WorldWideScience

Sample records for extractant-coated ferromagnetic microparticles

  1. Investigation of strain-induced magnetization change in ferromagnetic microparticles

    International Nuclear Information System (INIS)

    Chuklanov, A P; Nurgazizov, N I; Bizyaev, D A; Khanipov, T F; Bukharaev, A A; Yu Petukhov, V; Chirkov, V V; Gumarov, G G

    2016-01-01

    This work is devoted to investigation of magnetoelastic strain effect on the ferromagnetic microparticles of permalloy. An original method of sample fabrication with compressed microparticles is proposed. Magnetic force microscopy and magneto-optical Kerr experiments were carried out with unstrained and compressed microparticles. The domain walls transformation in compressed microparticles is in good agreement with numerical calculations. Hard axis of magnetization was observed on the compressed sample. (paper)

  2. Evaluation of extractant-coated magnetic microparticles for the recovery of hazardous metals from waste solution

    International Nuclear Information System (INIS)

    Kaminski, M. D.

    1998-01-01

    A magnetically assisted chemical separation (MACS) process was developed earlier at Argonne National Laboratory (ANL). This compact process was designed for the separation of transuranics (TRU) and radionuclides from the liquid waste streams that exist at many DOE sites, with an overall reduction in waste volume requiring disposal. The MACS process combines the selectivity afforded by solvent extractant/ion exchange materials with magnetic separation to provide an efficient chemical separation. Recently, the MACS process has been evaluated with acidic organophosphorus extractants for hazardous metal recovery from waste solutions. Moreover, process scale-up design issues have been addressed with respect to particle filtration and recovery. Two acidic organophosphorus compounds have been investigated for hazardous metal recovery, bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanexreg-sign 272) and bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanexreg-sign 301). Coated onto magnetic microparticles, these extractants demonstrated superior recovery of hazardous metals from solution, relative to what was expected on the basis of results from solvent extraction experiments. The results illustrate the diverse applications of MACS technology for dilute waste streams. Preliminary process scale-up experiments with a high-gradient magnetic separator at Oak Ridge National Laboratory have revealed that very low microparticle loss rates are possible

  3. Theoretical analysis of ferromagnetic microparticles in streaming liquid under the influence of external magnetic forces

    International Nuclear Information System (INIS)

    Brandl, Martin; Mayer, Michael; Hartmann, Jens; Posnicek, Thomas; Fabian, Christian; Falkenhagen, Dieter

    2010-01-01

    The microsphere based detoxification system (MDS) is designed for high specific toxin removal in extracorporeal blood purification using functionalized microparticles. A thin wall hollow fiber membrane filter separates the microparticle-plasma suspension from the bloodstream. For patient safety, it is necessary to have a safety system to detect membrane ruptures that could lead to the release of microparticles into the bloodstream. A non-invasive optical detection system including a magnetic trap is developed to monitor the extracorporeal venous bloodstream for the presence of released microparticles. For detection, fluorescence-labeled ferromagnetic beads are suspended together with adsorbent particles in the MDS circuit. In case of a membrane rupture, the labeled particles would be released into the venous bloodstream and partly captured by the magnetic trap of the detector. A physical model based on fluidic, gravitational and magnetic forces was developed to simulate the motion and sedimentation of ferromagnetic particles in a magnetic trap. In detailed simulation runs, the concentrations of accumulated particles under different applied magnetic fields within the magnetic trap are shown. The simulation results are qualitatively compared with laboratory experiments and show excellent accordance. Additionally, the sensitivity of the particle detection system is proofed in a MDS laboratory experiment by simulation of a membrane rupture.

  4. Magneto-active shape memory composites by incorporating ferromagnetic microparticles in a thermo-responsive polyalkenamer

    International Nuclear Information System (INIS)

    Cuevas, J M; German, L; Iturrondobeitia, M; Alonso, J; Laza, J M; Vilas, J L; León, L M

    2009-01-01

    Covalently crosslinked semi-crystalline polyalkenamer-based shape memory polymers (SMPs) were prepared and characterized. Thermal and thermo-mechanical properties of thermo-sensitive polymers manufactured by melt compounding were investigated, and shape memory features demonstrated. For remote activation of shape recovery properties, electromagnetic inductive heating of a series of iron-based ferromagnetic microparticles was evaluated for subsequent incorporation into a shape memory polymeric matrix. The inductive heating capacity of micro-sized iron-filled polyalkenamers with different volume fraction contents was optimized and a comparison of thermo-mechanical properties of filled and unfilled shape memory polymeric networks was performed. Electromagnetically triggered shape memory properties of easily formed composites were documented and shape memory recovery rates comparable to those obtained by conventional heating methods were demonstrated for further research and design of new types of applications

  5. Microparticles in cardiovascular diseases

    NARCIS (Netherlands)

    VanWijk, Marja J.; VanBavel, E.; Sturk, A.; Nieuwland, R.

    2003-01-01

    Microparticles are membrane vesicles released from many different cell types. There are two mechanisms that can result in their formation, cell activation and apoptosis. In these two mechanisms, different pathways are involved in microparticle generation. Microparticle generation seems to be a well

  6. Molecular ferromagnetism

    International Nuclear Information System (INIS)

    Epstein, A.J.

    1990-01-01

    This past year has been one of substantial advancement in both the physics and chemistry of molecular and polymeric ferromagnets. The specific heat studies of (DMeFc)(TCNE) have revealed a cusp at the three-dimensional ferromagnetic transition temperature with a crossover to primarily 1-D behavior at higher temperatures. This paper discusses these studies

  7. Physics of microparticle acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune

    2012-01-01

    of microparticle acoustophoresis and to develop methods for future advancement of its use. Throughout the work on this thesis the author and co-workers1 have studied the physics of microparticle acoustophoresis by comparing quantitative measurements to a theoretical framework consisting of existing hydrodynamic...

  8. Restructuring of microparticles

    International Nuclear Information System (INIS)

    Lameiras, F.S.; Santos, A.M.M. dos

    1992-01-01

    Experimental grain sizes distribution of sintered (U,Gd)O 2 pellets were analysed according to the model of Lameiras for microparticles restructuring. This model, which includes the grain growth and Ostwald ripening phenomena, assumes that the microparticles restructuring is governed by two fundamental principles: minimization of the interface energy and uniformization of its distribution in space. It is also, assumed that the interface energy is stored in the grain boundaries, triple lines and quadruple points. The minimization of the interface energy can be done through three ways independent of each other: diminishing of the number of microparticles, alteration of the size distribution and alteration of the form distribution. The uniformization of the spatial distribution of the interface energy can be done through two ways also independent of each other: tendency to an uniform spatial distribution of microparticles and tendency to an uniform distribution of the interface energy per microparticle. The model accords well with these experimental data. (author)

  9. Flocking ferromagnetic colloids.

    Science.gov (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S

    2017-02-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks).

  10. Microparticle Flow Sensor

    Science.gov (United States)

    Morrison, Dennis R.

    2005-01-01

    The microparticle flow sensor (MFS) is a system for identifying and counting microscopic particles entrained in a flowing liquid. The MFS includes a transparent, optoelectronically instrumented laminar-flow chamber (see figure) and a computer for processing instrument-readout data. The MFS could be used to count microparticles (including micro-organisms) in diverse applications -- for example, production of microcapsules, treatment of wastewater, pumping of industrial chemicals, and identification of ownership of liquid products.

  11. Acceleration of microparticle

    CERN Document Server

    Shibata, H

    2002-01-01

    A microparticle (dust) ion source has been installed at the high voltage terminal of the 3.75 MV single ended Van de Graaff electrostatic accelerator and a beam line for microparticle experiments has been build at High Fluence Irradiation Facility (HIT) of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron or submicron sized particles. Development of in situ dust detectors and analyzers on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time of flight mass spectrometry, impact flash or luminescence measurement and scanning electron or laser microscope observation for metals, ceramics, polymers and semiconductors bombarded by micron-sized particles were started three years ago. (author)

  12. Microparticle analysis system and method

    Science.gov (United States)

    Morrison, Dennis R. (Inventor)

    2007-01-01

    A device for analyzing microparticles is provided which includes a chamber with an inlet and an outlet for respectively introducing and dispensing a flowing fluid comprising microparticles, a light source for providing light through the chamber and a photometer for measuring the intensity of light transmitted through individual microparticles. The device further includes an imaging system for acquiring images of the fluid. In some cases, the device may be configured to identify and determine a quantity of the microparticles within the fluid. Consequently, a method for identifying and tracking microparticles in motion is contemplated herein. The method involves flowing a fluid comprising microparticles in laminar motion through a chamber, transmitting light through the fluid, measuring the intensities of the light transmitted through the microparticles, imaging the fluid a plurality of times and comparing at least some of the intensities of light between different images of the fluid.

  13. Ferromagnetic nanorings

    International Nuclear Information System (INIS)

    Vaz, C A F; Hayward, T J; Llandro, J; Schackert, F; Morecroft, D; Bland, J A C; Klaeui, M; Laufenberg, M; Backes, D; Ruediger, U; Castano, F J; Ross, C A; Heyderman, L J; Nolting, F; Locatelli, A; Faini, G; Cherifi, S; Wernsdorfer, W

    2007-01-01

    Ferromagnetic metal rings of nanometre range widths and thicknesses exhibit fundamentally new spin states, switching behaviour and spin dynamics, which can be precisely controlled via geometry, material composition and applied field. Following the discovery of the 'onion state', which mediates the switching to and between vortex states, a range of fascinating phenomena has been found in these structures. In this overview of our work on ring elements, we first show how the geometric parameters of ring elements determine the exact equilibrium spin configuration of the domain walls of rings in the onion state, and we show how such behaviour can be understood as the result of the competition between the exchange and magnetostatic energy terms. Electron transport provides an extremely sensitive probe of the presence, spatial location and motion of domain walls, which determine the magnetic state in individual rings, while magneto-optical measurements with high spatial resolution can be used to probe the switching behaviour of ring structures with very high sensitivity. We illustrate how the ring geometry has been used for the study of a wide variety of magnetic phenomena, including the displacement of domain walls by electric currents, magnetoresistance, the strength of the pinning potential introduced by nanometre size constrictions, the effect of thermal excitations on the equilibrium state and the stochastic nature of switching events

  14. Profile analysis of microparticles

    International Nuclear Information System (INIS)

    Konarski, P.; Iwanejko, I.; Mierzejewska, A.

    2001-01-01

    Depth resolved analyses of several types of microparticles are presented. Particles for secondary ion mass spectrometry (SIMS) depth profile analysis were collected in the working environment of glass plant, steelworks and welding station using eight-stage cascade impactor with particle size range of 0.3 μm to 15 μm. Ion beam sputtering and sample rotation technique allowed to describe morphology i.e. the elemental structure of collected sub-micrometer particles. Also model particles Iriodin 221 (Merck) were depth profiled. The core-shell structure is found for all types of investigated particles. Steelworks particles consist mainly of iron and manganese cores. At the shells of these microparticles: lead, chlorine and fluorine are found. The particles collected in the glass-works consist mainly of lead-zirconium glass cores covered by carbon and copper. Stainless-steel welding particles compose of iron, manganese and chromium cores covered by a shell rich in carbon, chlorine and fluorine. Sample rotation technique applied in SIMS appears to be an effective tool for environmental microparticle morphology studies

  15. A concept of ferroelectric microparticle propulsion thruster

    International Nuclear Information System (INIS)

    Yarmolich, D.; Vekselman, V.; Krasik, Ya. E.

    2008-01-01

    A space propulsion concept using charged ferroelectric microparticles as a propellant is suggested. The measured ferroelectric plasma source thrust, produced mainly by microparticles emission, reaches ∼9x10 -4 N. The obtained trajectories of microparticles demonstrate that the majority of the microparticles are positively charged, which permits further improvement of the thruster

  16. Ferromagnetic rollers in a harmonic confinement

    Science.gov (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    We present the emergence of flocking and global rotation in a system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field confined in a harmonic potential. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clock / counterclockwise particle rotation, collisional alignment of particle velocities, and random particle re-orientations due to shape imperfections. We also emphasize a subtle role of rotational noise: While the low-frequency flocking appears to be noise-insensitive, the reentrant flocking happens to be noise-activated. Moreover, we uncover a new relation between collective motion and synchronisation.

  17. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Science.gov (United States)

    Pasanai, K.

    2017-01-01

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed.

  18. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Energy Technology Data Exchange (ETDEWEB)

    Pasanai, K., E-mail: krisakronmsu@gmail.com

    2017-01-15

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  19. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    International Nuclear Information System (INIS)

    Pasanai, K.

    2017-01-01

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  20. The Physics of Ferromagnetism

    CERN Document Server

    Miyazaki, Terunobu

    2012-01-01

    This book covers both basic physics of ferromagnetism such as magnetic moment, exchange coupling, magnetic anisotropy and recent progress in advanced ferromagnetic materials. Special interests are focused on NdFeB permanent magnets and the materials studied in the field of spintronics. In the latter, development of tunnel magnetoresistance effect through so called giant magnetoresistance effect is explained.

  1. Membrane microparticles and diseases.

    Science.gov (United States)

    Wu, Z-H; Ji, C-L; Li, H; Qiu, G-X; Gao, C-J; Weng, X-S

    2013-09-01

    Membrane microparticles (MPs) are plasma membrane-derived vesicles shed by various types of activated or apoptotic cells including platelets, monocytes, endothelial cells, red blood cells, and granulocytes. MPs are being increasingly recognized as important regulators of cell-to-cell interactions. Recent evidences suggest they may play important functions not only in homeostasis but also in the pathogenesis of a number of diseases such as vascular diseases, cancer, infectious diseases and diabetes mellitus. Accordingly, inhibiting the production of MPs may serve as a novel therapeutic strategy for these diseases. Here we review recent advances on the mechanism underlying the generation of MPs and the role of MPs in vascular diseases, cancer, diabetes, inflammation, and pathogen infection.

  2. Reconfigurable engineered motile semiconductor microparticles.

    Science.gov (United States)

    Ohiri, Ugonna; Shields, C Wyatt; Han, Koohee; Tyler, Talmage; Velev, Orlin D; Jokerst, Nan

    2018-05-03

    Locally energized particles form the basis for emerging classes of active matter. The design of active particles has led to their controlled locomotion and assembly. The next generation of particles should demonstrate robust control over their active assembly, disassembly, and reconfiguration. Here we introduce a class of semiconductor microparticles that can be comprehensively designed (in size, shape, electric polarizability, and patterned coatings) using standard microfabrication tools. These custom silicon particles draw energy from external electric fields to actively propel, while interacting hydrodynamically, and sequentially assemble and disassemble on demand. We show that a number of electrokinetic effects, such as dielectrophoresis, induced charge electrophoresis, and diode propulsion, can selectively power the microparticle motions and interactions. The ability to achieve on-demand locomotion, tractable fluid flows, synchronized motility, and reversible assembly using engineered silicon microparticles may enable advanced applications that include remotely powered microsensors, artificial muscles, reconfigurable neural networks and computational systems.

  3. The appearance of microparticles in accelerator tubes

    International Nuclear Information System (INIS)

    Griffiths, G.L.; Eastham, D.A.; Kivlin, F.J.

    1978-07-01

    Microparticles have been found in submodules of accelerator tubes during the voltage conditioning process. The microparticle detector uses electrostatic induction and time-of-flight measurements to determine the charge and velocity of microparticles. Preliminary measurements with a charge sensitive limit of about 5 x 10 -15 C proves the presence of microparticles at a threshold voltage well below the onset of microdischarges or voltage breakdown. No direct evidence relating microparticles to the initiation of electrical breakdown has been found in this experiment. (author)

  4. Circulating Microparticles in Patients with Benign and Malignant Ovarian Tumors

    NARCIS (Netherlands)

    Rank, A.; Liebhardt, S.; Zwirner, J.; Burges, A.; Nieuwland, R.; Toth, B.

    2012-01-01

    Background: Microparticles are known to be increased in various malignancies. In this prospective study, microparticle levels were evaluated in patients with benign and malignant ovarian lesions. Patients and Methods: Microparticles from platelets/megakaryocytes, activated platelets and endothelial

  5. Microparticles as Potential Biomarkers of Cardiovascular Disease

    International Nuclear Information System (INIS)

    França, Carolina Nunes; Izar, Maria Cristina de Oliveira; Amaral, Jônatas Bussador do; Tegani, Daniela Melo; Fonseca, Francisco Antonio Helfenstein

    2015-01-01

    Primary prevention of cardiovascular disease is a choice of great relevance because of its impact on health. Some biomarkers, such as microparticles derived from different cell populations, have been considered useful in the assessment of cardiovascular disease. Microparticles are released by the membrane structures of different cell types upon activation or apoptosis, and are present in the plasma of healthy individuals (in levels considered physiological) and in patients with different pathologies. Many studies have suggested an association between microparticles and different pathological conditions, mainly the relationship with the development of cardiovascular diseases. Moreover, the effects of different lipid-lowering therapies have been described in regard to measurement of microparticles. The studies are still controversial regarding the levels of microparticles that can be considered pathological. In addition, the methodologies used still vary, suggesting the need for standardization of the different protocols applied, aiming at using microparticles as biomarkers in clinical practice

  6. Microparticles as Potential Biomarkers of Cardiovascular Disease

    Energy Technology Data Exchange (ETDEWEB)

    França, Carolina Nunes, E-mail: carolufscar24@gmail.com [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil); Universidade de Santo Amaro - UNISA, SP, São Paulo (Brazil); Izar, Maria Cristina de Oliveira; Amaral, Jônatas Bussador do; Tegani, Daniela Melo; Fonseca, Francisco Antonio Helfenstein [Universidade Federal de São Paulo - UNIFESP - UNISA, SP, São Paulo (Brazil)

    2015-02-15

    Primary prevention of cardiovascular disease is a choice of great relevance because of its impact on health. Some biomarkers, such as microparticles derived from different cell populations, have been considered useful in the assessment of cardiovascular disease. Microparticles are released by the membrane structures of different cell types upon activation or apoptosis, and are present in the plasma of healthy individuals (in levels considered physiological) and in patients with different pathologies. Many studies have suggested an association between microparticles and different pathological conditions, mainly the relationship with the development of cardiovascular diseases. Moreover, the effects of different lipid-lowering therapies have been described in regard to measurement of microparticles. The studies are still controversial regarding the levels of microparticles that can be considered pathological. In addition, the methodologies used still vary, suggesting the need for standardization of the different protocols applied, aiming at using microparticles as biomarkers in clinical practice.

  7. Superconducting Ferromagnetic Nanodiamond.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  8. Pharmaceutical microparticle engineering with electrospraying

    DEFF Research Database (Denmark)

    Bohr, Adam; Wan, Feng; Kristensen, Jakob

    2015-01-01

    Microparticles of Celecoxib, dispersed in a matrix of poly(lactic-co-glycolic acid) (PLGA), were prepared by electrospraying using different solvent mixtures to investigate the influence upon particle formation and the resulting particle characteristics. Mixtures consisting of a good solvent, ace...... demonstrated by the increasingly higher drug release rates. The results demonstrate the importance of solvent composition in particle preparation and indicate potential for exploiting this dependence to improve pharmaceutical particle design and performance....

  9. Superconducting Ferromagnetic Nanodiamond

    Czech Academy of Sciences Publication Activity Database

    Zhang, G.; Samuely, T.; Xu, Z.; Jochum, J. K.; Volodin, A.; Zhou, S. Q.; May, P. W.; Onufriienko, O.; Kacmarik, J.; Steele, J. A.; Li, J.; Vanacken, J.; Vacík, Jiří; Szabo, P.; Yuan, H. F.; Roeffaers, M. B. J.; Cerbu, D.; Samuely, P.; Hofkens, J.; Moshchalkov, V.V.

    2017-01-01

    Roč. 11, č. 6 (2017), s. 5358-5366 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : nanodiamond * superconductivity and ferromagnetism * spin fluctuations * giant positive magnetoresistance * anamalous Hall effect Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties ) Impact factor: 13.942, year: 2016

  10. Laser ablation of microparticles for nanostructure generation

    International Nuclear Information System (INIS)

    Waraich, Palneet Singh; Tan, Bo; Venkatakrishnan, Krishnan

    2011-01-01

    The process of laser ablation of microparticles has been shown to generate nanoparticles from microparticles; but the generation of nanoparticle networks from microparticles has never been reported before. We report a unique approach for the generation of nanoparticle networks through ablation of microparticles. Using this approach, two samples containing microparticles of lead oxide (Pb 3 O 4 ) and nickel oxide (NiO), respectively, were ablated under ambient conditions using a femtosecond laser operating in the MHz repetition rate regime. Nanoparticle networks with particle diameter ranging from 60 to 90 nm were obtained by ablation of microparticles without use of any specialized equipment, catalysts or external stimulants. The formation of finer nanoparticle networks has been explained by considering the low pressure region created by the shockwave, causing rapid condensation of microparticles into finer nanoparticles. A comparison between the nanostructures generated by ablating microparticle and those by ablating bulk substrate was carried out; and a considerable reduction in size and narrowed size distribution was observed. Our nanostructure fabrication technique will be a unique process for nanoparticle network generation from a vast array of materials.

  11. Cavitational micro-particles: plasma formation mechanisms

    International Nuclear Information System (INIS)

    Bica, Ioan

    2005-01-01

    Cavitational micro-particles are a class to which the micro-spheres, the micro-tubes and the octopus-shaped micro-particles belong. The cavitational micro-particles (micro-spheres, micro-tubes and octopus-shaped micro-particles) at an environmental pressure. The micro-spheres, the micro-tubes and the ligaments of the octopus-shaped micro-particles are produced in the argon plasma and are formed of vapors with low values of the molar concentration in comparison with the molar density of the gas and vapor mixture, the first one on the unstable and the last two on the stable movement of the vapors. The ligaments of the octopus-shaped micro-particles are open at the top for well-chosen values of the sub-cooling of the vapor and gas cylinders. The nitrogen in the air favors the formation of pores in the wall of the micro-spheres. In this paper we present the cavitational micro-particles, their production in the plasma and some mechanisms for their formation in the plasma. (author)

  12. Hysteresis in conducting ferromagnets

    International Nuclear Information System (INIS)

    Schneider, Carl S.; Winchell, Stephen D.

    2006-01-01

    Maxwell's magnetic diffusion equation is solved for conducting ferromagnetic cylinders to predict a magnetic wave velocity, a time delay for flux penetration and an eddy current field, one of five fields in the linear unified field model of hysteresis. Measured Faraday voltages for a thin steel toroid are shown to be proportional to magnetic field step amplitude and decrease exponentially in time due to maximum rather than average permeability. Dynamic permeabilities are a field convolution of quasistatic permeability and the delay function from which we derive and observe square root dependence of coercivity on rate of field change

  13. Microfluidic production of polymeric functional microparticles

    Science.gov (United States)

    Jiang, Kunqiang

    This dissertation focuses on applying droplet-based microfluidics to fabricate new classes of polymeric microparticles with customized properties for various applications. The integration of microfluidic techniques with microparticle engineering allows for unprecedented control over particle size, shape, and functional properties. Specifically, three types of microparticles are discussed here: (1) Magnetic and fluorescent chitosan hydrogel microparticles and their in-situ assembly into higher-order microstructures; (2) Polydimethylsiloxane (PDMS) microbeads with phosphorescent properties for oxygen sensing; (3) Macroporous microparticles as biological immunosensors. First, we describe a microfluidic approach to generate monodisperse chitosan hydrogel microparticles that can be further connected in-situ into higher-order microstructures. Microparticles of the biopolymer chitosan are created continuously by contacting an aqueous solution of chitosan at a microfluidic T-junction with a stream of hexadecane containing a nonionic detergent, followed by downstream crosslinking of the generated droplets by a ternary flow of glutaraldehyde. Functional properties of the microparticles can be easily varied by introducing payloads such as magnetic nanoparticles and/or fluorescent dyes into the chitosan solution. We then use these prepared microparticles as "building blocks" and assemble them into high ordered microstructures, i.e. microchains with controlled geometry and flexibility. Next, we describe a new approach to produce monodisperse microbeads of PDMS using microfluidics. Using a flow-focusing configuration, a PDMS precursor solution is dispersed into microdroplets within an aqueous continuous phase. These droplets are collected and thermally cured off-chip into soft, solid microbeads. In addition, our technique allows for direct integration of payloads, such as an oxygen-sensitive porphyrin dye, into the PDMS microbeads. We then show that the resulting dye

  14. Ferromagnet / superconductor oxide superlattices

    Science.gov (United States)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  15. Ferromagnetic shape memory materials

    Science.gov (United States)

    Tickle, Robert Jay

    Ferromagnetic shape memory materials are a new class of active materials which combine the properties of ferromagnetism with those of a diffusionless, reversible martensitic transformation. These materials have been the subject of recent study due to the unusually large magnetostriction exhibited in the martensitic phase. In this thesis we report the results of experiments which characterize the magnetic and magnetomechanical properties of both austenitic and martensitic phases of ferromagnetic shape memory material Ni2MnGa. In the high temperature cubic phase, anisotropy and magnetostriction constants are determined for a range of temperatures from 50°C down to the transformation temperature, with room temperature values of K1 = 2.7 +/- 104 ergs/cm3 and lambda100 = -145 muepsilon. In the low temperature tetragonal phase, the phenomenon of field-induced variant rearrangement is shown to produce anomalous results when traditional techniques for determining anisotropy and magnetostriction properties are employed. The requirement of single variant specimen microstructure is explained, and experiments performed on such a specimen confirm a uniaxial anisotropy within each martensitic variant with anisotropy constant Ku = 2.45 x 106 ergs/cm3 and a magnetostriction constant of lambdasv = -288 +/- 73 muepsilon. A series of magnetomechanical experiments investigate the effects of microstructure bias, repeated field cycling, varying field ramp rate, applied load, and specimen geometry on the variant rearrangement phenomenon in the martensitic phase. In general, the field-induced strain is found to be a function of the variant microstructure. Experiments in which the initial microstructure is biased towards a single variant state with an applied load generate one-time strains of 4.3%, while those performed with a constant bias stress of 5 MPa generate reversible strains of 0.5% over a period of 50 cycles. An increase in the applied field ramp rate is shown to reduce the

  16. Trojan Microparticles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Thierry F. Vandamme

    2012-01-01

    Full Text Available During the last decade, the US Food and Drug Administration (FDA have regulated a wide range of products, (foods, cosmetics, drugs, devices, veterinary, and tobacco which may utilize micro and nanotechnology or contain nanomaterials. Nanotechnology allows scientists to create, explore, and manipulate materials in nano-regime. Such materials have chemical, physical, and biological properties that are quite different from their bulk counterparts. For pharmaceutical applications and in order to improve their administration (oral, pulmonary and dermal, the nanocarriers can be spread into microparticles. These supramolecular associations can also modulate the kinetic releases of drugs entrapped in the nanoparticles. Different strategies to produce these hybrid particles and to optimize the release kinetics of encapsulated drugs are discussed in this review.

  17. Microparticles

    African Journals Online (AJOL)

    (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy ... Polymeric drug delivery systems ... carrier systems based on available literature [10- .... the formulation were close, but the polydispersity .... significantly difference (p < 0.05) from the ... Pacheco PD, Manrique JY, Martinez F. Thermodynamic.

  18. Optical orientation in ferromagnet/semiconductor hybrids

    International Nuclear Information System (INIS)

    Korenev, V L

    2008-01-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin–spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism

  19. Optical orientation in ferromagnet/semiconductor hybrids

    Science.gov (United States)

    Korenev, V. L.

    2008-11-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin-spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism.

  20. Optical Orientation in Ferromagnet/Semiconductor Hybrids

    OpenAIRE

    Korenev, V. L.

    2008-01-01

    The physics of optical pumping of semiconductor electrons in the ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of the ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of the semiconductor. Spin-spin interactions near the interface ferromagnet/semiconductor play crucial role in the optical readout and the manipulation of ferromagnetism.

  1. Development of Alginate/Chitosan Microparticles for Dust Mite ...

    African Journals Online (AJOL)

    Erah

    surface of chitosan microparticles [4]. .... The reverse-phase high performance liquid .... The surface charge of alginate ... negative charge was as a result of the alginate on the microparticle surface. ... electrostatic interaction of the positively-.

  2. Microparticles and exosomes: impact on normal and complicated pregnancy

    NARCIS (Netherlands)

    Toth, Bettina; Lok, Christianne A. R.; Böing, Anita; Diamant, Michaela; van der Post, Joris A. M.; Friese, Klaus; Nieuwland, Rienk

    2007-01-01

    Eukaryotic cells release vesicles into their environment by membrane shedding (ectosomes or microparticles) and secretion (exosomes). Microparticles and exosomes occur commonly in vitro and in vivo. The occurrence, composition and function(s) of these vesicles change during disease (progression).

  3. Ferromagnetic Objects Magnetovision Detection System.

    Science.gov (United States)

    Nowicki, Michał; Szewczyk, Roman

    2013-12-02

    This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth's field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  4. Ferromagnetic Objects Magnetovision Detection System

    Directory of Open Access Journals (Sweden)

    Michał Nowicki

    2013-12-01

    Full Text Available This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth’s field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  5. Non-ferromagnetic overburden casing

    Science.gov (United States)

    Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy

    2010-09-14

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.

  6. Cell behavior on microparticles with different surface morphology

    International Nuclear Information System (INIS)

    Huang Sha; Fu Xiaobing

    2010-01-01

    Microparticles can serve as substrates for cell amplification and deliver the cell aggregation to the site of the defect for tissue regeneration. To develop favorable microparticles for cell delivery application, we fabricated and evaluated three types of microparticles that differ in surface properties. The microparticles with varied surface morphology (smooth, pitted and multicavity) were created from chemically crosslinked gelatin particles that underwent various drying treatments. Three types of microparticles were characterized and assessed in terms of the cell behavior of human keratinocytes and fibroblasts seeded on them. The cells could attach, spread and proliferate on all types of microparticles but spread and populated more slowly on the microparticles with smooth surfaces than on those with pitted or multicavity surfaces. Microparticles with a multicavity surface demonstrated the highest cell attachment and growth rate. Furthermore, cells tested on microparticles with a multicavity surface exhibited better morphology and induced the earlier formation of extracellular-based cell-microparticle aggregation than those on microparticles with other surface morphology (smooth and pitted). Thus, microparticles with a multicavity surface show promise for attachment and proliferation of cells in tissue engineering.

  7. Influence of microparticle size on cavitation noise during ultrasonic vibration

    Directory of Open Access Journals (Sweden)

    H. Ge

    2015-09-01

    Full Text Available The cavitation noise in the ultrasonic vibration system was found to be influenced by the size of microparticles added in water. The SiO2 microparticles with the diameter smaller than 100 μm reduced the cavitation noise, and the reason was attributed to the constrained oscillation of the cavitation bubbles, which were stabilized by the microparticles.

  8. PREFACE: Half Metallic Ferromagnets

    Science.gov (United States)

    Dowben, Peter

    2007-08-01

    Since its introduction by de Groot and colleagues in the early 1980s [1], the concept of half metallic ferromagnetism has attracted great interest. Idealized, half-metals have only one spin channel for conduction: the spin-polarized band structure exhibits metallic behavior for one spin channel, while the other spin band structure exhibits a gap at the Fermi level. Due to the gap for one spin direction, the density of states at the Fermi level has, theoretically, 100 & spin polarization. This gap in the density of states in one spin at the Fermi level, for example ↓ so N↓ (EF) = 0, also causes the resistance of that channel to go to infinity. At zero or low temperatures, the nonquasiparticle density of states (electron correlation effects), magnons and spin disorder reduce the polarization from the idealized 100 & polarization. At higher temperatures magnon-phonon coupling and irreversible compositional changes affect polarization further. Strategies for assessing and reducing the effects of finite temperatures on the polarization are now gaining attention. The controversies surrounding the polarization stability of half metallic ferromagnets are not, however, limited to the consideration of finite temperature effects alone. While many novel half metallic materials have been predicted, materials fabrication can be challenging. Defects, surface and interface segregation, and structural stability can lead to profound decreases in polarization, but can also suppress long period magnons. There is a 'delicate balance of energies required to obtain half metallic behaviour: to avoid spin flip scattering, tiny adjustments in atomic positions might occur so that a gap opens up in the other spin channel' [2]. When considering 'spintronics' devices, a common alibi for the study of half metallic systems, surfaces and interfaces become important. Free enthalpy differences between the surface and the bulk will lead to spin minority surface and interface states, as well as

  9. Circulating microparticles: square the circle

    Science.gov (United States)

    2013-01-01

    Background The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes. PMID:23607880

  10. Agglomeration of microparticles in complex plasmas

    International Nuclear Information System (INIS)

    Du, Cheng-Ran; Thomas, Hubertus M.; Ivlev, Alexei V.; Konopka, Uwe; Morfill, Gregor E.

    2010-01-01

    Agglomeration of highly charged microparticles was observed and studied in complex plasma experiments carried out in a capacitively coupled rf discharge. The agglomeration was caused by strong waves triggered in a particle cloud by decreasing neutral gas pressure. Using a high-speed camera during this unstable regime, it was possible to resolve the motion of individual microparticles and to show that the relative velocities of some particles were sufficiently high to overcome the mutual Coulomb repulsion and hence to result in agglomeration. After stabilizing the cloud again through the increase of the pressure, we were able to observe the aggregates directly with a long-distance microscope. We show that the agglomeration rate deduced from our experiments is in good agreement with theoretical estimates. In addition, we briefly discuss the mechanisms that can provide binding of highly charged microparticles in a plasma.

  11. Field Effect Microparticle Generation for Cell Microencapsulation.

    Science.gov (United States)

    Hsu, Brend Ray-Sea; Fu, Shin-Huei

    2017-01-01

    The diameter and sphericity of alginate-poly-L-lysine-alginate microcapsules, determined by the size and the shape of calcium alginate microspheres, affect their in vivo durability and biocompatibility and the results of transplantation. The commonly used air-jet spray method generates microspheres with a wider variation in diameter, larger sphere morphology, and evenly distributed encapsulated cells. In order to overcome these drawbacks, we designed a field effect microparticle generator to create a stable electric field to prepare microparticles with a smaller diameter and more uniform morphology. Using this electric field microparticle generator the encapsulated cells will be located at the periphery of the microspheres, and thus the supply of oxygen and nutrients for the encapsulated cells will be improved compared with the centrally located encapsulated cells in the air-jet spray method.

  12. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots.

    Science.gov (United States)

    Zubairova, Laily D; Nabiullina, Roza M; Nagaswami, Chandrasekaran; Zuev, Yuriy F; Mustafin, Ilshat G; Litvinov, Rustem I; Weisel, John W

    2015-12-04

    Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1-0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis.

  13. Dynamical response of vibrating ferromagnets

    CERN Document Server

    Gaganidze, E; Ziese, M

    2000-01-01

    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  14. Strategy for the hemocompatibility testing of microparticles.

    Science.gov (United States)

    Braune, S; Basu, S; Kratz, K; Johansson, J Bäckemo; Reinthaler, M; Lendlein, A; Jung, F

    2016-01-01

    Polymer-based microparticles are applied as non-thrombogenic or thrombogenic materials in a wide variety of intra- or extra-corporeal medical devices. As demanded by the regulatory agencies, the hemocompatibility of these blood contacting biomaterials has to be evaluated in vitro to ensure that the particle systems appropriately fulfill the envisioned function without causing undesired events such as thrombosis or inflammation. Currently described in vitro assays for hemocompatibility testing of particles comprise tests with different single cell types (e.g. erythrocytes or leukocytes), varying concentrations/dilutions of the used blood cells or whole blood, which are not standardized.Here, we report about an in vitro dynamic test system for studying the hemocompatibility of polymeric microparticles utilizing fresh human whole blood from apparently healthy subjects, collected and processed under standardized conditions. Spherical poly(ether imide) microparticles with an average diameter of 140±30 μm were utilized as model systems. Reported as candidate materials for the removal of uremic toxins, these microparticles are anticipated to facilitate optimal flow conditions in a dialyzer with minimal backflow and blood cell damage. Pristine (PEI) and potassium hydroxide (PEI-KOH) functionalized microparticles exhibited similarly nanoporous surfaces (PEI: ØExternal pore = 90±60 nm; PEI-KOH ØExternal pore = 150±130 nm) but varying water wettabilities (PEI: θadv = 112±10° PEI-KOH θadv = 60±2°). The nanoporosity of the microparticle surfaces allows the exchange of toxic solutes from blood towards the interconnective pores in the particle core, while an immigration of the substantially larger blood cells is inhibited.Sterilized PEI microparticles were incorporated -air-free -in a syringe-based test system and exposed to whole blood for 60 minutes under gentle agitation. Thereafter, thrombi formation on the particles surfaces were analyzed

  15. STM observations of ferromagnetic clusters

    International Nuclear Information System (INIS)

    Wawro, A.; Kasuya, A.

    1998-01-01

    Co, Fe and Ni clusters of nanometer size, deposited on silicon and graphite (highly oriented pyrolytic graphite), were observed by a scanning tunneling microscope. Deposition as well as the scanning tunneling microscope measurements were carried out in an ultrahigh vacuum system at room temperature. Detailed analysis of Co cluster height was done with the scanning tunneling microscope equipped with a ferromagnetic tip in a magnetic field up to 70 Oe. It is found that bigger clusters (few nanometers in height) exhibit a dependence of their apparent height on applied magnetic field. We propose that such behaviour originates from the ferromagnetic ordering of cluster and associate this effect to spin polarized tunneling. (author)

  16. Magnetic excitations in ferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Furdyna, J.K.; Liu, X.; Zhou, Y.Y.

    2009-01-01

    Magnetic excitations in a series of GaMnAs ferromagnetic semiconductor films were studied by ferromagnetic resonance (FMR). Using the FMR approach, multi-mode spin wave resonance spectra have been observed, whose analysis provides information on magnetic anisotropy (including surface anisotropy), distribution of magnetization precession within the GaMnAs film, dynamic surface spin pinning (derived from surface anisotropy), and the value of exchange stiffness constant D. These studies illustrate a combination of magnetism and semiconductor physics that is unique to magnetic semiconductors

  17. Novel room temperature ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amita [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  18. Innovation in detection of microparticles and exosomes

    NARCIS (Netherlands)

    van der Pol, E.; Coumans, F.; Varga, Z.; Krumrey, M.; Nieuwland, R.

    2013-01-01

    Cell-derived or extracellular vesicles, including microparticles and exosomes, are abundantly present in body fluids such as blood. Although such vesicles have gained strong clinical and scientific interest, their detection is difficult because many vesicles are extremely small with a diameter of

  19. Microparticles and Exosomes in Gynecologic Neoplasias

    NARCIS (Netherlands)

    Nieuwland, Rienk; van der Post, Joris A. M.; Lok Gemma, Christianne A. R.; Kenter, G.; Sturk, Augueste

    2010-01-01

    This review presents an overview of the functions of microparticles and exosomes in gynecologic neoplasias. Growing evidence suggests that vesicles released from cancer cells in gynecologic malignancies contribute to the hypercoagulable state of these patients and contribute to tumor progression by

  20. Microparticles in high-voltage accelerator tubes

    International Nuclear Information System (INIS)

    Griffith, G.L.; Eastham, D.A.

    1979-01-01

    Microparticles with radii greater than 2 μm have been observed in a high voltage vacuum accelerator tube. The charge acquired by most of the particles is similar to the contact charging of a conducting sphere on a plane. (author)

  1. Microassembly using a Cluster of Paramagnetic Microparticles

    NARCIS (Netherlands)

    Khalil, I.S.M.; Brink, F.V; Sardan Sukas, Ö.; Misra, Sarthak

    2013-01-01

    We use a cluster of paramagnetic microparticles to carry out a wireless two-dimensional microassembly operation. A magnetic-based manipulation system is used to control the motion of the cluster under the influence of the applied magnetic fields. Wireless motion control of the cluster is implemented

  2. Heterogeneous membranes filled with hypercrosslinked microparticle adsorbent

    Czech Academy of Sciences Publication Activity Database

    Hradil, Jiří; Krystl, V.; Hrabánek, P.; Bernauer, B.; Kočiřík, Milan

    2005-01-01

    Roč. 65, 1-2 (2005), s. 57-68 ISSN 1381-5148 R&D Projects: GA ČR GA104/03/0680 Institutional research plan: CEZ:AV0Z40500505 Keywords : heterogeneous membranes * hypercrosslinked adsorbent * microparticle s Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.565, year: 2005

  3. Diving with microparticles in acoustic fields

    DEFF Research Database (Denmark)

    2012-01-01

    Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate to the nodes of the acoustic wave. For several years, acoustophoresis has been used to manipulate microparticles in microscopic scales...

  4. Harvesting microalgae with microwave synthesized magnetic microparticles

    Czech Academy of Sciences Publication Activity Database

    Procházková, G.; Šafařík, Ivo; Brányik, T.

    2013-01-01

    Roč. 130, FEB (2013), s. 472-477 ISSN 0960-8524 R&D Projects: GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : harvesting microalgae * iron oxide magnetic microparticles * non-covalent interactions * microwave treatment * cell demagnetization Subject RIV: EI - Biotechnology ; Bionics Impact factor: 5.039, year: 2013

  5. Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties*

    Science.gov (United States)

    Dalli, Jesmond; Montero-Melendez, Trinidad; Norling, Lucy V; Yin, Xiaoke; Hinds, Charles; Haskard, Dorian; Mayr, Manuel; Perretti, Mauro

    2013-01-01

    Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, led to the production of microparticles containing >400 distinct proteins with only 223 being shared by the two subsets. For instance, postadherent microparticles were enriched in alpha-2 macroglobulin and ceruloplasmin, whereas microparticles produced by neutrophils in suspension were abundant in heat shock 70 kDa protein 1. Annexin A1 and lactotransferrin were expressed in both microparticle subsets. We next determined relative abundance of these proteins in three types of human microparticle samples: healthy volunteer plasma, plasma of septic patients and skin blister exudates finding that these proteins were differentially expressed on neutrophil microparticles from these samples reflecting in part the expression profiles we found in vitro. Functional assessment of the neutrophil microparticles subsets demonstrated that in response to direct stimulation neutrophil microparticles produced reactive oxygen species and leukotriene B4 as well as locomoted toward a chemotactic gradient. Finally, we investigated the actions of the two neutrophil microparticles subsets described herein on target cell responses. Microarray analysis with human primary endothelial cells incubated with either microparticle subset revealed a discrete modulation of endothelial cell gene expression profile. These findings demonstrate that neutrophil microparticles are heterogenous and can deliver packaged information propagating the activation status of the parent cell, potentially exerting novel and fundamental roles both under homeostatic and disease conditions. PMID:23660474

  6. Ferromagnetic Swimmers - Devices and Applications

    Science.gov (United States)

    Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor

    2017-11-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.

  7. Josephson junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Wild, Georg Hermann

    2012-01-01

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  8. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  9. Energy gap of ferromagnet-superconductor bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Halterman, Klaus; Valls, Oriol T

    2003-10-15

    The excitation spectrum of clean ferromagnet-superconductor bilayers is calculated within the framework of the self-consistent Bogoliubov-de Gennes theory. Because of the proximity effect, the superconductor induces a gap in the ferromagnet spectrum, for thin ferromagnetic layers. The effect depends strongly on the exchange field in the ferromagnet. We find that as the thickness of the ferromagnetic layer increases, the gap disappears, and that its destruction arises from those quasiparticle excitations with wave vectors mainly along the interface. We discuss the influence that the interface quality and Fermi energy mismatch between the ferromagnet and superconductor have on the calculated energy gap. We also evaluate the density of states in the ferromagnet, and we find it in all cases consistent with the gap results.

  10. Effect of the levitating microparticle cloud on radiofrequency argon plasma

    International Nuclear Information System (INIS)

    Mitic, S.; Pustylnik, M. Y.; Klumov, B. A.; Morfill, G. E.

    2010-01-01

    The effect of a levitating cloud of microparticles on the parameters of a radiofrequency (RF) plasma has been studied by means of two experimental techniques. Axial distributions of 1s excited states of argon were measured by a self-absorption method. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. In addition the electron temperature was estimated using the optical emission spectroscopy. Measurements at the same discharge conditions in a microparticle-free discharge and discharge, containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  11. Dirac Magnons in Honeycomb Ferromagnets

    Directory of Open Access Journals (Sweden)

    Sergey S. Pershoguba

    2018-01-01

    Full Text Available The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009RMPHAT0034-686110.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014ADPHAH0001-873210.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX_{3} (X=F, Cl, Br and I, that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956PHRVAO0031-899X10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956PHRVAO0031-899X10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr_{3} [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in

  12. Dirac Magnons in Honeycomb Ferromagnets

    Science.gov (United States)

    Pershoguba, Sergey S.; Banerjee, Saikat; Lashley, J. C.; Park, Jihwey; Ågren, Hans; Aeppli, Gabriel; Balatsky, Alexander V.

    2018-01-01

    The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009), 10.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014), 10.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X =F , Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956), 10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr3 [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering: Spin-Wave Correlation

  13. Exchange bias in nearly perpendicularly coupled ferromagnetic/ferromagnetic system

    International Nuclear Information System (INIS)

    Bu, K.M.; Kwon, H.Y.; Oh, S.W.; Won, C.

    2012-01-01

    Exchange bias phenomena appear not only in ferromagnetic/antiferromagnetic systems but also in ferromagnetic/ferromagnetic systems in which two layers are nearly perpendicularly coupled. We investigated the origin of the symmetry-breaking mechanism and the relationship between the exchange bias and the system's energy parameters. We compared the results of computational Monte Carlo simulations with those of theoretical model calculation. We found that the exchange bias exhibited nonlinear behaviors, including sign reversal and singularities. These complicated behaviors were caused by two distinct magnetization processes depending on the interlayer coupling strength. The exchange bias reached a maximum at the transition between the two magnetization processes. - Highlights: ► Exchange bias phenomena are found in perpendicularly coupled F/F systems. ► Exchange bias exhibits nonlinear behaviors, including sign reversal and singularities. ► These complicated behaviors were caused by two distinct magnetization processes. ► Exchange bias reached a maximum at the transition between the two magnetization processes. ► We established an equation to maximize the exchange bias in perpendicularly coupled F/F system.

  14. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.

    Science.gov (United States)

    Stamopoulos, D; Aristomenopoulou, E

    2015-08-26

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  15. Procedure for radiotracer labelling of carbon microparticles

    International Nuclear Information System (INIS)

    Kallay, Z.; Soltes, L.; Novak, I.; Trnovec, T.; Berek, D.

    1988-01-01

    A method is suggested for the labelling of carbon microparticles with radioisotopes. A carbon precursor is selected from the group of polymers including phenol-formaldehyde bitumens, polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, urea-formaldehyde or epoxy bitumens, and polysaccharides. A monodisperse fraction of the porous precursor is saturated with a solution of a salt of the radioisotope, and the carrier solvent is removed by evaporation at 360-420 K. The impregnated precursor is subsequently pyrolyzed at 870-1000 K. This method can find application in the preparation of radiactively labelled microparticles used for examining changes in the function of the cardiovascular system in experimental medicine, pharmacology, physiology and endocrinology. (P.A.)

  16. Magnetic excitations in amorphous ferromagnets

    International Nuclear Information System (INIS)

    Continentino, M.A.

    The propagation of magnetic excitations in amorphous ferromagnets is studied from the point of view of the theory of random frequency modulation. It is shown that the spin waves in the hydrodynamic limit are well described by perturbation theory while the roton-like magnetic excitations with wavevector about the peak in the structure factor are not. A criterion of validity of perturbation theory is found which is identical to a narrowing condition in magnetic resonance. (author) [pt

  17. Thermal History Using Microparticle Trap Luminescence

    Science.gov (United States)

    2012-06-01

    the size and shape of bacterial or viral agents and dispersed in a burst vessel . After the test, luminescence from the microparticles is measured to...platinum resistor sputtered on 1 nm adhesion layer of chrome, in turn on a 200nm LPCVD nitride; silicon wet -etching makes this a platform suspended...increased to 500°C until combustion occurred (- 7 min). The remaining powder was collected, crushed in a agate mortar, and annealed (typically at 900

  18. Coherent beam combination via microparticle plasma modes

    International Nuclear Information System (INIS)

    Rogovin, D.; Shen, T.P.

    1988-01-01

    Recently, there have been interesting observations and calculations on phase conjugation via degenerate four-wave mixing in gold colloids. The generation of phase conjugate radiation in these media arises from and reflects the creation of static index grating imposed on the electronic wave functions within the microparticles. These encouraging findings motivate us to consider the possibility of generating moving index gratings in these media with possible applications to coherent beam combination

  19. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  20. SIMS depth profile analysis of environmental microparticles

    International Nuclear Information System (INIS)

    Konarski, P.

    2000-01-01

    Environmental and technological research demands chemical characterization of aerosol particles so minute in size, that conventional methods for bulk analyses are simply not applicable. In this work novel application of secondary ion mass spectrometry (SIMS) for characterization of microparticles suspended in atmosphere of the working environment of glass plant Thomson Polkolor, Piaseczno and steelworks Huta Sendzimira, Cracow is presented. The new technique based on sample rotation in depth profile analysis of sub-micrometer particulate material was performed on SAJW-02 analyser equipped with Balzers 16 mm quadrupole spectrometer and sample rotation manipulator using 5 keV Ar + and O 2 + ion beams. The results were compared with the standard method used on ims-3f Cameca analyser 12 keV O 2 + ion beam. Grain size distributions of aerosol microparticles were estimated using eight-stage cascade impactor with particle size range of 0.2 μm to 15 μm. Elemental concentration and crystalline structure of the collected dust particles were performed using spark source mass spectrometry and X-ray diffraction methods. SIMS depth profile analysis shows that sub-micrometer particles do not have uniform morphology, The core-shell structure has been observed for particles collected in both factories. Presented models show that the steelworks particles consists mainly of iron and manganese cores. At the shells of these microparticles :lead, chlorine and fluorine are found. The cores of glass plant submicrometer particles consists mainly of lead-zirconium glass covered by a shell containing carbon and copper. Sample rotation technique applied SIMS appears to be an effective tool for environmental microparticle morphology studies. (author)

  1. Circulating procoagulant microparticles in cancer patients

    OpenAIRE

    Thaler, Johannes; Ay, Cihan; Weinstabl, Harald; Dunkler, Daniela; Simanek, Ralph; Vormittag, Rainer; Freyssinet, Jean-Marie; Zielinski, Christoph; Pabinger, Ingrid

    2010-01-01

    Abstract Accumulating evidence indicates that microparticles (MPs) are important mediators of the interaction between cancer and the hemostatic system. We conducted a large prospective cohort study to determine whether the number of circulating procoagulant MPs is elevated in cancer patients and whether the elevated MP levels are predictive of occurrence of venous thrombembolism (VTE). We analyzed plasma samples of 728 cancer patients from the ongoing prospective observational Vien...

  2. Detection of microparticles in dynamic processes

    International Nuclear Information System (INIS)

    Ten, K A; Pruuel, E R; Kashkarov, A O; Rubtsov, I A; Shechtman, L I; Zhulanov, V V; Tolochko, B P; Rykovanov, G N; Muzyrya, A K; Smirnov, E B; Stolbikov, M Yu; Prosvirnin, K M

    2016-01-01

    When a metal plate is subjected to a strong shock impact, its free surface emits a flow of particles of different sizes (shock-wave “dusting”). Traditionally, the process of dusting is investigated by the methods of pulsed x-ray or piezoelectric sensor or via an optical technique. The particle size ranges from a few microns to hundreds of microns. The flow is assumed to include also finer particles, which cannot be detected with the existing methods yet. On the accelerator complex VEPP-3-VEPP-4 at the BINP there are two experiment stations for research on fast processes, including explosion ones. The stations enable measurement of both passed radiation (absorption) and small-angle x-ray scattering on synchrotron radiation (SR). Radiation is detected with a precision high-speed detector DIMEX. The detector has an internal memory of 32 frames, which enables recording of the dynamics of the process (shooting of movies) with intervals of 250 ns to 2 μ s. Flows of nano- and microparticles from free surfaces of various materials (copper and tin) have been examined. Microparticle flows were emitted from grooves of 50-200 μ s in size and joints (gaps) between metal parts. With the soft x-ray spectrum of SR one can explore the dynamics of a single microjet of micron size. The dynamics of density distribution along micro jets were determined. Under a shock wave (∼ 60 GPa) acting on tin disks, flows of microparticles from a smooth surface were recorded. (paper)

  3. Preparation of alginate coated chitosan microparticles for vaccine delivery

    Directory of Open Access Journals (Sweden)

    Wei YuQuan

    2008-11-01

    Full Text Available Abstract Background Absorption of antigens onto chitosan microparticles via electrostatic interaction is a common and relatively mild process suitable for mucosal vaccine. In order to increase the stability of antigens and prevent an immediate desorption of antigens from chitosan carriers in gastrointestinal tract, coating onto BSA loaded chitosan microparticles with sodium alginate was performed by layer-by-layer technology to meet the requirement of mucosal vaccine. Results The prepared alginate coated BSA loaded chitosan microparticles had loading efficiency (LE of 60% and loading capacity (LC of 6% with mean diameter of about 1 μm. When the weight ratio of alginate/chitosan microparticles was greater than 2, the stable system could be obtained. The rapid charge inversion of BSA loaded chitosan microparticles (from +27 mv to -27.8 mv was observed during the coating procedure which indicated the presence of alginate layer on the chitosan microparticles surfaces. According to the results obtained by scanning electron microscopy (SEM, the core-shell structure of BSA loaded chitosan microparticles was observed. Meanwhile, in vitro release study indicated that the initial burst release of BSA from alginate coated chitosan microparticles was lower than that observed from uncoated chitosan microparticles (40% in 8 h vs. about 84% in 0.5 h. SDS-polyacrylamide gel electrophoresis (SDS-PAGE assay showed that alginate coating onto chitosan microparticles could effectively protect the BSA from degradation or hydrolysis in acidic condition for at least 2 h. The structural integrity of alginate modified chitosan microparticles incubated in PBS for 24 h was investigated by FTIR. Conclusion The prepared alginate coated chitosan microparticles, with mean diameter of about 1 μm, was suitable for oral mucosal vaccine. Moreover, alginate coating onto the surface of chitosan microparticles could modulate the release behavior of BSA from alginate coated chitosan

  4. Efficiency of homopolar generators without ferromagnetic circuit

    International Nuclear Information System (INIS)

    Kharitonov, V.V.

    1982-01-01

    E.m.f. and weights of homopolar generators (HG) without a ferromagnetic circuit and of similar generator with a ferromagnetic circuit are compared at equal armature diameters and armature rotative speed. HG without ferromagnetic cuircuit of disk and cylinder types with hot and superconducting excitation winding are considered. Areas of the most reasonable removal of a ferromagnetic circuit in the HG layout are found. The plots of relationships between the e.m.f. and HG weight that permit to estimate the efficiency of ''nonferrite'' HG constructions are presented

  5. Fabrication of chitosan microparticles loaded in chitosan and poly

    Indian Academy of Sciences (India)

    In recent decades, the use of microparticle-mediated drug delivery is widely applied in the field of biomedicalapplication. Here, we report the new dressing material with ciprofloxacin-loaded chitosan microparticle (CMP) impregnatedin chitosan (CH) and poly(vinyl alcohol) (PVA) scaffold for effective delivery of drug in a ...

  6. Dynamic release and clearance of circulating microparticles during cardiac stress.

    Science.gov (United States)

    Augustine, Daniel; Ayers, Lisa V; Lima, Eduardo; Newton, Laura; Lewandowski, Adam J; Davis, Esther F; Ferry, Berne; Leeson, Paul

    2014-01-03

    Microparticles are cell-derived membrane vesicles, relevant to a range of biological responses and known to be elevated in cardiovascular disease. To investigate microparticle release during cardiac stress and how this response differs in those with vascular disease. We measured a comprehensive panel of circulating cell-derived microparticles by a standardized flow cytometric protocol in 119 patients referred for stress echocardiography. Procoagulant, platelet, erythrocyte, and endothelial but not leukocyte, granulocyte, or monocyte-derived microparticles were elevated immediately after a standardized dobutamine stress echocardiogram and decreased after 1 hour. Twenty-five patients developed stress-induced wall motion abnormalities suggestive of myocardial ischemia. They had similar baseline microparticle levels to those who did not develop ischemia, but, interestingly, their microparticle levels did not change during stress. Furthermore, no stress-induced increase was observed in those without inducible ischemia but with a history of vascular disease. Fourteen patients subsequently underwent coronary angiography. A microparticle rise during stress echocardiography had occurred only in those with normal coronary arteries. Procoagulant, platelet, erythrocyte, and endothelial microparticles are released during cardiac stress and then clear from the circulation during the next hour. This stress-induced rise seems to be a normal physiological response that is diminished in those with vascular disease.

  7. Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles

    Science.gov (United States)

    Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe

    2013-01-01

    Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930

  8. Evaluating conditions for the formation of chitosan/gelatin microparticles

    Directory of Open Access Journals (Sweden)

    Marcia C. Silva

    2009-06-01

    Full Text Available Chitosan/gelatin microparticles were prepared by complex coacervation. Three chitosan (CH samples, with different acetylation degrees and intrinsic viscosities, were used together with commercial gelatin (G samples. Microparticles formation was investigated at various CH/G ratios, within the pH range of 3.5 to 6.0. Reactions were carried out at 40 and 60 ºC, for 2, 4, and 6 hours. Turbidity measurements performed at 633 nm were used to monitor the process. The resulting curves revealed maximum values, which were correlated to the glucosamine content of CH samples. After isolation, yields were determined, and the microparticles were characterized by infrared spectroscopy (FTIR and thermogravimetry (TGA. Both techniques evidenced the formation of coacervate microparticles. The highest yields in microparticles were determined for the system comprising the CH sample with the lowest degree of acetylation and intrinsic viscosity, and the gelatin sample with the lowest bloom strength.

  9. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles.

    Science.gov (United States)

    Tang, Ke; Zhang, Yi; Zhang, Huafeng; Xu, Pingwei; Liu, Jing; Ma, Jingwei; Lv, Meng; Li, Dapeng; Katirai, Foad; Shen, Guan-Xin; Zhang, Guimei; Feng, Zuo-Hua; Ye, Duyun; Huang, Bo

    2012-01-01

    Cellular microparticles are vesicular plasma membrane fragments with a diameter of 100-1,000 nanometres that are shed by cells in response to various physiological and artificial stimuli. Here we demonstrate that tumour cell-derived microparticles can be used as vectors to deliver chemotherapeutic drugs. We show that tumour cells incubated with chemotherapeutic drugs package these drugs into microparticles, which can be collected and used to effectively kill tumour cells in murine tumour models without typical side effects. We describe several mechanisms involved in this process, including uptake of drug-containing microparticles by tumour cells, synthesis of additional drug-packaging microparticles by these cells that contribute to the cytotoxic effect and the inhibition of drug efflux from tumour cells. This study highlights a novel drug delivery strategy with potential clinical application.

  10. Fission product release from HTGR coated microparticles and fuel elements

    International Nuclear Information System (INIS)

    Gusev, A.A.; Deryugin, A.I.; Lyutikov, R.A.; Chernikov, A.S.

    1991-01-01

    The article presents the results of the investigation of fission products release from microparticles with UO 2 core and five-layer HII PyC- and SiC base protection layers of TRICO type as well as from spherical fuel elements based thereon. It is shown that relative release of short-lived xenon and crypton from microparticles does not exceed (2-3) 10 -7 . The release of gaseous fission products from fuel elements containing no damaged coated microparticles, is primarily determined by the contamination of matrix graphite with fuel. An analytical dependence is derived, the dependence described the relation between structural parameters of coated microparticles, irradiation conditions and fuel burnup at which depressurization of coated microparticles starts

  11. SU-8 micropatterning for microfluidic droplet and microparticle focusing

    International Nuclear Information System (INIS)

    Debuisson, Damien; Senez, Vincent; Arscott, Steve

    2011-01-01

    We demonstrate micropatterned surfaces consisting of concentric circles and spirals which can focus an evaporating sessile droplet to a specific location on a surface. We also study the micropattern geometry to focus microparticles contained within the droplet. The micropatterned surfaces are fabricated using the photoresist SU-8. Our process enables the modification of the surface wetting via the formation of smooth trench-like defects in the SU-8 which define the micropatterns; the geometry of these micropatterns determines the droplet/microparticle focusing. It is clearly shown that the introduction of small gaps into the micropatterns promotes microparticle centring due to the modification of the depinning angle of the droplet. We also show that the use of spiral micropatterns promotes microparticle centring. Finally, microparticle focusing can be enhanced by modification of surface wetting via the addition of a thin fluorocarbon hydrophobic layer onto the SU-8

  12. Cell-derived microparticles in haemostasis and vascular medicine.

    Science.gov (United States)

    Burnier, Laurent; Fontana, Pierre; Kwak, Brenda R; Angelillo-Scherrer, Anne

    2009-03-01

    Considerable interest for cell-derived microparticles has emerged, pointing out their essential role in haemostatic response and their potential as disease markers, but also their implication in a wide range of physiological and pathological processes. They derive from different cell types including platelets - the main source of microparticles - but also from red blood cells, leukocytes and endothelial cells, and they circulate in blood. Despite difficulties encountered in analyzing them and disparities of results obtained with a wide range of methods, microparticle generation processes are now better understood. However, a generally admitted definition of microparticles is currently lacking. For all these reasons we decided to review the literature regarding microparticles in their widest definition, including ectosomes and exosomes, and to focus mainly on their role in haemostasis and vascular medicine.

  13. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas

    2012-01-01

    We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming...

  14. CIRCULATING MICROPARTICLES IN PATIENTS WITH ANTIPHOSPHOLIPID ANTIBODIES: CHARACTERIZATION AND ASSOCIATIONS

    Science.gov (United States)

    Chaturvedi, Shruti; Cockrell, Erin; Espinola, Ricardo; Hsi, Linda; Fulton, Stacey; Khan, Mohammad; Li, Liang; Fonseca, Fabio; Kundu, Suman; McCrae, Keith R.

    2014-01-01

    The antiphospholipid syndrome is characterized by venous or arterial thrombosis and/or recurrent fetal loss in the presence of circulating antiphospholipid antibodies. These antibodies cause activation of endothelial and other cell types leading to the release of microparticles with procoagulant and pro-inflammatory properties. The aims of this study were to characterize the levels of endothelial cell, monocyte, platelet derived, and tissue factor-bearing microparticles in patients with antiphospholipid antibodies, to determine the association of circulating microparticles with anticardiolipin and anti-β2-glycoprotein antibodies, and to define the cellular origin of microparticles that express tissue factor. Microparticle content within citrated blood from 47 patients with antiphospholipid antibodies and 144 healthy controls was analyzed within 2 hours of venipuncture. Levels of Annexin-V, CD105 and CD144 (endothelial derived), CD41 (platelet derived) and tissue factor positive microparticles were significantly higher in patients than controls. Though levels of CD14 (monocyte-derived) microparticles in patient plasma were not significantly increased, increased levels of CD14 and tissue factor positive microparticles were observed in patients. Levels of microparticles that stained for CD105 and CD144 showed a positive correlation with IgG (R = 0.60, p=0.006) and IgM anti-beta2-glycoprotein I antibodies (R=0.58, p=0.006). The elevation of endothelial and platelet derived microparticles in patients with APS and their correlation with anti-β2-glycoprotein I antibodies suggests a chronic state of vascular cell activation in these individuals and an important role for β2-glycoprotein I in development of the pro-thrombotic state associated with antiphospholipid antibodies. PMID:25467081

  15. Radioactive Probes on Ferromagnetic Surfaces

    CERN Multimedia

    2002-01-01

    On the (broad) basis of our studies of nonmagnetic radioactive probe atoms on magnetic surfaces and at interfaces, we propose to investigate the magnetic interaction of magnetic probe atoms with their immediate environment, in particular of rare earth (RE) elements positioned on and in ferromagnetic surfaces. The preparation and analysis of the structural properties of such samples will be performed in the UHV chamber HYDRA at the HMI/Berlin. For the investigations of the magnetic properties of RE atoms on surfaces Perturbed Angular Correlation (PAC) measurements and Mössbauer Spectroscopy (MS) in the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) are proposed.

  16. Endothelial microparticles (EMP in physiology and pathology

    Directory of Open Access Journals (Sweden)

    Ewa Sierko

    2015-08-01

    Full Text Available Endothelial microparticles (EMP are released from endothelial cells (ECs in the process of activation and/or apoptosis. They harbor adhesive molecules, enzymes, receptors and cytoplasmic structures and express a wide range of various constitutive antigens, typical for ECs, at their surface. Under physiological conditions the concentration of EMP in the blood is clinically insignificant. However, it was reported that under pathological conditions EMP concentration in the blood might slightly increase and contribute to blood coagulation, angiogenesis and inflammation. It has been shown that EMP directly and indirectly contribute to the activation of blood coagulation. Endothelial microparticles directly participate in blood coagulation through their surface tissue factor (TF – a major initiator of blood coagulation. Furthermore, EMP exhibit procoagulant potential via expression of negatively charged phospholipids at their surface, which may promote assembly of coagulation enzymes (TF/VII, tenases and prothrombinase complexes, leading to thrombus formation. In addition, they provide a binding surface for coagulation factors: IXa, VIII, Va and IIa. Moreover, it is possible that EMP transfer TF from TF-bearing EMP to activated platelets and monocytes by binding them through adhesion molecules. Also, EMP express von Willebrand factor, which may facilitate platelet aggregation. Apart from their procoagulant properties, it was demonstrated that EMP may express adhesive molecules and metalloproteinases (MMP-2, MMP-9 at their surface and release growth factors, which may contribute to angiogenesis. Additionally, surface presence of C3 and C4 – components of the classical pathway – suggests pro-inflammatory properties of these structures. This article contains a summary of available data on the biology and pathophysiology of endothelial microparticles and their potential role in blood coagulation, angiogenesis and inflammation.

  17. Onset of itinerant ferromagnetism associated with semiconductor ...

    Indian Academy of Sciences (India)

    In this paper, the magnetic and transport properties of the TiNb1−CoSn solid solution compounds with half Heusler cubic MgAgAs-type structure have been studied. This work shows the onset of ferromagnetism associated with a semiconductor to metal transition. The transition occurs directly from ferromagnetic metal to ...

  18. Voltage control of ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Ziyao Zhou

    2016-06-01

    Full Text Available Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME coupling mechanism: strain/stress, interfacial charge, spin–electromagnetic (EM coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin–EM coupling and exchange coupling.

  19. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles.

    LENUS (Irish Health Repository)

    Hong, Ying

    2012-01-01

    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3-ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics.

  20. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate.

    Science.gov (United States)

    Gelfuso, Guilherme Martins; Gratieri, Taís; Simão, Patrícia Sper; de Freitas, Luís Alexandre Pedro; Lopez, Renata Fonseca Vianna

    2011-01-01

    Given the hypothesis that microparticles can penetrate the skin barrier along the transfollicular route, this work aimed to obtain and characterise chitosan microparticles loaded with minoxidil sulphate (MXS) and to study their ability to sustain the release of the drug, attempting a further application utilising them in a targeted delivery system for the topical treatment of alopecia. Chitosan microparticles, containing different proportions of MXS/polymer, were prepared by spray drying and were characterised by yield, encapsulation efficiency, size and morphology. Microparticles selected for further studies showed high encapsulation efficiency (∼82%), a mean diameter of 3.0 µm and a spherical morphology without porosities. When suspended in an ethanol/water solution, chitosan microparticles underwent instantaneous swelling, increasing their mean diameter by 90%. Release studies revealed that the chitosan microparticles were able to sustain about three times the release rate of MXS. This feature, combined with suitable size, confers to these microparticles the potential to target and improve topical therapy of alopecia with minoxidil.

  1. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gaihre, Bipin [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614 (United States)

    2016-12-01

    In this study we developed carboxymethyl cellulose (CMC) microparticles through ionic crosslinking with the aqueous ion complex of zirconium (Zr) and further complexing with chitosan (CS) and determined the physio-chemical and biological properties of these novel microparticles. In order to assess the role of Zr, microparticles were prepared in 5% and 10% (w/v) zirconium tetrachloride solution. Scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS) results showed that Zr was uniformly distributed on the surface of the microparticles as a result of which uniform groovy surface was obtained. We found that Zr enhances the surface roughness of the microparticles and stability studies showed that it also increases the stability of microparticles in phosphate buffered saline. The crosslinking of anionic CMC with cationic Zr and CS was confirmed by Fourier transform infrared spectroscopy (FTIR) results. The response of murine pre-osteoblasts (OB-6) when cultured with microparticles was investigated. Live/dead cell assay showed that microparticles did not induce any cytotoxic effects as cells were attaching and proliferating on the well plate as well as along the surface of microparticles. In addition, SEM images showed that microparticles support the attachment of cells and they appeared to be directly interacting with the surface of microparticle. Within 10 days of culture most of the top surface of microparticles was covered with a layer of cells indicating that they were proliferating well throughout the surface of microparticles. We observed that Zr enhances the cell attachment and proliferation as more cells were present on microparticles with 10% Zr. These promising results show the potential applications of CMC-Zr microparticles in bone tissue engineering. - Highlights: • Zirconium ions crosslinked carboxymethyl cellulose microparticles were fabricated. • The microparticles were further stabilized by complexation with chitosan.

  2. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering

    International Nuclear Information System (INIS)

    Gaihre, Bipin; Jayasuriya, Ambalangodage C.

    2016-01-01

    In this study we developed carboxymethyl cellulose (CMC) microparticles through ionic crosslinking with the aqueous ion complex of zirconium (Zr) and further complexing with chitosan (CS) and determined the physio-chemical and biological properties of these novel microparticles. In order to assess the role of Zr, microparticles were prepared in 5% and 10% (w/v) zirconium tetrachloride solution. Scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS) results showed that Zr was uniformly distributed on the surface of the microparticles as a result of which uniform groovy surface was obtained. We found that Zr enhances the surface roughness of the microparticles and stability studies showed that it also increases the stability of microparticles in phosphate buffered saline. The crosslinking of anionic CMC with cationic Zr and CS was confirmed by Fourier transform infrared spectroscopy (FTIR) results. The response of murine pre-osteoblasts (OB-6) when cultured with microparticles was investigated. Live/dead cell assay showed that microparticles did not induce any cytotoxic effects as cells were attaching and proliferating on the well plate as well as along the surface of microparticles. In addition, SEM images showed that microparticles support the attachment of cells and they appeared to be directly interacting with the surface of microparticle. Within 10 days of culture most of the top surface of microparticles was covered with a layer of cells indicating that they were proliferating well throughout the surface of microparticles. We observed that Zr enhances the cell attachment and proliferation as more cells were present on microparticles with 10% Zr. These promising results show the potential applications of CMC-Zr microparticles in bone tissue engineering. - Highlights: • Zirconium ions crosslinked carboxymethyl cellulose microparticles were fabricated. • The microparticles were further stabilized by complexation with chitosan.

  3. Stimuli sensitive polymethacrylic acid microparticles (PMAA)--oral insulin delivery.

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P

    2002-10-01

    This study investigated polymethacrylic acid (PMAA) microparticles for controlled release of Insulin in oral administration. The microparticles were characterised by scanning electron microscopy (SEM) for morphological studies. The swelling behaviour and drug release profile in various pH media were studied. The % swelling of gels was found to be inversely related to the amount of crosslinker added. Inclusion complex of betaCD and Insulin was studied using polyacrylamide gel electrophoresis (PAGE). Optimum complexation was obtained in the ratio 100 mg betaCD: 200 IU Insulin. The release pattern of Insulin from Insulin-betaCD complex encapsulated PMAA microparticles showed release of Insulin for more than seven hours.

  4. Inhomogeneous superconductivity in a ferromagnet

    International Nuclear Information System (INIS)

    Kontos, T.; Aprili, M.; Lesueur, J.; Genet, F.; Boursier, R.; Grison, X.

    2003-01-01

    We have studied a new superconducting state where the condensate wave function resulting from conventional pairing, is modified by an exchange field. Superconductivity is induced into a ferromagnetic thin film (F) by the proximity effect with a superconducting reservoir (S). We observed oscillations of the superconducting order parameter induced in F as a function of the distance from the S/F interface. They originate from the finite momentum transfer provided to Cooper pairs by the splitting of the spin up and down bands. We measured the superconducting density of states in F by tunneling spectroscopy and the Josephson critical current when F is coupled with a superconducting counter-electrode. Negative values of the superconducting order parameter are revealed by capsized tunneling spectra in F and a negative Josephson coupling (π-junction)

  5. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  6. Detection and quantification of microparticles from different cellular lineages using flow cytometry. Evaluation of the impact of secreted phospholipase A2 on microparticle assessment.

    Science.gov (United States)

    Rousseau, Matthieu; Belleannee, Clemence; Duchez, Anne-Claire; Cloutier, Nathalie; Levesque, Tania; Jacques, Frederic; Perron, Jean; Nigrovic, Peter A; Dieude, Melanie; Hebert, Marie-Josee; Gelb, Michael H; Boilard, Eric

    2015-01-01

    Microparticles, also called microvesicles, are submicron extracellular vesicles produced by plasma membrane budding and shedding recognized as key actors in numerous physio(patho)logical processes. Since they can be released by virtually any cell lineages and are retrieved in biological fluids, microparticles appear as potent biomarkers. However, the small dimensions of microparticles and soluble factors present in body fluids can considerably impede their quantification. Here, flow cytometry with improved methodology for microparticle resolution was used to detect microparticles of human and mouse species generated from platelets, red blood cells, endothelial cells, apoptotic thymocytes and cells from the male reproductive tract. A family of soluble proteins, the secreted phospholipases A2 (sPLA2), comprises enzymes concomitantly expressed with microparticles in biological fluids and that catalyze the hydrolysis of membrane phospholipids. As sPLA2 can hydrolyze phosphatidylserine, a phospholipid frequently used to assess microparticles, and might even clear microparticles, we further considered the impact of relevant sPLA2 enzymes, sPLA2 group IIA, V and X, on microparticle quantification. We observed that if enriched in fluids, certain sPLA2 enzymes impair the quantification of microparticles depending on the species studied, the source of microparticles and the means of detection employed (surface phosphatidylserine or protein antigen detection). This study provides analytical considerations for appropriate interpretation of microparticle cytofluorometric measurements in biological samples containing sPLA2 enzymes.

  7. Dipolar ferromagnets and glasses (invited)

    International Nuclear Information System (INIS)

    Rosenbaum, T.F.; Wu, W.; Ellman, B.; Yang, J.; Aeppli, G.; Reich, D.H.

    1991-01-01

    What is the ground state and what are the dynamics of 10 23 randomly distributed Ising spins? We have attempted to answer these questions through magnetic susceptibility, calorimetric, and neutron scattering studies of the randomly diluted dipolar-coupled Ising magnet LiHo x Y 1-x F 4 . The material is ferromagnetic for dipole concentrations at least as low as x=0.46, with a Curie temperature obeying mean-field scaling relative to that of pure LiHoF 4 . In the dilute spin limit, an x=0.045 crystal shows very unusual glassy properties characterized by decreasing barriers to relaxation as T→0. Its properties are consistent with a single low degeneracy ground state with a large gap for excitations. A slightly more concentrated x=0.167 sample, however, supports a complex ground state with no appreciable gap, in accordance with prevailing theories of spin glasses. The underlying causes of such disparate behavior are discussed in terms of random clusters as probed by neutron studies of the x=0.167 sample. In addition to tracing the evolution of the glassy and ferromagnetic states with dipole concentration, we investigate the effects of a transverse magnetic field on the Ising spin glass, LiHo 0.167 Y 0.833 F 4 . The transverse field mixes the eigenfunctions of the ground-state Ising doublet with the otherwise inaccessible excited-state levels. We observe a rapid decrease in the characteristic relaxation times, large changes in the spectral form of the relaxation, and a depression of the spin-glass transition temperature with the addition of quantum fluctuations

  8. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis

    Science.gov (United States)

    Lacroix, Romaric; Plawinski, Laurent; Robert, Stéphane; Doeuvre, Loïc; Sabatier, Florence; Martinez de Lizarrondo, Sara; Mezzapesa, Anna; Anfosso, Francine; Leroyer, Aurelie S.; Poullin, Pascale; Jourde, Noémie; Njock, Makon-Sébastien; Boulanger, Chantal M.; Anglés-Cano, Eduardo; Dignat-George, Françoise

    2012-01-01

    Background We recently assigned a new fibrinolytic function to cell-derived microparticles in vitro. In this study we explored the relevance of this novel property of microparticles to the in vivo situation. Design and Methods Circulating microparticles were isolated from the plasma of patients with thrombotic thrombocytopenic purpura or cardiovascular disease and from healthy subjects. Microparticles were also obtained from purified human blood cell subpopulations. The plasminogen activators on microparticles were identified by flow cytometry and enzyme-linked immunosorbent assays; their capacity to generate plasmin was quantified with a chromogenic assay and their fibrinolytic activity was determined by zymography. Results Circulating microparticles isolated from patients generate a range of plasmin activity at their surface. This property was related to a variable content of urokinase-type plasminogen activator and/or tissue plasminogen activator. Using distinct microparticle subpopulations, we demonstrated that plasmin is generated on endothelial and leukocyte microparticles, but not on microparticles of platelet or erythrocyte origin. Leukocyte-derived microparticles bear urokinase-type plasminogen activator and its receptor whereas endothelial microparticles carry tissue plasminogen activator and tissue plasminogen activator/inhibitor complexes. Conclusions Endothelial and leukocyte microparticles, bearing respectively tissue plasminogen activator or urokinase-type plasminogen activator, support a part of the fibrinolytic activity in the circulation which is modulated in pathological settings. Awareness of this blood-borne fibrinolytic activity conveyed by microparticles provides a more comprehensive view of the role of microparticles in the hemostatic equilibrium. PMID:22733025

  9. Obtain and characterization of chitosan / propranolol microparticles by spray drying

    International Nuclear Information System (INIS)

    Nascimento, Ednaldo G. do; Silva Junior, Arnobio A. da; Santos, Katia S.C.R. dos

    2015-01-01

    The study investigated the application of chitosan microparticles as carriers into hard gelatin capsule containing propranolol, evaluating the variability of the molecular weight and the chitosan particles by spray drying. The formulations were characterized by average weight, dosing unit dose uniformity and dissolution profile according to the pharmacopoeia. While the microparticles were characterized by Fourier transformed infrared spectroscopy, scanning electron microscopy and X-ray diffraction. The results showed that chitosan microparticles obtained without the drug and then physically mixed with propranolol promoted a modified release 85% of the drug after 5 hours. While, chitosan microparticles sprayed with propranolol released only 55% at 5 hours is presented both as a modified release system. Samples of dried chitosan showed up amorphous and homogeneous and spherical morphology. (author)

  10. Distinct proteome pathology of circulating microparticles in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Østergaard, Ole; Nielsen, Christoffer Tandrup; Tanassi, Julia T

    2017-01-01

    BACKGROUND: The pathogenesis of systemic lupus erythematosus (SLE) is poorly understood but has been linked to defective clearance of subcellular particulate material from the circulation. This study investigates the origin, formation, and specificity of circulating microparticles (MPs) in patients...

  11. Droplet-based microfluidic method for synthesis of microparticles

    CSIR Research Space (South Africa)

    Mbanjwa, MB

    2012-10-01

    Full Text Available Droplet-based microfluidics has, in recent years, received increased attention as an important tool for performing numerous methods in modern day chemistry and biology such as the synthesis of hydrogel microparticles. Hydrogels have been used in many..., in recent years, received increased attention as an important tool for performing numerous methods in modern day chemistry and biology, such as synthesis of hydrogel microparticles. CONCLUSION AND OUTLOOK The droplet-based microfluidic method offers...

  12. Heat dissipation due to ferromagnetic resonance in a ferromagnetic metal monitored by electrical resistance measurement

    International Nuclear Information System (INIS)

    Yamanoi, Kazuto; Yokotani, Yuki; Kimura, Takashi

    2015-01-01

    The heat dissipation due to the resonant precessional motion of the magnetization in a ferromagnetic metal has been investigated. We demonstrated that the temperature during the ferromagnetic resonance can be simply detected by the electrical resistance measurement of the Cu strip line in contact with the ferromagnetic metal. The temperature change of the Cu strip due to the ferromagnetic resonance was found to exceed 10 K, which significantly affects the spin-current transport. The influence of the thermal conductivity of the substrate on the heating was also investigated

  13. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    International Nuclear Information System (INIS)

    Tu, Nguyen Thanh; Hai, Pham Nam; Anh, Le Duc; Tanaka, Masaaki

    2016-01-01

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga_1_−_x,Fe_x)Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  14. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Nguyen Thanh [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physics, Ho Chi Minh City University of Pedagogy, 280, An Duong Vuong Street, District 5, Ho Chi Minh City 748242 (Viet Nam); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Anh, Le Duc [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-05-09

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  15. Effects of microparticle size and Fc density on macrophage phagocytosis.

    Directory of Open Access Journals (Sweden)

    Patricia Pacheco

    Full Text Available Controlled induction of phagocytosis in macrophages offers the ability to therapeutically regulate the immune system as well as improve delivery of chemicals or biologicals for immune processing. Maximizing particle uptake by macrophages through Fc receptor-mediated phagocytosis could lead to new delivery mechanisms in drug or vaccine development. Fc ligand density and particle size were examined independently and in combination in order to optimize and tune the phagocytosis of opsonized microparticles. We show the internalization efficiency of small polystyrene particles (0.5 µm to 2 µm is significantly affected by changes in Fc ligand density, while particles greater than 2 µm show little correlation between internalization and Fc density. We found that while macrophages can efficiently phagocytose a large number of smaller particles, the total volume of phagocytosed particles is maximized through the non-specific uptake of larger microparticles. Therefore, larger microparticles may be more efficient at delivering a greater therapeutic payload to macrophages, but smaller opsonized microparticles can deliver bio-active substances to a greater percentage of the macrophage population. This study is the first to treat as independent variables the physical and biological properties of Fc density and microparticle size that initiate macrophage phagocytosis. Defining the physical and biological parameters that affect phagocytosis efficiency will lead to improved methods of microparticle delivery to macrophages.

  16. Use of protein containing magnetic microparticles in radioassays

    International Nuclear Information System (INIS)

    Ithakissios, D.S.; Kubiatowicz, D.O.

    1977-01-01

    We describe a radioassay method that involves the use of magnetic protein microparticles composed of a water-insoluble protein matrix containing magnetically responsive material. We define two different types of particles according to the mechanism of action: The substrate is sorbed nonspecifically by the protein matrix of the particle or by a second substance such as charcoal or ion-exchange resin incorporated within the protein matrix of the particle. These particles are useful for separating free from bound substrate. Examples of these are albumin magnetic microparticles for use in a total thyroxine radioassay and triiodothyronine uptake test, or albumin magnetic microparticles containing charcoal for use in a vitamin B 12 radioassay. The substrate is sorbed specifically by a binding protein incorporated within the matrix of the particles. The binding protein can include antibodies or other specific nonimmune proteins. Particles of this type are useful in solid-phase radioassays. These particles are exemplified by albumin magnetic microparticles containing sockeye salmon serum, used in a solid-phase B 12 radioassay. We discuss the methods for the preparation of both types of magnetic microparticles and their use in radioassays. We describe a unique inexpensive magnetic separation rack, which provides simple, fast, and reproducible separation of the magnetic microparticles from their suspending medium during the assay

  17. Preparation and Characterization of Keratin/Alginate Blend Microparticles

    Directory of Open Access Journals (Sweden)

    Yaowalak Srisuwan

    2018-01-01

    Full Text Available The water-in-oil (W/O emulsification-diffusion method was used for construction of keratin (Ker, alginate (Alg, and Ker/Alg blend microparticles. The Ker, Alg, and Ker/Alg blend solutions were used as the water phase, while ethyl acetate was used as the oil phase. Firstly, different concentrations of Ker solution was used to find suitable content. 1.6% w/v Ker solution was blended with the same concentration of the Alg solution for further microparticle construction. Results from scanning electron microscope analysis show that the microparticles have different shapes: spherical, bowl-like, porous, and hollow, with several sizes depending on the blend ratio. FTIR and TG analyses indicated that the secondary structure and thermal stability of the microparticles were influenced by the Ker/Alg blend ratio. The interaction between functional groups of keratin and alginate was the main factor for both β-sheet structure and Td,max values of the microparticles. The results suggested that Ker/Alg blend microparticles might be applied in many fields by varying the Ker/Alg ratio.

  18. In vitro release kinetics of Tolmetin from tabletted Eudragit microparticles.

    Science.gov (United States)

    Pignatello, R; Consoli, P; Puglisi, G

    2000-01-01

    In a previous paper the preparation has been described, by three different techniques, of microparticles made of Eudragit RS 100 and RL 100 containing a NSAI agent, Tolmetin. Freely flowing microparticles failed to affect significantly the in vitro drug release, which displayed a similar dissolution profile after micro-encapsulation to the free drug powder. Microparticles were then converted into tablets and the effect of compression on drug delivery, as well as that of the presence of co-additives, was studied in the present work. Furthermore, microparticles were also prepared by adding MgO to the polymer matrix, to reduce the sensitivity of the drug to pH changes during its dissolution. Similarly, magnesium stearate was also used for microparticle formation as a droplet stabilizer, in order to reduce particle size and hinder rapid drug release. A mathematical evaluation, by using two semi-empirical equations, was applied to evaluate the influence of dissolution and diffusion phenomena upon drug release from microparticle tablets.

  19. Coexistence of Superconductivity and Ferromagnetism in ...

    African Journals Online (AJOL)

    KBHEEMA

    Ferromagnetic alignment can be expected to be strongly opposed by superconductivity. .... To obtain temperature dependent of energy gap of equation (23), we used the same techniques to solve the integral .... band metal ZrZn2. Nature, 412: ...

  20. Ferromagnetic and twin domains in LCMO manganites

    International Nuclear Information System (INIS)

    Jung, G.; Markovich, V.; Mogilyanski, D.; Beek, C. van der; Mukovskii, Y.M.

    2005-01-01

    Ferromagnetic and twin domains in lightly Ca-doped La 1-x Ca x MnO 3 single crystals have been visualized and investigated by means of the magneto-optical technique. Both types of domains became visible below the Curie temperature. The dominant structures seen in applied magnetic field are associated with magneto-crystalline anisotropy and twin domains. In a marked difference to the twin domains which appear only in applied magnetic field, ferromagnetic domains show up in zero applied field and are characterized by oppositely oriented spontaneous magnetization in adjacent domains. Ferromagnetic domains take form of almost periodic, corrugated strip-like structures. The corrugation of the ferromagnetic domain pattern is enforced by the underlying twin domains

  1. Josephson tunnel junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Weides, M.P.

    2006-01-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al 2 O 3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ 0 . Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  2. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  3. Topological magnon bands in ferromagnetic star lattice

    International Nuclear Information System (INIS)

    Owerre, S A

    2017-01-01

    The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1–3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii–Moriya (DM) spin–orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases. (paper)

  4. Topological magnon bands in ferromagnetic star lattice.

    Science.gov (United States)

    Owerre, S A

    2017-05-10

    The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.

  5. Inductive measurements of ferromagnetic resonance

    International Nuclear Information System (INIS)

    Woodward, R.C.; Kennewell, K.; Crew, D.C.; Stamps, R.L.

    2004-01-01

    Full text: The rapid advance in magnetic data storage has driven groundbreaking work in the science that underpins the properties of ferromagnetic materials at high frequencies. Recent work in this area has included the use of precession in order to produce ultra-high speed switching of magnetic elements, the generation of excited dynamical structures by application of inhomogeneous field pulses, and examination of the propagation of localized spin waves. This paper describes explorations of ultra-fast magnetization dynamics being undertaken at The University of Western Australia. We have studied the differences in magnetization dynamics in simple permalloy films when a sample is excited with sharp pulse compared to the to the dynamics generated by the application of a small amplitude continuous wave signal. We have observed a difference in the resonant frequency determined from these two excitations and will propose reasons for the different resonance responses of the system. Using the ultra-fast techniques described above we have measured dynamical properties that are significantly different to the static properties. These results are explained by the dynamical measurements being made on time scales smaller than the characteristic relaxation time. Future applications of these devices will be to examine broadening of line widths and frequency shifts associated with the excitation of magnetostatic modes, factors limiting quasiballistic reversal and differences between the dynamic and static properties of magnetic materials

  6. Carrier concentration induced ferromagnetism in semiconductors

    International Nuclear Information System (INIS)

    Story, T.

    2007-01-01

    In semiconductor spintronics the key materials issue concerns ferromagnetic semiconductors that would, in particular, permit an integration (in a single multilayer heterostructure) of standard electronic functions of semiconductors with magnetic memory function. Although classical semiconductor materials, such as Si or GaAs, are nonmagnetic, upon substitutional incorporation of magnetic ions (typically of a few atomic percents of Mn 2+ ions) and very heavy doping with conducting carriers (at the level of 10 20 - 10 21 cm -3 ) a ferromagnetic transition can be induced in such diluted magnetic semiconductors (also known as semimagnetic semiconductors). In the lecture the spectacular experimental observations of carrier concentration induced ferromagnetism will be discussed for three model semiconductor crystals. p - Ga 1-x Mn x As currently the most actively studied and most perspective ferromagnetic semiconductor of III-V group, in which ferromagnetism appears due to Mn ions providing both local magnetic moments and acting as acceptor centers. p - Sn 1-x Mn x Te and p - Ge 1-x Mn x Te classical diluted magnetic semiconductors of IV-VI group, in which paramagnet-ferromagnet and ferromagnet-spin glass transitions are found for very high hole concentration. n - Eu 1-x Gd x Te mixed magnetic crystals, in which the substitution of Gd 3+ ions for Eu 2+ ions creates very high electron concentration and transforms antiferromagnetic EuTe (insulating compound) into ferromagnetic n-type semiconductor alloy. For each of these materials systems the key physical features will be discussed concerning: local magnetic moments formation, magnetic phase diagram as a function of magnetic ions and carrier concentration as well as Curie temperature and magnetic anisotropy engineering. Various theoretical models proposed to explain the effect of carrier concentration induced ferromagnetism in semiconductors will be briefly discussed involving mean field approaches based on Zener and RKKY

  7. Antifungal Effect of a Dental Tissue Conditioner Containing Nystatin-Loaded Alginate Microparticles.

    Science.gov (United States)

    Kim, Hyun-Jin; Son, Jun Sik; Kwon, Tae-Yub

    2018-02-01

    In this in vitro study, nystatin-alginate microparticles were successfully fabricated to control the release of nystatin from a commercial dental tissue conditioner. These nystatin-alginate microparticles were spherical and had a slightly rough surface. The microparticles incorporated into the tissue conditioner were distributed homogeneously throughout the tissue conditioner matrix. The incorporation of the microparticles did not deteriorate the mechanical properties of the original material. The agar diffusion test results showed that the tissue conditioner containing the microparticles had a good antifungal effect against Candida albicans. The nystatin-alginate microparticles efficiently controlled the release of nystatin from the tissue conditioner matrix over the experimental period of 14 days. Moreover, the nystatin-alginate microparticles incorporated in the tissue conditioner showed effective antifungal function even at lower concentrations of nystatin. The current study suggests that the tissue conditioner containing the nystatin-alginate microparticle carrier system has potential as an effective antifungal material.

  8. Cell-derived microparticles in the pathogenesis of cardiovascular disease: friend or foe?

    Science.gov (United States)

    Tushuizen, Maarten E; Diamant, Michaela; Sturk, Augueste; Nieuwland, Rienk

    2011-01-01

    Microparticles are ascribed important roles in coagulation, inflammation, and endothelial function. These processes are mandatory to safeguard the integrity of the organism, and their derangements contribute to the development of atherosclerosis and cardiovascular disease. More recently, the presumed solely harmful role of microparticles has been challenged because microparticles may also be involved in the maintenance and preservation of cellular homeostasis and in promoting defense mechanisms. Here, we summarize recent studies revealing these 2 faces of microparticles in cardiovascular disease.

  9. Energy losses in magnetically insulated transmission lines due to microparticles

    International Nuclear Information System (INIS)

    Gray, E.W.; Stinnett, R.W.

    1987-01-01

    We discuss the effects of high-velocity and hypervelocity microparticles in the magnetically insulated transmission lines of multiterawatt accelerators used for particle beam fusion and radiation effects simulation. These microparticles may be a possible source for plasma production near the anode and cathode in early stages of the voltage pulse, and current carriers during and after the power pulse, resulting in power flow losses. Losses in the current pulse, due to microparticles, are estimated to be approximately 12 mA/cm 2 (0.3 kA) as a lower limit, and --0.3 A/cm 2 (7.2 kA) for microparticle initiated, anode plasma positive ion transport. We have calculated the velocities reached by these microparticles and the effects on them of Van der Waals forces. Field emission from the particles and their effects on cathode and anode plasma formation have been examined. Particle collision with the electrodes is also examined in terms of plasma production, as in the electron deposition in the particles in transit across the anode-cathode gap. Blistering of the electrode surface, thought to be due to H - bombardment was also observed and appears to be consistent with losses due to negative ions previously reported by J. P. VanDevender, R. W. Stinnett, and R. J. Anderson [App. Phys. Lett. 38, 229 (1981)

  10. Liposomes self-assembled from electrosprayed composite microparticles

    International Nuclear Information System (INIS)

    Yu Dengguang; Yang Junhe; Wang Xia; Tian Feng

    2012-01-01

    Composite microparticles, consisting of polyvinylpyrrolidone (PVP), naproxen (NAP) and lecithin (PC), have been successfully prepared using an electrospraying process and exploited as templates to manipulate molecular self-assembly for the synthesis of liposomes in situ. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations demonstrate that the microparticles have an average diameter of 960 ± 140 nm and a homogeneous structure. X-ray diffraction (XRD) patterns, differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results verify that the building blocks NAP and PC are scattered in the polymer matrix in a molecular way owing to the very fast drying of the electrospraying process and the favorable secondary interactions among the components. FESEM, scanning probe microscope (SPM) and TEM observations demonstrate that the liposomes can be achieved through molecular self-assembly in situ when the microparticles contact water thanks to ‘like prefers like’ and by means of the confinement effect of the microparticles. The liposomes have an encapsulation rate of 91.3%, and 80.7% of the drug in the liposomes can be freed into the dissolution medium in a sustained way and by a diffusion mechanism over a period of 24 h. The developed strategy not only provides a new, facile, and effective method to assemble and organize molecules of multiple components into liposomes with electrosprayed microparticles as templates, but also opens a new avenue for nanofabrication in a step-by-step and controllable way. (paper)

  11. Preparation and characterisation of ethylcellulose microparticles containing propolis

    Directory of Open Access Journals (Sweden)

    G. B. AVANçO

    2009-02-01

    Full Text Available

    Ethylcellulose microparticles containing propolis ethanolic extract (PE were prepared by the emulsification and solvent evaporation method. Three ratios of ethylcellulose to PE dry residue value (DR were tested (1:0.25, 1:4 and 1:10. Moreover, polysorbate 80 was used as emulsifier in the external phase (1.0 or 1.5% w/w. Regular particle morphology without amorphous and/or sticking characteristics was achieved only when an ethylcellulose:DR ratio of 1:0.25 and 1.0% polysorbate 80 were used. Microparticles had a mean diameter of 85.83 µm. The entrapment efficiency for propolis of the microparticles was 62.99 ± 0.52%. These ethylcellulose microparticles containing propolis would be useful for developing propolis aqueous dosage forms without the strong and unpleasant taste, aromatic odour and high ethanol concentration of PE. Keywords: Brazilian propolis; ethylcellulose; emulsification and solvent evaporation; microparticle characterisation; optimisation.

  12. Microparticles as immune regulators in infectious disease

    Directory of Open Access Journals (Sweden)

    Zheng Lung Ling

    2011-11-01

    Full Text Available Despite their clear relationship to immunology, few existing studies have examined potential role of microparticles (MP in infectious disease. Infection with pathogens usually leads to the expression of a range of inflammatory cytokines and chemokines, as well as significant stress in both infected and uninfected cells. It is thus reasonable to infer from studies to date that infection-associated inflammation also leads to MP production. MP are produced by most of the major cell types in the immune system, and appear to be involved at both the innate and adaptive levels, potentially serving different functions at each level. Thus, MP do not appear to have a universal function; instead their functions are source- or stimulus-dependent, although likely to be primarily either pro- or anti-inflammatory. Importantly, in infectious diseases MP may have the ability to deliver antigen to APC via the biological cargo acquired from their cells of origin. Another potential benefit of MP would be to transfer and/or disseminate phenotype and function to target cells. However, MP may also potentially be manipulated, particularly by intracellular pathogens for survival advantage.

  13. Spectrum of ferromagnetic transition metal magnetic excitations and neutron scattering

    International Nuclear Information System (INIS)

    Kuzemskij, A.L.

    1979-01-01

    Quantum statistical models of ferromagnetic transition metals as well as methods of their solutions are reviewed. The correspondence of results on solving these models and the data on scattering thermal neutrons in ferromagnetic is discussed

  14. Characterization of spray dried bioadhesive metformin microparticles for oromucosal administration

    DEFF Research Database (Denmark)

    Sander, Camilla; Madsen, Katrine Dragsbæk; Hyrup, Birgitte

    2013-01-01

    delivery systems are considered a promising approach as they facilitate a close contact between the drug and the oral mucosa. In this study, bioadhesive chitosan-based microparticles of metformin hydrochloride were prepared by spray drying aqueous dispersions with different chitosan:metformin ratios...... be prepared and analyzed using the ex vivo retention model. We observed an increase in metformin retention on porcine mucosa with increasing chitosan:metformin ratios, while no effect of increasing the chitosan molecular weight was found. Rheological characterization of feeds for spray drying was performed...... and chitosan grades with increasing molecular weights. A recently developed ex vivo flow retention model with porcine buccal mucosa was used to evaluate the bioadhesive properties of spray dried microparticles. An important outcome of this study was that microparticles with the desired metformin content could...

  15. Ferromagnetic Josephson Junctions for Cryogenic Memory

    Science.gov (United States)

    Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.

    2015-03-01

    Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.

  16. Giant magnetotransmission and magnetoreflection in ferromagnetic materials

    International Nuclear Information System (INIS)

    Telegin, A.V.; Sukhorukov, Yu.P.; Loshkareva, N.N.; Mostovshchikova, E.V.; Bebenin, N.G.; Gan'shina, E.A.; Granovsky, A.B.

    2015-01-01

    We present a brief review on magnetotransmission (magnetoabsorption) and magnetoreflection of natural (unpolarized) light in ferromagnetic chromium chalcogenide spinel, manganites with perovskite structure and thin-film metallic nanostructures in the middle infrared spectral range. The magnetooptical effects under discussion are of high interest for numerous and promising applications in the infrared optoelectronics. - Highlights: • Magnetotransmission and magnetoreflection of light in ferromagnetic are presented. • The effects are greater than common magnetooptical phenomena in the infrared. • The effects may have a different origin depending on a material or spectral range. • Possible applications of the magnetotransmission and magnetoreflection are discussed

  17. Giant magnetotransmission and magnetoreflection in ferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, A.V., E-mail: telegin@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620137 Yekaterinburg (Russian Federation); Sukhorukov, Yu.P.; Loshkareva, N.N.; Mostovshchikova, E.V.; Bebenin, N.G. [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620137 Yekaterinburg (Russian Federation); Gan' shina, E.A.; Granovsky, A.B. [Moscow State University, 119991 Moscow (Russian Federation)

    2015-06-01

    We present a brief review on magnetotransmission (magnetoabsorption) and magnetoreflection of natural (unpolarized) light in ferromagnetic chromium chalcogenide spinel, manganites with perovskite structure and thin-film metallic nanostructures in the middle infrared spectral range. The magnetooptical effects under discussion are of high interest for numerous and promising applications in the infrared optoelectronics. - Highlights: • Magnetotransmission and magnetoreflection of light in ferromagnetic are presented. • The effects are greater than common magnetooptical phenomena in the infrared. • The effects may have a different origin depending on a material or spectral range. • Possible applications of the magnetotransmission and magnetoreflection are discussed.

  18. Nonlinear nuclear magnetic resonance in ferromagnets

    International Nuclear Information System (INIS)

    Nurgaliev, T.

    1988-01-01

    The properties of nonlinear nuclear magnetic resonance (NMR) have been studied theoretically by taking into account the interaction between NMR and FMR in the ferromagnets. The Landau-Lifshitz-Bloch equations, describing the electron and nuclear magnetization behaviour in ferromagnets are presented in an integral form for a weakly excited electronic system. The stationary solution of these equations has been analysed in the case of equal NMR and FMR frequencies: the criteria for the appearance of two stable dynamic states is found and the high-frequency magnetic susceptibility for these systems is investigated. 2 figs., 8 refs

  19. Magnetic pinning in superconductor-ferromagnet multilayers

    International Nuclear Information System (INIS)

    Bulaevskii, L. N.; Chudnovsky, E. M.; Maley, M. P.

    2000-01-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10 6 -10 7 A/cm 2 at high temperatures (but not very close to T c ) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics

  20. Magnetic pinning in superconductor-ferromagnet multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bulaevskii, L. N. [Department of Physics and Astronomy, CUNY Lehman College 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chudnovsky, E. M. [Department of Physics and Astronomy, CUNY Lehman College, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Maley, M. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2000-05-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10{sup 6}-10{sup 7} A/cm{sup 2} at high temperatures (but not very close to T{sub c}) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics.

  1. Itinerant Ferromagnetism in Ultracold Fermi Gases

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  2. Proximity effects in ferromagnet/superconductor structures

    International Nuclear Information System (INIS)

    Yu, H.L.; Sun, G.Y.; Yang, L.Y.; Xing, D.Y.

    2004-01-01

    The Nambu spinor Green's function approach is applied to study proximity effects in ferromagnet/superconductor (FM/SC) structures. They include the induced superconducting order parameter and density of states (DOS) with superconducting feature on the FM side, and spin-dependent DOS within the energy gap on the SC side. The latter indicates an appearance of gapless superconductivity and a coexistence of ferromagnetism and superconductivity in a small regime near the interface. The influence of exchange energy in FM and barrier strength at interface on the proximity effects is discussed

  3. Magnon-photon interaction in ferromagnets

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1980-01-01

    A magnon-photon interaction for the magnetic vector of the electromagnetic wave perpendicular to the direction of magnetization in a ferromagnet is constructed with the use of Bogoliubov transformation. The resulting magnon-photon interaction is found to contain several interesting new radiation effects. The self-energy of the magnon is calculated and life times arising from the radiation scattering are predicted. The magnon frequency shift due to the radiation field is found. One of the terms arising from the one-magnon one-photon scattering gives a line width that is in reasonable agreement with the experimentally measured value of ferromagnetic resonance line width in yttrium iron garnet. (orig.)

  4. Wellhead with non-ferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2009-05-19

    Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.

  5. Vortex dynamics in ferromagnetic/superconducting bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, M.Z.; Adamus, Z. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA, DSM, DRECAM, Lab Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642, F-91128 Palaiseau (France); Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)

    2008-07-01

    The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w {>=} {lambda}) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w {>=}{>=} {lambda}) enhance pinning less effectively and result in flux jumps during flux motion. (authors)

  6. Protein encapsulation via porous CaCO3 microparticles templating.

    Science.gov (United States)

    Volodkin, Dmitry V; Larionova, Natalia I; Sukhorukov, Gleb B

    2004-01-01

    Porous microparticles of calcium carbonate with an average diameter of 4.75 microm were prepared and used for protein encapsulation in polymer-filled microcapsules by means of electrostatic layer-by-layer assembly (ELbL). Loading of macromolecules in porous CaCO3 particles is affected by their molecular weight due to diffusion-limited permeation inside the particles and also by the affinity to the carbonate surface. Adsorption of various proteins and dextran was examined as a function of pH and was found to be dependent both on the charge of the microparticles and macromolecules. The electrostatic effect was shown to govern this interaction. This paper discusses the factors which can influence the adsorption capacity of proteins. A new way of protein encapsulation in polyelectrolyte microcapsules is proposed exploiting the porous, biocompatible, and decomposable microparticles from CaCO3. It consists of protein adsorption in the pores of the microparticles followed by ELbL of oppositely charged polyelectrolytes and further core dissolution. This resulted in formation of polyelectrolyte-filled capsules with protein incorporated in interpenetrating polyelectrolyte network. The properties of CaCO3 microparticles and capsules prepared were characterized by scanning electron microscopy, microelectrophoresis, and confocal laser scanning microscopy. Lactalbumin was encapsulated by means of the proposed technique yielding a content of 0.6 pg protein per microcapsule. Horseradish peroxidase saves 37% of activity after encapsulation. However, the thermostability of the enzyme was improved by encapsulation. The results demonstrate that porous CaCO3 microparticles can be applied as microtemplates for encapsulation of proteins into polyelectrolyte capsules at neutral pH as an optimal medium for a variety of bioactive material, which can also be encapsulated by the proposed method. Microcapsules filled with encapsulated material may find applications in the field of

  7. Temperature limited heater utilizing non-ferromagnetic conductor

    Science.gov (United States)

    Vinegar,; Harold J. , Harris; Kelvin, Christopher [Houston, TX

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  8. Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes

    Directory of Open Access Journals (Sweden)

    Bashar Yafouz

    2014-04-01

    Full Text Available This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.

  9. Biomimetic Molecular Signaling using DNA Walkers on Microparticles.

    Science.gov (United States)

    Damase, Tulsi Ram; Spencer, Adam; Samuel, Bamidele; Allen, Peter B

    2017-06-22

    We report the release of catalytic DNA walkers from hydrogel microparticles and the detection of those walkers by substrate-coated microparticles. This might be considered a synthetic biology analog of molecular signal release and reception. One type of particles was coated with components of a DNA one-step strand displacement (OSD) reaction to release the walker. A second type of particle was coated with substrate (or "track") for the molecular walker. We distinguish these particle types using fluorescence barcoding: we synthesized and distinguished multiple particle types with multicolor fluorescence microscopy and automated image analysis software. This represents a step toward amplified, multiplex, and microscopically localized detection based on DNA nanotechnology.

  10. Microparticle-initiated losses in magnetically insulated transmission lines

    International Nuclear Information System (INIS)

    Gray, E.W.; Stinnett, R.W.

    1986-01-01

    The author's discuss the effects of high and hypervelocity microparticles in magnetically-insulated transmission lines (MITLs) and how they may be a possible source for ion production near the anode in early stages of the voltage pulse, and current carriers during and after the power pulse, resulting in power flow losses. Early losses in the voltage pulse, due to microparticles, are estimated to be approximately 0.3 mA/cm/sup 2/. Blistering of the electrode surface, thought to be due to H/sup -/ bombardment, was also observed and appears to be consistent with losses due to negative ions previously reported by one of the authors

  11. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pyshnyi, Michael Ph. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)], E-mail: kuznetsov_oa@yahoo.com; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)

    2009-05-15

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  12. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    International Nuclear Information System (INIS)

    Pyshnyi, Michael Ph.; Kuznetsov, Oleg A.; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A.

    2009-01-01

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  13. Preparation and Characterization of Keratin/Alginate Blend Microparticles

    OpenAIRE

    Srisuwan, Yaowalak; Srihanam, Prasong

    2018-01-01

    The water-in-oil (W/O) emulsification-diffusion method was used for construction of keratin (Ker), alginate (Alg), and Ker/Alg blend microparticles. The Ker, Alg, and Ker/Alg blend solutions were used as the water phase, while ethyl acetate was used as the oil phase. Firstly, different concentrations of Ker solution was used to find suitable content. 1.6% w/v Ker solution was blended with the same concentration of the Alg solution for further microparticle construction. Results from scanning ...

  14. Ferromagnets as pure spin current generators and detectors

    Science.gov (United States)

    Qu, Danru; Miao, Bingfeng; Chien, Chia -Ling; Huang, Ssu -Yen

    2015-09-08

    Provided is a spintronics device. The spintronics can include a ferromagnetic metal layer, a positive electrode disposed on a first surface portion of the ferromagnetic metal layer, and a negative electrode disposed on a second surface portion of the ferromagnetic metal.

  15. Towards ferromagnet/superconductor junctions on graphene

    International Nuclear Information System (INIS)

    Pakkayil, Shijin Babu

    2015-01-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  16. Towards ferromagnet/superconductor junctions on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Pakkayil, Shijin Babu

    2015-07-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  17. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong, E-mail: yj@seu.edu.cn [Southeast University, School of Chemistry and Chemical Engineering (China)

    2017-02-15

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350–400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  18. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    International Nuclear Information System (INIS)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong

    2017-01-01

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350–400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  19. Photochemical half-cells using mixture films of fullerene-ethylenediamine adduct microparticles and polythiophene

    International Nuclear Information System (INIS)

    Akiyama, Tsuyoshi; Oku, Takeo; Matsumura, Satoshi; Matsuoka, Ken-ichi; Yamada, Sunao

    2013-01-01

    In this study, C 60 fullerene–ethylenediamine adduct microparticles were prepared. Mixture films of these microparticles and polythiophene were fabricated on indium–tin-oxide transparent electrodes by spin-coating. Incorporation of C 60 –ethylenediamine microparticles was verified by scanning electron microscopy (SEM) measurements. The coverage values of these microparticles were approximately 3–17%, which were calculated from SEM images of modified electrodes. Fluorescence spectra of modified electrodes indicated that the emission intensity of polythiophene in these mixture films was apparently quenched by these C 60 –ethylenediamine microparticles as compared with a polythiophene film without these microparticles. In the presence of methylviologen, these modified electrodes generated stable photocurrent. The photoexciting species was polythiophene, which was verified by profiles of photocurrent action spectra. The C 60 –ethylenediamine microparticles substantially enhanced the photocurrent signals generated by the polythiophene-modified electrode.

  20. Microparticle content of platelet concentrates is predicted by donor microparticles and is altered by production methods and stress

    DEFF Research Database (Denmark)

    Maurer-Spurej, Elisabeth; Larsen, Rune; Labrie, Audrey

    2016-01-01

    In circulation, shedding of microparticles from a variety of viable cells can be triggered by pathological activation of inflammatory processes, by activation of coagulation or complement systems, or by physical stress. Elevated microparticle content (MPC) in donor blood might therefore indicate...... a clinical condition of the donor which, upon transfusion, might affect the recipient. In blood products, elevated MPC might also represent product stress. Surprisingly, the MPC in blood collected from normal blood donors is highly variable, which raises the question whether donor microparticles are present...... in-vivo and transfer into the final blood component, and how production methods and post-production processing might affect the MPC. We measured MPC using ThromboLUX in (a) platelet-rich plasma (PRP) of 54 apheresis donors and the corresponding apheresis products, (b) 651 apheresis and 646 pooled...

  1. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Directory of Open Access Journals (Sweden)

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  2. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kanjanakawinkul, Watchara [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Rades, Thomas [School of Pharmacy, University of Otago, Dunedin 9054 (New Zealand); Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen (Denmark); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand); Pongjanyakul, Thaned, E-mail: thaned@kku.ac.th [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2013-04-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties.

  3. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    International Nuclear Information System (INIS)

    Kanjanakawinkul, Watchara; Rades, Thomas; Puttipipatkhachorn, Satit; Pongjanyakul, Thaned

    2013-01-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties

  4. Ferromagnetism in poly(N-perfluorophenylpyrrole)

    Energy Technology Data Exchange (ETDEWEB)

    Čík, G., E-mail: gabriel.cik@stuba.sk [Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Šeršeň, F. [Institute of Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava (Slovakia); Dlháň, L. [Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Zálupský, P. [Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Rapta, P. [Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Hrnčariková, K. [Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava (Slovakia); Plecenik, T. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava (Slovakia)

    2015-10-01

    Magnetic properties of the synthesized poly(N-perfluorophenylpyrrole) were studied. The synthesized polymer dissolves in common organic solvents. By the zero-field cooling-field cooling method (ZFC–FC) we found that at low temperatures (T{sub b}<50 K) the synthetic polymer reaches a state with prevailing ferromagnetism. The synthesized polymer retained ferromagnetism even at 300 K. The anomalous magnetic behavior was explained in terms of spin–spin interaction of triplet polarons. As can be seen from the calculated spin density of SOMO and SOMO 1 such a state arise as a consequence of 1-D spin interactions of polarons. Based on the calculated and visualized spin density (SOMO) on the polymer chain such interactions can be explained by the theory of flat-band-ferromagnetism. - Highlights: • We synthesized a new conducting polymer poly(N-perfluorophenylpyrrole). • By the ZFC–FC and EPR methods we measured magnetic properties of the prepared polymer. • We discussed stability and interactions of the polarons in triplet states. • At low temperatures the synthesized polymer reached ferromagnetism.

  5. On piezomagnetism at viscoplasticity of ferromagnetics

    International Nuclear Information System (INIS)

    Micunovic, M.

    2001-01-01

    The paper deals with viscoplasticity of ferromagnetic materials. Tensor representation is applied to a set of evolution equations comprising the plastic stretching and residual magnetization tensors. Small magnetoelastic strains of isotropic insulators are considered in detail in two special cases of finite as well as small plastic strain. A special emphasis is given to piezomagnetism effects in the case of uniaxial cycling strain (author)

  6. Magnetic profiles in ferromagnetic/superconducting superlattices.

    Energy Technology Data Exchange (ETDEWEB)

    te Velthuis, S. G. E.; Hoffmann, A.; Santamaria, J.; Materials Science Division; Univ. Complutense de Madrid

    2007-02-28

    The interplay between ferromagnetism and superconductivity has been of longstanding fundamental research interest to scientists, as the competition between these generally mutually exclusive types of long-range order gives rise to a rich variety of physical phenomena. A method of studying these exciting effects is by investigating artificially layered systems, i.e. alternating deposition of superconducting and ferromagnetic thin films on a substrate, which enables a straight-forward combination of the two types of long-range order and allows the study of how they compete at the interface over nanometer length scales. While originally studies focused on low temperature superconductors interchanged with metallic ferromagnets, in recent years the scope has broadened to include superlattices of high T{sub c} superconductors and colossal magnetoresistance oxides. Creating films where both the superconducting as well as the ferromagnetic layers are complex oxide materials with similar crystal structures (Figure 1), allows the creation of epitaxial superlattices, with potentially atomically flat and ordered interfaces.

  7. Angular and linear momentum of excited ferromagnets

    NARCIS (Netherlands)

    Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.

    2013-01-01

    The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist

  8. Ferromagnetic hysteresis and the effective field

    NARCIS (Netherlands)

    Naus, H.W.L.

    2002-01-01

    The Jiles-Atherton model of the behavior of ferromagnetic materials determines the irreversible magnetization from the effective field by using a differential equation. This paper presents an exact, analytical solution to the equation, one displaying hysteresis. The inclusion of magnetomechanical

  9. Ferromagnetism in diluted magnetic semiconductor heterojunction systems

    Czech Academy of Sciences Publication Activity Database

    Lee, B.; Jungwirth, Tomáš; MacDonald, A. H.

    2002-01-01

    Roč. 17, - (2002), s. 393-403 ISSN 0268-1242 R&D Projects: GA ČR GA202/98/0085; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * heterostructures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.241, year: 2002

  10. Pseudospin anisotropy classification of quantum Hall ferromagnets

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; MacDonald, A. H.

    2000-01-01

    Roč. 63, č. 3 (2000), s. 035305-1 - 035305-9 ISSN 0163-1829 R&D Projects: GA ČR GA202/98/0085 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnets * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.065, year: 2000

  11. Skyrmion physics in Bose-Einstein ferromagnets

    NARCIS (Netherlands)

    Al Khawaja, U.; Stoof, H.T.C.

    2001-01-01

    We show that a ferromagnetic Bose-Einstein condensate has not only line-like vortex excitations, but in general, also allows for pointlike topological excitations, i.e., skyrmions. We discuss the thermodynamic stability and the dynamic properties of these skyrmions for both spin-1/2 and

  12. Nonmonotonic critical temperature in superconductor ferromagnet bilayers

    NARCIS (Netherlands)

    Fominov, Ya. V.; Fominov, I.V.; Chtchelkatchev, N.M.; Golubov, Alexandre Avraamovitch

    2002-01-01

    The critical temperature Tc of a superconductor/ferromagnet (SF) bilayer can exhibit nonmonotonic dependence on the thickness df of the F layer. SF systems have been studied for a long time; according to the experimental situation, a ¿dirty¿ limit is often considered which implies that the mean free

  13. Magnetization dissipation in ferromagnets from scattering theory

    NARCIS (Netherlands)

    Brataas, A.; Tserkovnyak, Y.; Bauer, G.E.W.

    2011-01-01

    The magnetization dynamics of ferromagnets is often formulated in terms of the Landau-Lifshitz-Gilbert (LLG) equation. The reactive part of this equation describes the response of the magnetization in terms of effective fields, whereas the dissipative part is parametrized by the Gilbert damping

  14. Room-temperature ferromagnetic and photoluminescence ...

    Indian Academy of Sciences (India)

    the ferromagnetic nature of ITO and the strength of magnetization is superior to those of In2O3 and SnO2. However, ... ties in the spintronic devices, the materials suitable for such devices ... into suitable quartz test tubes (10mm) whose interior was enclosed in .... related to metal indium In0 with binding energy 443.6 eV was.

  15. Neutron Depolarization in Submicron Ferromagnetic Materials

    NARCIS (Netherlands)

    Rekveldt, M.Th.

    1989-01-01

    The neutron depolarization technique is based on the loss of polarization of a polarized neutron beam after transmission through ferromagnetic substances. This loss, caused by Larmor precession in individual domains, determines the mean domain size, the mean square direction cosines of the domains

  16. Lattice effects on ferromagnetism in perovskite ruthenates

    Science.gov (United States)

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.

    2013-01-01

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477

  17. Distinct proteome pathology of circulating microparticles in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Østergaard, Ole; Nielsen, Christoffer Tandrup; Tanassi, Julia Tanas

    2017-01-01

    BACKGROUND: The pathogenesis of systemic lupus erythematosus (SLE) is poorly understood but has been linked to defective clearance of subcellular particulate material from the circulation. This study investigates the origin, formation, and specificity of circulating microparticles (MPs) in patien...... generation of MPs may partake in the pathology of SLE and that new diagnostic, monitoring, and treatment strategies targeting these processes may be advantageous....

  18. Electroless or autocatalytic coating of microparticles for laser fusion targets

    International Nuclear Information System (INIS)

    Mayer, A.; Catlett, D.S.

    1977-04-01

    Use of a novel device for applying uniform metallic coatings to spherical microparticles is described. The apparatus deposits electroless metal coatings on hollow, thin-walled metal or sensitized nonmetallic micromandrels. The apparatus and process were developed for fabrication of microsphere pressure vessels for use as targets in laser-initiated fusion research

  19. Electrolytic coating of microparticles for laser fusion targets

    International Nuclear Information System (INIS)

    Mayer, A.; Catlett, D.S.

    1977-04-01

    An electroplating apparatus for applying uniform metallic coatings that have excellent surface finishes to discrete microparticles is described. The device is used to electrodeposit metals onto thin-walled metal, metallized glass, or plastic mandrels. The apparatus and process were developed for fabrication of microsphere pressure vessels to be used as targets in laser fusion research

  20. Manipulation of microparticles and red blood cells using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... Abstract. We report the development of an optoelectronic tweezers set-up which works by light- induced dielectrophoresis mechanism to manipulate microparticles. We used thermal evaporation technique for coating the organic polymer, titanium oxide phthalocyanine (TiOPc), as a photo- conductive layer ...

  1. The effects of buserelin microparticles on ovarian function in healthy ...

    African Journals Online (AJOL)

    The effects of buserelin microparticles on ovarian function in healthy women. ... A single-blind, randomised, parallel-group design was used to investigate the ... to at least 8 nmoVI (a sign of ovulation) and oestradiol concentrations increased to ...

  2. Controlled electrosprayed formation of non-spherical microparticles

    Science.gov (United States)

    Jeyhani, Morteza; Mak, Sze Yi; Sammut, Stephen; Shum, Ho Cheung; Hwang, Dae Kun; Tsai, Scott S. H.

    2017-11-01

    Fabrication of biocompatible microparticles, such as alginate particles, with the possibility of controlling the particles' morphology in a high-throughput manner, is essential for pharmaceutical and cosmetic industries. Even though the shape of alginate particles has been shown to be an important parameter in controlling drug delivery, there are very limited manufacturing methods to produce non-spherical alginate microparticles in a high-throughput fashion. Here, we present a system that generates non-spherical biocompatible alginate microparticles with a tunable size and shape, and at high-throughput, using an electrospray technique. Alginate solution, which is a highly biocompatible material, is flown through a needle using a constant flow rate syringe pump. The alginate phase is connected to a high-voltage power supply to charge it positively. There is a metallic ring underneath the needle that is charged negatively. The applied voltage creates an electric field that forces the dispensing droplets to pass through the metallic ring toward the collection bath. During this migration, droplets break up to smaller droplets to dissipate their energy. When the droplets reach the calcium chloride bath, polymerization happens and solidifies the droplets. We study the effects of changing the distance from the needle to the bath, and the concentration of calcium chloride in the bath, to control the size and the shape of the resulting microparticles.

  3. Herbal carrier-based floating microparticles of diltiazem ...

    African Journals Online (AJOL)

    Purpose: To formulate and characterize a gastroretentive floating drug delivery system for diltiazem hydrochloride using psyllium husk and sodium alginate as natural herbal carriers to improve the therapeutic effect of the drug in cardiac patients. Methods: Floating microparticles containing diltiazem hydrochloride were ...

  4. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment

    NARCIS (Netherlands)

    Abid Hussein, Mohammed N.; Böing, Anita N.; Sturk, Augueste; Hau, Chi M.; Nieuwland, Rienk

    2007-01-01

    Endothelial cell cultures contain caspase 3-containing microparticles (EMP), which are reported to form during or after cell detachment. We hypothesize that also adherent endothelial cells release EMP, thus protecting these cells from caspase 3 accumulation, detachment and apoptosis. Human umbilical

  5. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Rossi, M.; Marín, Á. G.

    2013-01-01

    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh...

  6. Non-paraxial beam to push and pull microparticles

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, C.-W.

    2011-01-01

    We discuss a feasibility of the pulling (backward) force acting on a spherical microparticle in a non-paraxial Bessel beam. The effect can be explained by the strong interaction of particle's multipoles or by the conservation of momentum in the system “photons-particle.” It is remarkable that the...

  7. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Science.gov (United States)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  8. Assessing the biodegradability of microparticles disposed down the drain.

    Science.gov (United States)

    McDonough, Kathleen; Itrich, Nina; Casteel, Kenneth; Menzies, Jennifer; Williams, Tom; Krivos, Kady; Price, Jason

    2017-05-01

    Microparticles made from naturally occurring materials or biodegradable plastics such as poly(3-hydroxy butyrate)-co-(3-hydroxy valerate), PHBV, are being evaluated as alternatives to microplastics in personal care product applications but limited data is available on their ultimate biodegradability (mineralization) in down the drain environmental compartments. An OECD 301B Ready Biodegradation Test was used to quantify ultimate biodegradability of microparticles made of PHBV foam, jojoba wax, beeswax, rice bran wax, stearyl stearate, blueberry seeds and walnut shells. PHBV polymer was ready biodegradable reaching 65.4 ± 4.1% evolved CO 2 in 5 d and 90.5 ± 3.1% evolved CO 2 in 80 d. PHBV foam microparticles (125-500 μm) were mineralized extensively with >66% CO 2 evolution in 28 d and >82% CO 2 evolution in 80 d. PHBV foam microparticles were mineralized at a similar rate and extent as microparticles made of jojoba wax, beeswax, rice bran wax, and stearyl stearate which reached 84.8  ± 4.8, 84.9  ± 2.2, 82.7  ± 4.7, and 86.4 ± 3.2% CO 2 evolution respectively in 80 d. Blueberry seeds and walnut shells mineralized more slowly only reaching 39.3  ± 6.9 and 5.1 ± 2.8% CO 2 evolution in 80 d respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    Science.gov (United States)

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mantripragada, Venkata P. [Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Biomedical Engineering Program, The University of Toledo, Toledo, OH 43614-5807 (United States); Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614-5807 (United States)

    2014-09-01

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p < 0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. - Highlights: • Coacervation chitosan microparticles were biocompatible and biodegradable. • IGF-1 encapsulation efficiency increased with coacervation chitosan microparticles. • Coacervation chitosan microparticles support osteoblast attachment and differentiation. • Coacervation chitosan microparticles support osteoblast mineralization.

  11. IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions

    International Nuclear Information System (INIS)

    Mantripragada, Venkata P.; Jayasuriya, Ambalangodage C.

    2014-01-01

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p < 0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. - Highlights: • Coacervation chitosan microparticles were biocompatible and biodegradable. • IGF-1 encapsulation efficiency increased with coacervation chitosan microparticles. • Coacervation chitosan microparticles support osteoblast attachment and differentiation. • Coacervation chitosan microparticles support osteoblast mineralization

  12. Topological Aspects of Solitons in Ferromagnets

    International Nuclear Information System (INIS)

    Ren Jirong; Wang Jibiao; Li Ran; Xu Donghui; Duan Yishi

    2008-01-01

    Two kinds of topological soliton (skyrmion and magnetic vortex ring) in ferromagnets are studied. They have the common topological origin, a tensor H αβ = n-vector · (∂ α n-vector x ∂ β n-vector ), which describes the non-trivial distribution of local orientation of magnetization n-vector at large distances in space. The topological stability of skyrmion is protected by the winding number. Knot-like topological defect as magnetic vortex rings is also studied. On the assumption that magnetic vortex rings are geometric lines, we present their δ-function distribution in ferromagnetic materials. Furthermore, it is briefly shown that Hopf invariant is a proper topological invariant to describe the topology of magnetic vortex rings

  13. Ferromagnetism of Magnesium Oxide

    Directory of Open Access Journals (Sweden)

    Jitendra Pal Singh

    2017-11-01

    Full Text Available Magnetism without d-orbital electrons seems to be unrealistic; however, recent observations of magnetism in non-magnetic oxides, such as ZnO, HfO2, and MgO, have opened new avenues in the field of magnetism. Magnetism exhibited by these oxides is known as d° ferromagnetism, as these oxides either have completely filled or unfilled d-/f-orbitals. This magnetism is believed to occur due to polarization induced by p-orbitals. Magnetic polarization in these oxides arises due to vacancies, the excitation of trapped spin in the triplet state. The presence of vacancies at the surface and subsurface also affects the magnetic behavior of these oxides. In the present review, origins of magnetism in magnesium oxide are discussed to obtain understanding of d° ferromagnetism.

  14. Ising ferromagnet: zero-temperature dynamic evolution

    International Nuclear Information System (INIS)

    Oliveira, P M C de; Newman, C M; Sidoravicious, V; Stein, D L

    2006-01-01

    The dynamic evolution at zero temperature of a uniform Ising ferromagnet on a square lattice is followed by Monte Carlo computer simulations. The system always eventually reaches a final, absorbing state, which sometimes coincides with a ground state (all spins parallel), and sometimes does not (parallel stripes of spins up and down). We initiate here the numerical study of 'chaotic time dependence' (CTD) by seeing how much information about the final state is predictable from the randomly generated quenched initial state. CTD was originally proposed to explain how nonequilibrium spin glasses could manifest an equilibrium pure state structure, but in simpler systems such as homogeneous ferromagnets it is closely related to long-term predictability and our results suggest that CTD might indeed occur in the infinite volume limit

  15. Silicon spintronics with ferromagnetic tunnel devices

    International Nuclear Information System (INIS)

    Jansen, R; Sharma, S; Dash, S P; Min, B C

    2012-01-01

    In silicon spintronics, the unique qualities of ferromagnetic materials are combined with those of silicon, aiming at creating an alternative, energy-efficient information technology in which digital data are represented by the orientation of the electron spin. Here we review the cornerstones of silicon spintronics, namely the creation, detection and manipulation of spin polarization in silicon. Ferromagnetic tunnel contacts are the key elements and provide a robust and viable approach to induce and probe spins in silicon, at room temperature. We describe the basic physics of spin tunneling into silicon, the spin-transport devices, the materials aspects and engineering of the magnetic tunnel contacts, and discuss important quantities such as the magnitude of the spin accumulation and the spin lifetime in the silicon. We highlight key experimental achievements and recent progress in the development of a spin-based information technology. (topical review)

  16. On the critical frontiers of Potts ferromagnets

    International Nuclear Information System (INIS)

    Magalhaes, A.C.N. de; Tsallis, C.

    1981-01-01

    A conjecture concerning the critical frontiers of q- state Potts ferromagnets on d- dimensional lattices (d > 1) which generalize a recent one stated for planar lattices is formulated. The present conjecture is verified within satisfactory accuracy (exactly in some cases) for all the lattices or arrays whose critical points are known. Its use leads to the prediction of: a) a considerable amount of new approximate critical points (26 on non-planar regular lattices, some others on Husimi trees and cacti); b) approximate critical frontiers for some 3- dimensional lattices; c) the possibly asymptotically exact critical point on regular lattices in the limit d→infinite for all q>=1; d) the possibly exact critical frontier for the pure Potts model on fully anisotropic Bethe lattices; e) the possibly exact critical frontier for the general quenched random-bond Potts ferromagnet (any P(J)) on isotropic Bethe lattices. (Author) [pt

  17. Ferromagnetism in doped or undoped spintronics nanomaterials

    Science.gov (United States)

    Qiang, You

    2010-10-01

    Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.

  18. Fractal effects on excitations in diluted ferromagnets

    International Nuclear Information System (INIS)

    Kumar, D.

    1981-08-01

    The low energy spin-wave like excitations in diluted ferromagnets near percolation threshold are studied. For this purpose an explicit use of the fractal model for the backbone of the infinite percolating cluster due to Kirkpatrick is made. Three physical effects are identified, which cause the softening of spin-waves as the percolation point is approached. The importance of fractal effects in the calculation of density of states and the low temperature thermodynamics is pointed out. (author)

  19. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  20. Anomalous hall effect in ferromagnetic semiconductors

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Niu, Q.; MacDonald, A. H.

    2002-01-01

    Roč. 88, č. 20 (2002), s. 207208-1-207208-4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * anomalous Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.323, year: 2002

  1. Magnon squeezing states in a ferromagnet

    International Nuclear Information System (INIS)

    Wang Junfeng; Cheng Ze; Ping Yunxia; Wan Jinyin; Zhang Yanmin

    2006-01-01

    In this Letter we discuss squeezing state of magnon in ferromagnet, which permits a reduction in the quantum fluctuation of the spin component to below the zero-point quantum noise level of coherent magnon states. We investigate the generation of squeezed magnon state through calculating the expectation values of spin component fluctuation. The mean field theory is introduced in dealing with the nonlinear interaction terms of Hamiltonian of magnon system

  2. Diagnostics of the influence of levitating microparticles on the radiofrequency argon plasma

    International Nuclear Information System (INIS)

    Pustylnik, Mikhail Y.; Mitic, Slobodan; Klumov, Boris A.; Morfill, Gregor E.

    2010-01-01

    The effect of a levitating cloud of microparticles on the parameters of a radiofrequency (RF) plasma has been studied by means of two experimental techniques. Axial distributions of 1 s excited states of argon were measured by a self-absorption method. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. In addition the electron temperature was estimated using the optical emission spectroscopy. Measurements at the same discharge conditions in a microparticle-free discharge and discharge, containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  3. The Kondo effect in ferromagnetic atomic contacts.

    Science.gov (United States)

    Calvo, M Reyes; Fernández-Rossier, Joaquín; Palacios, Juan José; Jacob, David; Natelson, Douglas; Untiedt, Carlos

    2009-04-30

    Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk, electronic conduction in these materials takes place mainly through the s and p electrons, whereas the magnetic moments are mostly in the narrow d-electron bands, where they tend to align. This general picture may change at the nanoscale because electrons at the surfaces of materials experience interactions that differ from those in the bulk. Here we show direct evidence for such changes: electronic transport in atomic-scale contacts of pure ferromagnets (iron, cobalt and nickel), despite their strong bulk ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of local magnetic moments by the conduction electrons below a characteristic temperature. The Kondo effect creates a sharp resonance at the Fermi energy, affecting the electrical properties of the system; this appears as a Fano-Kondo resonance in the conductance characteristics as observed in other artificial nanostructures. The study of hundreds of contacts shows material-dependent log-normal distributions of the resonance width that arise naturally from Kondo theory. These resonances broaden and disappear with increasing temperature, also as in standard Kondo systems. Our observations, supported by calculations, imply that coordination changes can significantly modify magnetism at the nanoscale. Therefore, in addition to standard micromagnetic physics, strong electronic correlations along with atomic-scale geometry need to be considered when investigating the magnetic properties of magnetic nanostructures.

  4. Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores.

    Science.gov (United States)

    Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2016-10-07

    The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction are shown to possess Weyl points, i. e., pairs of topologically nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out of plane shifts the Weyl points toward the center Γ[over ¯] of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i. e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the (111) surface, identify candidates of established ferromagnetic pyrochlores which apply to the considered spin model, and suggest experiments for the detection of the topological features.

  5. Ferroelectricity with Ferromagnetic Moment in Orthoferrites

    Science.gov (United States)

    Tokunaga, Yusuke

    2010-03-01

    Exotic multiferroics with gigantic magnetoelectric (ME) coupling have recently been attracting broad interests from the viewpoints of both fundamental physics and possible technological application to next-generation spintronic devices. To attain a strong ME coupling, it would be preferable that the ferroelectric order is induced by the magnetic order. Nevertheless, the magnetically induced ferroelectric state with the spontaneous ferromagnetic moment is still quite rare apart from a few conical-spin multiferroics. To further explore multiferroic materials with both the strong ME coupling and spontaneous magnetization, we focused on materials with magnetic structures other than conical structure. In this talk we present that the most orthodox perovskite ferrite systems DyFeO3 and GdFeO3 have ``ferromagnetic-ferroelectric,'' i.e., genuinely multiferroic states in which weak ferromagnetic moment is induced by Dzyaloshinskii-Moriya interaction working on Fe spins and electric polarization originates from the striction due to symmetric exchange interaction between Fe and Dy (Gd) spins [1] [2]. Both materials showed large electric polarization (>0.1 μC/cm^2) and strong ME coupling. In addition, we succeeded in mutual control of magnetization and polarization with electric- and magnetic-fields in GdFeO3, and attributed the controllability to novel, composite domain wall structure. [4pt] [1] Y. Tokunaga et al., Phys. Rev. Lett. 101, 097205 (2008). [0pt] [2] Y. Tokunaga et al., Nature Mater. 8, 558 (2009).

  6. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    Science.gov (United States)

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  7. Microparticles variability in fresh frozen plasma: preparation protocol and storage time effects.

    Science.gov (United States)

    Kriebardis, Anastasios G; Antonelou, Marianna H; Georgatzakou, Hara T; Tzounakas, Vassilis L; Stamoulis, Konstantinos E; Papassideri, Issidora S

    2016-05-01

    Extracellular vesicles or microparticles exhibiting procoagulant and thrombogenic activity may contribute to the haemostatic potential of fresh frozen plasma. Fresh frozen plasma was prepared from platelet-rich plasma at 20 °C (Group-1 donors) or directly from whole blood at 4 °C (Group-2 donors). Each unit was aseptically divided into three parts, stored frozen for specific periods of time, and analysed by flow cytometry for procoagulant activity immediately after thaw or following post-thaw storage for 24 h at 4 °C. Donors' haematologic, biochemical and life-style profiles as well as circulating microparticles were analysed in parallel. Circulating microparticles exhibited a considerable interdonor but not intergroup variation. Fresh frozen plasma units were enriched in microparticles compared to plasma in vivo. Duration of storage significantly affected platelet- and red cell-derived microparticles. Fresh frozen plasma prepared directly from whole blood contained more residual platelets and more platelet-derived microparticles compared to fresh frozen plasma prepared from platelet-rich plasma. Consequently, there was a statistically significant difference in total, platelet- and red cell-derived microparticles between the two preparation protocols over storage time in the freezer. Preservation of the thawed units for 24 h at 4 °C did not significantly alter microparticle accumulation. Microparticle accumulation and anti-oxidant capacity of fresh frozen plasma was positively or negatively correlated, respectively, with the level of circulating microparticles in individual donors. The preparation protocol and the duration of storage in the freezer, independently and in combination, influenced the accumulation of microparticles in fresh frozen plasma units. In contrast, storage of thawed units for 24 h at 4 °C had no significant effect on the concentration of microparticles.

  8. An electromagnetically actuated fiber optic switch using magnetized ferromagnetic materials

    Science.gov (United States)

    Pandojirao-S, Praveen; Dhaubanjar, Naresh; Phuyal, Pratibha C.; Chiao, Mu; Chiao, J.-C.

    2008-03-01

    This paper presents the design, fabrication and testing of a fiber optic switch actuated electromagnetically. The ferromagnetic gel coated optical fiber is actuated using external electromagnetic fields. The ferromagnetic gel consists of ferromagnetic powders dispersed in epoxy. The fabrication utilizes a simple cost-effective coating setup. A direct fiberto-fiber alignment eliminates the need for complementary optical parts and the displacement of fiber switches the laser coupling. The magnetic characteristics of magnetized ferromagnetic materials are performed using alternating gradient magnetometer and the magnetic hysteresis curves are measured for different ferromagnetic materials including iron, cobalt, and nickel. Optical fiber switches with various fiber lengths are actuated and their static and dynamic responses for the same volume of ferromagnetic gel are summarized. The highest displacement is 1.345 mm with an input current of 260mA. In this paper, the performance of fiber switches with various coating materials is presented.

  9. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Remes, Zdenek [Institute of Physics ASCR v.v.i., Cukrovarnicka 10, 162 00 Prague 6 (Czech Republic); Sun, Shih-Jye, E-mail: sjs@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Varga, Marian [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Chou, Hsiung [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hsu, Hua-Shu [Department of Applied Physics, National Pingtung University of Education, Pingtung 900, Taiwan (China); Kromka, Alexander [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Horak, Pavel [Nuclear Physics Institute, 250 68 Rez (Czech Republic)

    2015-11-15

    The nanocrystalline diamond films turn to be ferromagnetic after implanting various nitrogen doses on them. Through this research, we confirm that the room-temperature ferromagnetism of the implanted samples is derived from the measurements of magnetic circular dichroism (MCD) and superconducting quantum interference device (SQUID). Samples with larger crystalline grains as well as higher implanted doses present more robust ferromagnetic signals at room temperature. Raman spectra indicate that the small grain-sized samples are much more disordered than the large grain-sized ones. We propose that a slightly large saturated ferromagnetism could be observed at low temperature, because the increased localization effects have a significant impact on more disordered structure. - Highlights: • Nitrogen implanted nanocrystalline diamond films exhibit ferromagnetism at room temperature. • Nitrogen implants made a Raman deviation from the typical nanocrystalline diamond films. • The ferromagnetism induced from the structure distortion is dominant at low temperature.

  10. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    Science.gov (United States)

    Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor); Calle, Luz M. (Inventor)

    2014-01-01

    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  11. Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube.

    Science.gov (United States)

    György, Bence; Pálóczi, Krisztina; Kovács, Alexandra; Barabás, Eszter; Bekő, Gabriella; Várnai, Katalin; Pállinger, Éva; Szabó-Taylor, Katalin; Szabó, Tamás G; Kiss, Attila A; Falus, András; Buzás, Edit I

    2014-02-01

    Recently extracellular vesicles (exosomes, microparticles also referred to as microvesicles and apoptotic bodies) have attracted substantial interest as potential biomarkers and therapeutic vehicles. However, analysis of microparticles in biological fluids is confounded by many factors such as the activation of cells in the blood collection tube that leads to in vitro vesiculation. In this study we aimed at identifying an anticoagulant that prevents in vitro vesiculation in blood plasma samples. We compared the levels of platelet microparticles and non-platelet-derived microparticles in platelet-free plasma samples of healthy donors. Platelet-free plasma samples were isolated using different anticoagulant tubes, and were analyzed by flow cytometry and Zymuphen assay. The extent of in vitro vesiculation was compared in citrate and acid-citrate-dextrose (ACD) tubes. Agitation and storage of blood samples at 37 °C for 1 hour induced a strong release of both platelet microparticles and non-platelet-derived microparticles. Strikingly, in vitro vesiculation related to blood sample handling and storage was prevented in samples in ACD tubes. Importantly, microparticle levels elevated in vivo remained detectable in ACD tubes. We propose the general use of the ACD tube instead of other conventional anticoagulant tubes for the assessment of plasma microparticles since it gives a more realistic picture of the in vivo levels of circulating microparticles and does not interfere with downstream protein or RNA analyses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Counter-Propagating Optical Trapping System for Size and Refractive Index Measurement of Microparticles

    National Research Council Canada - National Science Library

    Flynn, Richard A; Shao, Bing; Chachisvilis, Mirianas; Ozkan, Mihrimah; Esener, Sadik C

    2005-01-01

    .... Different from the current best technique for microparticles refractive index measurement, refractometry, a bulk technique requiring changing the fluid composition of the sample, our optical trap...

  13. On the origin of microparticles: From “platelet dust” to mediators of intercellular communication

    Science.gov (United States)

    Hargett, Leslie A.; Bauer, Natalie N.

    2013-01-01

    Microparticles are submicron vesicles shed from a variety of cells. Peter Wolf first identified microparticles in the midst of ongoing blood coagulation research in 1967 as a product of platelets. He termed them platelet dust. Although initially thought to be useless cellular trash, decades of research focused on the tiny vesicles have defined their roles as participators in coagulation, cellular signaling, vascular injury, and homeostasis. The purpose of this review is to highlight the science leading up to the discovery of microparticles, feature discoveries made by key contributors to the field of microparticle research, and discuss their positive and negative impact on the pulmonary circulation. PMID:24015332

  14. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    Science.gov (United States)

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Tunnel barrier and noncollinear magnetization effects on shot noise in ferromagnetic/semiconductor/ferromagnetic heterojunctions

    International Nuclear Information System (INIS)

    An Xingtao; Liu Jianjun

    2008-01-01

    Based on the scattering approach, we investigate transport properties of electrons in a one-dimensional waveguide that contains a ferromagnetic/semiconductor/ferromagnetic heterojunction and tunnel barriers in the presence of Rashba and Dresselhaus spin-orbit interactions. We simultaneously consider significant quantum size effects, quantum coherence, Rashba and Dresselhaus spin-orbit interactions and noncollinear magnetizations. It is found that the tunnel barrier plays a decisive role in the transmission coefficient and shot noise of the ballistic spin electron transport through the heterojunction. When the small tunnel barriers are considered, the transport properties of electrons are quite different from those without tunnel barriers

  16. Modelling characteristics of ferromagnetic cores with the influence of temperature

    International Nuclear Information System (INIS)

    Górecki, K; Rogalska, M; Zarȩbski, J; Detka, K

    2014-01-01

    The paper is devoted to modelling characteristics of ferromagnetic cores with the use of SPICE software. Some disadvantages of the selected literature models of such cores are discussed. A modified model of ferromagnetic cores taking into account the influence of temperature on the magnetizing characteristics and the core losses is proposed. The form of the elaborated model is presented and discussed. The correctness of this model is verified by comparing the calculated and the measured characteristics of the selected ferromagnetic cores.

  17. A method for measuring exchange stiffness in ferromagnetic films

    International Nuclear Information System (INIS)

    Girt, Erol; Huttema, W.; Montoya, E.; Kardasz, B.; Eyrich, C.; Heinrich, B.; Mryasov, O. N.; Dobin, A. Yu.; Karis, O.

    2011-01-01

    An exchange stiffness, A ex , in ferromagnetic films is obtained by fitting the M(H) dependence of two ferromagnetic layers antiferromagnetically coupled across a nonmagnetic spacer layer with a simple micromagnetic model. In epitaxial and textured structures this method allows measuring A ex between the crystallographic planes perpendicular to the growth direction of ferromagnetic films. Our results show that A ex between [0001] planes in textured Co grains is 1.54 ± 0.12 x 10 -11 J/m.

  18. Fatty acids profile of chia oil-loaded lipid microparticles

    Directory of Open Access Journals (Sweden)

    M. F. Souza

    Full Text Available ABSTRACT Encapsulation of poly-unsaturated fatty acid (PUFAis an alternative to increase its stability during processing and storage. Chia (Salvia hispanica L. oil is a reliable source of both omega-3 and omega-6 and its encapsulation must be better evaluated as an effort to increase the number of foodstuffs containing PUFAs to consumers. In this work chia oil was extracted and encapsulated in stearic acid microparticles by the hot homogenization technique. UV-Vis spectroscopy coupled with Multivariate Curve Resolution with Alternating Least-Squares methodology demonstrated that no oil degradation or tocopherol loss occurred during heating. After lyophilization, the fatty acids profile of the oil-loaded microparticles was determined by gas chromatography and compared to in natura oil. Both omega-3 and omega-6 were effectively encapsulated, keeping the same omega-3:omega-6 ratio presented in the in natura oil. Calorimetric analysis confirmed that encapsulation improved the thermal stability of the chia oil.

  19. Self-organized internal architectures of chiral micro-particles

    International Nuclear Information System (INIS)

    Provenzano, Clementina; Mazzulla, Alfredo; Desiderio, Giovanni; Pagliusi, Pasquale; De Santo, Maria P.; Cipparrone, Gabriella; Perrotta, Ida

    2014-01-01

    The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials

  20. Microparticles based on natural and synthetic polymers for ophthalmic applications.

    Science.gov (United States)

    Tataru, G; Popa, M; Costin, D; Desbrieres, J

    2012-05-01

    Sodium salt of carboxymethylcellulose/poly(vinyl alcohol) particles suitable for application in ocular drug administration were prepared by crosslinking with epichlorohydrin in an alkaline medium, in reverse emulsion. The influence of parameters related with the particles elaboration process (ratio between polymer mixture and crosslinking agent, concentration of polymer solution, duration of crosslinking reaction, stirring intensity, etc.) based on their composition, size, and swelling ability was studied. Obtained microparticles fulfill the requirements for biomaterials-they are formed from biocompatible polymers; the acute toxicity value (LD(50)) is high enough to consider these materials as weakly toxic (hence able to introduce within the organism); they are able to include and release drugs in a controlled way. The in vivo adrenalin ocular delivery from the microparticles was tested on voluntary human patient. The particles showed good adhesion properties without irritation to the patient and proved the capability to treat the ocular congestion. Copyright © 2012 Wiley Periodicals, Inc.

  1. Principles of transverse flow fractionation of microparticles in superhydrophobic channels.

    Science.gov (United States)

    Asmolov, Evgeny S; Dubov, Alexander L; Nizkaya, Tatiana V; Kuehne, Alexander J C; Vinogradova, Olga I

    2015-07-07

    We propose a concept of fractionation of micron-sized particles in a microfluidic device with a bottom wall decorated by superhydrophobic stripes. The stripes are oriented at an angle α to the direction of a driving force, G, which generally includes an applied pressure gradient and gravity. Separation relies on the initial sedimentation of particles under gravity in the main forward flow, and their subsequent lateral deflection near a superhydrophobic wall due to generation of a secondary flow transverse to G. We provide some theoretical arguments allowing us to quantify the transverse displacement of particles in the microfluidic channel, and confirm the validity of theoretical predictions in test experiments with monodisperse fractions of microparticles. Our results can guide the design of superhydrophobic microfluidic devices for efficient sorting of microparticles with a relatively small difference in size and density.

  2. Room temperature ferromagnetism in ZnO prepared by microemulsion

    Directory of Open Access Journals (Sweden)

    Qingyu Xu

    2011-09-01

    Full Text Available Clear room temperature ferromagnetism has been observed in ZnO powders prepared by microemulsion. The O vacancy (VO clusters mediated by the VO with one electron (F center contributed to the ferromagnetism, while the isolated F centers contributed to the low temperature paramagnetism. Annealing in H2 incorporated interstitial H (Hi in ZnO, and removed the isolated F centers, leading to the suppression of the paramagnetism. The ferromagnetism has been considered to originate from the VO clusters mediated by the Hi, leading to the enhancement of the coercivity. The ferromagnetism disappeared after annealing in air due to the reduction of Hi.

  3. Ferromagnetic pairing states on two-coupled chains

    International Nuclear Information System (INIS)

    Tanaka, Akinori

    2008-01-01

    We propose a concrete model which exhibits ferromagnetism and electron-pair condensation simultaneously. The model is defined on two chains and consists of the electron hopping term, the on-site Coulomb repulsion and a ferromagnetic interaction which describes ferromagnetic coupling between two electrons, one on a bond in a chain and the other on a site in the other chain. It is rigorously shown that the model has fully-polarized ferromagnetic pairing ground states. The higher dimensional version of the model is also presented

  4. Microfluidic device for the assembly and transport of microparticles

    Science.gov (United States)

    James, Conrad D [Albuquerque, NM; Kumar, Anil [Framingham, MA; Khusid, Boris [New Providence, NJ; Acrivos, Andreas [Stanford, CA

    2010-06-29

    A microfluidic device comprising independently addressable arrays of interdigitated electrodes can be used to assembly and transport large-scale microparticle structures. The device and method uses collective phenomena in a negatively polarized suspension exposed to a high-gradient strong ac electric field to assemble the particles into predetermined locations and then transport them collectively to a work area for final assembly by sequentially energizing the electrode arrays.

  5. Phospholipid composition of cell-derived microparticles determined by one-dimensional high-performance thin-layer chromatography

    NARCIS (Netherlands)

    Weerheim, A. M.; Kolb, A. M.; Sturk, A.; Nieuwland, R.

    2002-01-01

    Microparticles in the circulation activate the coagulation system and may activate the complement system via C-reactive protein upon conversion of membrane phospholipids by phospholipases. We developed a sensitive and reproducible method to determine the phospholipid composition of microparticles.

  6. Restructuring of microparticles in nuclear ceramic materials. Part II. Analytical derivation of the steady-state size distribution

    International Nuclear Information System (INIS)

    Lameiras, F.S.

    1991-01-01

    Two fundamental principles were assumed to govern the restructuring of microparticles: minimization and uniformization in space of the interface energy. Five fundamental ways, independent of each other and acting simultaneously, were identified, through which a microparticle set can be restructured according to the fundamental principles: a) decrease of the number of microparticles; b) modification of the microparticle size distribution; c) modification of the microparticles from tending to an equiaxial one; d) tendency to the distribution of microparticles uniform in space; e) tendency to the distribution of the interface energy uniform per microparticle. This presents an analytical derivation of the steady-state microparticle size distribution due to the simultaneous action of the fundamental ways b) and e). (author)

  7. Thulium-170-labeled microparticles for local radiotherapy: preliminary studies.

    Science.gov (United States)

    Polyak, Andras; Das, Tapas; Chakraborty, Sudipta; Kiraly, Reka; Dabasi, Gabriella; Joba, Robert Peter; Jakab, Csaba; Thuroczy, Julianna; Postenyi, Zita; Haasz, Veronika; Janoki, Gergely; Janoki, Gyozo A; Pillai, Maroor R A; Balogh, Lajos

    2014-10-01

    The present article describes the preparation, characterization, and biological evaluation of Thulium-170 ((170)Tm) [T1/2 = 128.4 days; Eβmax = 968 keV; Eγ = 84 keV (3.26%)] labeled tin oxide microparticles for its possible use in radiation synovectomy (RSV) of medium-sized joints. (170)Tm was produced by irradiation of natural thulium oxide target. 170Tm-labeled microparticles were synthesized with high yield and radionuclidic purity (> 99%) along with excellent in vitro stability by following a simple process. Particle sizes and morphology of the radiolabeled particles were examined by light microscope, dynamic light scattering, and transmission electron microscope and found to be of stable spherical morphology within the range of 1.4-3.2 μm. The preparation was injected into the knee joints of healthy Beagle dogs intraarticularly for biological studies. Serial whole-body and regional images were taken by single-photon-emission computed tomography (SPECT) and SPECT-CT cameras up to 9 months postadministration, which showed very low leakage (compound did not show any possible radiotoxicological effect. These preliminary studies showed that 170Tm-labeled microparticles could be a promising nontoxic and effective radiopharmaceutical for RSV applications or later local antitumor therapy.

  8. Functionalized diatom silica microparticles for removal of mercury ions

    International Nuclear Information System (INIS)

    Yu Yang; Addai-Mensah, Jonas; Losic, Dusan

    2012-01-01

    Diatom silica microparticles were chemically modified with self-assembled monolayers of 3-mercaptopropyl-trimethoxysilane (MPTMS), 3-aminopropyl-trimethoxysilane (APTES) and n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTMS), and their application for the adsorption of mercury ions (Hg(II)) is demonstrated. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses revealed that the functional groups (–SH or –NH 2 ) were successfully grafted onto the diatom silica surface. The kinetics and efficiency of Hg(II) adsorption were markedly improved by the chemical functionalization of diatom microparticles. The relationship among the type of functional groups, pH and adsorption efficiency of mercury ions was established. The Hg(II) adsorption reached equilibrium within 60 min with maximum adsorption capacities of 185.2, 131.7 and 169.5 mg g -1 for particles functionalized with MPTMS, APTES and AEAPTMS, respectively. The adsorption behavior followed a pseudo-second-order reaction model and Langmuirian isotherm. These results show that mercapto- or amino-functionalized diatom microparticles are promising natural, cost-effective and environmentally benign adsorbents suitable for the removal of mercury ions from aqueous solutions.

  9. Study of Formulation Variables Influencing Polymeric Microparticles by Experimental Design

    Directory of Open Access Journals (Sweden)

    Jitendra B. Naik

    2014-04-01

    Full Text Available The objective of this study was to prepare diclofenac sodium loaded microparticles by single emulsion [oil-in-water (o/w] solvent evaporation method. The 22 experimental design methodology was used to evaluate the effect of two formulation variables on microspheres properties using the Design-Expert® software and evaluated for their particle size, morphology, and encapsulation efficiency and in vitro drug release. The graphical and mathematical analysis of the design showed that the independent variables were a significant effect on the encapsulation efficiency and drug release of microparticles. The low magnitudes of error and significant values of R2 prove the high prognostic ability of the design. The microspheres showed high encapsulation efficiency with an increase in the amount of polymer and decrease in the amount of PVA in the formulation. The particles were found to be spherical with smooth surface. Prolonged drug release and enhancement of encapsulation efficiency of polymeric microparticles can be successfully obtained with an application of experimental design technique.

  10. Moldless PEGDA-Based Optoelectrofluidic Platform for Microparticle Selection

    Directory of Open Access Journals (Sweden)

    Shih-Mo Yang

    2011-01-01

    Full Text Available This paper reports on an optoelectrofluidic platform which consists of the organic photoconductive material, titanium oxide phthalocyanine (TiOPc, and the photocrosslinkable polymer, poly (ethylene glycol diacrylate (PEGDA. TiOPc simplifies the fabrication process of the optoelectronic chip due to requiring only a single spin-coating step. PEGDA is applied to embed the moldless PEGDA-based microchannel between the top ITO glass and the bottom TiOPc substrate. A real-time control interface via a touch panel screen is utilized to select the target 15 μm polystyrene particles. When the microparticles flow to an illuminating light bar, which is oblique to the microfluidic flow path, the lateral driving force diverts the microparticles. Two light patterns, the switching oblique light bar and the optoelectronic ladder phenomenon, are designed to demonstrate the features. This work integrating the new material design, TiOPc and PEGDA, and the ability of mobile microparticle manipulation demonstrates the potential of optoelectronic approach.

  11. Circulating cell-derived microparticles in women with pregnancy loss.

    Science.gov (United States)

    Alijotas-Reig, Jaume; Palacio-Garcia, Carles; Farran-Codina, Immaculada; Zarzoso, Cristina; Cabero-Roura, Luis; Vilardell-Tarres, Miquel

    2011-09-01

    To analyze cell-derived microparticles (cMP) in pregnancy loss (PL), both recurrent miscarriages (RM) and unexplained fetal loss (UFL). Non-matched case-control study was performed at Vall d'Hebron Hospital. Cell-derived microparticles of 53 PL cases, 30 with RM, 16 with UFL, and 7 (RM + UFL), were compared to 38 healthy pregnant women. Twenty healthy non-pregnant women act as controls. Cell-derived microparticles were analyzed through flow cytometry. Results are given as total annexin (A5+), endothelial-(CD144+/CD31+ CD41-), platelet-(CD41+), leukocyte-(CD45+) and CD41- c-MP/μL of plasma. Antiphospholipid antibodies (aPLA) were analyzed according to established methods. Comparing PL versus healthy pregnant, we observed a significant endothelial cMP decrease in PL. When comparing RM subgroup with controls, we observed significant decreases in endothelial cMP. When comparing the PL positive for aPLA versus PL-aPLA-negative, no cMP numbering differences were seen. Pregnancy loss seems to be related to endothelial cell activation and/or consumption. A relationship between aPLA and cMP could not be demonstrated. © 2011 John Wiley & Sons A/S.

  12. Microparticle counts in platelet-rich and platelet-free plasma, effect of centrifugation and sample-processing protocols.

    Science.gov (United States)

    Chandler, Wayne L

    2013-03-01

    This study provides the first estimates of microparticle numbers in platelet-rich plasma (PRP) from normal individuals, closer to in-vivo levels, using higher-resolution flow cytometry. We measured platelet (CD41+) and annexin V+ microparticles in fresh and frozen aliquots of PRP, platelet-poor plasma, platelet-free plasma (PFP), and microparticles isolated by high-speed centrifugation. PRP from healthy individuals contained 730,000/μl total microparticles based on light-scattering measurements. A median of 27,000/μl microparticles in PRP were of platelet origin and 120,000/μl annexin V+, and of these, 24,000/μl were dual-positive procoagulant platelet microparticles. Double centrifugation of PRP removed 99% of platelets, but also 80% of annexin V+ CD41+, 93% of annexin V+ CD41-, and 58% of annexin V- CD41+ microparticles. Loss of microparticles with centrifugation varied from individual to individual. Microparticle counts after isolation by centrifugation and double washing were not significantly different than counts in the original PFP sample, but lower than in PRP. Freeze-thawing of PFP had no effect on platelet microparticle counts, but slightly increased annexin V+, CD41- counts. Freeze-thawing of isolated washed microparticles resulted in a 30-50% increase in annexin V+ microparticles. PRP contains large numbers of cellular microparticles, including platelet and annexin V+ microparticles, which are lost to varying degrees when PRP is double centrifuged to remove platelets. Microparticles remaining in PFP can be recovered by high-speed centrifugation without loss compared to the original PFP sample. Freeze-thawing has variable effects on microparticle counts depending on the sample preparation used.

  13. Magnetic microstructure of nanocrystalline ferromagnets and nanocrystalline systems combining ferromagnetic and antiferromagnetic phases

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, J.; Wagner, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kostorz, G. [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Wiedenmann, A. [HMI Berlin (Germany)

    1997-09-01

    Magnetic small-angle neutron scattering measurements were performed on nanostructured ferromagnetic materials on the basis of Fe, Ni and Co, produced preferentially by the inert-gas condensation technique, with the aim to determine the magnetic microstructure of mesoscopic small-particle systems. (author) 1 fig., 3 refs.

  14. Competing ferromagnetic and anti-ferromagnetic interactions in iron nitride ζ-Fe2N

    Science.gov (United States)

    Rao, K. Sandeep; Salunke, H. G.

    2018-03-01

    The paper discusses the magnetic state of zeta phase of iron nitride viz. ζ-Fe2N on the basis of spin polarized first principles electronic structure calculations together with a review of already published data. Results of our first principles study suggest that the ground state of ζ-Fe2N is ferromagnetic (FM) with a magnetic moment of 1.528μB on the Fe site. The FM ground state is lower than the anti-ferromagnetic (AFM) state by 8.44 meV and non-magnetic (NM) state by 191 meV per formula unit. These results are important in view of reports which claim that ζ-Fe2N undergoes an AFM transition below 10 K and others which do not observe any magnetic transition up to 4.2 K. We argue that the experimental results of AFM transition below 10 K are inconclusive and we propose the presence of competing FM and AFM superexchange interactions between Fe sites mediated by nitrogen atoms, which are consistent with Goodenough-Kanamori-Anderson rules. We find that the anti-ferromagnetically coupled Fe sites are outnumbered by ferromagnetically coupled Fe sites leading to a stable FM ground state. A Stoner analysis of the results also supports our claim of a FM ground state.

  15. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    Science.gov (United States)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  16. Spin Transport in Ferromagnetic and Antiferromagnetic Textures

    KAUST Repository

    Akosa, Collins A.

    2016-12-07

    In this dissertation, we provide an accurate description of spin transport in magnetic textures and in particular, we investigate in detail, the nature of spin torque and magnetic damping in such systems. Indeed, as will be further discussed in this thesis, the current-driven velocity of magnetic textures is related to the ratio between the so-called non-adiabatic torque and magnetic damping. Uncovering the physics underlying these phenomena can lead to the optimal design of magnetic systems with improved efficiency. We identified three interesting classes of systems which have attracted enormous research interest (i) Magnetic textures in systems with broken inversion symmetry: We investigate the nature of magnetic damping in non-centrosymmetric ferromagnets. Based on phenomenological and microscopic derivations, we show that the magnetic damping becomes chiral, i.e. depends on the chirality of the magnetic texture. (ii) Ferromagnetic domain walls, skyrmions and vortices: We address the physics of spin transport in sharp disordered magnetic domain walls and vortex cores. We demonstrate that upon spin-independent scattering, the non-adiabatic torque can be significantly enhanced. Such an enhancement is large for vortex cores compared to transverse domain walls. We also show that the topological spin currents owing in these structures dramatically enhances the non-adiabaticity, an effect unique to non-trivial topological textures (iii) Antiferromagnetic skyrmions: We extend this study to antiferromagnetic skyrmions and show that such an enhanced topological torque also exist in these systems. Even more interestingly, while such a non-adiabatic torque inuences the undesirable transverse velocity of ferromagnetic skyrmions, in antiferromagnetic skyrmions, the topological non-adiabatic torque directly determines the longitudinal velocity. As a consequence, scaling down the antiferromagnetic skyrmion results in a much more efficient spin torque.

  17. Room Temperature Ferromagnetic Mn:Ge(001

    Directory of Open Access Journals (Sweden)

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  18. The generalized spherical model of ferromagnetic films

    International Nuclear Information System (INIS)

    Costache, G.

    1977-12-01

    The D→ infinity of the D-vectorial model of a ferromagnetic film with free surfaces is exactly solved. The mathematical mechanism responsible for the onset of a phase transition in the system is a generalized sticking phenomenon. It is shown that the temperature at which the sticking appears, the transition temperature of the model is monotonously increasing with increasing the number of layers of the film, contrary to what happens in the spherical model with overall constraint. Certain correlation inequalities of Griffiths type are shown to hold. (author)

  19. Ferromagnetic film on a superconducting substrate

    Energy Technology Data Exchange (ETDEWEB)

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2001-01-01

    We study the equilibrium domain structure and magnetic flux around a ferromagnetic film with perpendicular magnetization M{sub 0} on a superconducting (SC) substrate. At 4{pi}M{sub 0}>1; {lambda}{sub L} being the London penetration length.

  20. Ferromagnetic film on a superconducting substrate

    International Nuclear Information System (INIS)

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2001-01-01

    We study the equilibrium domain structure and magnetic flux around a ferromagnetic film with perpendicular magnetization M 0 on a superconducting (SC) substrate. At 4πM 0 c1 the SC is in the Meissner state and the equilibrium domain width in the film, l, scales as (l/4πλ L )=(l N /4πλ L ) 2/3 with the domain width on a normal (nonsuperconducting) substrate, l N /4πλ L >>1; λ L being the London penetration length

  1. Ferromagnetic Film on a Superconducting Substrate

    OpenAIRE

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2000-01-01

    We study the equilibrium domain structure and magnetic flux around a ferromagnetic (FM) film with perpendicular magnetization M_0 on a superconducting (SC) substrate. At 4{\\pi}M_0> 1. Here \\lambda_L is the London penetration length. For 4{\\pi}M_0 > H_{c1} and l_{N} in excess of about 35 {\\lambda}_{L}, the domains are connected by SC vortices. We argue that pinning of vortices by magnetic domains in FM/SC multilayers can provide high critical currents.

  2. Carbon Nanotubes Filled with Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Albrecht Leonhardt

    2010-08-01

    Full Text Available Carbon nanotubes (CNT filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.

  3. Itinerant ferromagnetism in the narrow band limit

    CERN Document Server

    Liu, S H

    2000-01-01

    It is shown that in the narrow band, strong interaction limit the paramagnetic state of an itinerant ferromagnet is described by the disordered local moment state. As a result, the Curie temperature is orders of magnitude lower than what is expected from the large exchange splitting of the spin bands. An approximate analysis has also been carried out for the partially ordered state, and the result explains the temperature evolvement of the magnetic contributions to the resistivity and low-energy optical conductivity of CrO sub 2.

  4. Carbon Nanotubes Filled with Ferromagnetic Materials

    Science.gov (United States)

    Weissker, Uhland; Hampel, Silke; Leonhardt, Albrecht; Büchner, Bernd

    2010-01-01

    Carbon nanotubes (CNT) filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD) methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology. PMID:28883334

  5. Eddy current inspection of mildly ferromagnetic tubing

    International Nuclear Information System (INIS)

    Mayo, W.R.; Carter, J.R.

    1984-02-01

    The past decade has seen the development of eddy current probes for inspection of the mildly ferro-magnetic alloy Monel 400. Due to the rapid advances in permanent magnet technology similar probes have been upgraded to magnetically saturate, and hence inspect, the duplex stainless steel Sandvik 3RE60, which has saturation induction more than twice that of Monel 400. Prototypes of these probes have been tested in three ways: saturation capability, quality of typical eddy current data, and ability to eliminate permeability induced signals. Successful laboratory testing, potential applications, and limitations of these type probes are discussed

  6. Excitation spectrum of ferromagnetic xxz-chains

    International Nuclear Information System (INIS)

    Schneider, T.; Stoll, E.

    1983-01-01

    In the history of xxz-Heisenberg spin chains, understanding of the dynamic form factors (DFF) is much less advanced. In this paper the DFF of ferromagnetic xxz chains as a tool to probe and interpret excitation spectrum is reviewed. The Isingheisenberg chain, and the Planar-Heisenberg chain (where HF approximations become exact) are studied. The results provide instructive connections between spin systems, interacting fermions and bosons. Various new aspects--thermally induced bound state effects in terms of central peaks in DFF for Isinglike xxz chains; the possibility to observe bound states in S /SUB zz/ (q,w) accessible by neutron scattering techniques, in the planar system--are found

  7. Spin transport in ferromagnetically contacted carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Morgan, C.; Schneider, C.M. [Peter Gruenberg Institut, PGI-6, Forschungszentrum Juelich and JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany)

    2011-11-15

    We present magnetoresistance (MR) measurements on carbon nanotubes (CNTs) with different ferromagnetic leads. A sample with permalloy (Ni{sub 80}Fe{sub 20}) contacts shows the expected tunneling-type MR effect. Measurements on devices with CoPd contacts show a larger change of resistance with magnetic field. However, only minor loops are observed, which is explained with domain wall pinning. This is supported by magnetic force microscopy (MFM) measurements, which reveal a complicated bubble and stripe domain pattern. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu, E-mail: wangbc2000@126.com; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-06-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro.

  9. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    International Nuclear Information System (INIS)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-01-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro

  10. Vascular complications in diabetes: Microparticles and microparticle associated microRNAs as active players.

    Science.gov (United States)

    Alexandru, Nicoleta; Badila, Elisabeta; Weiss, Emma; Cochior, Daniel; Stępień, Ewa; Georgescu, Adriana

    2016-03-25

    The recognition of the importance of diabetes in vascular disease has greatly increased lately. Common risk factors for diabetes-related vascular disease include hyperglycemia, insulin resistance, dyslipidemia, inflammation, hypercoagulability, hypertension, and atherosclerosis. All of these factors contribute to the endothelial dysfunction which generates the diabetic complications, both macro and microvascular. Knowledge of diabetes-related vascular complications and of associated mechanisms it is becoming increasingly important for therapists. The discovery of microparticles (MPs) and their associated microRNAs (miRNAs) have opened new perspectives capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers. MPs known as submicron vesicles generated from membranes of apoptotic or activated cells into circulation have the ability to act as autocrine and paracrine effectors in cell-to-cell communication. They operate as biological vectors modulating the endothelial dysfunction, inflammation, coagulation, angiogenesis, thrombosis, subsequently contributing to the progression of macro and microvascular complications in diabetes. More recently, miRNAs have started to be actively investigated, leading to first exciting reports, which suggest their significant role in vascular physiology and disease. The contribution of MPs and also of their associated miRNAs to the development of vascular complications in diabetes was largely unexplored and undiscussed. In essence, with this review we bring light upon the understanding of impact diabetes has on vascular biology, and the significant role of MPs and MPs associated miRNAs as novel mediators, potential biomarkers and therapeutic targets in vascular complications in diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Evaluating tamsulosin hydrochloride-released microparticles prepared using single-step matrix coating.

    Science.gov (United States)

    Maeda, Atsushi; Shinoda, Tatsuki; Ito, Naoki; Baba, Keizo; Oku, Naoto; Mizumoto, Takao

    2011-04-15

    The objective of the present study was to determine the optimum composition for sustained-release of tamsulosin hydrochloride from microparticles intended for orally disintegrating tablets. Microparticles were prepared from an aqueous ethylcellulose dispersion (Aquacoa®), and an aqueous copolymer based on ethyl acrylate and methyl methacrylate dispersion (Eudragit®) NE30D), with microcrystalline cellulose as core particles with a fluidized bed coating process. Prepared microparticles were about 200 μm diameter and spherical. The microparticles were evaluated for in vitro drug release and in vivo absorption to assess bioequivalence in a commercial product, Harnal® pellets. The optimum ratio of Aquacoat® and Eudragit® NE30D in the matrix was 9:1. We observed similar drug release profiles in microparticles and Harnal® pellets. Higuchi model analysis of the in vitro drug release from microparticles was linear up to 80% release, typical of Fickian diffusion sustained-release profile. The in vivo absorption properties from microparticles were comparable to Harnal® pellets, and there was a linear relationship between in vitro drug release and in vivo drug release. In conclusion, this development produces microparticles in single-step coating, that provided a sustained-release of tamsulosin hydrochloride comparable to Harnal® pellets. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing.

    Science.gov (United States)

    Dey-Hazra, Emily; Hertel, Barbara; Kirsch, Torsten; Woywodt, Alexander; Lovric, Svjetlana; Haller, Hermann; Haubitz, Marion; Erdbruegger, Uta

    2010-12-06

    The clinical importance of microparticles resulting from vesiculation of platelets and other blood cells is increasingly recognized, although no standardized method exists for their measurement. Only a few studies have examined the analytical and preanalytical steps and variables affecting microparticle detection. We focused our analysis on microparticle detection by flow cytometry. The goal of our study was to analyze the effects of different centrifugation protocols looking at different durations of high and low centrifugation speeds. We also analyzed the effect of filtration of buffer and long-term freezing on microparticle quantification, as well as the role of Annexin V in the detection of microparticles. Absolute and platelet-derived microparticles were 10- to 15-fold higher using initial lower centrifugation speeds at 1500 × g compared with protocols using centrifugation speeds at 5000 × g (P centrifugation speeds. Filtration of buffer with a 0.2 μm filter reduced a significant amount of background noise. Storing samples for microparticle detection at -80°C decreased microparticle levels at days 28, 42, and 56 (P centrifugation speeds should be used to minimize contamination by smaller size platelets.

  13. Novel cryomilled physically cross-linked biodegradable hydrogel microparticles as carriers for inhalation therapy.

    Science.gov (United States)

    El-Sherbiny, I M; Smyth, H D C

    2010-01-01

    In this study, novel biodegradable physically cross-linked hydrogel microparticles were developed and evaluated in-vitro as potential carriers for inhalation therapy. These hydrogel microparticles were prepared to be respirable (desired aerodynamic size) when dry and also designed to avoid the macrophage uptake (attain large swollen size once deposited in lung). The swellable microparticles, prepared using cryomilling, were based on Pluronic® F-108 in combination with PEG grafted onto both chitosan (Cs) and its N-phthaloyl derivative (NPHCs). Polymers synthesized in the study were characterized using EA, FTIR, 2D-XRD and DSC. Morphology, particle size, density, biodegradation and moisture content of the microparticles were quantified. Swelling characteristics for both drug-free and drug-loaded microparticles showed excellent size increases (between 700-1300%) and the release profiles indicated sustained release could be achieved for up to 20 days. The respirable microparticles showed drug loading efficiency up to 92%. The enzymatic degradation of developed microparticles started within the first hour and only ∼10% weights were remaining after 10 days. In conclusion, these respirable microparticles demonstrated promising in-vitro performance for potential sustained release vectors in pulmonary drug delivery.

  14. Micro-particle filter made in SU-8 for biomedical applications

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Urs; Fetz, Stefanie

    2009-01-01

    We have integrated a micro-particle filter in a polymer cantilever to filter micro-particles from a fluid while simultaneously measuring the amount of filtered particles. In a 3,8 mum thick SU-8 cantilever a filter was integrated with pore sizes between 3 and 30 mum. The chip was inserted in a mi...

  15. Nicotine-magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    DEFF Research Database (Denmark)

    Kanjanakawinkul, Watchara; Rades, Thomas; Puttipipatkhachorn, Satit

    2013-01-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle...

  16. On-chip microparticle detection and sizing using a dual-wavelength waveguide laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Worhoff, Kerstin; De Ridder, Rene M.; Subramaniam, Vinod; Pollnau, Markus

    2013-01-01

    An integrated intra-laser-cavity microparticle sensor based on a dual-phase-shift, dual-wavelength distributed-feedback channel waveguide laser in Al2O3:Yb3+ is presented. Real-time detection and accurate size measurement of single microparticles with diameters ranging between 1 μm and 20 μm are

  17. Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Wörhoff, Kerstin; de Ridder, René M; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped amorphous aluminum oxide on a silicon substrate is demonstrated. Real-time detection and accurate size measurement of single micro-particles with diameters

  18. Effect of Formulation and Process Parameters on Chitosan Microparticles Prepared by an Emulsion Crosslinking Technique.

    Science.gov (United States)

    Rodriguez, Lidia B; Avalos, Abraham; Chiaia, Nicholas; Nadarajah, Arunan

    2017-05-01

    There are many studies about the synthesis of chitosan microparticles; however, most of them have very low production rate, have wide size distribution, are difficult to reproduce, and use harsh crosslinking agents. Uniform microparticles are necessary to obtain repeatable drug release behavior. The main focus of this investigation was to study the effect of the process and formulation parameters during the preparation of chitosan microparticles in order to produce particles with narrow size distribution. The technique evaluated during this study was emulsion crosslinking technique. Chitosan is a biocompatible and biodegradable material but lacks good mechanical properties; for that reason, chitosan was ionically crosslinked with sodium tripolyphosphate (TPP) at three different ratios (32, 64, and 100%). The model drug used was acetylsalicylic acid (ASA). During the preparation of the microparticles, chitosan was first mixed with ASA and then dispersed in oil containing an emulsifier. The evaporation of the solvents hardened the hydrophilic droplets forming microparticles with spherical shape. The process and formulation parameters were varied, and the microparticles were characterized by their morphology, particle size, drug loading efficiency, and drug release behavior. The higher drug loading efficiency was achieved by using 32% mass ratio of TPP to chitosan. The average microparticle size was 18.7 μm. The optimum formulation conditions to prepare uniform spherical microparticles were determined and represented by a region in a triangular phase diagram. The drug release analyses were evaluated in phosphate buffer solution at pH 7.4 and were mainly completed at 24 h.

  19. Improved positioning and detectability of microparticles in droplet microfluidics using two-dimensional acoustophoresis

    DEFF Research Database (Denmark)

    Ohlin, M.; Fornell, A.; Bruus, Henrik

    2017-01-01

    , by using acoustic actuation, (99.8 ± 0.4)% of all encapsulated microparticles can be detected compared to only (79.0 ± 5.1)% for unactuated operation. In our experiments we observed a strong ordering of the microparticles in distinct patterns within the droplet when using 2D acoustophoresis; to explain...

  20. On-chip microparticle detection and sizing using a dual-wavelength waveguide laser

    NARCIS (Netherlands)

    Bernhardi, Edward; van der Werf, Kees; Hollink, Anton; Worhoff, Kerstin; de Ridder, R.M.; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-phase-shift, dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped aluminium oxide is presented. Single micro-particles with diameters ranging between 1 μm and 20 μm are detected.

  1. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Nielsen, Christoffer T; Østergaard, Ole; Johnsen, Christina

    2011-01-01

    Characterization of the abundance, origin, and annexin V (AnxV)-binding capabilities of circulating microparticles (MPs) in SLE patients and healthy controls and to determine any associations with clinical parameters.......Characterization of the abundance, origin, and annexin V (AnxV)-binding capabilities of circulating microparticles (MPs) in SLE patients and healthy controls and to determine any associations with clinical parameters....

  2. Fabrication of starch-based microparticles by an emulsification-crosslinking method

    Science.gov (United States)

    Starch-based microparticles (MPs) fabricated by a water-in-water (w/w) emulsification-crosslinking method could be used as a controlled-release delivery vehicle for food bioactives. Due to the processing route without the use of toxic organic solvents, it is expected that these microparticles can be...

  3. Characterization of microparticles prepared by emulsion method from pectin and protein

    Science.gov (United States)

    In this study, pectin was extracted from apple peel and formulated into microparticles in combination with zein, an edible food protein. The physical, chemical, and structural properties of the resultant pectin structures were evaluated. The resultant microparticles were also examined in vitro for c...

  4. Concentration of nanoparticles and/or microparticles in flow conditions by dielectrophoresis

    DEFF Research Database (Denmark)

    2017-01-01

    A device for concentration of nanoparticles and/or microparticles in liquid flow conditions by dielectrophoresis is disclosed in this invention.......A device for concentration of nanoparticles and/or microparticles in liquid flow conditions by dielectrophoresis is disclosed in this invention....

  5. Proteomic Analysis of Serum Opsonins Impacting Biodistribution and Cellular Association of Porous Silicon Microparticles

    Directory of Open Access Journals (Sweden)

    Rita E. Serda

    2011-01-01

    Full Text Available Mass transport of drug delivery vehicles is guided by particle properties, such as size, shape, composition, and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two-dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light variable chain, fibrinogen, and complement component 1 compared to their anionic counterparts. Anionic microparticles were found to accumulate in equal abundance in murine liver and spleen, whereas cationic microparticles showed preferential accumulation in the spleen. Immunohistochemistry supported macrophage uptake of both anionic and cationic microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution.

  6. Nonlinear wave propagation through a ferromagnet with damping in ...

    Indian Academy of Sciences (India)

    magnetic waves in a ferromagnet can be reduced to an integro-differential equation. Keywords. Solitons; integro-differential equations; reductive perturbation method. PACS Nos 41.20 Jb; 05.45 Yv; 03.50 De; 78.20 Ls. 1. Introduction. The phenomenon of propagation of electromagnetic waves in ferromagnets are not only.

  7. Levitation properties of maglev systems using soft ferromagnets

    Science.gov (United States)

    Huang, Chen-Guang; Zhou, You-He

    2015-03-01

    Soft ferromagnets are widely used as flux-concentration materials in the design of guideways for superconducting magnetic levitation transport systems. In order to fully understand the influence of soft ferromagnets on the levitation performance, in this work we apply a numerical model based on the functional minimization method and the Bean’s critical state model to study the levitation properties of an infinitely long superconductor immersed in the magnetic field created by a guideway of different sets of infinitely long parallel permanent magnets with soft ferromagnets between them. The levitation force, guidance force, magnetic stiffness and magnetic pole density are calculated considering the coupling between the superconductor and soft ferromagnets. The results show that the levitation performance is closely associated with the permanent magnet configuration and with the location and dimension of the soft ferromagnets. Introducing the soft ferromagnet with a certain width in a few configurations always decreases the levitation force. However, for most configurations, the soft ferromagnets contribute to improve the levitation performance only when they have particular locations and dimensions in which the optimized location and thickness exist to increase the levitation force the most. Moreover, if the superconductor is laterally disturbed, the presence of soft ferromagnets can effectively improve the lateral stability for small lateral displacement and reduce the degradation of levitation force.

  8. Spin Heat Accumulation Induced by Tunneling from a Ferromagnet

    NARCIS (Netherlands)

    Vera-Marun, I.J.; Wees, B.J. van; Jansen, R.

    2014-01-01

    An electric current from a ferromagnet into a nonmagnetic material can induce a spin-dependent electron temperature. Here, it is shown that this spin heat accumulation, when created by tunneling from a ferromagnet, produces a non-negligible voltage signal that is comparable to that due to the

  9. Modelling the power losses in the ferromagnetic materials

    Directory of Open Access Journals (Sweden)

    Detka Kalina

    2017-07-01

    Full Text Available In this paper, the problem of describing power losses in ferromagnetic materials is considered. The limitations of Steinmetz formula are shown and a new analytical description of losses in a considered material is proposed. The correctness of the developed description is demonstrated experimentally by comparing the results of calculation with the catalogue characteristics for different ferromagnetic materials.

  10. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  11. Ferromagnetic properties of manganese doped iron silicide

    Science.gov (United States)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  12. Giant proximity effect in ferromagnetic bilayers

    Science.gov (United States)

    Ramos, Silvia; Charlton, Tim; Quintanilla, Jorge; Suter, Andreas; Moodera, Jagadeesh; Prokscha, Thomas; Salman, Zaher; Forgan, Ted

    2013-03-01

    The proximity effect is a phenomenon where an ordered state leaks from a material into an adjacent one over some finite distance, ξ. For superconductors, this distance is ~ the coherence length. Nevertheless much longer-range, ``giant'' proximity effects have been observed in cuprate junctions. This surprising effect can be understood as a consequence of critical opalescence. Since this occurs near all second order phase transitions, giant proximity effects should be very general and, in particular, they should be present in magnetic systems. The ferromagnetic proximity effect has the advantage that its order parameter (magnetization) can be observed directly. We investigate the above phenomenon in Co/EuS bilayer films, where both materials undergo ferromagnetic transitions but at rather different temperatures (bulk TC of 1400K for Co and 16.6K for EuS). A dramatic increase in the range of the proximity effect is expected near the TC of EuS. We present the results of our measurements of the magnetization profiles as a function of temperature, carried out using the complementary techniques of low energy muon rotation and polarized neutron reflectivity. Work supported by EPSRC, STFC and ONR grant N00014-09-1-0177 and NSF grant DMR 0504158.

  13. Titanium nitride room-temperature ferromagnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Iu.G., E-mail: morozov@ism.ac.ru [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belousova, O.V. [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belyakov, O.A. [Ogarev Mordovia State University, Saransk, 68 Bol' shevistskaya Street, 430005 (Russian Federation); Parkin, I.P., E-mail: i.p.parkin@ucl.ac.uk [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Sathasivam, S. [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Kuznetcov, M.V., E-mail: maxim1968@mail.ru [All-Russian Research Institute on Problems of Civil Defense and Emergencies of Emergency Control Ministry of Russia (EMERCOM), 7 Davidkovskaya Street, Moscow, 121352 (Russian Federation)

    2016-08-05

    Cubic and near-spherical TiN nanoparticles ranging in average size from 20 to 125 nm were prepared by levitation-jet aerosol synthesis through condensation of titanium vapor in an inert gas flow with gaseous nitrogen injection. The nanoparticles were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), BET measurements, UV–Vis, FT-IR, Raman spectroscopy, XPS, and vibrating-sample magnetometry. Room-temperature ferromagnetism with maximum magnetization up to 2.5 emu/g was recorded for the nanoparticles. The results indicate that the observed ferromagnetic ordering was related to the defect Ti–N structures on the surface of nanoparticles. This suggestion is in good correlation with the measured spectroscopical data. - Highlights: • Levitation-jet aerosol synthesis of TiN nanoparticles (NPs). • SEM, XRD, BET, UV–vis, FT-IR, Raman, XPS and magnetic characterization of the NPs. • Correlation between optical and XPS measurements data and maximum magnetization of the NPs.

  14. Ethanol oxidation on a nichrome-supported spherical platinum microparticle electrocatalyst prepared by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen-Hui; Li, Jing; Dong, Xiaoya; Wang, Dong; Chen, Tiwei; Qiao, Haiyan; Huang, Aiping [College of Chemistry and Environmental Science, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Jianshe Road, Xinxiang 453007 (China)

    2008-11-15

    A novel electrode was rapidly prepared by depositing microparticle platinum onto a nichrome substrate in dilute chloroplatinic acid solution by cyclic voltammetry. The SEM results revealed that the deposits were composed of spherical Pt microparticles. Cyclic voltammetry and chronoamperometry were used for the characterization of the electrodes. Results of the electrochemical measurements showed that the spherical Pt microparticle electrodes retained the properties of metal platinum, increased the catalytic activity and promoted the electrocatalytic oxidation of ethanol. Moreover, the deposited Pt microparticles improved the electrochemical properties of the support material and reduced the dosage of noble metal platinum remarkably. The cost could be reduced dramatically by decreasing the contents of platinum. The spherical Pt microparticles deposited on the nichrome supports are likely a potential electrocatalyst for ethanol electrooxidation. (author)

  15. Spectroscopic evaluation of the effect of the microparticles on radiofrequency argon plasma

    International Nuclear Information System (INIS)

    Mitic, S; Pustylnik, M Y; Morfill, G E

    2009-01-01

    Axial distributions of 1s excited states of argon were measured in a radiofrequency (RF) discharge by a self-absorption method. Experiments were performed in the PK-3+ chamber, designed for microgravity experiments in complex (dusty) plasmas on board the International Space Station. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. Distributions, measured at the same discharge conditions in a microparticle-free discharge and a discharge containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  16. Physicochemical characteristics of uranium microparticles collected at nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Kaurov, G.; Stebelkov, V.; Kolesnikov, O.; Frolov, D.

    2001-01-01

    Any industrial process is accompanied by appearance of some quantity of microparticles of processed matter in the environment in immediate proximity to the manufacturing object. These particles can be transferred in atmosphere and can be collected at some distances from the plant. The determination of characteristics of industrial dust microparticles at nuclear fuel cycle plants (form, size, structure of surface, elemental composition, isotopic composition, presence of fission products, presence of activation products) in conjunction with the ability to connect these characteristics with certain nuclear manufacturing processes can become the main technical method of detecting of undeclared nuclear activity. Systematization of the experimental data on morphology, elemental and isotopic composition of uranium microparticles, collected at nuclear fuel cycle plants, is given. The purpose of this work is to establish the relationship between morphological characteristics of uranium dust microparticles and types of nuclear manufacture and to define the reference attributes of the most informative microparticles

  17. Microparticle injection effects on microwave transmission through an overly dense plasma layer

    Energy Technology Data Exchange (ETDEWEB)

    Gillman, Eric D., E-mail: eric.gillman@nrl.navy.mil; Amatucci, W. E. [Naval Research Laboratory, Washington, DC 20375 (United States); Williams, Jeremiah [Wittenberg University, Springfield, Ohio 45501 (United States); Compton, C. S. [Sotera Defense Solutions, Herndon, Virginia 20171 (United States)

    2015-04-15

    Microparticles injected into a plasma have been shown to deplete the free electron population as electrons are collected through the process of microparticles charging to the plasma floating potential. However, these charged microparticles can also act to scatter electromagnetic signals. These experiments investigate microwave penetration through a previously impenetrable overly dense plasma layer as microparticles are injected and the physical phenomena associated with the competing processes that occur due to electron depletion and microwave scattering. The timescales for when each of these competing processes dominates is analyzed in detail. It was found that while both processes play a significant and dominant role at different times, ultimately, transmission through this impenetrable plasma layer can be significantly increased with microparticle injection.

  18. Room-temperature ferromagnetism in cerium dioxide powders

    Energy Technology Data Exchange (ETDEWEB)

    Rakhmatullin, R. M., E-mail: rrakhmat@kpfu.ru; Pavlov, V. V.; Semashko, V. V.; Korableva, S. L. [Kazan Federal University, Institute of Physics (Russian Federation)

    2015-08-15

    Room-temperature ferromagnetism is detected in a CeO{sub 2} powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO{sub 2} sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.

  19. Detection of microparticles from human red blood cells by multiparametric flow cytometry

    Science.gov (United States)

    Grisendi, Giulia; Finetti, Elena; Manganaro, Daniele; Cordova, Nicoletta; Montagnani, Giuliano; Spano, Carlotta; Prapa, Malvina; Guarneri, Valentina; Otsuru, Satoru; Horwitz, Edwin M.; Mari, Giorgio; Dominici, Massimo

    2015-01-01

    Background During storage, red blood cells (RBC) undergo chemical and biochemical changes referred to as “storage lesions”. These events determine the loss of RBC integrity, resulting in lysis and release of microparticles. There is growing evidence of the clinical importance of microparticles and their role in blood transfusion-related side effects and pathogen transmission. Flow cytometry is currently one of the most common techniques used to quantify and characterise microparticles. Here we propose multiparametric staining to monitor and quantify the dynamic release of microparticles by stored human RBC. Material and methods RBC units (n=10) were stored under blood bank conditions for up to 42 days. Samples were tested at different time points to detect microparticles and determine the haemolysis rate (HR%). Microparticles were identified by flow cytometry combining carboxyfluorescein diacetate succinimidyl ester (CFSE) dye, annexin V and anti-glycophorin A antibody. Results We demonstrated that CFSE can be successfully used to label closed vesicles with an intact membrane. The combination of CFSE and glycophorin A antibody was effective for monitoring and quantifying the dynamic release of microparticles from RBC during storage. Double staining with CFSE/glycophorin A was a more precise approach, increasing vesicle detection up to 4.7-fold vs the use of glycophorin A/annexin V alone. Moreover, at all the time points tested, we found a robust correlation (R=0.625; p=0.0001) between HR% and number of microparticles detected. Discussion Multiparametric staining, based on a combination of CFSE, glycophorin A antibody and annexin V, was able to detect, characterise and monitor the release of microparticles from RBC units during storage, providing a sensitive approach to labelling and identifying microparticles for transfusion medicine and, more broadly, for cell-based therapies. PMID:25369588

  20. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo

    Science.gov (United States)

    Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe

    2015-01-01

    Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551

  1. Spin-flip scattering effect on the current-induced spin torque in ferromagnet-insulator-ferromagnet tunnel junctions

    International Nuclear Information System (INIS)

    Zhu Zhengang; Su Gang; Jin Biao; Zheng Qingrong

    2003-01-01

    We have investigated the current-induced spin transfer torque of a ferromagnet-insulator-ferromagnet tunnel junction by taking the spin-flip scatterings into account. It is found that the spin-flip scattering can induce an additional spin torque, enhancing the maximum of the spin torque and giving rise to an angular shift compared to the case when the spin-flip scatterings are neglected. The effects of the molecular fields of the left and right ferromagnets on the spin torque are also studied. It is found that τ Rx /I e (τ Rx is the spin-transfer torque acting on the right ferromagnet and I e is the tunneling electrical current) does vary with the molecular fields. At two certain angles, τ Rx /I e is independent of the molecular field of the right ferromagnet, resulting in two crossing points in the curve of τ Rx /I e versus the relevant orientation for different molecular fields

  2. Laser plasma jet driven microparticles for DNA/drug delivery.

    Directory of Open Access Journals (Sweden)

    Viren Menezes

    Full Text Available This paper describes a microparticle delivery device that generates a plasma jet through laser ablation of a thin metal foil and uses the jet to accomplish particle delivery into soft living targets for transferring biological agents. Pure gold microparticles of 1 µm size were coated with a plasmid DNA, pIG121Hm, and were deposited as a thin layer on one surface of an aluminum foil. The laser (Nd:YAG, 1064 nm wavelength ablation of the foil generated a plasma jet that carried the DNA coated particles into the living onion cells. The particles could effectively penetrate the target cells and disseminate the DNA, effecting the transfection of the cells. Generation of the plasma jet on laser ablation of the foil and its role as a carrier of microparticles was visualized using a high-speed video camera, Shimadzu HPV-1, at a frame rate of 500 kfps (2 µs interframe interval in a shadowgraph optical set-up. The particle speed could be measured from the visualized images, which was about 770 m/s initially, increased to a magnitude of 1320 m/s, and after a quasi-steady state over a distance of 10 mm with an average magnitude of 1100 m/s, started declining, which typically is the trend of a high-speed, pulsed, compressible jet. Aluminum launch pad (for the particles was used in the present study to make the procedure cost-effective, whereas the guided, biocompatible launch pads made of gold, silver or titanium can be used in the device during the actual clinical operations. The particle delivery device has a potential to have a miniature form and can be an effective, hand-held drug/DNA delivery device for biological applications.

  3. Accelerating protein release from microparticles for regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    White, Lisa J., E-mail: lisa.white@nottingham.ac.uk; Kirby, Giles T.S.; Cox, Helen C.; Qodratnama, Roozbeh; Qutachi, Omar; Rose, Felicity R.A.J.; Shakesheff, Kevin M.

    2013-07-01

    There is a need to control the spatio-temporal release kinetics of growth factors in order to mitigate current usage of high doses. A novel delivery system, capable of providing both structural support and controlled release kinetics, has been developed from PLGA microparticles. The inclusion of a hydrophilic PLGA–PEG–PLGA triblock copolymer altered release kinetics such that they were decoupled from polymer degradation. A quasi zero order release profile over four weeks was produced using 10% w/w PLGA–PEG–PLGA with 50:50 PLGA whereas complete and sustained release was achieved over ten days using 30% w/w PLGA–PEG–PLGA with 85:15 PLGA and over four days using 30% w/w PLGA–PEG–PLGA with 50:50 PLGA. These three formulations are promising candidates for delivery of growth factors such as BMP-2, PDGF and VEGF. Release profiles were also modified by mixing microparticles of two different formulations providing another route, not previously reported, for controlling release kinetics. This system provides customisable, localised and controlled delivery with adjustable release profiles, which will improve the efficacy and safety of recombinant growth factor delivery. Highlights: ► A new delivery system providing controlled release kinetics has been developed. ► Inclusion of hydrophilic PLGA–PEG–PLGA decoupled release kinetics from degradation. ► Using 10% triblock copolymer produced quasi zero order release over four weeks. ► Mixing microparticle formulations provided another route for controlling release. ► This system provides customisable, localised and controlled delivery of growth factors.

  4. Galectin-3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis.

    Science.gov (United States)

    Nielsen, C T; Østergaard, O; Rekvig, O P; Sturfelt, G; Jacobsen, S; Heegaard, N H H

    2015-10-01

    A high level of galectin-3-binding protein (G3BP) appears to distinguish circulating cell-derived microparticles in systemic lupus erythematosus (SLE). The aim of this study is to characterize the population of G3BP-positive microparticles from SLE patients compared to healthy controls, explore putative clinical correlates, and examine if G3BP is present in immune complex deposits in kidney biopsies from patients with lupus nephritis. Numbers of annexin V-binding and G3BP-exposing plasma microparticles from 56 SLE patients and 36 healthy controls were determined by flow cytometry. Quantitation of microparticle-associated G3BP, C1q and immunoglobulins was obtained by liquid chromatography tandem mass spectrometry (LC-MS/MS). Correlations between microparticle-G3BP data and clinical parameters were analyzed. Co-localization of G3BP with in vivo-bound IgG was examined in kidney biopsies from one non-SLE control and from patients with class IV (n = 2) and class V (n = 1) lupus nephritis using co-localization immune electron microscopy. Microparticle-G3BP, microparticle-C1q and microparticle-immunoglobulins were significantly (P microparticle populations could be discerned by flow cytometry, including two subpopulations that were significantly increased in SLE samples (P = 0.01 and P = 0.0002, respectively). No associations of G3BP-positive microparticles with clinical manifestations or disease activity were found. Immune electron microscopy showed co-localization of G3BP with in vivo-bound IgG in glomerular electron dense immune complex deposits in all lupus nephritis biopsies. Both circulating microparticle-G3BP numbers as well as G3BP expression are increased in SLE patients corroborating G3BP being a feature of SLE microparticles. By demonstrating G3BP co-localized with deposited immune complexes in lupus nephritis, the study supports cell-derived microparticles as a major autoantigen source and provides a new understanding of the origin of

  5. Live cell refractometry based on non-SPR microparticle sensor.

    Science.gov (United States)

    Liu, Chang; Chen, David D Y; Yu, Lirong; Luo, Yong

    2013-06-01

    Unlike the nanoparticles with surface plasmon resonance, the optical response of polystyrene microparticles (PSMPs) is insensitive to the chemical components of the surrounding medium under the wavelength-dependent differential interference contrast microscopy. This fact is exploited for the measurement of the refractive index of cytoplasm in this study. PSMPs of 400 nm in diameter were loaded into the cell to contact cytoplasm seamlessly, and the refractive index information of cytoplasm could be extracted by differential interference contrast microscopy operated at 420 nm illumination wavelength through the contrast analysis of PSMPs images. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Studies of microparticles in patients with the antiphospholipid syndrome (APS).

    Science.gov (United States)

    Vikerfors, A; Mobarrez, F; Bremme, K; Holmström, M; Ågren, A; Eelde, A; Bruzelius, M; Antovic, A; Wallén, H; Svenungsson, E

    2012-06-01

    To study circulating platelet, monocyte and endothelial microparticles (PMPs, MMPs and EMPs) in patients with antiphospholipid syndrome (APS) in comparison with healthy controls. Fifty-two patients with APS and 52 healthy controls were investigated. MPs were measured on a flow cytometer (Beckman Gallios) and defined as particles sized APS patients versus controls (p APS patients. We observed a high number of EMPs expressing TF in APS patients. The numbers of MMPs and total EMPs were also higher as compared with healthy controls but in contrast to previous reports, the number of PMPs did not differ between groups.

  7. Perfect GMR effect in gapped graphene-based ferromagnetic normal ferromagnetic junctions

    Institute of Scientific and Technical Information of China (English)

    Hossein Karbaschi; Gholam Reza Rashedi

    2015-01-01

    We investigate the quantum transport property in gapped graphene-based ferromagnetic/normal/ferromagnetic (FG/NG/FG) junctions by using the Dirac–Bogoliubov–de Gennes equation. The graphene is fabricated on SiC and BN substrates separately, so carriers in FG/NG/FG structures are considered as massive relativistic particles. Transmission prob-ability, charge, and spin conductances are studied as a function of exchange energy of ferromagnets (h), size of graphene gap, and thickness of normal graphene region (L) respectively. Using the experimental values of Fermi energy in the normal graphene part (EFN∼400 meV) and energy gap in graphene (260 meV for SiC and 50 meV for BN substrate), it is shown that this structure can be used for both spin-up and spin-down polarized current. The latter case has different behavior of gapped FG/NG/FG from that of gapless FG/NG/FG structures. Also perfect charge giant magnetoresistance is observed in a range of EFN−mv2F

  8. Magnetic excitations in transition-metal ferromagnets

    International Nuclear Information System (INIS)

    Uemura, Y.J.

    1984-01-01

    A review is given on current neutron scattering experiments at Brookhaven National Laboratory on transition-metal ferromagnets Ni, Fe, Pd 2 MnSn and MnSi. The scattering intensity in constant-energy scans, observed above T/sub c/ in all of these materials, exhibited a clear peak at finite momentum transfers. Using a simple scattering function with double-Lorentzian shape, we demonstrate that this peak is a manifestation of simple diffusive spin fluctuations. Experimental results of several parameters are compared in the context of localized-moment and itinerant-electron pictures. The ratio of spin wave stiffness constant D and transition temperature kT/sub c/ is shown to be a good yardstick for the degree of itinerancy of d-electrons

  9. ''Soft'' Anharmonic Vortex Glass in Ferromagnetic Superconductors

    International Nuclear Information System (INIS)

    Radzihovsky, Leo; Ettouhami, A. M.; Saunders, Karl; Toner, John

    2001-01-01

    Ferromagnetic order in superconductors can induce a spontaneous vortex (SV) state. For external field H=0 , rotational symmetry guarantees a vanishing tilt modulus of the SV solid, leading to drastically different behavior than that of a conventional, external-field-induced vortex solid. We show that quenched disorder and anharmoinc effects lead to elastic moduli that are wave-vector dependent out to arbitrarily long length scales, and non-Hookean elasticity. The latter implies that for weak external fields H , the magnetic induction scales universally like B(H)∼B(0)+cH α , with α∼0.72 . For weak disorder, we predict the SV solid is a topologically ordered glass, in the ''columnar elastic glass'' universality class

  10. Room temperature ferromagnetic gadolinium silicide nanoparticles

    Science.gov (United States)

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  11. Muon spin relaxation in ferromagnets. Pt. 1

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Karlsson, E.B.

    1991-04-01

    Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)

  12. Quantum stability for the Heisenberg ferromagnet

    International Nuclear Information System (INIS)

    Bargheer, Till; Beisert, Niklas; Gromov, Nikolay

    2008-01-01

    Highly spinning classical strings on RxS 3 are described by the Landau-Lifshitz model or equivalently by the Heisenberg ferromagnet in the thermodynamic limit. The spectrum of this model can be given in terms of spectral curves. However, it is a priori not clear whether any given admissible spectral curve can actually be realized as a solution to the discrete Bethe equations, a property which can be referred to as stability. In order to study the issue of stability, we find and explore the general two-cut solution or elliptic curve. It turns out that the moduli space of this elliptic curve shows a surprisingly rich structure. We present the various cases with illustrations and thus gain some insight into the features of multi-cut solutions. It appears that all admissible spectral curves are indeed stable if the branch cuts are positioned in a suitable, non-trivial fashion.

  13. Critical behavior of ferromagnetic Ising thin films

    International Nuclear Information System (INIS)

    Cossio, P.; Mazo-Zuluaga, J.; Restrepo, J.

    2006-01-01

    In the present work, we study the magnetic properties and critical behavior of simple cubic ferromagnetic thin films. We simulate LxLxd films with semifree boundary conditions on the basis of the Monte Carlo method and the Ising model with nearest neighbor interactions. A Metropolis dynamics was implemented to carry out the energy minimization process. For different film thickness, in the nanometer range, we compute the temperature dependence of the magnetization, the magnetic susceptibility and the fourth order Binder's cumulant. Bulk and surface contributions of these quantities are computed in a differentiated fashion. Additionally, according to finite size scaling theory, we estimate the critical exponents for the correlation length, magnetic susceptibility, and magnetization. Results reveal a strong dependence of critical temperature and critical exponents on the film thickness. The obtained critical exponents are finally compared to those reported in literature for thin films

  14. Surface effects in the Potts ferromagnet

    International Nuclear Information System (INIS)

    Tsallis, C.; Sarmento, E.F.

    1984-01-01

    Within a real space renormalisation group framework, the phase diagram of a semi-infinite cubic-lattice q-state Potts ferromagnet is studied, in which the free surface coupling constant J sub(S) = (1+Δ)J sub(B) might be different from the bulk one J sub(B). The starting value Δ sub(c) (q) is calculated above which surface order is possible even if bulk order is absent. Our results can be alternatively seen as approximate for the simple cubic lattice (as a matter of fact, the Ising value Δ sub(c) (2) obtained approaches the series result better than any other theory known consequently Δ sub(c) (q) is expected to be quite satisfactory even for q not= 2) or as exact for a well defined diamond-like hierarchical lattice. In the q →0 limit, Δ sub(c) diverges as 1/√q. (Author) [pt

  15. Heat exchanges in a quenched ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Corberi, Federico; Zannetti, Marco [Dipartimento di Fisica ' E.R. Caianiello' , and CNISM, Unita di Salerno, Universita di Salerno, via Ponte don Melillo, I-84084 Fisciano, SA (Italy); Gonnella, Giuseppe; Piscitelli, Antonio [Dipartimento di Fisica, Universita di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126 Bari (Italy)

    2013-02-01

    The off-equilibrium probability distribution of the heat exchanged by a ferromagnet in a time interval after a quench below the critical point is calculated analytically in the large-N limit. The distribution is characterized by a singular threshold Q{sub C} < 0, below which a macroscopic fraction of heat is released by the k = 0 Fourier component of the order parameter. The mathematical structure producing this phenomenon is the same responsible for the order parameter condensation in the equilibrium low temperature phase. The heat exchanged by the individual Fourier modes follows a non-trivial pattern, with the unstable modes at small wave vectors warming up the modes around a characteristic finite wave vector k{sub M}. Two internal temperatures, associated with the k = 0 and k = k{sub M} modes, rule the heat currents through a fluctuation relation similar to the one for stationary systems in contact with two thermal reservoirs. (fast track communication)

  16. Microparticle content of platelet concentrates is predicted by donor microparticles and is altered by production methods and stress.

    Science.gov (United States)

    Maurer-Spurej, Elisabeth; Larsen, Rune; Labrie, Audrey; Heaton, Andrew; Chipperfield, Kate

    2016-08-01

    In circulation, shedding of microparticles from a variety of viable cells can be triggered by pathological activation of inflammatory processes, by activation of coagulation or complement systems, or by physical stress. Elevated microparticle content (MPC) in donor blood might therefore indicate a clinical condition of the donor which, upon transfusion, might affect the recipient. In blood products, elevated MPC might also represent product stress. Surprisingly, the MPC in blood collected from normal blood donors is highly variable, which raises the question whether donor microparticles are present in-vivo and transfer into the final blood component, and how production methods and post-production processing might affect the MPC. We measured MPC using ThromboLUX in (a) platelet-rich plasma (PRP) of 54 apheresis donors and the corresponding apheresis products, (b) 651 apheresis and 646 pooled platelet concentrates (PCs) with plasma and 414 apheresis PCs in platelet additive solution (PAS), and (c) apheresis PCs before and after transportation, gamma irradiation, and pathogen inactivation (N = 8, 7, and 12 respectively). ThromboLUX-measured MPC in donor PRP and their corresponding apheresis PC samples were highly correlated (r = 0.82, P = .001). The average MPC in pooled PC was slightly lower than that in apheresis PC and substantially lower in apheresis PC stored with PAS rather than plasma. Mirasol Pathogen Reduction treatment significantly increased MPC with age. Thus, MPC measured in donor samples might be a useful predictor of product stability, especially if post-production processes are necessary. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Preparation and evaluation of microparticles from thiolated polymers via air jet milling.

    Science.gov (United States)

    Hoyer, Herbert; Schlocker, Wolfgang; Krum, Kafedjiiski; Bernkop-Schnürch, Andreas

    2008-06-01

    Microparticles were formulated by incorporation of the model protein horseradish peroxidase in (thiolated) chitosan and (thiolated) poly(acrylic acid) via co-precipitation. Dried protein/polymer complexes were ground with an air jet mill and resulting particles were evaluated regarding size distribution, shape, zeta potential, drug load, protein activity, release pattern, swelling behaviour and cytotoxicity. The mean particle size distribution was 0.5-12 microm. Non-porous microparticles with a smooth surface were prepared. Microparticles from (thiolated) chitosan had a positive charge whereas microparticles from (thiolated) poly(acrylic acid) were negatively charged. The maximum protein load for microparticles based on chitosan, chitosan-glutathione (Ch-GSH), poly(acrylic acid) (PAA) and for poly(acrylic acid)-glutathione (PAA-GSH) was 7+/-1%, 11+/-2%, 4+/-0.2% and 7+/-2%, respectively. The release profile of all microparticles followed a first order release kinetic. Chitosan (0.5mg), Ch-GSH, PAA and PAA-GSH particles showed a 31.4-, 13.8-, 54.2- and a 42.2-fold increase in weight, respectively. No significant cytotoxicity could be found. Thiolated microparticles prepared by jet milling technique were shown to be stable and to have controlled drug release characteristics. After further optimizations the preparation method described here might be a useful tool for the production of protein loaded drug delivery systems.

  18. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    Science.gov (United States)

    Xiong, Xiaopeng; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju

    2013-08-01

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  19. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    International Nuclear Information System (INIS)

    Xiong, Xiaopeng; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju

    2013-01-01

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30–70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials

  20. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process.

    Science.gov (United States)

    Hosseini, Seyede Marzieh; Hosseini, Hedayat; Mohammadifar, Mohammad Amin; Mortazavian, Amir Mohammad; Mohammadi, Abdorreza; Khosravi-Darani, Kianoosh; Shojaee-Aliabadi, Saeedeh; Dehghan, Solmaz; Khaksar, Ramin

    2013-11-01

    In this study, an o/w/o multiple emulsion/ionic gelation method was developed for production of alginate microparticles loaded with Satureja hortensis essential oil (SEO). It was found that the essential oil concentration has significant influence on encapsulation efficiency (EE), loading capacity (LC) and size of microparticles. The values of EE, LC and particle mean diameter were about 52-66%, 20-26%, and 47-117 μm, respectively, when the initial SEO content was 1-3% (v/v) .The essential oil-loaded microparticles were porous, as displayed by scanning electron micrograph. The presence of SEO in alginate microparticles was confirmed by Fourier transform-infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) analyses. SEO-loaded microparticles showed good antioxidant (with DPPH radical scavenging activity of 40.7-73.5%) and antibacterial properties; this effect was greatly improved when the concentration of SEO was 3% (v/v). S. aureus was found to be the most sensitive bacterium to SEO and showed a highest inhibition zone of 304.37 mm(2) in the microparticles incorporated with 3% (v/v) SEO. In vitro release studies showed an initial burst release and followed by a slow release. In addition, the release of SEO from the microparticles followed Fickian diffusion with acceptable release. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xiaopeng, E-mail: xpxiong@xmu.edu.cn; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju [Xiamen University, Department of Materials Science and Engineering, College of Materials (China)

    2013-08-15

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  2. Preparation of donut-shaped starch microparticles by aqueous-alcoholic treatment.

    Science.gov (United States)

    Farrag, Yousof; Sabando, Constanza; Rodríguez-Llamazares, Saddys; Bouza, Rebeca; Rojas, Claudio; Barral, Luís

    2018-04-25

    A simple method for producing donut-shaped starch microparticles by adding ethanol to a heated aqueous slurry of corn starch is presented. The obtained microparticles were analysed by SEM, XRD and DSC. The average size of microparticles was 14.1 ± 0.3 μm with holes of an average size of 4.6 ± 0.2 μm. The crystalline arrangement of the microparticles was of a V-type single helix. The change in crystallinity from A-type of the starch granules to a more open structure, where water molecules could penetrate easier within the microparticles, substantially increased their solubility and swelling power. The microparticles exhibited a higher gelatinization temperature and a lower gelatinization enthalpy than did the starch granules. The donut-shaped microparticles were stable for more than 18 months and can be used as a carrier of an active compound or as a filler in bioplastics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Heat exchange between a microparticle and plasma. Contribution of charge transfer processes

    International Nuclear Information System (INIS)

    Uglov, A.A.; Gnedovets, A.G.

    1983-01-01

    Heat- and mass-transfer in interaction of a microparticle with a dense plasma have been considered analytically. At that, calculation methods developed as applied to probe diagnostics of slightly ionized plasma are also used in the case of relatively high degrees of ionization, at which heat flows of plasma charged particles Qe and Qi become comparable with molecular ones. High efficiency of energy transfer during electron and ion collisions with a microparticle is due to the following: 1) effective cross section of ion collision with a microparticle, which acquires in a quasineutral plasma the potential phisub(f) < 0, surpasses the geometric one; the maximum contribution of electron and ion constituent is achieved when the cross section ion collisions with a microparticle is linearly connected with its potential, 2) with a charged microparticle electrons from distribution function ''tail'' collide, their energy exceeds potential barrier near the surface and, consequently, the mean heat energy; 3) besides the energy of a microparticle thermal movement during electron recombination and ion neutralization on its surface the heat Qsub(e) and Qsub(i), which considerably exceed the heat of molecular adsorption and mean heat energy of plasma particles at kT approximately 1 eV, are transmitted to the microparticle

  4. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease

    Science.gov (United States)

    van Beers, Eduard J.; Schaap, Marianne C.L.; Berckmans, René J.; Nieuwland, Rienk; Sturk, Augueste; van Doormaal, Frederiek F.; Meijers, Joost C.M.; Biemond, Bart J.

    2009-01-01

    Background Sickle cell disease is characterized by a hypercoagulable state as a result of multiple factors, including chronic hemolysis and circulating cell-derived microparticles. There is still no consensus on the cellular origin of such microparticles and the exact mechanism by which they may enhance coagulation activation in sickle cell disease. Design and Methods In the present study, we analyzed the origin of circulating microparticles and their procoagulant phenotype during painful crises and steady state in 25 consecutive patients with sickle cell disease. Results The majority of microparticles originated from platelets (GPIIIa,CD61) and erythrocytes (glycophorin A,CD235), and their numbers did not differ significantly between crisis and steady state. Erythrocyte-derived microparticles strongly correlated with plasma levels of markers of hemolysis, i.e. hemoglobin (r=−0.58, pmicroparticles (r=0.63, p0.05). The extent of factor XI inhibition was associated with erythrocyte-derived microparticles (r=0.50, p=0.023). Conclusions We conclude that the procoagulant state in sickle cell disease is partially explained by the factor XI-dependent procoagulant properties of circulating erythrocyte-derived microparticles. PMID:19815831

  5. Proteomic Analysis of Serum Opsonins Impacting Biodistribution and Cellular Association of Porous Silicon Microparticles

    Science.gov (United States)

    Serda, Rita E.; Blanco, Elvin; Mack, Aaron; Stafford, Susan J.; Amra, Sarah; Li, Qingpo; van de Ven, Anne L.; Tanaka, Takemi; Torchilin, Vladimir P.; Wiktorowicz, John E.; Ferrari, Mauro

    2014-01-01

    Mass transport of drug delivery vehicles is guided by particle properties, such as shape, composition and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light chain variable region, fibrinogen, and complement component 1 compared to their anionic counterparts. The anionic-surface favored equal accumulation of microparticles in the liver and spleen, while cationic-surfaces favored preferential accumulation in the spleen. Immunohistochemistry supported macrophage internalization of both anionic and cationic silicon microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution. PMID:21303614

  6. Neutron depolarization study of static and dynamic magnetic properties of ferromagnets

    International Nuclear Information System (INIS)

    Stuesser, N.

    1986-01-01

    In this thesis neutron depolarization experiments are performed on amorphous and crystalline ferromagnetic materials. The subjects studied are concerned with 'domain structure in magnetically weak uniaxial amorphous ferromagnetic ribbons', 'static critical behaviour at the ferromagnetic-paramagnetic phase transition', 'small magnetic anisotropy in nickel near T c ', and 'magnetization reversal in conducting ferromagnets'. 87 refs.; 37 figs.; 3 tabs

  7. Single-magnon tunneling through a ferromagnetic nanochain

    International Nuclear Information System (INIS)

    Petrov, E.G.; Ostrovsky, V.

    2010-01-01

    Magnon transmission between ferromagnetic contacts coupled by a linear ferromagnetic chain is studied at the condition when the chain exhibits itself as a tunnel magnon transmitter. It is shown that dependently on magnon energy at the chain, a distant intercontact magnon transmission occurs either in resonant or off-resonant tunneling regime. In the first case, a transmission function depends weakly on the number of chain sites whereas at off-resonant regime the same function manifests an exponential drop with the chain length. Change of direction of external magnetic field in one of ferromagnetic contacts blocks a tunnel transmission of magnon.

  8. Ferromagnetic properties of Mn-doped AlN

    International Nuclear Information System (INIS)

    Li, H.; Bao, H.Q.; Song, B.; Wang, W.J.; Chen, X.L.; He, L.J.; Yuan, W.X.

    2008-01-01

    Mn-doped AlN polycrystalline powders with a wurtzite structure were synthesized by solid-state reactions. A red-orange band at 600 nm, due to Mn 3+ incorporated into the AlN lattice, is observed in the photoluminescence (PL) spectrum at room temperature (RT). Magnetic measurements show the samples possess hysteresis loops up to 300 K, indicating that the obtained powders are ferromagnetic at around RT. The Mn concentration-induced RT ferromagnetism is less than 1 at%. Our results confirm that the RT ferromagnetism can be realized in Mn-doped AlN

  9. Flux penetration in a ferromagnetic/superconducting bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Adamus, Z.; Cieplak, M.Z.; Abal' Oshev, A. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA/DSM/DRECAM, Laboratoire des Solides Irradies, F-91191 Gif Sur Yvette, (France); Konczykowski, M. [Ecole Polytech, CNRS - UMR 7642, F-91128 Palaiseau, (France); Cheng, X.M.; Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)

    2007-07-01

    An array of miniature Hall sensors is used to study the magnetic flux penetration in a ferromagnetic/superconducting bilayer consisting of Nb as a superconducting layer and Co/Pt multilayer with perpendicular magnetic anisotropy as a ferromagnetic layer, separated by an amorphous Si layer to avoid the proximity effect. It is found that the magnetic domains in the ferromagnetic layer create a large edge barrier in the superconducting layer which delays flux penetration. The smooth flux profiles observed in the absence of magnetic pinning change into terraced profiles in the presence of domains. (authors)

  10. The Young's Modulus, Fracture Stress, and Fracture Strain of Gellan Hydrogels Filled with Whey Protein Microparticles.

    Science.gov (United States)

    Lam, Cherry Wing Yu; Ikeda, Shinya

    2017-05-01

    Texture modifying abilities of whey protein microparticles are expected to be dependent on pH during heat-induced aggregation of whey protein in the microparticulation process. Therefore, whey protein microparticles were prepared at either pH 5.5 or 6.8 and their effects on small and large deformation properties of gellan gels containing whey protein microparticles as fillers were investigated. The majority of whey protein microparticles had diameters around 2 μm. Atomic force microscopy images showed that whey protein microparticles prepared at pH 6.8 partially collapsed and flatted by air-drying, while those prepared at pH 5.5 did not. The Young's modulus of filled gels adjusted to pH 5.5 decreased by the addition of whey protein microparticles, while those of filled gels adjusted to pH 6.8 increased with increasing volume fraction of filler particles. These results suggest that filler particles were weakly bonded to gel matrices at pH 5.5 but strongly at pH 6.8. Whey protein microparticles prepared at pH 5.5 showed more enhanced increases in the Young's modulus than those prepared at pH 6.8 at volume fractions between 0.2 and 0.4, indicating that microparticles prepared at pH 5.5 were mechanically stronger. The fracture stress of filled gels showed trends somewhat similar to those of the Young's modulus, while their fracture strains decreased by the addition of whey protein microparticles in all examined conditions, indicating that the primary effect of these filler particles was to enhance the brittleness of filled gels. © 2017 Institute of Food Technologists®.

  11. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    Science.gov (United States)

    Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina

    2016-01-01

    Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions

  12. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    Directory of Open Access Journals (Sweden)

    Gemma Chiva-Blanch

    Full Text Available Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke.Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls.Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions.Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger

  13. Review Article: Fabricated Microparticles: An Innovative Method to Minimize the Side Effects of NSAIDs in Arthritis.

    Science.gov (United States)

    Abadi, Shaivad Shabee Hulhasan; Moin, Afrasim; Veerabhadrappa, Gangadharappa Hosahalli

    2016-01-01

    Microparticles are polymeric bodies ranging 1-1000 µm that constitute a variety of forms such as microcapsules, microspheres, microcages, microshells, microrods, biosensors microparticles, radiolabeled microparticles, and so forth. This review focuses on general microparticles, mainly microcapsules and microspheres. Nonsteriodal anti-inflammatory drugs (NSAIDs) are one of the mostcommonly prescribed medications in the world. Most of the NSAIDs available have severe side effects. With increased awareness of NSAID-induced gastrointestinal (GI) side effects, safety has become a priority in treatment of arthritis and other inflammatory diseases with NSAIDs. A trend in NSAID development has been to improve therapeutic efficacy while reducing the severity of GI side effects by altering dosage through modified release to optimize drug delivery. One such approach is the use of fabricated microparticles such as microcapsules and microspheres as carriers of drugs. Microparticles provide delivery of macromolecules and micromolecules via different routes and effectively control the release profile of such drugs. Microcapsules and microspheres are compatible with most natural and synthetic polymers and can be used for several routes of administration, including parenteral, oral, nasal, intra-ocular, topical, and the like. Because of greater stability and multiple manufacturing techniques, microspheres and microcapsules are preferred as drug carriers over other colloidal drug delivery systems. Microparticles provide effective protection of the encapsulated agent against degradation by enzymatic activities, controlled and confined delivery of drugs from a few hours to months, and ingenious administration compared to alternative forms of controlled-release parenteral dosages, such as macro-sized implants. This comprehensive overview of fabricated microparticles describes microencapsulation technologies to produce microparticles for targeted therapy of arthritis and other

  14. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    Science.gov (United States)

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  15. In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications.

    Science.gov (United States)

    Mori, Michela; Almeida, Patrick V; Cola, Michela; Anselmi, Giulia; Mäkilä, Ermei; Correia, Alexandra; Salonen, Jarno; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2014-11-01

    The wound healing stands as very complex and dynamic process, aiming the re-establishment of the damaged tissue's integrity and functionality. Thus, there is an emerging need for developing biopolymer-based composites capable of actively promoting cellular proliferation and reconstituting the extracellular matrix. The aims of the present work were to prepare and characterize biopolymer-functionalized porous silicon (PSi) microparticles, resulting in the development of drug delivery microsystems for future applications in wound healing. Thermally hydrocarbonized PSi (THCPSi) microparticles were coated with both chitosan and a mixture of chondroitin sulfate/hyaluronic acid, and subsequently loaded with two antibacterial model drugs, vancomycin and resveratrol. The biopolymer coating, drug loading degree and drug release behavior of the modified PSi microparticles were evaluated in vitro. The results showed that both the biopolymer coating and drug loading of the THCPSi microparticles were successfully achieved. In addition, a sustained release was observed for both the drugs tested. The viability and proliferation profiles of a fibroblast cell line exposed to the modified THCPSi microparticles and the subsequent reactive oxygen species (ROS) production were also evaluated. The cytotoxicity and proliferation results demonstrated less toxicity for the biopolymer-coated THCPSi microparticles at different concentrations and time points comparatively to the uncoated counterparts. The ROS production by the fibroblasts exposed to both uncoated and biopolymer-coated PSi microparticles showed that the modified PSi microparticles did not induce significant ROS production at the concentrations tested. Overall, the biopolymer-based PSi microparticles developed in this study are promising platforms for wound healing applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Salbutamol sulphate-ethylcellulose microparticles: formulation and in-vitro evaluation with emphasis on mathematical approaches

    Directory of Open Access Journals (Sweden)

    G Murtaza

    2009-10-01

    Full Text Available "n "nBackground and the purpose of the study: This study reports the laboratory optimization for the preparation of salbutamol sulphate-ethylcellulose microparticles by a non-solvent addition coacervation technique through adjustment of the ratio of salbutamol sulphate to ethylcellulose. The variation of drug release between the microparticles and tabletted microparticles was also investigated. "nMethods: In vitro release profiles of developed microparticles and tabletted microparticles were studied using USP XXIV dissolution apparatus I and II, respectively, in 450 ml double distilled water at 50 rpm maintained at 37°C. "nResults: White microparticles with no definite shape having good entrapment efficiency (96.68 to 97.83% and production yield (97.48 ± 1.21 to 98.35 ± 1.08% were obtained. In this investigation, initial burst effect was observed in the drug release behavior. The rate of drug release from microparticles decreased as the concentration of polyisobutylene was increased from 6% to 12% during microencapsulation. The release pattern of tabletted microparticles was affected significantly (p < 0.05 by the addition of hydroxy propyl methyl cellulose (HPMC as excepient and insignificantly (p > 0.05 by the type of dissolution media and stirring speed. Tabletted microparticles showed good stability and reproducibility. Ethylcellulose was found to be compatible with salbutamol sulphate. The drug release from all formulations was best fit to Higuchi's equation and the mechanism of drug release was anomalous diffusion from all formulations. "nConclusion: The results of this study suggest that by using ethylcellulose it is possible to design a single-unit, sustained-release oral dosage form of salbutamol sulphate for indication of twice a day.

  17. Effects of Rashba and Dresselhaus spin-orbit couplings on itinerant ferromagnetism

    Science.gov (United States)

    Liu, Mengnan; Xu, Liping; Wan, Yong; Yan, Xu

    2018-02-01

    Based on Stoner model for itinerant ferromagnet, effects of spin-orbit coupling (SOC) on ferromagnetism were investigated at zero temperature. It was found that SOC will enhance the critical ferromagnetic exchange interaction for spontaneous magnetization, and then suppress ferromagnetism. In case of the coexistence of Rashba and Dresselhaus SOCs, the mixture of the two spin-orbit couplings showed stronger suppressed effect on ferromagnetism than only one kind of SOC alone. When the two SOCs mixed with equal magnitude, ferromagnetism in itinerant ferromagnet was suppressed to minimum.

  18. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Directory of Open Access Journals (Sweden)

    Julie Sahler

    Full Text Available Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ. In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles

  19. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    Science.gov (United States)

    Sahler, Julie; Woeller, Collynn F; Phipps, Richard P

    2014-01-01

    Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte

  20. Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression

    Directory of Open Access Journals (Sweden)

    Keshav Raj Paudel

    2016-01-01

    Full Text Available The levels of circulating microparticles (MPs are raised in various cardiovascular diseases. Their increased level in plasma is regarded as a biomarker of alteration in vascular function. The prominent MPs present in blood are endothelial microparticles (EMPs described as complex submicron (0.1 to 1.0 μm vesicles like structure, released in response to endothelium cell activation or apoptosis. EMPs possess both physiological and pathological effects and may promote oxidative stress and vascular inflammation. EMPs release is triggered by inducer like angiotensin II, lipopolysaccharide, and hydrogen peroxide leading to the progression of atherosclerosis. However, there are multiple physiological pathways for EMPs generation like NADPH oxidase derived endothelial ROS formation, Rho kinase pathway, and mitogen-activated protein kinases. Endothelial dysfunction is a key initiating event in atherosclerotic plaque formation. Atheroemboli, resulting from ruptured carotid plaques, is a major cause of stroke. Increasing evidence suggests that EMPs play an important role in the pathogenesis of cardiovascular disease, acting as a marker of damage, either exacerbating disease progression or triggering a repair response. In this regard, it has been suggested that EMPs have the potential to act as biomarkers of disease status. This review aims to provide updated information of EMPs in relation to atherosclerosis pathogenesis.

  1. Composite microparticles of halloysite clay nanotubes bound by calcium carbonate.

    Science.gov (United States)

    Jin, Yi; Yendluri, Raghuvara; Chen, Bin; Wang, Jingbo; Lvov, Yuri

    2016-03-15

    Natural halloysite clay nanotubes with 15 nm inner and 75 nm outer diameters have been used as vehicles for sustained release of drugs in composite hollow microparticles "glued" with CaCO3. We used a layer-by layer assembly accomplished alginate binding with Ca(2+) followed by CO2 bubbling to prepare the composite microspheres of CaCO3 and polyelectrolytes (PE) modified halloysite nanotubes (HNTs-PE2/CaCO3) with the diameter of about 5-10 μm. These microparticles have empty spherical structure and abundant pore distributions with maxima at 2.5, 3.9, 6.0 and 13.3 nm, and higher surface area of 82.3 m(2) g(-1) as characterized by SEM and BET test. We loaded drugs in these micro-nano carriers of tight piles of halloysite nanotube with end clogged with CaCO3. The sustained release of Nifedipine drug from HNTs-PE2/CaCO3 composite microspheres was slower than for pristine halloysite nanotubes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. New alginic acid–atenolol microparticles for inhalatory drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Ceschan, Nazareth Eliana; Bucalá, Verónica [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca (Argentina); Ramírez-Rigo, María Verónica, E-mail: vrrigo@plapiqui.edu.ar [Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, 8000 Bahía Blanca (Argentina); Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca (Argentina)

    2014-08-01

    The inhalatory route allows drug delivery for local or systemic treatments in a noninvasively way. The current tendency of inhalable systems is oriented to dry powder inhalers due to their advantages in terms of stability and efficiency. In this work, microparticles of atenolol (AT, basic antihypertensive drug) and alginic acid (AA, acid biocompatible polyelectrolyte) were obtained by spray drying. Several formulations, varying the relative composition AT/AA and the total solid content of the atomized dispersions, were tested. The powders were characterized by: Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry and Powder X-ray Diffraction, while also the following properties were measured: drug load efficiency, flow properties, particles size and density, moisture content, hygroscopicity and morphology. The ionic interaction between AA and AT was demonstrated, then the new chemical entity could improve the drug targeting to the respiratory membrane and increase its time residence due to the mucoadhesive properties of the AA polymeric chains. Powders exhibited high load efficiencies, low moisture contents, adequate mean aerodynamic diameters and high cumulative fraction of respirable particles (lower than 10 μm). - Highlights: • Novel particulate material to target atenolol to the respiratory membrane was developed. • Crumbled microparticles were obtained by spray drying of alginic–atenolol dispersions. • Ionic interaction between alginic acid and atenolol was demonstrated in the product. • Amorphous solids with low moisture content and high load efficiency were produced. • Relationships between the feed formulation and the product characteristics were found.

  3. Relaxation of microparticles exposed to hydrodynamic forces in microfluidic conduits.

    Science.gov (United States)

    Janča, Josef; Halabalová, Věra; Polášek, Vladimír; Vašina, Martin; Menshikova, Anastasia Yu

    2011-02-01

    The behavior of microparticles exposed to gravitational and lift forces and to the velocity gradient in flow velocity profile formed in microfluidic conduits is studied from the viewpoint of the transient period (the relaxation) between the moment at which a particle starts to be transported by the hydrodynamic flow and the time at which it reaches an equilibrium position, characterized by a balance of all active forces. The theoretical model allowing the calculation of the relaxation time is proposed. The numerical calculus based on the proposed model is compared with the experimental data obtained under different experimental conditions, namely, for different lengths of microfluidic channels, different average linear velocities of the carrier liquid, and different sizes and densities of the particles used in the study. The results are important for the optimization of microfluidic separation units such as microthermal field-flow fractionation channels in which the separation or manipulation of the microparticles of various origin, synthetic, natural, biological, etc., is performed under similar experimental conditions but by applying an additional thermodynamic force.

  4. Micro-Particles Motion in an Evaporating Droplet

    International Nuclear Information System (INIS)

    Jung, Jung Yeul; Yoo, Jung Yul; Kim, Young Won

    2007-01-01

    Nano-particles (on the order of 1 to 100 nm) contained within the droplet are moved by liquid flow and stacked at the contact line. The self-pinned contact line under the evaporating droplet is very interesting in the field of patterning and separation of particles and biocells. Models accounting for the nano-particles' flow and deposit patterns have been reported and verified by various experiments. Here, we report for the first time a phenomenon where micro-particles (on the order of 1 μm) in the colloid droplet flow to the center of droplet. There are three modes of fluid and particle flow in the evaporating droplet. In the first mode, a self-pinned contact line is maintained and the fluid and micro/nano-particles flow to the contact line. In the second mode, micro/nano-particles self-assemble at the near contact line, as reported by Jung and Kwak. In the final mode, only micro-particles are adverted to the center of the droplet due to movement of the contact line

  5. Optical binding of two microparticles levitated in vacuum

    Science.gov (United States)

    Arita, Yoshihiko; Wright, Ewan M.; Dholakia, Kishan

    2017-04-01

    Optical binding refers to an optically mediated inter-particle interaction that creates new equilibrium positions for closely spaced particles [1-5]. Optical binding of mesoscopic particles levitated in vacuum can pave the way towards the realisation of a large scale quantum bound array in cavity-optomechanics [6-9]. Recently we have demonstrated trapping and rotation of two mesoscopic particles in vacuum using a spatial-light-modulator-based approach to trap more than one particle, induce controlled rotation of individual particles, and mediate interparticle separation [10]. By trapping and rotating two vaterite particles, we observe intensity modulation of the scattered light at the sum and difference frequencies with respect to the individual rotation rates. This first demonstration of optical interference between two microparticles in vacuum has lead to a platform to explore optical binding. Here we demonstrate for the first time optically bound two microparticles mediated by light scattering in vacuum. We investigate autocorrelations between the two normal modes of oscillation, which are determined by the centre-of-mass and the relative positions of the two-particle system. In situ determination of the optical restoring force acting on the bound particles are based on measurement of the oscillation frequencies of the autocorrelation functions of the two normal modes, thereby providing a powerful and original platform to explore multiparticle entanglement in cavity-optomechanics.

  6. A stochastic DNA walker that traverses a microparticle surface

    Science.gov (United States)

    Jung, C.; Allen, P. B.; Ellington, A. D.

    2016-02-01

    Molecular machines have previously been designed that are propelled by DNAzymes, protein enzymes and strand displacement. These engineered machines typically move along precisely defined one- and two-dimensional tracks. Here, we report a DNA walker that uses hybridization to drive walking on DNA-coated microparticle surfaces. Through purely DNA:DNA hybridization reactions, the nanoscale movements of the walker can lead to the generation of a single-stranded product and the subsequent immobilization of fluorescent labels on the microparticle surface. This suggests that the system could be of use in analytical and diagnostic applications, similar to how strand exchange reactions in solution have been used for transducing and quantifying signals from isothermal molecular amplification assays. The walking behaviour is robust and the walker can take more than 30 continuous steps. The traversal of an unprogrammed, inhomogeneous surface is also due entirely to autonomous decisions made by the walker, behaviour analogous to amorphous chemical reaction network computations, which have been shown to lead to pattern formation.

  7. Acoustic bubble enhanced pinched flow fractionation for microparticle separation

    International Nuclear Information System (INIS)

    Zhou, Ran; Wang, Cheng

    2015-01-01

    Pinched flow fractionation is a simple method for separating micron-sized particles by size, but has certain intrinsic limitations, e.g. requirement of a pinched segment similar to particle size and limited separation distance. In this paper, we developed an acoustic bubble enhanced pinched flow fractionation (PFF) method for microparticle separation. The proposed technique utilized microbubble streaming flows to overcome the limitations of conventional PFF. Our device has demonstrated separation of different sized microparticles (diameters 10 and 2 μm) with a larger pinched segment (60 μm) and at different buffer/particle solution flow rate ratios (5–25). The separation distances between particles are larger (as much as twice as large) than those achieved with conventional PFF. In addition, the separation position and distance can be adjusted by changing the driving voltage. The robust performance is due to the unique features of the flow field inside the pinched segment. We investigated several factors, including flow rate ratio, total flow rate and driving voltage, that affect the separation performance. (paper)

  8. Delivery Systems for Biopharmaceuticals. Part I: Nanoparticles and Microparticles.

    Science.gov (United States)

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Pharmaceutical biotechnology has been showing therapeutic success never achieved with conventional drug molecules. Therefore, biopharmaceutical products are currently well-established in clinic and the development of new ones is expected. These products comprise mainly therapeutic proteins, although nucleic acids and cells are also included. However, according to their sensitive molecular structures, the efficient delivery of biopharmaceuticals is challenging. Several delivery systems (e.g. microparticles and nanoparticles) composed of different materials (e.g. polymers and lipids) have been explored and demonstrated excellent outcomes, such as: high cellular transfection efficiency for nucleic acids, cell targeting, increased proteins and peptides bioavailability, improved immune response in vaccination, and viability maintenance of microencapsulated cells. Nonetheless, important issues need to be addressed before they reach clinics. For example, more in vivo studies in animals, accessing the toxicity potential and predicting in vivo failure of these delivery systems are required. This is the Part I of two review articles, which presents the state of the art of delivery systems for biopharmaceuticals. Part I deals with microparticles and polymeric and lipid nanoparticles.

  9. Circulating Red Cell–derived Microparticles in Human Malaria

    Science.gov (United States)

    Nantakomol, Duangdao; Dondorp, Arjen M.; Krudsood, Srivicha; Udomsangpetch, Rachanee; Pattanapanyasat, Kovit; Combes, Valery; Grau, Georges E.; White, Nicholas J.; Viriyavejakul, Parnpen; Day, Nicholas P.J.

    2011-01-01

    In patients with falciparum malaria, plasma concentrations of cell-derived microparticles correlate with disease severity. Using flow cytometry, we quantified red blood cell–derived microparticles (RMPs) in patients with malaria and identified the source and the factors associated with production. RMP concentrations were increased in patients with Plasmodium falciparum (n = 29; median, 457 RMPs/μL [range, 13–4,342 RMPs/μL]), Plasmodium vivax (n = 5; median, 409 RMPs/μL [range, 281–503/μL]), and Plasmodium malariae (n = 2; median, 163 RMPs/μL [range, 127–200 RMPs/μL]) compared with those in healthy subjects (n = 11; median, 8 RMPs/μL [range, 3–166 RMPs/μL]; P = .01). RMP concentrations were highest in patients with severe falciparum malaria (P = .01). Parasitized red cells produced >10 times more RMPs than did unparasitized cells, but the overall majority of RMPs still derived from uninfected red blood cells (URBCs). In cultures, RMP production increased as the parasites matured. Hemin and parasite products induced RMP production in URBCs, which was inhibited by N-acetylcysteine, suggesting heme-mediated oxidative stress as a pathway for the generation of RMPs. PMID:21282195

  10. Circulating red cell-derived microparticles in human malaria.

    Science.gov (United States)

    Nantakomol, Duangdao; Dondorp, Arjen M; Krudsood, Srivicha; Udomsangpetch, Rachanee; Pattanapanyasat, Kovit; Combes, Valery; Grau, Georges E; White, Nicholas J; Viriyavejakul, Parnpen; Day, Nicholas P J; Chotivanich, Kesinee

    2011-03-01

    In patients with falciparum malaria, plasma concentrations of cell-derived microparticles correlate with disease severity. Using flow cytometry, we quantified red blood cell-derived microparticles (RMPs) in patients with malaria and identified the source and the factors associated with production. RMP concentrations were increased in patients with Plasmodium falciparum (n = 29; median, 457 RMPs/μL [range, 13-4,342 RMPs/μL]), Plasmodium vivax (n = 5; median, 409 RMPs/μL [range, 281-503/μL]), and Plasmodium malariae (n = 2; median, 163 RMPs/μL [range, 127-200 RMPs/μL]) compared with those in healthy subjects (n = 11; median, 8 RMPs/μL [range, 3-166 RMPs/μL]; P = .01). RMP concentrations were highest in patients with severe falciparum malaria (P = .01). Parasitized red cells produced >10 times more RMPs than did unparasitized cells, but the overall majority of RMPs still derived from uninfected red blood cells (URBCs). In cultures, RMP production increased as the parasites matured. Hemin and parasite products induced RMP production in URBCs, which was inhibited by N-acetylcysteine, suggesting heme-mediated oxidative stress as a pathway for the generation of RMPs.

  11. Cytotoxicity assessment of porous silicon microparticles for ocular drug delivery.

    Science.gov (United States)

    Korhonen, Eveliina; Rönkkö, Seppo; Hillebrand, Satu; Riikonen, Joakim; Xu, Wujun; Järvinen, Kristiina; Lehto, Vesa-Pekka; Kauppinen, Anu

    2016-03-01

    Porous silicon (PSi) is a promising material for the delivery and sustained release of therapeutic molecules in various tissues. Due to the constant rinsing of cornea by tear solution as well as the short half-life of intravitreal drugs, the eye is an attractive target for controlled drug delivery systems, such as PSi microparticles. Inherent barriers ensure that PSi particles are retained in the eye, releasing drugs at the desired speed until they slowly break down into harmless silicic acid. Here, we have examined the in vitro cytotoxicity of positively and negatively charged thermally oxidized (TOPSi) and thermally carbonized (TCPSi) porous silicon microparticles on human corneal epithelial (HCE) and retinal pigment epithelial (ARPE-19) cells. In addition to ocular assessment under an inverted microscope, cellular viability was evaluated using the CellTiter Blue™, CellTiter Fluor™, and lactate dehydrogenase (LDH) assays. CellTiter Fluor proved to be a suitable assay but due to non-specific and interfering responses, neither CellTiter Blue nor LDH assays should be used when evaluating PSi particles. Our results suggest that the toxicity of PSi particles is concentration-dependent, but at least at concentrations less than 200μg/ml, both positively and negatively charged PSi particles are well tolerated by human corneal and retinal epithelial cells and therefore applicable for delivering drug molecules into ocular tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Four-dimensional (4D) tracking of high-temperature microparticles

    International Nuclear Information System (INIS)

    Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.

    2016-01-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  13. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    Energy Technology Data Exchange (ETDEWEB)

    Gillman, Eric D., E-mail: eric.gillman.ctr@nrl.navy.mil [National Research Council Postdoctoral Associate at the U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Amatucci, W. E. [U.S. Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-06-15

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  14. Concept of safe tank-type water cooled and moderated reactor with HTGR microparticle fuel compacts

    International Nuclear Information System (INIS)

    Gol'tsev, A.O.; Kukharkin, N.E.; Mosevitskij, I.S.; Ponomarev-Stepnoj, N.N.; Popov, S.V.; Udyanskij, Yu.N.; Tsibul'skij, V.F.

    1993-01-01

    Concept of safe tank-type water-cooled and moderated reactor on the basis of HTGR fuel microparticles which enable to avoid environment contamination with radioactive products under severe accidents, is proposed. Results of neutron-physical and thermal-physical studies of water cooled and moderated reactor with HTGR microparticle compacts are presented. Characteristics of two reactors with thermal power of 500 and 1500 MW are indicated within the concept frames. The reactor behaviour under severe accident connected with complete loss of water coolant is considered. It is shown that under such an accident the fission products release from fuel microparticles does not occur

  15. Tunneling time and Hartman effect in a ferromagnetic graphene superlattice

    Directory of Open Access Journals (Sweden)

    Farhad Sattari

    2012-03-01

    Full Text Available Using transfer-matrix and stationary phase methods, we study the tunneling time (group delay time in a ferromagnetic monolayer graphene superlattice. The system we peruse consists of a sequence of rectangular barriers and wells, which can be realized by putting a series of electronic gates on the top of ferromagnetic graphene. The magnetization in the two ferromagnetic layers is aligned parallel. We find out that the tunneling time for normal incident is independent of spin state of electron as well as the barrier height and electron Fermi energy while for the oblique incident angles the tunneling time depends on the spin state of electron and has an oscillatory behavior. Also the effect of barrier width on tunneling time is also investigated and shown that, for normal incident, the Hartman effect disappears in a ferromagnetic graphene superlattice but it appears for oblique incident angles when the x component of the electron wave vector in the barrier is imaginary.

  16. Possible mechanism for d0 ferromagnetism mediated by intrinsic defects

    KAUST Repository

    Zhang, Zhenkui

    2014-01-01

    We examine the effects of several intrinsic defects on the magnetic behavior of ZnS nanostructures using hybrid density functional theory to gain insights into d0 ferromagnetism. Previous studies have predicted that the magnetism is due to a coupling between partially filled defect states. By taking into account the electronic correlations, we find an additional splitting of the defect states in Zn vacancies and thus the possibility of gaining energy by preferential filling of hole states, establishing ferromagnetism between spin polarized S 3p holes. We demonstrate a crucial role of neutral S vacancies in promoting ferromagnetism between positively charged S vacancies. S dangling bonds on the nanoparticle surface also induce ferromagnetism. This journal is

  17. Comment on ``Ferromagnetic film on a superconducting substrate''

    Science.gov (United States)

    Sonin, E. B.

    2002-10-01

    A superconducting substrate is not able to shrink drastically domains in a ferromagnetic film, contrary to the prediction of Bulaevskii and Chudnovsky. This is shown on the basis of the exact solution for the stripe domain structure.

  18. Polarised neutron diffraction studies on weak ferromagnetism - a survey

    International Nuclear Information System (INIS)

    Radhakrishna, P.

    1982-10-01

    The physical basis of the phenomenon of weak ferromagnetism in certain antiferromagnetic insulators is briefly discussed. A survey of the contributions of polarised neutron diffraction towards the elucidation of different aspects of this field is presented

  19. Penetration of magnetic field in ferromagnetic transformer sheet

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, R; Ziolkowski, M

    1981-01-12

    The paper deals with the penetration of magnetic field in a ferromagnetic transformer sheet. The flux-density distribution is computed using Galerkin's procedure. The different boundary conditions and the nonlinear B/H characteristic is taken into account.

  20. Possible mechanism for d0 ferromagnetism mediated by intrinsic defects

    KAUST Repository

    Zhang, Zhenkui; Schwingenschlö gl, Udo; Roqan, Iman S.

    2014-01-01

    We examine the effects of several intrinsic defects on the magnetic behavior of ZnS nanostructures using hybrid density functional theory to gain insights into d0 ferromagnetism. Previous studies have predicted that the magnetism is due to a

  1. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    International Nuclear Information System (INIS)

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu

    2014-01-01

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H 2 in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between “on” and “off” states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (V Zn  + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, V Zn  + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μ B . The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism

  2. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    Science.gov (United States)

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu

    2014-01-01

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H2 in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between "on" and "off" states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (VZn + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, VZn + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μB. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.

  3. Micromagnetic simulation of exchange coupled ferri-/ferromagnetic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Oezelt, Harald, E-mail: harald.oezelt@fhstp.ac.at [Industrial Simulation, St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten (Austria); Kovacs, Alexander; Reichel, Franz; Fischbacher, Johann; Bance, Simon [Industrial Simulation, St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten (Austria); Gusenbauer, Markus [Center for Integrated Sensor Systems, Danube University Krems, Viktor Kaplan-Straße 2, A-2700 Wiener Neustadt (Austria); Schubert, Christian; Albrecht, Manfred [Institute of Physics, Chemnitz University of Technology, Reichenhainer Straße 70, D-09126 Chemnitz (Germany); Institute of Physics, University of Augsburg, Universitätsstraße 1, D-86159 Augsburg (Germany); Schrefl, Thomas [Industrial Simulation, St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten (Austria); Center for Integrated Sensor Systems, Danube University Krems, Viktor Kaplan-Straße 2, A-2700 Wiener Neustadt (Austria)

    2015-05-01

    Exchange coupled ferri-/ferromagnetic heterostructures are a possible material composition for future magnetic storage and sensor applications. In order to understand the driving mechanisms in the demagnetization process, we perform micromagnetic simulations by employing the Landau–Lifshitz–Gilbert equation. The magnetization reversal is dominated by pinning events within the amorphous ferrimagnetic layer and at the interface between the ferrimagnetic and the ferromagnetic layer. The shape of the computed magnetization reversal loop corresponds well with experimental data, if a spatial variation of the exchange coupling across the ferri-/ferromagnetic interface is assumed. - Highlights: • We present a model for exchange coupled ferri-/ferromagnetic heterostructures. • We incorporate the microstructural features of the amorphous ferrimagnet. • A distribution of interface exchange coupling is assumed to fit experimental data. • The reversal is dominated by pinning within the ferrimagnet and at the interface.

  4. Remote field eddy current testing of ferromagnetic tubes

    International Nuclear Information System (INIS)

    David, B.

    1990-01-01

    In order to test ferromagnetic tubes using internal probes, Intercontrole and the CEA have carried out theoretical and experimental works and developed a method to adapt the Remote Field Eddy Current technique which has been known and used for 30 years now. This document briefly recalls the basic principles of the Remote Field Eddy Current technique, the various steps of the works carried out and mainly describes examples of field inspection of ferromagnetic tubes and pipes [fr

  5. Targets with thin ferromagnetic layers for transient field experiments

    International Nuclear Information System (INIS)

    Gallant, J.L.; Dmytrenko, P.

    1982-01-01

    Multilayer targets containing a central layer sufficiently thin so that all recoil nuclei can traverse it and subsequently stop in a suitable cubic environment have been prepared. Such targets are required in experiments making use of a magnetic field acting on an ion moving through a ferromagnetic material. The preparation and annealing of the ferromagnetic foils (iron and gadolinium) and the fabrication of the multilayer targets are described. (orig.)

  6. Evidence of weak ferromagnetism in chromium(III) oxide particles

    International Nuclear Information System (INIS)

    Vazquez-Vazquez, Carlos; Banobre-Lopez, Manuel; Lopez-Quintela, M.A.; Hueso, L.E.; Rivas, J.

    2004-01-01

    The low temperature (4< T(K)<350) magnetic properties of chromium(III) oxide particles have been studied. A clear evidence of the presence of weak ferromagnetism is observed below 250 K. The magnetisation curves as a function of the applied field show coercive fields due to the canted antiferromagnetism of the particles. Around 55 K a maximum is observed in the zero-field-cooled curves; this maximum can be assumed as a blocking temperature, similarly to ultrafine ferromagnetic particles

  7. Magnetic nesting and co-existence of ferromagnetism and superconductivity

    International Nuclear Information System (INIS)

    Elesin, V.F.; Kapaev, V.V.; Kopaev, Yu.V.

    2004-01-01

    In the case of providing for the magnetic nesting conditions of the electron spin dispersion law the co-existence of ferromagnetism and superconductivity is possible by any high magnetization. The co-existence of ferromagnetism and superconductivity in the layered cuprate compounds of the RuSr 2 GdCu 2 O 8 -type is explained on this basis, wherein due to the nonstrict provision of the magnetic nesting condition there exists the finite but sufficiently high critical magnetization [ru

  8. Pressure-induced weak ferromagnetism in uranium dioxide, UO2

    International Nuclear Information System (INIS)

    Sakai, H; Kato, H; Tokunaga, Y; Kambe, S; Walstedt, R E; Nakamura, A; Tateiwa, N; Kobayashi, T C

    2003-01-01

    The dc magnetization of insulating UO 2 under high pressure up to ∼1 GPa has been measured using a piston-cylinder cell. Pressure-induced weak ferromagnetism appeared at low pressure (∼0.2 GPa). Both the remanent magnetization and the coercive force increase as pressure increases. This weak ferromagnetism may come from spin canting or from uncompensated moments around grain boundaries

  9. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  10. Postprandial changes in the phospholipid composition of circulating microparticles are not associated with coagulation activation

    NARCIS (Netherlands)

    Tushuizen, Maarten E.; Diamant, Michaela; Peypers, Erik G.; Hoek, Frans J.; Heine, Robert J.; Sturk, Augueste; Nieuwland, Rienk

    2012-01-01

    Introduction: Evidence is present that the phospholipid composition of circulating cell-derived microparticles (MP) affects coagulation in vivo, and that postprandial metabolic alterations may be associated with hypercoagulable state. Our objective was to investigate whether postprandial metabolic

  11. Biodegradable Microparticles for Simultaneous Detection of Counterfeit and Deteriorated Edible Products

    NARCIS (Netherlands)

    Rehor, Ivan; van Vreeswijk, Sophie; Vermonden, Tina; Hennink, Wim E.; Kegel, Willem K.; Eral, Huseyin Burak

    2017-01-01

    In an era of globalized trade relations where food and pharmaceutical products cross borders effortlessly, consumers face counterfeit and deteriorated products at elevated rates. This paper presents multifunctional, biodegradable hydrogel microparticles that can provide information on the

  12. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Nielsen, Christoffer T; Østergaard, Ole; Johnsen, Christina

    2011-01-01

    Characterization of the abundance, origin, and annexin V (AnxV)-binding capabilities of circulating microparticles (MPs) in SLE patients and healthy controls and to determine any associations with clinical parameters....

  13. Apheresis platelet concentrates contain platelet-derived and endothelial cell-derived microparticles

    NARCIS (Netherlands)

    Rank, A.; Nieuwland, R.; Liebhardt, S.; Iberer, M.; Grützner, S.; Toth, B.; Pihusch, R.

    2011-01-01

    Background and Objectives Microparticles (MP) are membrane vesicles with thrombogenic and immunomodulatory properties. We determined MP subgroups from resting platelets, activated platelets and endothelial cells in donors and apheresis platelet concentrates (PC). Material and Methods MP were double

  14. On-chip bio-analyte detection utilizing the velocity of magnetic microparticles in a fluid

    KAUST Repository

    Giouroudi, Ioanna; van den Driesche, Sander; Kosel, Jü rgen; Grössinger, Roland; Vellekoop, Michael J.

    2011-01-01

    change when analyte is attached to their surface via antibody–antigen binding. When the magnetic microparticles are attracted by a magnetic field within a microfluidic channel their velocity depends on the presence of analyte. Specifically, their velocity

  15. Preparation of Antheraea pernyi Silk Fibroin Microparticles through a Facile Electrospinning Method

    Directory of Open Access Journals (Sweden)

    Xiufang Li

    2016-01-01

    Full Text Available The goal of this study was to fabricate Antheraea pernyi silk fibroin (ASF microparticles using electrospinning under mild processing conditions. To improve processability of the ASF solution, poly(ethylene oxide (PEO was used to regulate viscosity of ASF solution for electrospinning. It was found that the blend of ASF with PEO could form a bead-on-string structure with well spherical particles. Furthermore, aqueous ethanol and ultrasonic treatments could disrupt the nanofibrillar string structure between particles and ultimately produced water-insoluble ASF particles with submicron scale. Cell viability studies indicated that the ASF microparticles were nontoxic to EA926 cells. Moreover, fluorescent images based on FITC labeling showed that the ASF microparticles were easily uptaken by the cells. Aqueous-based electrospinning provides a potentially useful option for the fabrication of ASF microparticles based on this unique fibrous protein.

  16. Reciprocity Method for Obtaining the Far Fields Generated by a Source Inside or Near a Microparticle

    National Research Council Canada - National Science Library

    Hill, Steven

    1997-01-01

    We show that the far fields generated by a source inside or near a microparticle can be obtained readily by using the reciprocity theorem along with the internal or near fields generated by plane wave illumination...

  17. Restructuring of microparticles in nuclear ceramic materials. Part III. Form distribution

    International Nuclear Information System (INIS)

    Lameiras, F.S.

    1991-01-01

    According to the present model, the modification of the microparticle form, tending to an equiaxial one, is a way to decrease the interface energy of a microparticle set. If the microparticles are dispersed, these ones tend to the spherical form. If they form aggregates (grains), the interface energy is stored in the grain boundaries, triple lines and quadruple points. A mean topological structure combining two kinds of nearly equiaxed polyhedra is proposed for aggregates of microparticles in order to minimize the surface of the grain boundaries, the length of the triple lines and the number of the quadruple points. As the restructuring evolutes, the average grain form tends to take the one of this polyhedra structure. (author)

  18. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Bogdan M., E-mail: bogdan.mihalcea@inflpr.ro; Vişan, Gina T.; Ganciu, Mihai [National Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomiştilor Str. Nr. 409, 077125 Măgurele, Ilfov (Romania); Giurgiu, Liviu C. [University of Bucharest, Faculty of Physics, Atomistilor Str. Nr. 405, 077125 Măgurele (Romania); Stan, Cristina [Department of Physics, Politehnica University, 313 Splaiul Independenţei, RO-060042 Bucharest (Romania); Filinov, Vladimir; Lapitsky, Dmitry, E-mail: dmitrucho@yandex.ru; Deputatova, Lidiya; Syrovatka, Roman [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya Str. 13, Bd. 2, 125412 Moscow (Russian Federation)

    2016-03-21

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  19. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    International Nuclear Information System (INIS)

    Mihalcea, Bogdan M.; Vişan, Gina T.; Ganciu, Mihai; Giurgiu, Liviu C.; Stan, Cristina; Filinov, Vladimir; Lapitsky, Dmitry; Deputatova, Lidiya; Syrovatka, Roman

    2016-01-01

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  20. Counter-Propagating Optical Trapping System for Size and Refractive Index Measurement of Microparticles

    National Research Council Canada - National Science Library

    Flynn, Richard A; Shao, Bing; Chachisvilis, Mirianas; Ozkan, Mihrimah; Esener, Sadik C

    2005-01-01

    We propose and demonstrate a novel approach to measure the size and refractive index of microparticles based on two beam optical trapping, where forward scattered light is detected to give information about the particle...

  1. Optical and non-optical methods for detection and characterization of microparticles and exosomes

    NARCIS (Netherlands)

    van der Pol, E.; Hoekstra, A.G.; Sturk, A.; Otto, C.; van Leeuwen, T.G.; Nieuwland, R.

    2010-01-01

    Microparticles and exosomes are cell-derived microvesicles present in body fluids that play a role in coagulation, inflammation, cellular homeostasis and survival, intercellular communication, and transport. Despite increasing scientific and clinical interest, no standard procedures are available

  2. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV).

    Science.gov (United States)

    Varela, Sylvana; Balagué, Isaac; Sancho, Irene; Ertürk, Nihal; Ferrando, Montserrat; Vernet, Anton

    2016-01-01

    Alginate microparticles as flow seeding fulfil all the requirements that are recommended for the velocity measurements in Particle Image Velocimetry (PIV). These spherical microparticles offer the advantage of being environmentally friendly, having excellent seeding properties and they can be produced via a very simple process. In the present study, the performances of alginate microparticles functionalised with a fluorescent dye, Rhodamine B (RhB), for PIV have been studied. The efficacy of fluorescence is appreciated in a number of PIV applications since it can boost the signal-to-noise ratio. Alginate microparticles functionalised with RhB have high emission efficiency, desirable match with fluid density and controlled size. The study of the particles behaviour in strong acid and basic solutions and ammonia is also included. This type of particles can be used for measurements with PIV and Planar Laser Induced Fluorescence (PLIF) simultaneously, including acid-base reactions.

  3. Novel superconducting state in ferromagnetic superconductor UCoGe. Microscopic coexistence of ferromagnetism and superconductivity probed by 59Co-NQR measurements

    International Nuclear Information System (INIS)

    Ishida, Kenji; Hattori, Taisuke; Ihara, Yoshihiko; Nakai, Yusuke; Sato, Noriaki K.; Deguchi, Kazuhiko; Tamura, Nobuyuki; Satoh, Isamu

    2010-01-01

    We have investigated the relationship between ferromagnetism and superconductivity in ferromagnetic superconductor UCoGe from 59 Co nuclear quadrupole resonance (NQR) measurements. Our experimental results indicate the microscopic coexistence of ferromagnetism and superconductivity in UCoGe, and suggest a 'self-induced vortex state' in its superconducting state. We also review NQR experiments, which play an important role in this study. (author)

  4. TWO FERROMAGNETIC SPHERES IN HOMOGENEOUS MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    Yury A. Krasnitsky

    2018-01-01

    Full Text Available The problem of two spherical conductors is studied quite in detail with bispherical coordinates usage and has numerous appendices in an electrostatics. The boundary-value problem about two ferromagnetic spheres enclosed on homogeneous and infinite environment in which the lack of spheres exists like homogeneous magnetic field is considered. The solution of Laplace's equation in the bispherical system of coordinates allows us to find the potential and field distribution in all spaces, including area between spheres. The boundary conditions in potential continuity and in ordinary density constituent of spheres surfaces induction flux are used. It is supposed that spheres are identical, and magnetic permeability of their material is expressed in  >> 0. The problem about falling of electromagnetic plane wave on the system of two spheres, which possesses electrically small sizes, can be considered as quasistationary. The scalar potentials received as a result of Laplace's equation solution are represented by the series containing Legendre polynomials. The concept of two spheres system effective permeability is introduced. It is equal to the advantage in magnitude of magnetic induction flux vector through a certain system’s section arising due to its magnetic properties. Necessary ratios for the effective permeability referred to the central system’s section are obtained. Particularly, the results can be used during the analysis of ferroxcube core clearance, which influences on the magnetic antenna properties. 

  5. Vortex precession in thin elliptical ferromagnetic nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Zaspel, C.E., E-mail: craig.zaspel@umwestern.edu

    2017-07-01

    Highlights: • A general form for the magnetostatic energy is calculated for the vortex state in a ferromagnetic ellipse. • The ellipse magnetostatic energy is minimized by conformal mapping the circular disk onto the ellipse. • The gyrotropic precession frequency is obtained in general for a range of ellipticities. - Abstract: The magnetostatic energy is calculated for a magnetic vortex in a noncircular elliptical nanodisk. It is well-known that the energy of a vortex in the circular disk is minimized though an ansatz that eliminates the magnetostatic charge at the disk edge. Beginning with this ansatz for the circular disk, a conformal mapping of a circle interior onto the interior of an ellipse results in the magnetization of the elliptical disk. This magnetization in the interior of an ellipse also has no magnetostatic charge at the disk edge also minimizing the magnetostatic energy. As expected the energy has a quadratic dependence on the displacement of the vortex core from the ellipse center, but reflecting the lower symmetry of the ellipse. Through numerical integration of the magnetostatic integral a general expression for the energy is obtained for ellipticity values from 1.0 to about 0.3. Finally a general expression for the gyrotropic frequency as described by the Thiele equation is obtained.

  6. Ferromagnetic resonance studies of lunar core stratigraphy

    Science.gov (United States)

    Housley, R. M.; Cirlin, E. H.; Goldberg, I. B.; Crowe, H.

    1976-01-01

    We first review the evidence which links the characteristic ferromagnetic resonance observed in lunar fines samples with agglutinatic glass produced primarily by micrometeorite impacts and present new results on Apollo 15, 16, and 17 breccias which support this link by showing that only regolith breccias contribute significantly to the characteristic FMR intensity. We then provide a calibration of the amount of Fe metal in the form of uniformly magnetized spheres required to give our observed FMR intensities and discuss the theoretical magnetic behavior to be expected of Fe spheres as a function of size. Finally, we present FMR results on samples from every 5 mm interval in the core segments 60003, 60009, and 70009. These results lead us to suggest: (1) that secondary mixing may generally be extensive during regolith deposition so that buried regolith surfaces are hard to recognize or define; and (2) that local grinding of rocks and pebbles during deposition may lead to short scale fluctuations in grain size, composition, and apparent exposure age of samples.

  7. Ferromagnetic characteristics of HfFe2

    International Nuclear Information System (INIS)

    Novakovic, N.; Belosevic-Cavor, J.; Cekic, B.; Manasijevic, M.; Milosevic, Z. . E-mail address of correspoding author: novnik@rt270.vin.bg.ac.yu; Novakovic, N.)

    2003-01-01

    The magnetic hyperfine fields at 181 Ta ion-probe sites in the HfFe 2 polycrystalline binary compound were measured using the time-differential perturbed angular correlation (TDPAC) method. Measurements were performed in the absence of polarizing external magnetic field, at room temperature. The existence of two different structures, dominant cubic MgCu 2 -type and hexagonal MgZn 2 -type in our HfFe 2 sample was refined. Both structures are ferromagnetic with Curie temperatures, which differ significantly (588 K for MgCu 2 and 427 K for MgZn 2 ). The corresponding values of hyperfine fields are H hf 13.8±0.1 T for MgCu 2 -type structure and H hf = 8.0±0.2 T for MgZn 2 -type structure. Calculations using LAPW-Wien 97 program package are in progress and preliminary results are in good agreement with experiment. The analysis includes qualitative explanation of the exchange interactions mechanism between magnetic dipole moment of the observed 181 Ta ion-probe and magnetic dipole moments of the nearest neighbours on the corresponding coordination polyhedra. All these results will be published recently. (author)

  8. Nuclear magnetic resonance in ferromagnetic terbium metal

    International Nuclear Information System (INIS)

    Cha, C.L.T.

    1974-01-01

    The magnetic properties of terbium were studied by the method of zero field nuclear magnetic resonance at 1.5 to 4 and 85 to 160 0 K. Two unconventional experimental techniques have been employed: the swept frequency and the swept temperature technique. Near 4 0 K, triplet resonance line structures were found and interpreted in terms of the magnetic domain and wall structures of ferromagnetic terbium. In the higher temperature range, temperature dependence of the resonance frequency and the quadrupole splitting were measured. The former provides a measurement of the temperature dependence of the magnetization M, and it agrees with bulk M measurements as well as the latest spin wave theory of M(T) (Brooks 1968). The latter agrees well with a calculation using a very general single ion density matrix for collective excitations (Callen and Shtrikman 1965). In addition, the small temperature-independent contribution to the electric field gradient at the nucleus due to the lattice and conduction electrons was untangled from the P(T) data. Also an anomalous and unexplained relaxation phenomenon was also observed

  9. Room temperature ferromagnetic gadolinium silicide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  10. Analysis of sorption into single ODS-silica gel microparticles in acetonitrile-water.

    Science.gov (United States)

    Nakatani, Kiyoharu; Kakizaki, Hiroshi

    2003-08-01

    Intraparticle mass transfer processes of Phenol Blue (PB) in single octadecylsilyl (ODS)-silica gel microparticles in acetonitrile-water were analyzed by microcapillary manipulation and microabsorption methods. An absorption maximum of PB, the sorption isotherm parameters, and the sorption rate in the microparticle system were highly dependent on the percentage of acetonitrile in solution. The results are discussed in terms of the microscopic polarity surrounding PB in the ODS phase and the relationship between the isotherm parameters and the sorption rate.

  11. Increased CD39 Nucleotidase Activity on Microparticles from Patients with Idiopathic Pulmonary Arterial Hypertension

    Science.gov (United States)

    Visovatti, Scott H.; Hyman, Matthew C.; Bouis, Diane; Neubig, Richard; McLaughlin, Vallerie V.; Pinsky, David J.

    2012-01-01

    Background Idiopathic pulmonary arterial hypertension (IPAH) is a devastating disease characterized by increased pulmonary vascular resistance, smooth muscle and endothelial cell proliferation, perivascular inflammatory infiltrates, and in situ thrombosis. Circulating intravascular ATP, ADP, AMP and adenosine activate purinergic cell signaling pathways and appear to induce many of the same pathologic processes that underlie IPAH. Extracellular dephosphorylation of ATP to ADP and AMP occurs primarily via CD39 (ENTPD1), an ectonucleotidase found on the surface of leukocytes, platelets, and endothelial cells [1]. Microparticles are micron-sized phospholipid vesicles formed from the membranes of platelets and endothelial cells. Objectives: Studies here examine whether CD39 is an important microparticle surface nucleotidase, and whether patients with IPAH have altered microparticle-bound CD39 activity that may contribute to the pathophysiology of the disease. Methodology/ Principal Findings Kinetic parameters, inhibitor blocking experiments, and immunogold labeling with electron microscopy support the role of CD39 as a major nucleotidase on the surface of microparticles. Comparison of microparticle surface CD39 expression and nucleotidase activity in 10 patients with advanced IPAH and 10 healthy controls using flow cytometry and thin layer chromatograph demonstrate the following: 1) circulating platelet (CD39+CD31+CD42b+) and endothelial (CD39+CD31+CD42b−) microparticle subpopulations in patients with IPAH show increased CD39 expression; 2) microparticle ATPase and ADPase activity in patients with IPAH is increased. Conclusions/ Significance We demonstrate for the first time increased CD39 expression and function on circulating microparticles in patients with IPAH. Further research is needed to elucidate whether these findings identify an important trigger for the development of the disease, or reflect a physiologic response to IPAH. PMID:22792409

  12. The van der Waals interaction of microparticles with a substrate characterized by a nonlocal response

    International Nuclear Information System (INIS)

    Dorofeyev, Illarion

    2007-01-01

    The van der Waals energy of the system constituted by a microparticle and a solid surface characterized by a nonlocal response is calculated taking into account an influence of another microparticle. A saturation of the dispersion interaction at short distances from the surface both for the spectral density of energy and for the total energy is shown. The known McLachlan expression for the pair and triple energies in the case of local media directly follows from the obtained general expression

  13. Investigation of Water Absorption and Diffusion in Microparticles Containing Xylitol to Provide a Cooling Effect by Thermal Analysis

    Science.gov (United States)

    Salaün, F.; Bedek, G.; Devaux, E.; Dupont, D.; Deranton, D.

    2009-08-01

    Polyurethane microparticles containing xylitol as a sweat sensor system were prepared by interfacial polymerization. The structural and thermal properties of the resultant microparticles were studied. The surface morphology and chemical structure of microparticles were investigated using an optical microscope (OM) and a Fourier-transform infrared spectroscope (FTIR), respectively. The thermal properties of samples were investigated by thermogravimetric analysis (TGA) and by differential scanning calorimetry (DSC). Thus, two types of microparticles were synthesized by varying the percentage of monomers introduced. The obtained morphology is directly related to the synthesis conditions. DSC analysis indicated that the mass content of crystalline xylitol was up to 63.8 %, which resulted in a high enthalpy of dilution of 127.7 J · g-1. Furthermore, the water release rate monitored by TGA analysis was found to be faster from the microparticles than from raw xylitol. Thus, the microparticles could be applied for thermal energy storage and moisture sensor enhancement.

  14. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation.

    Science.gov (United States)

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-09-01

    The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs.

  15. A study on arrangement characteristics of microparticles in sedimentation on flat and round substrates

    Science.gov (United States)

    Yeo, Eunju; Son, Minhee; Kim, Kwanoh; Kim, Jeong Hwan; Yoo, Yeong-Eun; Choi, Doo-Sun; Kim, Jungchul; Yoon, Seok Ho; Yoon, Jae Sung

    2017-12-01

    Recent advances of microfabrication techniques have enabled diverse structures and devices on the microscale. This fabrication method using microparticles is one of the most promising technologies because it can provide a cost effective process for large areas. So, many researchers are studying modulation and manipulation of the microparticles in solution to obtain a proper arrangement. However, the microparticles are in sedimentation status during the process in many cases, which makes it difficult to control their arrangement. In this study, droplets containing microparticles were placed on a substrate with minimal force and we investigated the arrangement of these microparticles after evaporation of the liquid. Experiments have been performed with upward and downward substrates to change the direction of gravity. The geometry of substrates was also changed, which were flat or round. The results show that the arrangement depends on the size of particles and gravity and geometry of the substrate. The arrangement also depends on the movement of the contact line of the droplets, which may recede or be pinned during evaporation. This study is expected to provide a method of the fabrication process for microparticles which may not be easily manipulated due to sedimentation.

  16. Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: prognostic value.

    Directory of Open Access Journals (Sweden)

    Gaspar Reynés

    Full Text Available AIM: Circulating endothelial cells and microparticles are prognostic factors in cancer. However, their prognostic and predictive value in patients with glioblastoma is unclear. The objective of this study was to investigate the potential prognostic value of circulating endothelial cells and microparticles in patients with newly diagnosed glioblastoma treated with standard radiotherapy and concomitant temozolomide. In addition, we have analyzed the methylation status of the MGMT promoter. METHODS: Peripheral blood samples were obtained before and at the end of the concomitant treatment. Blood samples from healthy volunteers were also obtained as controls. Endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Microparticles were quantified by flow cytometry. Microparticle-mediated procoagulant activity was measured by endogen thrombin generation and by phospholipid-dependent clotting time. Methylation status of MGMT promoter was determined by multiplex ligation-dependent probe amplification. RESULTS: Pretreatment levels of circulating endothelial cells and microparticles were higher in patients than in controls (p<0.001. After treatment, levels of microparticles and thrombin generation decreased, and phospholipid-dependent clotting time increased significantly. A high pretreatment endothelial cell count, corresponding to the 99(th percentile in controls, was associated with poor overall survival. MGMT promoter methylation was present in 27% of tumor samples and was associated to a higher overall survival (66 weeks vs 30 weeks, p<0.004. CONCLUSION: Levels of circulating endothelial cells may have prognostic value in patients with glioblastoma.

  17. Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid) Composite Microparticles.

    Science.gov (United States)

    Tong, Zongrui; Chen, Yu; Liu, Yang; Tong, Li; Chu, Jiamian; Xiao, Kecen; Zhou, Zhiyu; Dong, Wenbo; Chu, Xingwu

    2017-04-11

    Alginate (Alg) is a renewable polymer with excellent hemostatic properties and biocapability and is widely used for hemostatic wound dressing. However, the swelling properties of alginate-based wound dressings need to be promoted to meet the requirements of wider application. Poly( γ -glutamic acid) (PGA) is a natural polymer with high hydrophility. In the current study, novel Alg/PGA composite microparticles with double network structure were prepared by the emulsification/internal gelation method. It was found from the structure characterization that a double network structure was formed in the composite microparticles due to the ion chelation interaction between Ca 2+ and the carboxylate groups of Alg and PGA and the electrostatic interaction between the secondary amine group of PGA and the carboxylate groups of Alg and PGA. The swelling behavior of the composite microparticles was significantly improved due to the high hydrophility of PGA. Influences of the preparing conditions on the swelling behavior of the composites were investigated. The porous microparticles could be formed while compositing of PGA. Thermal stability was studied by thermogravimetric analysis method. Moreover, in vitro cytocompatibility test of microparticles exhibited good biocompatibility with L929 cells. All results indicated that such Alg/PGA composite microparticles are a promising candidate in the field of wound dressing for hemostasis or rapid removal of exudates.

  18. Properties of gelatin-based films incorporated with chitosan-coated microparticles charged with rutin.

    Science.gov (United States)

    Dammak, Ilyes; Bittante, Ana Mônica Quinta Barbosa; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José

    2017-08-01

    The aim of this study was development an active film based on gelatin incorporated with antioxidant, rutin carried into microparticles. The complexation between oppositely charged lecithin and chitosan was applied to prepare the chitosan-coated microparticles. The generated microparticles had an average size of 520±4nm and a span of 0.3 were formulated by a rotor-stator homogenize at the homogenization speed 10,000rpm. Composite films were prepared by incorporating chitosan-coated microparticles, at various concentrations (0.05, 0.1, 0.5, or 1% (based on the weight of the gelatin powder)) in the gelatin-based films. For the prepared films, the results showed that obtained physicochemical, water vapor barrier, and mechanical were compared with native gelatin film with a slight decrease for chitosan concentration higher than 0.5%. The microstructure studies done by scanning electron microscopes, revealed different micropores embedded with oil resulting from the incorporation of the microparticles into the gelatin matrix. Moreover, the calorimetric results were comparable to those of gelatin control film with T g value 45°C and increased crystallinity percentage with increasing incorporation of microparticles. This original concept of composite biodegradable films may thus be a good alternative to incorporate liposoluble active compounds to design an active packaging with good properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery.

    Science.gov (United States)

    Sajeesh, S; Vauthier, C; Gueutin, C; Ponchel, G; Sharma, Chandra P

    2010-08-01

    In the present study thiol functionalized polymethacrylic acid-polyethylene glycol-chitosan (PCP)-based hydrogel microparticles were utilized to develop an oral insulin delivery system. Thiol modification was achieved by grafting cysteine to the activated surface carboxyl groups of PCP hydrogels (Cys-PCP). Swelling and insulin loading/release experiments were conducted on these particles. The ability of these particles to inhibit protease enzymes was evaluated under in vitro experimental conditions. Insulin transport experiments were performed on Caco-2 cell monolayers and excised intestinal tissue with an Ussing chamber set-up. Finally, the efficacy of insulin-loaded particles in reducing the blood glucose level in streptozotocin-induced diabetic rats was investigated. Thiolated hydrogel microparticles showed less swelling and had a lower insulin encapsulation efficiency as compared with unmodified PCP particles. PCP and Cys-PCP microparticles were able to inhibit protease enzymes under in vitro conditions. Thiolation was an effective strategy to improve insulin absorption across Caco-2 cell monolayers, however, the effect was reduced in the experiments using excised rat intestinal tissue. Nevertheless, functionalized microparticles were more effective in eliciting a pharmacological response in diabetic animal, as compared with unmodified PCP microparticles. From these studies thiolation of hydrogel microparticles seems to be a promising approach to improve oral delivery of proteins/peptides. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Development of biodegradable methylprednisolone microparticles for treatment of articular pathology using a spray-drying technique

    Science.gov (United States)

    Tobar-Grande, Blanca; Godoy, Ricardo; Bustos, Paulina; von Plessing, Carlos; Fattal, Elias; Tsapis, Nicolas; Olave, Claudia; Gómez-Gaete, Carolina

    2013-01-01

    In this work, microparticles were prepared by spray-drying using albumin, chondroitin sulfate, and hyaluronic acid as excipients to create a controlled-release methylprednisolone system for use in inflammatory disorders such as arthritis. Scanning electron microscopy demonstrated that these microparticles were almost spherical, with development of surface wrinkling as the methylprednisolone load in the formulation was increased. The methylprednisolone load also had a direct influence on the mean diameter and zeta potential of the microparticles. Interactions between formulation excipients and the active drug were evaluated by x-ray diffraction, differential scanning calorimetry, and thermal gravimetric analysis, showing limited amounts of methylprednisolone in a crystalline state in the loaded microparticles. The encapsulation efficiency of methylprednisolone was approximately 89% in all formulations. The rate of methylprednisolone release from the microparticles depended on the initial drug load in the formulation. In vitro cytotoxic evaluation using THP-1 cells showed that none of the formulations prepared triggered an inflammatory response on release of interleukin-1β, nor did they affect cellular viability, except for the 9.1% methylprednisolone formulation, which was the maximum test concentration used. The microparticles developed in this study have characteristics amenable to a therapeutic role in inflammatory pathology, such as arthritis. PMID:23737670

  1. Luminescence investigation of Yb3+/Er3+ codoped single LiYF4 microparticle

    International Nuclear Information System (INIS)

    Gao, Wei; Zheng, Hairong; He, Enjie; Lu, Ying; Gao, Fangqi

    2014-01-01

    Tetragonal phase LiYF 4 :Yb 3+ /Er 3+ microparticles are synthesized via facile hydrothermal method. Single LiYF 4 microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. It is found that single LiYF 4 :Yb 3+ /Er 3+ microparticle with sub-structure presents stronger upconversion luminescence emission and smaller intensity ratio of red to green emission than that from LiYF 4 :Yb 3+ /Er 3+ microparticle with no sub-structure. The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion luminescence emission are investigated. The current study suggests that the luminescence observation with single micropaticle can effectively avoid the influence of environment and neighbor particles, which is important for investigating the luminescence properties of micro- or nano-crystals and for extending their application. - Highlights: • Single LiYF 4 microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. • Single LiYF 4 microparticle with different morphology exhibits different fluorescence emission intensity and intensity ratio of red to green emission. • The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion emission are investigated

  2. Identification of second harmonic optical effects from vaccine coated gold microparticles

    International Nuclear Information System (INIS)

    Jumah, N A; Ameer-Beg, S M; White, N S; Prasad, K V R; Bellhouse, B J

    2004-01-01

    This study investigates the optical effects observed from uncoated and protein vaccine coated gold microparticles while imaging with two-photon excitation in the Mie scattering regime. When observed with time correlated single photon counting fluorescence lifetime microscopy, the emission from the gold microparticles appeared as an intense instrument-limited temporal response. The intensity of the emission showed a second-order dependence on the laser power and frequency doubling of the emitted light was observed for fundamental light between 890 and 970 nm. The optical effect was attributed to two-photon induced second harmonic generation. The vaccine coated gold microparticles had a much weaker second harmonic signal than the uncoated gold microparticles. Chemical analysis of the surface of the gold microparticles revealed that the vaccine coating decreases the surface charge thereby diminishing the observed second harmonic signal. These optical properties can be exploited to identify both the location of the protein vaccine coating as well as the gold microparticles in vitro and potentially to investigate the vaccine delivery kinetics in vivo

  3. Functionalized Raspberry-Like Microparticles obtained by Assembly of Nanoparticles during Electrospraying

    International Nuclear Information System (INIS)

    Cho, Eun Chul; Jeong, Unyong; Hwang, Yoon Kyun

    2014-01-01

    The present study suggests a novel method to produce raspberry-like microparticles containing diverse functional materials inside. The raspberry-like microparticles were produced from a random assembly of uniformly-sized poly(methyl methacrylate) (PMMA) nanoparticles via electrospraying. The solution containing the PMMA nanoparticles were supplied through the inner nozzle and compressed air was emitted through the outer nozzle. The air supply helped fast evaporation of acetone, so it enabled copious amount of microparticles as dry powder. The microparticles were highly porous both on the surface and interiors, hence various materials with a function of UV-blocking (TiO 2 nanoparticles and methoxyphenyl triazine) or anti-aging (ethyl(4-(2,3-dihydro-1H-indene-5-carboxyamido) benzoate)) were loaded in large amount (17 wt % versus PMMA). The surface and interior structures of the microparticles were dependent on the characteristics of functional materials. The results clearly suggest that the process to prepare the raspberry-like microparticles can be an excellent approach to generate functional microstructures

  4. Physical Characterization of Mouse Deep Vein Thrombosis Derived Microparticles by Differential Filtration with Nanopore Filters

    Directory of Open Access Journals (Sweden)

    Antonio Peramo

    2011-12-01

    Full Text Available With the objective of making advancements in the area of pro-thrombotic microparticle characterization in cardiovascular biology, we present a novel method to separate blood circulating microparticles using a membrane-based, nanopore filtration system. In this qualitative study, electron microscopy observations of these pro-thrombotic mouse microparticles, as well as mouse platelets and leukocytes obtained using a mouse inferior vena cava ligation model of deep-vein thrombosis are presented. In particular, we present mouse microparticle morphology and microstructure using SEM and TEM indicating that they appear to be mostly spherical with diameters in the 100 to 350 nm range. The nanopore filtration technique presented is focused on the development of novel methodologies to isolate and characterize blood circulating microparticles that can be used in conjunction with other methodologies. We believe that determination of microparticle size and structure is a critical step for the development of reliable assays with clinical or research application in thrombosis and it will contribute to the field of nanomedicine in thrombosis.

  5. Potential roles of cell-derived microparticles in ischemic brain disease.

    Science.gov (United States)

    Horstman, Lawrence L; Jy, Wenche; Bidot, Carlos J; Nordberg, Mary L; Minagar, Alireza; Alexander, J Steven; Kelley, Roger E; Ahn, Yeon S

    2009-10-01

    The objective of this study is to review the role of cell-derived microparticles in ischemic cerebrovascular diseases. An extensive PubMed search of literature pertaining to this study was performed in April 2009 using specific keyword search terms related to cell-derived microparticles and ischemic stroke. Some references are not cited here as it is not possible to be all inclusive or due to space limitation. Cell-derived microparticles are small membranous vesicles released from the plasma membranes of platelets, leukocytes, red cells and endothelial cells in response to diverse biochemical agents or mechanical stresses. They are the main carriers of circulating tissue factor, the principal initiator of intravascular thrombosis, and are implicated in a variety of thrombotic and inflammatory disorders. This review outlines evidence suggesting that cell-derived microparticles are involved predominantly with microvascular, as opposed to macrovascular, thrombosis. More specifically, cell-derived microparticles may substantially contribute to ischemic brain disease in several settings, as well as to neuroinflammatory conditions. If further work confirms this hypothesis, novel therapeutic strategies for minimizing cell-derived microparticles-mediated ischemia are available or can be developed, as discussed.

  6. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers.

    Science.gov (United States)

    Shrestha, Neha; Shahbazi, Mohammad-Ali; Araújo, Francisca; Zhang, Hongbo; Mäkilä, Ermei M; Kauppila, Jussi; Sarmento, Bruno; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    Porous silicon (PSi) based particulate systems are emerging as an important drug delivery system due to its advantageous properties such as biocompatibility, biodegradability and ability to tailor the particles' physicochemical properties. Here, annealed thermally hydrocarbonized PSi (AnnTHCPSi) and undecylenic acid modified AnnTHCPSi (AnnUnTHCPSi) microparticles were developed as a PSi-based platform for oral delivery of insulin. Chitosan (CS) was used to modify the AnnUnTHCPSi microparticles to enhance the intestinal permeation of insulin. Surface modification with CS led to significant increase in the interaction of PSi microparticles with Caco-2/HT-29 cell co-culture monolayers. Compared to pure insulin, the CS-conjugated microparticles significantly improved the permeation of insulin across the Caco-2/HT-29 cell monolayers, with ca. 20-fold increase in the amount of insulin permeated and ca. 7-fold increase in the apparent permeability (P(app)) value. Moreover, among all the investigated particles, the CS-conjugated microparticles also showed the highest amount of insulin associated with the mucus layer and the intestinal Caco-2 cells and mucus secreting HT-29 cells. Our results demonstrate that CS-conjugated AnnUnTHCPSi microparticles can efficiently enhance the insulin absorption across intestinal cells, and thus, they are promising microsystems for the oral delivery of proteins and peptides across the intestinal cell membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry.

    Science.gov (United States)

    Headland, Sarah E; Jones, Hefin R; D'Sa, Adelina S V; Perretti, Mauro; Norling, Lucy V

    2014-06-10

    Interest in extracellular vesicle biology has exploded in the past decade, since these microstructures seem endowed with multiple roles, from blood coagulation to inter-cellular communication in pathophysiology. In order for microparticle research to evolve as a preclinical and clinical tool, accurate quantification of microparticle levels is a fundamental requirement, but their size and the complexity of sample fluids present major technical challenges. Flow cytometry is commonly used, but suffers from low sensitivity and accuracy. Use of Amnis ImageStream(X) Mk II imaging flow cytometer afforded accurate analysis of calibration beads ranging from 1 μm to 20 nm; and microparticles, which could be observed and quantified in whole blood, platelet-rich and platelet-free plasma and in leukocyte supernatants. Another advantage was the minimal sample preparation and volume required. Use of this high throughput analyzer allowed simultaneous phenotypic definition of the parent cells and offspring microparticles along with real time microparticle generation kinetics. With the current paucity of reliable techniques for the analysis of microparticles, we propose that the ImageStream(X) could be used effectively to advance this scientific field.

  8. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    Science.gov (United States)

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  9. Quantitative proteome profiling of normal human circulating microparticles

    DEFF Research Database (Denmark)

    Østergaard, Ole; Nielsen, Christoffer T; Iversen, Line V

    2012-01-01

    Circulating microparticles (MPs) are produced as part of normal physiology. Their numbers, origin, and composition change in pathology. Despite this, the normal MP proteome has not yet been characterized with standardized high-resolution methods. We here quantitatively profile the normal MP...... proteome using nano-LC-MS/MS on an LTQ-Orbitrap with optimized sample collection, preparation, and analysis of 12 different normal samples. Analytical and procedural variation were estimated in triply processed samples analyzed in triplicate from two different donors. Label-free quantitation was validated...... by the correlation of cytoskeletal protein intensities with MP numbers obtained by flow cytometry. Finally, the validity of using pooled samples was evaluated using overlap protein identification numbers and multivariate data analysis. Using conservative parameters, 536 different unique proteins were quantitated...

  10. Fabrication of fillable microparticles and other complex 3D microstructures

    Science.gov (United States)

    McHugh, Kevin J.; Nguyen, Thanh D.; Linehan, Allison R.; Yang, David; Behrens, Adam M.; Rose, Sviatlana; Tochka, Zachary L.; Tzeng, Stephany Y.; Norman, James J.; Anselmo, Aaron C.; Xu, Xian; Tomasic, Stephanie; Taylor, Matthew A.; Lu, Jennifer; Guarecuco, Rohiverth; Langer, Robert; Jaklenec, Ana

    2017-09-01

    Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and limitations with regards to resolution, material compatibility, and geometrical constraints that determine the types of microstructures that can be formed. We describe a microfabrication method, termed StampEd Assembly of polymer Layers (SEAL), and create injectable pulsatile drug-delivery microparticles, pH sensors, and 3D microfluidic devices that we could not produce using traditional 3D printing. SEAL allows us to generate microstructures with complex geometry at high resolution, produce fully enclosed internal cavities containing a solid or liquid, and use potentially any thermoplastic material without processing additives.

  11. Micro-particles in ITER: A comprehensive review

    International Nuclear Information System (INIS)

    Grisolia, C.; Rosanvallon, S.; Sharpe, Ph.; Winter, J.

    2009-01-01

    In a fusion reactor like ITER, in-vessel materials are subjected to interactions with the plasma. One of the main consequences of these plasma-material interactions is the creation of co-deposited layers. Due to internal stresses, part of these layers can crack leading to micro particle creation. The purpose of the following paper is to review the Tokamak operation processes which lead to erosion and layer creation. Then, the proportion of these layers that is converted into micro-particles will be evaluated in the case of Tore Supra experiments and extrapolated for ITER. It is major importance to measure the ITER mobilizable dusts present in the Vacuum Vessel and compare the measured quantity with the safety limits. When approaching these limits, removal systems must be used in order to control the in-vessel dust inventory. In the second part of the paper, diagnostics and removal system under development will be presented.

  12. Precipitation of fluticasone propionate microparticles using supercritical antisolvent

    Directory of Open Access Journals (Sweden)

    A Vatanara

    2009-03-01

    Full Text Available ABSTRACT Background: The ability of supercritical fluids (SCFs, such as carbon dioxide, to dissolve and expand or extract organic solvents and as result lower their solvation power, makes it possible the use of SCFs for the precipitation of solids from organic solutions. The process could be the injection of a solution of the substrate in an organic solvent into a vessel which is swept by a supercritical fluid. The aim of this study was to ascertain the feasibility of supercritical processing to prepare different particulate forms of fluticasone propionate (FP, and to evaluate the influence of different liquid solvents and precipitation temperatures on the morphology, size and crystal habit of particles. Method: The solution of FP in organic solvents, was precipitated by supercritical carbon dioxide (SCCO2 at two pressure and temperature levels. Effects of process parameters on the physicochemical characteristics of harvested microparticles were evaluated. Results: Particle formation was observed only at the lower selected pressure, whilst at the higher pressure, no precipitation of particles was occurred due to dissolution of FP in supercritical antisolvent. The micrographs of the produced particles showed different morphologies for FP obtained from different conditions. The results of thermal analysis of the resulted particles showed that changes in the processing conditions didn't influence thermal behavior of the precipitated particles. Evaluation of the effect of temperature on the size distribution of particles showed that increase in the temperature from 40 oC to 50 oC, resulted in reduction of the mean particle size from about 30 µm to about 12 μm. ‍Conclusion: From the results of this study it may be concluded that, processing of FP by supercritical antisolvent could be an approach for production of diverse forms of the drug and drastic changes in the physical characteristics of microparticles could be achieved by changing the

  13. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jiajun; Yang, Ming [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Kosterin, Paul [Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Salzberg, Brian M. [Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Milovanova, Tatyana N.; Bhopale, Veena M. [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Thom, Stephen R., E-mail: sthom@smail.umaryland.edu [Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2013-12-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice.

  14. Influence of red blood cell-derived microparticles upon vasoregulation.

    Science.gov (United States)

    Said, Ahmed S; Doctor, Allan

    2017-10-01

    Here we review recent data and the evolving understanding of the role of red blood cell-derived microparticles (RMPs) in normal physiology and in disease progression. Microparticles (MPs) are small membrane vesicles derived from various parent cell types. MPs are produced in response to a variety of stimuli through several cytoskeletal and membrane phospholipid changes. MPs have been investigated as potential biomarkers for multiple disease processes and are thought to have biological effects, most notably in: promotion of coagulation, production and handling of reactive oxygen species, immune modulation, angiogenesis, and in apoptosis. Specifically, RMPs are produced normally during RBC maturation and their production is accelerated during processing and storage for transfusion. Several factors during RBC storage are known to trigger RMP production, including: increased intracellular calcium, increased potassium leakage, and energy failure with ATP depletion. Of note, RMP composition differs from that of intact RBCs, and the nature and composition of RMP components are affected by both storage duration and the character of storage solutions. Recognised RMP bioactivities include: promotion of coagulation, immune modulation, and promotion of endothelial adhesion, as well as influence upon vasoregulation via nitric oxide (NO) scavenging. Of particular relevance, RMPs are more avid NO scavengers than intact RBCs and this feature has been proposed as a mechanism for the impaired oxygen delivery homeostasis that has been observed following transfusion. Preliminary human studies demonstrate that circulating RMP abundance increases with RBC transfusion and is associated with altered plasma vasoactivity and abnormal vasoregulation. In summary, RMPs are submicron particles released from stored RBCs, with demonstrated vasoactive properties that appear to disturb oxygen delivery homeostasis. The clinical impact of RMPs in transfusion recipients is an area of continued

  15. Valley and spin resonant tunneling current in ferromagnetic/nonmagnetic/ferromagnetic silicene junction

    Directory of Open Access Journals (Sweden)

    Yaser Hajati

    2016-02-01

    Full Text Available We study the transport properties in a ferromagnetic/nonmagnetic/ferromagnetic (FNF silicene junction in which an electrostatic gate potential, U, is attached to the nonmagnetic region. We show that the electrostatic gate potential U is a useful probe to control the band structure, quasi-bound states in the nonmagnetic barrier as well as the transport properties of the FNF silicene junction. In particular, by introducing the electrostatic gate potential, both the spin and valley conductances of the junction show an oscillatory behavior. The amplitude and frequency of such oscillations can be controlled by U. As an important result, we found that by increasing U, the second characteristic of the Klein tunneling is satisfied as a result of the quasiparticles chirality which can penetrate through a potential barrier. Moreover, it is found that for special values of U, the junction shows a gap in the spin and valley-resolve conductance and the amplitude of this gap is only controlled by the on-site potential difference, Δz. Our findings of high controllability of the spin and valley transport in such a FNF silicene junction may improve the performance of nano-electronics and spintronics devices.

  16. Electrical detection of ferromagnetic resonance in ferromagnet/n-GaAs heterostructures by tunneling anisotropic magnetoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Boyko, Y.; Geppert, C. C.; Christie, K. D.; Stecklein, G.; Crowell, P. A., E-mail: crowell@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Patel, S. J. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Palmstrøm, C. J. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2014-11-24

    We observe a dc voltage peak at ferromagnetic resonance (FMR) in samples consisting of a single ferromagnetic (FM) layer grown epitaxially on the n-GaAs (001) surface. The FMR peak is detected as an interfacial voltage with a symmetric line shape and is present in samples based on various FM/n-GaAs heterostructures, including Co{sub 2}MnSi/n-GaAs, Co{sub 2}FeSi/n-GaAs, and Fe/n-GaAs. We show that the interface bias voltage dependence of the FMR signal is identical to that of the tunneling anisotropic magnetoresistance (TAMR) over most of the bias range. Furthermore, we show how the precessing magnetization yields a dc FMR signal through the TAMR effect and how the TAMR phenomenon can be used to predict the angular dependence of the FMR signal. This TAMR-induced FMR peak can be observed under conditions where no spin accumulation is present and no spin-polarized current flows in the semiconductor.

  17. Preparation of Starch/Gelatin Blend Microparticles by a Water-in-Oil Emulsion Method for Controlled Release Drug Delivery

    OpenAIRE

    Phromsopha, Theeraphol; Baimark, Yodthong

    2014-01-01

    Information on the preparation and properties of starch/gelatin blend microparticles with and without crosslinking for drug delivery is presented. The blend microparticles were prepared by the water-in-oil emulsion solvent diffusion method. Glutaraldehyde and methylene blue were used as the crosslinker and the water-soluble drug model, respectively. The blend microparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spe...

  18. Circulating levels of cell-derived microparticles are reduced by mild hypobaric hypoxia: data from a randomised controlled trial.

    Science.gov (United States)

    Ayers, Lisa; Stoewhas, Anne-Christin; Ferry, Berne; Latshang, Tsogyal D; Lo Cascio, Christian M; Sadler, Ross; Stadelmann, Katrin; Tesler, Noemi; Huber, Reto; Achermann, Peter; Bloch, Konrad E; Kohler, Malcolm

    2014-05-01

    Hypoxia is known to induce the release of microparticles in vitro. However, few publications have addressed the role of hypoxia in vivo on circulating levels of microparticles. This randomised, controlled, crossover trial aimed to determine the effect of mild hypoxia on in vivo levels of circulating microparticles in healthy individuals. Blood was obtained from 51 healthy male volunteers (mean age of 26.9 years) at baseline altitude (490 m) and after 24 and 48 h at moderate altitude (2,590 m). The order of altitude exposure was randomised. Flow cytometry was used to assess platelet-poor plasma for levels of circulating microparticles derived from platelets, endothelial cells, leucocytes, granulocytes, monocytes, red blood cells and procoagulant microparticles. Mean (standard deviation) oxygen saturation was significantly lower on the first and second day after arrival at 2,590 m, 91.0 (2.0) and 92.0 (2.0) %, respectively, compared to 490 m, 96 (1.0) %, p microparticles (annexin V+ -221/μl 95 % CI -370.8/-119.0, lactadherin+ -202/μl 95 % CI -372.2/-93.1), platelet-derived microparticles (-114/μl 95 % CI -189.9/-51.0) and red blood cell-derived microparticles (-81.4 μl 95 % CI -109.9/-57.7) after 48 h at moderate altitude was found. Microparticles derived from endothelial cells, granulocytes, monocytes and leucocytes were not significantly altered by exposure to moderate altitude. In healthy male individuals, mild hypobaric hypoxia, induced by a short-term stay at moderate altitude, is associated with lower levels of procoagulant microparticles, platelet-derived microparticles and red blood cell-derived microparticles, suggesting a reduction in thrombotic potential.

  19. Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release.

    Science.gov (United States)

    Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L

    2000-04-03

    To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.

  20. A Comparison of Aerosolization and Homogenization Techniques for Production of Alginate Microparticles for Delivery of Corticosteroids to the Colon.

    Science.gov (United States)

    Samak, Yassmin O; El Massik, Magda; Coombes, Allan G A

    2017-01-01

    Alginate microparticles incorporating hydrocortisone hemisuccinate were produced by aerosolization and homogenization methods to investigate their potential for colonic drug delivery. Microparticle stabilization was achieved by CaCl 2 crosslinking solution (0.5 M and 1 M), and drug loading was accomplished by diffusion into blank microparticles or by direct encapsulation. Homogenization method produced smaller microparticles (45-50 μm), compared to aerosolization (65-90 μm). High drug loadings (40% wt/wt) were obtained for diffusion-loaded aerosolized microparticles. Aerosolized microparticles suppressed drug release in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) prior to drug release in simulated colonic fluid (SCF) to a higher extent than homogenized microparticles. Microparticles prepared using aerosolization or homogenization (1 M CaCl 2 , diffusion loaded) released 5% and 17% of drug content after 2 h in SGF and 4 h in SIF, respectively, and 75% after 12 h in SCF. Thus, aerosolization and homogenization techniques show potential for producing alginate microparticles for colonic drug delivery in the treatment of inflammatory bowel disease. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Aerosol-Assisted Fast Formulating Uniform Pharmaceutical Polymer Microparticles with Variable Properties toward pH-Sensitive Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Hong Lei

    2016-05-01

    Full Text Available Microencapsulation is highly attractive for oral drug delivery. Microparticles are a common form of drug carrier for this purpose. There is still a high demand on efficient methods to fabricate microparticles with uniform sizes and well-controlled particle properties. In this paper, uniform hydroxypropyl methylcellulose phthalate (HPMCP-based pharmaceutical microparticles loaded with either hydrophobic or hydrophilic model drugs have been directly formulated by using a unique aerosol technique, i.e., the microfluidic spray drying technology. A series of microparticles of controllable particle sizes, shapes, and structures are fabricated by tuning the solvent composition and drying temperature. It is found that a more volatile solvent and a higher drying temperature can result in fast evaporation rates to form microparticles of larger lateral size, more irregular shape, and denser matrix. The nature of the model drugs also plays an important role in determining particle properties. The drug release behaviors of the pharmaceutical microparticles are dependent on their structural properties and the nature of a specific drug, as well as sensitive to the pH value of the release medium. Most importantly, drugs in the microparticles obtained by using a more volatile solvent or a higher drying temperature can be well protected from degradation in harsh simulated gastric fluids due to the dense structures of the microparticles, while they can be fast-released in simulated intestinal fluids through particle dissolution. These pharmaceutical microparticles are potentially useful for site-specific (enteric delivery of orally-administered drugs.

  2. Polyelectrolyte microparticles for enhancing anode performance in an air–cathode μ-Liter microbial fuel cell

    International Nuclear Information System (INIS)

    Chen, Yan-Yu; Wang, Hsiang-Yu

    2015-01-01

    Highlights: • Microparticles with high consistency and surface area per volume are fabricated. • P(DADMAC) microparticles facilitate microorganism accumulation and charge transfer. • Microbes in microparticles are capable of proliferation and electricity generation. • Microparticles increase limiting current/power output to more than 200% of biofilm. • Microparticles decrease the anode charge-transfer resistance to 44% of biofilm. - Abstract: Microbial fuel cell (MFC) is considered an environmentally friendly energy source because it generates electrical power by digesting organic substrates in the wastewater. However, it is still challenging for MFC to become an economically affordable and highly efficient energy source due to its relatively low power output and coulombic efficiency. The aim of this study is to increase the performance of anode by using polyelectrolyte microparticles to facilitate the accumulation of microorganisms and the collection of electrons. The polyelectrolyte microparticle is subjected to microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and continuous electricity generation in an air–cathode μ-Liter MFC (μMFC) to validate its biocompatibility, ability in retaining redox species, reduced electron transfer resistance, and sustained energy generation. During the 168-hour operation, microorganisms proliferate inside the microparticle and generate around 250% power output and 200% limiting current of those from microorganism biofilm. The polyelectrolyte microparticle also decreased charge-transfer resistance of anode electrode in air–cathode μMFC by 56% compared with biofilm.

  3. Microparticles containing guaraná extract obtained by spray-drying technique: development and characterization

    Directory of Open Access Journals (Sweden)

    Traudi Klein

    Full Text Available AbstractGuaraná (Paullinia cupana Kunth, Sapindaceae is well known for its dietary and pharmaceutical potential, and the semipurified extract of guaraná shows antidepressant and panicolytic effects. However, the low solubility, bioavailability and stability of the semipurified extract limit its use as a component of pharmaceutical agents. Delivery of the semipurified extract in a microparticle form could help to optimize its stability. In this study, microparticles containing semipurified extract of guaraná were obtained by the spray-drying technique, using a combination of maltodextrin and gum arabic. The raw materials and microparticles produced were characterized by particle size analysis, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy. The drug content and antioxidant capacity were also evaluated. In vitrodissolution tests using flow cell dissolution apparatus, were carried out to investigate the influence of formulation parameters on the release of semipurified extract of guaraná from the microparticles. The spray-drying technique and the processing conditions selected gave satisfactory encapsulation efficiency (80–110% and product yield (55–60%. The mean diameter of microparticles was around 4.5 µm. The DPPH radical scavenging capacity demonstrated that microparticles can protect the semipurified extract of guaraná from the effect of high temperatures during the process maintained the antioxidant capacity. Differential scanning calorimetry results indicated an interaction between semipurified extract of guaraná and gum arabic: maltodextrin in the microparticles, and thermogravimetric analysis indicate that the profile curves of the microparticles are similar to the adjuvants used in drying, probably due to the higher proportion of adjuvants compared to semipurified extract of guaraná. In vitro dissolution tests demonstrate that all formulations complete dissolution within 60 min

  4. Preparation of bovine serum albumin hollow microparticles by the water-in-oil emulsion solvent diffusion technique for drug delivery applications

    International Nuclear Information System (INIS)

    Baimark, Y.; Srisa-Ard, M.; Srihaman, P.

    2012-01-01

    Biodegradable bovine serum albumin (BSA) hollow microparticles have been prepared by a single step and rapid water-in-oil emulsion solvent diffusion method without any emulsifiers and templates. Aqueous BSA solution and ethyl acetate were used as water and oil phases, respectively. BSA solution was cross-linked with polyethylene glycol diglycidyl ether (PEGDE) before microparticle formation. Methylene blue (MB) was used as a water-soluble model drug to entrap in the microparticle matrix. The non-cross-linked and cross-linked BSA microparticles contained empty core structure with outer smooth surface. Inner surface and matrix of hollow microparticles consisted void structure. Drug loading did not affect the microparticle morphology. Cumulative drug released from microparticles was decreased steadily as decreasing of MB ratio and increasing of PEGDE ratio. The BSA hollow microparticles may have potential application in controlled release drug delivery application. (author)

  5. Smart swelling biopolymer microparticles by a microfluidic approach: synthesis, in situ encapsulation and controlled release.

    Science.gov (United States)

    Fang, Aiping; Cathala, Bernard

    2011-01-01

    This paper reports a microfluidic synthesis of biopolymer microparticles aiming at smart swelling. Monodisperse aqueous emulsion droplets comprising biopolymer and its cross-linking agent were formed in mineral oil and solidified in the winding microfluidic channels by in situ chaotic mixing, which resulted in internal chemical gelation for hydrogels. The achievement of pectin microparticles from in situ mixing pectin with its cross-linking agent, calcium ions, successfully demonstrates the reliability of this microfluidic synthesis approach. In order to achieve hydrogels with smart swelling, the following parameters and their impacts on the swelling behaviour, stability and morphology of microparticles were investigated: (1) the type of biopolymers (alginate or mixture of alginate and carboxymethylcellulose, A-CMC); (2) rapid mixing; (3) concentration and type of cross-linking agent. Superabsorbent microparticles were obtained from A-CMC mixture by using ferric chloride as an additional external cross-linking agent. The in situ encapsulation of a model protein, bovine serum albumin (BSA), was also carried out. As a potential protein drug-delivery system, the BSA release behaviours of the biopolymer particles were studied in simulated gastric and intestinal fluids. Compared with alginate and A-CMC microparticles cross-linked with calcium ions, A-CMC microparticles cross-linked with both calcium and ferric ions demonstrate a significantly delayed release. The controllable release profile, the facile encapsulation as well as their biocompatibility, biodegradability, mucoadhesiveness render this microfluidic approach promising in achieving biopolymer microparticles as protein drug carrier for site-specific release. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Ferromagnetic resonance response of electron-beam patterned arrays of ferromagnetic nanoparticles

    Science.gov (United States)

    Jung, Sukkoo; Watkins, Byron; Feller, Jeffrey; Ketterson, John; Chandrasekhar, Venkat

    2001-03-01

    We report on the fabrication and the dynamic magnetic properties of periodic permalloy dot arrays. Electron-beam lithography and e-gun evaporation have been used to make the arrays with the aspect ratio of 2 (dot diameter : 40 nm, height : 80 nm) and periods of 100 - 200 nm. The magnetic properties of the arrays and their interactions have been investigated by ferromagnetic resonance (FMR), magnetic force microscopy (MFM), and SQUID magnetometry. The measured FMR data show that the position and magnitude of resonant absorption peaks strongly depend on the angle between magnetic field and the lattice structure. The results of dot arrays with various kinds of structural parameters will be presented. Supported by Army Research Office, DAAD19-99-1-0334/P001

  7. Peculiar long-range supercurrent in superconductor-ferromagnet-superconductor junction containing a noncollinear magnetic domain in the ferromagnetic region

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Hao, E-mail: menghao1982@shu.edu.cn [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China); National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Wu, Xiuqiang [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Ren, Yajie [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China)

    2015-01-14

    We study the supercurrent in clean superconductor-ferromagnet-superconductor heterostructure containing a noncollinear magnetic domain in the ferromagnetic region. It is demonstrated that the magnetic domain can lead to a spin-flip scattering process, which reverses the spin orientations of the singlet Cooper pair and simultaneously changes the sign of the corresponding electronic momentum. If the ferromagnetic layers on both sides of magnetic domain have the same features, the long-range proximity effect will take place. That is because the singlet Cooper pair will create an exact phase-cancellation effect and gets an additional π phase shift as it passes through the entire ferromagnetic region. Then, the equal spin triplet pair only exists in the magnetic domain region and can not diffuse into the other two ferromagnetic layers. So, the supercurrent mostly arises from the singlet Cooper pairs, and the equal spin triplet pairs are not involved. This result can provide a approach for generating the long-range supercurrent.

  8. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions

    International Nuclear Information System (INIS)

    Zou Jianfei; Jin Guojun; Ma Yuqiang

    2009-01-01

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  9. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions.

    Science.gov (United States)

    Zou, Jianfei; Jin, Guojun; Ma, Yu-Qiang

    2009-03-25

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  10. Free energy distribution function of a random Ising ferromagnet

    International Nuclear Information System (INIS)

    Dotsenko, Victor; Klumov, Boris

    2012-01-01

    We study the free energy distribution function of a weakly disordered Ising ferromagnet in terms of the D-dimensional random temperature Ginzburg–Landau Hamiltonian. It is shown that besides the usual Gaussian 'body' this distribution function exhibits non-Gaussian tails both in the paramagnetic and in the ferromagnetic phases. Explicit asymptotic expressions for these tails are derived. It is demonstrated that the tails are strongly asymmetric: the left tail (for large negative values of the free energy) is much slower than the right one (for large positive values of the free energy). It is argued that at the critical point the free energy of the random Ising ferromagnet in dimensions D < 4 is described by a non-trivial universal distribution function which is non-self-averaging

  11. Larmor diffraction in the ferromagnetic superconductor UGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Robert; Pfleiderer, Christian [Physik Department E21, TU Muenchen, D-85748 Garching (Germany); Sokolov, Dmitry; Huxley, Andrew [School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Keller, Thomas [MPI fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany)

    2010-07-01

    Larmor Diffaction (LD) is a neutron resonance spin-echo technique which allows the study of the lattice constant as well the distribution of lattice constants. It was traditionally thought that neutron spin-echo measurements cannot be used in materials such as superconductors or ferromagnets, because they strongly depolarize a polarized neutron beam. In UGe{sub 2} we are able to demonstrate that this technique may be applied in ferromagnetic superconductors with a magnetic Ising anisotropy. UGe{sub 2} exhibits two ferromagnetic phases which are separated by a transition at temperature T{sub x}. With increasing hydrostatic pressure superconductivity emerges at the pressure for which T{sub x} is suppressed. Using LD we studied the temperature dependence of the lattice constant as well as the distribution of lattice constants for all three axis of UGe{sub 2} down to 0.5 K and at pressures up to 12 kbar.

  12. Ballistic spin filtering across the ferromagnetic-semiconductor interface

    Directory of Open Access Journals (Sweden)

    Y.H. Li

    2012-03-01

    Full Text Available The ballistic spin-filter effect from a ferromagnetic metal into a semiconductor has theoretically been studied with an intention of detecting the spin polarizability of density of states in FM layer at a higher energy level. The physical model for the ballistic spin filtering across the interface between ferromagnetic metals and semiconductor superlattice is developed by exciting the spin polarized electrons into n-type AlAs/GaAs superlattice layer at a much higher energy level and then ballistically tunneling through the barrier into the ferromagnetic film. Since both the helicity-modulated and static photocurrent responses are experimentally measurable quantities, the physical quantity of interest, the relative asymmetry of spin-polarized tunneling conductance, could be extracted experimentally in a more straightforward way, as compared with previous models. The present physical model serves guidance for studying spin detection with advanced performance in the future.

  13. Ion beam induced effects on the ferromagnetism in Pd nanoparticles

    International Nuclear Information System (INIS)

    Kulriya, P. K.; Mehta, B. R.; Agarwal, D. C.; Agarwal, Kanika; Kumar, Praveen; Shivaprasad, S. M.; Avasthi, D. K.

    2012-01-01

    Present study demonstrates the role of metal-insulator interface and ion irradiation induced defects on the ferromagnetic properties of the non-magnetic materials. Magnetic properties of the Pd nanoparticles(NPs) embedded in the a-silica matrix synthesized using atom beam sputtering technique, were determined using SQUID magnetometry measurements which showed that ferromagnetic response of Pd increased by 3.5 times on swift heavy ion(SHI) irradiation. The ferromagnetic behavior of the as-deposited Pd NPs is due to strain induced by the surrounding matrix and modification in the electronic structure at the Pd-silica interface as revealed by insitu XRD and XPS investigations, respectively. The defects created by the SHI bombardment are responsible for enhancement of the magnetization in the Pd NPs.

  14. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Asamitsu, A.; Miyasato, T.; Abe, N.; Fujii, T.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and calcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by rigorous unified theory assuming both intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets and this behavior is expected from a conventional Boltzmann transport theory

  15. Collective spin wave and phonon excitations in ferromagnetic organic polymers

    International Nuclear Information System (INIS)

    Leong, Jit-Liang; Sun, Shih-Jye

    2013-01-01

    We proposed a model to investigate the properties of a conductive and ferromagnetic organic-polymer (OCP), which contains two collective excitations—spin wave and phonon—competing with each other; namely, the spin wave excitation accompanies the electron–phonon (e–ph) interactions in the conductive and ferromagnetic OCP. The ferromagnetism of the OCP is induced from the conductive carriers which couple with the phonon to become polarons. Due to the competition between both excitations, the Curie temperature (T C ) is sensitively suppressed by the e–ph interaction. In addition, an optimal T C with a small e–ph interaction exists in a specific density of conduction carrier, yet is contrary to the large e–ph interaction case. Furthermore, the dimerization, i.e. the atomic displacement induced from the e–ph interactions, increases with the strength of the e–ph interaction and decreases upon reaching the maximum dimerization. (paper)

  16. Magnetic decoupling of ferromagnetic metals through a graphene spacer

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, I.; Papagno, M. [Dipartimento di Fisica, Universitá della Calabria, Arcavacata di Rende (CS), 87036 (Italy); Ferrari, L. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Roma I-00133 (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy); Sheverdyaeva, P.M.; Mahatha, S.K. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy); Pacilé, D., E-mail: daniela.pacile@fis.unical.it [Dipartimento di Fisica, Universitá della Calabria, Arcavacata di Rende (CS), 87036 (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy); Carbone, C. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy)

    2017-03-15

    We study the magnetic coupling between different ferromagnetic metals (FMs) across a graphene (G) layer, and the role of graphene as a thin covalent spacer. Starting with G grown on a FM substrate (Ni or Co), we deposited on top at room temperature several FM metals (Fe, Ni, Co). By measuring the dichroic effect of 3p photoemission lines we detect the magnetization of the substrate and the sign of the exchange coupling in FM overlayer at room temperature. We show that the G layer magnetically decouples the FM metals. - Highlights: • The magnetic coupling between ferromagnets mediated by graphene is studied. • To this end, the linear dichroic effect in 3p photoemission lines is employed. • For selected junctions no magnetic coupling is attained through graphene. • Graphene inhibits the magnetic alignment that normally occurs between ferromagnets.

  17. Superconductivity near ferromagnetism in MgCNi3

    International Nuclear Information System (INIS)

    Rosner, H.; Weht, R.; Johannes, M.; Pickett, W.E.; Tosatti, E.

    2001-06-01

    Superconductivity and ferromagnetism have been believed to be incompatible over any extended temperature range until certain specific examples - RuSr 2 GdCu 2 O 8 and UGe 2 - have arisen in the past 2-3 years. The discovery of superconductivity above 8 K in MgCNi 3 , which is primarily the ferromagnetic element Ni and is strongly exchange-enhanced, provides a probable new and different example. This compound is shown here to be near ferromagnetism, requiring only hole-doping by 12% substitution of Mg by Na or Li. This system will provide the means to probe coupling, and possible coexistence, of these two forms of collective behavior without the requirement of pressure. (author)

  18. Development of an engineering model for ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Tani, Yoshiaki; Todaka, Takashi; Enokizono, Masato

    2008-01-01

    This paper presents a relationship among stress, temperature and magnetic properties of a ferromagnetic shape memory alloy. In order to derive an engineering model of ferromagnetic shape memory alloys, we have developed a measuring system of the relationship among stress, temperature and magnetic properties. The samples used in this measurement are Fe68-Ni10-Cr9-Mn7-Si6 wt% ferromagnetic shape memory alloy. They are thin ribbons made by rapid cooling in air. In the measurement, the ribbon sample is inserted into a sample holder winding consisting of the B-coil and compensation coils, and magnetized in an open solenoid coil. The ribbon is stressed with attachment weights and heated with a heating wire. The specific susceptibility was increased by applying tension, and slightly increased by heating below the Curie temperature

  19. Structural, magnetic and electrical properties of ferromagnetic/ferroelectric multilayers

    International Nuclear Information System (INIS)

    Sirena, M.; Kaul, E.; Guimpel, J.; Steren, L. B.; Pedreros, M. B.; Rodriguez, C. A.

    2011-01-01

    The La 0.75 Sr 0.25 MnO 3 (LSMO)/Ba 0.7 Sr 0.3 TiO 3 (BSTO) superlattices and bilayers, where LSMO is ferromagnetic and BSTO is ferroelectric, were grown by dc sputtering. X-ray diffraction indicates that the samples present a textured growth with the c axis perpendicular to the substrate. Magnetization measurements show a decrease of the sample's magnetization for decreasing ferromagnetic thickness. This effect could be related to the presence of biaxial strain and a magnetic dead layer in the samples. Conductive atomic force microscopy indicates that the samples present a total covering of the ferromagnetic layer for a ferroelectric thickness higher than four unit cells. Transport tunneling of the carriers seems to be the preferred conduction mechanism through the ferroelectric layer. These are promising results for the development of multiferroic tunnel junctions.

  20. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Miyasato, T.; Abe, N.; Fujii, T.; Asamitsu, A.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by a recent theory assuming both the intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets, and this behavior is expected from a conventional Boltzmann transport theory

  1. External and Intraparticle Diffusion of Coumarin 102 with Surfactant in the ODS-silica Gel/water System by Single Microparticle Injection and Confocal Fluorescence Microspectroscopy

    OpenAIRE

    NAKATANI, Kiyoharu; MATSUTA, Emi

    2015-01-01

    The release mechanism of coumarin 102 from a single ODS-silica gel microparticle into the water phase in the presence of Triton X-100 was investigated by confocal fluorescence microspectroscopy combined with the single microparticle injection technique. The release rate significantly depended on the Triton X-100 concentration in the water phase and was not limited by diffusion in the pores of the microparticle. The release rate constant was inversely proportional to the microparticle radius s...

  2. Dynamics of magnetization in ferromagnet with spin-transfer torque

    Science.gov (United States)

    Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming

    2014-11-01

    We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out

  3. Defect-band mediated ferromagnetism in Gd-doped ZnO thin films

    KAUST Repository

    Venkatesh, S.; Franklin, J. B.; Ryan, M. P.; Lee, J.-S.; Ohldag, Hendrik; McLachlan, M. A.; Alford, N. M.; Roqan, Iman S.

    2015-01-01

    . %) at low oxygen deposition pressure (<25 mTorr) were ferromagnetic at room temperature. Negative magnetoresistance, electric transport properties showed that the ferromagnetic exchange is mediated by a spin-split defect band formed due to oxygen deficiency

  4. Scattering of polarized low-energy electrons by ferromagnetic metals

    International Nuclear Information System (INIS)

    Helman, J.S.

    1981-01-01

    A source of spin polarized electrons with remarkable characteristics based on negative electron affinity (NEA) GaAs has recently been developed. It constitutes a unique tool to investigate spin dependent interactions in electron scattering processes. The characteristics and working principles of the source are briefly described. Some theoretical aspects of the scattering of polarized low-energy electrons by ferromagnetic metals are discussed. Finally, the results of the first polarized low-energy electron diffraction experiment using the NEA GaAs source are reviewed; they give information about the surface magnetization of ferromagnetic Ni (110). (Author) [pt

  5. Simulation of ferromagnetic nanomaterial flow of Maxwell fluid

    Science.gov (United States)

    Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.

    2018-03-01

    Ferromagnetic flow of rate type liquid over a stretched surface is addressed in this article. Heat and mass transport are investigated with Brownian movement and thermophoresis effects. Magnetic dipole is also taken into consideration. Procedure of similarity transformation is employed. The obtained nonlinear expressions have been tackled numerically by means of Shooting method. Graphical results are shown and analyzed for the impact of different variables. Temperature and concentration gradients are numerically computed in Tables 1 and 2. The results described here demonstrate that ferromagnetic variable boosts the thermal field. It is noticed that velocity and concentration profiles are higher when elastic and thermophoresis variables are enhanced.

  6. Spin-dependent dwell time through ferromagnetic graphene barrier

    International Nuclear Information System (INIS)

    Sattari, F.

    2014-01-01

    We investigated the dwell time of electrons tunneling through a ferromagnetic (FM) graphene barrier. The results show that the spin polarization can be efficiently controlled by the barrier width, barrier height, and the incident electron energy. Furthermore, it is found that electrons with different spin orientations will spend different times through the barrier. The difference of the dwell time between spin-up and spin-down electrons arises from the exchange splitting, which is induced by the FM strip. Study results indicate that a ferromagnetic graphene barrier can cause a nature spin filter mechanism in the time domain

  7. Phenomenology of the domain walls in thin ferromagnetic films

    International Nuclear Information System (INIS)

    Adam, G.

    1978-01-01

    The basic concepts and the main theoretical methods developed in the study of the domain walls in thin ferromagnetic films are given in this review. First, an insight into the origins and the classification criteria of the conceptually different wall structures is obtained by elementary considerations which are mainly based on the experimentally available data. Then, the more subtle aspect of the wall models dimensionality in soft ferromagnetic films is discussed. Finally, the various theoretical calculation methods of the wall parameters are summarized. (author)

  8. Spin-current diode with a ferromagnetic semiconductor

    International Nuclear Information System (INIS)

    Sun, Qing-Feng; Xie, X. C.

    2015-01-01

    Diode is a key device in electronics: the charge current can flow through the device under a forward bias, while almost no current flows under a reverse bias. Here, we propose a corresponding device in spintronics: the spin-current diode, in which the forward spin current is large but the reversed one is negligible. We show that the lead/ferromagnetic quantum dot/lead system and the lead/ferromagnetic semiconductor/lead junction can work as spin-current diodes. The spin-current diode, a low dissipation device, may have important applications in spintronics, as the conventional charge-current diode does in electronics

  9. 'Blocking' effects in magnetic resonance? The ferromagnetic nanowires case

    International Nuclear Information System (INIS)

    Ramos, C.A.; De Biasi, E.; Zysler, R.D.; Vassallo Brigneti, E.; Vazquez, M.

    2007-01-01

    We present magnetic resonance results obtained at L, X, and Q bands (1.2, 9.4 and 34GHz, respectively) on ferromagnetic nanowires with a hysteresis cycle characterized by a remanent magnetization M r /M s ∼0.92 and a coercive field H c =1.0kOe. The hysteretic response of the ferromagnetic resonance spectra is discussed in terms of independent contributions of the nanowires aligned along and opposite to the applied field. We will discuss the implications of this study on the magnetic resonance in nanoparticles and other systems with large anisotropy

  10. Influence of neutron irradiation on ferromagnetic metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Nasu, Saburo; Sitek, J.

    1992-01-01

    Transmission 57 Fe Moessbauer spectroscopy is used to study effects of neutron irradiation on magnetic properties of Fe-based ferromagnetic metallic glasses. Elastic stress centers are produced during the process of neutron irradiation as a result of atom mixing. Rearrangement of the atoms causes changes in the average value of the hyperfine field distribution and orientation of the net magnetic moment. They are shown to depend on the composition of the investigated samples. Cr-doped metallic glasses depict transformation from ferromagnetic to paramagnetic state at room temperature after neutron irradiation implying changes in the Curie temperature. Presence of Ni in the samples reduces the effects of radiation damage. (orig.)

  11. Modified Sucksmith balances for ferromagnetic and paramagnetic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, N; Myers, H P

    1962-02-15

    Two balances, one for measurement of ferromagnetic magnetisation, the other for paramagnetic susceptibility measurements, are described. Designs are based on Sucksmith's ring balance but the ring and optical lever system of the latter has been replaced by a strain gauge bridge, which allows the force on the magnetic specimens to be determined via potentiometer readings. The modified balances are very robust, insensitive to vibration and, if desired, suitable for direct recording. Relative accuracies of 0.3 % and 0.5 % are obtained respectively for the ferromagnetic and paramagnetic systems.

  12. Ferromagnetic shadow mask for spray coating of polymer patterns

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Bosco, Filippo; Boisen, Anja

    2013-01-01

    We present the fabrication of a wafer-scale shadow mask with arrays of circular holes with diameters of 150–400 μm. Standard UV photolithography is used to define 700 μm thick SU-8 structures followed by electroplating of nickel and etching of the template. The ferromagnetic properties of the sha......We present the fabrication of a wafer-scale shadow mask with arrays of circular holes with diameters of 150–400 μm. Standard UV photolithography is used to define 700 μm thick SU-8 structures followed by electroplating of nickel and etching of the template. The ferromagnetic properties...

  13. Crystal-field-modulated magnon squeezing states in a ferromagnet

    International Nuclear Information System (INIS)

    Peng Feng

    2003-01-01

    The magnon squeezing states in some magnetic crystals allow a reduction in the quantum fluctuations of the spin component to below the zero-point quantum noise level of the coherent magnon states. It is known that there are the magnon squeezing states in an antiferromagnet. However, their generating mechanism is not suitable for the ferromagnet. In this paper, we discuss the possibility of generating the magnon squeezing states in a ferromagnet, and discuss the effect of the crystal field on the magnon squeezing states

  14. Exact asymmetric Skyrmion in anisotropic ferromagnet and its helimagnetic application

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in

    2016-08-15

    Topological Skyrmions as intricate spin textures were observed experimentally in helimagnets on 2d plane. Theoretical foundation of such solitonic states to appear in pure ferromagnetic model, as exact solutions expressed through any analytic function, was made long ago by Belavin and Polyakov (BP). We propose an innovative generalization of the BP solution for an anisotropic ferromagnet, based on a physically motivated geometric (in-)equality, which takes the exact Skyrmion to a new class of functions beyond analyticity. The possibility of stabilizing such metastable states in helimagnets is discussed with the construction of individual Skyrmion, Skyrmion crystal and lattice with asymmetry, likely to be detected in precision experiments.

  15. Oxygen vacancy-induced ferromagnetism in un-doped ZnO thin films

    Science.gov (United States)

    Zhan, Peng; Wang, Weipeng; Liu, Can; Hu, Yang; Li, Zhengcao; Zhang, Zhengjun; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2012-02-01

    ZnO films became ferromagnetic when defects were introduced by thermal-annealing in flowing argon. This ferromagnetism, as shown by the photoluminescence measurement and positron annihilation analysis, was induced by the singly occupied oxygen vacancy with a saturated magnetization dependent positively on the amount of this vacancy. This study clarified the origin of the ferromagnetism of un-doped ZnO thin films and provides possibly an alternative way to prepare ferromagnetic ZnO films.

  16. Superconductivity and ferromagnetism in topological insulators

    Science.gov (United States)

    Zhang, Duming

    exist when topological insulators are interfaced with superconductors. The observation of Majorana fermions would not only be fundamentally important, but would also lead to applications in fault-tolerant topological quantum computation. By interfacing topological insulator nanoribbons with superconducting electrodes, we observe distinct signatures of proximity-induced superconductivity, which is found to be present in devices with channel lengths that are much longer than the normal transport characteristic lengths. This might suggest preferential coupling of the proximity effect to a ballistic surface channel of the topological insulator. In addition, when the electrodes are in the superconducting state, we observe periodic magnetoresistance oscillations which suggest the formation of vortices in the proximity-induced region of the nanoribbons. Our results demonstrate that proximity-induced superconductivity and vortices can be realized in our nanoribbon geometry, which accomplishes a first important step towards the search for Majorana fermions in condensed matter. In Chapter 5, I will discuss experiments on a magnetically-doped topological insulator (Mn-doped Bi2Se3) to induce a surface state gap. The metallic Dirac cone surface states of a topological insulator are expected to be protected against small perturbations by time-reversal symmetry. However, these surface states can be dramatically modified and a finite energy gap can be opened at the Dirac point by breaking the time-reversal symmetry via magnetic doping. The interplay between magnetism and topological surface states is predicted to yield novel phenomena of fundamental interest such as a topological magneto-electric effect, a quantized anomalous Hall effect, and the induction of magnetic monopoles. Our systematic measurements reveal a close correlation between the onset of ferromagnetism and quantum corrections to diffusive transport, which crosses over from the symplectic (weak anti-localization) to the

  17. Development of thiolated poly(acrylic acid) microparticles for the nasal administration of exenatide.

    Science.gov (United States)

    Millotti, Gioconda; Vetter, Anja; Leithner, Katharina; Sarti, Federica; Shahnaz Bano, Gul; Augustijns, Patrick; Bernkop-Schnürch, Andreas

    2014-12-01

    The purpose of this study was to develop a microparticulate formulation for nasal delivery of exenatide utilizing a thiolated polymer. Poly(acrylic acid)-cysteine (PAA-cys) and unmodified PAA microparticles loaded with exenatide were prepared via coprecipitation of the drug and the polymer followed by micronization. Particle size, drug load and release of incorporated exenatide were evaluated. Permeation enhancing properties of the formulations were investigated on excised porcine respiratory mucosa. The viability of the mucosa was investigated by histological studies. Furthermore, ciliary beat frequency (CBF) studies were performed. Microparticles displayed a mean size of 70-80 µm. Drug encapsulation was ∼80% for both thiolated and non-thiolated microparticles. Exenatide was released from both thiolated and non-thiolated particles in comparison to exenatide in buffer only within 40 min. As compared to exenatide dissolved in buffer only, non-thiolated and thiolated microparticles resulted in a 2.6- and 4.7-fold uptake, respectively. Histological studies performed before and after permeation studies showed that the mucosa is not damaged during permeation studies. CBF studies showed that the formulations were cilio-friendly. Based on these results, poly(acrylic acid)-cysteine-based microparticles seem to be a promising approach starting point for the nasal delivery of exenatide.

  18. Use of the spray chilling method to deliver hydrophobic components: physical characterization of microparticles

    Directory of Open Access Journals (Sweden)

    Izabela Dutra Alvim

    2013-02-01

    Full Text Available Food industry has been developing products to meet the demands of increasing number of consumers who are concerned with their health and who seek food products that satisfy their needs. Therefore, the development of processed foods that contain functional components has become important for this industry. Microencapsulation can be used to reduce the effects of processing on functional components and preserve their bioactivity. The present study investigated the production of lipid microparticles containing phytosterols by spray chilling. The matrices comprised mixtures of stearic acid and hydrogenated vegetable fat, and the ratio of the matrix components to phytosterols was defined by an experimental design using the mean diameters of the microparticles as the response variable. The melting point of the matrices ranged from 44.5 and 53.4 ºC. The process yield was melting point dependent; the particles that exhibited lower melting point had greater losses than those with higher melting point. The microparticles' mean diameters ranged from 13.8 and 32.2 µm and were influenced by the amount of phytosterols and stearic acid. The microparticles exhibited spherical shape and typical polydispersity of atomized products. From a technological and practical (handling, yield, and agglomeration points of view, lipid microparticles with higher melting point proved promising as phytosterol carriers.

  19. Heparin induced alterations in clearance and distribution of blood-borne microparticles following operative trauma.

    Science.gov (United States)

    Saba, T M; Antikatzides, T G

    1979-04-01

    The influence of systemic heparin administration on the vascular clearance and tissue distribution of blood-borne microparticles was evaluated in normal rats and rats after operation (laparotomy plus intestinal manipulation) utilizing an (131)I- colloid which is phagocytized by the reticuloendothelial system (RES). Intravenous heparin administration (100 USP/100g body weight) into normal animals three minutes prior to colloid injection (50 mg/lOOg) induced a significant increase in pulmonary localization of the microparticles as compared to nonheparinized control rats, while hepatic and splenic uptake were decreased. Surgical trauma decreased hepatic RE uptake and increased pulmonary localization of the microparticles when injected systemically at 60 minutes postsurgery. Heparin administration 60 minutes after surgery and three minutes prior to colloid injection, magnified the increased pulmonary localization response with an associated further depression of the RES. The ability of heparin to alter both RE clearance function and lung localization of microparticles was dose dependent and a function of the interval between heparin administration and systemic particulate infusion. Thus, low dose heparin administration was capable of stimulating RE activity while heparin in doses of excess of 50 USP units/lOOg body weight decreased RE function. These findings suggest that the functional state of the hepatic RE system can be greatly affected in a dose-dependent manner by systemic heparin administration which may influence distribution of blood-borne microparticles.

  20. Formulation and Evaluation of Organogels Containing Hyaluronan Microparticles for Topical Delivery of Caffeine.

    Science.gov (United States)

    Simsolo, Erol Eli; Eroğlu, İpek; Tanrıverdi, Sakine Tuncay; Özer, Özgen

    2018-04-01

    Cellulite is a dermal disorder including the extracellular matrix, the lymphatic and microcirculatory systems and the adipose tissue. Caffeine is used as the active moiety depending its preventive effect on localization of fat in the cellular structure. Hyaluronic acid (hyaluronan-HA) is a natural constituent of skin that generates formation and poliferation of new cells having a remarkable moisturizing ability. The aim of this study is to formulate HA microparticles loaded with caffeine via spray-drying method. Resulting microparticle formulations (33.97 ± 0.3 μm, span < 2, 88.56 ± 0.42% encapsulation efficiency) were distributed in lecithin organogels to maintain the proper viscosity for topical application. Following the characterization and cell culture studies, in vitro drug release and ex vivo permeation studies were performed. The accumulated amount of caffeine was twice higher than the aqueous solution for the microparticle-loaded organogels at 24 h (8262,673 μg/cm 2 versus 4676,691 μg/cm 2 ). It was related to the sustained behaviour of caffeine release from the microparticles. As a result, lecithin organogel containing HA-encapsulated microparticles could be considered as suitable candidate formulations for efficient topical drug delivery system of caffeine. In addition to that, synergistic effect of this combination appears as a promising approach for long-acting treatment of cellulite.

  1. Biosensing utilizing the motion of magnetic microparticles in a microfluidic system

    KAUST Repository

    Giouroudi, Ioanna

    2010-10-23

    The study for the design of a compact and inexpensive biosensing device, which can be operated either by primary care personnel or by patients as opposed to skilled operators, is presented. The main parts of the proposed device are a microfluidic channel, permanent magnets and functionalized magnetic microparticles. The innovative aspect of the proposed biosensing method is that it utilizes the volumetric increase of magnetic microparticles when analyte binds to their surface. Their velocity decreases drastically when they are accelerated by an externally applied magnetic force within a microfluidic channel. This effect is utilized to detect the presence of analyte e.g. microbes. Analytical calculations showed that a decrease in velocity of approximately 23% can be achieved due to the volumetric change of a magnetic microparticle of View the MathML source1μm diameter when HIV virions of approximately View the MathML source0,135μm are bound to its surface and by keeping its magnetic properties the same. Preliminary experiments were carried out utilizing superparamagnetic microparticles coated with streptavidin and polystyrene microparticles coated with biotin.

  2. Effect of cracks in coating on gas release from a fuel microparticle

    International Nuclear Information System (INIS)

    Bondarenko, A.G.; Gudkov, A.N.; Tselishchev, Yu.V.

    1988-01-01

    Effect of cracks in protective coating on gas release from a fuel microparticle is investigated in a general form. A fuel microparticle comprizing a kern, a buffer layer and an external protective coating is considered. The pressure of radioactive inert gases in the microparticle buffer layer is evaluated within the 1000-1800 K temperature range on the base of diffusion-defect-trap transport theory. It is shown that the process of radionuclide adsorption interaction with the coating material leads to a more abrupt than by exponent, weakening of mass transfer coefficient. In this case for long-living isotopes the effect of adsorption processes manifests weaker than for short-living ones. Mass transfer coefficient for the crack system depends sufficiently on the total pressure of gas mixture under the coating while for a single cracks such dependence is not observed. A conclusion is drawn that the obtained ratios can be applied for evaluating the character of fuel microparticle protective coating destruction (single non-intersecting cracks or a crack system) using the data on various nuclide release. These ratios can be also applied for the choice of the coating thichness under which gaseous fission product release from the fuel microparticle in case of its protective coating failure does not exceed the acceptable limits

  3. Effect of strenuous physical exercise on circulating cell-derived microparticles.

    Science.gov (United States)

    Chaar, Vicky; Romana, Marc; Tripette, Julien; Broquere, Cédric; Huisse, Marie-Geneviève; Hue, Olivier; Hardy-Dessources, Marie-Dominique; Connes, Philippe

    2011-01-01

    Strenuous exercise is associated with an inflammatory response involving the activation of several types of blood cells. In order to document the specific activation of these cell types, we studied the effect of three maximal exercise tests conducted to exhaustion on the quantitative and qualitative pattern of circulating cell-derived microparticles and inflammatory molecules in healthy subjects. This study mainly indicated that the plasma concentration of microparticles from platelets and polymorphonuclear neutrophils (PMN) was increased immediately after the strenuous exercise. In addition, the increase in plasma concentration of microparticles from PMN and platelets was still observed after 2 hours of recovery. A similar pattern was observed for the IL-6 plasma level. In contrast, no change was observed for either soluble selectins or plasma concentration of microparticles from red blood cells, monocytes and endothelial cells. In agreement, sVCAM-1 and sICAM-1 levels were not changed by the exercise. We conclude that a strenuous exercise is accompanied by platelet- and PMN-derived microparticle production that probably reflects the activation of these two cell types.

  4. Selective microrobot control using a thermally responsive microclamper for microparticle manipulation

    International Nuclear Information System (INIS)

    Go, Gwangjun; Choi, Hyunchul; Ko, Seong Young; Park, Jong-Oh; Park, Sukho; Jeong, Semi

    2016-01-01

    Microparticle manipulation using a microrobot in an enclosed environment, such as a lab-on-a-chip, has been actively studied because an electromagnetic actuated microrobot can have accurate motility and wireless controllability. In most studies on electromagnetic actuated microrobots, only a single microrobot has been used to manipulate cells or microparticles. However, the use of a single microrobot can pose several limitations when performing multiple roles in microparticle manipulation. To overcome the limitations associated with using a single microrobot, we propose a new method for the control of multiple microrobots. Multiple microrobots can be controlled independently by an electromagnetic actuation system and multiple microclampers combined with microheaters. To select a specific microrobot among multiple microrobots, we propose a microclamper composed of a clamper structure using thermally responsive hydrogel and a microheater for controlling the microclamper. A fundamental test of the proposed microparticle manipulation system is performed by selecting a specific microrobot among multiple microrobots. Through the independent locomotion of multiple microrobots with U- and V-shaped tips, heterogeneous microparticle manipulation is demonstrated in the creation of a two-dimensional structure. In the future, our proposed multiple-microrobot system can be applied to tasks that are difficult to perform using a single microrobot, such as cell manipulation, cargo delivery, tissue assembly, and cloning. (paper)

  5. Polyamide Microparticles Containing Vitamin C by Interfacial Polymerization: An Approach by Design of Experimentation

    Directory of Open Access Journals (Sweden)

    Lionel Ripoll

    2016-11-01

    Full Text Available Vitamin C is widely use in cosmetics and pharmaceutics products for its active properties. However ascorbic acid shows unfavourable chemical instability such as oxidation leading to formulation problems. Therefore, carriers, such as micro- and nanoparticles, have been widely investigated as delivery systems for vitamin C to improve its beneficial effects in skin treatment. However, none of the previous studies have been able to produce microparticles with a high encapsulation entrapment of vitamin C. The aim of the present study is to use an experimental design to optimize the synthesis of polyamide microparticles for the delivery of ascorbic acid. The effect of four formulation parameters on microparticles properties (size and morphology, encapsulation efficiency and yield, release kinetics were investigated using a surface response design. Finally, we were able to obtain stable microparticles containing more than 65% of vitamin C. This result confirms the effectiveness of using design of experiments for the optimisation of microparticle formulation and supports the proposal of using them as candidate for the delivery of vitamin C in skin treatment.

  6. Suppression of the ferromagnetic state by disorder in the Kondo lattice

    International Nuclear Information System (INIS)

    Crisan, M.; Popoviciu, C.

    1992-01-01

    This paper reports that ferromagnetic ground state of a Kondo lattice with a low concentration of conduction electrons is ferromagnetic. Assuming the existence of disorder in the Fermi liquid of the conduction electrons the authors show that the ferromagnetic state can be suppressed by the effect of the spin fluctuations of the disordered Fermi liquid

  7. Test of the fast thin-film ferromagnetic shutters for ultracold neutrons

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.; Novopol'tsev, M.I.; Geltenbort, P.

    2008-01-01

    Test of thin-film ferromagnetic shutters of two types for ultracold neutrons has been performed. The first type is based on neutron reflection from the sequence of successively placed thin ferromagnetic layers with oppositely directed magnetization. The second one is based on neutron refraction in ferromagnetic foils inserted in the beam

  8. One-Step Production of Protein-Loaded PLGA Microparticles via Spray Drying Using 3-Fluid Nozzle

    DEFF Research Database (Denmark)

    Wan, Feng; Maltesen, Morten Jonas; Andersen, Sune Klint

    2014-01-01

    The aim of this study was to investigate the potential of using a spray-dryer equipped with a 3-fluid nozzle to microencapsulate protein drugs into polymeric microparticles.......The aim of this study was to investigate the potential of using a spray-dryer equipped with a 3-fluid nozzle to microencapsulate protein drugs into polymeric microparticles....

  9. Effect of poly(lactide-co-glycolide) molecular weight on the release of dexamethasone sodium phosphate from microparticles.

    Science.gov (United States)

    Jaraswekin, Saowanee; Prakongpan, Sompol; Bodmeier, Roland

    2007-03-01

    The objective of this study was to investigate the effect of poly(lactide-co-glycolide) (PLGA) molecular weight (Resomer RG 502H, RG 503H, and RG 504H) on the release behavior of dexamethasone sodium phosphate-loaded microparticles. The microparticles were prepared by three modifications of the solvent evaporation method (O/W-cosolvent, O/W-dispersion, and W/O/W-methods). The encapsulation efficiency of microparticles prepared by the cosolvent- and W/O/W-methods increased from approximately 50% to >90% upon addition of NaCl to the external aqueous phase, while the dispersion method resulted in lower encapsulation efficiencies. The release of dexamethasone sodium phosphate from PLGA microparticles (>50 microm) was biphasic. The initial burst release correlated well with the porosity of the microparticles, both of which increased with increasing polymer molecular weight (RG 504H > 503H > 502H). The burst was also dependent on the method of preparation and was in the order of dispersion method > WOW method > consolvent method. In contrast to the higher molecular weight PLGA microparticles, the release from RG 502H microparticles prepared by cosolvent method was not affected by volume of organic solvent (1.5-3.0 ml) and drug loading (4-13%). An initial burst of approximately 10% followed by a 5-week sustained release phase was obtained. Microparticles with a size <50 microm released in a triphasic manner; an initial burst was followed by a slow release phase and then by a second burst.

  10. Neurokinin 1 Receptor Mediates Membrane Blebbing and Sheer Stress-Induced Microparticle Formation in HEK293 Cells

    Science.gov (United States)

    Chen, Panpan; Douglas, Steven D.; Meshki, John; Tuluc, Florin

    2012-01-01

    Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2–10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing. PMID:23024816

  11. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Panpan Chen

    Full Text Available Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP. We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.

  12. Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface

    Science.gov (United States)

    Yu, Ying-Song; Xia, Xue-Lian; Zheng, Xu; Huang, Xianfu; Zhou, Jin-Zhi

    2017-09-01

    In this paper, evaporation of sessile water droplets containing fluorescent polystyrene (PS) microparticles on polydimethylsiloxane (PDMS) surfaces with different curing ratios was studied experimentally using laser confocal microscopy. At the beginning, there were some microparticles located at the contact line and some microparticles moved towards the line. Due to contact angle hysteresis, at first both the contact line and the microparticles were pinned. With the depinning contact line, the microparticles moved together spontaneously. Using the software ImageJ, the location of contact lines at different time were acquired and the circle centers and radii of the contact lines were obtained via the least square method. Then the average distance of two neighbor contact lines at a certain time interval was obtained to characterize the motion of the contact line. Fitting the distance-time curve at the depinning contact line stage with polynomials and differentiating the polynomials with time, we obtained the velocity and acceleration of both the contact line and the microparticles located at the line. The velocity and the maximum acceleration were, respectively, of the orders of 1 μm/s and 20-200 nm/s2, indicating that the motion of the microparticles located at the depinning contact line was quasi-static. Finally, we presented a theoretical model to describe the quasi-static process, which may help in understanding both self-pinning and depinning of microparticles.

  13. The Emerging Roles of Microparticles in Diabetic Nephropathy.

    Science.gov (United States)

    Lu, Chen Chen; Ma, Kun Ling; Ruan, Xiong Zhong; Liu, Bi Cheng

    2017-01-01

    Microparticles (MPs) are a type of extracellular vesicles (EVs) shed from the outward budding of plasma membranes during cell apoptosis and/or activation. These microsized particles then release specific contents (e.g., lipids, proteins, microRNAs) which are active participants in a wide range of both physiological and pathological processes at the molecular level, e.g., coagulation and angiogenesis, inflammation, immune responses. Research limitations, such as confusing nomenclature and overlapping classification, have impeded our comprehension of these tiny molecules. Diabetic nephropathy (DN) is currently the greatest contributor to end-stage renal diseases (ESRD) worldwide, and its public health impact will continue to grow due to the persistent increase in the prevalence of diabetes mellitus (DM). MPs have recently been considered as potentially involved in DN onset and progression, and this review juxtaposes some of the research updates about the possible mechanisms from several relevant aspects and insights into the therapeutic perspectives of MPs in clinical management and pharmacological treatment of DN patients.

  14. Membrane Protected Apoptotic Trophoblast Microparticles Contain Nucleic Acids

    Science.gov (United States)

    Orozco, Aaron F.; Jorgez, Carolina J.; Horne, Cassandra; Marquez-Do, Deborah A.; Chapman, Matthew R.; Rodgers, John R.; Bischoff, Farideh Z.; Lewis, Dorothy E.

    2008-01-01

    Microparticles (MPs) that circulate in blood may be a source of DNA for molecular analyses, including prenatal genetic diagnoses. Because MPs are heterogeneous in nature, however, further characterization is important before use in clinical settings. One key question is whether DNA is either bound to aggregates of blood proteins and lipid micelles or intrinsically associated with MPs from dying cells. To test the latter hypothesis, we asked whether MPs derived in vitro from dying cells were similar to those in maternal plasma. JEG-3 cells model extravillous trophoblasts, which predominate during the first trimester of pregnancy when prenatal diagnosis is most relevant. MPs were derived from apoptosis and increased over 48 hours. Compared with necrotic MPs, DNA in apoptotic MPs was more fragmented and resistant to plasma DNases. Membrane-specific dyes indicated that apoptotic MPs had more membranous material, which protects nucleic acids, including RNA. Flow cytometry showed that MPs derived from dying cells displayed light scatter and DNA staining similar to MPs found in maternal plasma. Quantification of maternal MPs using characteristics defined by MPs generated in vitro revealed a significant increase of DNA+ MPs in the plasma of women with preeclampsia compared with plasma from women with normal pregnancies. Apoptotic MPs are therefore a likely source of stable DNA that could be enriched for both early genetic diagnosis and monitoring of pathological pregnancies. PMID:18974299

  15. Microparticles: A New Perspective in Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Stephanie M. Schindler

    2014-01-01

    Full Text Available Microparticles (MPs are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μm. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer’s disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS.

  16. Cryogenic transmission electron microscopy nanostructural study of shed microparticles.

    Directory of Open Access Journals (Sweden)

    Liron Issman

    Full Text Available Microparticles (MPs are sub-micron membrane vesicles (100-1000 nm shed from normal and pathologic cells due to stimulation or apoptosis. MPs can be found in the peripheral blood circulation of healthy individuals, whereas elevated concentrations are found in pregnancy and in a variety of diseases. Also, MPs participate in physiological processes, e.g., coagulation, inflammation, and angiogenesis. Since their clinical properties are important, we have developed a new methodology based on nano-imaging that provides significant new data on MPs nanostructure, their composition and function. We are among the first to characterize by direct-imaging cryogenic transmitting electron microscopy (cryo-TEM the near-to-native nanostructure of MP systems isolated from different cell types and stimulation procedures. We found that there are no major differences between the MP systems we have studied, as most particles were spherical, with diameters from 200 to 400 nm. However, each MP population is very heterogeneous, showing diverse morphologies. We investigated by cryo-TEM the effects of standard techniques used to isolate and store MPs, and found that either high-g centrifugation of MPs for isolation purposes, or slow freezing to -80 °C for storage introduce morphological artifacts, which can influence MP nanostructure, and thus affect the efficiency of these particles as future diagnostic tools.

  17. Microparticles as players in the pathogenesis of cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Alexandru, N.; Georgescu, A.

    2015-07-01

    Cardiovascular diseases (CVD) are the largest cause of morbidity and mortality in the world and include all diseases and conditions of the heart and blood vessels. The main cause of most CVD is atherosclerosis, which is an abnormal build-up of fat and other substances which form plaque inside the arteries. Atherosclerosis is most serious when it leads to reduced or blocked blood supply to the heart (causing angina or heart attack) or to the brain (causing a stroke). The majority of CVD is caused by risk factors that can be controlled, treated or modified. Microparticles (MPs) are now recognized as potential biomarkers and key elements in the development of CVD. Although MP generation is a physiological phenomenon, their shedding from a variety of cell types into body fluid is intensified in response to cellular activation, high shear stress, as well as cellular apoptosis. In this review we outline distinct aspect of MP generation and their side as players n the CVD development.

  18. Optimization of scaled-up chitosan microparticles for bone regeneration

    International Nuclear Information System (INIS)

    Jayasuriya, A Champa; Bhat, Archana

    2009-01-01

    The aim of this study was to scale-up and optimize the chitosan (CS) microparticles (MPs) from 1x batch (41-85 mg) to 4x batch (270-567 mg) to be used in bone regeneration. The MPs used in the present study were prepared by double emulsification technique using CS as a base material under physiologically friendly conditions throughout the process. Structural integrity of MPs was improved creating cross-links between amine groups in CS and phosphate groups in tripolyphosphate (TPP) which has been used as an ionic cross-linking agent. The cross-linking density was varied using different amounts of TPP to CS such as 0%, 8%, 32%, 64% and 110% (w/w). The CS MPs were approximately spherical in shape with a size of 30-50 μm according to scanning electron microscopy results. X-ray diffraction data revealed having TPP in the CS MPs. The evidence of ionic cross-links in the CS MPs was analyzed using Fourier Transform Infra Red. When we scaled-up the yield of MPs, we investigated that 64% TPP cross-linking density provided the best quality MPs. In addition, those MPs provided the yield from 75 mg to 310 mg when scaled up from 1x to 4x batch, respectively. The MPs developed have a great potential to be used as an injectable scaffold for bone regeneration including orthopedic and craniofacial applications using minimally invasive conditions compared with conventional three-dimensional scaffolds.

  19. Microparticle tracking velocimetry as a tool for microfluidic flow measurements

    Science.gov (United States)

    Salipante, Paul; Hudson, Steven D.; Schmidt, James W.; Wright, John D.

    2017-07-01

    The accurate measurement of flows in microfluidic channels is important for commercial and research applications. We compare the accuracy of flow measurement techniques over a wide range flows. Flow measurements made using holographic microparticle tracking velocimetry (µPTV) and a gravimetric flow standard over the range of 0.5-100 nL/s agree within 0.25%, well within the uncertainty of the two flow systems. Two commercial thermal flow sensors were used as the intermediaries (transfer standards) between the two flow measurement systems. The gravimetric flow standard was used to calibrate the thermal flow sensors by measuring the rate of change of the mass of liquid in a beaker on a micro-balance as it fills. The holographic µPTV flow measurements were made in a rectangular channel and the flow was seeded with 1 µm diameter polystyrene spheres. The volumetric flow was calculated using the Hagen-Pouiseille solution for a rectangular channel. The uncertainty of both flow measurement systems is given. For the gravimetric standard, relative uncertainty increased for decreasing flows due to surface tension forces between the pipette carrying the flow and the free surface of the liquid in the beaker. The uncertainty of the holographic µPTV measurements did not vary significantly over the measured flow range, and thus comparatively are especially useful at low flow velocities.

  20. Chained Iron Microparticles for Directionally Controlled Actuation of Soft Robots.

    Science.gov (United States)

    Schmauch, Marissa M; Mishra, Sumeet R; Evans, Benjamin A; Velev, Orlin D; Tracy, Joseph B

    2017-04-05

    Magnetic field-directed self-assembly of magnetic particles in chains is useful for developing directionally responsive materials for applications in soft robotics. Using materials with greater complexity allows advanced functions, while still using simple device architectures. Elastomer films containing chained magnetic microparticles were prepared through solvent casting and formed into magnetically actuated lifters, accordions, valves, and pumps. Chaining both enhances actuation and imparts a directional response. Cantilevers used as lifters were able to lift up to 50 times the mass of the polymer film. We introduce the "specific torque", the torque per field per mass of magnetic particles, as a figure of merit for assessing and comparing the performance of lifters and related devices. Devices in this work generated specific torques of 68 Nm/kgT, which is significantly higher than in previously reported actuators. Applying magnetic fields to folded accordion structures caused extension and compression, depending on the accordion's orientation. In peristaltic pumps comprised of composite tubes containing embedded chains, magnetic fields caused a section of the tube to pinch closed where the field was applied. These results will facilitate both the further development of soft robots based on chained magnetic particles and efforts to engineer materials with higher specific torque.

  1. Microparticle Analysis in Disorders of Hemostasis and Thrombosis

    Science.gov (United States)

    Mooberry, Micah J.; Key, Nigel S.

    2015-01-01

    Microparticles (MPs) are submicron vesicles released from the plasma membrane of eukaryotic cells in response to activation or apoptosis. MPs are known to be involved in numerous biologic processes, including inflammation, the immune response, cancer metastasis, and angiogenesis. Their earliest recognized and most widely accepted role, however, is the ability to promote and support the process of blood coagulation. Consequently, there is ongoing interest in studying MPs in disorders of hemostasis and thrombosis. Both phosphatidylserine (PS) exposure and the presence of tissue factor (TF) in the MP membrane may account for their procoagulant properties, and elevated numbers of MPs in plasma have been reported in numerous prothrombotic conditions. To date, however, there are few data on true causality linking MPs to the genesis of thrombosis. A variety of methodologies have been employed to characterize and quantify MPs, although detection is challenging due to their submicron size. Flow cytometry (FCM) remains the most frequently utilized strategy for MP detection; however, it is associated with significant technological limitations. Additionally, pre-analytical and analytical variables can influence the detection of MPs by FCM, rendering data interpretation difficult. Lack of methodologic standardization in MP analysis by FCM confounds the issue further, although efforts are currently underway to address this limitation. Moving forward, it will be important to address these technical challenges as a scientific community if we are to better understand the role that MPs play in disorders of hemostasis and thrombosis. PMID:25704723

  2. [Cell-derived microparticles unveil their fibrinolytic and proteolytic function].

    Science.gov (United States)

    Doeuvre, Loïc; Angles-Cano, Eduardo

    2009-01-01

    Cell-derived microparticles (MP) are membrane microvesicles, 0.1-1 microm in size, shed by cells following activation or during apoptosis in a variety of pathological conditions. MPs released by blood cells or by vascular endothelial cells display molecular signatures that allow their identification and functional characterization. In addition, they provide tissue factor (TF) and a procoagulant phospholipid surface. Therefore, at present, the most strongly established applied research on MPs is their procoagulant activity as a determinant of thrombotic risk in various clinical conditions. Previous studies have indicated that MPs derived from malignant cells express matrix metalloproteinases, urokinase and its receptor (uPA/uPAR) that, in the presence of plasminogen, may act in concert to degrade extracellular matrix proteins. Recently, it was shown that MPs from TNFa-stimulated endothelial cells served as a surface for interaction with plasminogen and its conversion into plasmin by the uPA/uPAR system expressed at their surface. This capacity of MPs to promote plasmin generation confers them a new profibrinolytic and proteolytic function that may be of relevance in fibrinolysis, cell migration, angiogenesis, dissemination of malignant cells, cell detachment and apoptosis.

  3. Mesenchymal stem cell-derived microparticles: a promising therapeutic strategy.

    Science.gov (United States)

    Tan, Xi; Gong, Yong-Zhen; Wu, Ping; Liao, Duan-Fang; Zheng, Xi-Long

    2014-08-18

    Mesenchymal stem cells (MSCs) are multipotent stem cells that give rise to various cell types of the mesodermal germ layer. Because of their unique ability to home in on injured and cancerous tissues, MSCs are of great potential in regenerative medicine. MSCs also contribute to reparative processes in different pathological conditions, including cardiovascular diseases and cancer. However, many studies have shown that only a small proportion of transplanted MSCs can actually survive and be incorporated into host tissues. The effects of MSCs cannot be fully explained by their number. Recent discoveries suggest that microparticles (MPs) derived from MSCs may be important for the physiological functions of their parent. Though the physiological role of MSC-MPs is currently not well understood, inspiring results indicate that, in tissue repair and anti-cancer therapy, MSC-MPs have similar pro-regenerative and protective properties as their cellular counterparts. Thus, MSC-MPs represent a promising approach that may overcome the obstacles and risks associated with the use of native or engineered MSCs.

  4. Microparticles: A New Perspective in Central Nervous System Disorders

    Science.gov (United States)

    Schindler, Stephanie M.; Little, Jonathan P.

    2014-01-01

    Microparticles (MPs) are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μm. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS) have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer's disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS. PMID:24860829

  5. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs

    DEFF Research Database (Denmark)

    Wen, Yanhong; Gallego, Monica Ramos; Nielsen, Lene Feldskov

    2013-01-01

    /DS or Alg/CS/DS particles in the mPEG-PLGA microparticles were significantly dependent on the operating conditions, including the flow rate ratio (Qout/Qin) and the viscosity of the polymer solutions (Vout, Vin) between the outer and the inner feeding channels. The core-shell composite microparticles.......e. more sustainable cell growth was induced by the DS released from the core-shell composite microparticles comprising Alg/CS/DS particles. After seeding fibroblasts onto the composite microparticles, excellent cell adhesion was observed, and a successful assembly of the cell-scaffold constructs...... was induced within 7 days. Therefore, the present study demonstrates a novel strategy for fabrication of core-shell composite microparticles comprising additional particulate drug carriers in the core, which provides controlled delivery of DS and favorable cell biocompatibility; an approach to potentially...

  6. Facile moldless fabrication of disk-shaped and reed blood cell-like microparticles using photopolymerization of tripropylene glycol diacrylate

    International Nuclear Information System (INIS)

    Choi, Jongchul; Won, June; Song, Simon

    2014-01-01

    A facile method for the moldless fabrication of 2- or 3-dimensional microparticles is proposed by using a photopolymerization technique. Using only a monomer solution of tripropylene glycol diacrylate, a film mask and standard UV lithography equipment, we were able to fabricate microparticles of various shapes, such as disks, dimpled disks similar in shape to red blood cells, and slender gourd shapes, unlike previous moldless fabrication techniques requiring expensive and/or sophisticated equipment. The simple method could produce more than one million particles in a single batch, indicating that it can be applied to the mass production of polymer microparticles. Analyses of scanning electron micrographs and optical micrographs of the microparticles indicated that their size distribution was highly monodisperse. Detailed fabrication processes and statistics on the microparticle sizes are given in this paper. (technical note)

  7. Josephson junctions with ferromagnetic alloy interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Nico

    2015-07-23

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially

  8. Josephson junctions with ferromagnetic alloy interlayer

    International Nuclear Information System (INIS)

    Himmel, Nico

    2015-01-01

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO x vertical stroke Nb vertical stroke Ni 60 Cu 40 vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially a variation of

  9. Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials

    International Nuclear Information System (INIS)

    Štrbík, V.; Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V.; Knoška, J.; Gál, N.; Chromik, Š.; Sojková, M.; Pisarčík, M.

    2017-01-01

    Highlights: • Superconductor-ferromagnet-superconductor nanojunction. • Nanojunctions prepared by Ga"3"+ focused ion beam patterning. • Indication of triplet Cooper pair component in junction superconducting current. • Qualitative agreement with theoretical model. - Abstract: The lateral superconductor-ferromagnet–superconductor (SFS) nanojunctions based on high critical temperature superconductor YBa_2Cu_3O_x (YBCO) and half-metallic ferromagnet La_0_._6_7Sr_0_._3_3MnO_3 (LSMO) thin films were prepared to investigate a possible presence of long range triplet component (LRTC) of Cooper pairs in the LSMO. We applied Ga"3"+ focused ion beam patterning to create YBCO/LSMO/YBCO lateral type nanojunctions with LSMO length as small as 40 nm. The resistivity vs. temperature, critical current density vs. temperature and resistance vs. magnetic field dependence were studied to recognize the LRTC of Cooper pairs in the LSMO. A non-monotonic temperature dependence of junction critical current density and a decrease of the SFS nanojunction resistance in increased magnetic field were observed. Only weak manifestations of LRTC and some qualitative agreement with theory were found out in SFS nanojunctions realized from the perovskite materials. The presence of equal-spin triplet component of Cooper pairs in half-metallic LSMO ferromagnet is not such apparent as in SFS junctions prepared from low temperature superconductors NbTiN and half-metallic ferromagnet CrO_2.

  10. Graphene-ferromagnet interfaces: hybridization, magnetization and charge transfer.

    Science.gov (United States)

    Abtew, Tesfaye; Shih, Bi-Ching; Banerjee, Sarbajit; Zhang, Peihong

    2013-03-07

    Electronic and magnetic properties of graphene-ferromagnet interfaces are investigated using first-principles electronic structure methods in which a single layer graphene is adsorbed on Ni(111) and Co(111) surfaces. Due to the symmetry matching and orbital overlap, the hybridization between graphene pπ and Ni (or Co) d(z(2)) states is very strong. This pd hybridization, which is both spin and k dependent, greatly affects the electronic and magnetic properties of the interface, resulting in a significantly reduced (by about 20% for Ni and 10% for Co) local magnetic moment of the top ferromagnetic layer at the interface and an induced spin polarization on the graphene layer. The calculated induced magnetic moment on the graphene layer agrees well with a recent experiment. In addition, a substantial charge transfer across the graphene-ferromagnet interfaces is observed. We also investigate the effects of thickness of the ferromagnet slab on the calculated electronic and magnetic properties of the interface. The strength of the pd hybridization and the thickness-dependent interfacial properties may be exploited to design structures with desirable magnetic and transport properties for spintronic applications.

  11. Nuclear orientation of rare earth impurities in ferromagnetic host metals

    International Nuclear Information System (INIS)

    Keus, H.E.

    1981-01-01

    Experiments are described investigating the behaviour of the metals Nd and Lu as impurities in a ferromagnetic host metal - iron, cobalt and nickel. The systems have been studied with the aid of nuclear orientation, making use of the interactions between the atom nuclei and the electrons - the so called hyperfine interactions. (C.F.)

  12. Investigation of a Mesoporous Silicon Based Ferromagnetic Nanocomposite

    Directory of Open Access Journals (Sweden)

    Roca AG

    2009-01-01

    Full Text Available Abstract A semiconductor/metal nanocomposite is composed of a porosified silicon wafer and embedded ferromagnetic nanostructures. The obtained hybrid system possesses the electronic properties of silicon together with the magnetic properties of the incorporated ferromagnetic metal. On the one hand, a transition metal is electrochemically deposited from a metal salt solution into the nanostructured silicon skeleton, on the other hand magnetic particles of a few nanometres in size, fabricated in solution, are incorporated by immersion. The electrochemically deposited nanostructures can be tuned in size, shape and their spatial distribution by the process parameters, and thus specimens with desired ferromagnetic properties can be fabricated. Using magnetite nanoparticles for infiltration into porous silicon is of interest not only because of the magnetic properties of the composite material due to the possible modification of the ferromagnetic/superparamagnetic transition but also because of the biocompatibility of the system caused by the low toxicity of both materials. Thus, it is a promising candidate for biomedical applications as drug delivery or biomedical targeting.

  13. Inertial and magnetic sensing of human movement near ferromagnetic materials

    NARCIS (Netherlands)

    Roetenberg, D.; Luinge, Hendrik J.; Veltink, Petrus H.

    2003-01-01

    This paper describes a Kalman filter design to estimate orientation of human body segments by fusing gyroscope, accelerometer and magnetometer signals. Ferromagnetic materials near the sensor disturb the local magnetic field and therefore the orientation estimation. The magnetic disturbance can be

  14. From ballistic transport to tunneling in electromigrated ferromagnetic breakjunctions

    DEFF Research Database (Denmark)

    Bolotin, Kirill I; Kuemmeth, Ferdinand; Pasupathy, Abhay N

    2006-01-01

    We fabricate ferromagnetic nanowires with constrictions whose cross section can be reduced gradually from 100 x 30 nm(2) to the atomic scale and eventually to the tunneling regime by means of electromigration. The contacts are mechanically and thermally stable. We measure low-temperature magnetor...

  15. Coherence and stiffness of spin waves in diluted ferromagnets

    Czech Academy of Sciences Publication Activity Database

    Turek, Ilja; Kudrnovský, Josef; Drchal, Václav

    2016-01-01

    Roč. 94, č. 17 (2016), č. článku 174447. ISSN 2469-9950 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68081723 ; RVO:68378271 Keywords : spin wave s * diluted ferromagnets * disordered systems Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  16. Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Alexander [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, 3PU, OX1 (United Kingdom); Beg, Marijan; Ashton, Gregory; Albert, Maximilian; Chernyshenko, Dmitri [Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton (United Kingdom); Wang, Weiwei [Department of Physics, Ningbo University, Ningbo, 315211 China (China); Zhang, Shilei [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, 3PU, OX1 (United Kingdom); Bisotti, Marc-Antonio; Franchin, Matteo [Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton (United Kingdom); Hu, Chun Lian; Stamps, Robert [SUPA School of Physics and Astronomy, University of Glasgow, G12, Glasgow, 8QQ United Kingdom (United Kingdom); Hesjedal, Thorsten, E-mail: t.hesjedal1@physics.ox.ac.uk [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, 3PU, OX1 (United Kingdom); Fangohr, Hans [Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton (United Kingdom)

    2017-01-01

    Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general. - Highlights: ●Micromagnetic standard problem for FerroMagnetic Resonance (FMR). ●Overview of FMR simulation techniques. ●Define reproducible test problem with ring down method. ●Example configuration files, scripts and post processing for OOMMF and NMag. ●Code and data available in Ref. [23].

  17. Thermal expansion of the superconducting ferromagnet UCoGe

    NARCIS (Netherlands)

    Gasparini, A.; Huang, Y.K.; Hartbaum, J.; v. Löhneysen, H.; de Visser, A.

    2010-01-01

    We report measurements of the coefficient of linear thermal expansion, α(T), of the superconducting ferromagnet UCoGe. The data taken on a single-crystalline sample along the orthorhombic crystal axes reveal a pronounced anisotropy with the largest length changes along the b axis. The large values

  18. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena

    2015-01-01

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100-400 nm and lengths of up to some hundred microns. Lorenz microsco...

  19. Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials

    Energy Technology Data Exchange (ETDEWEB)

    Štrbík, V., E-mail: vladimir.strbik@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Knoška, J. [Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607, Hamburg (Germany); Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607, Hamburg (Germany); Gál, N.; Chromik, Š.; Sojková, M.; Pisarčík, M. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia)

    2017-02-15

    Highlights: • Superconductor-ferromagnet-superconductor nanojunction. • Nanojunctions prepared by Ga{sup 3+} focused ion beam patterning. • Indication of triplet Cooper pair component in junction superconducting current. • Qualitative agreement with theoretical model. - Abstract: The lateral superconductor-ferromagnet–superconductor (SFS) nanojunctions based on high critical temperature superconductor YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) and half-metallic ferromagnet La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) thin films were prepared to investigate a possible presence of long range triplet component (LRTC) of Cooper pairs in the LSMO. We applied Ga{sup 3+} focused ion beam patterning to create YBCO/LSMO/YBCO lateral type nanojunctions with LSMO length as small as 40 nm. The resistivity vs. temperature, critical current density vs. temperature and resistance vs. magnetic field dependence were studied to recognize the LRTC of Cooper pairs in the LSMO. A non-monotonic temperature dependence of junction critical current density and a decrease of the SFS nanojunction resistance in increased magnetic field were observed. Only weak manifestations of LRTC and some qualitative agreement with theory were found out in SFS nanojunctions realized from the perovskite materials. The presence of equal-spin triplet component of Cooper pairs in half-metallic LSMO ferromagnet is not such apparent as in SFS junctions prepared from low temperature superconductors NbTiN and half-metallic ferromagnet CrO{sub 2}.

  20. Strain sensor system based on amorphous ferromagnetic ribbons

    Czech Academy of Sciences Publication Activity Database

    Jančárik, V.; Švec, P.; Kraus, Luděk

    2002-01-01

    Roč. 53, 10/S (2002), s. 92-94 ISSN 1335-3632. [Magnetic Measurements'02. Bratislava, 11.09.2002-13.09.2002] Grant - others:NATO(XX) SfP 973649 Institutional research plan: CEZ:AV0Z1010914 Keywords : strain sensor * magnetoelastic effect * amorphous ferromagnetic Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. Possibilities of Obtaining Flat Static Characteristic of DC Ferromagnetic Actuator

    Czech Academy of Sciences Publication Activity Database

    Doležel, Ivo; Dvořák, P.; Mach, M.; Ulrych, B.

    2005-01-01

    Roč. 220, č. 1 (2005), s. 29-39 ISSN 0032-6216 R&D Projects: GA MŠk(CZ) LN00B084 Institutional research plan: CEZ:AV0Z20570509 Keywords : flat static characteristic * DC ferromagnetic actuator Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  2. Optimization of fatigue damage indication in ferromagnetic low carbon steel

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Kovářík, O.; Kadlecová, Jana; Vértesy, G.

    2015-01-01

    Roč. 26, č. 9 (2015), 095603 ISSN 0957-0233 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : fatigue * residual lifetime * magnetic non-destructive evaluation * ferromagnetic construction materials Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.492, year: 2015

  3. Spin-polarized tunneling through a ferromagnetic insulator

    NARCIS (Netherlands)

    Kok, M.; Kok, M.; Beukers, J.N.; Brinkman, Alexander

    2009-01-01

    The polarization of the tunnel conductance of spin-selective ferromagnetic insulators is modeled, providing a generalized concept of polarization including both the effects of electrode and barrier polarization. The polarization model is extended to take additional non-spin-polarizing insulating

  4. Reorientation of magnetization with temperature in 2D ferromagnets

    International Nuclear Information System (INIS)

    Fridman, Yu. A.; Spirin, D.V.; Klevets, Ph. N.

    2002-01-01

    We investigated 2D Heisenberg ferromagnet (monolayer) with the account of dipolar forces and uniaxial anisotropy and found a reorientation phase transition in temperature from out-of-plane to in-plane phase. This phase transition is of the first order with hysteresis. We estimated the temperatures of switching both analytically and numerically

  5. Final Report. Novel Behavior of Ferromagnet/Superconductor Hybrid Systems

    Energy Technology Data Exchange (ETDEWEB)

    Birge, Norman [Michigan State Univ., East Lansing, MI (United States)

    2016-09-26

    Final report for grant DE-FG02-06ER46341. This work has produced a most convincing experimental demonstration that spin-triplet supercurrent can appear in Josephson junctions containing ferromagnetic materials, even when the superconducting electrodes are conventional, spin-singlet superconductors.

  6. Defects induced ferromagnetism in Mn doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Neogi, S.K. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, Kolkata 700009 (India); Mukadam, M.D.; Yusuf, S.M. [Solid State Physics Division, Bhaba Atomic Research Centre, Mumbai 400085 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92A P C Road, Kolkata 700009 (India)

    2011-02-15

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 {sup o}C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other ({approx}32{+-}4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 {mu}{sub B}/Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: 2 at% Mn doped ZnO samples are single phase. All the samples exhibit ferromagnetism at room temperature. Correlation between saturation magnetization and positron annihilation lifetime established.

  7. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu, E-mail: ycwu@whu.edu.cn [School of Physics and Technology, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan 430072 (China)

    2014-01-21

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H{sub 2} in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between “on” and “off” states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (V{sub Zn} + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, V{sub Zn} + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μ{sub B}. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.

  8. Defects induced ferromagnetism in Mn doped ZnO

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Neogi, S.K.; Sarkar, A.; Mukadam, M.D.; Yusuf, S.M.; Banerjee, A.; Bandyopadhyay, S.

    2011-01-01

    Single phase Mn doped (2 at%) ZnO samples have been synthesized by the solid-state reaction technique. Before the final sintering at 500 o C, the mixed powders have been milled for different milling periods (6, 24, 48 and 96 h). The grain sizes of the samples are very close to each other (∼32±4 nm). However, the defective state of the samples is different from each other as manifested from the variation of magnetic properties and electrical resistivity with milling time. All the samples have been found to be ferromagnetic with clear hysteresis loops at room temperature. The maximum value for saturation magnetization (0.11 μ B /Mn atom) was achieved for 96 h milled sample. Electrical resistivity has been found to increase with increase in milling time. The most resistive sample bears the largest saturation magnetization. Variation of average positron lifetime with milling time bears a close similarity with that of the saturation magnetization. This indicates the key role played by open volume vacancy defects, presumably zinc vacancies near grain surfaces, in inducing ferromagnetic order in Mn doped ZnO. To attain optimum defect configuration favorable for ferromagnetism in this kind of samples proper choice of milling period and annealing conditions is required. - Research highlights: → 2 at% Mn doped ZnO samples are single phase. → All the samples exhibit ferromagnetism at room temperature. → Correlation between saturation magnetization and positron annihilation lifetime established.

  9. Final Report. Novel Behavior of Ferromagnet/Superconductor Hybrid Systems

    International Nuclear Information System (INIS)

    Birge, Norman

    2016-01-01

    Final report for grant DE-FG02-06ER46341. This work has produced a most convincing experimental demonstration that spin-triplet supercurrent can appear in Josephson junctions containing ferromagnetic materials, even when the superconducting electrodes are conventional, spin-singlet superconductors.

  10. Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Eiji; Kayano, Takeru; Sato, Suguru; Minagawa, Makoto; Yanagihara, Hideto; Kishimoto, Mikio [Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573 (Japan); Oda, Tatsuya; Hashimoto, Shinji; Yamada, Keiichi; Ohkohchi, Nobuhiro [Department of Surgery, Advanced Biomedical Applications, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba 305-8575 (Japan); Mitsumata, Chiharu, E-mail: kita@bk.tsukuba.ac.j [Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2010-12-01

    The use of ferromagnetic nanoparticles for hyperthermia and thermoablation therapies has shown great promise in the field of nanobiomedicine. Even local hyperthermia offers numerous advantages as a novel cancer therapy; however, it requires a remarkably high heating power of more than 1 kW g{sup -1} for heat agents. As a candidate for high heat generation, we focus on ferromagnetic nanoparticles and compare their physical properties with those of superparamagnetic substances. Numerical simulations for ideal single-domain ferromagnetic nanoparticles with cubic and uniaxial magnetic symmetries were carried out and MH curves together with minor loops were obtained. From the simulation, the efficient use of an alternating magnetic field (AMF) having a limited amplitude was discussed. Co-ferrite nanoparticles with various magnitudes of coercive force were produced by co-precipitation and a hydrothermal process. A maximum specific loss power of 420 W g{sup -1} was obtained using an AMF at 117 kHz with H{sub 0} = 51.4 kA m{sup -1} (640 Oe). The relaxation behaviour in the ferromagnetic state below the superparamagnetic blocking temperature was examined by Moessbauer spectroscopy.

  11. Theoretical models of ferromagnetic III-V semiconductors

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Sinova, J.; Kučera, Jan; MacDonald, A. H.

    2003-01-01

    Roč. 3, - (2003), s. 461-464 ISSN 1567-1739. [Mesoscopic Electronics COST Workshop. Catania, 16.10.2002-19.10.2002] Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * diluted magnetic semiconductors * magneto-transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.117, year: 2002

  12. Field-effect magnetization reversal in ferromagnetic semiconductor quantum wellls

    Czech Academy of Sciences Publication Activity Database

    Lee, B.; Jungwirth, Tomáš; MacDonald, A. H.

    2002-01-01

    Roč. 65, č. 19 (2002), s. 193311-1-193311-4 ISSN 0163-1829 R&D Projects: GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductor quantum wells * magnetization reversal process Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  13. Magnetization relaxation in (Ga, Mn)As ferromagnetic semiconductors

    Czech Academy of Sciences Publication Activity Database

    Sinova, J.; Jungwirth, Tomáš; Liu, X.; Sasaki, Y.; Furdyna, J. K.; Atkinson, W. A.; MacDonald, A. H.

    2004-01-01

    Roč. 69, č. 8 (2004), 085209/1-085209/6 ISSN 0163-1829 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetization relaxation * ferromagnetic semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  14. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  15. NdRhSn: A ferromagnet with an antiferromagnetic precursor

    Czech Academy of Sciences Publication Activity Database

    Mihalik, M.; Prokleška, J.; Kamarád, Jiří; Prokeš, K.; Isnard, O.; McIntyre, G. J.; Dönni, A.; Yoshii, S.; Kitazawa, H.; Sechovský, V.; de Boer, F.R.

    2011-01-01

    Roč. 83, č. 10 (2011), "104403-1"-"104403-10" ISSN 1098-0121 R&D Projects: GA ČR GA202/09/1027 Institutional research plan: CEZ:AV0Z10100521 Keywords : NdRhSn * ferromagnet * antiferromagnetic precursor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  16. Ferromagnetism in the two-dimensional periodic Anderson model

    International Nuclear Information System (INIS)

    Batista, C. D.; Bonca, J.; Gubernatis, J. E.

    2001-01-01

    Using the constrained-path Monte Carlo method, we studied the magnetic properties of the two-dimensional periodic Anderson model for electron fillings between 1/4 and 1/2. We also derived two effective low-energy theories to assist in interpreting the numerical results. For 1/4 filling, we found that the system can be a Mott or a charge-transfer insulator, depending on the relative values of the Coulomb interaction and the charge-transfer gap between the two noninteracting bands. The insulator may be a paramagnet or antiferromagnet. We concentrated on the effect of electron doping on these insulating phases. Upon doping we obtained a partially saturated ferromagnetic phase for low concentrations of conduction electrons. If the system were a charge-transfer insulator, we would find that the ferromagnetism is induced by the well-known Ruderman-Kittel-Kasuya-Yosida interaction. However, we found a novel correlated hopping mechanism inducing the ferromagnetism in the region where the nondoped system is a Mott insulator. Our regions of ferromagnetism spanned a much smaller doping range than suggested by recent slave boson and dynamical mean-field theory calculations, but they were consistent with that obtained by density-matrix renormalization group calculations of the one-dimensional periodic Anderson model

  17. Bolometric detection of ferromagnetic resonance in amorphous microwires

    Czech Academy of Sciences Publication Activity Database

    Kraus, Luděk

    2015-01-01

    Roč. 51, č. 1 (2015), s. 6100104 ISSN 0018-9464 R&D Projects: GA ČR GAP102/12/2177 Institutional support: RVO:68378271 Keywords : amorphous microwires * anisotropic magnetoresistance (AMR) * bolometric effect * ferromagnetic resonance (FMR) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015

  18. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Raposo, V.; Zazo, M.; Flores, A. G.; Iñiguez, J. [Departamento de Física Aplicada, University of Salamanca, E-37071 Salamanca (Spain); Garcia, J.; Vega, V.; Prida, V. M. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-04-14

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires’ diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which was achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al{sub 2}O{sub 3} layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.

  19. Sublingual injection of microparticles containing glycolipid ligands for NKT cells and subunit vaccines induces antibody responses in oral cavity.

    Science.gov (United States)

    DeLyria, Elizabeth S; Zhou, Dapeng; Lee, Jun Soo; Singh, Shailbala; Song, Wei; Li, Fenge; Sun, Qing; Lu, Hongzhou; Wu, Jinhui; Qiao, Qian; Hu, Yiqiao; Zhang, Guodong; Li, Chun; Sastry, K Jagannadha; Shen, Haifa

    2015-03-20

    Natural Killer T (NKT) cells are a unique type of innate immune cells which exert paradoxical roles in animal models through producing either Th1 or Th2 cytokines and activating dendritic cells. Alpha-galactosylceramide (αGalCer), a synthetic antigen for NKT cells, was found to be safe and immune stimulatory in cancer and hepatitis patients. We recently developed microparticle-formulated αGalCer, which is selectively presented by dendritic cells and macrophages, but not B cells, and thus can avoid the anergy of NKT cells. In this study, we have examined the immunogenicity of microparticles containing αGalCer and protein vaccine components through sublingual injection in mice. The results showed that sublingual injection of microparticles containing αGalCer and ovalbumin triggered IgG responses in serum (titer >1:100,000), which persisted for more than 3months. Microparticles containing ovalbumin alone also induced comparable level of IgG responses. However, immunoglobulin subclass analysis showed that sublingually injected microparticles containing αGalCer and ovalbumin induced 20 fold higher Th1 biased antibody (IgG2c) than microparticles containing OVA alone (1:20,000 as compared to 1:1000 titer). Sublingual injection of microparticles containing αGalCer and ovalbumin induced secretion of both IgG (titer >1:1000) and IgA (titer=1:80) in saliva secretion, while microparticles containing ovalbumin alone only induced secretion of IgG in saliva. Our results suggest that sublingual injection of microparticles and their subsequent trafficking to draining lymph nodes may induce adaptive immune responses in mucosal compartments. Ongoing studies are focused on the mechanism of antigen presentation and lymphocyte biology in the oral cavity, as well as the toxicity and efficacy of these candidate microparticles for future applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.

    Science.gov (United States)

    Keohane, Kieran; Brennan, Des; Galvin, Paul; Griffin, Brendan T

    2014-06-05

    The increasing realisation of the impact of size and surface properties on the bio-distribution of drug loaded colloidal particles has driven the application of micro fabrication technologies for the precise engineering of drug loaded microparticles. This paper demonstrates an alternative approach for producing size controlled drug loaded PLGA based microparticles using silicon Microfluidic Flow Focusing Devices (MFFDs). Based on the precise geometry and dimensions of the flow focusing channel, microparticle size was successfully optimised by modifying the polymer type, disperse phase (Qd) flow rate, and continuous phase (Qc) flow rate. The microparticles produced ranged in sizes from 5 to 50 μm and were highly monodisperse (coefficient of variation <5%). A comparison of Ciclosporin (CsA) loaded PLGA microparticles produced by MFFDs vs conventional production techniques was also performed. MFFDs produced microparticles with a narrower size distribution profile, relative to the conventional approaches. In-vitro release kinetics of CsA was found to be influenced by the production technique, with the MFFD approach demonstrating the slowest rate of release over 7 days (4.99 ± 0.26%). Finally, MFFDs were utilised to produce pegylated microparticles using the block co-polymer, PEG-PLGA. In contrast to the smooth microparticles produced using PLGA, PEG-PLGA microparticles displayed a highly porous surface morphology and rapid CsA release, with 85 ± 6.68% CsA released after 24h. The findings from this study demonstrate the utility of silicon MFFDs for the precise control of size and surface morphology of PLGA based microparticles with potential drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.