam therapy for recurrent endometrial cancer in the vagina.

    Science.gov (United States)

    Yanazume, Shintaro; Arimura, Takeshi; Kobayashi, Hiroaki; Douchi, Tsutomu

    2015-05-01

    Proton beam radiotherapy mainly has been used in the gynecological field in patients with cervical cancer. The efficacy of proton beam therapy in patients with recurrent endometrial cancer has not yet been determined. A 77-year-old endometrial cancer patient presented with recurrence in the vagina without distant metastasis following hysterectomy. A hard mass measuring 6 cm originated from the apex of the vagina, surrounded the vaginal cavity, and infiltrated the proximal and distal vagina. The patient received proton beam radiotherapy using a less invasive particle treatment system while minimizing the dose to the surrounding normal tissues. The dose to the planning target volume was 74 Gy (relative biological effectiveness) with 37 fractions. The patient was treated with 150-210-MeV proton beams for 53 days. Proton beam therapy led to the disappearance of tumors without any complications except for grade 1 cystitis although evidence of further complications is not available past our 6-month follow-up period. Proton beam therapy may become a useful treatment modality for recurrent endometrial cancer as well as cervical uterine cancer. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  1. Induction of cancer cell death by proton beam in tumor hypoxic region

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. M.; Hur, T. R.; Lee, K. B.; Jeong, M. H.; Park, J. W. [Kyungbook National Univ., Daegu (Korea, Republic of)

    2007-04-15

    Proton beam induced apoptosis significantly in Lewis lung carcinoma cells and hepatoma HepG2 cells in a dose- and time-dependent manner, but slightly in leukemia Molt-4 cells. Relative biological effectiveness (RBE) values for death rate relative to gamma ray were ranged from 1.3 to 2.1 in LLC or HepG2 but 0.7 in Molt-4 cells at 72h after irradiation. The typical apoptosis was observed by nuclear DNA staining with DAPI. By FACS analysis after stained with PI, sub-G1 cell fraction was significantly increased but G2/M phase was not altered by proton beam irradiation measured at 24 h after irradiation. Proton beam-irradiated tumor cells induced cleavage of PARP-1 and procaspases (-3 and -9) and increased the level of p53 and p21. decreased pro-lamin B. Acitivity of caspases was significantly increased after proton beam irradiation. Furthermore, ROS were significantly increased and N-acetyl cystein (NAC) pretreatment restored the apoptotic cell death induced in proton beam-irradiated cells. In conclusion, single treatment of low energy proton beam with SOBP induced apoptosis of solid tumor cells via increased ROS, active caspase -3,-9 and p53, p2.

  2. Monte Carlo study of secondary electron production from gold nanoparticle in proton beam irradiation

    Directory of Open Access Journals (Sweden)

    Jeff Gao

    2014-03-01

    Full Text Available Purpose: In this study, we examined some characteristics of secondary electrons produced by gold nanoparticle (NP during proton beam irradiation.Method: By using the Geant4 Monte Carlo simulation toolkit, we simulated the NP at the range from radius (r of 17.5 nm, 25 nm, 35 nm to r = 50 nm. The proton beam energies used were 20MeV, 50MeV, and 100MeV. Findings on secondary electron production and their average kinetic energy  are presented in this paper. Results: Firstly, for NP with a finite size, the secondary electron production increase with decreasing incident proton beam energy and secondary buildup existed outside NP. Secondly, the average kinetic energy of secondary electrons produced by a gold NP increased with incident proton beam energy. Thirdly, the larger the NP size, the more the secondary electron production.Conclusion: Collectively, our results suggest that apart from biological uptake efficiency, we should take the secondary electron production effect into   account when considering the potential use of NPs in proton beam irradiation.-----------------------------------------------Cite this article as: Gao J, Zheng Y. Monte Carlo study of secondary electron production from gold nanoparticle in proton beam irradiation. Int J  Cancer Ther Oncol 2014; 2(2:02025.DOI: http://dx.doi.org/10.14319/ijcto.0202.5

  3. Outcomes of treatment with stereotactic radiosurgery or proton beam therapy for choroidal melanoma.

    Science.gov (United States)

    Sikuade, M J; Salvi, S; Rundle, P A; Errington, D G; Kacperek, A; Rennie, I G

    2015-09-01

    To present our experience of the use of stereotactic radiosurgery and proton beam therapy to treat posterior uveal melanoma over a 10 year period. Case notes of patients treated with stereotactic radiosurgery (SRS), or Proton beam therapy (PBT) for posterior uveal melanoma were reviewed. Data collected included visual acuity at presentation and final review, local control rates, globe retention and complications. We analysed post-operative visual outcomes and if visual outcomes varied with proximity to the optic nerve or fovea. 191 patients were included in the study; 85 and 106 patients received Stereotactic radiosurgery and Proton beam therapy, respectively. Mean follow up period was 39 months in the SRS group and 34 months in the PBT group. Both treatments achieved excellent local control rates with eye retention in 98% of the SRS group and 95% in the PBT group. The stereotactic radiosurgery group showed a poorer visual prognosis with 65% losing more than 3 lines of Snellen acuity compared to 45% in the PBT group. 33% of the SRS group and 54% of proton beam patients had a visual acuity of 6/60 or better. Stereotactic radiosurgery and proton beam therapy are effective treatments for larger choroidal melanomas or tumours unsuitable for plaque radiotherapy. Our results suggest that patients treated with proton beam therapy retain better vision post-operatively; however, possible confounding factors include age, tumour location and systemic co-morbidities. These factors as well as the patient's preference should be considered when deciding between these two therapies.

  4. In Situ Characterisation of Permanent Magnetic Quadrupoles for focussing proton beams

    CERN Document Server

    Melone, J J; McCanny, T; Burris-Mog, T; Schramm, U; Grötschel, R; Akhmadaliev, S; Hanf, D; Spohr, K M; Bussmann, M; Cowan, T; Wiggins, S M; Mitchell, M R

    2011-01-01

    High intensity laser driven proton beams are at present receiving much attention. The reasons for this are many but high on the list is the potential to produce compact accelerators. However two of the limitations of this technology is that unlike conventional nuclear RF accelerators lasers produce diverging beams with an exponential energy distribution. A number of different approaches have been attempted to monochromise these beams but it has become obvious that magnetic spectrometer technology developed over many years by nuclear physicists to transport and focus proton beams could play an important role for this purpose. This paper deals with the design and characterisation of a magnetic quadrupole system which will attempt to focus and transport laser-accelerated proton beams.

  5. Pencil beam proton radiography using a multilayer ionization chamber

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  6. New Beam Profile Monitoring System At Extraction From U-70

    CERN Document Server

    Afonin, A G; Gorlov, V N; Gres, V N; Sokolov, S V; Terekhov, V I

    2004-01-01

    In the course of upgrading Instrumentation of extracted beams at IHEP the new beam profile monitoring system has been developed and comissioned. It incorporates many improvements towards lower amount of monitor substance to be placed in the beam path, lower cable expenses, higher radiation and noisy resistance, wider dynamic range. New circuitry allows one to measure profiles separately for each extraction in one machine cycle. The system has a capability for multiple measures of beam profile during the slow extraction for exploring dynamic effects. The paper describes hardware and software of system.

  7. The role of a microDiamond detector in the dosimetry of proton pencil beams

    Energy Technology Data Exchange (ETDEWEB)

    Goma, Carles [Paul Scherrer Institute, Villigen (Switzerland). Centre for Proton Therapy; Swiss Federal Institute of Technology Zurich (Switzerland). Dept. of Physics; Marinelli, Marco; Verona-Rinati, Gianluca [Roma Univ. ' ' Tor Vergata' ' (Italy). Dipt. di Ingegneria Industriale; INFN, Roma (Italy); Safai, Sairos [Paul Scherrer Institute, Villigen (Switzerland). Centre for Proton Therapy; Wuerfel, Jan [PTW-Freiburg, Freiburg (Germany)

    2016-05-01

    In this work, the performance of a microDiamond detector in a scanned proton beam is studied and its potential role in the dosimetric characterization of proton pencil beams is assessed. The linearity of the detector response with the absorbed dose and the dependence on the dose-rate were tested. The depth-dose curve and the lateral dose profiles of a proton pencil beam were measured and compared to reference data. The feasibility of calibrating the beam monitor chamber with a microDiamond detector was also studied. It was found the detector reading is linear with the absorbed dose to water (down to few cGy) and the detector response is independent of both the dose-rate (up to few Gy/s) and the proton beam energy (within the whole clinically-relevant energy range). The detector showed a good performance in depth-dose curve and lateral dose profile measurements; and it might even be used to calibrate the beam monitor chambers-provided it is cross-calibrated against a reference ionization chamber. In conclusion, the microDiamond detector was proved capable of performing an accurate dosimetric characterization of proton pencil beams.

  8. Transport of laser accelerated proton beams and isochoric heating of matter

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Inst. fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum f. Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C; Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Makita, M, E-mail: markus.roth@physik.tu-darmstadt.d [School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2010-08-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  9. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    CERN Document Server

    Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

    2012-01-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

  10. Two-pion production in proton-proton collisions with a polarized beam

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Bary, S.; Abd El-Samad, S.; Wintz, P. [Atomic Energy Authority, NRC, Cairo (Egypt); Bilger, R.; Clement, H.; Dietrich, M.; Doroshkevich, E.; Ehrhardt, K.; Erhardt, A.; Haug, K.; Kress, J.; Meier, R.; Wagner, G.J.; Weidlich, U. [Physikalisches Institut der Universitaet Tuebingen, Tuebingen (Germany); Brinkmann, K.T. [Rheinische Friedrich-Wilhelms Universitaet Bonn, Bonn (Germany); Dshemuchadse, S. [Technische Universitaet Dresden, Dresden (Germany); Forschungszentrum Rossendorf, Rossendorf (Germany); Eyrich, W.; Hauffe, J.; Schroeder, W.; Stinzing, F.; Waechter, J.; Wagner, M.; Wirth, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany); Filippi, A.; Marcello, S. [University of Torino (Italy); INFN, Sezione di Torino (Italy); Freiesleben, H.; Jaekel, R.; Jakob, B.; Karsch, L.; Kuhlmann, E.; Schulte-Wissermann, M.; Sun, G.Y. [Technische Universitaet Dresden, Dresden (Germany); Fritsch, M. [Ruhr-Universitaet Bochum, Bochum (Germany); Friedrich-Alexander-Universitaet, Erlangen-Nuernberg (Germany); Geyer, R.; Gillitzer, A.; Hanhart, C.; Hesselbarth, D.; Kilian, K.; Marwinski, S.; Morsch, H.P.; Ritman, J.; Roderburg, E. [Forschungszentrum Juelich, Juelich (Germany); Koch, H.; Steinke, M.; Wilms, A. [Ruhr-Universitaet Bochum, Bochum (Germany); Moeller, K.; Naumann, L. [Forschungszentrum Rossendorf, Rossendorf (Germany); Schoenmeier, P. [Technische Universitaet Dresden, Dresden (Germany); Friedrich-Alexander-Universitaet, Erlangen-Nuernberg (Germany); Zhang, G. [Physikalisches Institut der Universitaet Tuebingen, Tuebingen (Germany); Zupranski, P. [Soltan Institute for Nuclear Studies, Warsaw (Poland)

    2008-09-15

    The two-pion production reaction pp{yields}pp{pi}{sup +}{pi}{sup -} was measured with a polarized proton beam at T{sub p}{approx}750 and 800 MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed-pulse technique for Quirl and central calorimeter provided positive {pi}{sup +} identification in addition to the standard particle identification, energy determination as well as time-of-flight and angle measurements. Thus all four-momenta of the emerging particles could be determined with 1-4 overconstraints. Total and differential cross-sections as well as angular distributions of the vector analyzing power have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find significant analyzing-power values up to A{sub y}=0.3. The data taken in the energy region of the excitation of the Roper resonance confirm that its dominant {pi}{pi} decay channel is N{sup *}{yields}N{sigma}. (orig.)

  11. Two-pion production in proton-proton collisions with a polarized beam

    Science.gov (United States)

    El-Bary, S. Abd; El-Samad, S. Abd; Bilger, R.; Brinkmann, K.-Th.; Clement, H.; Dietrich, M.; Doroshkevich, E.; Dshemuchadse, S.; Ehrhardt, K.; Erhardt, A.; Eyrich, W.; Filippi, A.; Freiesleben, H.; Fritsch, M.; Geyer, R.; Gillitzer, A.; Hanhart, C.; Hauffe, J.; Haug, K.; Hesselbarth, D.; Jaekel, R.; Jakob, B.; Karsch, L.; Kilian, K.; Koch, H.; Kress, J.; Kuhlmann, E.; Marcello, S.; Marwinski, S.; Meier, R.; Möller, K.; Morsch, H. P.; Naumann, L.; Ritman, J.; Roderburg, E.; Schönmeier, P.; Schulte-Wissermann, M.; Schroeder, W.; Steinke, M.; Stinzing, F.; Sun, G. Y.; Wächter, J.; Wagner, G. J.; Wagner, M.; Weidlich, U.; Wilms, A.; Wintz, P.; Wirth, S.; Zhang, G.; Zupranski, P.

    2008-09-01

    The two-pion production reaction pp → ppπ+π- was measured with a polarized proton beam at T p ≈ 750 and 800MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed-pulse technique for Quirl and central calorimeter provided positive π+ identification in addition to the standard particle identification, energy determination as well as time-of-flight and angle measurements. Thus all four-momenta of the emerging particles could be determined with 1-4 overconstraints. Total and differential cross-sections as well as angular distributions of the vector analyzing power have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find significant analyzing-power values up to A y = 0.3. The data taken in the energy region of the excitation of the Roper resonance confirm that its dominant ππ decay channel is N * → Nσ.

  12. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen, E-mail: Stephen.Avery@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Vander Stappen, François; Janssens, Guillaume; Prieels, Damien [Ion Beam Applications SA, Louvain-la-Neuve 1348 (Belgium); Bawiec, Christopher R.; Lewin, Peter A. [School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Sehgal, Chandra M. [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-12-15

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  13. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams

    Science.gov (United States)

    Raschke, S.; Spickermann, S.; Toncian, T.; Swantusch, M.; Boeker, J.; Giesen, U.; Iliakis, G.; Willi, O.; Boege, F.

    2016-08-01

    Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 107-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (foci of phosphorylated histone H2AX) was not significantly different between the two proton sources or proton irradiation and X-rays. Protein nitroxidation after 1 h judged by 3-nitrotyrosine generation was 2.5 and 5-fold higher in response to conventionally accelerated protons compared to laser-driven protons and X-rays, respectively. This difference was significant (p DNA damaging potential as conventional proton beams, while inducing less immediate nitroxidative stress, which probably entails a distinct therapeutic potential.

  14. Indirect Self-Modulation Instability Measurement Concept for the AWAKE Proton Beam

    OpenAIRE

    Turner, M.; Petrenko, A.; Biskup, B.; Burger, S; Gschwendtner, E; Lotov, K. V.; S. Mazzoni; Vincke, H.

    2015-01-01

    AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV/c proton beam from the CERN SPS (longitudinal beam size sigma_z = 12 cm) which will be sent into a 10 m long plasma section with a nominal density of approx. 7x10^14 atoms/cm3 (plasma wavelength lambda_p = 1.2mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plas...

  15. Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien

    2013-01-01

    This paper presents a summary of beam-induced backgrounds observed in the ATLAS detector and discusses methods to tag and remove background contaminated events in data. Trigger-rate based monitoring of beam-related backgrounds is presented. The correlations of backgrounds with machine conditions, such as residual pressure in the beam-pipe, are discussed. Results from dedicated beam-background simulations are shown, and their qualitative agreement with data is evaluated. Data taken during the passage of unpaired, i.e. non-colliding, proton bunches is used to obtain background-enriched data samples. These are used to identify characteristic features of beam-induced backgrounds, which then are exploited to develop dedicated background tagging tools. These tools, based on observables in the Pixel detector, the muon spectrometer and the calorimeters, are described in detail and their efficiencies are evaluated. Finally an example of an application of these techniques to a monojet analysis is given, which demonstra...

  16. A high repetition rate transverse beam profile diagnostic for laser-plasma proton sources

    Science.gov (United States)

    Dover, Nicholas; Nishiuchi, Mamiko; Sakaki, Hironao; Kando, Masaki; Nishitani, Keita

    2016-10-01

    The recently upgraded J-KAREN-P laser can provide PW peak power and intensities approaching 1022 Wcm-2 at 0.1 Hz. Scaling of sheath acceleration to such high intensities predicts generation of protons to near 100 MeV, but changes in electron heating mechanisms may affect the emitted proton beam properties, such as divergence and pointing. High repetition rate simultaneous measurement of the transverse proton distribution and energy spectrum are therefore key to understanding and optimising the source. Recently plastic scintillators have been used to measure online proton beam transverse profiles, removing the need for time consuming post-processing. We are therefore developing a scintillator based transverse proton beam profile diagnostic for use in ion acceleration experiments using the J-KAREN-P laser. Differential filtering provides a coarse energy spectrum measurement, and time-gating allows differentiation of protons from other radiation. We will discuss the design and implementation of the diagnostic, as well as proof-of-principle results from initial experiments on the J-KAREN-P system demonstrating the measurement of sheath accelerated proton beams up to 20 MeV.

  17. A fast beam loss monitor system for the KEK proton synchrotron complex

    Science.gov (United States)

    Holt, J. A.; Kishiro, J.; Arakawa, D.; Hiramatsu, S.

    1991-06-01

    Efforts to increase the intensity of the KEK proton synchrotron have led to the need for a new fast response beam loss monitor system. The design and some prelimitary test results of a new beam loss monitor system are presented.(AIP)

  18. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    Science.gov (United States)

    Nie, Y.; Schmidt, R.; Chetvertkova, V.; Rosell-Tarragó, G.; Burkart, F.; Wollmann, D.

    2017-08-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post-Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV-50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  19. Laser-driven ultraintense proton beams for high energy-density physics

    Science.gov (United States)

    Jablonski, Slawomir; Badziak, Jan; Parys, Piotr; Rosinski, Marcin; Wolowski, Jerzy; Szydlowski, Adam; Antici, P.; Fuchs, J.; Mancic, A.

    2008-04-01

    The results of studies of high-intensity proton beam generation from thin (1 -- 3μm) solid targets irradiated by 0.35-ps laser pulse of energy up to 15J and intensity up to 2x10^19 W/cm^2 are reported. It is shown that the proton beams of multi-TW power and intensity above 10^18 W/cm^2 at the source can be produced when the laser-target interaction conditions approach the Skin-Layer Ponderomotive Acceleration requirements. The laser-protons energy conversion efficiency and proton beam parameters remarkably depend on the target structure. In particular, using a double-layer Au/PS target (plastic covered by 0.1 -- 0.2μm Au front layer) results in two-fold higher conversion efficiency and proton beam intensity than in the case of a plastic target. The values of proton beam intensities attained in our experiment are the highest among the ones measured so far.

  20. An efficient method to determine double Gaussian fluence parameters in the eclipse™ proton pencil beam model.

    Science.gov (United States)

    Shen, Jiajian; Liu, Wei; Stoker, Joshua; Ding, Xiaoning; Anand, Aman; Hu, Yanle; Herman, Michael G; Bues, Martin

    2016-12-01

    To find an efficient method to configure the proton fluence for a commercial proton pencil beam scanning (PBS) treatment planning system (TPS). An in-water dose kernel was developed to mimic the dose kernel of the pencil beam convolution superposition algorithm, which is part of the commercial proton beam therapy planning software, eclipse™ (Varian Medical Systems, Palo Alto, CA). The field size factor (FSF) was calculated based on the spot profile reconstructed by the in-house dose kernel. The workflow of using FSFs to find the desirable proton fluence is presented. The in-house derived spot profile and FSF were validated by a direct comparison with those calculated by the eclipse TPS. The validation included 420 comparisons of the FSFs from 14 proton energies, various field sizes from 2 to 20 cm and various depths from 20% to 80% of proton range. The relative in-water lateral profiles between the in-house calculation and the eclipse TPS agree very well even at the level of 10(-4). The FSFs between the in-house calculation and the eclipse TPS also agree well. The maximum deviation is within 0.5%, and the standard deviation is less than 0.1%. The authors' method significantly reduced the time to find the desirable proton fluences of the clinical energies. The method is extensively validated and can be applied to any proton centers using PBS and the eclipse TPS.

  1. Ultrahigh-current proton beams from short-pulse laser-solid interactions

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J; Jablowski, S; Parys, P; Rosinski, M; Suchanska, R; Wolowski, J [Institute of Plasma Physics and Laser Microfusion, EURATOM Association, Warsaw (Poland); Antici, P; Fuchs, J; Lancia, L; Mancic, A [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128 Palaiseau (France); Szydlowski, A [Andrzej Soltan Institute for Nuclear Studies, Warsaw (Poland)], E-mail: badziak@ifpilm.waw.pl

    2008-05-01

    The results of studies of high-current proton beam generation from thin (1-3{mu}m) solid targets irradiated by 0.35-ps laser pulse of intensity up to 2x10{sup 19} W/cm{sup 2} are reported. It is shown that the proton beams of multi-MA currents and multi-TA/cm{sup 2} current densities at the source can be produced when the laser-target interaction conditions approach the skin-layer ponderomotive acceleration requirements. The current and energy spectrum of protons remarkably depend on the target structure. In particular, using a double-layer Au/PS target (plastic covered by 0.1 - 0.2{mu}m Au front layer) results in two-fold higher proton currents and higher proton energies than in the case of a plastic target.

  2. Efficient production and diagnostics of MeV proton beams from a cryogenic hydrogen ribbon

    Science.gov (United States)

    Velyhan, A.; Giuffrida, L.; Scuderi, V.; Perin, J. P.; Chatain, D.; Garcia, S.; Bonnay, P.; Dostal, J.; Ullschmied, J.; Dudzak, R.; Krousky, E.; Cykhardt, J.; Prokupek, J.; Pfeifer, M.; Rosinski, M.; Krasa, J.; Brabcova, K.; De Napoli, M.; Lastovicka, T.; Margarone, D.

    2017-06-01

    A solid hydrogen thin ribbon, produced by the cryogenic system ELISE (Experiments on Laser Interaction with Solid hydrogEn) target delivery system, was experimentally used at the PALS kJ-laser facility to generate intense proton beams with energies in the MeV range. This sophisticated target system operating at cryogenic temperature (~ 10 K) continuously producing a 62 μm thick target was combined with a 600 J sub-nanosecond laser pulse to generate a collimated proton stream. The accelerated proton beams were fully characterized by a number of diagnostics. High conversion efficiency of laser to energetic protons is of great interest for future potential applications in non-conventional proton therapy and fast ignition for inertial confinement fusion.

  3. Analytical model of ionization and energy deposition by proton beams in subcellular compartments

    Science.gov (United States)

    de Vera, Pablo; Surdutovich, Eugene; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.

    2014-04-01

    We present an analytical model to evaluate in a fast, simple and effective manner the energy delivered by proton beams moving through a cell model made of nucleus and cytoplasm, taking into account the energy carried by the secondary electrons generated along the proton tracks. The electronic excitation spectra of these subcellular compartments have been modelled by means of an empirical parameterization of their dielectric properties. The energy loss rate and target ionization probability induced by swift protons are evaluated by means of the dielectric formalism. With the present model we have quantified the energy delivered, the specific energy, and the number of ionizations produced per incoming ion in a typical human cell by a typical hadrontherapy proton beam having energies usually reached around the Bragg peak (below 20 MeV). We find that the specific energy per incoming ion delivered in the nucleus and in the cytoplasm are rather similar for all the proton energy range analyzed.

  4. Simulation of ion beam extraction and focusing system

    Institute of Scientific and Technical Information of China (English)

    B.A.Soliman; M.M.Abdelrahman; A.G.Helal; F.W.Abdelsalam

    2011-01-01

    The characteristics of ion beam extraction and focused to a volume as small as possible were investigated with the aid of computer code SIMION 3D version 7.This has been used to evaluate the extraction characteristics(accel-decel system)to generate an ion beam with low beam emittance and high brightness.The simulation process can provide a good study for optimizing the extraction and focusing system of the ion beam without any losses and transported to the required target.Also,a study of a simulation model for the extraction system of the ion source was used to describe the possible plasma boundary curvatures during the ion extraction that may be affected by the change in an extraction potential with a constant plasma density meniscus.

  5. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    Science.gov (United States)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  6. Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field

    Science.gov (United States)

    Harres, K.; Alber, I.; Tauschwitz, A.; Bagnoud, V.; Daido, H.; Günther, M.; Nürnberg, F.; Otten, A.; Schollmeier, M.; Schütrumpf, J.; Tampo, M.; Roth, M.

    2010-02-01

    This article reports about controlling laser-accelerated proton beams with respect to beam divergence and energy. The particles are captured by a pulsed high field solenoid with a magnetic field strength of 8.6 T directly behind a flat target foil that is irradiated by a high intensity laser pulse. Proton beams with energies around 2.3 MeV and particle numbers of 1012 could be collimated and transported over a distance of more than 300 mm. In contrast to the protons the comoving electrons are strongly deflected by the solenoid field. They propagate at a submillimeter gyroradius around the solenoid's axis which could be experimentally verified. The originated high flux electron beam produces a high space charge resulting in a stronger focusing of the proton beam than expected by tracking results. Leadoff particle-in-cell simulations show qualitatively that this effect is caused by space charge attraction due to the comoving electrons. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications such as postacceleration by conventional accelerator structures.

  7. Transport of intense proton beams in an induction linac by solenoid lenses

    Science.gov (United States)

    Namkung, W.; Choe, J. Y.; Uhm, H. S.

    1986-01-01

    In the proposed proton induction linac at NSWC, a 100 A and 3 μs proton beam is accelerated to 5 MeV through a series of accelerating gaps. This beam can be effectively focused by solenoid lenses in this low energy regime and can be transported by adjusting the focusing strength in each period. For the transport channel design to reduce the number of independently controlled lenses, a theory of matched beams in the space-charge dominated regime has been developed. This study can be applied to cost efficient designs of induction accelerators for heavy ion fusion and free electron lasers.

  8. SU-E-T-443: Developmental Technique for Proton Pencil Beam Measurements: Depth Dose

    Energy Technology Data Exchange (ETDEWEB)

    Arjomandy, B; Lee, T; Schultz, T; Hsi, W; Park, S [McLaren Cancer Institute, Flint, MI (United States)

    2014-06-01

    Purpose: Measurements of depth dose distribution (DDD) of pencil beam in proton therapy can be challenging and time consuming. We have developed a technique that uses two Bragg peak chambers to expedite these measurements with a high accuracy. Methods and Material: We used a PTW water tank and two PTW 10.5 cm3 Bragg peak chambers; one as a field chamber and the other as a reference chamber to measure DDDs for 100–250 MeV proton pencil beams. The reference chamber was positioned outside of the water tank upstream with respect to field chamber. We used Geant4 Monte Carlo Simulation (MCS) to model the ProTom proton beam to generate DDDs. The MCS generated DDDs were used to account for halo effects of proton pencil beam that are not measureable with Bragg peak chambers. We also used PTW PEAKFINDER to measure DDDs for comparison purpose. Results: We compared measured and MCS DDDs with Continuous Slowing Down Approximation (CSDA) ranges to verify the range of proton beams that were supplied by the manufacturer. The agreements between all DDD with respect to CSDA were within ±0.5 mm. The WET for Bragg peak chamber for energies between 100–250 MeV was 12.7 ± 0.5 mm. The correction for halo effect was negligible below 150 MeV and was in order of ∼5-10% for 150–250 MeV. Conclusion: Use of Bragg Peak chamber as a reference chamber can facilitate DDD measurements in proton pencil beam with a high accuracy. Some corrections will be required to account for halo effect in case of high energy proton beams due to physical size of chamber.

  9. Simulation of a 36 h solar particle event at LLUMC using a proton beam scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Coutrakon, G.B. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States)]. E-mail: gcoutrakon@dominion.llumc.edu; Benton, E.R. [Oklahoma State University, Department of Physics, 1110 S. Innovation Way, Stillwater, OK 74074 (United States); Gridley, D.S. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Hickey, T. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Hubbard, J. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Koss, P. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Moyers, M.F. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Nelson, G.A. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Pecaut, M.J. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Sanders, E. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Shahnazi, K. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States)

    2007-08-15

    A radiation biology experiment was performed in the research room of the proton therapy facility at Loma Linda University Medical Center to simulate the proton exposure produced by a solar particle event. The experiment used two scanning magnets for X and Y deflection of the proton beam and covered a usable target area of nearly 1 m{sup 2}. The magnet scanning control system consisted of Lab View 6.0 software running on a PC. The goal of this experiment was to study the immune system response of 48 mice simultaneously exposed to 2 Gy of protons that simulated the dose rate and energy spectrum of the September 1989 solar particle event. The 2 Gy dose was delivered to the entrance of the mice cages over 36 h. Both ion chamber and TLD measurements indicated that the dose delivered was within 9% of the intended value. A spot scanning technique using one spot per accelerator cycle (2.2 s) was used to deliver doses as low as 1 {mu}Gy per beam spot. Rapid beam termination (less than 5 ms) on each spot was obtained by energizing a quadrupole in the proton synchrotron once the dose limit was reached for each spot. A parallel plate ion chamber placed adjacent to the mice cages provided fluence (or dose) measurements for each beam energy during each hour of the experiment. An intensity modulated spot scanning technique can be used in a variety of ways for radiation biology and a second experiment is being designed with this proton beam scanning system to simultaneously irradiate four groups of mice with different dose rates within the 1 m{sup 2} area. Also, large electronic devices being tested for radiation damage have been exposed in this beam without the use of patch fields. The same scanning system has potential application for intensity modulated proton therapy (IMPT) as well. This paper discusses the beam delivery system and dosimetry of the irradiation.

  10. Principal Possibility of Shaping a Scanned Proton Beam for Application in Radiation Therapy at the JINR LNP Phasotron

    CERN Document Server

    Morozov, N A

    2005-01-01

    of proton irradiation, eliminate the individual boli and figured collimators and increase about 2 or 3 times the throughput capacity of the JINR LNP Medico-Technical Complex or correspondingly decrease the beam time of the Phasotron for proton therapy.

  11. Beam Dynamics Based Design of Solenoid Channel for TAC Proton Linac

    CERN Document Server

    Kisoglu, H F

    2014-01-01

    Today a linear particle accelerator (linac), in which electric and magnetic fields are of vital importance, is one of the popular energy generation sources like Accelerator Driven System (ADS). A multipurpose, including primarily ADS, proton linac with energy of ~2 GeV is planned to constitute within the Turkish Accelerator Center (TAC) project collaborated by more than 10 Turkish universities. A Low Energy Beam Transport (LEBT) channel with two solenoids is a subcomponent of this linac. It transports the proton beam ejected by an ion source, and matches it with the Radio Frequency Quadrupole (RFQ) that is an important part of the linac. The LEBT channel would be consisted of two focusing solenoids and some diagnostic elements such as faraday cup, BC transformers, etc. This paper includes a beam dynamical design and optimization study of LEBT channel for TAC proton linac done by using a beam dynamics simulation code PATH MANAGER and comparing of the simulation results with the theoretical expectations.

  12. Comprehensive proton dose algorithm using pencil beam redefinition and recursive dynamic splitting

    CERN Document Server

    Gottschalk, Bernard

    2016-01-01

    We compute, from first principles, the absolute dose or fluence distribution per incident proton charge in a known heterogeneous terrain exposed to known proton beams. The algorithm is equally amenable to scattered or scanned beams. All objects in the terrain (including collimators) are sliced into slabs, of any convenient thickness, perpendicular to the nominal beam direction. Transport is by standard Fermi-Eyges theory. Transverse heterogeneities are handled by breaking up pencil beams (PBs) either by conventional redefinition or a new form of 2D recursive dynamic splitting: the mother PB is replaced, conserving emittance and charge, by seven daughters of equal transverse size. One has 1/4 the charge and travels in the mother's direction and six have 1/8 the charge, are arranged hexagonally and radiate from the mother's virtual point source. The longitudinal (energy-like) variable is pv (proton momentum times speed). Each material encountered is treated on its own merits, not referenced to water. Slowing do...

  13. Production of high current proton beams using complex H-rich molecules at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A., E-mail: a.adonin@gsi.de; Barth, W.; Heymach, F.; Hollinger, R.; Vormann, H.; Yakushev, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291 (Germany)

    2016-02-15

    In this contribution, the concept of production of intense proton beams using molecular heavy ion beams from an ion source is described, as well as the indisputable advantages of this technique for operation of the GSI linear accelerator. The results of experimental investigations, including mass-spectra analysis and beam emittance measurements, with different ion beams (CH{sub 3}{sup +},C{sub 2}H{sub 4}{sup +},C{sub 3}H{sub 7}{sup +}) using various gaseous and liquid substances (methane, ethane, propane, isobutane, and iodoethane) at the ion source are summarized. Further steps to improve the ion source and injector performance with molecular beams are depicted.

  14. Multiharmonic rf feedforward system for compensation of beam loading and periodic transient effects in magnetic-alloy cavities of a proton synchrotron

    Science.gov (United States)

    Tamura, Fumihiko; Ohmori, Chihiro; Yamamoto, Masanobu; Yoshii, Masahito; Schnase, Alexander; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo

    2013-05-01

    Beam loading compensation is a key for acceleration of a high intensity proton beam in the main ring (MR) of the Japan Proton Accelerator Research Complex (J-PARC). Magnetic alloy loaded rf cavities with a Q value of 22 are used to achieve high accelerating voltages without a tuning bias loop. The cavity is driven by a single harmonic (h=9) rf signal while the cavity frequency response also covers the neighbor harmonics (h=8,10). Therefore the wake voltage induced by the high intensity beam consists of the three harmonics, h=8,9,10. The beam loading of neighbor harmonics is the source of periodic transient effects and a possible source of coupled bunch instabilities. In the article, we analyze the wake voltage induced by the high intensity beam. We employ the rf feedforward method to compensate the beam loading of these three harmonics (h=8,9,10). The full-digital multiharmonic feedforward system was developed for the MR. We describe the system architecture and the commissioning methodology of the feedforward patterns. The commissioning of the feedforward system has been performed by using high intensity beams with 1.0×1014 proteins per pulse. The impedance seen by the beam is successfully reduced and the longitudinal oscillations due to the beam loading are reduced. By the beam loading compensation, stable high power beam operation is achieved. We also report the reduction of the momentum loss during the debunching process for the slow extraction by the feedforward.

  15. Scintillator-CCD camera system light output response to dosimetry parameters for proton beam range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Daftari, Inder K., E-mail: idaftari@radonc.ucsf.edu [Department of Radiation Oncology, 1600 Divisadero Street, Suite H1031, University of California-San Francisco, San Francisco, CA 94143 (United States); Castaneda, Carlos M.; Essert, Timothy [Crocker Nuclear Laboratory,1 Shields Avenue, University of California-Davis, Davis, CA 95616 (United States); Phillips, Theodore L.; Mishra, Kavita K. [Department of Radiation Oncology, 1600 Divisadero Street, Suite H1031, University of California-San Francisco, San Francisco, CA 94143 (United States)

    2012-09-11

    The purpose of this study is to investigate the luminescence light output response in a plastic scintillator irradiated by a 67.5 MeV proton beam using various dosimetry parameters. The relationship of the visible scintillator light with the beam current or dose rate, aperture size and the thickness of water in the water-column was studied. The images captured on a CCD camera system were used to determine optimal dosimetry parameters for measuring the range of a clinical proton beam. The method was developed as a simple quality assurance tool to measure the range of the proton beam and compare it to (a) measurements using two segmented ionization chambers and water column between them, and (b) with an ionization chamber (IC-18) measurements in water. We used a block of plastic scintillator that measured 5 Multiplication-Sign 5 Multiplication-Sign 5 cm{sup 3} to record visible light generated by a 67.5 MeV proton beam. A high-definition digital video camera Moticam 2300 connected to a PC via USB 2.0 communication channel was used to record images of scintillation luminescence. The brightness of the visible light was measured while changing beam current and aperture size. The results were analyzed to obtain the range and were compared with the Bragg peak measurements with an ionization chamber. The luminescence light from the scintillator increased linearly with the increase of proton beam current. The light output also increased linearly with aperture size. The relationship between the proton range in the scintillator and the thickness of the water column showed good linearity with a precision of 0.33 mm (SD) in proton range measurement. For the 67.5 MeV proton beam utilized, the optimal parameters for scintillator light output response were found to be 15 nA (16 Gy/min) and an aperture size of 15 mm with image integration time of 100 ms. The Bragg peak depth brightness distribution was compared with the depth dose distribution from ionization chamber measurements

  16. Dose-response of EBT3 radiochromic films to proton and carbon ion clinical beams

    Science.gov (United States)

    Castriconi, Roberta; Ciocca, Mario; Mirandola, Alfredo; Sini, Carla; Broggi, Sara; Schwarz, Marco; Fracchiolla, Francesco; Martišíková, Mária; Aricò, Giulia; Mettivier, Giovanni; Russo, Paolo

    2017-01-01

    We investigated the dose-response of the external beam therapy 3 (EBT3) films for proton and carbon ion clinical beams, in comparison with conventional radiotherapy beams; we also measured the film response along the energy deposition-curve in water. We performed measurements at three hadrontherapy centres by delivering monoenergetic pencil beams (protons: 63-230 MeV; carbon ions: 115-400 MeV/u), at 0.4-20 Gy dose to water, in the plateau of the depth-dose curve. We also irradiated the films to clinical MV-photon and electron beams. We placed the EBT3 films in water along the whole depth-dose curve for 148.8 MeV protons and 398.9 MeV/u carbon ions, in comparison with measurements provided by a plane-parallel ionization chamber. For protons, the response of EBT3 in the plateau of the depth-dose curve is not different from that of photons, within experimental uncertainties. For carbon ions, we observed an energy dependent under-response of EBT3 film, from 16% to 29% with respect to photon beams. Moreover, we observed an under-response in the Bragg peak region of about 10% for 148.8 MeV protons and of about 42% for 398.9 MeV/u carbon ions. For proton and carbon ion clinical beams, an under-response occurs at the Bragg peak. For carbon ions, we also observed an under-response of the EBT3 in the plateau of the depth-dose curve. This effect is the highest at the lowest initial energy of the clinical beams, a phenomenon related to the corresponding higher LET in the film sensitive layer. This behavior should be properly modeled when using EBT3 films for accurate 3D dosimetry.

  17. SU-E-T-610: Phosphor-Based Fiber Optic Probes for Proton Beam Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Soldner, A; Liu, H; Kassaee, A; Zhu, T; Finlay, J [Univ Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To investigate feasibility of using fiber optics probes with rare-earth-based phosphor tips for proton beam radiation dosimetry. We designed and fabricated a fiber probe with submillimeter resolution (<0.5 mm3) based on TbF3 phosphors and evaluated its performance for measurement of proton beam including profiles and range. Methods: The fiber optic probe with TbF3 phosphor tip, embedded in tissue-mimicking phantoms was irradiated with double scattering proton beam with energy of 180 MeV. Luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectra of the fiber tip. In order to measure the spatial beam profile and percentage depth dose, we used singular value decomposition method to spectrally separate the phosphors ionoluminescence signal from the background Cerenkov radiation signal. Results: The spectra of the TbF3 fiber probe showed characteristic ionoluminescence emission peaks at 489, 542, 586, and 620 nm. By using singular value decomposition we found the contribution of the ionoluminescence signal to measure the percentage depth dose in phantoms and compared that with measurements performed with ion chamber. We observed quenching effect at the spread out Bragg peak region, manifested as under-responding of the signal, due to the high LET of the beam. However, the beam profiles were not dramatically affected by the quenching effect. Conclusion: We have evaluated the performance of a fiber optic probe with submillimeter resolution for proton beam dosimetry. We demonstrated feasibility of spectral separation of the Cerenkov radiation from the collected signal. Such fiber probes can be used for measurements of proton beams profile and range. The experimental apparatus and spectroscopy method developed in this work provide a robust platform for characterization of proton-irradiated nanophosphor particles for ultralow fluence photodynamic therapy or molecular imaging applications.

  18. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Rui; Newhauser, Wayne D [Graduate School of Biomedical Sciences, University of Texas at Houston, 6767 Bertner, Houston, TX 77030 (United States); Taddei, Phillip J [Department of Radiation Physics, Unit 1202, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Fitzek, Markus M [Midwest Proton Radiotherapy Institute, 2425 Milo B Sampson Lane, Bloomington, IN 47408 (United States)], E-mail: wnewhaus@mdanderson.org

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  19. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    CERN Document Server

    Gencer, A.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-01-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between View the MathML source10μA and View the MathML source1.2mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam ...

  20. Intial characterization fo a commerical electron gun for profiling high intensity proton beams in Project X

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Thangaraj, J.C.T.; Zhang, D.; /Fermilab; Blokland, W.; /Oak Ridge

    2011-03-01

    Measuring the profile of a high-intensity proton beam is problematic in that traditional invasive techniques such as flying wires don't survive the encounter with the beam. One alternative is the use of an electron beam as a probe of the charge distribution in the proton beam as was done at the Spallation Neutron Source at ORNL. Here we present an initial characterization of the beam from a commercial electron gun from Kimball Physics, intended for use in the Fermilab Main Injector for Project X. Despite the fact that the horizontal spot size is abnormally large in the high current measurement, the spot size at the downstream cross X2 is reasonable in the context of measuring the deflection. A thin foil OTR would help with the beam heating and should be tried. The next phase of this experiment is to simulate the proton beam with a pair of current carrying wires and to design and construct a fast deflector. Some of the remaining issues to be considered include determining the minimum beam current needed to observe the deflected beam for a given sweep time and the impact of longitudinal variations in the charge density of the bunch.

  1. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  2. Characterizing a Proton Beam Scanning System for Monte Carlo Dose Calculation in Patients

    Science.gov (United States)

    Grassberger, C; Lomax, Tony; Paganetti, H

    2015-01-01

    The presented work has two goals. First, to demonstrate the feasibility of accurately characterizing a proton radiation field at treatment head exit for Monte Carlo dose calculation of active scanning patient treatments. Second, to show that this characterization can be done based on measured depth dose curves and spot size alone, without consideration of the exact treatment head delivery system. This is demonstrated through calibration of a Monte Carlo code to the specific beam lines of two institutions, Massachusetts General Hospital (MGH) and Paul Scherrer Institute (PSI). Comparison of simulations modeling the full treatment head at MGH to ones employing a parameterized phase space of protons at treatment head exit reveals the adequacy of the method for patient simulations. The secondary particle production in the treatment head is typically below 0.2% of primary fluence, except for low–energy electrons (protons), whose contribution to skin dose is negligible. However, there is significant difference between the two methods in the low-dose penumbra, making full treatment head simulations necessary to study out-of field effects such as secondary cancer induction. To calibrate the Monte Carlo code to measurements in a water phantom, we use an analytical Bragg peak model to extract the range-dependent energy spread at the two institutions, as this quantity is usually not available through measurements. Comparison of the measured with the simulated depth dose curves demonstrates agreement within 0.5mm over the entire energy range. Subsequently, we simulate three patient treatments with varying anatomical complexity (liver, head and neck and lung) to give an example how this approach can be employed to investigate site-specific discrepancies between treatment planning system and Monte Carlo simulations. PMID:25549079

  3. Preparation of laser-accelerated proton beams for radiobiological applications

    Energy Technology Data Exchange (ETDEWEB)

    Metzkes, J., E-mail: j.metzkes@fzd.de [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Cowan, T.E. [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Karsch, L. [OncoRay - National Center for Radiation Research in Oncology, TU Dresden, Fetscherstr. 74, 01307 Dresden (Germany); Kraft, S.D. [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Pawelke, J.; Richter, C. [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); OncoRay - National Center for Radiation Research in Oncology, TU Dresden, Fetscherstr. 74, 01307 Dresden (Germany); Richter, T.; Zeil, K. [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Schramm, U., E-mail: u.schramm@fzd.de [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany)

    2011-10-11

    This paper presents the concept of transport and filtering of laser-accelerated proton pulses used for the first cell irradiation experiments performed with the Dresden 150 TW laser DRACO. Based on a simple non-focusing magnetic dipole equipped with two apertures the concept makes use of an energy dependent angular asymmetry of the proton spectra. For micron thin target foils protons of interest with energies above 7 MeV are observed to be significantly offset from target normal where low energy emission is dominantly centered. As the effect can be controlled via the target rotation with respect to the incoming light, it can be used to optimize the transport efficiency for high energy protons while simultaneously suppressing background radiation.

  4. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  5. Development of an intense O-15 radioactive ion beam using low energy protons

    CERN Document Server

    Lapi, S; Zyuzin, A Yu; D'Auria, J M

    2003-01-01

    The production of copious quantities of sup 1 sup 5 O, (half-life = 122.2 s) for astrophysical applications has been a source of concern at TRIUMF and ISAC for some time. An sup 1 sup 5 O beam is needed for two experiments ( sup 1 sup 5 O(alpha,gamma) sup 1 sup 9 Ne and sup 1 sup 5 O( sup 6 Li,d) sup 1 sup 9 Ne) at ISAC. The beam flux required for these experiments is extremely high, (between 10 sup 9 and 10 sup 1 sup 1 sup 1 sup 5 O/s) and thus high efficiencies at all steps in the process will be required. Difficulties arise due to the fact that oxygen is very reactive chemically and thus is difficult to extract from a thick spallation target. The possibility of using one of the small cyclotrons on site (TR13, CP42 or TR30) for the production of this isotope ( sup 1 sup 5 O) has been discussed. This production approach will involve the use of low energy protons to interact with a nitrogen gas target via the sup 1 sup 5 N(p,n) sup 1 sup 5 O reaction, which is accessible with attainable particle energies usin...

  6. Preliminary Simulation of Beam Extraction for the 28 GHz ECR Ion Source

    CERN Document Server

    Park, Bum-Sik; Choi, Seokjin

    2015-01-01

    The 28 GHz ECR(Electron Cyclotron Resonance) ion source is under development to supply various beams from proton to uranium at RISP(Rare Isotope Science Project). The superconducting magnet system for a 28 GHz ECR ion source consists of four solenoid coils and a saddle type sextupole. To meet the design requirement of ECR ion source, a numerical simulation was accomplished by using the KOBRA3-INP to optimize the extraction system which is the three dimensional ion optics code. The influence of the three dimensional magnetic field and the space charge effect was considered to extract the highly charged ion beam. In this paper, the design results of the extraction system were reported in detail.

  7. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Science.gov (United States)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo; Shon, Yun-Hee

    2012-07-01

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor- β (TGF- β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF- β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused th MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF- β and VEGF transcription.

  8. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo [Dongguk University, Gyeongju (Korea, Republic of); Shon, Yun-Hee [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2012-07-15

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor-β (TGF-β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF-β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused the MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF-β and VEGF transcription.

  9. Impact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy

    Directory of Open Access Journals (Sweden)

    Ebrahimi Loushab M.

    2015-12-01

    Full Text Available Background: In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness. Methods: In this study, we used Monte Carlo method-based Geant4 toolkit to simulate and calculate the effects of energy, shape and type of ion beams incident upon water on multiple scattering processes. Nuclear reactions have been taken into account in our calculation. A verification of this approach by comparing experimental data and Monte Carlo methods will be presented in an upcoming paper. Results: Increasing particle energies, the width of the Bragg curve becomes larger but with increasing mass of particles, the width of the Bragg curve decreases. This is one of the advantages of carbon-ion therapy to treat with proton. The transverse scattering of dose distribution is increased with energy at the end of heavy ion beam range. It can also be seen that the amount of the dose scattering for carbon-ion beam is less than that of proton beam, up to about 160mm depth in water. Conclusion: The distortion of Bragg peak profiles, due to lateral scattering of carbon-ion, is less than proton. Although carbon-ions are primarily scattered less than protons, the corresponding dose distributions, especially the lateral dose, are not much less.

  10. Study of the Clinical Proton Beam Relative Biological Effectiveness at the JINR Phasotron, Dubna

    CERN Document Server

    Vitanova, A; Gaevskii, V N; Molokonov, A G; Spurny, F; Fadeeva, T A; Shmakova, N L

    2002-01-01

    Proton clinical beams contain particles with high linear energy transfer (LET). Secondary heavy charged particles produced from nuclear interactions and degraded protons at the Bragg peak region are particles with high LET. These particles could enhance the Relative Biological Effectiveness (RBE) of the proton beam. We have carried out two radiobiological experiments to investigate the RBE of 150 MeV clinical proton beam. The irradiation of the Chinese Hamster V79 cells were performed at two points of the depth-dose distribution - at the beam entrance and at the Bragg peak. The contribution of the high LET particles to dosimetric and microdosimetric characteristics in the various depth of proton beam was also experimentally studied using the CR-39 track etched detectors. The LET spectra between 10 and 700 keV/{\\mu}m were measured by means of track detectors and the automatic optical image analyzer LUCIA-II. The relative contribution of the high LET particles to ab! sorbed dose increases from several per cent ...

  11. Impact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy

    Science.gov (United States)

    Ebrahimi Loushab, M.; Mowlavi, A.A.; Hadizadeh, M.H.; Izadi, R.; Jia, S.B.

    2015-01-01

    Background In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness. Methods In this study, we used Monte Carlo method-based Geant4 toolkit to simulate and calculate the effects of energy, shape and type of ion beams incident upon water on multiple scattering processes. Nuclear reactions have been taken into account in our calculation. A verification of this approach by comparing experimental data and Monte Carlo methods will be presented in an upcoming paper. Results Increasing particle energies, the width of the Bragg curve becomes larger but with increasing mass of particles, the width of the Bragg curve decreases. This is one of the advantages of carbon-ion therapy to treat with proton. The transverse scattering of dose distribution is increased with energy at the end of heavy ion beam range. It can also be seen that the amount of the dose scattering for carbon-ion beam is less than that of proton beam, up to about 160mm depth in water. Conclusion The distortion of Bragg peak profiles, due to lateral scattering of carbon-ion, is less than proton. Although carbon-ions are primarily scattered less than protons, the corresponding dose distributions, especially the lateral dose, are not much less. PMID:26688795

  12. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    OpenAIRE

    Onofre, A.; Castro, Nuno Filipe Silva Fernandes; ATLAS Collaboration

    2016-01-01

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge a...

  13. Feasibility of CBCT-based proton dose calculation using a histogram-matching algorithm in proton beam therapy.

    Science.gov (United States)

    Arai, Kazuhiro; Kadoya, Noriyuki; Kato, Takahiro; Endo, Hiromitsu; Komori, Shinya; Abe, Yoshitomo; Nakamura, Tatsuya; Wada, Hitoshi; Kikuchi, Yasuhiro; Takai, Yoshihiro; Jingu, Keiichi

    2017-01-01

    The aim of this study was to confirm On-Board Imager cone-beam computed tomography (CBCT) using the histogram-matching algorithm as a useful method for proton dose calculation. We studied one head and neck phantom, one pelvic phantom, and ten patients with head and neck cancer treated using intensity-modulated radiation therapy (IMRT) and proton beam therapy. We modified Hounsfield unit (HU) values of CBCT and generated two modified CBCTs (mCBCT-RR, mCBCT-DIR) using the histogram-matching algorithm: modified CBCT with rigid registration (mCBCT-RR) and that with deformable image registration (mCBCT-DIR). Rigid and deformable image registration were applied to match the CBCT to planning CT. To evaluate the accuracy of the proton dose calculation, we compared dose differences in the dosimetric parameters (D2% and D98%) for clinical target volume (CTV) and planning target volume (PTV). We also evaluated the accuracy of the dosimetric parameters (Dmean and D2%) for some organs at risk, and compared the proton ranges (PR) between planning CT (reference) and CBCT or mCBCTs, and the gamma passing rates of CBCT and mCBCTs. For patients, the average dose and PR differences of mCBCTs were smaller than those of CBCT. Additionally, the average gamma passing rates of mCBCTs were larger than those of CBCT (e.g., 94.1±3.5% in mCBCT-DIR vs. 87.8±7.4% in CBCT). We evaluated the accuracy of the proton dose calculation in CBCT and mCBCTs for two phantoms and ten patients. Our results showed that HU modification using the histogram-matching algorithm could improve the accuracy of the proton dose calculation.

  14. Clinical commissioning of an in vivo range verification system for prostate cancer treatment with anterior and anterior oblique proton beams

    Science.gov (United States)

    Hoesl, M.; Deepak, S.; Moteabbed, M.; Jassens, G.; Orban, J.; Park, Y. K.; Parodi, K.; Bentefour, E. H.; Lu, H. M.

    2016-04-01

    The purpose of this work is the clinical commissioning of a recently developed in vivo range verification system (IRVS) for treatment of prostate cancer by anterior and anterior oblique proton beams. The IRVS is designed to perform a complete workflow for pre-treatment range verification and adjustment. It contains specifically designed dosimetry and electronic hardware and a specific software for workflow control with database connection to the treatment and imaging systems. An essential part of the IRVS system is an array of Si-diode detectors, designed to be mounted to the endorectal water balloon routinely used for prostate immobilization. The diodes can measure dose rate as function of time from which the water equivalent path length (WEPL) and the dose received are extracted. The former is used for pre-treatment beam range verification and correction, if necessary, while the latter is to monitor the dose delivered to patient rectum during the treatment and serves as an additional verification. The entire IRVS workflow was tested for anterior and 30 degree inclined proton beam in both solid water and anthropomorphic pelvic phantoms, with the measured WEPL and rectal doses compared to the treatment plan. Gafchromic films were also used for measurement of the rectal dose and compared to IRVS results. The WEPL measurement accuracy was in the order of 1 mm and after beam range correction, the dose received by the rectal wall were 1.6% and 0.4% from treatment planning, respectively, for the anterior and anterior oblique field. We believe the implementation of IRVS would make the treatment of prostate with anterior proton beams more accurate and reliable.

  15. A fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation.

    Science.gov (United States)

    Li, Haisen S; Romeijn, H Edwin; Dempsey, James F

    2006-09-01

    We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near monoenergetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the

  16. Improved calibration of mass stopping power in low density tissue for a proton pencil beam algorithm.

    Science.gov (United States)

    Warren, Daniel R; Partridge, Mike; Hill, Mark A; Peach, Ken

    2015-06-07

    Dose distributions for proton therapy treatments are almost exclusively calculated using pencil beam algorithms. An essential input to these algorithms is the patient model, derived from x-ray computed tomography (CT), which is used to estimate proton stopping power along the pencil beam paths. This study highlights a potential inaccuracy in the mapping between mass density and proton stopping power used by a clinical pencil beam algorithm in materials less dense than water. It proposes an alternative physically-motivated function (the mass average, or MA, formula) for use in this region. Comparisons are made between dose-depth curves calculated by the pencil beam method and those calculated by the Monte Carlo particle transport code MCNPX in a one-dimensional lung model. Proton range differences of up to 3% are observed between the methods, reduced to  stopping power calculation methodology results in relatively minor differences in dose when plans use three fields, but differences are observed at the 2%-2 mm level when a single field uniform dose technique is adopted. It is therefore suggested that the MA formula is adopted by users of the pencil beam algorithm for optimal dose calculation in lung, and that a similar approach is considered when beams traverse other low density regions such as the paranasal sinuses and mastoid process.

  17. Improved calibration of mass stopping power in low density tissue for a proton pencil beam algorithm

    Science.gov (United States)

    Warren, Daniel R.; Partridge, Mike; Hill, Mark A.; Peach, Ken

    2015-06-01

    Dose distributions for proton therapy treatments are almost exclusively calculated using pencil beam algorithms. An essential input to these algorithms is the patient model, derived from x-ray computed tomography (CT), which is used to estimate proton stopping power along the pencil beam paths. This study highlights a potential inaccuracy in the mapping between mass density and proton stopping power used by a clinical pencil beam algorithm in materials less dense than water. It proposes an alternative physically-motivated function (the mass average, or MA, formula) for use in this region. Comparisons are made between dose-depth curves calculated by the pencil beam method and those calculated by the Monte Carlo particle transport code MCNPX in a one-dimensional lung model. Proton range differences of up to 3% are observed between the methods, reduced to  calculation methodology results in relatively minor differences in dose when plans use three fields, but differences are observed at the 2%-2 mm level when a single field uniform dose technique is adopted. It is therefore suggested that the MA formula is adopted by users of the pencil beam algorithm for optimal dose calculation in lung, and that a similar approach is considered when beams traverse other low density regions such as the paranasal sinuses and mastoid process.

  18. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.

    Science.gov (United States)

    Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M

    2009-02-21

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient.

  19. Optimization of the beam extraction systems for the Linac4 H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. A.; Lettry, J.; Scrivens, R.; Steyaert, D. [CERN, 1211 Geneva 23 (Switzerland); Midttun, Ø. [University of Oslo, P.O. Box 1048, 0316 Oslo (Norway); CERN, 1211 Geneva 23 (Switzerland); Valerio-Lizarraga, C. A. [Departamento de Investigación en Fisica, Universidad de Sonora, Hermosillo (Mexico); CERN, 1211 Geneva 23 (Switzerland)

    2015-04-08

    The development of the Linac 4 and its integration into CERN’s acceleration complex is part of the foreseen luminosity upgrade of the Large Hadron Collider (LHC). The goal is to inject a 160 MeV H{sup −} beam into the CERN PS Booster (PSB) in order to increase the beam brightness by a factor of 2 compared to the 50 MeV proton linac, Linac 2, that is currently in operation. The requirements for the ion source are a 45 keV H{sup −} beam of 80 mA intensity, 2 Hz repetition rate and 0.5 ms pulse length within a normalized rms-emittance of 0.25 mm· mrad. The previously installed beam extraction system has been designed for an H{sup −} ion beam intensity of 20 mA produced by an RF-volume source with an electron to H{sup −} ratio of up to 50. For the required intensity upgrades of the Linac4 ion source, a new beam extraction system is being produced and tested; it is optimized for a cesiated surface RF-source with a nominal beam current of 40 mA and an electron to H{sup −} ratio of 4. The simulations, based on the IBSIMU code, are presented. At the Brookhaven National Laboratory (BNL), a peak beam current of more than 100 mA was demonstrated with a magnetron H{sup −} source at an energy of 35 keV and a repetition rate of 2 Hz. A new extraction system is required to operate at an energy of 45 keV; simulation of a two stage extraction system dedicated to the magnetron is presented.

  20. Optimization of the beam extraction systems for the Linac4 H- ion source

    Science.gov (United States)

    Fink, D. A.; Lettry, J.; Midttun, Ø.; Scrivens, R.; Steyaert, D.; Valerio-Lizarraga, C. A.

    2015-04-01

    The development of the Linac 4 and its integration into CERN's acceleration complex is part of the foreseen luminosity upgrade of the Large Hadron Collider (LHC). The goal is to inject a 160 MeV H- beam into the CERN PS Booster (PSB) in order to increase the beam brightness by a factor of 2 compared to the 50 MeV proton linac, Linac 2, that is currently in operation. The requirements for the ion source are a 45 keV H- beam of 80 mA intensity, 2 Hz repetition rate and 0.5 ms pulse length within a normalized rms-emittance of 0.25 mm. mrad. The previously installed beam extraction system has been designed for an H- ion beam intensity of 20 mA produced by an RF-volume source with an electron to H- ratio of up to 50. For the required intensity upgrades of the Linac4 ion source, a new beam extraction system is being produced and tested; it is optimized for a cesiated surface RF-source with a nominal beam current of 40 mA and an electron to H- ratio of 4. The simulations, based on the IBSIMU code, are presented. At the Brookhaven National Laboratory (BNL), a peak beam current of more than 100 mA was demonstrated with a magnetron H- source at an energy of 35 keV and a repetition rate of 2 Hz. A new extraction system is required to operate at an energy of 45 keV; simulation of a two stage extraction system dedicated to the magnetron is presented.

  1. A compensating method of an imaging plate response to clinical proton beams

    CERN Document Server

    Kohno, R; Takada, Y; Terunuma, T; Sakae, T; Matsumoto, K

    2002-01-01

    For charged particle irradiations, the response of an imaging plate (IP) changes around the Bragg peak. Therefore, an appropriate compensation is necessary for the evaluation of dose distribution formed by charged particles such as protons. In this paper, the response of IPs to clinical proton beams is investigated. An experimentally-obtained depth-dose distribution (an ordinary Bragg curve) by a silicon semiconductor detector (SSD) is employed to evaluate the compensation factors as a function of proton penetrating depth, i.e. residual range. A typical dose distribution in a water phantom formed by an L-shaped bolus is measured by IPs and corrected by using the information of those compensation factors; the residual proton range is successfully calculated by the pencil beam algorithm at an arbitrary point. The results show a good agreement with the measurements by the SSD within the rms error of 3.0%.

  2. Simulation of ion beam injection and extraction in an EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, J. S. [FAR-TECH, Inc., San Diego, California 92121 (United States)

    2016-02-15

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  3. Simulation of ion beam injection and extraction in an EBIS

    Science.gov (United States)

    Zhao, L.; Kim, J. S.

    2016-02-01

    An example simulation of Au+ charge breeding using FAR-TECH's integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  4. Beam-on imaging of short-lived positron emitters during proton therapy

    Science.gov (United States)

    Buitenhuis, H. J. T.; Diblen, F.; Brzezinski, K. W.; Brandenburg, S.; Dendooven, P.

    2017-06-01

    In vivo dose delivery verification in proton therapy can be performed by positron emission tomography (PET) of the positron-emitting nuclei produced by the proton beam in the patient. A PET scanner installed in the treatment position of a proton therapy facility that takes data with the beam on will see very short-lived nuclides as well as longer-lived nuclides. The most important short-lived nuclide for proton therapy is 12N (Dendooven et al 2015 Phys. Med. Biol. 60 8923-47), which has a half-life of 11 ms. The results of a proof-of-principle experiment of beam-on PET imaging of short-lived 12N nuclei are presented. The Philips Digital Photon Counting Module TEK PET system was used, which is based on LYSO scintillators mounted on digital SiPM photosensors. A 90 MeV proton beam from the cyclotron at KVI-CART was used to investigate the energy and time spectra of PET coincidences during beam-on. Events coinciding with proton bunches, such as prompt gamma rays, were removed from the data via an anti-coincidence filter with the cyclotron RF. The resulting energy spectrum allowed good identification of the 511 keV PET counts during beam-on. A method was developed to subtract the long-lived background from the 12N image by introducing a beam-off period into the cyclotron beam time structure. We measured 2D images and 1D profiles of the 12N distribution. A range shift of 5 mm was measured as 6  ±  3 mm using the 12N profile. A larger, more efficient, PET system with a higher data throughput capability will allow beam-on 12N PET imaging of single spots in the distal layer of an irradiation with an increased signal-to-background ratio and thus better accuracy. A simulation shows that a large dual panel scanner, which images a single spot directly after it is delivered, can measure a 5 mm range shift with millimeter accuracy: 5.5  ±  1.1 mm for 1  ×  108 protons and 5.2  ±  0.5 mm for 5  ×  108 protons. This makes

  5. SU-E-T-75: A Simple Technique for Proton Beam Range Verification

    Energy Technology Data Exchange (ETDEWEB)

    Burgdorf, B; Kassaee, A; Garver, E [University of Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To develop a measurement-based technique to verify the range of proton beams for quality assurance (QA). Methods: We developed a simple technique to verify the proton beam range with in-house fabricated devices. Two separate devices were fabricated; a clear acrylic rectangular cuboid and a solid polyvinyl chloride (PVC) step wedge. For efficiency in our clinic, we used the rectangular cuboid for double scattering (DS) beams and the step wedge for pencil beam scanning (PBS) beams. These devices were added to our QA phantom to measure dose points along the distal fall-off region (between 80% and 20%) in addition to dose at mid-SOBP (spread out Bragg peak) using a two-dimensional parallel plate chamber array (MatriXX™, IBA Dosimetry, Schwarzenbruck, Germany). This method relies on the fact that the slope of the distal fall-off is linear and does not vary with small changes in energy. Using a multi-layer ionization chamber (Zebra™, IBA Dosimetry), percent depth dose (PDD) curves were measured for our standard daily QA beams. The range (energy) for each beam was then varied (i.e. ±2mm and ±5mm) and additional PDD curves were measured. The distal fall-off of all PDD curves was fit to a linear equation. The distal fall-off measured dose for a particular beam was used in our linear equation to determine the beam range. Results: The linear fit of the fall-off region for the PDD curves, when varying the range by a few millimeters for a specific QA beam, yielded identical slopes. The calculated range based on measured point dose(s) in the fall-off region using the slope resulted in agreement of ±1mm of the expected beam range. Conclusion: We developed a simple technique for accurately verifying the beam range for proton therapy QA programs.

  6. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design.

    Science.gov (United States)

    Lee, Pei-Yi; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2014-10-01

    The (7)Li(p,xn)(7)Be nuclear reaction, based on the low-energy protons, could produce soft neutrons for accelerator-based boron neutron capture therapy (AB-BNCT). Based on the fact that the induced neutron field is relatively divergent, the relationship between the incident angle of proton beam and the neutron beam quality was evaluated in this study. To provide an intense epithermal neutron beam, a beam-shaping assembly (BSA) was designed. And a modified Snyder head phantom was used in the calculations for evaluating the dosimetric performance. From the calculated results, the intensity of epithermal neutrons increased with the increase in proton incident angle. Hence, either the irradiation time or the required proton current can be reduced. When the incident angle of 2.5-MeV proton beam is 120°, the required proton current is ∼13.3 mA for an irradiation time of half an hour.

  7. Preliminary assessment of LiF and alanine detectors for the dosimetry of proton therapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Fattibene, P.; Calicchia, A.; De Angelis, C.; Onori, S. [Istituto Superiore di Sanita, Rome (Italy)]|[Istituto Nazionale di Fisica Nucleare, Rome (Italy). Sezione Sanita; d`Errico, F. [Pisa Univ. (Italy). Dipt. di Costruzioni Meccaniche e Nucleari]|[Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Egger, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-31

    An experimental intercomparison between the proton response of LiF TLD-100 and alanine detectors is reported. The investigations were performed with LiF chips and alanine pellets in a 62 MeV proton beam at the Paul Scherrer Institut in Villigen (CH). Results were compared with reference dosimetry provided by Markus type parallel plate ionization chamber. The response of the detectors was studied, in a phantom, at different beam penetration depths in pristine and modulated beams. For both alanine and TL detectors, within the experimental uncertainty of the measurements, no significant energy dependence in the response was observed down to the Bragg peak region. The sensitivity of alanine and LiF detectors to protons was measured in the centre of modulated Bragg peak and no significant difference was found with respect to {sup 60}Co. Contrary to LiF, alanine also offers a remarkable tissue equivalence which favours its choice for in-phantom dosimetry. (author).

  8. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    Science.gov (United States)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  9. Development of an all-permanent-magnet microwave ion source equipped with multicusp magnetic fields for high current proton beam production.

    Science.gov (United States)

    Tanaka, M; Hara, S; Seki, T; Iga, T

    2008-02-01

    An all-permanent-magnet (APM) microwave hydrogen ion source was developed to reduce the size and to simplify structure of a conventional solenoid coil microwave ion source developed for reliability improvement of high current proton linac application systems. The difficulty in developing the APM source was sensitive dependence of the source performance on axial magnetic field in the microwave discharge chamber. It was difficult to produce high current proton beam stably without precise tuning of the magnetic field using solenoid coils. We lowered the sensitivity using multicusp magnetic fields for plasma confinement at the discharge chamber sidewall of the source. This enabled stable high current proton beam production with the APM microwave ion source with no tuning coil. The water cooling and the power supply for the coils are not necessary for the APM source, which leads to better reliability and system simplification. The outer diameter of the APM source was around 300 mm, which was 20% lower than the coil source. The APM source produced a maximum hydrogen ion beam current of 65 mA (high current density of 330 mA/cm(2), proton ratio of 87%, and beam energy of 30 keV) with a 5 mm diameter extraction aperture, pulse width of 400 micros, and 20 Hz repetition rate at 1.3 kW microwave power. This performance is almost the same as the best performances of the conventional coil sources. The extracted ion beams were focused with electrostatic five-grid lens to match beam to acceptance of radio-frequency quadrupole linacs. The maximum focused beam current through the orifice (5 mm radius) and the lens was 36 mA and the 90% focused beam half-width was 1-2 mm.

  10. Development of an all-permanent-magnet microwave ion source equipped with multicusp magnetic fields for high current proton beam productiona)

    Science.gov (United States)

    Tanaka, M.; Hara, S.; Seki, T.; Iga, T.

    2008-02-01

    An all-permanent-magnet (APM) microwave hydrogen ion source was developed to reduce the size and to simplify structure of a conventional solenoid coil microwave ion source developed for reliability improvement of high current proton linac application systems. The difficulty in developing the APM source was sensitive dependence of the source performance on axial magnetic field in the microwave discharge chamber. It was difficult to produce high current proton beam stably without precise tuning of the magnetic field using solenoid coils. We lowered the sensitivity using multicusp magnetic fields for plasma confinement at the discharge chamber sidewall of the source. This enabled stable high current proton beam production with the APM microwave ion source with no tuning coil. The water cooling and the power supply for the coils are not necessary for the APM source, which leads to better reliability and system simplification. The outer diameter of the APM source was around 300mm, which was 20% lower than the coil source. The APM source produced a maximum hydrogen ion beam current of 65mA (high current density of 330mA/cm2, proton ratio of 87%, and beam energy of 30keV) with a 5mm diameter extraction aperture, pulse width of 400μs, and 20Hz repetition rate at 1.3kW microwave power. This performance is almost the same as the best performances of the conventional coil sources. The extracted ion beams were focused with electrostatic five-grid lens to match beam to acceptance of radio-frequency quadrupole linacs. The maximum focused beam current through the orifice (5mm radius) and the lens was 36mA and the 90% focused beam half-width was 1-2mm.

  11. Use of a two-dimensional ionization chamber array for proton therapy beam quality assurance.

    Science.gov (United States)

    Arjomandy, Bijan; Sahoo, Narayan; Ding, Xiaoning; Gillin, Michael

    2008-09-01

    Two-dimensional ion chamber arrays are primarily used for conventional and intensity modulated radiotherapy quality assurance. There is no commercial device of such type available on the market that is offered for proton therapy quality assurance. We have investigated suitability of the MatriXX, a commercial two-dimensional ion chamber array detector for proton therapy QA. This device is designed to be used for photon and electron therapy QA. The device is equipped with 32 x 32 parallel plate ion chambers, each with 4.5 mm diam and 7.62 mm center-to-center separation. A 250 MeV proton beam was used to calibrate the dose measured by this device. The water equivalent thickness of the buildup material was determined to be 3.9 mm using a 160 MeV proton beam. Proton beams of different energies were used to measure the reproducibility of dose output and to evaluate the consistency in the beam flatness and symmetry measured by MatriXX. The output measurement results were compared with the clinical commissioning beam data that were obtained using a 0.6 cc Farmer chamber. The agreement was consistently found to be within 1%. The profiles were compared with film dosimetry and also with ion chamber data in water with an excellent agreement. The device is found to be well suited for quality assurance of proton therapy beams. It provides fast two-dimensional dose distribution information in real time with the accuracy comparable to that of ion chamber measurements and film dosimetry.

  12. Range and modulation dependencies for proton beam dose per monitor unit calculations

    Science.gov (United States)

    Hsi, Wen C.; Schreuder, Andries N.; Moyers, Michael F.; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.

    2009-01-01

    Calculations of dose per monitor unit (D∕MU) are required in addition to measurements to increase patient safety in the clinical practice of proton radiotherapy. As in conventional photon and electron therapy, the D∕MU depends on several factors. This study focused on obtaining range and modulation dependence factors used in D∕MU calculations for the double scattered proton beam line at the Midwest Proton Radiotherapy Institute. Three dependencies on range and one dependency on modulation were found. A carefully selected set of measurements was performed to discern these individual dependencies. Dependencies on range were due to: (1) the stopping power of the protons passing through the monitor chamber; (2) the reduction of proton fluence due to nuclear interactions within the patient; and (3) the variation of proton fluence passing through the monitor chamber due to different source-to-axis distances (SADs) for different beam ranges. Different SADs are produced by reconfigurations of beamline elements to provide different field sizes and ranges. The SAD effect on the D∕MU varies smoothly as the beam range is varied, except at the beam range for which the first scatterers are exchanged and relocated to accommodate low and high beam ranges. A geometry factor was devised to model the SAD variation effect on the D∕MU. The measured D∕MU variation as a function of range can be predicted within 1% using the three modeled dependencies on range. Investigation of modulated beams showed that an analytical formula can predict the D∕MU dependency as a function of modulation to within 1.5%. Special attention must be applied when measuring the D∕MU dependence on modulation to avoid interplay between range and SAD effects. PMID:19292004

  13. Range and modulation dependencies for proton beam dose per monitor unit calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hsi, Wen C.; Schreuder, Andries N.; Moyers, Michael F.; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E. [Midwest Proton Radiotherapy Institute, Bloomington, Indiana 47408 and University Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States); ProCure Treatment Centers, Inc., Bloomington, Indiana 47404 (United States); Proton Therapy, Inc., Colton, California 92324 (United States); Midwest Proton Radiotherapy Institute, Bloomington, Indiana 47408 (United States); Midwest Proton Radiotherapy Institute, Bloomington, Indiana 47408 and Westdeutsches Protonentherapiezentrum, Universitaetsklinikum, Hufelandstrasse 55, 45147 Essen (Germany); Midwest Proton Radiotherapy Institute, Bloomington, Indiana 47408 (United States)

    2009-02-15

    Calculations of dose per monitor unit (D/MU) are required in addition to measurements to increase patient safety in the clinical practice of proton radiotherapy. As in conventional photon and electron therapy, the D/MU depends on several factors. This study focused on obtaining range and modulation dependence factors used in D/MU calculations for the double scattered proton beam line at the Midwest Proton Radiotherapy Institute. Three dependencies on range and one dependency on modulation were found. A carefully selected set of measurements was performed to discern these individual dependencies. Dependencies on range were due to: (1) the stopping power of the protons passing through the monitor chamber; (2) the reduction of proton fluence due to nuclear interactions within the patient; and (3) the variation of proton fluence passing through the monitor chamber due to different source-to-axis distances (SADs) for different beam ranges. Different SADs are produced by reconfigurations of beamline elements to provide different field sizes and ranges. The SAD effect on the D/MU varies smoothly as the beam range is varied, except at the beam range for which the first scatterers are exchanged and relocated to accommodate low and high beam ranges. A geometry factor was devised to model the SAD variation effect on the D/MU. The measured D/MU variation as a function of range can be predicted within 1% using the three modeled dependencies on range. Investigation of modulated beams showed that an analytical formula can predict the D/MU dependency as a function of modulation to within 1.5%. Special attention must be applied when measuring the D/MU dependence on modulation to avoid interplay between range and SAD effects.

  14. Measurement of the Beam-Recoil Polarization in Low-Energy Virtual Compton Scattering from the Proton

    CERN Document Server

    Doria, L; Achenbach, P; Gayoso, C Ayerbe; Baumann, D; Bensafa, I; Benali, M; Beričič, J; Bernauer, J C; Böhm, R; Bosnar, D; Correa, L; D'Hose, N; Defaÿ, X; Ding, M; Distler, M O; Fonvieille, H; Friedrich, J; Friedrich, J M; Laveissière, G; Makek, M; Marroncle, J; Merkel, H; Mihovilovič, M; Müller, U; Nungesser, L; Pasquini, B; Pochodzalla, J; Postavaru, O; Potokar, M; Ryckbosch, D; Majos, S Sánchez; Schlimme, B S; Seimetz, M; Širca, S; Tamas, G; Van de Vyver, R; Van Hoorebeke, L; Van Overloop, A; Walcher, Th; Weinriefer, M

    2015-01-01

    Double-polarization observables in the reaction $\\vec{e}p \\rightarrow e'\\vec{p'}\\gamma{}$ have been measured at $Q^2=0.33 (GeV/c)^2$. The experiment was performed at the spectrometer setup of the A1 Collaboration using the 855 MeV polarized electron beam provided by the Mainz Microtron (MAMI) and a recoil proton polarimeter. From the double-polarization observables the structure function $P_{LT}^\\perp$ is extracted for the first time, with the value $(-15.4 \\pm 3.3 (stat.)^{+1.5}_{-2.4} (syst.)) GeV^{-2}$, using the low-energy theorem for Virtual Compton Sattering. This structure function provides a hitherto unmeasured linear combination of the generalized polarizabilities of the proton.

  15. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Science.gov (United States)

    Lee, Han Rim; Kim, Sung Hun; Park, Jong Hoon; Jung, Won Gyun; Lim, Hansang; Kim, Chan Hyeong

    2017-06-01

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a 90Sr beta source, a 60Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  16. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Luo, W; Li, J; Fourkal, E; Fan, J; Xu, X; Chen, Z; Jin, L; Price, R; Ma, C-M [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States)], E-mail: wei.luo@duke.edu

    2008-12-21

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying {delta}E/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D{sub 5}-D{sub 95})/D{sub 95}) by up to 56%. The volume receiving 65 Gy and higher (V{sub 65}) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V{sub 40}) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser

  17. The Beam Profile Monitoring System for the IRRAD Proton Facility at the CERN PS East Area

    CERN Document Server

    Gkotse, Blerina; Matli, Emanuele; Ravotti, Federico; Gan, Kock Kiam; Kagan, Harris; Smith, Shane; Warner, Joseph

    2016-01-01

    In High Energy Physics (HEP) experiments, devices are frequently required to withstand a certain radiation level. As a result, detectors and electronics must be irradiated to determine their level of radiation tolerance. To perform these irradiations, CERN built a new irradiation facility in the East Area at the Proton Synchrotron (PS) accelerator. At this facility, named IRRAD, a high-intensity 24 GeV/c proton beam is used. During irradiation, it is necessary to monitor the intensity and the transverse profile of the proton beam. The Beam Profile Monitor (BPM) for IRRAD uses 39-channel pixel detectors to monitor the beam position. These pixel detectors are constructed using thin foil copper pads positioned on a flex circuit. When protons pass through the copper pads, they induce a measurable current. To measure this current and determine the total flux of protons passing through the thin foil copper detectors, a new data acquisition system was designed as well as a new database and on-line display system. In...

  18. Intense laser-driven proton beam energy deposition in compressed and uncompressed Cu foam

    Science.gov (United States)

    McGuffey, Christopher; Krauland, C. M.; Kim, J.; Beg, F. N.; Wei, M. S.; Habara, H.; Noma, S.; Ohtsuki, T.; Tsujii, A.; Yahata, K.; Yoshida, Y.; Uematsu, Y.; Nakaguchi, S.; Morace, A.; Yogo, A.; Nagatomo, H.; Tanaka, K.; Arikawa, Y.; Fujioka, S.; Shiraga, H.

    2016-10-01

    We investigated transport of intense proton beams from a petawatt laser in uncompressed or compressed Cu foam. The LFEX laser (1 kJ on target, 1.5 ps, 1053 nm, I >2×1019 W/cm2) irradiated a curved C foil to generate the protons. The foil was in an open cone 500 μm from the tip where the focused proton beam source was delivered to either of two Cu foam sample types: an uncompressed cylinder (1 mm L, 250 µm ϕ) , and a plastic-coated sphere (250 µm ϕ) that was first driven by GXII (9 beams, 330 J/beam, 1.3 ns, 527 nm) to achieve similar ρϕ to the cylinder sample's ρL as predicted by 2D radiation hydrodynamic simulations. Using magnetic spectrometers and a Thomson parabola, the proton spectra were measured with and without the Cu samples. When included, they were observed using Cu K-shell x-ray imaging and spectroscopy. This paper will present comparison of the experimentally measured Cu emission shape and proton spectrum changes due to deposition in the Cu with particle-in-cell simulations incorporating new stopping models. This work was made possible by laser time Awarded by the Japanese NIFS collaboration NIFS16KUGK107 and performed under the auspices of the US AFOSR YIP Award FA9550-14-1-0346.

  19. Benchmark measurements and simulations of dose perturbations due to metallic spheres in proton beams

    Science.gov (United States)

    Newhauser, Wayne D.; Rechner, Laura; Mirkovic, Dragan; Yepes, Pablo; Koch, Nicholas C.; Titt, Uwe; Fontenot, Jonas D.; Zhang, Rui

    2014-01-01

    Monte Carlo simulations are increasingly used for dose calculations in proton therapy due to its inherent accuracy. However, dosimetric deviations have been found using Monte Carlo code when high density materials are present in the proton beam line. The purpose of this work was to quantify the magnitude of dose perturbation caused by metal objects. We did this by comparing measurements and Monte Carlo predictions of dose perturbations caused by the presence of small metal spheres in several clinical proton therapy beams as functions of proton beam range, spread-out Bragg peak width and drift space. Monte Carlo codes MCNPX, GEANT4 and Fast Dose Calculator (FDC) were used. Generally good agreement was found between measurements and Monte Carlo predictions, with the average difference within 5% and maximum difference within 17%. The modification of multiple Coulomb scattering model in MCNPX code yielded improvement in accuracy and provided the best overall agreement with measurements. Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy beams when short drift spaces are involved. PMID:25147474

  20. Proton microbeam radiotherapy with scanned pencil-beams--Monte Carlo simulations.

    Science.gov (United States)

    Kłodowska, M; Olko, P; Waligórski, M P R

    2015-09-01

    Irradiation, delivered by a synchrotron facility, using a set of highly collimated, narrow and parallel photon beams spaced by 1 mm or less, has been termed Microbeam Radiation Therapy (MRT). The tolerance of healthy tissue after MRT was found to be better than after standard broad X-ray beams, together with a more pronounced response of malignant tissue. The microbeam spacing and transverse peak-to-valley dose ratio (PVDR) are considered to be relevant biological MRT parameters. We investigated the MRT concept for proton microbeams, where we expected different depth-dose profiles and PVDR dependences, resulting in skin sparing and homogeneous dose distributions at larger beam depths, due to differences between interactions of proton and photon beams in tissue. Using the FLUKA Monte Carlo code we simulated PVDR distributions for differently spaced 0.1 mm (sigma) pencil-beams of entrance energies 60, 80, 100 and 120 MeV irradiating a cylindrical water phantom with and without a bone layer, representing human head. We calculated PVDR distributions and evaluated uniformity of target irradiation at distal beam ranges of 60-120 MeV microbeams. We also calculated PVDR distributions for a 60 MeV spread-out Bragg peak microbeam configuration. Application of optimised proton MRT in terms of spot size, pencil-beam distribution, entrance beam energy, multiport irradiation, combined with relevant radiobiological investigations, could pave the way for hypofractionation scenarios where tissue sparing at the entrance, better malignant tissue response and better dose conformity of target volume irradiation could be achieved, compared with present proton beam radiotherapy configurations.

  1. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    CERN Document Server

    Nie, Y; Chetvertkova, V; Rosell-Tarrago, G; Burkart, F; Wollmann, D

    2017-01-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post–Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV–50 TeV. Three beam sizes were studied for each energy, corresponding to typical values ...

  2. U-Pb ADS on the Proton Beam of JINR Nuclotron

    CERN Document Server

    Barashenkov, V S

    2003-01-01

    The neutron spectra, yields and energies of particles generated by a uranium electronuclear setup which is used now in Dubna for research on transmutation of various isotopes with a 1-2 GeV proton beam, are analyzed by means of mathematical modelling on the basis of a Monte Carlo code CASCADE. Influence of a space dispersion of the proton beam and its possible deviation from the center of a lead target is investigated. It is shown that the polyethylene radiation shielding that is being used now, does not protect the measuring room from neutrons and gamma-rays.

  3. Dosimetric characterization of CVD diamonds irradiated with 62 MeV proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G.A.P. [Laboratori Nazionali del Sud, INFN, Catania (Italy)]. E-mail: cirrone@lns.infn.it; Cuttone, G. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Lo Nigro, S. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita di Catania (Italy); CSFNSM Centro Siciliano di Fisica Nucleare e Struttura della MAteria, Catania (Italy); Mongelli, V. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Scuola di Specializzazione in Fisica Sanitaria, Universita di Catania (Italy); CSFNSM Centro Siciliano di Fisica Nucleare e Struttura della MAteria, Catania (Italy); Raffaele, L. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Sabini, M.G. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Azienda Ospedaliera Cannizzaro, Catania (Italy); Valastro, L. [Laboratori Nazionali del Sud, INFN, Catania (Italy); Scuola di Specializzazione in Fisica Sanitaria, Universita di Catania (Italy); Bucciolini, M. [Dipartimento di Fisiopatologia Clinica, Universita di Florence (Italy); Onori, S. [Istituto Superiore di Sanita, Rome (Italy)

    2005-10-21

    Diamond is potentially a very suitable material for use as on-line radiation dosimeter. Recent advances in the synthesis of polycrystalline diamond by chemical vapor deposition (CVD) techniques have produced material with electronic properties suitable for dosimetry applications. In this work the possibility to use a segmented commercial CVD detector in the dosimetry of proton beams has been investigated. The response as function of dose, dose rate, the priming and the rise time have been investigated thoroughly. This study shows the suitability of CVD diamond for dosimetry of clinical 62 MeV proton beams.

  4. Proton beam writing and electroplating for the fabrication of high aspect ratio Au microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Yue Weisheng [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Ren Yaping [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Kan, Jeroen Anton van; Chiam, S.-Y. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Jian, Linke; Moser, Herbert O. [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Osipowicz, Thomas [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore)], E-mail: phyto@nus.edu.sg; Watt, Frank [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2009-07-01

    We present an approach to fabricate tall high aspect ratio Au microstructures by means of proton beam direct writing. Combining proton beam direct writing and electroplating, we successfully produced gold structures with sub-micrometer lateral dimensions, structure heights in excess of 11 {mu}m, and aspect ratios over 28. Sidewall quality of the Au structures was improved by lowering the process temperature to 20 deg. C when developing PMMA patterns with GG developer. The application of such structures as X-ray masks for deep X-ray lithography with synchrotron radiation was demonstrated.

  5. Neutron measurements around a beam dump bombarded by high energy protons and lead ions

    Science.gov (United States)

    Agosteo, S.; Birattari, C.; Foglio Para, A.; Silari, M.; Ulrici, L.

    2001-02-01

    Measurements of the spectral fluence and the ambient dose equivalent of secondary neutrons produced by 250 GeV/ c protons and 158 GeV/ c per nucleon lead ions were performed at CERN around a thick beam dump. The experimental results obtained with protons were compared with calculations performed with the FLUKA Monte Carlo code. As the available Monte Carlo codes do not transport particles with mass larger than one atomic mass unit, it is shown that for high energy heavy ions, estimates can be carried out by scaling the result of a Monte Carlo calculation for protons by the projectile mass number.

  6. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takahisa [Department of Radiation Oncology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo (Japan); Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Saito, Soichiro; Fujimori, Hiroaki [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Matsushita, Keiichiro; Nishio, Teiji [Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima-shi, Hiroshima (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, Chiba-shi, Chiba (Japan); Masutani, Mitsuko, E-mail: mmasutan@nagasaki-u.ac.jp [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2016-09-09

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.

  7. SU-E-J-72: Geant4 Simulations of Spot-Scanned Proton Beam Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, T; Sutherland, K; Matsuura, T; Umegaki, K; Shirato, H [Hokkaido University, Sapporo, Hokkaido (Japan)

    2014-06-01

    Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 × 0.98 × 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generated and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.

  8. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    ., Nuruzzaman [Hampton Univ., Hampton, VA (United States)

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  9. Condition for production of circulating proton beam with intensity greater than space charge limit.

    Energy Technology Data Exchange (ETDEWEB)

    Vadim Dudnikov

    2002-11-19

    Transverse e-p instability in proton rings could be damped by increasing the beam density and the rate of secondary particles production above the threshold level, with the corresponding decrease of unstable wavelength {lambda} below the transverse beam size h (increase of beam density n{sub b} and ion density n{sub i} above the threshold level: n{sub b} + n{sub i} > {beta}{sup 2}/(r{sub e} h{sup 2}), where r{sub e} = e{sup 2}/mc{sup 2}). Such island of stability can be reached by a fast charge-exchange injection without painting and enhanced generation of secondary plasma, which was demonstrated in a small scale Proton Storage Ring (PSR) at the Institute of Nuclear Physics, Novosibirsk, Russia. With successful damping of e-p instability, the intensity of circulating proton beam, with a space charge neutralization was increased up to 6 times above a space charge limit. Corresponding tune shift without space charge neutralization should be up to {Delta}v=0.85 x 6 (in the ring with v = 0.85). In this paper, they review experimental observations of transverse instability of proton beams in various rings. they also discuss methods which can be used to damp the instability. Such experimental data could be useful for verification of computer simulation tools developed for the studies of the space charge and instabilities in realistic conditions.

  10. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    Physical properties of proton interactions in matter give them a theoretical advantage over photons in radiation therapy for cancer treatment, but they are seldom used relative to photons. The primary barriers to wider acceptance of proton therapy are the technical feasibility, size, and price of proton therapy systems. Several aspects of the proton therapy landscape are investigated, and new techniques for treatment planning, optimization, and beam delivery are presented. The results of these investigations suggest a means by which proton therapy can be delivered more efficiently, effectively, and to a much larger proportion of eligible patients. An analysis of the existing proton therapy market was performed. Personal interviews with over 30 radiation oncology leaders were conducted with regard to the current and future use of proton therapy. In addition, global proton therapy market projections are presented. The results of these investigations serve as motivation and guidance for the subsequent development of treatment system designs and treatment planning, optimization, and beam delivery methods. A major factor impacting the size and cost of proton treatment systems is the maximum energy of the accelerator. Historically, 250 MeV has been the accepted value, but there is minimal quantitative evidence in the literature that supports this standard. A retrospective study of 100 patients is presented that quantifies the maximum proton kinetic energy requirements for cancer treatment, and the impact of those results with regard to treatment system size, cost, and neutron production is discussed. This study is subsequently expanded to include 100 cranial stereotactic radiosurgery (SRS) patients, and the results are discussed in the context of a proposed dedicated proton SRS treatment system. Finally, novel proton therapy optimization and delivery techniques are presented. Algorithms are developed that optimize treatment plans over beam angle, spot size, spot spacing

  11. High Power Proton Beam Shocks and Magnetohydrodynamics in a Mercury Jet Target for a Neutrino Factory

    CERN Document Server

    Fabich, A; Fabjan, Christian

    2002-01-01

    The feasibility of liquid metal jet targets for secondary particle production with high power proton beams has been studied. The main aspects of the thesis were benchmark experiments covering the behaviour of liquid targets under thermal shock waves induced by high power proton beams, and also magnetohydrodynamic effects. Severe challenges were imposed by safety issues and the restricted beam time to the tests in ISOLDE at CERN and at the High Magnetic Field Laboratory at Grenoble. Restricted access times in high radiation level areas were of the order of minutes and in this short time span, the complete experimental setup had to be performed and verified. The involvement of mercury as liquid target material and its activation during beam tests demanded special confinement precautions. The setup for both experiments was based on the use of a high speed camera system for observation of the mercury target. The presence of high radiation or high magnetic field required the installation of the sensitive camera sy...

  12. Enhanced proton beam collimation in the ultra-intense short pulse regime

    Science.gov (United States)

    Green, J. S.; Dover, N. P.; Borghesi, M.; Brenner, C. M.; Cameron, F. H.; Carroll, D. C.; Foster, P. S.; Gallegos, P.; Gregori, G.; McKenna, P.; Murphy, C. D.; Najmudin, Z.; Palmer, C. A. J.; Prasad, R.; Romagnani, L.; Quinn, K. E.; Schreiber, J.; Streeter, M. J. V.; Ter-Avetisyan, S.; Tresca, O.; Zepf, M.; Neely, D.

    2014-08-01

    The collimation of proton beams accelerated during ultra-intense laser irradiation of thin aluminum foils was measured experimentally whilst varying laser contrast. Increasing the laser contrast using a double plasma mirror system resulted in a marked decrease in proton beam divergence (20° to <10°), and the enhanced collimation persisted over a wide range of target thicknesses (50 nm-6 µm), with an increased flux towards thinner targets. Supported by numerical simulation, the larger beam divergence at low contrast is attributed to the presence of a significant plasma scale length on the target front surface. This alters the fast electron generation and injection into the target, affecting the resultant sheath distribution and dynamics at the rear target surface. This result demonstrates that careful control of the laser contrast will be important for future laser-driven ion applications in which control of beam divergence is crucial.

  13. Performance of a fast acquisition system for in-beam PET monitoring tested with clinical proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Piliero, M.A., E-mail: piliero@pi.infn.it [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Bisogni, M.G. [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Cerello, P. [INFN, sezione di Torino (Italy); Department of Physics, University of Torino (Italy); Del Guerra, A. [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Fiorina, E. [INFN, sezione di Torino (Italy); Department of Physics, University of Torino (Italy); Liu, B.; Morrocchi, M. [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Pennazio, F. [INFN, sezione di Torino (Italy); Department of Physics, University of Torino (Italy); Pirrone, G. [Department of Physics, University of Pisa and INFN, sezione di Pisa (Italy); Wheadon, R. [INFN, sezione di Torino (Italy)

    2015-12-21

    In this work we present the performance of a fast acquisition system for in-beam PET monitoring during the irradiation of a PMMA phantom with a clinical proton beam. The experimental set-up was based on 4 independent detection modules. Two detection modules were placed at one side of a PMMA phantom and the other two modules were placed at the opposite side of the phantom. One detection module was composed of a Silicon Photon Multiplier produced by AdvanSiD coupled to a single scintillating LYSO crystal. The read-out system was based on the TOFPET ASIC managed by a Xilinx ML605 FPGA Evaluation Board (Virtex 6). The irradiation of the PMMA phantom was performed at the CNAO hadrontherapy facility (Pavia, Italy) with a 95 MeV pulsed proton beam. The pulsed time structure of the proton beam was reconstructed by each detection module. The β{sup +} annihilation peak was successfully measured and the production of β{sup +} isotopes emitters was observed as increasing number of 511 keV events detected during irradiation. Finally, after the irradiation, the half lives of the {sup 11}C and {sup 15}O radioactive isotopes were estimated.

  14. Performance of a fast acquisition system for in-beam PET monitoring tested with clinical proton beams

    Science.gov (United States)

    Piliero, M. A.; Bisogni, M. G.; Cerello, P.; Del Guerra, A.; Fiorina, E.; Liu, B.; Morrocchi, M.; Pennazio, F.; Pirrone, G.; Wheadon, R.

    2015-12-01

    In this work we present the performance of a fast acquisition system for in-beam PET monitoring during the irradiation of a PMMA phantom with a clinical proton beam. The experimental set-up was based on 4 independent detection modules. Two detection modules were placed at one side of a PMMA phantom and the other two modules were placed at the opposite side of the phantom. One detection module was composed of a Silicon Photon Multiplier produced by AdvanSiD coupled to a single scintillating LYSO crystal. The read-out system was based on the TOFPET ASIC managed by a Xilinx ML605 FPGA Evaluation Board (Virtex 6). The irradiation of the PMMA phantom was performed at the CNAO hadrontherapy facility (Pavia, Italy) with a 95 MeV pulsed proton beam. The pulsed time structure of the proton beam was reconstructed by each detection module. The β+ annihilation peak was successfully measured and the production of β+ isotopes emitters was observed as increasing number of 511 keV events detected during irradiation. Finally, after the irradiation, the half lives of the 11C and 15O radioactive isotopes were estimated.

  15. Fast range switching of passively scattered proton beams using a modulation wheel and dynamic beam current modulation

    Science.gov (United States)

    Sánchez-Parcerisa, D.; Pourbaix, J. C.; Ainsley, C. G.; Dolney, D.; Carabe, A.

    2014-04-01

    In proton radiotherapy, the range of particles in the patient body is determined by the energy of the protons. For most systems, the energy selection time is on the order of a few seconds, which becomes a serious obstacle for continuous dose delivery techniques requiring adaptive range modulation. This work analyses the feasibility of using the range modulation wheel, an element in the beamline used to form the spread-out Bragg peak (SOBP), to produce near-instantaneous changes not only in the modulation, but also in the range of the beam. While delivering proton beams in double scattering mode, the beam current can be synchronized with the range modulation wheel rotation by defining a current modulation pattern. Different current modulation patterns were computed from Monte Carlo simulations of our double scattering nozzle to range shift an SOBP of initial range 15 cm by varying degrees of up to ˜9 cm. These patterns were passed to the treatment control system at our institution and the resulting measured depth-dose distributions were analysed in terms of flatness, distal penumbra and relative irradiation time per unit mid-SOBP dose. Suitable SOBPs were obtained in all cases, with the maximum range shift being limited only by the maximum thickness of the wheel. The distal dose fall-off (80% to 20%) of the shifted peaks was broadened to about 1 cm, from the original 0.5 cm, and the predicted overhead in delivery time showed a linear increase with the amount of the shift. By modulating the beam current in clinical scattered proton beams equipped with a modulation wheel, it is possible to dynamically modify the in-patient range of the SOBP without adding any specific hardware or compensators to the beamline. A compromise between sharper distal dose fall-off and lower delivery time can be achieved and is subject to optimization.

  16. Fast range switching of passively scattered proton beams using a modulation wheel and dynamic beam current modulation.

    Science.gov (United States)

    Sánchez-Parcerisa, D; Pourbaix, J C; Ainsley, C G; Dolney, D; Carabe, A

    2014-04-01

    In proton radiotherapy, the range of particles in the patient body is determined by the energy of the protons. For most systems, the energy selection time is on the order of a few seconds, which becomes a serious obstacle for continuous dose delivery techniques requiring adaptive range modulation. This work analyses the feasibility of using the range modulation wheel, an element in the beamline used to form the spread-out Bragg peak (SOBP), to produce near-instantaneous changes not only in the modulation, but also in the range of the beam. While delivering proton beams in double scattering mode, the beam current can be synchronized with the range modulation wheel rotation by defining a current modulation pattern. Different current modulation patterns were computed from Monte Carlo simulations of our double scattering nozzle to range shift an SOBP of initial range 15 cm by varying degrees of up to ∼9 cm. These patterns were passed to the treatment control system at our institution and the resulting measured depth-dose distributions were analysed in terms of flatness, distal penumbra and relative irradiation time per unit mid-SOBP dose. Suitable SOBPs were obtained in all cases, with the maximum range shift being limited only by the maximum thickness of the wheel. The distal dose fall-off (80% to 20%) of the shifted peaks was broadened to about 1 cm, from the original 0.5 cm, and the predicted overhead in delivery time showed a linear increase with the amount of the shift. By modulating the beam current in clinical scattered proton beams equipped with a modulation wheel, it is possible to dynamically modify the in-patient range of the SOBP without adding any specific hardware or compensators to the beamline. A compromise between sharper distal dose fall-off and lower delivery time can be achieved and is subject to optimization.

  17. SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, W; Siderits, R; McKenna, M; Khan, A; Yue, N [Rutgers University, New Brunswick, NJ (United States); McDonough, J; Yin, L; Teo, B [University of Pennsylvania, Philadelphia, PA (United States); Fisher, T [Memorial Medical Center, Modesto, CA (United States)

    2014-06-01

    Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 3–4 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scanned on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy.

  18. BEAM EXTRACTION FROM THE RECYCLER RING TO P1 LINE AT FERMILAB

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, M. [Fermilab; Capista, D. [Fermilab; Adams, P. [Fermilab; Morris, D. [Fermilab; Yang, M. J. [Fermilab; Hazewood, K. [Fermilab

    2016-10-03

    The transfer line for beam extraction from the Recycler ring to P1 line provides a way to deliver 8 GeV kinetic energy protons from the Booster to the Delivery ring, via the Recycler, using existing beam transport lines, and without the need for new civil construction. It was designed in 2012. The kicker magnets at RR520 and the lambertson magnet at RR522 in the RR were installed in 2014 Summer Shutdown, the elements of RR to P1 Stub (permanent quads, trim quads, correctors, BPMs, the toroid at 703 and vertical bending dipole at V703 (ADCW) were installed in 2015 Summer Shutdown. On Tuesday, June 21, 2016, beam line from the Recycler Ring to P1 line was commissioned. The detailed results will be presented in this report.

  19. Simulation of ion beam extraction and focusing system

    Institute of Scientific and Technical Information of China (English)

    B. A. Soliman; M. M. Abdelrahman; A. G. Helal; F. W. Abdelsalam

    2011-01-01

    The characteristics of ion beam extraction and focused to a volume as small as possible were investigated with the aid of computer code SIMION 3D version 7. This has been used to evaluate the extraction characteristics (accel-decel system) to generate an

  20. One of the most striking pictures of a vacuum chamber where the proton beams collide in the ISR

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    The Intersecting Storage Rings (ISR), the world’s first proton-proton collider, started up in 1971, and later provided the first proton-antiproton collisions and the first collisions of beams of heavier ions (alpha particles).

  1. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R

    2015-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  2. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K.; Hurh, P.; Zwaska, R.; Atherton, A.; Caretta, O.; Davenne,T.; Densham, C.; Fitton, M.; Loveridge, P.; O'Dell, J.; Roberts, S.; Kuksenko, V.; Butcher, M.; Calviani, M.; Guinchard, M.; Losito, R.

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  3. Shielding measurements for a 230 MeV proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0{degree}, 22{degree}, 45{degree}, and 90{degree} in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm{sup 3} to 1000 cm{sup 3} were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0{degree}, 22{degree}, and 45{degree}, yet correctly predicted the attenuation length at 90{degree}. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations.

  4. First biological experiments at a vertical proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Distel, L.; Distel, B.; Roessner, B.; Schwotzer, G.; Sauer, R. [Erlangen-Nuernberg Univ., Erlangen (Germany). Klinik fuer Strahlentherapie; Eyrich, W.; Fritsch, M.; Teufel, A. [Erlangen-Nuernberg Univ., Erlangen (Germany). Physikalisches Inst.; Besserer, J.; Boer, J. de; Moosburger, M.; Quicken, P. [Muenchen Univ. (Germany). Sektion Physik

    1997-09-01

    At the tandem accelerator laboratories in Munich and Erlangen vertical beamlines were installed last year. The advantage of a vertical beamline is that cells can be irradiated in a medium at 37 C and with simultaneous gassing, therefore also in physiological conditions. First experiments were carried out at the accelerator in Munich with a proton energy of 25 MeV. Chinese Hamster cells B14 were irradiated in Petri dishes where the base was of 1 mm polystyrol or 2 {mu}m hostaphan foils. The cell survival was measured by the cell survival assay and the repopulation of the colonies by the total colony volume. A solution of DNA with protein was irradiated to study DNA double strand breaks by constant field gel electrophoresis and DNA protein crosslinks by the nitrocellulose filter assay. For cell survival, total colony volume and DNA double-strand breaks X-rays and protons gave corresponding results, while with protons, higher yields of DNA-protein crosslinks were observed than with X-rays. (orig.)

  5. Quadrupole lens alignment with improved STIM and secondary electron imaging for Proton Beam Writing

    Science.gov (United States)

    Qureshi, Sarfraz; Raman, P. Santhana; Stegmaier, Alrik; van Kan, Jeroen A.

    2017-08-01

    Minimal proximity effect coupled with uniform energy deposition in thin polymer layers make Proton Beam Writing (PBW) an intuitive direct-write lithographic technique. Feature sizes matching the focused beam spot size have been fabricated in photoresists down to 19 nm. Reproducible sub-10 nm beam focusing will make PBW a promising contender for sub-10 nm lithography. In this paper, we present beam size characterization by imaging a PBW resolution standard using transmitted/scattered ions and secondary electrons. Using Scanning Transmission Ion Microscopy (STIM) spectra for 1 and 2 MeV H2+ beams, we experimentally measure the thickness of the resolution standard to be 0.9 ± 0.1 μm, applying two independent calibration methods, which match the original intended thickness during fabrication. Through bias optimization of a Micro-Channel Plate (MCP), we show a tuneable secondary electron detection per proton for imaging with a maximum of 75% e/p for a beam of 1 MeV H2+. Based on STIM mode beam size measurement, we discuss considerations for quadrupole system alignment in order to remove higher order translational and rotational misalignments critical to achieve sub-40 nm spot sizes. A spot size of 13 × 32 nm2 (STIM) was achieved using a newly developed interface, capable of autofocusing ion beams and performing PBW.

  6. SU-E-J-49: Distal Edge Activity Fall Off Of Proton Therapy Beams

    Energy Technology Data Exchange (ETDEWEB)

    Elmekawy, A; Ewell, L [Hampton University, Hampton, VA (United States); Butuceanu, C; Zhu, L [HUPTI, Hampton, VA (United States)

    2014-06-01

    Purpose: To characterize and quantify the distal edge activity fall off, created in a phantom by a proton therapy beam Method and Materials: A 30x30x10cm polymethylmethacrylate phantom was irradiated with a proton therapy beam using different ranges and beams. The irradiation volume is approximated by a right circular cylinder of diameter 7.6cm and varying lengths. After irradiation, the phantom was scanned via a Philips Gemini Big Bore™ PET-CT for isotope activation. Varian Eclipse™ treatment planning system as well as ImageJ™ were used to analyze the resulting PET and CT scans. The region of activity within the phantom was longitudinally measured as a function of PET slice number. Dose estimations were made via Monte Carlo (GATE) simulation. Results: For both the spread out Bragg peak (SOBP) and the mono-energetic pristine Bragg peak proton beams, the proximal activation rise was steep: average slope −0.735 (average intensity/slice number) ± 0.091 (standard deviation) for the pristine beams and −1.149 ± 0.117 for the SOBP beams. In contrast, the distal fall offs were dissimilar. The distal fall off in activity for the pristine beams was fit well by a linear curve: R{sup 2} (Pierson Product) was 0.9968, 0.9955 and 0.9909 for the 13.5, 17.0 and 21.0cm range beams respectively. The good fit allows for a slope comparison between the different ranges. The slope varied as a function of range from 1.021 for the 13.5cm beam to 0.8407 (average intensity/slice number) for the 21.0cm beam. This dependence can be characterized: −0.0234(average intensity/slice number/cm range). For the SOBP beams, the slopes were significantly less and were also less linear: average slope 0.2628 ± 0.0474, average R{sup 2}=0.9236. Conclusion: The distal activation fall off edge for pristine proton beams was linear and steep. The corresponding quantities for SOBP beams were shallower and less linear. Philips has provided support for this work.

  7. High-energy proton beam analysis of geological materials

    Science.gov (United States)

    Halden, Norman M.

    1993-05-01

    Partitioning of trace elements between mineral phases reflects the physical, chemical and kinetic conditions of crystallization. Variations in environmental conditions during growth often result in complex and small-scale chemical zoning in minerals. The low abundance of trace elements and their spatial inhomogeneity on a μm scale makes their analysis by a muprobe technique essential for addressing many petrological problems. μ-PIXE (2-3 MeV) has been successfully applied to many mineralogical problems and is rapidly becoming a routine analytical tool for geologists. High-energy PIXE (40-60 MeV) provides a new dimension in mineralogical analysis. The K X-rays for many petrologically important trace elements occur in the 25-90 keV region, here the X-rays are not affected by interference from the X-rays of more abundant geochemically coherent elements. Furthermore, the K X-ray spectrum for an element is less complex than its corresponding L X-ray spectrum so data reduction is simplified. The use of high energy protons for elemental analysis makes high-energy PIGE accessible, here on-line emission of γ-rays can be used to provide information on element (or in some cases isotope) concentrations. For the analysis of chemically complex materials such as rocks and minerals it is necessary to thoroughly characterize the material beforehand such that likely proton induced reactions can be predicted. Nuclear reactions produced by proton interaction with mineral samples occur during on-line exposure of the sample. The by-products of such reactions may have significant half-lives which will make them amenable to off-line analysis. One such case is where Pt undergoes (p, xn) reactions to form Au which then decays back to Pt via electron capture. The off-line spectrum after such a run contains Au X-rays and the background to such spectra is low, which raises the possibility that this form of analysis will provide low detection limits. This is the proton analogue of neutron

  8. Development of a pixel ionization chamber for beam monitor in proton therapy

    Science.gov (United States)

    La Rosa, A.; Garella, M. A.; Attili, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Giordanengo, S.; Givehchi, N.; Marchetto, F.; Mazza, G.; Meyroneinc, S.; Pecka, A.; Peroni, C.; Pittà, G.

    2007-03-01

    We have developed a detector to be used as monitor for proton therapy beam lines. The detector is a 2-D parallel plate ionization chamber, with the anode segmented in 1024 square pixels arranged in a 32×32 matrix. The detector characterization is presented.

  9. Proton beam studies with a 1.25 MeV, cw radio frequency quadrupole linac

    Energy Technology Data Exchange (ETDEWEB)

    Bolme, G.O.; Hardek, T.W.; Hansborough, L.D. [and others

    1998-12-31

    A high-current, cw linear accelerator has been proposed as a spallation neutron source driver for tritium production. Key features of this accelerator are high current (100 mA), low emittance-growth beam propagation, cw operation, high efficiency, and minimal maintenance downtime. A 268 MHz, cw radio frequency quadrupole (RFQ) LINAC section and klystrode based rf system were obtained from the Chalk River Laboratories and were previously installed at LANL to support systems development and advanced studies in support of cw, proton accelerators. A variation of the Low Energy Demonstration Accelerator (LEDA) proton injector, modified to operate at 50 keV, was mated to the RFQ and was operated to support advance developments for the Accelerator Production of Tritium (APT) program. High current, proton beam studies were completed which focused on the details of injector-RFQ integration, development of beam diagnostics, development of operations procedures, and personnel and equipment safety systems integration. This development led to acceleration of up to 100 mA proton beam.

  10. Efficient calculation of local dose distributions for response modeling in proton and heavier ion beams

    DEFF Research Database (Denmark)

    Greilich, Steffen; Hahn, Ute; Kiderlen, Markus

    2014-01-01

    We present an algorithm for fast and accurate computation of the local dose distribution in MeV beams of protons, carbon ions or other heavy charged particles. It uses compound Poisson modeling of track interaction and successive convolutions for fast computation. It can handle arbitrary complex ...

  11. Response of Solid and Liquid Targets to High Power Proton Beams for Neutrino Factories

    CERN Document Server

    Sievers, P

    2000-01-01

    The response of solid and liquid targets to rapid heating by the incident proton beam is assessed in a classical way, among other things by solving the wave equation under linear conditions and in cylindrical symmetry. This study provides bench mark values and allows to identify critical issues and limiting factors which can help to guide further investigations with more sophisticated means.

  12. Development of a pixel ionization chamber for beam monitor in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    La Rosa, A. [Dipartimento di Fisica Sperimentale, Universita di Torino, Via P. Giuria 1, Turin 10125 (Italy) and INFN, Sezione di Torino, Via P. Giuria, Turin 10125 (Italy)]. E-mail: larosa@to.infn.it; Garella, M.A. [INFN, Sezione di Torino, Via P. Giuria, Turin 10125 (Italy); Attili, A. [Dipartimento di Fisica Sperimentale, Universita di Torino, Via P. Giuria 1, Turin 10125 (Italy); Bourhaleb, F. [Fondazione TERA, Via Puccini 11, Novara 28100 (Italy); Cirio, R. [INFN, Sezione di Torino, Via P. Giuria, Turin 10125 (Italy); Donetti, M. [INFN, Sezione di Torino, Via P. Giuria, Turin 10125 (Italy); Fondazione CNAO, Via Caminadella 16, Milan 20123 (Italy); Giordanengo, S. [INFN, Sezione di Torino, Via P. Giuria, Turin 10125 (Italy); Givehchi, N. [Dipartimento di Fisica Sperimentale, Universita di Torino, Via P. Giuria 1, Turin 10125 (Italy); INFN, Sezione di Torino, Via P. Giuria, Turin 10125 (Italy); Marchetto, F. [INFN, Sezione di Torino, Via P. Giuria, Turin 10125 (Italy); Mazza, G. [INFN, Sezione di Torino, Via P. Giuria, Turin 10125 (Italy); Meyroneinc, S. [Institut Curie-Centre de Protontherapie de Orsay, Bat. 101 Campus Universitaire, Orsay Cedex 91898 (France); Pecka, A. [Dipartimento di Fisica Sperimentale, Universita di Torino, Via P. Giuria 1, Turin 10125 (Italy); Peroni, C. [Dipartimento di Fisica Sperimentale, Universita di Torino, Via P. Giuria 1, Turin 10125 (Italy); INFN, Sezione di Torino, Via P. Giuria, Turin 10125 (Italy); Pitta, G. [Fondazione TERA, Via Puccini 11, Novara 28100 (Italy)

    2007-03-01

    We have developed a detector to be used as monitor for proton therapy beam lines. The detector is a 2-D parallel plate ionization chamber, with the anode segmented in 1024 square pixels arranged in a 32x32 matrix. The detector characterization is presented.

  13. Microdosimetric Characteristics of the Clinical Proton Beams at the JINR Phasotron, Dubna

    CERN Document Server

    Vlcek, B; Spurny, F

    2002-01-01

    The contribution of the high LET particles to dosimetric and microdosimetric characteristics of 150 and 205 MeV clinical proton beams was experimentally studied using track etched detectors. Secondary heavy charged particles produced from nuclear interactions and degraded protons at the Bragg peak region are particles with high LET. The method of the LET spectra measurement with track etched detectors allows one to determine the contribution of high LET particles to dosimetric characteristics of clinical proton beams: absorbed dose, equivalent dose and the value of the Relative Biological Effectiveness (RBE). Track detectors were irradiated in the various depth of clinical proton beams with the primary energies of 150 and 205 MeV. The LET spectra between 10 and 700 keV/m were measured by means of CR-39 track etched detectors and the automatic optical image analyzer LUCIA-II. The relative contribution of the high LET particles to absorbed dose increases from several per cent at the beam entrance to several ten...

  14. Comparison of the secondary electrons produced by proton and electron beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Kia, Mohammad Reza, E-mail: m-r-kia@aut.ac.ir; Noshad, Houshyar [Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box 15875-4413, Hafez Avenue, Tehran (Iran, Islamic Republic of)

    2016-05-15

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.

  15. Comparison of the secondary electrons produced by proton and electron beams in water

    Science.gov (United States)

    Kia, Mohammad Reza; Noshad, Houshyar

    2016-05-01

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.

  16. A polarimeter for GeV protons of recirculating synchrotron beams

    CERN Document Server

    Bauer, F

    1999-01-01

    A polarimeter for use in recirculating beams of proton synchrotrons with energies from 300 MeV up to several GeV has been developed. The polarimetry is based on the asymmetry measurement of elastic p->p scattering on an internal CH sub 2 fiber target. The forward going protons are detected with two scintillator systems on either side of the beam pipe close to the angle THETA sub f of maximum analyzing power A sub N. Each one operates in coincidence with a broad (DELTA THETA sub b =21.4 deg. ), segmented detector system for the recoil proton of kinematically varying direction THETA sub b; this position resolution is also used for a concurrent measurement of the p->C and nonelastic p->p background. The CH sub 2 fiber can be replaced by a carbon fiber for detailed background studies; 'false' asymmetries are accounted for with a rotation of the polarimeter around the beam axis. Polarimetry has been performed in the internal beam of the Cooler Synchrotron COSY at fixed energies as well as during proton acceleratio...

  17. Proton beam dosimetry: a comparison between a plastic scintillator, ionization chamber and Faraday cup.

    Science.gov (United States)

    Ghergherehchi, Mitra; Afarideh, Hossein; Ghannadi, Mohammad; Mohammadzadeh, Ahmad; Aslani, Golam Reza; Boghrati, Behzad

    2010-01-01

    In this study, a comparison was made between a plastic scintillator (BC400), a Faraday Cup (FC) and an ionization chamber (IC) used for routine proton dosimetry. Thin scintillators can be applied to proton dosimetry and consequently to proton therapy as relative dosimeters because of their water-equivalent nature, high energy-light conversion efficiency, low dimensions and good proportionality to the absorbed dose at low stopping powers. To employ such scintillators as relative dosimeters in proton therapy, the corrective factors must be applied to correct the quenching luminescence at the Bragg peak. A fine linear proportionality between the luminescence light yield Y and the proton flux in a thin (0.5 mm) scintillator for the 20 and 30 MeV proton beams were observed. The experimental peak/plateau ratios of Bragg Curve for 2, 1 and 0.5 mm scintillators with an accuracy of 0.5% were obtained to be 1.87, 1.91 and 2.30, respectively. With combination of the Markus chamber and the CR-39 detector, the peak/plateau ratio was improved to 3.26. The obtained data of the luminescence yield as a function of the specific energy loss is in agreement with the Craun-Birk's theory. Results show that the FC and Markus ionization chamber are in agreement within 4%, while the FC gives a lower dose evaluation. For a defined beam, the data for the fluence measurements are reproducible within a good accuracy.

  18. Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Afanasev; Mykola Merenkov

    2004-06-01

    We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. The asymmetry at small electron scattering angles is expressed in terms of the total photoproduction cross section on the proton, and is predicted to reach the magnitude of 20-30 parts per million. At these conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.

  19. Improved beam extraction for a negative hydrogen ion source for the LHC injector chain upgrade, Linac4

    CERN Document Server

    Midttun, Øystein; Scrivens, Richard

    In the scope of an upgrade of the injector chain of CERN’s accelerator complex, a new linear accelerator, Linac4, is under construction. This accelerator will replace the existing 50 MeV proton linac, Linac2. By increasing the beam energy to 160 MeV, Linac4 makes it possible to double the brightness in the PSB, and ultimately increase the luminosity in the LHC. Linac4 will accelerate beams of negative hydrogen (H-) to be injected into the PSB by multi-turn, charge exchange injection. The ion source was initially based on the non-caesiated RF-volume source from DESY. However, the beam extraction from this source could not handle the 45 keV beam energy required by the RFQ. A new beam extraction system has therefore been designed, via IBSimu simulations [1], to extract and transport the H- ion beam respecting the Linac4 requirements. Key features of the extraction system is a tuneable puller voltage to adapt the extraction field to the ion and electron beam currents, and a magnetized Einzel lens to dump the co...

  20. A new concept for the control of a slow-extracted beam in a line with rotational optics, 2

    CERN Document Server

    Benedikt, Michael; Pullia, M

    1999-01-01

    For pt.I see ibid., vol.430, p.512-22, 1999. The current trend in hadron therapy is towards high-precision, conformal scanning of tumours with a `pencil' beam of light ions or protons, delivered by a synchrotron using slow extraction. The particular shape of the slow- extracted beam segment in phase space and the need to vary the beam size in a lattice with rotating optical elements create a special problem for the design of the extraction transfer line and gantry. The design concept presented in this report is based on telescope modules with integer- pi phase advances in both transverse planes. The beam size in the plane of the extraction is controlled by altering the phase advance and hence the rotation of the extracted beam segment in phase space. The vertical beam size is controlled by stepping the vertical betatron amplitude function over a range of values and passing the changed beam size from `hand-to-hand' through the telescope modules to the various treatment rooms. In the example given, a combined p...

  1. A new concept for the control of a slow-extracted beam in a line with rotational optics: Part II

    CERN Document Server

    Benedikt, Michael; Pullia, M

    1999-01-01

    The current trend in hadrontherapy is towards high-precision, conformal scanning of tumours with a 'pencil' beam of light ions or protons, delivered by a synchrotron using slow extraction. The particular shape of the slow-extracted beam segment in phase space and the need to vary the beam size in a lattice with rotating optical elements create a special problem for the design of the extraction transfer line and gantry. The design concept presented in this report is based on telescope modules with integer-pi phase advances in both transverse planes. The beam size in the plane of the extraction is controlled by altering the phase advance and hence the rotation of the extracted beam segment in phase space. The vertical beam size is controlled by stepping the vertical betatron amplitude function over a range of values and passing the changed beam size from 'hand-to-hand' through the telescope modules to the various treatment rooms. In the example given, a combined phase shifter and 'stepper', at a point close to ...

  2. Search for Light Dark Matter Produced in a Proton Beam Dump

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Remington Tyler [Indiana Univ., Bloomington, IN (United States)

    2017-01-01

    Cosmological observations indicate that our universe contains dark matter (DM), yet we have no measurements of its microscopic properties. Whereas the gravitational interaction of DM is well understood, its interaction with the Standard Model is not. Direct detection experiments, the current standard, search for a nuclear recoil interaction and have a low-mass sensitivity edge of order 1 GeV. A path to detect DM with mass below 1 GeV is the use of accelerators producing boosted low-mass DM. Using neutrino detectors to search for low-mass DM is logical due to the similarity of the DM and neutrino signatures in the detector. The MiniBooNE experiment, located at Fermilab on the Booster Neutrino Beamline, has produced the first proton beam-dump light DM search results. Using dark matter scattering from nucleons 90% confidence limits were set over a large parameter space and, to allow tests of other theories, a model independent DM rate was extracted.

  3. Reactions of a Be-10 beam on proton and deuteron targets

    CERN Document Server

    Schmitt, K T; Ahn, S; Bardayan, D W; Bey, A; Blackmon, J C; Brown, S M; Chae, K Y; Chipps, K A; Cizewski, J A; Hahn, K I; Kolata, J J; Kozub, R L; Liang, J F; Matei, C; Matos, M; Matyas, D; Moazen, B; Nesaraja, C D; Nunes, F M; Malley, P D O; Pain, S D; Peters, W A; Pittman, S T; Roberts, A; Shapira, D; Shriner, J F; Smith, M S; Spassova, I; Stracener, D W; Upadhyay, N J; Villano, A N; Wilson, G L

    2013-01-01

    The extraction of detailed nuclear structure information from transfer reactions requires reliable, well-normalized data as well as optical potentials and a theoretical framework demonstrated to work well in the relevant mass and beam energy ranges. It is rare that the theoretical ingredients can be tested well for exotic nuclei owing to the paucity of data. The halo nucleus Be-11 has been examined through the 10Be(d,p) reaction in inverse kinematics at equivalent deuteron energies of 12,15,18, and 21.4 MeV. Elastic scattering of Be-10 on protons was used to select optical potentials for the analysis of the transfer data. Additionally, data from the elastic and inelastic scattering of Be-10 on deuterons was used to fit optical potentials at the four measured energies. Transfers to the two bound states and the first resonance in Be-11 were analyzed using the Finite Range ADiabatic Wave Approximation (FR-ADWA). Consistent values of the spectroscopic factor of both the ground and first excited states were extrac...

  4. An examination of proton charge radius extractions from e-p scattering data

    CERN Document Server

    Arrington, John

    2015-01-01

    A detailed examination of issues associated with proton radius extractions from elastic electron-proton scattering experiments is presented. Sources of systematic uncertainty and model dependence in the extractions are discussed, with an emphasis on how these may impact the proton charge and magnetic radii. A comparison of recent Mainz data to previous world data is presented, highlighting the difference in treatment of systematic uncertainties as well as tension between different data sets. We find several issues that suggest that larger uncertainties than previously quoted may be appropriate, but do not find any corrections which would resolve the proton radius puzzle.

  5. Design and simulation of a beam position monitor for the high current proton linac

    Institute of Scientific and Technical Information of China (English)

    RUAN Yu-Fang; XU Tao-Guang; FU Shi-Nian

    2009-01-01

    In this paper, the 2-D electrostatic field software, POISSON, is used to calculate the characteristic impedance of a BPM (beam position monitor) for a high current proton linac. Furthermore, the time-domain 3-D module of MAFIA with a beam microbunch at a varying offset from the axis is used to compute the induced voltage on the electrodes as a function of time. Finally, the effect of low 13 beams on the induced voltage, the sensitivity and the signal dynamic range of the BPM are discussed.

  6. Radio-frequency ion source generating beams with an increased proton content

    Science.gov (United States)

    Ivanov, A. A.; Podyminogin, A. A.; Shikhovtsev, I. V.

    2007-01-01

    The results of experiments with an rf ion source generating a beam with an improved mass composition are reported. The proton content in the beam is increased by raising the rf power density in the discharge under the antenna and installing a magnetic filter near the plasma grid. Additional steps are taken to prevent the earlier observed degradation of the beam composition because of aluminum reduction on the inner surface of the ceramic discharge chamber and water release. Specifically, the chamber is lined with pyrolytic boron nitride sheets.

  7. A study of the energy deposition profile of proton beams in materials of hadron therapeutic interest.

    Science.gov (United States)

    Garcia-Molina, Rafael; Abril, Isabel; de Vera, Pablo; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2014-01-01

    The energy delivered by a swift proton beam in materials of interest to hadron therapy (liquid water, polymethylmethacrylate or polystyrene) is investigated. An explicit condensed-state description of the target excitation spectrum based on the dielectric formalism is used to calculate the energy-loss rate of the beam in the irradiated materials. This magnitude is the main input in the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids) used to evaluate the dose as a function of the penetration depth and radial distance from the beam axis.

  8. Ion Source Development for a Compact Proton Beam Writing System III

    Science.gov (United States)

    2013-06-28

    100nm features. Electron beam lithography ( EBL ), a candidate for direct-write technology at nanodimensions has extensively been investigated for the...last four decades However, high resolution lines and spaces in single step exposures for EBL are limited to about 20-30 nm levels due to proximity...achieve writing speeds comparable to commercial EBL systems, we aim for a proton beam current of 1 pA with a beam reduced brightness of 0.2-5× 106 A

  9. Geant4 Simulation Study of Dose Distribution and Energy Straggling for Proton and Carbon Ion Beams in Water

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2016-01-01

    Full Text Available Dose distribution and energy straggling for proton and carbon ion beams in water are investigated by using a hadrontherapy model based on the Geant4 toolkit. By gridding water phantom in N×N×N voxels along X, Y and Z axes, irradiation dose distribution in all the voxels is calculated. Results indicate that carbon ion beams have more advantages than proton beams. Proton beams have bigger width of the Bragg peak and broader lateral dose distribution than carbon ion beams for the same position of Bragg peaks. Carbon ion has a higher local ionization density and produces more secondary electrons than proton, so carbon ion beams can achieve a higher value of relative biological effectiveness.

  10. Initial clinical experience with scanned proton beams at the Italian National Center for Hadrontherapy (CNAO).

    Science.gov (United States)

    Tuan, J; Vischioni, B; Fossati, P; Srivastava, A; Vitolo, V; Iannalfi, A; Fiore, M R; Krengli, M; Mizoe, J E; Orecchia, R

    2013-07-01

    We report the initial toxicity data with scanned proton beams at the Italian National Center for Hadrontherapy (CNAO). In September 2011, CNAO commenced patient treatment with scanned proton beams within two prospective Phase II protocols approved by the Italian Health Ministry. Patients with chondrosarcoma or chordoma of the skull base or spine were eligible. By October 2012, 21 patients had completed treatment. Immobilization was performed using rigid non-perforated thermoplastic-masks and customized headrests or body-pillows as indicated. Non-contrast CT scans with immobilization devices in place and MRI scans in supine position were performed for treatment-planning. For chordoma, the prescribed doses were 74 cobalt grey equivalent (CGE) and 54 CGE to planning target volume 1 (PTV1) and PTV2, respectively. For chondrosarcoma, the prescribed doses were 70 CGE and 54 CGE to PTV1 and PTV2, respectively. Treatment was delivered five days a week in 35-37 fractions. Prior to treatment, the patients' positions were verified using an optical tracking system and orthogonal X-ray images. Proton beams were delivered using fixed-horizontal portals on a robotic couch. Weekly MRI incorporating diffusion-weighted-imaging was performed during the course of proton therapy. Patients were reviewed once weekly and acute toxicities were graded with the Common Terminology Criteria for Adverse Events (CTCAE). Median age of patients = 50 years (range, 21-74). All 21 patients completed the proton therapy without major toxicities and without treatment interruption. Median dose delivered was 74 CGE (range, 70-74). The maximum toxicity recorded was CTCAE Grade 2 in four patients. Our preliminary data demonstrates the clinical feasibility of scanned proton beams in Italy.

  11. SU-E-T-542: Measurement of Internal Neutrons for Uniform Scanning Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Zheng, Y; Rana, S [Procure Proton Therapy Center, Oklahoma City, OK (United States); Collums, T [University of Iowa Hospitals and Clinics, Iowa City, IA (United States); Monsoon, J; Benton, E [Oklahoma State University, Stillwater, OK (United States)

    2015-06-15

    Purpose: In proton radiotherapy, the production of neutrons is a wellknown problem since neutron exposure can lead to increased risk of secondary cancers later in the patient’s lifetime. The assessment of neutron exposure is, therefore, important for the overall quality of proton radiotherapy. This study investigates the secondary neutrons created inside the patient from uniform scanning proton beams. Methods: Dose equivalent due to secondary neutrons was measured outside the primary field as a function of distance from beam isocenter at three different angles, 45, 90 and 135 degree, relative to beam axis. Plastic track nuclear detector (CR-39 PNTD) was used for the measurement of neutron dose. Two experimental configurations, in-air and cylindrical-phantom, were designed. In a cylindrical-phantom configuration, a cylindrical phantom of 5.5 cm diameter and 35 cm long was placed along the beam direction and in an in-air configuration, no phantom was used. All the detectors were placed at nearly identical locations in both configurations. Three proton beams of range 5 cm, 18 cm, and 32 cm with 4 cm modulation width and a 5 cm diameter aperture were used. The contribution from internal neutrons was estimated from the differences in measured dose equivalent between in-air and cylindrical-phantom configurations at respective locations. Results: The measured ratio of neutron dose equivalent to the primary proton dose (H/D) dropped off with distance and ranged from 27 to 0.3 mSv/Gy. The contribution of internal neutrons near the treatment field edge was found to be up to 64 % of the total neutron exposure. As the distance from the field edge became larger, the external neutrons from the nozzle appear to dominate and the internal neutrons became less prominent. Conclusion: This study suggests that the contribution of internal neutrons could be significant to the total neutron dose equivalent.

  12. Low emittance pion beams generation from bright photons and relativistic protons

    CERN Document Server

    Serafini, L; Petrillo, V

    2015-01-01

    Present availability of high brilliance photon beams as those produced by X-ray Free Electron Lasers in combination with intense TeV proton beams typical of the Large Hadron Collider makes it possible to conceive the generation of pion beams via photo-production in a highly relativistic Lorentz boosted frame: the main advantage is the low emittance attainable and a TeV-class energy for the generated pions, that may be an interesting option for the production of low emittance muon and neutrino beams. We will describe the kinematics of the two classes of dominant events, i.e. the pion photo-production and the electron/positron pair production, neglecting other small cross-section possible events like Compton and muon pair production. Based on the phase space distributions of the pion and muon beams we will analyze the pion beam brightness achievable in three examples, based on advanced high efficiency high repetition rate FELs coupled to LHC or Future Circular Collider (FCC) proton beams, together with the stud...

  13. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Directory of Open Access Journals (Sweden)

    Abigail T. Berman

    2015-07-01

    Full Text Available Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT, through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC, as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  14. Hadron Cancer Therapy - relative merits of X-ray, proton and carbon beams

    Science.gov (United States)

    Jakel, Oliver

    2014-03-01

    -Heidelberg University has a long experience in radiotherapy with carbon ions, starting with a pilot project at GSI in 1997. This project was jointly run by the Dep. for Radiation Oncology of Heidelberg University, GSI and the German Cancer Research Center (DKFZ). A hospital based heavy ion center at Heidelberg University, the Heidelberg Ion Beam Therapy Center (HIT) was proposed by the same group in 1998 and started clinical operation in late 2009. Since then nearly 2000 patients were treated with beams of carbon ions and protons. Just recently the operation of the world's first and only gantry for heavy ions also started at HIT. Patient treatments are performed in three rooms. Besides that, a lot of research projects are run in the field of Medical Physics and Radiobiology using a dedicated experimental area and the possibility to use beams of protons, carbon, helium and oxygen ions being delivered with the raster scanning technique.

  15. Modification of Teflon surface by proton microbeam and nitrogen ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Akane, E-mail: ogawa.akane@jaea.go.jp [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Satoh, Takahiro; Koka, Masashi; Kamiya, Tomihiro [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Kobayashi, Tomohiro [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 350-0198 (Japan)

    2013-11-01

    Teflon surfaces were modified using a combination of 3 MeV proton microbeam scanning and subsequent 250 keV N{sub 2}{sup +} ion beam irradiation. When a Teflon surface is irradiated using only an N{sub 2}{sup +} ion beam, micro-protrusions are densely formed in the irradiated area. It has been previously confirmed that these protrusions aid the attachment of biological cells, which then spread on the surface. Therefore, modification of the Teflon surface patterning is necessary in order to enhance its functionality as cell culture substrata. In this study, flat areas and depressed structures were created among the dense micro-protrusions by bubbles that were generated inside the sample using proton beam scanning. This modification will contribute to the fabrication of cell culture dishes with the advantages of micro-protrusions.

  16. Fabrication of micro-prominences on PTFE surface using proton beam writing

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Akane, E-mail: ogawa.akane@jaea.go.jp [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-Machi, Takasaki, Gunma 370-1292 (Japan); Satoh, Takahiro; Koka, Masashi [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-Machi, Takasaki, Gunma 370-1292 (Japan); Kobayashi, Tomohiro [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 350-0198 (Japan); Kamiya, Tomihiro [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-Machi, Takasaki, Gunma 370-1292 (Japan)

    2013-07-01

    Polytetrafluoroethylene (PTFE) is a typical fluoropolymer and it has several desirable technological properties such as electrical insulation, solid lubrication etc. However, the conventional microstructuring methods have not been well applied to PTFE due to its chemical inertness. Some effective micromachining using synchrotron radiation or ion beam irradiation has been reported. In this study, we create micro-prominences by raising the original surface using proton beam writing (PBW) without chemical etching. A conical prominence was formed by spiral drawing from the center with a 3 MeV proton beam. The body was porous, and the bulk PTFE below the prominence changed to fragmented structures. With decreasing writing speed, the prominence became taller but the height peaked. The prominence gradually reduced in size after the speed reached the optimum value. We expect that these porous projections with high aspect ratio will be versatile in medical fields and microelectromechanical systems (MEMS) technology.

  17. An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons

    Science.gov (United States)

    Camarlinghi, N.; Sportelli, G.; Battistoni, G.; Belcari, N.; Cecchetti, M.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Retico, A.; Romano, F.; Sala, P.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.

    2014-04-01

    Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β+ activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β+ activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo.

  18. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Spädtke, Peter, E-mail: p.spaedtke@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany)

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  19. Beam Size Estimation from Luminosity Scans at the LHC During 2015 Proton Physics Operation

    CERN Document Server

    Hostettler, Michael

    2016-01-01

    As a complementary method for measuring the beam size for high-intensity beams at 6.5 TeV flat-top energy, beam separation scans were done regularly at the CERN Large Hadron Collider (LHC) during 2015 proton physics operation. The luminosities measured by the CMS experiment during the scans were used to derive the convoluted beam size and orbit offset bunch-by-bunch. This contribution will elaborate on the method used to derive plane-by-plane, bunch-by-bunch emittances from the scan data, including uncertainties and corrections. The measurements are then compared to beam size estimations from absolute luminosity, synchrotron light telescopes, and wire scanners. In particular, the evolution of the emittance over the course of several hours in collisions is studied and bunch-by-bunch differences are highlighted.

  20. Influence of higher order modes on the beam stability in the high power superconducting proton linac

    CERN Document Server

    Schuh, M; Gerigk, F; Tuckmantel, J

    2011-01-01

    Higher order modes (HOMs) can severely limit the operation of superconducting cavities in a linear accelerator with high beam current, high duty factor, and complex pulse structure. The full HOM spectrum has to be analyzed in order to identify potentially dangerous modes already during the design phase and to define their damping requirements. For this purpose a dedicated beam simulation code simulation of higher order mode dynamics (SMD) focused on beam-HOM interaction was developed, taking into account important effects like the HOM frequency spread, beam input jitter, different chopping patterns, as well as klystron and alignment errors. Here, SMD is used to investigate the influence of HOMs in detail in the superconducting proton linac at CERN and their potential to drive beam instabilities in the longitudinal and transverse plane.

  1. Influence of higher order modes on the beam stability in the high power superconducting proton linac

    Directory of Open Access Journals (Sweden)

    Marcel Schuh

    2011-05-01

    Full Text Available Higher order modes (HOMs can severely limit the operation of superconducting cavities in a linear accelerator with high beam current, high duty factor, and complex pulse structure. The full HOM spectrum has to be analyzed in order to identify potentially dangerous modes already during the design phase and to define their damping requirements. For this purpose a dedicated beam simulation code simulation of higher order mode dynamics (SMD focused on beam-HOM interaction was developed, taking into account important effects like the HOM frequency spread, beam input jitter, different chopping patterns, as well as klystron and alignment errors. Here, SMD is used to investigate the influence of HOMs in detail in the superconducting proton linac at CERN and their potential to drive beam instabilities in the longitudinal and transverse plane.

  2. Test~of~Beam~Extraction~by~Crystal~Channeling~at~the~SPS: A First Step towards a LHC Extracted Beam

    CERN Multimedia

    2002-01-01

    % RD22 \\\\ \\\\ The availability of a beam extracted out of the LHC accelerator would open up very interesting possibilities for B-physics, in particular for the study of CP-violation. Channeling in bent crystals appears to be the most promising method to produce an extracted beam of intensity $\\sim$~10$^{8}$ p/sec. This would provide as many as 10$^{10}$ $ B \\bar{B} $ pairs per year of run, two orders of magnitude more than could be produced by an e$^+$e$^-$ B-factory with L~=~10$^{34}$ cm$^{-2}$s$^{-1}$ We propose a R\\&D program to study beam extraction at the CERN SPS, using a silicon bent crystal to be installed in the SPS beam pipe and placed next to the beam in such a way as to intercept the beam halo. Transverse excitation of the beam in presence of non-linearities will be used to create halo conditions similar to what are expected for LHC.

  3. Characterization of the proton beam from an IBA Cyclone 18/9 with radiochromic film EBT2

    Energy Technology Data Exchange (ETDEWEB)

    Sansaloni, F.; Lagares, J. I.; Arce, P.; Llop, J.; Perez, J. M. [Medical Applications Unit, Technology Department, CIEMAT, Madrid (Spain); Radiochemistry Department, Molecular Imaging unit, CIC-biomaGUNE, San Sebastian (Spain); Technology Department, CIEMAT (Spain)

    2012-12-19

    The use of radiochromic films is widespread in different areas of medical physics like radiotherapy and hadrontherapy; however, radiochromic films have been scarcely used in the characterization of proton or deuteron beams generated in biomedical cyclotrons. In this paper the radiochromic film EBT2 was used to study the beam size and the proton beam energy of an IBA Cyclone 18/9 cyclotron. The results indicate that the beam size can be easily measured at a very low expense; however, an accurate determination of the beam energy might require the implementation of certain experimental improvements.

  4. Characterization of the proton beam from an IBA Cyclone 18/9 with radiochromic film EBT2

    Science.gov (United States)

    Sansaloni, F.; Lagares, J. I.; Arce, P.; Llop, J.; Perez, J. M.

    2012-12-01

    The use of radiochromic films is widespread in different areas of medical physics like radiotherapy and hadrontherapy; however, radiochromic films have been scarcely used in the characterization of proton or deuteron beams generated in biomedical cyclotrons. In this paper the radiochromic film EBT2 was used to study the beam size and the proton beam energy of an IBA Cyclone 18/9 cyclotron. The results indicate that the beam size can be easily measured at a very low expense; however, an accurate determination of the beam energy might require the implementation of certain experimental improvements.

  5. Range shift and dose perturbation with high-density materials in proton beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Nichiporov, D., E-mail: nichipor@indiana.edu [Indiana University Integrated Science and Technology Hall, 2401 Milo B. Sampson La, Bloomington, IN 47408-1398 (United States); Moskvin, V. [Indiana University School of Medicine, 535 Barnhill Dr., RT 041, Indianapolis, IN 46202 (United States); Indiana University Health Proton Therapy Center, 2425 Milo B. Sampson La, Bloomington, IN 47408 (United States); Fanelli, L. [Indiana University Health Proton Therapy Center, 2425 Milo B. Sampson La, Bloomington, IN 47408 (United States); Das, I.J. [Indiana University School of Medicine, 535 Barnhill Dr., RT 041, Indianapolis, IN 46202 (United States); Indiana University Health Proton Therapy Center, 2425 Milo B. Sampson La, Bloomington, IN 47408 (United States)

    2011-11-15

    Radiotherapy with proton beams requires accurate knowledge of the proton range. When materials with high atomic numbers (Z) and densities (e.g. prostheses or implants) are present in the patient, they give rise to pronounced uncertainties in computed tomography data and to large errors in proton range and dose calculations. A modified analytical expression is proposed for the observed range shift in water in the presence of a high-density material of known thickness and density. The expression was verified experimentally in a clinical beam with various thicknesses and materials in a water phantom, at several beam ranges and at different depths. Measurements were also made behind the medium-to-water interface to evaluate dose perturbation using a thin window parallel plate ion chamber. Primary particle fluence variations due to the range shift were studied in a separate experiment. The measured range shift was in good agreement ({+-}0.3 mm) with the analytical expression for most of the materials studied. A small, but consistent dependence of range shift on the energy of impinging protons was found. Dose perturbation factor in water downstream of the material is less than +5% for thicknesses up to 8 g/cm{sup 2}. The proposed analytical expression can be used in clinical situations to determine the range shift in patient caused by an implanted material. Dose perturbation in the presence of an implant is due to the changes in primary particle fluence resulting from several physical processes.

  6. Development of abiotic-stress resistant warm season trufgrasses by proton-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. W.; Kim, J. Y.; Jeong, S. H. [Korea Univ., Seoul (Korea, Republic of)

    2007-04-15

    The direct use of mutation is a valuable approach to generate genetic variation in crop species by altering agronomically useful major traits. The proton beam, as a mutagen, was applied to improve resistance traits of Zoysia grass under various abiotic stresses. Proton beam was irradiated to mature dry seeds of Zenith (Zoysia grass), which is well-adapted to Korean climate, using a proton- accelerator with seven different doses (50, 100, 150, 200, 250, 300, 400 Gy). Individual seedling of M1 plant was transplanted from the seed bed and allowed to reach appropriate plant mass. Clones that showed superior growth were chosen and transplanted to pots for further clone propagation and field evaluation. Growth characteristics of turfgrass, such as plant height, leaf length, leaf width, number of tiller were evaluated ninety days after sowing. Although large variation within each dose, noticeable differences were found among different irradiated doses. Most of the mutant clones derived from the irradiation treatment showed more vigorous growth than the control plants. RAPD (Random Amplified Polymorphic DNA) and AFLP (Amplified Fragment Length Polymorphism) methods were conducted to analyze genomic variations associated with proton beam irradiation. In order to establish selection criteria for selection of salt-stress resistance plants, an in vitro method that is able to select salt-stress resistant mutants in liquid media without ambient disturbances. Total 647 predominance clones that were considered as abiotic stress resistant mutants were transplanted to the field for further evaluation.

  7. A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries

    Energy Technology Data Exchange (ETDEWEB)

    Westerly, David C. [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Mo Xiaohu; DeLuca, Paul M. Jr. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705 (United States); Tome, Wolfgang A. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705 and Institute of Onco-Physics, Albert Einstein College of Medicine and Division of Medical Physics, Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York 10461 (United States); Mackie, Thomas R. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705 and Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792 (United States)

    2013-06-15

    Purpose: Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke ['Two-dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media,' Phys. Med. Biol. 47, 3313-3330 (2002)] developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. Methods: Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Moliere scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. Results: Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as much as 1.4 mm (21%) at

  8. Target irradiation facility and targetry development at 160 MeV proton beam of Moscow linac

    CERN Document Server

    Zhuikov, B L; Konyakhin, N A; Vincent, J

    1999-01-01

    A facility has been built and successfully operated with the 160 MeV proton beam of Moscow Meson factory LINAC, Institute for Nuclear Research (INR) of Russian Academy of Science, Troitsk. The facility was created for various isotope production goals as well as for fundamental nuclear investigations at high intensity beam (100 mu A and more). An important part of the facility targetry system is a high-intensity beam monitoring collimator device. Measurements of the temperature distribution between collimator sectors, cooling water flow and temperature, and the beam current, provide an opportunity to compute beam losses and beam position. The target holder design allows easy insertion by manipulator and simultaneous bombardment of several different targets of various types and forms, and variation of proton energy on each target over a wide range below 160 MeV. The main target utilized for commercial sup 8 sup 2 Sr isotope production is metallic rubidium in a stainless-steel container. A regular wet chemistry ...

  9. A preliminary study of the feasibility of using superconducting quarter-wave resonators for accelerating high intensity proton beams

    Institute of Scientific and Technical Information of China (English)

    YANG Liu; LU Xiang-Yang; QUAN Sheng-Wen; YAO Zhong-Yuan; LUO Xing; ZHOU Kui

    2012-01-01

    The superconducting (SC) cavities currently used for the acceleration of protons at a low velocity range are based on half-wave resonators.Due to the rising demand on high current,the issue of beam loading and space-charge problems has arisen.Qualities of low cost and high accelerating efficiency are required for SC cavities,which are properly fitted by using SC quarter-wave resonators (QWR).We propose a concept of using QWRs with frequency 162.5 MHz to accelerate high current proton beams.The main factor limiting SC QWRs being applied to high current proton beams is vertical beam steering,which is dominantly caused by the magnetic field on axis.In this paper,we intend to analyze steering and eliminate it to verify the qualification of using QWRs to accelerate high intensity proton beams.

  10. Design and application of 3D-printed stepless beam modulators in proton therapy

    Science.gov (United States)

    Lindsay, C.; Kumlin, J.; Martinez, D. M.; Jirasek, A.; Hoehr, C.

    2016-06-01

    A new method for the design of stepless beam modulators for proton therapy is described and verified. Simulations of the classic designs are compared against the stepless method for various modulation widths which are clinically applicable in proton eye therapy. Three modulator wheels were printed using a Stratasys Objet30 3D printer. The resulting depth dose distributions showed improved uniformity over the classic stepped designs. Simulated results imply a possible improvement in distal penumbra width; however, more accurate measurements are needed to fully verify this effect. Lastly, simulations were done to model bio-equivalence to Co-60 cell kill. A wheel was successfully designed to flatten this metric.

  11. Orbital parameters of proton and deuteron beams in the NICA collider with solenoid Siberian snakes

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Kekelidze, V. D.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2016-02-01

    Two solenoid Siberian snakes are required to obtain ion polarization in the “spin transparency” mode of the NICA collider. The field integrals of the solenoid snakes for protons and deuterons at maximum momentum of 13.5 GeV/c are equal to 2×50 T·m and 2×160 T·m respectively. The snakes introduce strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in NICA collider with solenoid snakes are presented.

  12. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    CERN Document Server

    Alba, R; Boccaccio, P; Celentano, A; Colonna, N; Cosentino, G; Del Zoppo, A; Di Pietro, A; Esposito, J; Figuera, P; Finocchiaro, P; Kostyukov, A; Maiolino, C; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Santonocito, D; Schillaci, M

    2012-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  13. Water equivalence of some plastic-water phantom materials for clinical proton beam dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiti, L., E-mail: l.al-sulaiti@surrey.ac.uk [Physics Department, University of Surrey, Guildford (United Kingdom); Radiation Dosimetry Team, National Physical Laboratory, Teddington (United Kingdom); Shipley, D.; Thomas, R. [Radiation Dosimetry Team, National Physical Laboratory, Teddington (United Kingdom); Owen, P. [Physics Department, University of Surrey, Guildford (United Kingdom); Radiation Dosimetry Team, National Physical Laboratory, Teddington (United Kingdom); Kacperek, A. [Douglas Cyclotron, Clatterbridge Centre for Oncology, Wirral (United Kingdom); Regan, P.H. [Physics Department, University of Surrey, Guildford (United Kingdom); Palmans, H. [Radiation Dosimetry Team, National Physical Laboratory, Teddington (United Kingdom)

    2012-07-15

    Plastic-water phantom materials are not exactly water equivalent since they have a different elemental composition and different interaction cross sections for protons than water. Several studies of the water equivalence of plastic-water phantom materials have been reported for photon and electron beams, but none for clinical proton beams. In proton beams, the difference between non-elastic nuclear interactions in plastic-water phantom materials compared to those in water should be considered. In this work, the water equivalence of Plastic Water{sup Registered-Sign} (PW){sup 1}, Plastic Water{sup Registered-Sign} Diagnostic Therapy (PWDT){sup 1} and solid water (WT1){sup 2} phantoms was studied for clinical proton energies of 60 MeV and 200 MeV. This was done by evaluating the fluence correction factor at equivalent depths; first with respect to water and then with respect to graphite by experiment and Monte Carlo (MC) simulations using FLUKA. MC simulations showed that the fluence correction with respect to water was less than 0.5% up to the entire penetration depth of the protons at 60 MeV and less than 1% at 200 MeV up to 20 cm depth for PWDT, PW and WT1. With respect to graphite the fluence correction was about 0.5% for 60 MeV and about 4% for 200 MeV. The experimental results for modulated and un-modulated 60 MeV proton beams showed good agreement with the MC simulated fluence correction factors with respect to graphite deviating less than 1% from unity for the three plastic-water phantoms. - Highlights: Black-Right-Pointing-Pointer We study plastic-water in clinical proton beams by experiment and Monte Carlo. Black-Right-Pointing-Pointer We obtain fluence correction factors for water and graphite. Black-Right-Pointing-Pointer The correction factor for water was close to 1 at 60 MeV and <0.990 at 200 MeV. Black-Right-Pointing-Pointer The correction factor for graphite was {approx}0.5% at 60 MeV and up to 4% at 200 MeV.

  14. High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    CERN Document Server

    Li, Yangmei; Lotov, Konstantin V; Sosedkin, Alexander P; Hanahoe, Kieran; Mete-Apsimon, Oznur

    2016-01-01

    Proton-driven plasma wakefield accelerators have numerically demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to energy frontier in a single plasma stage. However, due to the intrinsic strong and radially varying transverse fields, the beam quality is still far from suitable for practical application in future colliders. Here we propose a new accelerating region which is free from both plasma electrons and ions in the proton-driven hollow plasma channel. The high quality electron beam is therefore generated with this scheme without transverse plasma fields. The results show that a 1 TeV proton driver can propagate and accelerate an electron beam to 0.62 TeV with correlated energy spread of 4.6% and well-preserved normalized emittance below 2.4 mm mrad in a single hollow plasma channel of 700 m. More importantly, the beam loading tolerance is significantly improved compared to the uniform plasma case. This high quality an...

  15. Dark Matter Search in a Proton Beam Dump with MiniBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A.A.; et al.

    2017-02-08

    The MiniBooNE-DM collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8 GeV Booster proton beam in a dedicated run with $1.86 \\times 10^{20}$ protons delivered to a steel beam dump. The MiniBooNE detector, 490~m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to an 90\\% confidence limit on the dark-matter cross section parameter, $Y=\\epsilon^2\\alpha^\\prime(m_\\chi/m_v)^4 \\lesssim10^{-8}$, for $\\alpha^\\prime=0.5$ and for dark-matter masses of $0.01proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. These results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.

  16. Proton Lateral Broadening Distribution Comparisons Between GRNTRN, MCNPX, and Laboratory Beam Measurements

    Science.gov (United States)

    Mertens, Christopher J.; Moyers, Michael F.; Walker, Steven A.; Tweed, John

    2010-01-01

    Recent developments in NASA s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.

  17. Beam Measurements of the Longitudinal impedance of the CERN Super Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2090034; Petrache, Costel

    One of the main challenges of future physics projects based on particle accelerators is the need for high intensity beams. However, collective effects are a major limitation which can deteriorate the beam quality or limit the maximum intensity due to losses. The CERN SPS, which is the last injector for the LHC, is currently unable to deliver the beams required for future projects due to longitudinal instabilities. The numerous devices in the machine (accelerating RF cavities, injection and extraction magnets, vacuum flanges. etc.) lead to variations in the geometry and material of the chamber through which the beam is travelling. The electromagnetic interaction within the beam (space charge) and of the beam with its environment are described by a coupling impedance which affects the motion of the particles and leads to instabilities for high beam intensities. Consequently, the critical impedance sources should be identified and solutions assessed. To have a reliable impedance model of an accelerator, the...

  18. Proton-induced knockout reactions with polarized and unpolarized beams

    Science.gov (United States)

    Wakasa, T.; Ogata, K.; Noro, T.

    2017-09-01

    Proton-induced knockout reactions provide a direct means of studying the single particle or cluster structures of target nuclei. In addition, these knockout reactions are expected to play a unique role in investigations of the effects of the nuclear medium on nucleon-nucleon interactions as well as the properties of nucleons and mesons. However, due to the nature of hadron probes, these reactions can suffer significant disturbances from the nuclear surroundings and the quantitative theoretical treatment of such processes can also be challenging. In this article, we review the experimental and theoretical progress in this field, particularly focusing on the use of these reactions as a spectroscopic tool and as a way to examine the medium modification of nucleon-nucleon interactions. With regard to the former aspect, the review presents a semi-quantitative evaluation of these reactions based on existing experimental data. In terms of the latter point, we introduce a significant body of evidence that suggests, although does not conclusively prove, the existence of medium effects. In addition, this paper also provides information and comments on other related subjects.

  19. Proton irradiation damage of an annealed Alloy 718 beam window

    Science.gov (United States)

    Bach, H. T.; Anderoglu, O.; Saleh, T. A.; Romero, T. J.; Kelsey, C. T.; Olivas, E. R.; Sencer, B. H.; Dickerson, P. O.; Connors, M. A.; John, K. D.; Maloy, S. A.

    2015-04-01

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cut into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ∼0.2-0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ∼34-120 °C with short excursion to be ∼47-220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (∼0.2-0.7 dpa) was the highest and attributed to the formation of γ″ precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (∼11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.

  20. Development of a raster electronics system for expanding the APT proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Chapelle, S.; Hubbard, E.L.; Smith, T.L. [General Atomics, San Diego, CA (United States); Schulze, M.E.; Shafer, R.E. [General Atomics, Los Alamos, NM (United States)

    1998-12-31

    A 1700 MeV, 100 mA proton linear accelerator is being designed for Accelerator Production of Tritium (APT). A beam expansion system is required to uniformly irradiate a 19 x 190 cm tritium production target. This paper describes a beam expansion system consisting of eight ferrite dipole magnets to raster the beam in the x- and y-planes and also describes the salient features of the design of the electronics that are unique to the expander. Eight Insulated Gate Bipolar Transistor (IGBT)-based modulators drive the raster magnets with triangular current waveforms that are synchronized using phase-locked loops (PLLs) and voltage controlled crystal oscillators (VCXOs). Fault detection circuitry shuts down the beam before the target can be damaged by a failure of the raster system. Test data are presented for the prototype system.

  1. Effect of pulsed hollow electron-lens operation on the proton beam core in LHC

    CERN Document Server

    Fitterer, Miriam; Valishev, Alexander

    2016-01-01

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the HL-LHC. In order to further increase the diffusion rates for a fast halo removal as e.g. desired before the squeeze, the electron lens (e-lens) can be operated in pulsed mode. In case of profile imperfections in the electron beam the pulsing of the e-lens induces noise on the proton beam which can, depending on the frequency content and strength, lead to emittance growth. In order to study the sensitivity to the pulsing pattern and the amplitude, a beam study (machine development MD) at the LHC has been proposed for August 2016 and we present in this note the preparatory simulations and estimates.

  2. TANGO standard software to control the Nuclotron beam slow extraction

    Science.gov (United States)

    Andreev, V. A.; Volkov, V. I.; Gorbachev, E. V.; Isadov, V. A.; Kirichenko, A. E.; Romanov, S. V.; Sedykh, G. S.

    2016-09-01

    TANGO Controls is a basis of the NICA control system. The report describes the software which integrates the Nuclotron beam slow extraction subsystem into the TANGO system of NICA. Objects of control are power supplies for resonance lenses. The software consists of the subsystem device server, remote client and web-module for viewing the subsystem data.

  3. DESIGN OF BEAM-EXTRACTION SEPTUM MAGNET FOR THE SNS.

    Energy Technology Data Exchange (ETDEWEB)

    TSOUPAS,N.; LEE,Y.Y.; RANK,J.; TUOZZOLO,J.

    2001-06-18

    The beam-extraction process from the SNS accumulator ring [1,2] requires a Lambertson septum magnet. In this paper we discuss the geometrical and magnetic field requirements of the magnet and present results obtained from two and three dimensional magnetic field calculations that shows the field quality in the regions of interest of the septum magnet.

  4. Nuclear halo of a 177\\,MeV proton beam in water

    CERN Document Server

    Gottschalk, Bernard; Daartz, Juliane; Wagner, Miles S

    2014-01-01

    The dose distribution of a pencil beam in a water tank consists of a core, a halo and an aura. The core consists of primary protons which suffer multiple Coulomb scattering (MCS) and slow down by multiple collisions with atomic electrons (Bethe-Bloch theory). The halo consists of charged secondaries, many of them protons, from elastic interactions with H, elastic and inelastic interactions with O, and nonelastic interactions with O. We show that the halo radius is roughly one third of the beam range. The aura consists of neutral secondaries (neutrons and gamma rays) and the charged particles they set in motion. We have measured the core/halo at 177 MeV using a test beam offset in a water tank. The beam monitor was a plane parallel ionization chamber (IC) and the field IC a dose calibrated Exradin T1. Our dose measurements are absolute. We took depth-dose scans at ten displacements from the beam axis ranging from 0 to 10 cm. The dose spans five orders of magnitude, and the transition from halo to aura is obvio...

  5. Modeling and simulation of beam induced backgrounds measured by ATLAS Forward Proton (AFP) detector

    CERN Document Server

    Huang, Yicong

    The ATLAS Forward Proton (AFP) detector is a forward detector of the ATLAS experiment at CERN. Its main goal is to trigger diffractive protons in collisions at the Large Hadron Collider (LHC). To achieve this, the detector has to be placed very close to the beam. Inevitable consequence is that its measurements can be easily affected by the beam induced background. This thesis presents a study of the beam induced background in the AFP detector and discuss methods for its removal. The Geant4 simulations and data, including non-colliding bunches are used to identify characteristic features of beam induced backgrounds. A method using combination of signals detected by the AFP detector and the Minimum Bias Trigger Scintillators (MBTS) is used to selected single diffractive event namely on low pile-up data taken during the first AFP physics run in 2016. Finally, an estimate of the beam induced backgrounds level in data together with a study of the radiation environment at the AFP stations was made, comparing result...

  6. Efficient calculation of local dose distribution for response modelling in proton and ion beams

    CERN Document Server

    Greilich, S; Kiderlen, M; Andersen, C E; Bassler, N

    2013-01-01

    We present an algorithm for fast and accurate computation of the local dose distribution in MeV beams of protons, carbon ions or other heavy-charged particles. It uses compound Poisson-process modelling of track interaction and succesive convolutions for fast computation. It can handle mixed particle fields over a wide range of fluences. Since the local dose distribution is the essential part of several approaches to model detector efficiency or cellular response it has potential use in ion-beam dosimetry and radiotherapy.

  7. Efficient calculation of local dose distributions for response modeling in proton and heavier ion beams

    DEFF Research Database (Denmark)

    Greilich, Steffen; Hahn, Ute; Kiderlen, Markus;

    2014-01-01

    We present an algorithm for fast and accurate computation of the local dose distribution in MeV beams of protons, carbon ions or other heavy charged particles. It uses compound Poisson modeling of track interaction and successive convolutions for fast computation. It can handle arbitrary complex ...... mixed particle fields over a wide range of fluences. Since the local dose distribution is the essential part of several approaches to model detector efficiency and cellular response it has potential use in ion-beam dosimetry, radiotherapy, and radiobiology....

  8. New exclusion limits for dark gauge forces from proton Bremsstrahlung in beam-dump data

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Brunner, Juergen [Aix-Marseille Univ. CNRS/IN2P3 (France). CPPM

    2013-11-15

    We re-analyze published proton beam dump data taken at the U70 accelerator at IHEP Serpukhov with the {nu}-calorimeter I experiment in 1989 to set mass-coupling limits for dark gauge forces. The corresponding data have been used for axion and light Higgs particle searches before. More recently, limits on dark gauge forces have been derived from this data set, considering a dark photon production from {pi}{sup 0}-decay. Here we determine extended mass and coupling exclusion bounds for dark gauge bosons ranging to masses m{sub {gamma}'} of 624 MeV at admixture parameters {epsilon}{approx_equal}10{sup -6} considering high-energy Bremsstrahlung of the U-boson of the initial proton beam and different detection mechanisms.

  9. Pulsed high field magnets. An efficient way of shaping laser accelerated proton beams for application

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Bagnoud, Vincent; Blazevic, Abel; Busold, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institut Jena, 07734 Jena (Germany); Brabetz, Christian; Schumacher, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Deppert, Oliver; Jahn, Diana; Roth, Markus [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karsch, Leonhard; Masood, Umar [OncoRay-National Center for Radiation Research in Oncology, TU Dresden, 01307 Dresden (Germany); Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany)

    2015-07-01

    Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport. We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.

  10. Beam asymmetry Σ in η′ photoproduction off the proton at the GRAAL experiment

    Directory of Open Access Journals (Sweden)

    Mandaglio G.

    2014-06-01

    Full Text Available The only recent η′ photoproduction data off proton available in literature are the differential and total cross sections published by the CLAS and CB-ELSA-TAPS Collaborations. However, the wide information about reaction cross sections are not sufficient to understand the role of resonances involved in the process. Different theoretical works stressed the importance to measure also polarization observables in order to solve the ambiguities in the choice of the parameters used in their models. We present the analysis of η′ photoproduction off the proton analysis, identifying the investigated meson by the π+π−η, π0π0η, and γγ decay modes by using the GRAAL apparatus; and we show the preliminary GRAAL results on the beam asymmetry Σ at beam energy of 1475 MeV.

  11. The potential of proton beam radiation therapy in intracranial and ocular tumours

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, Erik [Univ. Hospital, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology; Bjelkengren, Goeran [Univ. Hospital, Malmoe (Sweden). Dept. of Oncology; Glimelius, Bengt [Karolinska Inst., Stockholm (Sweden). Dept. of Oncology and Pathology; Akademiska sjukhuset, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology

    2005-12-01

    A group of oncologists and hospital physicists have estimated the number of patients in Sweden suitable for proton beam therapy. The estimations have been based on current statistics of tumour incidence, number of patients potentially eligible for radiation treatment, scientific support from clinical trials and model dose planning studies and knowledge of the dose-response relations of different tumours and normal tissues. In intracranial benign and malignant tumours, it is estimated that between 130 and 180 patients each year are candidates for proton beam therapy. Of these, between 50 and 75 patients have malignant glioma, 30-40 meningeoma, 20-25 arteriovenous malformations, 20-25 skull base tumours and 10-15 pituitary adenoma. In addition, 15 patients with ocular melanoma are candidates.

  12. The effect of delta rays on the ionometric dosimetry of proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Casnati, E.; Baraldi, C.; Tartari, A. [Dipartimento di Fisica, Universita di Ferrara, I-44100 Ferrara (Italy); INFN, Sezione di Ferrara, I-44100 Ferrara (Italy); Boccaccio, P. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Bonifazzi, C. [Dipartimento di Scienze Biomediche e Terapie Avanzate, Sezione di Fisiologia Umana, Universita di Ferrara, I-44100 Ferrara (Italy); Singh, B. [Physics Department, Punjabi University, Patiala (India)

    1998-03-01

    The interface effects arising in the measurement of absorbed dose by ionization chambers, owing to the inhomogeneity between the walls and the gas, have been evaluated by an analytical model. The geometrical situation considered here is appropriate for representing the behaviour of a plane-parallel ionization chamber exposed to a radiotherapeutic beam of protons. Two gases, dry air and tissue equivalent gas (methane based), as well as six materials commonly used in ionization chamber walls, i.e. graphite, A-150 tissue equivalent plastic, C-522 air equivalent plastic, nylon type 6, polymethyl methacrylate and polystyrene, have been examined. The analysis of the results shows that, within the limits of the detector dimensions and proton energies commonly used in the dosimetry of radiotherapeutic beams, these effects, if not taken into account in the measurement interpretation, can entail deviations of up to about 2% with respect to the correct absorbed dose in gas. (author)

  13. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinigardi, Stefano, E-mail: sinigardi@bo.infn.it [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Giove, Dario; De Martinis, Carlo [Dipartimento di Fisica, Università di Milano and INFN Sezione di Milano, Via F.lli Cervi 201, I-20090 Segrate (Italy); Bolton, Paul R. [Kansai Photon Science Institute (JAEA), Umemidai 8-1-7, Kizugawa-shi, Kyoto 619-0215 (Japan)

    2014-03-11

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15M€. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  14. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    Science.gov (United States)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  15. Optimizing the modified microdosimetric kinetic model input parameters for proton and 4He ion beam therapy application

    Science.gov (United States)

    Mairani, A.; Magro, G.; Tessonnier, T.; Böhlen, T. T.; Molinelli, S.; Ferrari, A.; Parodi, K.; Debus, J.; Haberer, T.

    2017-06-01

    Models able to predict relative biological effectiveness (RBE) values are necessary for an accurate determination of the biological effect with proton and 4He ion beams. This is particularly important when including RBE calculations in treatment planning studies comparing biologically optimized proton and 4He ion beam plans. In this work, we have tailored the predictions of the modified microdosimetric kinetic model (MKM), which is clinically applied for carbon ion beam therapy in Japan, to reproduce RBE with proton and 4He ion beams. We have tuned the input parameters of the MKM, i.e. the domain and nucleus radii, reproducing an experimental database of initial RBE data for proton and He ion beams. The modified MKM, with the best fit parameters obtained, has been used to reproduce in vitro cell survival data in clinically-relevant scenarios. A satisfactory agreement has been found for the studied cell lines, A549 and RENCA, with the mean absolute survival variation between the data and predictions within 2% and 5% for proton and 4He ion beams, respectively. Moreover, a sensitivity study has been performed varying the domain and nucleus radii and the quadratic parameter of the photon response curve. The promising agreement found in this work for the studied clinical-like scenarios supports the usage of the modified MKM for treatment planning studies in proton and 4He ion beam therapy.

  16. Investigation for interaction between residual gas and proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. M.; Kim, H. S.; Yoon, S. P.; Kwon, H. J.; Cho, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The electromagnet, vacuum, and radio frequency (RF) are fundamental building blocks of accelerator. Most of the accelerators demands ultra-high vacuum except for linear accelerator in which particles travels to the target 1 time. The linear accelerators and normal vacuum devices are usually operated between 10{sup -7} and 10{sup -8} Torr. We have also tried to set up test stand for ion source generated in the pressure range from 10{sup -7} to 10{sup -8} Torr. As basic research for base pressure, we have examined the interactions between the accelerated particles and the residual gas in high vacuum based on the results of residual gas analysis (RGA). Based on RGA result, the interaction between residual gas and accelerated ion was examined. The residual gases were Ar, CO{sub 2}, H{sub 2}, H{sub 2}O, C{sub x}H{sub x}, N{sub 2}/CO, and O{sub 2} and most of residual gas was considered as H{sub 2}O. When number of collisions per second was considered, 1 neutron in 10{sup 11} had collision while traversing the target at 4 x 10{sup -8} Torr. Beam loss wasn't generated and energy loss and position distribution was calculated by using SRIM code.

  17. Study of the effects of high-energy proton beams on escherichia coli

    Science.gov (United States)

    Park, Jeong Chan; Jung, Myung-Hwan

    2015-10-01

    Antibiotic-resistant bacterial infection is one of the most serious risks to public health care today. However, discouragingly, the development of new antibiotics has progressed little over the last decade. There is an urgent need for alternative approaches to treat antibiotic-resistant bacteria. Novel methods, which include photothermal therapy based on gold nano-materials and ionizing radiation such as X-rays and gamma rays, have been reported. Studies of the effects of high-energy proton radiation on bacteria have mainly focused on Bacillus species and its spores. The effect of proton beams on Escherichia coli (E. coli) has been limitedly reported. Escherichia coli is an important biological tool to obtain metabolic and genetic information and is a common model microorganism for studying toxicity and antimicrobial activity. In addition, E. coli is a common bacterium in the intestinal tract of mammals. In this research, the morphological and the physiological changes of E. coli after proton irradiation were investigated. Diluted solutions of cells were used for proton beam radiation. LB agar plates were used to count the number of colonies formed. The growth profile of the cells was monitored by using the optical density at 600 nm. The morphology of the irradiated cells was observed with an optical microscope. A microarray analysis was performed to examine the gene expression changes between irradiated samples and control samples without irradiation. E coli cells have observed to be elongated after proton irradiation with doses ranging from 13 to 93 Gy. Twenty-two were up-regulated more than twofold in proton-irradiated samples (93 Gy) compared with unexposed one.

  18. Pet imaging of dose distribution in proton-beam cancer therapy

    Directory of Open Access Journals (Sweden)

    Beebe-Wang Joanne

    2005-01-01

    Full Text Available Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than X-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as 12C, 14N, and 16O. These radio isotopes, mainly 11C, 13N, and 15O, al low imaging the therapy dose distribution using positron emission tomography. The resulting positron emission tomography images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This pa per uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner.

  19. Scaling of TNSA-accelerated proton beams with laser energy and focal spot size

    Energy Technology Data Exchange (ETDEWEB)

    Obst, Lieselotte; Metzkes, Josefine; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany); Technische Universitaet Dresden, Dresden (Germany); Zeil, Karl; Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany)

    2014-07-01

    We investigate the acceleration of high energy proton pulses generated by relativistic laser-plasma interaction. The scope of this work was the systematic investigation of the scaling of the laser proton acceleration process in the ultra-short pulse regime in order to identify feasible routes towards the potential medical application of this accelerator technology for the development of compact proton sources for radiation therapy. We present an experimental study of the proton beam properties under variation of the laser intensity irradiating thin foil targets. This was achieved by employing different parabolic mirrors with various focal lengths. Hence, in contrast to moving the target in and out of focus, the target was always irradiated with an optimized focal spot. By observing the back reflected light of the laser beam from the target front side, pre-plasma effects on the laser absorption could be investigated. The study was performed at the 150 TW Draco Laser facility of the Helmholtz-Zentrum Dresden-Rossendorf with ultrashort (30 fs) laser pulses of intensities of about 8 . 10{sup 20} W/cm{sup 2}.

  20. Anisotropic proton-conducting membranes prepared from swift heavy ion-beam irradiated ETFE films

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Yosuke [Department of Chemistry, Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Chen Jinhua [Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)], E-mail: chen.jinhua@jaea.go.jp; Asano, Masaharu; Maekawa, Yasunari [Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Katakai, Ryoichi [Department of Chemistry, Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Yoshida, Masaru [Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2007-10-15

    Poly(ethylene-co-tetrafluoroethylene) (ETFE) films were irradiated by swift heavy ion-beams of {sup 129}Xe{sup 23+} with fluences of 0, 3 x 10{sup 6}, 3 x 10{sup 7}, 3 x 10{sup 8} and 3 x 10{sup 9} ions/cm{sup 2}, followed by {gamma}-ray pre-irradiation for radiation grafting of styrene onto the ETFE films and sulfonation of the grafted ETFE films to prepare highly anisotropic proton-conducting membranes. The fluence of Xe ions and the addition of water in the grafting solvent were examined to determine their effect on the proton conductivity of the resultant membranes. It was found that the polymer electrolyte membrane prepared by grafting the styrene monomer in a mixture of 67% isopropanol and 33% water to the ETFE film with an ion-beam irradiation fluence of 3.0 x 10{sup 6} ions/cm{sup 2} was a highly anisotropic proton-conducting material, as the proton conductivity was three or more times higher in the thickness direction than in the surface direction of the membrane.

  1. Grid-controlled extraction of pulsed ion beams

    Science.gov (United States)

    Humphries, S., Jr.; Burkhart, C.; Coffey, S.; Cooper, G.; Len, L. K.; Savage, M.; Woodall, D. M.; Rutkowski, H.; Oona, H.; Shurter, R.

    1986-03-01

    Experimental results are presented on a method for extracting well-focused ion beams from plasma sources with time-varying properties. An electrostatic grid was used to stop the flow of plasma electrons so that only ions entered the extraction gap. In this case, ion flow in the gap was controlled by space-charge effects as it would be with a thermionic ion source. Constant extracted current was observed even with large variations of source flux. An insulator spark source and a metal-vapor vacuum arc were used to generate pulsed ion beams. With a hydrocarbon spark, current densities of 44 mA/cm2 were achieved at 20-kV extractor voltage for an 8-μs pulse. With an aluminum-vapor arc, a current density of 15 mA/cm2 (0.3 A total) was measured for a 50-μs pulse.

  2. Grid-controlled extraction of pulsed ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, S. Jr.; Burkhart, C.; Coffey, S.; Cooper, G.; Len, L.K.; Savage, M.; Woodall, D.M.; Rutkowski, H.; Oona, H.; Shurter, R.

    1986-03-15

    Experimental results are presented on a method for extracting well-focused ion beams from plasma sources with time-varying properties. An electrostatic grid was used to stop the flow of plasma electrons so that only ions entered the extraction gap. In this case, ion flow in the gap was controlled by space-charge effects as it would be with a thermionic ion source. Constant extracted current was observed even with large variations of source flux. An insulator spark source and a metal-vapor vacuum arc were used to generate pulsed ion beams. With a hydrocarbon spark, current densities of 44 mA/cm/sup 2/ were achieved at 20-kV extractor voltage for an 8-..mu..s pulse. With an aluminum-vapor arc, a current density of 15 mA/cm/sup 2/ (0.3 A total) was measured for a 50-..mu..s pulse.

  3. Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility

    Science.gov (United States)

    Petzoldt, J.; Roemer, K. E.; Enghardt, W.; Fiedler, F.; Golnik, C.; Hueso-González, F.; Helmbrecht, S.; Kormoll, T.; Rohling, H.; Smeets, J.; Werner, T.; Pausch, G.

    2016-03-01

    Proton therapy is an advantageous treatment modality compared to conventional radiotherapy. In contrast to photons, charged particles have a finite range and can thus spare organs at risk. Additionally, the increased ionization density in the so-called Bragg peak close to the particle range can be utilized for maximum dose deposition in the tumour volume. Unfortunately, the accuracy of the therapy can be affected by range uncertainties, which have to be covered by additional safety margins around the treatment volume. A real-time range and dose verification is therefore highly desired and would be key to exploit the major advantages of proton therapy. Prompt gamma rays, produced in nuclear reactions between projectile and target nuclei, can be used to measure the proton’s range. The prompt gamma-ray timing (PGT) method aims at obtaining this information by determining the gamma-ray emission time along the proton path using a conventional time-of-flight detector setup. First tests at a clinical accelerator have shown the feasibility to observe range shifts of about 5 mm at clinically relevant doses. However, PGT spectra are smeared out by the bunch time spread. Additionally, accelerator related proton bunch drifts against the radio frequency have been detected, preventing a potential range verification. At OncoRay, first experiments using a proton bunch monitor (PBM) at a clinical pencil beam have been conducted. Elastic proton scattering at a hydrogen-containing foil could be utilized to create a coincident proton-proton signal in two identical PBMs. The selection of coincident events helped to suppress uncorrelated background. The PBM setup was used as time reference for a PGT detector to correct for potential bunch drifts. Furthermore, the corrected PGT data were used to image an inhomogeneous phantom. In a further systematic measurement campaign, the bunch time spread and the proton transmission rate were measured for several beam energies between 69 and 225

  4. Gene Expression Profile of Proton Beam Irradiated Breast Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Park, Jeong Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Cancer stem cells (CSCs) possess characteristics associated with normal stem cells. The mechanisms regulating CSC radio-resistance, including to proton beam, remain unclear. They showed that a subset of cells expressing CD44 with weak or no CD24 expression could establish new tumors in xenograft mice. Recently, BCSC-targeting therapies have been evaluated by numerous groups. Strategies include targeting BCSC self-renewal, indirectly targeting the microenvironment, and directly killing BCSCs by chemical agents that induce differentiation, immunotherapy, and oncolytic viruses. However, the mechanisms regulating CSC radio-resistance, particularly proton beam resistance, remain unclear. The identification of CSC-related gene expression patterns would make up offer data for better understanding CSCs properties. In this study we investigated the gene expression profile of BCSCs isolation from MCF-7 cell line. Reducing BCSC resistance to pulsed proton beams is essential to improve therapeutic efficacy and decrease the 5-year recurrence rate. In this respect, the information of the level of gene expression patterns in BCSCs is attractive for understanding molecular mechanisms of radio-resistance of BCSCs.

  5. Comparative results on collimation of the SPS beam of protons and Pb ions with bent crystals

    CERN Document Server

    Scandale, W.; Assmann, R.; Bracco, C.; Cerutti, F.; Christiansen, J.; Gilardoni, S.; Laface, E.; Losito, R.; Masi, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Previtali, V.; Redaelli, S.; Valentino, G.; Schoofs, P.; Smirnov, G.; Tlustos, L.; Bagli, E.; Baricordi, S.; Dalpiaz, P.; Guidi, V.; Mazzolari, A.; Vincenzi, D.; Dabagov, S.; Murtas, F.; Carnera, A.; Della Mea, G.; De Salvador, D.; Lombardi, A.; Lytovchenko, O.; Tonezzer, M.; Cavoto, G.; Ludovici, L.; Santacesaria, R.; Valente, P.; Galluccio, F.; Afonin, A.G.; Bulgakov, M.K.; Chesnokov, Yu.A.; Maisheev, V.A.; Yazynin, I.A.; Kovalenko, A.D.; Taratin, A.M.; Uzhinskiy, V.V.; Gavrikov, Yu.A.; Ivanov, Yu.M.; Lapina, L.P.; Skorobogatov, V.V.; Ferguson, W.; Fulcher, J.; Hall, G.; Pesaresi, M.; Raymond, M.; Rose, A.; Ryan, M.; Zorba, O.; Robert-Demolaize, G.; Markiewicz, T.; Oriunno, M.; Wienands, U.

    2011-01-01

    New experiments on crystal assisted collimation have been carried out at the CERN SPS with stored beams of 120 Gev/c protons and Pb ions. Bent silicon crystals of 2 mm long with about 170 mu rad bend angle and a small residual torsion were used as primary collimators. In channeling conditions, the beam loss rate induced by inelastic interactions of particles with the crystal nuclei is minimal. The loss reduction was about 6 for protons and about 3 for Pb ions. Lower reduction value for Pb ions can be explained by their considerably larger ionization losses in the crystal. In one of the crystals, the measured fraction of the Pb ion beam halo deflected in channeling conditions was 74\\%, a value very close to that for protons. The intensity of the off-momentum halo leaking out from the collimation station was measured in the first high dispersion area downstream. The particle population in the shadow of the secondary collimator-absorber was considerably smaller in channeling conditions than for amorphous orienta...

  6. Beam transfer functions for relativistic proton bunches with beam–beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Görgen, P., E-mail: goergen@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Fischer, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-03-21

    We present a method for the recovery of the transverse tune spread directly from the beam transfer function (BTF). The model is applicable for coasting beams and bunched beams at high energy with a tune spread from transverse nonlinearities induced by the beam–beam effect or by an electron lens. Other sources of tune spread can be added. A method for the recovery of the incoherent tune spread without prior knowledge of the nonlinearity is presented. The approach is based on the analytic model for BTFs of coasting beams, which agrees very well with simulations results for bunched beams at relativistic energies with typically low synchrotron tune. A priori the presented tune spread recovery method is usable only in the absence of coherent modes, but additional simulation data shows its applicability even in the presence of coherent beam–beam modes. Finally agreement of both the analytic and simulation models with measurement data obtained at RHIC is presented. The proposed method successfully recovers the tune spread from analytic, simulated and measured BTF.

  7. Concept for ELENA Extraction and Beam Transfer Elements

    CERN Document Server

    Borburgh, J; Balhan, B; Barna, D; Bartmann, W; Fowler, T; Pricop, V; Sermeus, L; Vanbavinckhove, G

    2013-01-01

    In 2011 the ELENA decelerator was approved as a CERN project. Initially one extraction was foreseen, which should use a kicker and a magnetic septum which can be recuperated from an earlier installation. Since then a second extraction has been approved and a new solution was studied using only electric fields to extract the beam. This will be achieved by fast pulsing a separator, allowing single-bunch but also a full single-turn extraction from ELENA towards the experiments. The extraction and transfer requirements of ELENA are described, followed by the principal differences between the magnetic and electric field concepts. The design of electrostatic focussing and bending devices for the transfer lines will be presented. Finally the field quality which can be achieved with the separator and the concept of its power supply will be discussed.

  8. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study

    Science.gov (United States)

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R.; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-01

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ˜50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A 22Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  9. On the suitability of longitudinal profile measurements using Coherent Smith-Purcell radiation for high current proton beams

    CERN Document Server

    Barros, Joanna; Vieille-Grosjean, Mélissa; Kittelmann, Irena Dolenc; Thomas, Cyrille

    2014-01-01

    The use of Smith-Purcell radiation to measure electrons longitudinal profiles has been demonstrated at several facilities in the picosecond and sub-picosecond range. There is a strong interest for the development of non intercepting longitudinal profile diagnostics for high current proton beams. We present here results of simulations on the expected yield of longitudinal profile monitors using Smith-Purcell radiation for such proton beams.

  10. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation

    OpenAIRE

    Polf, Jerimy C.; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-01-01

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured ...

  11. Upgrade to a programmable timing system for the KOMAC proton linac and multi-purpose beam lines

    Science.gov (United States)

    Song, Young-Gi

    2016-09-01

    The KOMAC facility consists of low-energy components, including a 50-keV ion source, a lowenergy beam transport (LEBT), a 3-MeV radio-frequency quadrupole (RFQ), and a 20-MeV drift tube linac (DTL), as well as high-energy components, including seven DTL tanks for the 100-MeV proton beam. The KOMAC includes ten beam lines, five for 20-MeV beams and five for 100-MeV beams. The peak beam current and the maximum beam duty are 20 mA and 24% for the 20-MeV linac and 20 mA and 8% for the 100-MeV linac, respectively. Four high-voltage convertor modulators are used. Each modulator drives two or three klystrons. The peak output power is 5.8 MW, and the average power is 520 kW with a duty of 9%. The pulse width and repetition rate are 1.5 ms and 60 Hz, respectively. Each component of the pulsed operation mode has a timing trigger signal with precision synchronization. A timing system for beam extraction and for diagnostic components is required to provide precise pulse signals synchronized with a 300-MHz RF reference frequency. In addition, the timing parameters should be capable of real-time changes in accordance with the beam power. The KOMAC timing system has been upgraded to a programmable Micro Research Finland (MRF) event timing system that is synchronized with the RF, AC main frequency and with the global positioning system (GPS) 1-PPS signal. The event timing system consists of an event generator (EVG) and an event receiver (EVR). The event timing system is integrated with the KOMAC control system by using experimental physics and industrial control system (EPICS) software. For preliminary hardware and software testing, a long operation test with a synchronization of 300-MHz RF reference and 60-Hz AC has been completed successfully. In this paper, we will describe the software implementation, the testing, and the installation of the new timing system.

  12. Dosimetric Characteristics of a Two-Dimensional Diode Array Detector Irradiated with Passively Scattered Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Liengsawangwong, Praimakorn; Sahoo, Nanayan; Ding, Xiaoning; Lii, MingFwu; Gillin, Michale T.; Zhu, Xiaorong Ronald, E-mail: xrzhu@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2015-07-30

    Purpose: To evaluate the dosimetric characteristics of a two-dimensional (2D) diode array detector irradiated with passively scattered proton beams. Materials and Methods: A diode array detector, MapCHECK (Model 1175, Sun Nuclear, Melbourne, FL, USA) was characterized in passive-scattered proton beams. The relative sensitivity of the diodes and absolute dose calibration were determined using a 250 MeV beam. The pristine Bragg curves (PBCs) measured by MapCHECK diodes were compared with those of an ion chamber using a range shift method. The water-equivalent thickness (WET) of the diode array detector’s intrinsic buildup also was determined. The inverse square dependence, linearity, and other proton dosimetric quantities measured by MapCHECK were also compared with those of the ion chambers. The change in the absolute dose response of the MapCHECK as a function of accumulated radiation dose was used as an indicator of radiation damage to the diodes. 2D dose distribution with and without the compensator were measured and compared with the treatment planning system (TPS) calculations. Results: The WET of the MapCHECK diode’s buildup was determined to be 1.7 cm. The MapCHECK-measured PBC were virtually identical to those measured by a parallel-plate ion chamber for 160, 180, and 250 MeV proton beams. The inverse square results of the MapCHECK were within ±0.4% of the ion chamber results. The linearity of MapCHECK results was within 1% of those from the ion chamber as measured in the range between 10 and 300 MU. All other dosimetric quantities were within 1.3% of the ion chamber results. The 2D dose distributions for non-clinical fields without compensator and the patient treatment fields with the compensator were consistent with the TPS results. The absolute dose response of the MapCHECK was changed by 7.4% after an accumulated dose increased by 170 Gy. Conclusions: The MapCHECK is a convenient and useful tool for 2D dose distribution measurements using passively

  13. Testing Thermo-acoustic Sound Generation in Water with Proton and Laser Beams

    CERN Document Server

    Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Lahmann, R; Naumann, C; Salomon, K; Stegmann, C

    2005-01-01

    Experiments were performed at a proton accelerator and an infrared laser acility to investigate the sound generation caused by the energy deposition of pulsed particle and laser beams in water. The beams with an energy range of 1 PeV to 400 PeV per proton beam spill and up to 10 EeV for the laser pulse were dumped into a water volume and the resulting acoustic signals were recorded with pressure sensitive sensors. Measurements were performed at varying pulse energies, sensor positions, beam diameters and temperatures. The data is well described by simulations based on the thermo-acoustic model. This implies that the primary mechanism for sound generation by the energy deposition of particles propagating in water is the local heating of the media giving rise to an expansion or contraction of the medium resulting in a pressure pulse with bipolar shape. A possible application of this effect would be the acoustical detection of neutrinos with energies greater than 1 EeV.

  14. Run05 Proton Beam Polarization Measurements by pC-Polarimeter (ver. 1.1)

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa,I.; Alekseev, I.; Bazilevsky, A.; Bravar, A.; Bunce, G.; Dhawan, S.; Eyser, K.O.; Gill, R.; Haeberli, W.; Huang, H.; Makdisi, Y.; Nass, A.; Okada, H.; Stephenson, E.; Svirida, D.N.; Wise, T.; Wood, J.; Yip, K.; Zelenski, A.

    2008-07-01

    The polarization of the proton beams [1, 2] at the Relativistic Heavy Ion Collider (RHIC)[3] RHIC ring. The H-Jet polarimeter is located at the collision point allowing measurements of absolute normalization is provided by the hydrogen polarimeter, which measures over 1 {approx} 2 another measurement rather than measuring the absolute polarization. both beams. Two identical pC-polarimeters are equipped in the yellow and blue rings, where carbon ribbon target, providing fast feedback to beam operations and experiments. The days to obtain {approx} 5% statistical uncertainty (in Run05). Thus, the operation of the carbon is measured using both an atomic beam source hydrogen gas jet (H-Jet)[4, 5] and proton-carbon polarimeters was focused on better control of relative stability between one measurement to statistical accuracy within 20 to 30 seconds using an ultra-thin (typically 6 {approx} 8 {micro}g/cm{sup 2}) the rings are separated. The pC-polarimeter measures relative polarization to a few percent.

  15. Monte Carlo simulations of ripple filters designed for proton and carbon ion beams in hadrontherapy with active scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Bourhaleb, F; Givehchi, N; Iliescu, S; Rosa, A La; Pecka, A; Peroni, C [Dipartimento di Fisica Sperimentale, Universita' di Torino, Via P. Giuria 1, Torino 10125 (Italy); Attili, A; Cirio, R; Marchetto, F; Donetti, M; Garella, M A; Giordanengo, S; Pardo, J [INFN, Sezione di Torino, Via P. Giuria 1, Torino 10125 (Italy); Cirrone, P [INFN, Laboratori Nazionali del Sud, Via S.Sofia 62, Catania 95125 (Italy)], E-mail: bourhaleb@to.infn.it

    2008-02-01

    Proton and carbon ion beams have a very sharp Bragg peak. For proton beams of energies smaller than 100 MeV, fitting with a gaussian the region of the maximum of the Bragg peak, the sigma along the beam direction is smaller than 1 mm, while for carbon ion beams, the sigma derived with the same technique is smaller than 1 mm for energies up to 360 MeV. In order to use low energy proton and carbon ion beams in hadrontherapy and to achieve an acceptable homogeneity of the spread out Bragg peak (SOBP) either the peak positions along the beam have to be quite close to each other or the longitudinal peak shape needs to be broaden at least few millimeters by means of a properly designed ripple filter. With a synchrotron accelerator in conjunction with active scanning techniques the use of a ripple filter is necessary to reduce the numbers of energy switches necessary to obtain a smooth SOBP, leading also to shorter overall irradiation times. We studied the impact of the design of the ripple filter on the dose uniformity in the SOBP region by means of Monte Carlo simulations, implemented using the package Geant4. We simulated the beam delivery line supporting both proton and carbon ion beams using different energies of the beams. We compared the effect of different kind of ripple filters and their advantages.

  16. Beam specific planning target volumes incorporating 4DCT for pencil beam scanning proton therapy of thoracic tumors

    CERN Document Server

    Lin, Liyong; Huang, Sheng; Mayer, Rulon; Thomas, Andrew; Solberg, Timothy D; McDonough, James E; Simone, Charles B

    2015-01-01

    The purpose of this study is to determine whether organ sparing and target coverage can be simultaneously maintained for pencil beam scanning (PBS) proton therapy treatment of thoracic tumors in the presence of motion, stopping power uncertainties and patient setup variations. Ten consecutive patients that were previously treated with proton therapy to 66.6/1.8 Gy (RBE) using double scattering (DS) were replanned with PBS. Minimum and maximum intensity images from 4DCT were used to introduce flexible smearing in the determination of the beam specific PTV (BSPTV). Datasets from eight 4DCT phases, using +-3% uncertainty in stopping power, and +-3 mm uncertainty in patient setup in each direction were used to create 8X12X10=960 PBS plans for the evaluation of ten patients. Plans were normalized to provide identical coverage between DS and PBS. The average lung V20, V5, and mean doses were reduced from 29.0%, 35.0%, and 16.4 Gy with DS to 24.6%, 30.6%, and 14.1 Gy with PBS, respectively. The average heart V30 and...

  17. Monte Carlo calculation of beam quality correction factors in proton beams using detailed simulation of ionization chambers

    Science.gov (United States)

    Gomà, Carles; Andreo, Pedro; Sempau, Josep

    2016-03-01

    This work calculates beam quality correction factors (k Q ) in monoenergetic proton beams using detailed Monte Carlo simulation of ionization chambers. It uses the Monte Carlo code penh and the electronic stopping powers resulting from the adoption of two different sets of mean excitation energy values for water and graphite: (i) the currently ICRU 37 and ICRU 49 recommended {{I}\\text{w}}=75~\\text{eV} and {{I}\\text{g}}=78~\\text{eV} and (ii) the recently proposed {{I}\\text{w}}=78~\\text{eV} and {{I}\\text{g}}=81.1~\\text{eV} . Twelve different ionization chambers were studied. The k Q factors calculated using the two different sets of I-values were found to agree with each other within 1.6% or better. k Q factors calculated using current ICRU I-values were found to agree within 2.3% or better with the k Q factors tabulated in IAEA TRS-398, and within 1% or better with experimental values published in the literature. k Q factors calculated using the new I-values were also found to agree within 1.1% or better with the experimental values. This work concludes that perturbation correction factors in proton beams—currently assumed to be equal to unity—are in fact significantly different from unity for some of the ionization chambers studied.

  18. Experimental determination of the complete spin structure for anti-proton + proton -> anti-\\Lambda + \\Lambda at anti-proton beam momentum of 1.637 GeV/c

    CERN Document Server

    Paschke, K D; Berdoz, A; Franklin, G B; Khaustov, P; Meyer, C A; Bradtke, C; Gehring, R; Görtz, S; Harmsen, J; Meier, A; Meyer, W; Radtke, E; Reicherz, G; Dutz, H; Plückthun, M; Schoch, B; Dennert, H; Eyrich, W; Hauffe, J; Metzger, A; Moosburger, M; Stinzing, F; Wirth, S; Fischer, H; Franz, J; Heinsius, F H; Kriegler, E; Schmitt, H; Bunker, B; Hertzog, D; Jones, T; Tayloe, R; Bröders, R; Geyer, R; Kilian, K; Oelert, W; Röhrich, K; Sachs, K; Sefzick, T; Bassalleck, B; Eilerts, S; Fields, D E; Kingsberry, P; Lowe, J; Stotzer, R; Johansson, T; Pomp, S; Wirth, St.

    2006-01-01

    The reaction anti-proton + proton -> anti-\\Lambda + \\Lambda -> anti-proton + \\pi^+ + proton + \\pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \\Lambda/anti-\\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\\Lambda + \\Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.

  19. Spin flipping a stored vertically polarized proton beam with an RF solenoid

    Science.gov (United States)

    Phelps, R. A.; Blinov, B. B.; Chu, C. M.; Courant, E. D.; Crandell, D. A.; Kaufman, W. A.; Krisch, A. D.; Nurushev, T. S.; Ratner, L. G.; Wong, V. K.; Caussyn, D. D.; Derbenev, Ya. S.; Ellison, T. J. P.; Lee, S. Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E. J.; Przewoski, B. von; Ohmori, C.

    1995-09-01

    A recent experiment in the IUCF cooler ring studied the spin flip of a stored vertically polarized 139 MeV proton beam. This spin flip was accomplished by using an RF solenoid to induce an artificial depolarizing resonance in the ring, and then varying the solenoid's frequency through this resonance value to induce spin flip. We found a polarization loss after multiple spin flips of about 0.00±0.05% per flip and also losses for very long flip times. This device will be useful for reducing systematic errors in polarized beam-internal target scattering asymmetry experiments by enabling experimenters to perform frequent beam polarization reversals in the course of the experiment.

  20. Beam simulations with initial bunch noise in superconducting RF proton linacs

    CERN Document Server

    Tückmantel, J

    2010-01-01

    Circular machines are plagued by coupled bunch instabilities (CBI), driven by impedance peaks, where then all cavity higher order modes (HOMs) are possible drivers. Limiting the CBI growth rate is the fundamental reason that all superconducting rf cavities in circular machines are equipped with HOM dampers. The question arises if for similar reasons HOM damping would not be imperative also in high current superconducting rf proton linacs. Therefore we have simulated the longitudinal bunched beam dynamics in such machines, also including charge and position noise on the injected bunches. Simulations were executed for a generic linac with properties close to the planned SPL at CERN, SNS, or Project X at FNAL. It was found that with strong bunch noise and monopole HOMs with high Qext large beam scatter, possibly exceeding the admittance of a receiving machine, cannot be excluded. A transverse simulation shows similar requirements. Therefore including initial bunch noise in any beam dynamic study on superconducti...

  1. Controlled Transverse Blow-up of Highenergy Proton Beams for Aperture Measurements and Loss Maps

    CERN Document Server

    Hӧfle, W; Redaelli, S; Schmidt, R; Valuch, D; Wollmann, D; Zerlauth, M

    2012-01-01

    A technique was developed to blow-up transversely in a controlled way high energy proton beams in the LHC. The technique is based on band limited white noise excitation that is injected into the transverse damper feedback loop. The injected signal can be gated to selectively blow-up individual trains of bunches. The speed of transverse blow-up can be precisely controlled. This opens the possibility to perform safely and efficiently aperture measurements and loss maps with high intensity bunch trains well above stored beam energies that are considered to be safe. In particular, lengthy procedures for measurements at top energy, otherwise requiring multiple fills of individual bunches, can be avoided. In this paper, the method is presented and results from beam measurements are discussed and compared with alternative blowup methods.

  2. Proton beam writing of microstructures in Agar gel for patterned cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Larisch, Wolfgang, E-mail: wolfgang.larisch@studserv.uni-leipzig.de [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Koal, Torsten; Werner, Ronald; Hohlweg, Marcus; Reinert, Tilo; Butz, Tilman [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2011-10-15

    A rather useful prerequisite for many biological and biophysical studies, e.g., for cell-cell communication or neuronal networks, is confined cell growth on micro-structured surfaces. Solidified Agar layers have smooth surfaces which are electrically neutral and thus inhibit receptor binding and cell adhesion. For the first time, Agar microstructures have been manufactured using proton beam writing (PBW). In the irradiated Agar material the polysaccharides are split into oligosaccharides which can easily be washed off leaving Agar-free areas for cell adhesion. The beam diameter of 1 {mu}m allows the fabrication of compartments accommodating single cells which are connected by micrometer-sized channels. Using the external beam the production process is very fast. Up to 50 Petri dishes can be produced per day which makes this technique very suitable for biological investigations which require large throughputs.

  3. Factors influencing the accuracy of beam range estimation in proton therapy using prompt gamma emission

    Science.gov (United States)

    Janssen, FMFC; Landry, G.; Cambraia Lopes, P.; Dedes, G.; Smeets, J.; Schaart, D. R.; Parodi, K.; Verhaegen, F.

    2014-08-01

    In-vivo imaging is a strategy to monitor the range of protons inside the patient during radiation treatment. A possible method of in-vivo imaging is detection of secondary ‘prompt’ gamma (PG) photons outside the body, which are produced by inelastic proton-nuclear interactions inside the patient. In this paper, important parameters influencing the relationship between the PG profile and percentage depth dose (PDD) in a uniform cylindrical phantom are explored. Monte Carlo simulations are performed with the new Geant4 based code TOPAS for mono-energetic proton pencil beams (range: 100-250 MeV) and an idealized PG detector. PG depth profiles are evaluated using the inflection point on a sigmoid fit in the fall-off region of the profile. A strong correlation between the inflection point and the proton range determined from the PDD is found for all conditions. Variations between 1.5 mm and 2.7 mm in the distance between the proton range and the inflection point are found when either the mass density, phantom diameter, or detector acceptance angle is changed. A change in cut-off energy of the detector could induce a range difference of maximum 4 mm. Applying time-of-flight discrimination during detection, changing the primary energy of the beam or changing the elemental composition of the tissue affects the accuracy of the range prediction by less than 1 mm. The results indicate that the PG signal is rather robust to many parameter variations, but millimetre accurate range monitoring requires all medium and detector properties to be carefully taken into account.

  4. Experimental results of beryllium exposed to intense high energy proton beam pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Zwaska, R. [Fermilab; Butcher, M. [CERN; Guinchard, M. [CERN; Calviani, M. [CERN; Losito, R. [CERN; Roberts, S. [Culham Lab; Kuksenko, V. [Oxford U.; Atherton, A. [Rutherford; Caretta, O. [Rutherford; Davenne, T. [Rutherford; Densham, C. [Rutherford; Fitton, M. [Rutherford; Loveridge, J. [Rutherford; O' Dell, J. [Rutherford

    2017-02-10

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and compare surface evolution and microstructural response of the test matrix specimens.

  5. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    Science.gov (United States)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  6. A Novel Approach to Postmastectomy Radiation Therapy Using Scanned Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Depauw, Nicolas, E-mail: ndepauw@partners.org [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Centre for Medical Radiation Physics, University of Wollongong, New South Wales (Australia); Batin, Estelle; Daartz, Julianne [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Rosenfeld, Anatoly [Centre for Medical Radiation Physics, University of Wollongong, New South Wales (Australia); Adams, Judith; Kooy, Hanne; MacDonald, Shannon; Lu, Hsiao-Ming [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2015-02-01

    Purpose: Postmastectomy radiation therapy (PMRT), currently offered at Massachusetts General Hospital, uses proton pencil beam scanning (PBS) with intensity modulation, achieving complete target coverage of the chest wall and all nodal regions and reduced dose to the cardiac structures. This work presents the current methodology for such treatment and the ongoing effort for its improvements. Methods and Materials: A single PBS field is optimized to ensure appropriate target coverage and heart/lung sparing, using an in–house-developed proton planning system with the capability of multicriteria optimization. The dose to the chest wall skin is controlled as a separate objective in the optimization. Surface imaging is used for setup because it is a suitable surrogate for superficial target volumes. In order to minimize the effect of beam range uncertainties, the relative proton stopping power ratio of the material in breast implants was determined through separate measurements. Phantom measurements were also made to validate the accuracy of skin dose calculation in the treatment planning system. Additionally, the treatment planning robustness was evaluated relative to setup perturbations and patient breathing motion. Results: PBS PMRT planning resulted in appropriate target coverage and organ sparing, comparable to treatments by passive scattering (PS) beams but much improved in nodal coverage and cardiac sparing compared to conventional treatments by photon/electron beams. The overall treatment time was much shorter than PS and also shorter than conventional photon/electron treatment. The accuracy of the skin dose calculation by the planning system was within ±2%. The treatment was shown to be adequately robust relative to both setup uncertainties and patient breathing motion, resulting in clinically satisfying dose distributions. Conclusions: More than 25 PMRT patients have been successfully treated at Massachusetts General Hospital by using single-PBS fields

  7. Efficient ion beam extraction from a flowing plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, M.; John, P.K.

    1979-10-01

    A moving plasma with directed flow velocities v larger than the ion acoustic speed c/sub s/ is used as a source of high-current ion beams in the 10--20-keV range of energies. Current densities up to 3 A/cm/sup 2/ are obtained at the plasma boundary which is an order of magnitude larger than the limiting value of Bohm current in a stationary plasma. The observed current densities were proportional to v, unlike the Bohm current densities which are proportional to ion acoustic speed. Total ion currents up to approx.100 A were extracted from the plasma through a two electrode extraction system. Simple geometric shaping of the electrodes enabled an 8-cm-diam beam to be focused to approx.7 mm.

  8. The cryogenic silicon Beam Tracker of NA60 for heavy ion and proton beams

    CERN Document Server

    Rosinsky, P; Casagrande, L; Devaux, A; Granata, V; Guettet, N; Hess, M; Heuser, J M; Jarron, Pierre; Li, Z; Lourenço, C; Manso, F; Niinikoski, T O; Palmieri, V G; Radermacher, E

    2003-01-01

    The cryogenic silicon Beam Tracker of NA60 is the first detector based on the Lazarus effect used in a high-energy physics experiment. It employs single-sided silicon strip sensors of 50mum pitch operated at a temperature of 130K. Two tracking stations determine the transverse coordinates of the interaction point at the target with 20mum resolution, to improve the determination of the offset of secondary vertices. This impact parameter measurement allows NA60 to distinguish between prompt dimuons and muon pairs from D-meson decays. The detector concept and technical feasibility have been demonstrated in beam time periods between 1999 and 2002.

  9. Extracting source parameters from beam monitors on a chopper spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Abernathy, Douglas L [ORNL; Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2015-01-01

    The intensity distributions of beam monitors in direct-geometry time-of-flight neutron spectrometers provide important information about the instrument resolution. For short-pulse spallation neutron sources in particular, the asymmetry of the source pulse may be extracted and compared to Monte Carlo source simulations. An explicit formula using a Gaussian-convolved Ikeda-Carpenter distribution is given and compared to data from the ARCS instrument at the Spallation Neutron Source.

  10. Thermoluminescence response of sodalime glass irradiated with proton and neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Marrale, M. [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); INFN Gruppo V, Via Santa Sofia 64, 95123 Catania (Italy); Longo, A., E-mail: anna.longo@unipa.it [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); INFN Gruppo V, Via Santa Sofia 64, 95123 Catania (Italy); Bartolotta, A. [Dipartimento STEMBIO, Via delle Scienze, Ed. 16, 90128 Palermo (Italy); Basile, S. [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); INFN Gruppo V, Via Santa Sofia 64, 95123 Catania (Italy); D' Oca, M.C. [Dipartimento STEMBIO, Via delle Scienze, Ed. 16, 90128 Palermo (Italy); Tomarchio, E. [Dipartimento dell' Energia, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo (Italy); Cirrone, G.A.P. [Laboratori Nazionali del Sud INFN, Via Santa Sofia 65, 95123 Catania (Italy); Di Rosa, F. [Azienda Sanitaria Provinciale N 2, Pres. Osped. ' M. Raimondi' , Via Forlanini 5, S. Cataldo (Italy); Romano, F. [Laboratori Nazionali del Sud INFN, Via Santa Sofia 65, 95123 Catania (Italy); Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' Compendio del Viminale, Piazza del Viminale 1, 00184 Roma (Italy); Cuttone, G. [Laboratori Nazionali del Sud INFN, Via Santa Sofia 65, 95123 Catania (Italy); Brai, M. [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); INFN Gruppo V, Via Santa Sofia 64, 95123 Catania (Italy)

    2012-12-01

    In the research field of emergency dosimeters to be used in case of accidental radiation exposure of the population, watch glass has been considered as a possible fortuitous dosimetric material. This paper reports on results obtained by thermoluminescence of glass samples exposed to neutron and proton beams. Thermoluminescent glow curves have been analyzed for each irradiation studying the modifications induced by the irradiation as a function of proton dose or neutron fluence. The glow curve in a specific temperature range has been used as dosimetric parameter. The thermoluminescence response of samples exposed to protons has been found to be linear in the dose range between 2 and 20 Gy and the lowest detectable dose for this radiation beam is estimated to be smaller than than 1 Gy. In case of exposure with thermal neutrons the TL signal linearly increases with neutron fluence (up to about 3 Multiplication-Sign 10{sup 11} cm{sup -2}) and the lowest detectable fluence has been found to be of the order of magnitude of 10{sup 9} cm{sup -2}. These results could be of interest for accidental retrospective dosimetry.

  11. The CERN antiproton target: hydrocode analysis of its core material dynamic response under proton beam impact

    CERN Document Server

    Martin, Claudio Torregrosa; Calviani, Marco; Muñoz-Cobo, José-Luis

    2016-01-01

    Antiprotons are produced at CERN by colliding a 26 GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 {\\deg}C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of...

  12. Proton and photon beams interaction with radiosensitizing agents in human glioblastoma cells

    Science.gov (United States)

    Lafiandra, M.

    2016-03-01

    In oncological field, chemoradiotherapy treatments that combine radiations to radiosensitizing chemical agents are spreading out. The aim of this kind of treatment is to obtain a better tumor local control and at the same time to reduce the distant failure. The combination of radiation with microtubule-stabilizing agents is very promising in cancer therapy. In the present study, the combination of clinical proton beams and the microtubule-stabilizing agent Epothilone B has been investigated in human glioblastoma cells cultured in vitro. Photon beams have been used for comparison. Cell survival has been evaluated by colony forming assay and the interaction mechanism between radiation and Epothilone B has been investigated: survival curves relative to the combined treatment (protons or photons with Epothilone B) showed a linear trend, different from the linear quadratic behavior found with radiation alone. The analysis performed showed a synergism in the radiation-drug interaction. Thus, Epothilone B in conjunction with radiation acts as a radiosensitizer. Finally proton Relative Biological Effectiveness has been determined and results are reported in this paper.

  13. A New Technology for Fast Two-Dimensional Detection of Proton Therapy Beams

    Directory of Open Access Journals (Sweden)

    Robert Hollebeek

    2012-01-01

    chamber and specially designed amplifiers and readout electronics adapted to the requirements of the proton therapy environment and providing both excellent time and high spatial resolution are presented here. The device was irradiated at the Roberts Proton Therapy Center at the University of Pennsylvania. The system was operated with ionization gains between 10 and 200 and in low and intermediate dose-rate beams, and the digitized signal is found to be reproducible to 0.8%. Spatial resolution is determined to be 1.1 mm (1σ with a 1 ms time resolution. We resolve the range modulator wheel rotational frequency and the thicknesses of its segments and show that this information can be quickly measured owing to the high time resolution of the system. Systems of this type will be extremely useful in future treatment methods involving beams that change rapidly in time and spatial position. The Micromegas design resolves the high dose rate within a proton Bragg peak, and measurements agree with Geant4 simulations to within 5%.

  14. CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact

    Science.gov (United States)

    Martin, Claudio Torregrosa; Perillo-Marcone, Antonio; Calviani, Marco; Muñoz-Cobo, José-Luis

    2016-07-01

    Antiprotons are produced at CERN by colliding a 26 GeV /c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 °C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of end-of-pulse tensile waves and its relevance on the overall response (iii) A reduction of 44% in tensile pressure could be obtained by the use of a high density tantalum cladding.