WorldWideScience

Sample records for extracellular-regulated kinase erk

  1. Development of ERK Activity Sensor, an in vitro, FRET-based sensor of Extracellular Regulated Kinase activity

    Directory of Open Access Journals (Sweden)

    Alberola-Ila José

    2005-07-01

    Full Text Available Abstract Background Study of ERK activation has thus far relied on biochemical assays that are limited to the use of phospho-specific antibodies and radioactivity in vitro, and analysis of whole cell populations in vivo. As with many systems, fluorescence resonance energy transfer (FRET can be utilized to make highly sensitive detectors of molecular activity. Here we introduce FRET-based ERK Activity Sensors, which utilize variants of Enhanced Green Fluorescent Protein fused by an ERK-specific peptide linker to detect ERK2 activity. Results ERK Activity Sensors display varying changes in FRET upon phosphorylation by active ERK2 in vitro depending on the composition of ERK-specific peptide linker sequences derived from known in vivo ERK targets, Ets1 and Elk1. Analysis of point mutations reveals specific residues involved in ERK binding and phosphorylation of ERK Activity Sensor 3. ERK2 also shows high in vitro specificity for these sensors over two other major MAP Kinases, p38 and pSAPK/JNK. Conclusion EAS's are a convenient, non-radioactive alternative to study ERK dynamics in vitro. They can be utilized to study ERK activity in real-time. This new technology can be applied to studying ERK kinetics in vitro, analysis of ERK activity in whole cell extracts, and high-throughput screening technologies.

  2. Changes in the expression of extracellular regulated kinase (ERK 1/2) in the R6/2 mouse model of Huntington's disease after phosphodiesterase IV inhibition.

    Science.gov (United States)

    Fusco, Francesca R; Anzilotti, Serenella; Giampà, Carmela; Dato, Clemente; Laurenti, Daunia; Leuti, Alessandro; Colucci D'Amato, Luca; Perrone, Lorena; Bernardi, Giorgio; Melone, Mariarosa A B

    2012-04-01

    The mitogen-activated protein kinases (MAPKs) superfamily comprises three major signaling pathways: the extracellular signal-regulated protein kinases (ERKs), the c-Jun N-terminal kinases or stress-activated protein kinases (JNKs/SAPKs) and the p38 family of kinases. ERK 1/2 signaling has been implicated in a number of neurodegenerative disorders, including Huntington's disease (HD). Phosphorylation patterns of ERK 1/2 and JNK are altered in cell models of HD. In this study, we aimed at studying the correlations between ERK 1/2 and the neuronal vulnerability to HD degeneration in the R6/2 transgenic mouse model of HD. Single and double-label immunofluorescence for phospho-ERK (pERK, the activated form of ERK) and for each of the striatal neuronal markers were employed on perfusion-fixed brain sections from R6/2 and wild-type mice. Moreover, Phosphodiesterase 4 inhibition through rolipram was used to study the effects on pERK expression in the different types of striatal neurons. We completed our study with western blot analysis. Our study shows that pERK levels increase with age in the medium spiny striatal neurons and in the parvalbumin interneurons, and that rolipram counteracts such increase in pERK. Conversely, cholinergic and somatostatinergic interneurons of the striatum contain higher levels of pERK in the R6/2 mice compared to the controls. Rolipram induces an increase in pERK expression in these interneurons. Thus, our study confirms and extends the concept that the expression of phosphorylated ERK 1/2 is related to neuronal vulnerability and is implicated in the pathophysiology of cell death in HD.

  3. The syndecan-4/protein kinase Cα pathway mediates prostaglandin E2-induced extracellular regulated kinase (ERK) activation in endothelial cells and angiogenesis in vivo.

    Science.gov (United States)

    Corti, Federico; Finetti, Federica; Ziche, Marina; Simons, Michael

    2013-05-03

    Prostaglandin E2 (PGE2) is regarded as the main mediator of inflammatory symptoms. In addition, it also plays an important role in tumor growth and angiogenesis. In this study, we examined the mechanism of PGE2-induced angiogenic response. We show that in the absence of proteoglycan syndecan-4 (Sdc4), PGE2-induced ERK activation is decreased significantly, as is endothelial cell migration and cord formation in a two-dimensional Matrigel assay. In vivo, PGE2-induced angiogenesis is reduced dramatically in Sdc4(-/-) mice. The mechanism was traced to Sdc4-dependent activation of protein kinase Cα (PKCα). Transduction of an Sdc4 S183E mutant (a cytoplasmic domain mutation that blocks Sdc4-dependent PKCα activation) into Sdc4(-/-) endothelial cells was not able to rescue the loss of PGE2-induced ERK activation, whereas a transduction with full-length Sdc4 resulted in full rescue. Furthermore, PGE2-induced angiogenesis was also reduced in PKCα(-/-) mice. Taken together, these results demonstrate that PGE2-induced activation of angiogenesis is mediated via syndecan-4-dependent activation of PKCα.

  4. ERK2在胃黏膜病变中的表达及其与Hp感染的关系%The Relationship between Extracellular Regulated Protein Kinases 2 Expression and Helicobacter Pylori Infection in Gastric Cancer and Precancerous Lesion

    Institute of Scientific and Technical Information of China (English)

    雷琳; 黄亚平; 朱庆茹; 江霞

    2012-01-01

    目的 探讨胃癌前病变及胃癌组织中细胞外调节蛋白激酶2(extracellular regulated protein kinases 2,ERK2)表达与幽门螺旋杆菌(helicobacter pylori,Hp)感染的相关性,及Hp感染与胃癌发生的关系.方法 收集慢性浅表性胃炎(chronic superficial gastritis,CSG)、慢性萎缩性胃炎伴中重度肠上皮化生(intestinal metaplasia,IM)、慢性萎缩性胃炎伴中重度不典型增生(dysplasia,Dys)各30例及胃癌(gastric cancer,GC)40例,采用SP免疫组化法,检测4组中ERK2蛋白的表达.结果 CSG、IM、Dys、GC组织中,Hp感染患者胃黏膜组织中ERK2表达水平高于无Hp感染患者(P<0.05).结论 Hp感染可能通过上调ERK2表达水平,从而在胃癌发生、发展过程中发挥重要作用.%Objective To explore the relationship between the extracellular regulated protein kinases 2 and Helicobacter pylori ( Hp ) infection in the pathogenesis of gastric cancel. Methods The expression of ERK2 was determined by immunohisto-chemical method in 130 gastric specimens including 30 cases of chronic superficial gastritis ( CSG ) ,30 cases of intestinal metaplasia (IM ),30 cases of dysplasia ( Dys ) and 40 cases of gastric carcinomas ( GC ). Results The expression level of ERK2 was significantly higher in the tissues from patients with Hp infection than those without Hp infection in patients with CSG,IM,Dys, GC ( P <0. 05 ). Conclusion The expression of ERK2 in Hp positive group was significantly higher than that in Hp negative group.

  5. Extracellular-regulated kinase 2 is activated by the enhancement of hinge flexibility.

    OpenAIRE

    Sours, Kevin M.; Xiao,Yao; Ahn, Natalie G.

    2014-01-01

    Protein motions underlie conformational and entropic contributions to enzyme catalysis; however, relatively little is known about the ways in which this occurs. Studies of the mitogen-activated protein kinase ERK2 (extracellular-regulated protein kinase 2) by hydrogen-exchange mass spectrometry suggest that activation enhances backbone flexibility at the linker between N- and C-terminal domains while altering nucleotide binding mode. Here, we address the hypothesis that enhanced backbone flex...

  6. Epicatechin induces NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Haegeman, Guy; Goya, Luis; Bravo, Laura; Ramos, Sonia

    2010-01-01

    The dietary flavonoid epicatechin has been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin on the activity of the main transcription factors (NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor (Nrf2)) related to antioxidant defence and survival and proliferation pathways in HepG2 cells. Treatment of cells with 10 microm-epicatechin induced the NF-kappaB pathway in a time-dependent manner characterised by increased levels of IkappaB kinase (IKK) and phosphorylated inhibitor of kappaB subunit-alpha (p-IkappaBalpha) and proteolytic degradation of IkappaB, which was consistent with an up-regulation of the NF-kappaB-binding activity. Time-dependent activation of the AP-1 pathway, in concert with enhanced c-Jun nuclear levels and induction of Nrf2 translocation and phosphorylation were also demonstrated. Additionally, epicatechin-induced NF-kappaB and Nrf2 were connected to reactive oxygen species intracellular levels and to the activation of cell survival and proliferation pathways, being phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) associated to Nrf2 modulation and ERK to NF-kappaB induction. These data suggest that the epicatechin-induced survival effect occurs by the induction of redox-sensitive transcription factors through a tight regulation of survival and proliferation pathways.

  7. Extracellular-regulated kinase 2 is activated by the enhancement of hinge flexibility.

    Science.gov (United States)

    Sours, Kevin M; Xiao, Yao; Ahn, Natalie G

    2014-05-01

    Protein motions underlie conformational and entropic contributions to enzyme catalysis; however, relatively little is known about the ways in which this occurs. Studies of the mitogen-activated protein kinase ERK2 (extracellular-regulated protein kinase 2) by hydrogen-exchange mass spectrometry suggest that activation enhances backbone flexibility at the linker between N- and C-terminal domains while altering nucleotide binding mode. Here, we address the hypothesis that enhanced backbone flexibility within the hinge region facilitates kinase activation. We show that hinge mutations enhancing flexibility promote changes in the nucleotide binding mode consistent with domain movement, without requiring phosphorylation. They also lead to the activation of monophosphorylated ERK2, a form that is normally inactive. The hinge mutations bypass the need for pTyr but not pThr, suggesting that Tyr phosphorylation controls hinge motions. In agreement, monophosphorylation of pTyr enhances both hinge flexibility and nucleotide binding mode, measured by hydrogen-exchange mass spectrometry. Our findings demonstrate that regulated protein motions underlie kinase activation. Our working model is that constraints to domain movement in ERK2 are overcome by phosphorylation at pTyr, which increases hinge dynamics to promote the active conformation of the catalytic site.

  8. Role of EGFR transactivation in angiotensin II signaling to extracellular regulated kinase in preglomerular smooth muscle cells.

    Science.gov (United States)

    Andresen, Bradley T; Linnoila, Jenny J; Jackson, Edwin K; Romero, Guillermo G

    2003-03-01

    Angiotensin (Ang) II promotes the phosphorylation of extracellular regulated kinase (ERK); however, the mechanisms leading to Ang II-induced ERK phosphorylation are debated. The currently accepted theory involves transactivation of epidermal growth factor receptor (EGFR). We have shown that generation of phosphatidic acid (PA) is required for the recruitment of Raf to membranes and the activation of ERK by multiple agonists, including Ang II. In the present report, we confirm that phospholipase D-dependent generation of PA is required for Ang II-mediated phosphorylation of ERK in Wistar-Kyoto and spontaneously hypertensive rat preglomerular smooth muscle cells (PGSMCs). However, EGF stimulation does not activate phospholipase D or generate PA. These observations indicate that EGF recruits Raf to membranes via a mechanism that does not involve PA, and thus, Ang II-mediated phosphorylation of ERK is partially independent of EGFR-mediated signaling cascades. We hypothesized that phosphoinositide-3-kinase (PI3K) can also act to recruit Raf to membranes; therefore, inhibition of PI3K should inhibit EGF signaling to ERK. Wortmannin, a PI3K inhibitor, inhibited EGF-mediated phosphorylation of ERK (IC50, approximately 14 nmol/L). To examine the role of the EGFR in Ang II-mediated phosphorylation of ERK we utilized 100 nmol/L wortmannin to inhibit EGFR signaling to ERK and T19N RhoA to block Ang II-mediated ERK phosphorylation. Wortmannin treatment inhibited EGF-mediated but not Ang II-mediated phosphorylation of ERK. Furthermore, T19N RhoA inhibited Ang II-mediated ERK phosphorylation, whereas T19N RhoA had significantly less effect on EGF-mediated ERK phosphorylation. We conclude that transactivation of the EGFR is not primarily responsible for Ang II-mediated activation of ERK in PGSMCs.

  9. Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis.

    Science.gov (United States)

    Pyakurel, Aswin; Savoia, Claudia; Hess, Daniel; Scorrano, Luca

    2015-04-16

    Controlled changes in mitochondrial morphology participate in cellular signaling cascades. However, the molecular mechanisms modifying mitochondrial shape are largely unknown. Here we show that the mitogen-activated protein (MAP) kinase cascade member extracellular-signal-regulated kinase (ERK) phosphorylates the pro-fusion protein mitofusin (MFN) 1, modulating its participation in apoptosis and mitochondrial fusion. Phosphoproteomic and biochemical analyses revealed that MFN1 is phosphorylated at an atypical ERK site in its heptad repeat (HR) 1 domain. This site proved essential to mediate MFN1-dependent mitochondrial elongation and apoptosis regulation by the MEK/ERK cascade. A mutant mimicking constitutive MFN1 phosphorylation was less efficient in oligomerizing and mitochondria tethering but bound more avidly to the proapoptotic BCL-2 family member BAK, facilitating its activation and cell death. Moreover, neuronal apoptosis following oxygen glucose deprivation and MEK/ERK activation required an intact MFN1(T562). Our data identify MFN1 as an ERK target to modulate mitochondrial shape and apoptosis.

  10. Extracellular Regulated Kinase Phosphorylates Mitofusin 1 to Control Mitochondrial Morphology and Apoptosis

    Science.gov (United States)

    Pyakurel, Aswin; Savoia, Claudia; Hess, Daniel; Scorrano, Luca

    2015-01-01

    Summary Controlled changes in mitochondrial morphology participate in cellular signaling cascades. However, the molecular mechanisms modifying mitochondrial shape are largely unknown. Here we show that the mitogen-activated protein (MAP) kinase cascade member extracellular-signal-regulated kinase (ERK) phosphorylates the pro-fusion protein mitofusin (MFN) 1, modulating its participation in apoptosis and mitochondrial fusion. Phosphoproteomic and biochemical analyses revealed that MFN1 is phosphorylated at an atypical ERK site in its heptad repeat (HR) 1 domain. This site proved essential to mediate MFN1-dependent mitochondrial elongation and apoptosis regulation by the MEK/ERK cascade. A mutant mimicking constitutive MFN1 phosphorylation was less efficient in oligomerizing and mitochondria tethering but bound more avidly to the proapoptotic BCL-2 family member BAK, facilitating its activation and cell death. Moreover, neuronal apoptosis following oxygen glucose deprivation and MEK/ERK activation required an intact MFN1T562. Our data identify MFN1 as an ERK target to modulate mitochondrial shape and apoptosis. PMID:25801171

  11. 细胞外信号调节激酶及其抑制剂的研究进展%Research progress of extracellular regulated protein kinase and its inhibitors

    Institute of Scientific and Technical Information of China (English)

    艾俊涛; 胡高云; 王靓; 李代洪; 谢欣; 李乾斌

    2013-01-01

    细胞外信号调节激酶(ERK)是一个多功能的丝氨酸/苏氨酸蛋白激酶,是MAPK家族的重要成员,在MAPK信号通路中起着重要的作用.ERK通过磷酸化多种底物蛋白来调节细胞多种生理过程,如细胞生长、分裂、增殖、凋亡等,已成为抗癌药物研发的重要靶点.近年来,基于结构的药物设计策略在ERK抑制剂的研究中已得到广泛的应用.本文对ERK的分子结构、作用机制及直接作用于ERK蛋白的ATP竞争性和非竞争性抑制剂的设计思路、化学结构及构效关系做一综述.%Extracellular regulated protein kinase ( ERK) , an important member of MAPK family, is a kind of multifunctional Ser/Thr kinase, which plays an important role in MAPK signaling cascade. Multiple substrates are phosphorylated by ERK leading to alterations in cell growth, differentiation, proliferation and apoptosis, which makes ERK an attractive target for the design and discovery of anti-cancer agents. Recently, structure-based design strategies are widely used in the development of ERK inhibitors. The molecular structures of ERK, mechanism of action, the design of the ATP or non-ATP competitive inhibitors which directly acts on ERK, chemical structure and structure-activity relationship were reviewed in this article.

  12. Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation.

    LENUS (Irish Health Repository)

    McEneaney, Victoria

    2010-01-01

    Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1\\/2) mitogen activated protein (MAP) kinase signalling in the M1 cortical collecting duct cell line (M1-CCD). Aldosterone promoted the proliferative growth of M1-CCD cells, an effect that was protein kinase D1 (PKD1), PKCdelta and ERK1\\/2-dependent. Aldosterone induced the rapid activation of ERK1\\/2 with peaks of activation at 2 and 10 to 30 min after hormone treatment followed by sustained activation lasting beyond 120 min. M1-CCD cells suppressed in PKD1 expression exhibited only the early, transient peaks in ERK1\\/2 activation without the sustained phase. Aldosterone stimulated the physical association of PKD1 with ERK1\\/2 within 2 min of treatment. The mineralocorticoid receptor (MR) antagonist RU28318 inhibited the early and late phases of aldosterone-induced ERK1\\/2 activation, and also aldosterone-induced proliferative cell growth. Aldosterone induced the sub-cellular redistribution of ERK1\\/2 to the nuclei at 2 min and to cytoplasmic sites, proximal to the nuclei after 30 min. This sub-cellular distribution of ERK1\\/2 was inhibited in cells suppressed in the expression of PKD1.

  13. ROLE OF ERK1/2 KINASE IN CISPLATIN-INDUCED APOPTOSIS IN HUMAN OVARIAN CARCINOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    Shu-qin Wei; Li-hua Sui; Jian-hua Zheng; Guang-mei Zhang; Yan-Lin Kao

    2004-01-01

    Objective To investigate the role of extracellular regulated kinase (ERK1/2) pathway in cisplatin-induced apoptosis in human ovarian carcinoma cells.Methods Cisplatin-induced apoptosis were stained with DAPI and was assessed microscopically in human epithelial adenocarcinoma ovarian cell line SKOV3 cells. ERK activation was determined by Western blotting using an anti-phosphoERK antibody to detect ERK activity. The effect of PD98059 on ERK activity induced by cisplatin was detected by MTT assay.Results Marked apoptosis of SKOV3 cells resulted from 48 hours treatment with 20 μg/mL cisplatin. Strong activation of ERK was led to by 15 μg/mL cisplatin. Dose response and time course of cisplatin induced apoptosis in SKOV3 cells.Cisplatin-induced ERK activation occurred at 12 hours and increased to highest induction at 24 hours by Western blotting.The effect of PD 98059 on ERK activity induced by cisplatin at the concentration of 100 μmol/L PD 98059. Statistically significant decreased in cell survival were observed with 100 μmol/L PD 98059 at 15 and 20 μg/mL cisplatin (P< 0.05).Conclusions Cisplatin activates the ERK signaling pathway in ovarian cancer cell line SKOV3. Inhibition of ERK activity enhances sensitivity to cisplatin cytotoxity in ovarian cancer cell line SKOV3. Evaluation of ERK activity could be useful in predicting which ovarian cancer will response most favorably to cisplatin therapy.

  14. ERK kinases modulate the activation of PI3 kinase related kinases (PIKKs) in DNA damage response.

    Science.gov (United States)

    Lin, Xiaozeng; Yan, Judy; Tang, Damu

    2013-12-01

    DNA damage response (DDR) is the critical surveillance mechanism in maintaining genome integrity. The mechanism activates checkpoints to prevent cell cycle progression in the presence of DNA lesions, and mediates lesion repair. DDR is coordinated by three apical PI3 kinase related kinases (PIKKs), including ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), and DNA-PKcs (the catalytic subunit of the DNA dependent protein kinase). These kinases are activated in response to specific DNA damage or lesions, resulting in checkpoint activation and DNA lesion repair. While it is clear that the pathways of ATM, ATR, and DNA-PK are the core components of DDR, there is accumulating evidence revealing the involvement of other cellular pathways in regulating DDR; this is in line with the concept that in addition to being a nuclear event DDR is also a cellular process. One of these pathways is the extracellular signal-regulated kinase (ERK) MAPK (mitogen-activated protein kinase) pathway. ERK is a converging point of multiple signal transduction pathways involved in cell proliferation, differentiation, and apoptosis. Adding to this list of pathways is the recent development of ERK in DDR. The ERK kinases (ERK1 and ERK2) contribute to the proper execution of DDR in terms of checkpoint activation and the repair of DNA lesions. This review summarizes the contributions of ERK to DDR with emphasis on the relationship of ERK kinases with the activation of ATM, ATR, and DNA-PKcs.

  15. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats.

    Science.gov (United States)

    Zhang, Bei; He, Qiang; Li, Ying-Ying; Li, Ce; Bai, Yu-Long; Hu, Yong-Shan; Zhang, Feng

    2015-12-01

    Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT) involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of 'learned non-use' and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model) group, a CIMT + model (CIMT) group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  16. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats

    Directory of Open Access Journals (Sweden)

    Bei Zhang

    2015-01-01

    Full Text Available Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of ′learned non-use′ and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model group, a CIMT + model (CIMT group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  17. Methylselenol, a selenium metabolite, induces cell cycle arrest in G1 phase and apoptosis via the extracellular-regulated kinase 1/2 pathway and other cancer signaling genes.

    Science.gov (United States)

    Zeng, Huawei; Wu, Min; Botnen, James H

    2009-09-01

    Methylselenol has been hypothesized to be a critical selenium (Se) metabolite for anticancer activity in vivo, and our previous study demonstrated that submicromolar methylselenol generated by incubating methionase with seleno-l-methionine inhibits the migration and invasive potential of HT1080 tumor cells. However, little is known about the association between cancer signal pathways and methylselenol's inhibition of tumor cell invasion. In this study, we demonstrated that methylselenol exposure inhibited cell growth and we used a cancer signal pathway-specific array containing 15 different signal transduction pathways involved in oncogenesis to study the effect of methylselenol on cellular signaling. Using real-time RT-PCR, we confirmed that cellular mRNA levels of cyclin-dependent kinase inhibitor 1C (CDKN1C), heme oxygenase 1, platelet/endothelial cell adhesion molecule, and PPARgamma genes were upregulated to 2.8- to 5.7-fold of the control. BCL2-related protein A1, hedgehog interacting protein, and p53 target zinc finger protein genes were downregulated to 26-52% of the control, because of methylselenol exposure. These genes are directly related to the regulation of cell cycle and apoptosis. Methylselenol increased apoptotic cells up to 3.4-fold of the control and inhibited the extracellular-regulated kinase 1/2 (ERK1/2) signaling and cellular myelocytomatosis oncogene (c-Myc) expression. Taken together, our studies identify 7 novel methylselenol responsive genes and demonstrate that methylselenol inhibits ERK1/2 pathway activation and c-Myc expression. The regulation of these genes is likely to play a key role in G1 cell cycle arrest and apoptosis, which may contribute to the inhibition of tumor cell invasion.

  18. ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially

    Directory of Open Access Journals (Sweden)

    Bonini Chiara

    2006-06-01

    Full Text Available Abstract Background The mitogen-activated protein (MAP kinases p44ERK1 and p42ERK2 are crucial components of the regulatory machinery underlying normal and malignant cell proliferation. A currently accepted model maintains that ERK1 and ERK2 are regulated similarly and contribute to intracellular signaling by phosphorylating a largely common subset of substrates, both in the cytosol and in the nucleus. Results Here, we show that ablation of ERK1 in mouse embryo fibroblasts and NIH 3T3 cells by gene targeting and RNA interference results in an enhancement of ERK2-dependent signaling and in a significant growth advantage. By contrast, knockdown of ERK2 almost completely abolishes normal and Ras-dependent cell proliferation. Ectopic expression of ERK1 but not of ERK2 in NIH 3T3 cells inhibits oncogenic Ras-mediated proliferation and colony formation. These phenotypes are independent of the kinase activity of ERK1, as expression of a catalytically inactive form of ERK1 is equally effective. Finally, ectopic expression of ERK1 but not ERK2 is sufficient to attenuate Ras-dependent tumor formation in nude mice. Conclusion These results reveal an unexpected interplay between ERK1 and ERK2 in transducing Ras-dependent cell signaling and proliferation. Whereas ERK2 seems to have a positive role in controlling normal and Ras-dependent cell proliferation, ERK1 probably affects the overall signaling output of the cell by antagonizing ERK2 activity.

  19. Piceatannol bolsteres fetal haemoglobin formation in K562 cells via p38 map kinase activation and ERK inactivation

    Directory of Open Access Journals (Sweden)

    AAYUSH KUKREJA

    2015-08-01

    Full Text Available Elevation of the level of fetal haemoglobin (HbF by pharmacological agents is a safe and a promising approach for treating beta thalassemia. In this study, the effect of piceatannol was studied in human erythroleukemic K562 cells for their role in gamma-globin mRNA and HbF induction. The role of p38 mitogen activated protein kinase (MAPK and extracellular regulated protein kinase (ERK signaling pathways were also examined. It was found that piceatannol significantly increased gamma-globin mRNA and HbF levels in dose and time dependent manner in K562 cells. This was determined by enzyme linked immunosorbent assay (ELISA and western blot analysis. Pretreatment with p38 MAPK inhibitor (SB203580 obstructed the stimulatory effect of piceatannol in total and HbF activation. In contrast, no change in HbF level was observed in K562 cells when treated with ERK inhibitor (PD98059. Moreover, piceatannol activated p38 MAPK and inhibited ERK signaling pathways in K562 cells as shown by western blot analysis. Besides, the inhibitor SB203580 inhibited p38 MAPK activation when cells were pre-treated with piceatannol. In summary, piceatannol was found to be a strong inducer of HbF production in K562 cells. The results mark the role of p38 MAPK and ERK signaling as molecular targets for stimulation of HbF synthesis upon treatment with piceatannol.

  20. Hydroxytyrosol induces antioxidant/detoxificant enzymes and Nrf2 translocation via extracellular regulated kinases and phosphatidylinositol-3-kinase/protein kinase B pathways in HepG2 cells.

    Science.gov (United States)

    Martín, María Angeles; Ramos, Sonia; Granado-Serrano, Ana Belén; Rodríguez-Ramiro, Ildefonso; Trujillo, Mariana; Bravo, Laura; Goya, Luis

    2010-07-01

    Hydroxytyrosol (HTy) is a natural polyphenol abundant in olive oil, which possesses multiple biological actions. Particularly, HTy has cytoprotective activity against oxidative-stress-induced cell damage, but the underlying mechanisms of action remain unclear. Here, we have investigated the molecular mechanism involved in the protection exerted by HTy on tert-butyl hydroperoxide-induced damage in human HepG2 liver cells. Treatment of HepG2 cells with HTy increased the expression and the activity of glutathione-related enzymes such as glutathione peroxidase, glutathione reductase and glutathione S-transferase. HTy also induced the nuclear transcription factor erythroid 2p45-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Moreover, two important signalling proteins involved in Nrf2 translocation, the protein kinase B and the extracellular regulated kinases, were also activated by HTy. Further studies with specific inhibitors confirmed that both molecular pathways are critical for the nuclear translocation of Nrf2, the increased enzyme expression and activity and the beneficial effect against oxidative stress induced by HTy. In conclusion, together with the inherent radical scavenging activity of HTy, our results provide an additional mechanism of action to prevent oxidative stress damage through the modulation of signalling pathways involved in antioxidant/detoxifying enzymes regulation.

  1. Thrombopoietin potentiates the protein-kinase-C-mediated activation of mitogen-activated protein kinase/ERK kinases and extracellular signal-regulated kinases in human platelets.

    Science.gov (United States)

    Ezumi, Y; Uchiyama, T; Takayama, H

    1998-12-15

    The thrombopoietin (TPO) receptor is expressed in the megakaryocytic lineage from late progenitors to platelets. We investigated the effect of TPO on the extracellular signal-regulated kinase (ERK) activation pathway in human platelets. TPO by itself did not activate ERK1, ERK2 and protein kinase C (PKC), whereas TPO directly enhanced the PKC-dependent activation of ERKs induced by other agonists including thrombin and phorbol esters, without affecting the PKC activation by those agonists. TPO did not activate the mitogen-activated protein kinase/ERK kinases, MEK1 and MEK2, but activated Raf-1 and directly augmented the PKC-mediated MEK activation, suggesting that TPO primarily potentiates the ERK pathway through regulating MEKs or upstream steps of MEKs including Raf-1. The MEK inhibitor PD098059 failed to affect not only thrombin-induced or phorbol ester-induced aggregation, but also potentiation of aggregation by TPO, denying the primary involvement of ERKs and MEKs in those events. ERKs and MEKs were located mainly in the detergent-soluble/non-cytoskeletal fractions. ERKs but not MEKs were relocated to the cytoskeleton following platelet aggregation and actin polymerization. These data indicate that TPO synergizes with other agonists in the ERK activation pathway of platelets and that this synergy might affect functions of the cytoskeleton possibly regulated by ERKs.

  2. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction.

    Science.gov (United States)

    Vomastek, Tomás; Iwanicki, Marcin P; Burack, W Richard; Tiwari, Divya; Kumar, Devanand; Parsons, J Thomas; Weber, Michael J; Nandicoori, Vinay Kumar

    2008-11-01

    Identifying direct substrates of mitogen-activated protein kinases (MAPKs) and understanding how those substrates are selected is central to understanding how these ubiquitously activated enzymes generate diverse biological responses. In previous work, we identified several new candidate substrates for the MAPK ERK2 (extracellular signal-regulated kinase 2), including the nuclear pore complex protein Tpr (translocated promoter region). In this report, we identify sites on Tpr for ERK2 phosphorylation and binding and demonstrate their functional interaction. ERK2 phosphorylation and dimerization are necessary for ERK2-Tpr binding, and this occurs through a DEF (docking site for ERK2, FXF) domain on Tpr. Surprisingly, the DEF domain and the phosphorylation sites displayed positive cooperativity to promote ERK2 binding to Tpr, in contrast to substrates where phosphorylation reduces binding. Ectopic expression or depletion of Tpr resulted in decreased movement of activated ERK2 from the cytoplasm to the nucleus, implying a role for Tpr in ERK2 translocation. Collectively, the data provide direct evidence that a component of the nuclear pore complex is a bona fide substrate of ERK2 in vivo and that activated ERK2 stably associates with this substrate after phosphorylation, where it could play a continuing role in nuclear pore function. We propose that Tpr is both a substrate and a scaffold for activated ERKs.

  3. Protein Kinase CK2α Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2α Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma.

    Science.gov (United States)

    Zhou, Bingying; Ritt, Daniel A; Morrison, Deborah K; Der, Channing J; Cox, Adrienne D

    2016-08-19

    The protein kinase casein kinase 2 (CK2) is a pleiotropic and constitutively active kinase that plays crucial roles in cellular proliferation and survival. Overexpression of CK2, particularly the α catalytic subunit (CK2α, CSNK2A1), has been implicated in a wide variety of cancers and is associated with poorer survival and resistance to both conventional and targeted anticancer therapies. Here, we found that CK2α protein is elevated in melanoma cell lines compared with normal human melanocytes. We then tested the involvement of CK2α in drug resistance to Food and Drug Administration-approved single agent targeted therapies for melanoma. In BRAF mutant melanoma cells, ectopic CK2α decreased sensitivity to vemurafenib (BRAF inhibitor), dabrafenib (BRAF inhibitor), and trametinib (MEK inhibitor) by a mechanism distinct from that of mutant NRAS. Conversely, knockdown of CK2α sensitized cells to inhibitor treatment. CK2α-mediated RAF-MEK kinase inhibitor resistance was tightly linked to its maintenance of ERK phosphorylation. We found that CK2α post-translationally regulates the ERK-specific phosphatase dual specificity phosphatase 6 (DUSP6) in a kinase dependent-manner, decreasing its abundance. However, we unexpectedly showed, by using a kinase-inactive mutant of CK2α, that RAF-MEK inhibitor resistance did not rely on CK2α kinase catalytic function, and both wild-type and kinase-inactive CK2α maintained ERK phosphorylation upon inhibition of BRAF or MEK. That both wild-type and kinase-inactive CK2α bound equally well to the RAF-MEK-ERK scaffold kinase suppressor of Ras 1 (KSR1) suggested that CK2α increases KSR facilitation of ERK phosphorylation. Accordingly, CK2α did not cause resistance to direct inhibition of ERK by the ERK1/2-selective inhibitor SCH772984. Our findings support a kinase-independent scaffolding function of CK2α that promotes resistance to RAF- and MEK-targeted therapies.

  4. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    Energy Technology Data Exchange (ETDEWEB)

    Li, Feifei; Jiang, Yinan [Department of Pathophysiology, Anhui Medical University, Hefei 230032 (China); Zheng, Qiping [Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612 (United States); Yang, Xiaoming [Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850 (China); Wang, Siying, E-mail: sywang@ahmu.edu.cn [Department of Pathophysiology, Anhui Medical University, Hefei 230032 (China)

    2011-01-07

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involved in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.

  5. Norathyriol Suppresses Skin Cancers Induced by Solar Ultraviolet Radiation by Targeting ERK Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jixia; Malakhova, Margarita; Mottamal, Madhusoodanan; Reddy, Kanamata; Kurinov, Igor; Carper, Andria; Langfald, Alyssa; Oi, Naomi; Kim, Myoung Ok; Zhu, Feng; Sosa, Carlos P.; Zhou, Keyuan; Bode, Ann M.; Dong, Zigang (Cornell); (Guangdong); (UMM)

    2012-06-27

    Ultraviolet (UV) irradiation is the leading factor in the development of skin cancer, prompting great interest in chemopreventive agents for this disease. In this study, we report the discovery of norathyriol, a plant-derived chemopreventive compound identified through an in silico virtual screening of the Chinese Medicine Library. Norathyriol is a metabolite of mangiferin found in mango, Hypericum elegans, and Tripterospermum lanceolatum and is known to have anticancer activity. Mechanistic investigations determined that norathyriol acted as an inhibitor of extracellular signal-regulated kinase (ERK)1/2 activity to attenuate UVB-induced phosphorylation in mitogen-activated protein kinases signaling cascades. We confirmed the direct and specific binding of norathyriol with ERK2 through a cocrystal structural analysis. The xanthone moiety in norathyriol acted as an adenine mimetic to anchor the compound by hydrogen bonds to the hinge region of the protein ATP-binding site on ERK2. Norathyriol inhibited in vitro cell growth in mouse skin epidermal JB6 P+ cells at the level of G{sub 2}-M phase arrest. In mouse skin tumorigenesis assays, norathyriol significantly suppressed solar UV-induced skin carcinogenesis. Further analysis indicated that norathyriol mediates its chemopreventive activity by inhibiting the ERK-dependent activity of transcriptional factors AP-1 and NF-{kappa}B during UV-induced skin carcinogenesis. Taken together, our results identify norathyriol as a safe new chemopreventive agent that is highly effective against development of UV-induced skin cancer.

  6. Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Danielle Frodyma

    2017-08-01

    Full Text Available Many cancers, including those of the colon, lung, and pancreas, depend upon the signaling pathways induced by mutated and constitutively active Ras. The molecular scaffolds Kinase Suppressor of Ras 1 and 2 (KSR1 and KSR2 play potent roles in promoting Ras-mediated signaling through the Raf/MEK/ERK kinase cascade. Here we summarize the canonical role of KSR in cells, including its central role as a scaffold protein for the Raf/MEK/ERK kinase cascade, its regulation of various cellular pathways mediated through different binding partners, and the phenotypic consequences of KSR1 or KSR2 genetic inactivation. Mammalian KSR proteins have a demonstrated role in cellular and organismal energy balance with implications for cancer and obesity. Targeting KSR1 in cancer using small molecule inhibitors has potential for therapy with reduced toxicity to the patient. RNAi and small molecule screens using KSR1 as a reference standard have the potential to expose and target vulnerabilities in cancer. Interestingly, although KSR1 and KSR2 are similar in structure, KSR2 has a distinct physiological role in regulating energy balance. Although KSR proteins have been studied for two decades, additional analysis is required to elucidate both the regulation of these molecular scaffolds and their potent effect on the spatial and temporal control of ERK activation in health and disease.

  7. Adiponectin inhibits neutrophil apoptosis via activation of AMP kinase, PKB and ERK 1/2 MAP kinase.

    Science.gov (United States)

    Rossi, Alessandra; Lord, Janet M

    2013-12-01

    Neutrophils are abundant, short-lived leukocytes that play a key role in the immune defense against microbial infections. These cells die by apoptosis following activation and uptake of microbes and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter a pathogen. Adiponectin exerts anti-inflammatory effects on neutrophil antimicrobial functions, but whether this abundant adipokine influences neutrophil apoptosis is unknown. Here we report that adiponectin in the physiological range (1-10 μg/ml) reduced apoptosis in resting neutrophils, decreasing caspase-3 cleavage and maintaining Mcl-1 expression by stabilizing this anti-apoptotic protein. We show that adiponectin induced phosphorylation of AMP-activated kinase (AMPK), protein kinase B (PKB), extracellular signal-regulated kinase (ERK 1/2) and p38 mitogen activated protein kinase (MAPK). Pharmacological inhibition of AMPK, PKB and ERK 1/2 ablated the pro-survival effects of adiponectin and treatment of neutrophils with an AMPK specific activator (AICAR) and AMPK inhibitor (compound C) respectively decreased and increased apoptosis. Finally, activation of AMPK by AICAR or adiponectin also decreased ceramide accumulation in the neutrophil cell membrane, a process involved in the early stages of spontaneous apoptosis, giving another possible mechanism downstream of AMPK activation for the inhibition of neutrophil apoptosis.

  8. Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf.

    Science.gov (United States)

    Marzec, M; Kasprzycka, M; Liu, X; Raghunath, P N; Wlodarski, P; Wasik, M A

    2007-02-01

    The mechanisms of cell transformation mediated by the highly oncogenic, chimeric NPM/ALK tyrosine kinase remain only partially understood. Here we report that cell lines and native tissues derived from the NPM/ALK-expressing T-cell lymphoma (ALK+ TCL) display phosphorylation of the extracellular signal-regulated protein kinase (ERK) 1/2 complex. Transfection of BaF3 cells with NPM/ALK induces phosphorylation of EKR1/2 and of its direct activator mitogen-induced extracellular kinase (MEK) 1/2. Depletion of NPM/ALK by small interfering RNA (siRNA) or its inhibition by WHI-154 abrogates the MEK1/2 and ERK1/2 phosphorylation. The NPM/ALK-induced MEK/ERK activation is independent of c-Raf as evidenced by the lack of MEK1/2 and ERK1/2 phosphorylation upon c-Raf inactivation by two different inhibitors, RI and ZM336372, and by its siRNA-mediated depletion. In contrast, ERK1/2 activation is strictly MEK1/2 dependent as shown by suppression of the ERK1/2 phosphorylation by the MEK1/2 inhibitor U0126. The U0126-mediated inhibition of ERK1/2 activation impaired proliferation and viability of the ALK+ TCL cells and expression of antiapoptotic factor Bcl-xL and cell cycle-promoting CDK4 and phospho-RB. Finally, siRNA-mediated depletion of both ERK1 and ERK2 inhibited cell proliferation, whereas depletion of ERK 1 (but not ERK2) markedly increased cell apoptosis. These findings identify MEK/ERK as a new signaling pathway activated by NPM/ALK and indicate that the pathway represents a novel therapeutic target in the ALK-induced malignancies.

  9. Sodium Butyrate Induces Apoptosis of Human Colon Cancer Cells by Modulating ERK and Sphingosine Kinase 2

    Institute of Scientific and Technical Information of China (English)

    XIAO Min; LIU Yun Gang; ZOU Meng Chen; ZOU Fei

    2014-01-01

    Objective To investigate the role of extracellular signal-regulated kinase (ERK) in apoptosis of human colon cancer (HCT116) cells. Methods After the HCT116 cells were pretreated with specific ERK inhibitor (U0126) or specific siRNA and exposed to 10 mmol/L sodium butyrate (NaBT) for 24 h, their apoptosis was detected by flow cytometry, levels of SphK2 and ERK protein were measured by Western blot, and translocation of SphK2 was assayed by immunofluorescence microscopy. Results The U0126 and siRNAs specific for SphK2 blocked the export of SphK2 from nuclei to cytoplasm and increased the apoptosis of HCT116 cells following NaBT exposure. Over-expression of PKD decreased NaBT-induced apoptosis of HCT116 cells, which was reversed by U0126. Furthermore, transfection of HCT116 cells with constitutively activated PKD plasmids recovered the U0126-blocked export of SphK2. Conclusion ERK regulates the export of SphK2 and apoptosis of HCT116 cells by modulating PKD. Modulation of these molecules may help increase the sensitivity of colon cancer cells to the physiologic anti-colon cancer agent, NaBT.

  10. The N-terminal domain of ERK1 accounts for the functional differences with ERK2.

    Directory of Open Access Journals (Sweden)

    Matilde Marchi

    Full Text Available The Extracellular Regulated Kinase 1 and 2 transduce a variety of extracellular stimuli regulating processes as diverse as proliferation, differentiation and synaptic plasticity. Once activated in the cytoplasm, ERK1 and ERK2 translocate into the nucleus and interact with nuclear substrates to induce specific programs of gene expression. ERK1/2 share 85% of aminoacid identity and all known functional domains and thence they have been considered functionally equivalent until recent studies found that the ablation of either ERK1 or ERK2 causes dramatically different phenotypes. To search a molecular justification of this dichotomy we investigated whether the different functions of ERK1 and 2 might depend on the properties of their cytoplasmic-nuclear trafficking. Since in the nucleus ERK1/2 is predominantly inactivated, the maintenance of a constant level of nuclear activity requires continuous shuttling of activated protein from the cytoplasm. For this reason, different nuclear-cytoplasmic trafficking of ERK1 and 2 would cause a differential signalling capability. We have characterised the trafficking of fluorescently tagged ERK1 and ERK2 by means of time-lapse imaging in living cells. Surprisingly, we found that ERK1 shuttles between the nucleus and cytoplasm at a much slower rate than ERK2. This difference is caused by a domain of ERK1 located at its N-terminus since the progressive deletion of these residues converted the shuttling features of ERK1 into those of ERK2. Conversely, the fusion of this ERK1 sequence at the N-terminus of ERK2 slowed down its shuttling to a similar value found for ERK1. Finally, computational, biochemical and cellular studies indicated that the reduced nuclear shuttling of ERK1 causes a strong reduction of its nuclear phosphorylation compared to ERK2, leading to a reduced capability of ERK1 to carry proliferative signals to the nucleus. This mechanism significantly contributes to the differential ability of ERK1 and

  11. TRPC3 amplifies B-cell receptor-induced ERK signalling via protein kinase D-dependent Rap1 activation.

    Science.gov (United States)

    Numaga-Tomita, Takuro; Nishida, Motohiro; Putney, James W; Mori, Yasuo

    2016-01-15

    Sustained activation of extracellular-signal-regulated kinase (ERK) has an important role in the decision regarding the cell fate of B-lymphocytes. Recently, we demonstrated that the diacylglycerol-activated non-selective cation channel canonical transient receptor potential 3 (TRPC3) is required for the sustained ERK activation induced by the B-cell receptor. However, the signalling mechanism underlying TRPC3-mediated ERK activation remains elusive. In the present study, we have shown that TRPC3 mediates Ca(2+) influx to sustain activation of protein kinase D (PKD) in a protein kinase C-dependent manner in DT40 B-lymphocytes. The later phase of ERK activation depends on the small G-protein Rap1, known as a downstream target of PKD, whereas the earlier phase of ERK activation depends on the Ras protein. It is of interest that sustained ERK phosphorylation is required for the full induction of the immediate early gene Egr-1 (early growth response 1). These results suggest that TRPC3 reorganizes the BCR signalling complex by switching the subtype of small G-proteins to sustain ERK activation in B-lymphocytes.

  12. Extracellular signal-regulated kinases (ERKs) pathway and reactive oxygen species regulate tyrosine phosphorylation in capacitating boar spermatozoa.

    Science.gov (United States)

    Awda, Basim J; Buhr, Mary M

    2010-11-01

    The extracellular signal-regulated kinase (ERK) family of the mitogen-activated protein kinase (MAPK) pathway is identified for the first time in boar sperm and is associated with capacitation and tyrosine phosphorylation (tyr-P). Reactive oxygen species (ROS) modulate this signal transduction. Western immunoblotting detected the ERK pathway components RAF1, MEK1/2, and ERK1/2 in extracts from fresh boar spermatozoa and determined that their phosphoprotein profiles differed in a capacitation-dependent fashion. Capacitation was accompanied by appearance of two new ERKs (158 and 161 kDa) and disappearance of others. Capacitation was verified with increased tyr-P, which was inhibited by a 30-min pre-exposure of fresh boar sperm to a xanthine/xanthine oxidase ROS-generating system prior to the capacitating incubation; ROS pre-exposure also affected the phosphorylation of RAF1, MEK1/2, and ERK1/2. Preincubating sperm with inhibitors of the ERK components with or without the ROS generator affected subsequent capacitation. Inhibiting ERK1/2 inhibited tyr-P of capacitated boar spermatozoa proteins of 172, 97, and 66 kDa (P ≤ 0.04); with ROS, this inhibition increased (P influence through crosstalk with different pathways. ROS affect RAF1, MEK1/2, and ERK1/2 and could influence the sequential events of boar sperm capacitation.

  13. Region- or state-related differences in expression and activation of extracellular signal-regulated kinases (ERKs in naïve and pain-experiencing rats

    Directory of Open Access Journals (Sweden)

    Cui Xiu-Yu

    2007-07-01

    Full Text Available Abstract Background Extracellular signal-regulated kinase (ERK, one member of the mitogen-activated protein kinase (MAPK family, has been suggested to regulate a diverse array of cellular functions, including cell growth, differentiation, survival, as well as neuronal plasticity. Recent evidence indicates a role for ERKs in nociceptive processing in both dorsal root ganglion and spinal cord. However, little literature has been reported to examine the differential distribution and activation of ERK isoforms, ERK1 and ERK2, at different levels of pain-related pathways under both normal and pain states. In the present study, quantitative blot immunolabeling technique was used to determine the spatial and temporal expression of ERK1 and ERK2, as well as their activated forms, in the spinal cord, primary somatosensory cortex (SI area of cortex, and hippocampus under normal, transient pain and persistent pain states. Results In naïve rats, we detected regional differences in total expression of ERK1 and ERK2 across different areas. In the spinal cord, ERK1 was expressed more abundantly than ERK2, while in the SI area of cortex and hippocampus, there was a larger amount of ERK2 than ERK1. Moreover, phosphorylated ERK2 (pERK2, not phosphorylated ERK1 (pERK1, was normally expressed with a high level in the SI area and hippocampus, but both pERK1 and pERK2 were barely detectable in normal spinal cord. Intraplantar saline or bee venom injection, mimicking transient or persistent pain respectively, can equally initiate an intense and long-lasting activation of ERKs in all three areas examined. However, isoform-dependent differences existed among these areas, that is, pERK2 exhibited stronger response than pERK1 in the spinal cord, whereas ERK1 was more remarkably activated than ERK2 in the S1 area and hippocampus. Conclusion Taken these results together, we conclude that: (1 under normal state, while ERK immunoreactivity is broadly distributed in the rat

  14. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Kelsey; Amaya, Moushimi [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Mueller, Claudius [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Roberts, Brian [Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD (United States); Kehn-Hall, Kylene; Bailey, Charles [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Petricoin, Emanuel [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Narayanan, Aarthi, E-mail: anaraya1@gmu.edu [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States)

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  15. Vascular endothelin ET(B) receptor-mediated contraction requires phosphorylation of ERK1/2 proteins

    DEFF Research Database (Denmark)

    Luo, Guogang; Jamali, Roya; Cao, Yong-Xiao;

    2006-01-01

    RNA and protein expressions. The endothelin ET(B) receptor-mediated contraction was associated with increase in phosphorylation of extracellular regulation kinase 1 and 2 (ERK1/2) proteins and elevated levels of intracellular calcium. The elevation curve of intracellular calcium consisted of two phases: one rapid...... and one sustained. Inhibition of ERK1/2 phosphorylation by SB386023 or blockage of calcium channels by nifedipine significantly reduced the endothelin ET(B) receptor-mediated contraction (P..., phosphorylation of ERK1/2 proteins and elevation of intracellular calcium level are required for endothelin ET(B) receptor-mediated contraction in rat mesenteric artery....

  16. Suppression of integrin activation by activated Ras or Raf does not correlate with bulk activation of ERK MAP kinase.

    Science.gov (United States)

    Hughes, Paul E; Oertli, Beat; Hansen, Malene; Chou, Fan-Li; Willumsen, Berthe M; Ginsberg, Mark H

    2002-07-01

    The rapid modulation of ligand-binding affinity ("activation") is a central property of the integrin family of cell adhesion receptors. The Ras family of small GTP-binding proteins and their downstream effectors are key players in regulating integrin activation. H-Ras can suppress integrin activation in fibroblasts via its downstream effector kinase, Raf-1. In contrast, to H-Ras, a closely related small GTP-binding protein R-Ras has the opposite activity, and promotes integrin activation. To gain insight into the regulation of integrin activation by Ras GTPases, we created a series of H-Ras/R-Ras chimeras. We found that a 35-amino acid stretch of H-Ras was required for full suppressive activity. Furthermore, the suppressive chimeras were weak activators of the ERK1/2 MAP kinase pathway, suggesting that the suppression of integrin activation may be independent of the activation of the bulk of ERK MAP kinase. Additional data demonstrating that the ability of H-Ras or Raf-1 to suppress integrin activation was unaffected by inhibition of bulk ERK1/2 MAP kinase activation supported this hypothesis. Thus, the suppression of integrin activation is a Raf kinase induced regulatory event that can be mediated independently of bulk activation of the ERK MAP-kinase pathway.

  17. Multiplexing PKA and ERK1&2 kinases FRET biosensors in living cells using single excitation wavelength dual colour FLIM

    Science.gov (United States)

    Demeautis, Claire; Sipieter, François; Roul, Julien; Chapuis, Catherine; Padilla-Parra, Sergi; Riquet, Franck B.; Tramier, Marc

    2017-01-01

    Monitoring of different signalling enzymes in a single assay using multiplex biosensing provides a multidimensional workspace to elucidate biological processes, signalling pathway crosstalk, and determine precise sequence of events at the single living cell level. In this study, we interrogate the complexity in cAMP/PKA-MAPK/ERK1&2 crosstalk by using multi-parameter biosensing experiments to correlate biochemical activities simultaneously in time and space. Using a single excitation wavelength dual colour FLIM method we are able to detect fluorescence lifetime images of two donors to simultaneously measure PKA and ERK1&2 kinase activities in the same cellular localization by using FRET biosensors. To this end, we excite two FRET donors mTFP1 and LSSmOrange with a 440 nm wavelength and we alleviate spectral bleed-through associated limitations with the very dim-fluorescent acceptor ShadowG for mTFP1 and the red-shifted mKate2 for LSSmOrange. The simultaneous recording of PKA and ERK1&2 kinase activities reveals concomitant EGF-mediated activations of both kinases in HeLa cells. Under these conditions the subsequent Forskolin-induced cAMP release reverses the transient increase of EGF-mediated ERK1&2 kinase activity while reinforcing PKA activation. Here we propose a validated methodology for multiparametric kinase biosensing in living cells using FRET-FLIM. PMID:28106114

  18. Phosphorylation of ERK/MAP Kinase Is Required for Long-Term Potentiation in Anatomically Restricted Regions of the Lateral Amygdala in Vivo

    Science.gov (United States)

    Schafe, Glenn E.; Swank, Michael W.; Rodriguez, Sarina M.; Debiec, Jacek; Doyere, Valerie

    2008-01-01

    We have previously shown that the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/ MAPK) is transiently activated in anatomically restricted regions of the lateral amygdala (LA) following Pavlovian fear conditioning and that blockade of ERK/MAPK activation in the LA impairs both fear memory consolidation and long-term…

  19. p21-activated Kinase1(PAK1) can promote ERK activation in a kinase independent manner

    DEFF Research Database (Denmark)

    Wang, Zhipeng; Fu, Meng; Wang, Lifeng

    2013-01-01

    204) although phosphorylation of b-Raf (Ser445) and c-Raf (Ser 338) remained unchanged. Furthermore, increased activation of the PAK1 activator Rac1 induced the formation of a triple complex of Rac1, PAK1 and Mek1, independent of the kinase activity of PAK1. These data suggest that PAK1 can stimulate...

  20. Translational control of myelin basic protein expression by ERK2 MAP kinase regulates timely remyelination in the adult brain.

    Science.gov (United States)

    Michel, Kelly; Zhao, Tianna; Karl, Molly; Lewis, Katherine; Fyffe-Maricich, Sharyl L

    2015-05-20

    Successful myelin repair in the adult CNS requires the robust and timely production of myelin proteins to generate new myelin sheaths. The underlying regulatory mechanisms and complex molecular basis of myelin regeneration, however, remain poorly understood. Here, we investigate the role of ERK MAP kinase signaling in this process. Conditional deletion of Erk2 from cells of the oligodendrocyte lineage resulted in delayed remyelination following demyelinating injury to the adult mouse corpus callosum. The delayed repair occurred as a result of a specific deficit in the translation of the major myelin protein, MBP. In the absence of ERK2, activation of the ribosomal protein S6 kinase (p70S6K) and its downstream target, ribosomal protein S6 (S6RP), was impaired at a critical time when premyelinating oligodendrocytes were transitioning to mature cells capable of generating new myelin sheaths. Thus, we have described an important link between the ERK MAP kinase signaling cascade and the translational machinery specifically in remyelinating oligodendrocytes in vivo. These results suggest an important role for ERK2 in the translational control of MBP, a myelin protein that appears critical for ensuring the timely generation of new myelin sheaths following demyelinating injury in the adult CNS.

  1. Activation of the cellular mitogen-activated protein kinase pathways ERK, P38 and JNK during Toxoplasma gondii invasion

    Directory of Open Access Journals (Sweden)

    Valère A.

    2003-03-01

    Full Text Available Host cell invasion is essential for the pathogenicity of the obligate intracellular protozoan parasite Toxoplasma gondii. In the present study, we evaluated the ability of T. gondii tachyzoites to trigger phosphorylation of the different mitogen-activated protein kinases (MAPK in human monocytic cells THP1. Kinetic experiments show that the peak of extracellular-signal-regulated kinase (ERK 1/2, P38 and cjun-NH2 terminal kinase (JNKs phosphorylation occurs between 10 and 60 min. The use of specific inhibitors of ERK1/2, P38 and JNK1/2 phosphorylation indicates the specificity of MAPKs phosphorylation during invasion. Signaling through cellular and parasite mitogen-activated protein (MAP kinase pathways appears to be critical for T. gondii invasion.

  2. Lipid-soluble smoke particles upregulate vascular smooth muscle ETB receptors via activation of mitogen-activating protein kinases and NF-kappaB pathways

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Zheng, Jian-Pu; Zhang, Wei

    2008-01-01

    ), elevated levels of ET(B) receptor mRNA (quantitative real-time PCR), and protein expressions (immunohistochemistry and Western blotting). Intracellular signaling was studied with Western blotting and phosphoELISA; this revealed that DSP induced extracellular-regulated protein kinases 1 and 2 (ERK1/2), p38...

  3. Melanocortin 1 receptor mutations impact differentially on signalling to the cAMP and the ERK mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Herraiz, Cecilia; Jiménez-Cervantes, Celia; Zanna, Paola; García-Borrón, José C

    2009-10-06

    Melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor expressed in melanocytes, is a major determinant of skin pigmentation, phototype and cancer risk. MC1R activates cAMP and mitogen-activated protein kinase ERK1/ERK2 signalling. When expressed in rat pheochromocytoma cell line cells, the R151C, R160W and D294H MC1R variants associated with melanoma and impaired cAMP signalling mediated ERK activation and ERK-dependent, agonist-induced neurite outgrowth comparable with wild-type. Dose-response curves for ERK activation and cAMP production indicated higher sensitivity of the ERK response. Thus, the melanoma-associated MC1R mutations impact differently on cAMP and ERK signalling, suggesting that cAMP is not responsible for functional coupling of MC1R to the ERK cascade.

  4. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function.

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M; Xu, Lihong; Storm, Daniel R; Xia, Zhengui

    2015-05-20

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury.

  5. Involvement of activation of NADPH oxidase and extracellular signal-regulated kinase (ERK) in renal cell injury induced by zinc.

    Science.gov (United States)

    Matsunaga, Yoshiko; Kawai, Yoshiko; Kohda, Yuka; Gemba, Munekazu

    2005-05-01

    Zinc is employed as a supplement; however, zinc-related nephropathy is not generally known. In this study, we investigated zinc-induced renal cell injury using a pig kidney-derived cultured renal epithelial cell line, LLC-PK(1), with proximal kidney tubule-like features, and examined the involvement of free radicals and extracellular signal-regulated kinase (ERK) in the cell injury. The LLC-PK(1) cells showed early uptake of zinc (30 microM), and the release of lactate dehydrogenase (LDH), an index of cell injury, was observed 24 hr after uptake. Three hours after zinc exposure, generation of reactive oxygen species (ROS) was increased. An antioxidant, N, N'-diphenyl-p-phenylenediamine (DPPD), inhibited a zinc-related increase in ROS generation and zinc-induced renal cell injury. An NADPH oxidase inhibitor, diphenyleneiodonium (DPI), inhibited a zinc-related increase in ROS generation and cell injury. We investigated translocation from the cytosol fraction of the p67(phox) subunit, which is involved in the activation of NADPH oxidase, to the membrane fraction, and translocation was induced 3 hr after zinc exposure. We examined the involvement of ERK1/2 in the deterioration of zinc-induced renal cell injury, and the association between ERK1/2 and an increase in ROS generation. Six hours after zinc exposure, the activation (phosphorylation) of ERK1/2 was observed. An antioxidant, DPPD, inhibited the zinc-related activation of ERK1/2. An MAPK/ERK kinase (MEK1/2) inhibitor, U0126, almost completely inhibited zinc-related cell injury (the release of LDH), but did not influence ROS generation. These results suggest that early intracellular uptake of zinc by LLC-PK(1) cells causes the activation of NADPH oxidase, and that ROS generation by the activation of the enzyme leads to the deterioration of renal cell injury via the activation of ERK1/2.

  6. Short waves-induced enhancement of proliferation of human chondrocytes: involvement of extracellular signal-regulated map-kinase (erk).

    Science.gov (United States)

    Wang, Jue-Long; Chan, Rai-Chi; Cheng, He-Hsiung; Huang, Chun-Jen; Lu, Yih-Chau; Chen, I-Shu; Liu, Shiuh-Inn; Hsu, Shu-Shong; Chang, Hong-Tai; Huang, Jong-Khing; Chen, Jin-Shyr; Ho, Chin-Man; Jan, Chung-Ren

    2007-07-01

    1. Short-wave diathermy (SWD) is a form of radiofrequency radiation that is used therapeutically by physiotherapists. The cellular mechanisms of SWD are unclear. The present study was performed to explore the effect of different conditions of short-wave exposure on the proliferation of cultured human chondrocytes. 2. Cells exposed to short waves once per day for seven consecutive days exhibited a significant increase in proliferation by 42% compared with the control cells. In cells that were treated with short waves twice per day for seven consecutive days, or only once on Day 1 and then examined for proliferation on Day 7, cell proliferation was greater than the control cells by 40% and 30%, respectively. 3. Given the importance of mitogen-activated protein kinases (MAPK) in the proliferation of different cell types, efforts were extended to explore the role of three major types of MAPK; that is, extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal protein kinase (JNK) and p38. 4. It was found that the level of phosphorylated ERK (phospho-ERK 1 and ERK 2) increased significantly within 5-120 min following consecutive exposure to short waves for 7 days. Exposure to short waves failed to alter the intensity of phosphorylated JNK and p38 within 0-240 min. 5. Cells were exposed to short waves once for seven consecutive days in the presence of 0, 10 micromol/L, 20 micromol/L or 50 micromol/L PD98059 (an ERK inhibitor). PD98059 totally inhibited short waves-induced enhancement of proliferation without altering normal control viability. In the presence of short waves and PD98059, the cell viability was lower than the normal control. Together, the data suggest that short waves could increase proliferation in human chondrocytes through activation of the ERK pathway, which is also involved in maintaining normal cell proliferation under physiological conditions.

  7. Regulation of EGF-induced ERK/MAPK Activation and EGFR Internalization by G Protein-coupled Receptor Kinase 2

    Institute of Scientific and Technical Information of China (English)

    Jingxia GAO; Jiali LI; Lan MA

    2005-01-01

    G protein-coupled receptor kinases (GRKs) mediate agonist-induced phosphorylation and desensitization of various G protein-coupled receptors (GPCRs). We investigate the role of GRK2 on epidermal growth factor (EGF) receptor signaling, including EGF-induced extracellular signal-regulated kinase and mitogen-activated protein kinase (ERK/MAPK) activation and EGFR internalization. Immunoprecipitation and immunofluorescence experiments show that EGF stimulates GRK2 binding to EGFR complex and GRK2 translocating from cytoplasm to the plasma membrane in human embryonic kidney 293 cells. Western blotting assay shows that EGF-induced ERK/MAPK phosphorylation increases 1.9-fold, 1.1-fold and 1.5-fold (P<0.05) at time point 30, 60 and 120 min, respectively when the cells were transfected with GRK2,suggesting the regulatory role of GRK2 on EGF-induced ERK/MAPK activation. Flow cytometry experiments show that GRK2 overexpression has no effect on EGF-induced EGFR internalization, however, it increases agonist-induced G protein-coupled δ opioid receptor internalization by approximately 40% (P<0.01). Overall,these data suggest that GRK2 has a regulatory role in EGF-induced ERK/MAPK activation, and that the mechanisms underlying the modulatory role of GRK2 in EGFR and GPCR signaling pathways are somewhat different at least in receptor internalization.

  8. Differential expression of extracellular-signal-regulated kinase 5 (ERK5) in normal and degenerated human nucleus pulposus tissues and cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Weiguo, E-mail: liangweiguo@tom.com [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); Fang, Dejian [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); Ye, Dongping [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009 (Australia); Zou, Longqiang; Shen, Yan; Dai, Libing [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); Xu, Jiake, E-mail: jiake.xu@uwa.edu.au [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009 (Australia)

    2014-07-11

    Highlights: • ERK5 involved in NP cells. • ERK5 involved in NP tissue. • It was important modulator. - Abstract: Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-α decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5 μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.

  9. Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site.

    Science.gov (United States)

    Chen, Hongming; Tucker, Julie; Wang, Xiaotao; Gavine, Paul R; Phillips, Chris; Augustin, Martin A; Schreiner, Patrick; Steinbacher, Stefan; Preston, Marian; Ogg, Derek

    2016-05-01

    MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported. Interestingly, three of the compounds bind at a novel allosteric binding site in ERK5, while the other two bind at the typical ATP-binding site. Binding of inhibitors at the allosteric site is accompanied by displacement of the P-loop into the ATP-binding site and is shown to be ATP-competitive in an enzymatic assay of ERK5 kinase activity. Kinase selectivity data show that the most potent allosteric inhibitor exhibits superior kinase selectivity compared with the two inhibitors that bind at the canonical ATP-binding site. An analysis of these structures and comparison with both a previously published ERK5-inhibitor complex structure (PDB entry 4b99) and the structures of three other kinases (CDK2, ITK and MEK) in complex with allosteric inhibitors are presented.

  10. Neuroprotection by sodium ferulate against glutamate-induced apoptosis is mediated by ERK and P13 kinase pathways

    Institute of Scientific and Technical Information of China (English)

    Ying JIN; En-zhi YAN; Ying FAN; Xiao-li GUO; Yan-jie ZHAO; Zhi-hong ZONG; Zhuo LIU

    2007-01-01

    Aim: To investigate whether sodium ferulate (SF) can protect cortical neurons from glutamate-induced neurotoxicity and the mechanisms responsible for this protection. Methods: Cultured cortical neurons were incubated with 50 μmol/L glutamate for either 30 min or 24 h, with or without pre-incubation with SF (100, 200, and 500 μmol/L, respectively). LY294002, wortmannin, PD98059, and U0126 were added respectively to the cells 1 h prior to SF treatment. After incubation with glutamate for 24 h, neuronal apoptosis was quantified by scoring the per- centage of ceils with apoptotic nuclear morphology after Hoechst 33258 staining. After incubation with glutamate for either 30 min or 24 h, cellular extracts were prepared for Western blotting of active caspase-3, poly (ADP-ribose) polymerase (PARP), μ-calpain, Bcl-2, phospho-Akt, phosphorylated ribosomal protein S6 pro- tein kinase (p70S6K), phospho-mitogen-activated protein kinase kinase (MEK1/2) and phosphorylated extracellular signal-regulated kinase (ERK) 1/2. Results: SF reduced glutamate-evoked apoptotic morphology, active caspase-3 protein expression, and PARP cleavage and inhibited the glutamate-induced upregulation of the μ-calpain protein level. The inhibition of the phosphatidylinositol 3-kinase (PI3K) and the MEK/ERK1/2 pathways partly abrogated the protective effect ot SF against glutamate-induced neuronal apoptosis. SF prevented the glutamate-induced decrease in the activity of the PI3K/Akt/p70S6K and the MEK/ERK1/2 pathways. Moreover, incubation of cortical neurons with SF for 30 min inhibited the reduction of the Bcl-2 expression induced by glutamate. Conclusion: The results indicate that PI3K/Akt/p70S6K and the MEK/ERK signaling pathways play important roles in the protective effect of SF against glutamate toxicity in cortical neurons.

  11. Corticosterone activates Erk1/2 mitogen-activated protein kinase in primary hippocampal cells through rapid nongenomic mechanism

    Institute of Scientific and Technical Information of China (English)

    QI Aiqun; QIU Jian; XIAO Lin; CHEN Yizhang

    2005-01-01

    Nongenomic effects of glucocorticoids (GC) in various cell types have been well documented, but it still remains unknown whether the mechanism also works in hippocampus which is a crucial target of glucocorticoids in neural system during physiological and/or pathophysiological processes. We present here that corticosterone (B) could rapidly activate Erk1/2 mitogen-activated protein kinase (MAPK) in primarily cultured hippocampal cells within minutes, with a bell-shaped time dependent curve which peaked at 15min and then went down to normal level in 30 min. This activation was blocked by protein kinase C (PKC) inhibitor (Go6976), G protein inhibitor (GDPβs), and MEK(MAPK/extracellular signal-regulated kinase kinase) inhibitor(PD98059), but not by protein kinase A (PKA) inbibitor (H89), tyrosine kinase inhibitor (genistein), and glucocorticoid receptor ( GR ) antagonist (RU38486). Thus, the rapid activation of Erk1/2 MAPK in primary hippocampal cells induced by B was likely mediated by a G protein coupled receptor (GPCR) pathway with involvement of PKC, which belonged to the nongenomic rather than genomic mechanism of GC' s effects.

  12. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning.

    Science.gov (United States)

    Schafe, G E; Atkins, C M; Swank, M W; Bauer, E P; Sweatt, J D; LeDoux, J E

    2000-11-01

    Although much has been learned about the neurobiological mechanisms underlying Pavlovian fear conditioning at the systems and cellular levels, relatively little is known about the molecular mechanisms underlying fear memory consolidation. The present experiments evaluated the role of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling cascade in the amygdala during Pavlovian fear conditioning. We first show that ERK/MAPK is transiently activated-phosphorylated in the amygdala, specifically the lateral nucleus (LA), at 60 min, but not 15, 30, or 180 min, after conditioning, and that this activation is attributable to paired presentations of tone and shock rather than to nonassociative auditory stimulation, foot shock sensitization, or unpaired tone-shock presentations. We next show that infusions of U0126, an inhibitor of ERK/MAPK activation, aimed at the LA, dose-dependently impair long-term memory of Pavlovian fear conditioning but leaves short-term memory intact. Finally, we show that bath application of U0126 impairs long-term potentiation in the LA in vitro. Collectively, these results demonstrate that ERK/MAPK activation is necessary for both memory consolidation of Pavlovian fear conditioning and synaptic plasticity in the amygdala.

  13. Targeted deletion of the ERK5 MAP kinase impairs neuronal differentiation, migration, and survival during adult neurogenesis in the olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Tan Li

    Full Text Available Recent studies have led to the exciting idea that adult-born neurons in the olfactory bulb (OB may be critical for complex forms of olfactory behavior in mice. However, signaling mechanisms regulating adult OB neurogenesis are not well defined. We recently reported that extracellular signal-regulated kinase (ERK 5, a MAP kinase, is specifically expressed in neurogenic regions within the adult brain. This pattern of expression suggests a role for ERK5 in the regulation of adult OB neurogenesis. Indeed, we previously reported that conditional deletion of erk5 in adult neurogenic regions impairs several forms of olfactory behavior in mice. Thus, it is important to understand how ERK5 regulates adult neurogenesis in the OB. Here we present evidence that shRNA suppression of ERK5 in adult neural stem/progenitor cells isolated from the subventricular zone (SVZ reduces neurogenesis in culture. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, stimulates neurogenesis. Furthermore, inducible and conditional deletion of erk5 specifically in the neurogenic regions of the adult mouse brain interferes with cell cycle exit of neuroblasts, impairs chain migration along the rostral migratory stream and radial migration into the OB. It also inhibits neuronal differentiation and survival. These data suggest that ERK5 regulates multiple aspects of adult OB neurogenesis and provide new insights concerning signaling mechanisms governing adult neurogenesis in the SVZ-OB axis.

  14. Rapid CB1 cannabinoid receptor desensitization defines the time course of ERK1/2 MAP kinase signaling.

    Science.gov (United States)

    Daigle, Tanya L; Kearn, Christopher S; Mackie, Ken

    2008-01-01

    Molecular mechanisms regulating the development of physiological and behavioral tolerance to cannabinoids are not well understood. Two cellular correlates implicated in the development and maintenance of tolerance are CB(1) cannabinoid receptor internalization and uncoupling of receptor signal transduction. Both processes have been proposed as mediators of tolerance because of observations that chronic Delta(9)-tetrahydrocannabinol (THC) treatment causes both region-specific decreases in CB(1) receptors and G-protein coupling in the brain. To determine the balance of these two processes in regulating CB(1) receptor signaling during sustained receptor stimulation, we evaluated the parameters affecting ERK1/2 MAP kinase activity in HEK293 cells stably expressing CB(1) receptors. CB(1) receptor stimulation by the potent CB(1) receptor agonist, CP 55,940 transiently activated ERK1/2. To determine if CB(1) receptor desensitization or internalization was responsible for the transient nature of ERK1/2 activation, we evaluated ERK1/2 phosphorylation in HEK293 cells expressing a desensitization-deficient CB(1) receptor (S426A/S430A CB(1)). Here, the duration of S426A/S430A CB(1) receptor-mediated activation of ERK1/2 was markedly prolonged relative to wild-type receptors, and was dynamically reversed by SR141716A. Interestingly, the S426A/S430A CB(1) receptor was still able to recruit betaarrestin-2, a key mediator of receptor desensitization, to the cell surface following agonist activation. In contrast to a central role for desensitization, pharmacological and genetic approaches suggested CB(1) receptor internalization is dispensable in the transient activation of ERK1/2. This study indicates that the duration of ERK1/2 activation by CB(1) receptors is regulated by receptor desensitization and underscores the importance of G-protein uncoupling in the regulation of CB(1) receptor signaling.

  15. Genetic activation of ERK5 MAP kinase enhances adult neurogenesis and extends hippocampus-dependent long-term memory.

    Science.gov (United States)

    Wang, Wenbin; Pan, Yung-Wei; Zou, Junhui; Li, Tan; Abel, Glen M; Palmiter, Richard D; Storm, Daniel R; Xia, Zhengui

    2014-02-05

    Recent studies have shown that inhibition of adult neurogenesis impairs the formation of hippocampus-dependent memory. However, it is not known whether increasing adult neurogenesis affects the persistence of hippocampus-dependent long-term memory. Furthermore, signaling mechanisms that regulate adult neurogenesis are not fully defined. We recently reported that the conditional and targeted knock-out of ERK5 MAP kinase in adult neurogenic regions of the mouse brain attenuates adult neurogenesis in the hippocampus and disrupts several forms of hippocampus-dependent memory. Here, we developed a gain-of-function knock-in mouse model to specifically activate endogenous ERK5 in the neurogenic regions of the adult brain. We report that the selective and targeted activation of ERK5 increases adult neurogenesis in the dentate gyrus by enhancing cell survival, neuronal differentiation, and dendritic complexity. Conditional ERK5 activation also improves the performance of challenging forms of spatial learning and memory and extends hippocampus-dependent long-term memory. We conclude that enhancing signal transduction of a single signaling pathway within adult neural stem/progenitor cells is sufficient to increase adult neurogenesis and improve the persistence of hippocampus-dependent memory. Furthermore, activation of ERK5 may provide a novel therapeutic target to improve long-term memory.

  16. The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma

    LENUS (Irish Health Repository)

    Keld, Richard

    2010-12-09

    Abstract Background Many members of the ETS-domain transcription factor family are important drivers of tumourigenesis. In this context, their activation by Ras-ERK pathway signaling is particularly relevant to the tumourigenic properties of many ETS-domain transcription factors. The PEA3 subfamily of ETS-domain transcription factors have been implicated in tumour metastasis in several different cancers. Results Here, we have studied the expression of the PEA3 subfamily members PEA3\\/ETV4 and ER81\\/ETV1 in oesophageal adenocarcinomas and determined their role in oesophageal adenocarcinoma cell function. PEA3 plays an important role in controlling both the proliferation and invasive properties of OE33 oesophageal adenocarcinoma cells. A key target gene is MMP-1. The ERK MAP kinase pathway activates PEA3 subfamily members and also plays a role in these PEA3 controlled events, establishing the ERK-PEA3-MMP-1 axis as important in OE33 cells. PEA3 subfamily members are upregulated in human adenocarcinomas and expression correlates with MMP-1 expression and late stage metastatic disease. Enhanced ERK signaling is also more prevalent in late stage oesophageal adenocarcinomas. Conclusions This study shows that the ERK-PEA3-MMP-1 axis is upregulated in oesophageal adenocarcinoma cells and is a potentially important driver of the metastatic progression of oesophageal adenocarcinomas.

  17. ERK2-Pyruvate Kinase Axis Permits Phorbol 12-Myristate 13-Acetate-induced Megakaryocyte Differentiation in K562 Cells.

    Science.gov (United States)

    Chaman, Noor; Iqbal, Mohammad Askandar; Siddiqui, Farid Ahmad; Gopinath, Prakasam; Bamezai, Rameshwar N K

    2015-09-25

    Metabolic changes that contribute to differentiation are not well understood. Overwhelming evidence shows the critical role of glycolytic enzyme pyruvate kinase (PK) in directing metabolism of proliferating cells. However, its role in metabolism of differentiating cells is unclear. Here we studied the role of PK in phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation in human leukemia K562 cells. We observed that PMA treatment decreased cancer-type anabolic metabolism but increased ATP production, along with up-regulated expression of two PK isoforms (PKM2 and PKR) in an ERK2-dependent manner. Interestingly, silencing of PK (PKM2 and PKR) inhibited PMA-induced megakaryocytic differentiation, as revealed by decreased expression of megakaryocytic differentiation marker CD61 and cell cycle behavior. Further, PMA-induced ATP production reduced greatly upon PK silencing, suggesting that PK is required for ATP synthesis. In addition to metabolic effects, PMA treatment also translocated PKM2, but not PKR, into nucleus. ERK1/2 knockdowns independently and together suggested the role of ERK2 in the up-regulation of both the isoforms of PK, proposing a role of ERK2-PK isoform axis in differentiation. Collectively, our findings unravel ERK2 guided PK-dependent metabolic changes during PMA induction, which are important in megakaryocytic differentiation.

  18. ERK2-Pyruvate Kinase Axis Permits Phorbol 12-Myristate 13-Acetate-induced Megakaryocyte Differentiation in K562 Cells*

    Science.gov (United States)

    Chaman, Noor; Iqbal, Mohammad Askandar; Siddiqui, Farid Ahmad; Gopinath, Prakasam; Bamezai, Rameshwar N. K.

    2015-01-01

    Metabolic changes that contribute to differentiation are not well understood. Overwhelming evidence shows the critical role of glycolytic enzyme pyruvate kinase (PK) in directing metabolism of proliferating cells. However, its role in metabolism of differentiating cells is unclear. Here we studied the role of PK in phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation in human leukemia K562 cells. We observed that PMA treatment decreased cancer-type anabolic metabolism but increased ATP production, along with up-regulated expression of two PK isoforms (PKM2 and PKR) in an ERK2-dependent manner. Interestingly, silencing of PK (PKM2 and PKR) inhibited PMA-induced megakaryocytic differentiation, as revealed by decreased expression of megakaryocytic differentiation marker CD61 and cell cycle behavior. Further, PMA-induced ATP production reduced greatly upon PK silencing, suggesting that PK is required for ATP synthesis. In addition to metabolic effects, PMA treatment also translocated PKM2, but not PKR, into nucleus. ERK1/2 knockdowns independently and together suggested the role of ERK2 in the up-regulation of both the isoforms of PK, proposing a role of ERK2-PK isoform axis in differentiation. Collectively, our findings unravel ERK2 guided PK-dependent metabolic changes during PMA induction, which are important in megakaryocytic differentiation. PMID:26269597

  19. The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Gulmann Christian

    2010-12-01

    Full Text Available Abstract Background Many members of the ETS-domain transcription factor family are important drivers of tumourigenesis. In this context, their activation by Ras-ERK pathway signaling is particularly relevant to the tumourigenic properties of many ETS-domain transcription factors. The PEA3 subfamily of ETS-domain transcription factors have been implicated in tumour metastasis in several different cancers. Results Here, we have studied the expression of the PEA3 subfamily members PEA3/ETV4 and ER81/ETV1 in oesophageal adenocarcinomas and determined their role in oesophageal adenocarcinoma cell function. PEA3 plays an important role in controlling both the proliferation and invasive properties of OE33 oesophageal adenocarcinoma cells. A key target gene is MMP-1. The ERK MAP kinase pathway activates PEA3 subfamily members and also plays a role in these PEA3 controlled events, establishing the ERK-PEA3-MMP-1 axis as important in OE33 cells. PEA3 subfamily members are upregulated in human adenocarcinomas and expression correlates with MMP-1 expression and late stage metastatic disease. Enhanced ERK signaling is also more prevalent in late stage oesophageal adenocarcinomas. Conclusions This study shows that the ERK-PEA3-MMP-1 axis is upregulated in oesophageal adenocarcinoma cells and is a potentially important driver of the metastatic progression of oesophageal adenocarcinomas.

  20. Expression of Erk5 in early stage breast cancer and association with disease free survival identifies this kinase as a potential therapeutic target.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Montero

    Full Text Available BACKGROUND: Breast cancer is the most common neoplasia in women. Even though advances in its treatment have improved disease outcome, some patients relapse. Therefore, attempts to better define the molecular determinants that drive breast cancer cell proliferation may help in defining potential therapeutic targets. Mitogen-activated protein kinases (MAPK play important roles in tumorigenesis. One of them, Erk5, has been linked to the proliferation of breast cancer cells in vitro. Here we have investigated the expression and prognostic value of Erk5 in human breast cancer. METHODOLOGY/PRINCIPAL FINDINGS: Animal and cellular models were used to study Erk5 expression and function in breast cancer. In 84 human breast tumours the expression of Erk5 was analyzed by immunohistochemistry. Active Erk5 (pErk5 was studied by Western blotting. Correlation of Erk5 with clinicopathological parameters and with disease-free survival in early stage breast cancer patients was analyzed. Expression of Erk5 was detected in most patients, and overexpression was found in 20%. Active Erk5 was present in a substantial number of samples, as well as in tumours from an animal breast cancer model. Overexpression of Erk5 was associated with a decrease in disease-free survival time, which was independent of other clinicopathological parameters of prognosis. Transient transfection of a short hairpin RNA (shRNA targeting Erk5, and a stable cell line expressing a dominant negative form of Erk5 (Erk5(AEF, were used to investigate the influence of Erk5 on drugs used in the clinic to treat breast tumours. We found that inhibition of Erk5 decreased cancer cell proliferation and also sensitized these cells to the action of anti-HER2 therapies. CONCLUSIONS/SIGNIFICANCE: Overexpression of Erk5 is an independent predictor of disease-free survival in breast cancer, and may represent a future therapeutic target.

  1. Tay bridge is a negative regulator of EGFR signalling and interacts with Erk and Mkp3 in the Drosophila melanogaster wing.

    Science.gov (United States)

    Molnar, Cristina; de Celis, Jose F

    2013-01-01

    The regulation of Extracellular regulated kinase (Erk) activity is a key aspect of signalling by pathways activated by extracellular ligands acting through tyrosine kinase transmembrane receptors. In this process, participate proteins with kinase activity that phosphorylate and activate Erk, as well as different phosphatases that inactivate Erk by de-phosphorylation. The state of Erk phosphorylation affects not only its activity, but also its subcellular localization, defining the repertoire of Erk target proteins, and consequently, the cellular response to Erk. In this work, we characterise Tay bridge as a novel component of the EGFR/Erk signalling pathway. Tay bridge is a large nuclear protein with a domain of homology with human AUTS2, and was previously identified due to the neuronal phenotypes displayed by loss-of-function mutations. We show that Tay bridge antagonizes EGFR signalling in the Drosophila melanogaster wing disc and other tissues, and that the protein interacts with both Erk and Mkp3. We suggest that Tay bridge constitutes a novel element involved in the regulation of Erk activity, acting as a nuclear docking for Erk that retains this protein in an inactive form in the nucleus.

  2. Simvastatin induces differentiation of rabbit articular chondrocytes via the ERK-1/2 and p38 kinase pathways.

    Science.gov (United States)

    Han, Yohan; Kim, Song Ja

    2016-08-15

    Statins are competitive inhibitors of hydroxy-methyl-glutaryl Coenzyme A (HMG-CoA) reductase, a key enzyme involved in the conversion of HMG-CoA to the cholesterol precursor mevalonate. Some statins, such as simvastatin (simvastatin), have been shown to have anti-cancer and anti-inflammatory effects, reducing cartilage degradation in osteoarthritic rabbits in vivo. However, the regulatory mechanisms undergirding simvastatin mediated chondrocyte differentiation have not been well elucidated. Thus, we investigated the action and mechanism of simvastatin on differentiation of rabbit articular chondrocytes through western blot analyses, RT-PCR, and immunohistochemical (IHC) and immunofluorescence (IF) staining. Simvastatin treatment was found to induce type II collagen expression and sulfated-proteoglycan synthesis in a dose- and time-dependent manner. Indeed, RT-PCR revealed increased expression of type II collagen on treatment with simvastatin. Both IHC and IF staining indicated differentiation of chondrocytes. Simvastatin treatment reduced activation of ERK-1/2 and stimulated activation of p38 kinase. Inhibition of ERK-1/2 with PD98059 enhanced simvastatin induced differentiation, whereas inhibition of p38 kinase with SB203580 inhibited simvastatin induced differentiation. Simvastatin treatment also inhibits loss of type II collagen in serial monolayer culture. Collectively, our results indicate that ERK-1/2 and p38 kinase regulate simvastatin-induced differentiation of chondrocytes in opposing manners. Thus, these findings suggest that simvastatin may be a potential therapeutic drug for osteoarthritis.

  3. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2).

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2006-11-01

    Dietary polyphenols have been associated with the reduced risk of chronic diseases such as cancer, but the precise underlying mechanism of protection remains unclear. The aim of this study was to investigate the effect of quercetin on the activation of the apoptotic pathway in a human hepatoma cell line (HepG2). Treatment of cells for 18 h with quercetin induced cell death in a dose-dependent manner; however, a shorter treatment (4 h) had no effect on cell viability. Incubation of HepG2 cells with quercetin for 18 h induced apoptosis by the activation of caspase-3 and -9, but not caspase-8. Moreover, this flavonoid decreased the Bcl-xL:Bcl-xS ratio and increased translocation of Bax to the mitochondrial membrane. A sustained inhibition of the major survival signals, Akt and extracellular regulated kinase (ERK), also occurred in quercetin-treated cells. These data suggest that quercetin may induce apoptosis by direct activation of caspase cascade (mitochondrial pathway) and by inhibiting survival signaling in HepG2.

  4. Salinomycin causes migration and invasion of human fibrosarcoma cells by inducing MMP-2 expression via PI3-kinase, ERK-1/2 and p38 kinase pathways.

    Science.gov (United States)

    Yu, Seon-Mi; Kim, Song Ja

    2016-06-01

    Salinomycin (SAL) is a polyether ionophore antibiotic that has recently been shown to regulate a variety of cellular responses in various human cancer cells. However, the effects of SAL on metastatic capacity of HT1080 human fibrosarcoma cells have not been elucidated. We investigated the effect of SAL on migration and invasion, with emphasis on the expression and activation of matrix metalloproteinase (MMP)-2 in HT1080 human fibrosarcoma cells. Treatment of SAL promoted the expression and activation of MMP-2 in a dose- and time-dependent manner, as detected by western blot analysis, gelatin zymography, and real-time polymerase chain reaction. SAL also increased metastatic capacities, as determined by an increase in the migration and invasion of cells using the wound healing assay and the invasion assay, respectively. To confirm the detailed molecular mechanisms of these effects, we measured the activation of phosphoinositide 3 kinase (PI3-kinase) and mitogen-activated protein kinase (MAPK)s (ERK-1/2 and p38 kinase), as detected by the phosphorylated proteins through western blot analysis. SAL treatment increased the phosphorylation of Akt and MAPKs. Inhibition of PI3-kinase, ERK-1/2, and p38 kinase with LY294002, PD98059, and SB203580, respectively, in the presence of SAL suppressed the metastatic capacity by reducing MMP-2 expression, as determined by gelatin zymography. Our results indicate that the PI3-kinase and MAPK signaling pathways are involved in migration and invasion of HT1080 through induction of MMP-2 expression and activation. In conclusion, SAL significantly increases the metastatic capacity of HT1080 cells by inducing MMP-2 expression via PI3-kinase and MAPK pathways. Our results suggest that SAL may be a potential agent for the study of cancer metastatic capacities.

  5. Towards predicting the lung fibrogenic activity of MWCNT: Key role of endocytosis, kinase receptors and ERK 1/2 signaling.

    Science.gov (United States)

    Vietti, Giulia; Ibouraadaten, Saloua; Palmai-Pallag, Mihaly; Yakoub, Yousof; Piret, Jean-Pascal; Marbaix, Etienne; Lison, Dominique; van den Brule, Sybille

    2016-01-01

    Carbon nanotubes (CNT) have been reported to induce lung inflammation and fibrosis in rodents. We investigated the direct and indirect cellular mechanisms mediating the fibrogenic activity of multi-wall (MW) CNT on fibroblasts. We showed that MWCNT indirectly stimulate lung fibroblast (MLg) differentiation, via epithelial cells and macrophages, whereas no direct effect of MWCNT on fibroblast differentiation or collagen production was detected. MWCNT directly stimulated the proliferation of fibroblasts primed with low concentrations of growth factors, such as PDGF, TGF-β or EGF. MWCNT prolonged ERK 1/2 phosphorylation induced by low concentrations of PDGF or TGF-β in fibroblasts. This phenomenon and the proliferative activity of MWCNT on fibroblasts was abrogated by the inhibitors of ERK 1/2, PDGF-, TGF-β- and EGF-receptors. This activity was also reduced by amiloride, an endocytosis inhibitor. Finally, the lung fibrotic response to several MWCNT samples (different in length and diameter) correlated with their in vitro capacity to stimulate the proliferation of fibroblasts and to prolong ERK 1/2 signaling in these cells. Our findings point to a crosstalk between MWCNT, kinase receptors, ERK 1/2 signaling and endocytosis which stimulates the proliferation of fibroblasts. The mechanisms of action identified in this study contribute to predict the fibrogenic potential of MWCNT.

  6. A genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shen-Hsi Yang

    Full Text Available Embryonic stem cells and induced pluripotent stem cells represent potentially important therapeutic agents in regenerative medicine. Complex interlinked transcriptional and signaling networks control the fate of these cells towards maintenance of pluripotency or differentiation. In this study we have focused on how mouse embryonic stem cells begin to differentiate and lose pluripotency and, in particular, the role that the ERK MAP kinase and GSK3 signaling pathways play in this process. Through a genome-wide siRNA screen we have identified more than 400 genes involved in loss of pluripotency and promoting the onset of differentiation. These genes were functionally associated with the ERK and/or GSK3 pathways, providing an important resource for studying the roles of these pathways in controlling escape from the pluripotent ground state. More detailed analysis identified MAP kinase phosphatases as a focal point of regulation and demonstrated an important role for these enzymes in controlling ERK activation kinetics and subsequently determining early embryonic stem cell fate decisions.

  7. Xanthohumol inhibits the extracellular signal regulated kinase (ERK) signalling pathway and suppresses cell growth of lung adenocarcinoma cells.

    Science.gov (United States)

    Sławińska-Brych, Adrianna; Zdzisińska, Barbara; Dmoszyńska-Graniczka, Magdalena; Jeleniewicz, Witold; Kurzepa, Jacek; Gagoś, Mariusz; Stepulak, Andrzej

    2016-05-16

    Aberrant activation of the Ras/MEK/ERK signaling pathway has been frequently observed in non-small-cell lung carcinoma (NSCLC) and its important role in cancer progression and malignant transformation has been documented. Hence, the ERK1/2 kinase cascade becomes a potential molecular target in cancer treatment. Xanthohumol (XN, a prenylated chalcone derived from hope cones) is known to possess a broad spectrum of chemopreventive and anticancer activities. In our studies, the MTT and BrdU assays revealed that XN demonstrated greater antiproliferative activity against A549 lung adenocarcinoma cells than against the lung adenocarcinoma H1563 cell line. We observed that XN was able to suppress the activities of ERK1/2 and p90RSK kinases, followed by inhibition of phosphorylation and activation of the CREB protein. Additionally, the XN treatment of the cancer cells caused upregulation of key cell cycle regulators p53 and p21 as well as downregulation of cyclin D1. As a result, the cytotoxic effect of XN was attributed to the cell cycle arrest at G1 phase and induction of apoptosis indicated by increased caspase-3 activity. Thus, XN might be a promising anticancer drug candidate against lung carcinomas.

  8. The role of EGFR/ERK/ELK-1 MAP kinase pathway in the underlying damage to diabetic rat skin

    Directory of Open Access Journals (Sweden)

    Xinhong Ge

    2013-01-01

    Full Text Available Background: Diabetes mellitus (DM is a highly prevalent disease. Atrophy and spontaneous ulcers are the most common cutaneous manifestation of diabetic dermopathy (DD. Before spontaneous ulcers, we believe there is an underlying damage stage although the mechanism is unknown. Aims: To explore the expression of extracellular signal-regulated kinase1/2 (ERK1/2, its correlated upstream protein epidermal growth factor receptor (EGFR and its downstream transcription factor E twenty-six (ETS-like 1(ELK-1in the damage of the diabetic rat skin, and to explore the role of ERK1/2 on the recessive damage to diabetic rat skin. Materials and Methods: Eighty Sprague-Dawley (SD rats weighing 260-300 g were randomly divided into control and streptozotocin (STZ-induced diabetes groups. After 0.5, 2, 4, and 8 weeks, the shaved skin specimens from the back of rats in both groups were collected to observe the histological characteristics of the skin, to measure the thickness of the epidermis and the dermis, and to observe the ultrastructure. Immunohistochemistry (IHC and Western blot techniques were used to detect the expression and activation of ERK1/2, EGFR, ELK-1 in the skin of the rats. Results: There are ultrastructural changes in the DM skin. With the continuance of the diabetes course, the thicknesses of the epidermis and dermis decreased, and the expression of phospho-ERK1/2 (P-ERK1/2, EGFR, and ELK-1 was decreased gradually in the back skin of the diabetes rats. It was significantly lower in 4 and 8 week DM than that of the normal control ( P < 0.05. The expression of P-EGFR and P-ERK1/2 in the back skin of the diabetes rats was positively correlated ( r = 0.572 P < 0.05, and the positive correlation was also obtained between P-ERK1/2 and P-ELK-1 ( r = 0.715, P < 0.05. Conclusion: The phenomenon of recessive damage exists in the skin of diabetes rats, which probably may relate to the weakness of the signal transduction: P-EGFR → ERK1/2 → ELK-1.

  9. MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro.

    Science.gov (United States)

    Roth, G; Kotzka, J; Kremer, L; Lehr, S; Lohaus, C; Meyer, H E; Krone, W; Müller-Wieland, D

    2000-10-27

    Sterol regulatory element-binding protein (SREBP)-1a is a transcription factor sensing cellular cholesterol levels and integrating gene regulatory signals mediated by MAP kinase cascades. Here we report the identification of serine 117 in SREBP-1a as the major phosphorylation site of the MAP kinases Erk1/2. This site was identified by nanoelectrospray mass spectrometry and peptide sequencing of recombinant fusion proteins phosphorylated by Erk1/2 in vitro. Serine 117 was verified as the major phosphorylation site by in vitro mutagenesis. Mutation of serine 117 to alanine abolished Erk2-mediated phosphorylation in vitro and the MAP kinase-related transcriptional activation of SREBP-1a by insulin and platelet-derived growth factor in vivo. Our data indicate that the MAP kinase-mediated effects on SREBP-1a-regulated target genes are linked to this phosphorylation site.

  10. ERα and ERK1/2 MAP kinase expression in microdissected stromal and epithelial endometrial cells

    Directory of Open Access Journals (Sweden)

    Said Abu Alkhair Mohamed

    2014-03-01

    Total and phosphorylated levels for ERK1/2 and ERα were measured by quantitation of signals from Western blots using specific antibodies against the active and total forms of ERK1/2 and against ERα. When the level of the proteins was quantitated and normalized to β actin from microdissected stroma and epithelium, no significant difference was detected in the levels of these proteins between the two tissue compartments. There was a trend toward higher expression in the stroma vs. epithelium, respectively (active ERK1/2 0.45 ± 0.17 vs. 0.2 ± 0.65; total ERK1/2 0.54 ± 0.35 vs. 0.28 ± 0.23; ERα 0.82 ± 0.28 vs. 0.54 ± 0.18; n = 6. These data demonstrate that there are comparable levels of ERα (P = 0.41, total ERK1/2 (P = 0.18 and active ERK1/2 (P = 0.13 in the stroma and epithelium of proliferative phase endometrium with a trend toward higher expression of these proteins in the stromal compartment.

  11. Environmental influence on testicular MAP kinase (ERK1) activity in the frog Rana esculenta.

    Science.gov (United States)

    Chieffi, Paolo; Minucci, Sergio

    2004-06-01

    Recent studies suggest a role for ERK1 in the regulation of spermatogonial proliferation. In this report the frog Rana esculenta, a seasonal breeder, was used as a model to study the possible effect on ERK1 of photoperiod and temperature. Adult male R. esculenta were subjected to several combinations of light and temperature at different times of the year to elucidate the regulation of ERK1 testicular activity in the spermatogonial proliferation by these environmental factors. Western blot analysis shows that under controlled experimental conditions an increase of temperature and photoperiod in November, characterized by a decrease in primary spermatogonial mitosis, induces ERK1 activity and spermatogonial proliferation, as confirmed using the proliferating cellular nuclear antigen (PCNA) as an early molecular marker. In contrast, a decrease in temperature and photoperiod in March, with an increase of primary spermatogonial mitosis, impairs ERK1 activity and spermatogonial proliferation. In conclusion, our data clearly show for the first time in a non-mammalian vertebrate that the temperature and the photoperiod exert a role in the spermatogonial proliferation via ERK1 activity.

  12. Conditional deletion of ERK5 MAP kinase in the nervous system impairs pheromone information processing and pheromone-evoked behaviors.

    Directory of Open Access Journals (Sweden)

    Junhui Zou

    Full Text Available ERK5 MAP kinase is highly expressed in the developing nervous system but absent in most regions of the adult brain. It has been implicated in regulating the development of the main olfactory bulb and in odor discrimination. However, whether it plays an essential role in pheromone-based behavior has not been established. Here we report that conditional deletion of the Mapk7 gene which encodes ERK5 in mice in neural stem cells impairs several pheromone-mediated behaviors including aggression and mating in male mice. These deficits were not caused by a reduction in the level of testosterone, by physical immobility, by heightened fear or anxiety, or by depression. Using mouse urine as a natural pheromone-containing solution, we provide evidence that the behavior impairment was associated with defects in the detection of closely related pheromones as well as with changes in their innate preference for pheromones related to sexual and reproductive activities. We conclude that expression of ERK5 during development is critical for pheromone response and associated animal behavior in adult mice.

  13. Nitric oxide affects ERK signaling through down-regulation of MAP kinase phosphatase levels during larval development of the ascidian Ciona intestinalis.

    Directory of Open Access Journals (Sweden)

    Immacolata Castellano

    Full Text Available In the ascidian Ciona intestinalis larval development and metamorphosis require a complex interplay of events, including nitric oxide (NO production, MAP kinases (ERK, JNK and caspase-3 activation. We have previously shown that NO levels affect the rate of metamorphosis, regulate caspase activity and promote an oxidative stress pathway, resulting in protein nitration. Here, we report that NO down-regulates MAP kinase phosphatases (mkps expression affecting positively ERK signaling. By pharmacological approach, we observed that the reduction of endogenous NO levels caused a decrease of ERK phosphorylation, whereas increasing levels of NO induced ERK activation. We have also identified the ERK gene network affected by NO, including mpk1, mpk3 and some key developmental genes by quantitative gene expression analysis. We demonstrate that NO induces an ERK-independent down-regulation of mkp1 and mkp3, responsible for maintaining the ERK phosphorylation levels necessary for transcription of key metamorphic genes, such as the hormone receptor rev-erb and the van willebrand protein vwa1c. These results add new insights into the role played by NO during larval development and metamorphosis in Ciona, highlighting the cross-talk between different signaling pathways.

  14. Dynamic regulation of extracellular signal-regulated kinase (ERK by protein phosphatase 2A regulatory subunit B56γ1 in nuclei induces cell migration.

    Directory of Open Access Journals (Sweden)

    Ei Kawahara

    Full Text Available Extracellular signal-regulated kinase (ERK signalling plays a central role in various biological processes, including cell migration, but it remains unknown what factors directly regulate the strength and duration of ERK activation. We found that, among the B56 family of protein phosphatase 2A (PP2A regulatory subunits, B56γ1 suppressed EGF-induced cell migration on collagen, bound to phosphorylated-ERK, and dephosphorylated ERK, whereas B56α1 and B56β1 did not. B56γ1 was immunolocalized in nuclei. The IER3 protein was immediately highly expressed in response to costimulation of cells with EGF and collagen. Knockdown of IER3 inhibited cell migration and enhanced dephosphorylation of ERK. Analysis of the time course of PP2A-B56γ1 activity following the costimulation showed an immediate loss of phosphatase activity, followed by a rapid increase in activity, and this activity then remained at a stable level that was lower than the original level. Our results indicate that the strength and duration of the nuclear ERK activation signal that is initially induced by ERK kinase (MEK are determined at least in part by modulation of the phosphatase activity of PP2A-B56γ1 through two independent pathways.

  15. ERK 1/2 and PI-3 kinase pathways as a potential mechanism of ghrelin action on cell proliferation and apoptosis in the porcine ovarian follicular cells.

    Science.gov (United States)

    Rak-Mardyla, A; Gregoraszczuk, E L

    2010-08-01

    Recently, we reported the stimulatory effect of ghrelin on ovarian cell proliferation in parallel with the inhibitory action of ghrelin on cell apoptosis. The aim of the presented data propose local activation of extracellular signal-regulated protein kinase 1 and 2 (ERK 1/2) and phosphoinositide-3 (PI-3) kinase pathways as a mechanism of ghrelin effect in the porcine ovary. To test this hypothesis, action of ghrelin on levels of ERK 1/2 with PI-3 kinase activity and protein expression using ELISA and western blot analysis, respectively, was examined. Additionally, to determine which pathways (ERK 1/2 or PI-3 kinase) are the potential signals of ghrelin-mediated cell proliferation and apoptosis in ovarian cells, we used PD098059 (50 microM) and wortmannin (200 microM), well-known inhibitors of these kinases. Treatment of ovarian coculture cells with ghrelin (100, 250, 500 and 1000 pg/ml) showed stimulation of phospho-ERK 1/2 levels and PI-3 kinase activity, with the maximum effect observed after 15 min of cell incubation. Additionally, western blot analysis indicated that ghrelin increased expression of both kinases. Moreover, ghrelin used in combination with PD098059 or wortmannin significantly decreased cell proliferation, which was measured by the Alamar Blue assay and increased apoptosis, which was measured by caspase - 3 activity and DNA fragmentation. In conclusion, these results suggest that the ERK 1/2 and PI-3 kinase pathways may be potential signals of ghrelin mediate the cell proliferation and apoptosis of ovary cells.

  16. Inhibitory signaling by CB1 receptors in smooth muscle mediated by GRK5/β-arrestin activation of ERK1/2 and Src kinase.

    Science.gov (United States)

    Mahavadi, Sunila; Sriwai, Wimolpak; Huang, Jiean; Grider, John R; Murthy, Karnam S

    2014-03-01

    We examined whether CB1 receptors in smooth muscle conform to the signaling pattern observed with other Gi-coupled receptors that stimulate contraction via two Gβγ-dependent pathways (PLC-β3 and phosphatidylinositol 3-kinase/integrin-linked kinase). Here we show that the anticipated Gβγ-dependent signaling was abrogated. Except for inhibition of adenylyl cyclase via Gαi, signaling resulted from Gβγ-independent phosphorylation of CB1 receptors by GRK5, recruitment of β-arrestin1/2, and activation of ERK1/2 and Src kinase. Neither uncoupling of CB1 receptors from Gi by pertussis toxin (PTx) or Gi minigene nor expression of a Gβγ-scavenging peptide had any effect on ERK1/2 activity. The latter was abolished in muscle cells expressing β-arrestin1/2 siRNA. CB1 receptor internalization and both ERK1/2 and Src kinase activities were abolished in cells expressing kinase-deficient GRK5(K215R). Activation of ERK1/2 and Src kinase endowed CB1 receptors with the ability to inhibit concurrent contractile activity. We identified a consensus sequence (102KSPSKLSP109) for phosphorylation of RGS4 by ERK1/2 and showed that expression of a RGS4 mutant lacking Ser103/Ser108 blocked the ability of anandamide to inhibit acetylcholine-mediated phosphoinositide hydrolysis or enhance Gαq:RGS4 association and inactivation of Gαq. Activation of Src kinase by anandamide enhanced both myosin phosphatase RhoA-interacting protein (M-RIP):RhoA and M-RIP:MYPT1 association and inhibited Rho kinase activity, leading to increase of myosin light chain (MLC) phosphatase activity and inhibition of sustained muscle contraction. Thus, unlike other Gi-coupled receptors in smooth muscle, CB1 receptors did not engage Gβγ but signaled via GRK5/β-arrestin activation of ERK1/2 and Src kinase: ERK1/2 accelerated inactivation of Gαq by RGS4, and Src kinase enhanced MLC phosphatase activity, leading to inhibition of ACh-stimulated contraction.

  17. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiulong, E-mail: songxiulong@hotmail.com; Wei, Zhengxi; Shaikh, Zahir A., E-mail: zshaikh@uri.edu

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.

  18. Protein tyrosine kinase, JNK, and ERK involvement in p seudolaric acid B-induced apoptosis of human breast cancer MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    Jing-hua YU; Hong-jun WANG; Xiang-ru LI; Shin-ichi TASHIRO; Satoshi ONODERA; Takashi IKEJIMA

    2008-01-01

    Aim:To investigate the apoptotic mechanism ofpseudolaric acid B (PAB) in hu-man breast cancer MCF-7 cells. Methods: 3-(4,5-Dimethylthiazol-2-yl)-2, 5-di-phenyltetrazolium bromide analysis and morphological changes were applied to detect apoptosis. The percentage of apoptotic and necrotic cells were calculated by the lactate dehydrogenase activity-based cytotoxicity assay, and the protein expression was examined by Western blot analysis. Results: PAB and/or the mitogen-activated protein kinases, including p38, c-Jun-N-terrninal kinase (JNK) and extracellular signal-regulated kinase (ERK), did not participate in necrosis. P38 had no obvious function on apoptosis after 4 μmol/L PAB treatment for 36 h, but PAB induced JNK phosphorylation and inhibited ERK phosphorylation in the apoptotic process. In this study the inhibitor of protein tyrosine kinase (PTK) genistein inverted the inhibitory effect of PAB, instead promoting the survival of MCF-7 cells. Like genistein, another PTK inhibitor AG1024 had a similar ef-fect on PAB-treated MCF-7 cells, indicating that PAB activated PTK to induce apoptosis. Together with PAB, genistein increased the expression of p-ERK, and decreased the expressions of JNK and p-JNK in PAB-treated MCF-7 cells at 36 h. And it is considered that the p-ERK and p-JNK were active patterns of ERK and JNK, respectively. Conclusion: PTK were upstream of ERK and JNK, and PTK induced apoptosis through activating JNK and inactivating ERK in PAB-treated MCF-7 cells.

  19. Selumetinib, an Oral Anti-Neoplastic Drug, May Attenuate Cardiac Hypertrophy via Targeting the ERK Pathway.

    Science.gov (United States)

    Li, Chen; Chen, Zhongxiu; Yang, Hao; Luo, Fangbo; Chen, Lihong; Cai, Huawei; Li, Yajiao; You, Guiying; Long, Dan; Li, Shengfu; Zhang, Qiuping; Rao, Li

    2016-01-01

    Although extracellular-regulated kinases (ERK) are a well-known central mediator in cardiac hypertrophy, no clinically available ERK antagonist has been tested for preventing cardiac hypertrophy. Selumetinib is a novel oral MEK inhibitor that is currently under Phase II and Phase III clinical investigation for advanced solid tumors. In this study, we investigated whether Selumetinib could inhibit the aberrant ERK activation of the heart in response to stress as well as prevent cardiac hypertrophy. In an in vitro model of PE-induced cardiac hypertrophy, Selumetinib significantly inhibited the ERK activation and prevented enlargement of cardiomyocytes or reactivation of certain fetal genes. In the pathologic cardiac hypertrophy model of ascending aortic constriction, Selumetinib provided significant ERK inhibition in the stressed heart but not in the other organs. This selective ERK inhibition prevented left ventricular (LV) wall thickening, LV mass increase, fetal gene reactivation and cardiac fibrosis. In another distinct physiologic cardiac hypertrophy model of a swimming rat, Selumetinib provided a similar anti-hypertrophy effect, except that no significant fetal gene reactivation or cardiac fibrosis was observed. Selumetinib, a novel oral anti-cancer drug with good safety records in a number of Phase II clinical trials, can inhibit ERK activity in the heart and prevent cardiac hypertrophy. These promising results indicate that Selumetinib could potentially be used to treat cardiac hypertrophy. However, this hypothesis needs to be validated in human clinical trials.

  20. Selumetinib, an Oral Anti-Neoplastic Drug, May Attenuate Cardiac Hypertrophy via Targeting the ERK Pathway.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available Although extracellular-regulated kinases (ERK are a well-known central mediator in cardiac hypertrophy, no clinically available ERK antagonist has been tested for preventing cardiac hypertrophy. Selumetinib is a novel oral MEK inhibitor that is currently under Phase II and Phase III clinical investigation for advanced solid tumors. In this study, we investigated whether Selumetinib could inhibit the aberrant ERK activation of the heart in response to stress as well as prevent cardiac hypertrophy.In an in vitro model of PE-induced cardiac hypertrophy, Selumetinib significantly inhibited the ERK activation and prevented enlargement of cardiomyocytes or reactivation of certain fetal genes. In the pathologic cardiac hypertrophy model of ascending aortic constriction, Selumetinib provided significant ERK inhibition in the stressed heart but not in the other organs. This selective ERK inhibition prevented left ventricular (LV wall thickening, LV mass increase, fetal gene reactivation and cardiac fibrosis. In another distinct physiologic cardiac hypertrophy model of a swimming rat, Selumetinib provided a similar anti-hypertrophy effect, except that no significant fetal gene reactivation or cardiac fibrosis was observed.Selumetinib, a novel oral anti-cancer drug with good safety records in a number of Phase II clinical trials, can inhibit ERK activity in the heart and prevent cardiac hypertrophy. These promising results indicate that Selumetinib could potentially be used to treat cardiac hypertrophy. However, this hypothesis needs to be validated in human clinical trials.

  1. Selumetinib, an Oral Anti-Neoplastic Drug, May Attenuate Cardiac Hypertrophy via Targeting the ERK Pathway

    Science.gov (United States)

    Yang, Hao; Luo, Fangbo; Chen, Lihong; Cai, Huawei; Li, Yajiao; You, Guiying; Long, Dan; Li, Shengfu; Zhang, Qiuping; Rao, Li

    2016-01-01

    Aims Although extracellular-regulated kinases (ERK) are a well-known central mediator in cardiac hypertrophy, no clinically available ERK antagonist has been tested for preventing cardiac hypertrophy. Selumetinib is a novel oral MEK inhibitor that is currently under Phase II and Phase III clinical investigation for advanced solid tumors. In this study, we investigated whether Selumetinib could inhibit the aberrant ERK activation of the heart in response to stress as well as prevent cardiac hypertrophy. Methods and Results In an in vitro model of PE-induced cardiac hypertrophy, Selumetinib significantly inhibited the ERK activation and prevented enlargement of cardiomyocytes or reactivation of certain fetal genes. In the pathologic cardiac hypertrophy model of ascending aortic constriction, Selumetinib provided significant ERK inhibition in the stressed heart but not in the other organs. This selective ERK inhibition prevented left ventricular (LV) wall thickening, LV mass increase, fetal gene reactivation and cardiac fibrosis. In another distinct physiologic cardiac hypertrophy model of a swimming rat, Selumetinib provided a similar anti-hypertrophy effect, except that no significant fetal gene reactivation or cardiac fibrosis was observed. Conclusions Selumetinib, a novel oral anti-cancer drug with good safety records in a number of Phase II clinical trials, can inhibit ERK activity in the heart and prevent cardiac hypertrophy. These promising results indicate that Selumetinib could potentially be used to treat cardiac hypertrophy. However, this hypothesis needs to be validated in human clinical trials. PMID:27438013

  2. Transcriptional profiling defines the roles of ERK and p38 kinases in epidermal keratinocytes.

    Science.gov (United States)

    Gazel, Alix; Nijhawan, Rajiv I; Walsh, Rebecca; Blumenberg, Miroslav

    2008-05-01

    Epidermal keratinocytes respond to extracellular influences by activating cytoplasmic signal transduction pathways that change gene expression. Using pathway-specific transcriptional profiling, we identified the genes regulated by two such pathways, p38 and ERK. These pathways are at the fulcrum of epidermal differentiation, proliferative and inflammatory skin diseases. We used SB203580 and PD98059 as specific inhibitors and Affymetrix Hu133Av2 microarrays, to identify the genes regulated after 1, 4, 24, and 48 h and compared them to genes regulated by JNK. Unexpectedly, inhibition of MAPK pathways is compensated by activation of the NFkappaB pathway and suppression of the DUSP enzymes. Both pathways promote epidermal differentiation; however, there is a surprising disconnect between the expression of steroid synthesis enzymes and differentiation markers. The p38 pathway induces the expression of extracellular matrix and proliferation-associated genes, while suppressing microtubule-associated genes. The ERK pathway induces nuclear envelope and mRNA splicing proteins, while suppressing steroid synthesis and mitochondrial energy production enzymes. Transcription factors SRY, c-FOS, and N-Myc are the principal targets of the p38 pathway, Elk-1 SAP1 and HLH2 of ERK, while FREAC-4, ARNT and USF are shared. The results suggest a list of targets potentially useful in therapeutic interventions in cutaneous diseases and wound healing.

  3. P2X7 receptor activates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca2+ influx

    DEFF Research Database (Denmark)

    Amstrup, Jan; Novak, Ivana

    2003-01-01

    mutants we show that the N-terminus is important in activation of ERKs, whereas deletion of the last 230 amino acids in the C-terminus did not effect ERK activation. On the other hand, Ca2+ entry was impaired in C-terminal but not in N-terminal mutants. In cell suspensions prepared from rat pancreas we...

  4. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Song, Xiulong; Wei, Zhengxi; Shaikh, Zahir A

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1-3μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation.

  5. ERK and phosphoinositide 3-kinase temporally coordinate different modes of actin-based motility during embryonic wound healing.

    Science.gov (United States)

    Li, Jingjing; Zhang, Siwei; Soto, Ximena; Woolner, Sarah; Amaya, Enrique

    2013-11-01

    Embryonic wound healing provides a perfect example of efficient recovery of tissue integrity and homeostasis, which is vital for survival. Tissue movement in embryonic wound healing requires two functionally distinct actin structures: a contractile actomyosin cable and actin protrusions at the leading edge. Here, we report that the discrete formation and function of these two structures is achieved by the temporal segregation of two intracellular upstream signals and distinct downstream targets. The sequential activation of ERK and phosphoinositide 3-kinase (PI3K) signalling divides Xenopus embryonic wound healing into two phases. In the first phase, activated ERK suppresses PI3K activity, and is responsible for the activation of Rho and myosin-2, which drives actomyosin cable formation and constriction. The second phase is dominated by restored PI3K signalling, which enhances Rac and Cdc42 activity, leading to the formation of actin protrusions that drive migration and zippering. These findings reveal a new mechanism for coordinating different modes of actin-based motility in a complex tissue setting, namely embryonic wound healing.

  6. Induction of ERK-kinase signalling triggers morphotype-specific killing of Candida albicans filaments by human neutrophils.

    Science.gov (United States)

    Wozniok, Iwona; Hornbach, Anke; Schmitt, Corinna; Frosch, Matthias; Einsele, Hermann; Hube, Bernhard; Löffler, Jürgen; Kurzai, Oliver

    2008-03-01

    Candida albicans is among the most important fungal pathogens in humans. Morphological plasticity has been linked to its pathogenic potential as filamentous forms are associated with tissue invasion and infection. Here we show that human neutrophils discriminate between yeasts and filaments of C. albicans. Whereas filaments induced targeted motility, resulting in the establishment of close contact between neutrophils and fungal cells, yeast forms were largely ignored during coincubation. In transwell assays, C. albicans filaments induced significantly higher migratory activity in neutrophils than yeasts. Neutrophil motility based on actin rearrangement was essential for killing of C. albicans filaments but not involved in killing of yeast forms. Using inhibitors for MAP-kinase cascades, it was shown that recognition of C. albicans filaments by neutrophils is mediated via the MEK/ERK cascade and independent of JNK or p38 activation. Inhibition of the ERK signalling pathway abolished neutrophil migration induced by C. albicans filaments and selectively impaired the ability to kill this morphotype. These data show that invasive filamentous forms of C. albicans trigger a morphotype-specific activation of neutrophils, which is strongly dependent on neutrophil motility. Therefore, human neutrophils are capable of sensing C. albicans invasion and initiating an appropriate early immune response.

  7. Src kinases and ERK activate distinct responses to Stitcher receptor tyrosine kinase signaling during wound healing in Drosophila.

    Science.gov (United States)

    Tsarouhas, Vasilios; Yao, Liqun; Samakovlis, Christos

    2014-04-15

    Metazoans have evolved efficient mechanisms for epidermal repair and survival following injury. Several cellular responses and key signaling molecules that are involved in wound healing have been identified in Drosophila, but the coordination of cytoskeletal rearrangements and the activation of gene expression during barrier repair are poorly understood. The Ret-like receptor tyrosine kinase (RTK) Stitcher (Stit, also known as Cad96Ca) regulates both re-epithelialization and transcriptional activation by Grainy head (Grh) to induce restoration of the extracellular barrier. Here, we describe the immediate downstream effectors of Stit signaling in vivo. Drk (Downstream of receptor kinase) and Src family tyrosine kinases bind to the same docking site in the Stit intracellular domain. Drk is required for the full activation of transcriptional responses but is dispensable for re-epithelialization. By contrast, Src family kinases (SFKs) control both the assembly of a contractile actin ring at the wound periphery and Grh-dependent activation of barrier-repair genes. Our analysis identifies distinct pathways mediating injury responses and reveals an RTK-dependent activation mode for Src kinases and their central functions during epidermal wound healing in vivo.

  8. ERK MAP kinase activation in spinal cord regulates phosphorylation of Cdk5 at serine 159 and contributes to peripheral inflammation induced pain/hypersensitivity.

    Directory of Open Access Journals (Sweden)

    Xiaoqin Zhang

    Full Text Available Cyclin-dependent kinase 5 is a proline-directed serine/threonine kinase and its activity participates in the regulation of nociceptive signaling. Like binding with the activators (P35 or P25, the phosphorylation of Cdk5 plays a critical role in Cdk5 activation. However, it is still unclear whether Cdk5 phosphorylation (p-Cdk5 contributes to pain hyperalgesia. The aim of our current study was to identify the roles of p-Cdk5 and its upstream regulator in response to peripheral inflammation. Complete Freund's adjuvant (CFA injection induced acute peripheral inflammation and heat hyperalgesia, which was accompanied by sustained increases in phospho-ERK1/2 (p-ERK1/2 and phospho-Cdk5(S159 (p-Cdk5(S159 in the spinal cord dorsal horn (SCDH. CFA-induced p-ERK primarily colocalized with p-Cdk5(S159 in superficial dorsal horn neurons. Levels in p-ERK and p-Cdk5 were also increased in the 2(nd phase of hyperalgesia induced by formalin injection, which can produce acute and tonic inflammatory pain. MAP kinase kinase inhibitor U0126 intrathecal delivery significantly suppressed the elevation of p-Cdk5(S159, Cdk5 activity and pain response behavior (Heat hyperalgesia, Spontaneous flinches induced by CFA or formalin injection. Cdk5 inhibitor roscovitine intrathecal administration also suppressed CFA-induced heat hyperalgesia and Cdk5 phosphorylation, but did not attenuate ERK activation. All these findings suggested that p-Cdk5(S159 regulated by ERK pathway activity may be a critical mechanism involved in the activation of Cdk5 in nociceptive spinal neurons contributes to peripheral inflammatory pain hypersensitivity.

  9. Extracellular Signal-regulated Kinases (ERKs) Phosphorylate Lin28a Protein to Modulate P19 Cell Proliferation and Differentiation.

    Science.gov (United States)

    Liu, Xiangyuan; Chen, Min; Li, Long; Gong, Liyan; Zhou, Hu; Gao, Daming

    2017-03-10

    Lin28a, originally discovered in the nematode Caenorhabditis elegans and highly conserved across species, is a well characterized regulator of let-7 microRNA (miRNA) and is implicated in cell proliferation and pluripotency control. However, little is known about how Lin28a function is modulated at the post-translational level and thereby responds to major signaling pathways. Here we show that Lin28a is directly phosphorylated by ERK1/2 kinases at Ser-200. By editing lin28a gene with the CRISPR/Cas9-based method, we generated P19 mouse embryonic carcinoma stem cells expressing Lin28a-S200A (phospho-deficient) and Lin28a-S200D (phospho-mimetic) mutants, respectively, to study the functional impact of Ser-200 phosphorylation. Lin28a-S200D-expressing cells, but not Lin28a-S200A-expressing or control P19 embryonic carcinoma cells, displayed impaired inhibition of let-7 miRNA and resulted in decreased cyclin D1, whereas Lin28a-S200A knock-in cells expressed less let-7 miRNA, proliferated faster, and exhibited differentiation defect upon retinoic acid induction. Therefore our results support that ERK kinase-mediated Lin28a phosphorylation may be an important mechanism for pluripotent cells to facilitate the escape from the self-renewal cycle and start the differentiation process. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Computational investigation of sphingosine kinase 1 (SphK1) and calcium dependent ERK1/2 activation downstream of VEGFR2 in endothelial cells

    Science.gov (United States)

    Bazzazi, Hojjat; Popel, Aleksander S.

    2017-01-01

    Vascular endothelial growth factor (VEGF) is a powerful regulator of neovascularization. VEGF binding to its cognate receptor, VEGFR2, activates a number of signaling pathways including ERK1/2. Activation of ERK1/2 is experimentally shown to involve sphingosine kinase 1 (SphK1) activation and its calcium-dependent translocation downstream of ERK1/2. Here we construct a rule-based computational model of signaling downstream of VEGFR2, by including SphK1 and calcium positive feedback mechanisms, and investigate their consequences on ERK1/2 activation. The model predicts the existence of VEGF threshold in ERK1/2 activation that can be continuously tuned by cellular concentrations of SphK1 and sphingosine 1 phosphate (S1P). The computer model also predicts powerful effects of perturbations in plasma and ER calcium pump rates and the current through the CRAC channels on ERK1/2 activation dynamics, highlighting the critical role of intracellular calcium in shaping the pERK1/2 signal. The model is then utilized to simulate anti-angiogenic therapeutic interventions targeting VEGFR2-ERK1/2 axis. Simulations indicate that monotherapies that exclusively target VEGFR2 phosphorylation, VEGF, or VEGFR2 are ineffective in shutting down signaling to ERK1/2. By simulating therapeutic strategies that target multiple nodes of the pathway such as Raf and SphK1, we conclude that combination therapy should be much more effective in blocking VEGF signaling to EKR1/2. The model has important implications for interventions that target signaling pathways in angiogenesis relevant to cancer, vascular diseases, and wound healing. PMID:28178265

  11. The Atypical MAP Kinase SWIP-13/ERK8 Regulates Dopamine Transporters through a Rho-Dependent Mechanism.

    Science.gov (United States)

    Bermingham, Daniel P; Hardaway, J Andrew; Refai, Osama; Marks, Christian R; Snider, Sam L; Sturgeon, Sarah M; Spencer, William C; Colbran, Roger J; Miller, David M; Blakely, Randy D

    2017-09-20

    The neurotransmitter dopamine (DA) regulates multiple behaviors across phylogeny, with disrupted DA signaling in humans associated with addiction, attention-deficit/ hyperactivity disorder, schizophrenia, and Parkinson's disease. The DA transporter (DAT) imposes spatial and temporal limits on DA action, and provides for presynaptic DA recycling to replenish neurotransmitter pools. Molecular mechanisms that regulate DAT expression, trafficking, and function, particularly in vivo, remain poorly understood, though recent studies have implicated rho-linked pathways in psychostimulant action. To identify genes that dictate the ability of DAT to sustain normal levels of DA clearance, we pursued a forward genetic screen in Caenorhabditis elegans based on the phenotype swimming-induced paralysis (Swip), a paralytic behavior observed in hermaphrodite worms with loss-of-function dat-1 mutations. Here, we report the identity of swip-13, which encodes a highly conserved ortholog of the human atypical MAP kinase ERK8. We present evidence that SWIP-13 acts presynaptically to insure adequate levels of surface DAT expression and DA clearance. Moreover, we provide in vitro and in vivo evidence supporting a conserved pathway involving SWIP-13/ERK8 activation of Rho GTPases that dictates DAT surface expression and function.SIGNIFICANCE STATEMENT Signaling by the neurotransmitter dopamine (DA) is tightly regulated by the DA transporter (DAT), insuring efficient DA clearance after release. Molecular networks that regulate DAT are poorly understood, particularly in vivo Using a forward genetic screen in the nematode Caenorhabditis elegans, we implicate the atypical mitogen activated protein kinase, SWIP-13, in DAT regulation. Moreover, we provide in vitro and in vivo evidence that SWIP-13, as well as its human counterpart ERK8, regulate DAT surface availability via the activation of Rho proteins. Our findings implicate a novel pathway that regulates DA synaptic availability and that may

  12. Galectin-8 Induces Apoptosis in Jurkat T Cells by Phosphatidic Acid-mediated ERK1/2 Activation Supported by Protein Kinase A Down-regulation*

    Science.gov (United States)

    Norambuena, Andrés; Metz, Claudia; Vicuña, Lucas; Silva, Antonia; Pardo, Evelyn; Oyanadel, Claudia; Massardo, Loreto; González, Alfonso; Soza, Andrea

    2009-01-01

    Galectins have been implicated in T cell homeostasis playing complementary pro-apoptotic roles. Here we show that galectin-8 (Gal-8) is a potent pro-apoptotic agent in Jurkat T cells inducing a complex phospholipase D/phosphatidic acid signaling pathway that has not been reported for any galectin before. Gal-8 increases phosphatidic signaling, which enhances the activity of both ERK1/2 and type 4 phosphodiesterases (PDE4), with a subsequent decrease in basal protein kinase A activity. Strikingly, rolipram inhibition of PDE4 decreases ERK1/2 activity. Thus Gal-8-induced PDE4 activation releases a negative influence of cAMP/protein kinase A on ERK1/2. The resulting strong ERK1/2 activation leads to expression of the death factor Fas ligand and caspase-mediated apoptosis. Several conditions that decrease ERK1/2 activity also decrease apoptosis, such as anti-Fas ligand blocking antibodies. In addition, experiments with freshly isolated human peripheral blood mononuclear cells, previously stimulated with anti-CD3 and anti-CD28, show that Gal-8 is pro-apoptotic on activated T cells, most likely on a subpopulation of them. Anti-Gal-8 autoantibodies from patients with systemic lupus erythematosus block the apoptotic effect of Gal-8. These results implicate Gal-8 as a novel T cell suppressive factor, which can be counterbalanced by function-blocking autoantibodies in autoimmunity. PMID:19276072

  13. Extracellular-signal regulated kinase (Erk1/2), mitogen-activated protein kinase-activated protein kinase 2 (MK2) and tristetraprolin (TTP) comprehensively regulate injury-induced immediate early gene (IEG) response in in vitro liver organ culture.

    Science.gov (United States)

    Tran, Doan Duy Hai; Koch, Alexandra; Saran, Shashank; Armbrecht, Marcel; Ewald, Florian; Koch, Martina; Wahlicht, Tom; Wirth, Dagmar; Braun, Armin; Nashan, Björn; Gaestel, Matthias; Tamura, Teruko

    2016-05-01

    Differentiated hepatocytes are long-lived and normally do not undergo cell division, however they have the unique capacity to autonomously decide their replication fate after liver injury. In this context, the key players of liver regeneration immediately after injury have not been adequately studied. Using an in vitro liver culture system, we show that after liver injury, p38 mitogen-activated protein kinase (p38MAPK), mitogen-activated protein kinase-activated protein kinase 2 (MK2) and extracellular-signal regulated kinase (Erk)1/2 were activated within 15 min and continued to be phosphorylated for more than 2h. Both p38MAPK and Erk1/2 were activated at the edge of the cut as well as on the liver surface where the mesothelial cell sheet expresses several cytokines. Notably, in human liver Erk1/2 was also activated under the mesothelial cell sheet shortly after liver resections. Furthermore, in in vitro liver slice culture immediate early genes (IEGs) were upregulated within 1-2 h and the S phase marker proliferation-cell-nuclear-antigen (PCNA) appeared 24 h after injury. Although Erk1/2 was activated after injury, in MK2 depleted liver a set of IEGs, such as Dusp1, Cox2, or c-Myc and proliferation marker gene Ki67 were not induced. In addition, in immortalized hepatocyte cells, THLE-2, the same subset of genes was upregulated upon stimulation with lipopolysaccharide (LPS), but not in the presence of MK2 inhibitor. The protein level of tristetraprolin (TTP), a substrate for MK2 that plays a role in mRNA degradation, was increased in the presence of MK2 inhibitor. In this context, the depletion of TTP gene rescued Dusp1, Cox2, or c-Myc upregulation in the presence of MK2 inhibitor. These data imply that MK2 pathway is positively involved in Erk1/2 induced IEG response after liver injury. These data also suggest that in vitro liver culture may be a useful tool for measuring the proliferation potential of hepatocytes in individual liver.

  14. Reactivation of Kaposi's sarcoma-associated herpesvirus from latency requires MEK/ERK, JNK and p38 multiple mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Xie, Jianping; Ajibade, Adetola Olalekan; Ye, Fengchun; Kuhne, Kurt; Gao, Shou-Jiang

    2008-02-05

    Lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) promotes the progression of Kaposi's sarcoma (KS), a dominant malignancy in patients with AIDS. While 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced KSHV reactivation from latency is mediated by the protein kinase C delta and MEK/ERK mitogen-activated protein kinase (MAPK) pathways, we have recently shown that the MEK/ERK, JNK and p38 MAPK pathways modulate KSHV lytic replication during productive primary infection of human umbilical vein endothelial cells [Pan, H., Xie, J., Ye, F., Gao, S.J., 2006. Modulation of Kaposi's sarcoma-associated herpesvirus infection and replication by MEK/ERK, JNK, and p38 multiple mitogen-activated protein kinase pathways during primary infection. J. Virol. 80 (11), 5371-5382]. Here, we report that, besides the MEK/ERK pathway, the JNK and p38 MAPK pathways also mediate TPA-induced KSHV reactivation from latency. The MEK/ERK, JNK and p38 MAPK pathways were constitutively activated in latent KSHV-infected BCBL-1 cells. TPA treatment enhanced the levels of activated ERK and p38 but not those of activated JNK. Inhibitors of all three MAPK pathways reduced TPA-induced production of KSHV infectious virions in BCBL-1 cells in a dose-dependent fashion. The inhibitors blocked KSHV lytic replication at the early stage(s) of reactivation, and reduced the expression of viral lytic genes including RTA, a key immediate-early transactivator of viral lytic replication. Activation of MAPK pathways was necessary and sufficient for activating the promoter of RTA. Furthermore, we showed that the activation of RTA promoter by MAPK pathways was mediated by their downstream target AP-1. Together, these findings suggest that MAPK pathways might have general roles in regulating the life cycle of KSHV by mediating both viral infection and switch from viral latency to lytic replication.

  15. Activation of extracellular signal-regulated kinase (ERK) signaling in the pedunculopontine tegmental (PPT) cells is involved in the maintenance of sleep in rats

    Science.gov (United States)

    Desarnaud, Frank; Macone, Brian W.; Datta, Subimal

    2010-01-01

    Considerable evidence suggests that receptor-mediated excitation and inhibition of brainstem pedunculopontine tegmental (PPT) neurons are critically involved in the regulation of sleep-wake states. However, the molecular mechanisms operating within the PPT controlling sleep-wake states remain relatively unknown. This study was designed to examine sleep-wake state-associated extracellular-signal-regulated kinase 1 and 2 (ERK1/2) transduction changes in the PPT of freely moving rats. The results of this study demonstrate that the levels of ERK1/2 expression, phosphorylation, and activity in the PPT increased with increased amount of time spent in sleep. The sleep-associated increases in ERK1/2 expression, phosphorylation, and activity were not observed in the cortex, or in the immediately adjacent medial pontine reticular formation. The results of regression analyses revealed significant positive relationships between the levels of ERK1/2 expression, phosphorylation, and activity in the PPT and amounts of time spent in slow-wave sleep, rapid eye movement sleep, and total sleep. Additionally, these regression analyses revealed significant negative relationships between the levels of ERK1/2 expression, phosphorylation, and activity in the PPT and amounts of time spent in wakefulness. Collectively, these results, for the first time, suggest that the increased ERK1/2 signaling in the PPT is associated with maintenance of sleep via suppression of wakefulness. PMID:21166678

  16. Targeting the CaMKII/ERK Interaction in the Heart Prevents Cardiac Hypertrophy.

    Science.gov (United States)

    Cipolletta, Ersilia; Rusciano, Maria Rosaria; Maione, Angela Serena; Santulli, Gaetano; Sorriento, Daniela; Del Giudice, Carmine; Ciccarelli, Michele; Franco, Antonietta; Crola, Catherine; Campiglia, Pietro; Sala, Marina; Gomez-Monterrey, Isabel; De Luca, Nicola; Trimarco, Bruno; Iaccarino, Guido; Illario, Maddalena

    2015-01-01

    Activation of Ca2+/Calmodulin protein kinase II (CaMKII) is an important step in signaling of cardiac hypertrophy. The molecular mechanisms by which CaMKII integrates with other pathways in the heart are incompletely understood. We hypothesize that CaMKII association with extracellular regulated kinase (ERK), promotes cardiac hypertrophy through ERK nuclear localization. In H9C2 cardiomyoblasts, the selective CaMKII peptide inhibitor AntCaNtide, its penetratin conjugated minimal inhibitory sequence analog tat-CN17β, and the MEK/ERK inhibitor UO126 all reduce phenylephrine (PE)-mediated ERK and CaMKII activation and their interaction. Moreover, AntCaNtide or tat-CN17β pretreatment prevented PE induced CaMKII and ERK nuclear accumulation in H9C2s and reduced the hypertrophy responses. To determine the role of CaMKII in cardiac hypertrophy in vivo, spontaneously hypertensive rats were subjected to intramyocardial injections of AntCaNtide or tat-CN17β. Left ventricular hypertrophy was evaluated weekly for 3 weeks by cardiac ultrasounds. We observed that the treatment with CaMKII inhibitors induced similar but significant reduction of cardiac size, left ventricular mass, and thickness of cardiac wall. The treatment with CaMKII inhibitors caused a significant reduction of CaMKII and ERK phosphorylation levels and their nuclear localization in the heart. These results indicate that CaMKII and ERK interact to promote activation in hypertrophy; the inhibition of CaMKII-ERK interaction offers a novel therapeutic approach to limit cardiac hypertrophy.

  17. Signal transduction in neurons: effects of cellular prion protein on fyn kinase and ERK1/2 kinase

    Directory of Open Access Journals (Sweden)

    Tomasi Vittorio

    2010-12-01

    Full Text Available Abstract Background It has been reported that cellular prion protein (PrPc co-localizes with caveolin-1 and participates to signal transduction events by recruiting Fyn kinase. As PrPc is a secreted protein anchored to the outer surface membrane through a glycosylphosphatidylinositol (GPI anchor (secPrP and caveolin-1 is located in the inner leaflet of plasma membrane, there is a problem of how the two proteins can physically interact each other and transduce signals. Results By using the GST-fusion proteins system we observed that PrPc strongly interacts with caveolin-1 scaffolding domain and with a caveolin-1 hydrophilic C-terminal region, but not with the caveolin-1 N-terminal region. In vitro binding experiments were also performed to define the site(s of PrPc interacting with cav-1. The results are consistent with a participation of PrPc octapeptide repeats motif in the binding to caveolin-1 scaffolding domain. The caveolar localization of PrPc was ascertained by co-immunoprecipitation, by co-localization after flotation in density gradients and by confocal microscopy analysis of PrPc and caveolin-1 distributions in a neuronal cell line (GN11 expressing caveolin-1 at high levels. Conclusions We observed that, after antibody-mediated cross-linking or copper treatment, PrPc was internalized probably into caveolae. We propose that following translocation from rafts to caveolae or caveolae-like domains, secPrP could interact with caveolin-1 and induce signal transduction events.

  18. Signal transduction in neurons: effects of cellular prion protein on fyn kinase and ERK1/2 kinase.

    Science.gov (United States)

    Tomasi, Vittorio

    2010-12-16

    It has been reported that cellular prion protein (PrPc) co-localizes with caveolin-1 and participates to signal transduction events by recruiting Fyn kinase. As PrPc is a secreted protein anchored to the outer surface membrane through a glycosylphosphatidylinositol (GPI) anchor (secPrP) and caveolin-1 is located in the inner leaflet of plasma membrane, there is a problem of how the two proteins can physically interact each other and transduce signals. By using the GST-fusion proteins system we observed that PrPc strongly interacts with caveolin-1 scaffolding domain and with a caveolin-1 hydrophilic C-terminal region, but not with the caveolin-1 N-terminal region. In vitro binding experiments were also performed to define the site(s) of PrPc interacting with cav-1. The results are consistent with a participation of PrPc octapeptide repeats motif in the binding to caveolin-1 scaffolding domain. The caveolar localization of PrPc was ascertained by co-immunoprecipitation, by co-localization after flotation in density gradients and by confocal microscopy analysis of PrPc and caveolin-1 distributions in a neuronal cell line (GN11) expressing caveolin-1 at high levels. We observed that, after antibody-mediated cross-linking or copper treatment, PrPc was internalized probably into caveolae. We propose that following translocation from rafts to caveolae or caveolae-like domains, secPrP could interact with caveolin-1 and induce signal transduction events.

  19. Inducible and targeted deletion of the ERK5 MAP kinase in adult neurogenic regions impairs adult neurogenesis in the olfactory bulb and several forms of olfactory behavior.

    Directory of Open Access Journals (Sweden)

    Yung-Wei Pan

    Full Text Available Although adult-born neurons in the subventricular zone (SVZ and olfactory bulb (OB have been extensively characterized at the cellular level, their functional impact on olfactory behavior is still highly controversial with many conflicting results reported in the literature. Furthermore, signaling mechanisms regulating adult SVZ/OB neurogenesis are not well defined. Here we report that inducible and targeted deletion of erk5, a MAP kinase selectively expressed in the adult neurogenic regions of the adult brain, impairs adult neurogenesis in the SVZ and OB of transgenic mice. Although erk5 deletion had no effect on olfactory discrimination among discrete odorants in the habituation/dishabituation assay, it reduced short-term olfactory memory as well as detection sensitivity to odorants and pheromones including those evoking aggression and fear. Furthermore, these mice show impaired acquisition of odor-cued associative olfactory learning, a novel phenotype that had not been previously linked to adult neurogenesis. These data suggest that ERK5 MAP kinase is a critical kinase signaling pathway regulating adult neurogenesis in the SVZ/OB, and provide strong evidence supporting a functional role for adult neurogenesis in several distinct forms of olfactory behavior.

  20. ERK1/2 map kinase metabolic pathway is responsible for phosphorylation of translation initiation factor eIF4E during in vitro maturation of pig oocytes.

    Science.gov (United States)

    Ellederová, Zdenka; Cais, Ondrej; Susor, Andrej; Uhlírová, Katka; Kovárová, Hana; Jelínková, Lucie; Tomek, Wolfgang; Kubelka, Michal

    2008-02-01

    Eukaryotic initiation factor 4E (eIF4E) plays an important role in mRNA translation by binding the 5'-cap structure of the mRNA and facilitating the recruitment to the mRNA of other translation factors and the 40S ribosomal subunit. eIF4E undergoes regulated phosphorylation on Ser-209 and this phosphorylation is believed to be important for its binding to mRNA and to other initiation factors. The findings showing that the translation initiation factor eIF4E becomes gradually phosphorylated during in vitro maturation (IVM) of pig oocytes with a maximum in metaphase II (M II) stage oocytes have been documented by us recently (Ellederova et al., 2006). The aim of this work was to study in details the metabolic pathways involved in this process. Using inhibitors of cyclin-dependent kinases, Butyrolactone I (BL I) and protein phosphatases, okadaic acid (OA) we show that ERK1/2 MAP kinase pathway is involved in this phosphorylation. We also demonstrate that activation and phosphorylation of ERK1/2 MAP kinase and eIF4E is associated with the activating phosphorylation of Mnk1 kinase, one of the two main kinases phosphorylating eIF4E in somatic cells.

  1. Protein kinase C δ (PKCδ)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade regulates glycogen synthase kinase-3 (GSK-3) inhibition-mediated interleukin-10 (IL-10) expression in lipopolysaccharide (LPS)-induced endotoxemia.

    Science.gov (United States)

    Noh, Kyung Tae; Son, Kwang Hee; Jung, In Duk; Kang, Hyun Kyu; Hwang, Sun Ae; Lee, Won Suk; You, Ji Chang; Park, Yeong-Min

    2012-04-20

    Glycogen synthase kinase-3 (GSK-3) modulates a wide array of cellular processes, including embryonic development, cell differentiation, survival, and apoptosis. Recently, it was reported that a GSK-3 inhibitor attenuates lipopolysaccharide (LPS)-induced septic shock and regulates the mortality of endotoxemic mice. However, the detailed mechanism of reduced mortality via GSK-3 inhibition is not well defined. Herein, we showed that GSK-3 inhibition induces extracellular signal-regulated kinase 1/2 (ERK1/2) activation under LPS-stressed conditions via protein kinase C δ (PKCδ) activation. Furthermore, PKCδ-induced ERK1/2 activation by the inhibition of GSK-3 provoked the production of interleukin (IL)-10, playing a crucial role in regulating endotoxemia. Using a mitogen-activated protein kinase kinase-1 (MEK-1) and PKCδ inhibitor, we confirmed that GSK-3 inhibition induces PKCδ and subsequent ERK1/2 activation, resulting in increased IL-10 expression under LPS-treated conditions. We verified that septic shock caused by LPS is attenuated by GSK-3 inhibition using a GSK-3 inhibitor. This relieved endotoxemia induced by GSK-3 inhibition was restored in an ERK1/2-dependent manner. Taken together, IL-10 expression produced by GSK-3 inhibition-induced ERK1/2 activation via PKCδ relieved LPS-mediated endotoxemia. This finding suggests that IL-10 hyperexpression resulting from GSK-3 inhibition-induced ERK activation could be a new therapeutic pathway for endotoxemia.

  2. Inhibition of lipid phosphate phosphatase activity by VPC32183 suppresses the ability of diacylglycerol pyrophosphate to activate ERK(1/2) MAP kinases.

    Science.gov (United States)

    Violet, Pierre-Christian; Billon-Denis, Emmanuelle; Robin, Philippe

    2012-11-01

    The lipidic metabolite, diacylglycerol pyrophosphate (DGPP), in its dioctanoyl form (DGPP 8:0), has been described as an antagonist for mammalian lysophosphatidic acid (LPA) receptors LPA1 and LPA3. In this study we show that DGPP 8:0 does not antagonize LPA dependent activation of ERK(1/2) MAP kinases but strongly stimulated them in various mammalian cell lines. LPA and DGPP 8:0 stimulation of ERK(1/2) occurred through different pathways. The DGPP 8:0 effect appeared to be dependent on PKC, Raf and MEK but was insensitive to pertussis toxin and did not involve G protein activation. Finally we showed that DGPP 8:0 effect on ERK(1/2) was dependent on its dephosphorylation by a phosphatase activity sharing lipid phosphate phosphatase properties. The inhibition of this phosphatase activity by VPC32183, a previously characterized LPA receptor antagonist, blocked the DGPP 8:0 effect on ERK(1/2) activation. Moreover, down-regulation of lipid phosphate phosphatase 1 (LPP1) expression by RNA interference technique also reduced DGPP 8:0-induced ERK(1/2) activation. Consistently, over expression of LPP1 in HEK293 cells increases DGPP 8:0 hydrolysis and this increased activity was inhibited by VPC32183. In conclusion, DGPP 8:0 does not exert its effect by acting on a G protein coupled receptor, but through its dephosphorylation by LPP1, generating dioctanoyl phosphatidic acid which in turn activates PKC. These results suggest that LPP1 could have a positive regulatory function on cellular signaling processes such as ERK(1/2) activation.

  3. Sodium Ferulate Prevents Daunorubicin - Induced Apoptosis in H9c2 Cells via Inhibition of the ERKs Pathway

    Directory of Open Access Journals (Sweden)

    Zhi-Juan Wu

    2015-07-01

    Full Text Available Background: Daunorubicin (DNR-induced cardiotoxicity, which is closely associated with cardiomyocyte apoptosis, limits the drug's clinical application. The activation of the extracellular regulated protein kinases (ERKs pathway is responsible for the pro-apoptosis effect of DNR Sodium ferulate (SF has recently been found to attenuate both DNR-induced cardiotoxicity and mitochondrial apoptosis in juvenile rats. Nonetheless, the precise mechanism underlying SF-induced cardio-protection remains unclear. Methods: The DNR-injured H9c2 cell model was prepared by incubating the cells in 1 µM DNR for 24 h. Amounts of 15.6, 31.3 or 62.5 µM SF were simultaneously added to the cells. The effect of SF on the cytotoxic and apoptotic parameters of the cells was studied by monitoring apoptosis regulation via the ERKs pathway. Results: SF attenuated DNR-induced cell death (particularly apoptotic death, cTnI and β-tubulin degradation, and cellular morphological changes. SF reduced mitochondrial membrane potential depolarization, cytochrome c leakage, and caspase-9 and caspase-3 activation. SF also decreased ERK1/2, phospho-ERK1/2, p53 and Bax expression and increased Bcl-2 expression. These effects were similar to the results observed when using the pharmacological ERKs phosphorylation inhibitor, AZD6244. Conclusion: We determined that SF protects H9c2 cells from DNR-induced apoptosis through a mechanism that involves the interruption of the ERKs signaling pathway.

  4. Differential Activation of Mitogen-Activated Protein Kinases, ERK 1/2, p38(MAPK) and JNK p54/p46 During Postnatal Development of Rat Hippocampus.

    Science.gov (United States)

    Costa, Ana Paula; Lopes, Mark William; Rieger, Débora K; Barbosa, Sabrina Giovana Rocha; Gonçalves, Filipe Marques; Xikota, João Carlos; Walz, Roger; Leal, Rodrigo B

    2016-05-01

    Mitogen-activated protein kinases (MAPKs) are a group of serine-threonine kinases, including p38(MAPK), ERK 1/2 and JNK p54/p46, activated by phosphorylation in response to extracellular stimuli. The early postnatal period is characterized by significant changes in brain structure as well as intracellular signaling. In the hippocampus MAPKs have been involved in the modulation of development and neural plasticity. However, the temporal profile of MAPK activation throughout the early postnatal development is incomplete. An understanding of this profile is important since slight changes in the activity of these enzymes, in response to environmental stress in specific developmental windows, might alter the course of development. The present study was undertaken to investigate the hippocampal differential activation of MAPK during postnatal period. MAPK activation and total content were evaluated by Western blotting of hippocampal tissue obtained from male Wistar rats at postnatal days (P) 1, 4, 7, 10, 14, 21, 30 and 60. The total content and phosphorylation of each MAPK was expressed as mean ± SEM and then calculates as a percentile compared to P1 (set at 100 %). The results showed: (1) phosphorylation peaks of p38(MAPK) at PN4 (p = 0.036) and PN10 to PN60; (2) phosphorylation of ERK1 and ERK2 were increased with age (ERK1 p = 0.0000005 and ERK2 p = 0.003); (3) phosphorylation profile of JNK p54/p46 was not changed during the period analyzed (JNKp56 p = 0.716 and JNKp46 p = 0.192). Therefore, the activity profile of ERK 1/2 and p38(MAPK) during postnatal development of rat hippocampus are differentially regulated. Our results demonstrate that ERK 1/2 and p38(MAPK) are dynamically regulated during postnatal neurodevelopment, suggesting temporal correlation of MAPK activity with critical periods when programmed cell death and synaptogenesis are occurring. This suggests an important role for these MAPKs in postnatal development of rat hippocampus.

  5. Oxytocin Rapidly Changes Astrocytic GFAP Plasticity by Differentially Modulating the Expressions of pERK 1/2 and Protein Kinase A

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2017-08-01

    Full Text Available The importance of astrocytes to normal brain functions and neurological diseases has been extensively recognized; however, cellular mechanisms underlying functional and structural plasticities of astrocytes remain poorly understood. Oxytocin (OT is a neuropeptide that can rapidly change astrocytic plasticity in association with lactation, as indicated in the expression of glial fibrillary acidic protein (GFAP in the supraoptic nucleus (SON. Here, we used OT-evoked changes in GFAP expression in astrocytes of male rat SON as a model to explore the cellular mechanisms underlying GFAP plasticity. The results showed that OT significantly reduced the expression of GFAP filaments and proteins in SON astrocytes in brain slices. In lysates of the SON, OT receptors (OTRs were co-immunoprecipitated with GFAP; vasopressin (VP, a neuropeptide structurally similar to OT, did not significantly change GFAP protein level; OT-evoked depolarization of astrocyte membrane potential was sensitive to a selective OTR antagonist (OTRA but not to tetanus toxin, a blocker of synaptic transmission. The effects of OT on GFAP expression and on astrocyte uptake of Bauer-Peptide, an astrocyte-specific dye, were mimicked by isoproterenol (IPT; β-adrenoceptor agonist, U0126 or PD98059, inhibitors of extracellular signal-regulated protein kinase (ERK 1/2 kinase and blocked by the OTRA or KT5720, a protein kinase A (PKA inhibitor. The effect of OT on GFAP expressions and its association with these kinases were simulated by mSIRK, an activator of Gβγ subunits. Finally, suckling increased astrocytic expression of the catalytic subunit of PKA (cPKA at astrocytic processes while increasing the molecular associations of GFAP with cPKA and phosphorylated ERK (pERK 1/2. Upon the occurrence of the milk-ejection reflex, spatial co-localization of the cPKA with GFAP filaments further increased, which was accompanied with increased molecular association of GFAP with pERK 1/2 but not with

  6. Extracellular simian virus 40 induces an ERK/MAP kinase-independent signalling pathway that activates primary response genes and promotes virus entry.

    Science.gov (United States)

    Dangoria, N S; Breau, W C; Anderson, H A; Cishek, D M; Norkin, L C

    1996-09-01

    Simian virus 40 (SV40) binding to growth-arrested cells activated an intracellular signalling pathway that induced the up-regulation of the primary response genes c-myc, c-jun and c-sis within 30 min and of JE within 90 min. The up-regulation of the primary response genes occurred in the presence of cycloheximide and when UV-inactivated SV40 was adsorbed to cells. SV40 binding did not activate Raf or mitogen-activated protein kinase (MAP/ERK1), or mobilize intracellular Ca2+. The SV40-induced up-regulation of c-myc and c-jun was blocked by the tyrosine kinase inhibitor, genistein, and by the protein kinase C (PKC) inhibitor, calphostin C, but not by expression of the MAP kinase-specific phosphatase, MKP-1. These results suggest that the SV40-induced signalling pathway includes the activities of a tyrosine kinase and a Ca(2+)-independent isoform of PKC, but not of Raf or MAP kinase. Finally, SV40 infectious entry into cells was specifically and reversibly blocked by genistein.

  7. Enhancement of peripheral benzodiazepine receptor ligand-induced apoptosis and cell cycle arrest of esophageal cancer cells by simultaneous inhibition of MAPK/ERK kinase.

    Science.gov (United States)

    Sutter, Andreas P; Maaser, Kerstin; Gerst, Bastian; Krahn, Antje; Zeitz, Martin; Scherübl, Hans

    2004-05-01

    Specific ligands of the peripheral benzodiazepine receptor (PBR) activate pro-apoptotic and anti-proliferative signaling pathways. Previously, we found that PBR ligands activated the p38 mitogen-activated protein kinase (MAPK) pathway in esophageal cancer cells, and that the activation of p38MAPK contributed to tumor cell apoptosis and cell cycle arrest. Here, we report that PBR ligands also activate the pro-survival MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway in esophageal cancer cells, which might compromise the efficacy of PBR ligands. Hence, a combination treatment of PBR ligands and MEK inhibitors, which are emerging as promising anticancer agents, was pursued to determine whether this treatment could lead to enhanced apoptosis and cell cycle arrest. Using Western blotting we demonstrated a time- and dose-dependent phosphorylation of ERK1/2 in response to PBR ligands. Apoptosis was investigated by assessment of mitochondrial alterations and caspase-3 activity. Cell cycle arrest was measured by flow cytometric analysis of stained isolated nuclei. The inhibition of MEK/ERK with a pharmacologic inhibitor, 2'-amino-3'-methoxyflavone (PD 98059), resulted in a synergistic enhancement of PBR-ligand-induced growth inhibition, apoptosis and cell cycle arrest. Specifity of the pharmacologic inhibitor was confirmed by the use of 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U 0126), a second MEK/ERK inhibitor, and 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U 0124), a structural analogue of it which does not display any affinity to MEK. Enhanced pro-apoptotic and anti-proliferative effects were observed both in KYSE-140 esophageal squamous cancer and OE-33 adenocarcinoma cells, suggesting that this effect was not cell-type specific. In addition, the PBR-mediated overexpression of the stress response gene (growth arrest and DNA-damage-inducible gene gadd153) was synergistically enhanced by MEK inhibition. This is the

  8. Activation of extracellular signal-regulated kinases, NF-kappa B, and cyclic adenosine 5'-monophosphate response element-binding protein in lung neutrophils occurs by differing mechanisms after hemorrhage or endotoxemia.

    Science.gov (United States)

    Abraham, E; Arcaroli, J; Shenkar, R

    2001-01-01

    Acute lung injury is frequently associated with sepsis or blood loss and is characterized by a proinflammatory response and infiltration of activated neutrophils into the lungs. Hemorrhage or endotoxemia result in activation of cAMP response element-binding protein (CREB) and NF-kappa B in lung neutrophils as well as increased expression of proinflammatory cytokines, such as TNF-alpha and macrophage-inflammatory peptide-2, by these cells. Activation of the extracellular regulated kinase (ERK) pathway occurs in stress responses and is involved in CREB activation. In the present experiments, hemorrhage or endotoxemia produced increased activation of mitogen-activated protein kinase kinase (MEK)1/2 and ERK2 (p42), but not of ERK1 (p44), in lung neutrophils. ERK1, ERK2, and MEK1/2 were not activated in peripheral blood neutrophils after hemorrhage or endotoxemia. Inhibition of xanthine oxidase led to further increase in the activation of MEK1/2 and ERK2 in lung neutrophils after hemorrhage, but not after endotoxemia. Alpha-adrenergic blockade before hemorrhage resulted in increased activation in lung neutrophils of MEK1/2, ERK1, ERK2, and CREB, but decreased activation of NF-kappa B. In contrast, alpha-adrenergic blockade before endotoxemia was associated with decreased activation of MEK1/2, ERK2, and CREB, but increased activation of NF-kappa B. Beta-adrenergic blockade before hemorrhage did not alter MEK1/2 or ERK1 activation in lung neutrophils, but decreased activation of ERK2 and CREB, while increasing activation of NF-kappa B. Beta-adrenergic inhibition before endotoxemia did not affect activation of MEK1/2, ERK1, ERK2, CREB, or NF-kappa B. These data indicate that the pathways leading to lung neutrophil activation after hemorrhage are different from those induced by endotoxemia.

  9. Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development.

    Science.gov (United States)

    Whyte, Jacqueline; Bergin, Orla; Bianchi, Alessandro; McNally, Sara; Martin, Finian

    2009-01-01

    Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development.

  10. MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42.

    Science.gov (United States)

    Fanger, G R; Johnson, N L; Johnson, G L

    1997-08-15

    MEK kinases (MEKKs) 1, 2, 3 and 4 are members of sequential kinase pathways that regulate MAP kinases including c-Jun NH2-terminal kinases (JNKs) and extracellular regulated kinases (ERKs). Confocal immunofluorescence microscopy of COS cells demonstrated differential MEKK subcellular localization: MEKK1 was nuclear and in post-Golgi vesicular-like structures; MEKK2 and 4 were localized to distinct Golgi-associated vesicles that were dispersed by brefeldin A. MEKK1 and 2 were activated by EGF, and kinase-inactive mutants of each MEKK partially inhibited EGF-stimulated JNK activity. Kinase-inactive MEKK1, but not MEKK2, 3 or 4, strongly inhibited EGF-stimulated ERK activity. In contrast to MEKK2 and 3, MEKK1 and 4 specifically associated with Rac and Cdc42 and kinase-inactive mutants blocked Rac/Cdc42 stimulation of JNK activity. Inhibitory mutants of MEKK1-4 did not affect p21-activated kinase (PAK) activation of JNK, indicating that the PAK-regulated JNK pathway is independent of MEKKs. Thus, in different cellular locations, specific MEKKs are required for the regulation of MAPK family members, and MEKK1 and 4 are involved in the regulation of JNK activation by Rac/Cdc42 independent of PAK. Differential MEKK subcellular distribution and interaction with small GTP-binding proteins provides a mechanism to regulate MAP kinase responses in localized regions of the cell and to different upstream stimuli.

  11. Short-term anesthesia inhibits formalin-induced extracellular signal-regulated kinase (ERK) activation in the rostral anterior cingulate cortex but not in the spinal cord.

    Science.gov (United States)

    Tochiki, Keri K; Maiarù, Maria; Miller, James R C; Hunt, Stephen P; Géranton, Sandrine M

    2015-08-14

    The rostral anterior cingulate cortex (rACC) has been implicated in the negative affective response to injury, and importantly, it has been shown that activation of extracellular signal-regulated kinase (ERK) signaling in the rACC contributes to the full expression of the affective component of pain in rodents. In this study, we investigated whether administration of anesthesia at the time of injury could reduce phosphorylated-ERK (PERK) expression in the rACC, which might eliminate the negative affective component of noxious stimulation. Intraplantar hindpaw formalin stimulation, an aversive event in the awake animal, was given with or without general isoflurane anesthesia, and PERK expression was subsequently quantified in the rACC using immunohistochemistry. Furthermore, as numerous studies have demonstrated the importance of spinal ERK signaling in the regulation of nociceptive behaviour, we also examined PERK in the superficial dorsal horn of the spinal cord. Formalin injection with and without short-term (anesthesia induced the same level of PERK expression in spinal cord laminae I-II. However, PERK expression was significantly inhibited across all laminae of the rACC in animals anesthetized during formalin injection. The effect of anesthesia was such that levels of PERK were the same in formalin and sham treated anesthesized animals. This study is the first to demonstrate that isoflurane anesthesia can inhibit formalin-induced PERK in the rACC and therefore might eliminate the unpleasantness of restraint associated with awake hindpaw injection.

  12. Didymin Alleviates Hepatic Fibrosis Through Inhibiting ERK and PI3K/Akt Pathways via Regulation of Raf Kinase Inhibitor Protein

    Directory of Open Access Journals (Sweden)

    Xing Lin

    2016-12-01

    Full Text Available Background: Didymin has been reported to have anti-cancer potential. However, the effect of didymin on liver fibrosis remains illdefined. Methods: Hepatic fibrosis was induced by CCl4 in rats. The effects of didymin on liver pathology and collagen accumulation were observed by hematoxylin-eosin and Masson's trichrome staining, respectively. Serum transaminases activities and collagen-related indicators levels were determined by commercially available kits. Moreover, the effects of didymin on hepatic stellate cell apoptosis and cell cycle were analyzed by flow cytometry. Mitochondrial membrane potential was detected by using rhodamine-123 dye. The expression of Raf kinase inhibitor protein (RKIP and the phosphorylation of the ERK/MAPK and PI3K/Akt pathways were assessed by Western blot. Results: Didymin significantly ameliorated chronic liver injury and collagen deposition. It strongly inhibited hepatic stellate cells proliferation, induced apoptosis and caused cell cycle arrest in G2/M phase. Moreover, didymin notably attenuated mitochondrial membrane potential, accompanied by release of cytochrome C. Didymin significantly inhibited the ERK/MAPK and PI3K/Akt pathways. The effects of didymin on the collagen accumulation in rats and on the biological behaviors of hepatic stellate cells were largely abolished by the specific RKIP inhibitor locostatin. Conclusion: Didymin alleviates hepatic fibrosis by inhibiting ERK/MAPK and PI3K/Akt pathways via regulation of RKIP expression.

  13. Rho kinase mediates Porphyromonas gingivalis outer membrane vesicle-induced suppression of endothelial nitric oxide synthase through ERK1/2 and p38 MAPK.

    Science.gov (United States)

    Jia, Yue; Guo, Bin; Yang, WenWei; Zhao, Qiang; Jia, WenYuan; Wu, Yafei

    2015-03-01

    To investigate the effect of Rho kinase (ROCK) on Porphyromonas gingivalis outer membrane vesicles (OMVs)-induced suppression of endothelial nitric oxide synthase (eNOS) and explore the potential mechanism. Firstly, we investigated the effect of OMVs on total eNOS expression and eNOS activity in Human Umbilical Vein Endothelial Cells (HUVECs) and if ROCK activation is involved. Furthermore, we estimated the effect of ROCK in regulating eNOS expression and the possible underlying mechanism in vitro. At last we confirmed the results by immunohisochemisty for eNOS expression in mouse aorta endothelium exposed to OMVs and inhibitors. We found that OMVs suppressed eNOS expression both at RNA and protein levels in a time- and dose-dependent manner. ROCK activity was observed in this process by detecting phosphorylation of myosin light chain (MLC) and myosin-associated phosphatase type 1 (MYPT-1), which lead to reduced eNOS expression. The suppression of eNOS was significantly reversed by ROCK inhibitor Y-27632. Moreover, Y-27632 pretreatment obviously inhibited the activation of ERK1/2 and p38 MAPKs induced by OMVs, whereas that of JNK was not affected. In addition, blocking ERK1/2 or p38 MAPK by PD98059 and SB203580, respectively attenuated the OMVs-induced eNOS phosphorylation. Ex vivo study shows that OMVs reduced eNOS expression in mouse aorta endothelium. Co-treatment with OMVs and inhibitors could significantly reverse the eNOS suppression. Taken together, these results demonstrate that ROCK mediated OMVs-induced eNOS suppression through ERK1/2 and p38 MAPK. These data suggest that ROCK may mediate OMVs-induced eNOS expression through ERK1/2 and p38 MAPK. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Activation of the MAP Kinase Cascade by Exogenous Calcium-Sensing Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Hobson, Susan A.; Wright, Jay W.; Lee, Fred; Mcneil, Scott; Bilderback, Tim R.; Rodland, Karin D.

    2003-02-01

    In Rat-1 fibroblasts and ovarian surface epithelial cells, extracellular calcium induces a proliferative response which appears to be mediated by the G-protein coupled Calcium-sensing Receptor (CaR), as expression of the non-functional CaR-R795W mutant inhibits both thymidine incorporation and activation of the extracellular-regulated kinase (ERK) in response to calcium. In this report we utilized CaR-transfected HEK293 cells to demonstrate that functional CaR is necessary and sufficient for calcium-induced ERK activation. CaR-dependent ERK activation was blocked by co-expression of the Ras dominant-negative mutant, Ras N17, and by exposure to the phosphatidyl inositol 3' kinase inhibitors wortmannin and LY294002. In contrast to Rat-1 fibroblasts, CaR-mediated in vitro kinase activity of ERK2 was unaffected by tyrosine kinase inhibitor herbimycin in CaR-transfected HEK293 cells. These results suggest that usage of distinct pathways downstream of the CaR varies in a cell-type specific manner, suggesting a potential mechanism by which activation of the CaR could couple to distinct calcium-dependent responses.

  15. Protein kinase A-mediated cell proliferation in brown preadipocytes is independent of Erk1/2, PI{sub 3}K and mTOR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanling; Sato, Masaaki; Guo, Yuan; Bengtsson, Tore; Nedergaard, Jan, E-mail: jan@metabol.su.se

    2014-10-15

    The physiological agonist norepinephrine promotes cell proliferation of brown preadipocytes during the process of tissue recruitment. In a primary culture system, cAMP mediates these adrenergic effects. In the present study, we demonstrated that, in contrast to other systems where the mitogenic effect of cAMP requires the synergistic action of (serum) growth factors, especially insulin/IGF, the cAMP effect in brown preadipocytes was independent of serum and insulin. Protein kinase A, rather than Epac, mediated the cAMP mitogenic effect. The Erk 1/2 family of MAPK, the PI{sub 3}K system and the mTOR complexes were all activated by cAMP, but these activations were not necessary for cAMP-induced cell proliferation; a protein kinase C isoform may be involved in mediating cAMP-activated cell proliferation. We conclude that the generally acknowledged cellular mediators for induction of cell proliferation are not involved in this process in the brown preadipocyte system; this conclusion may be of relevance both for examination of mechanisms for induction of brown adipose tissue recruitment but also for understanding the mechanism behind e.g. certain endocrine neoplasias. - Highlights: • cAMP can mimick norepinephrine-induced proliferation of brown preadipocytes. • The cAMP-induced proliferation can occur in the absence of serum, of any other growth factors, and of insulin. • Erk1/2, PI{sub 3}K and mTOR are cAMP activated but not involved in induction of proliferation. • A Protein Kinase C member may be in the signalling cascade. • This pathway analysis may also be of importance for certain endocrine hyper- and neoplasias.

  16. Dual-specific Phosphatase-6 (Dusp6) and ERK Mediate AMPA Receptor-induced Oligodendrocyte Death*

    Science.gov (United States)

    Domercq, Maria; Alberdi, Elena; Sánchez-Gómez, Maria Victoria; Ariz, Usue; Pérez-Samartín, Alberto; Matute, Carlos

    2011-01-01

    Oligodendrocytes, the myelinating cells of the CNS, are highly vulnerable to glutamate excitotoxicity, a mechanism involved in tissue damage in multiple sclerosis. Thus, understanding oligodendrocyte death at the molecular level is important to develop new therapeutic approaches to treat the disease. Here, using microarray analysis and quantitative PCR, we observed that dual-specific phosphatase-6 (Dusp6), an extracellular regulated kinase-specific phosphatase, is up-regulated in oligodendrocyte cultures as well as in optic nerves after AMPA receptor activation. In turn, Dusp6 is overexpressed in optic nerves from multiple sclerosis patients before the appearance of evident damage in this structure. We further analyzed the role of Dusp6 and ERK signaling in excitotoxic oligodendrocyte death and observed that AMPA receptor activation induces a rapid increase in ERK1/2 phosphorylation. Blocking Dusp6 expression, which enhances ERK1/2 phosphorylation, significantly diminished AMPA receptor-induced oligodendrocyte death. In contrast, MAPK/ERK pathway inhibition with UO126 significantly potentiates excitotoxic oligodendrocyte death and increases cytochrome c release, mitochondrial depolarization, and mitochondrial calcium overload produced by AMPA receptor stimulation. Upstream analysis demonstrated that MAPK/ERK signaling alters AMPA receptor properties. Indeed, Dusp6 overexpression as well as incubation with UO126 produced an increase in AMPA receptor-induced inward currents and cytosolic calcium overload. Together, these data suggest that levels of phosphorylated ERK, controlled by Dusp6 phosphatase, regulate glutamate receptor permeability and oligodendroglial excitotoxicity. Therefore, targeting Dusp6 may be a useful strategy to prevent oligodendrocyte death in multiple sclerosis and other diseases involving CNS white matter. PMID:21300799

  17. The maintenance of established remote contextual fear memory requires ERK5 MAP kinase and ongoing adult neurogenesis in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Yung-Wei Pan

    Full Text Available Adult neurogenesis in the dentate gyrus of the hippocampal formation has been implicated in several forms of hippocampus-dependent memory. However, its role in the persistence of remote memory is unknown. Furthermore, whether the hippocampus plays a role in maintaining remote contextual memories is controversial. Here we used an inducible gene-specific approach for conditional deletion of erk5 in the adult neurogenic regions of the mouse brain to specifically impair adult neurogenesis. The erk5 gene was conditionally deleted under three different experimental conditions: prior to training for contextual fear, 6 days after training, or 5 weeks after training, We present evidence that remote memory was impaired under all three conditions. These data demonstrate that ongoing adult neurogenesis is required both for the initial establishment and the continued maintenance of remote contextual fear memory, even after the remote memory has transferred into extra-hippocampal regions of the brain 5 weeks after training.

  18. Activation of VEGF/Flk-1-ERK Pathway Induced Blood-Brain Barrier Injury After Microwave Exposure.

    Science.gov (United States)

    Wang, Li-Feng; Li, Xiang; Gao, Ya-Bing; Wang, Shui-Ming; Zhao, Li; Dong, Ji; Yao, Bin-Wei; Xu, Xin-Ping; Chang, Gong-Min; Zhou, Hong-Mei; Hu, Xiang-Jun; Peng, Rui-Yun

    2015-08-01

    Microwaves have been suggested to induce neuronal injury and increase permeability of the blood-brain barrier (BBB), but the mechanism remains unknown. The role of the vascular endothelial growth factor (VEGF)/Flk-1-Raf/MAPK kinase (MEK)/extracellular-regulated protein kinase (ERK) pathway in structural and functional injury of the blood-brain barrier (BBB) following microwave exposure was examined. An in vitro BBB model composed of the ECV304 cell line and primary rat cerebral astrocytes was exposed to microwave radiation (50 mW/cm(2), 5 min). The structure was observed by scanning electron microscopy (SEM) and the permeability was assessed by measuring transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) transmission. Activity and expression of VEGF/Flk-1-ERK pathway components and occludin also were examined. Our results showed that microwave radiation caused intercellular tight junctions to broaden and fracture with decreased TEER values and increased HRP permeability. After microwave exposure, activation of the VEGF/Flk-1-ERK pathway and Tyr phosphorylation of occludin were observed, along with down-regulated expression and interaction of occludin with zonula occludens-1 (ZO-1). After Flk-1 (SU5416) and MEK1/2 (U0126) inhibitors were used, the structure and function of the BBB were recovered. The increase in expression of ERK signal transduction molecules was muted, while the expression and the activity of occludin were accelerated, as well as the interactions of occludin with p-ERK and ZO-1 following microwave radiation. Thus, microwave radiation may induce BBB damage by activating the VEGF/Flk-1-ERK pathway, enhancing Tyr phosphorylation of occludin, while partially inhibiting expression and interaction of occludin with ZO-1.

  19. Activation of glycine site and GluN2B subunit of NMDA receptors is necessary for ERK/CREB signaling cascade in rostral anterior cingulate cortex in rats: Implications for affective pain

    Institute of Scientific and Technical Information of China (English)

    Hong Cao; Wen-Hua Ren; Mu-Ye Zhu; Zhi-Qi Zhao; Yu-Qiu Zhang

    2012-01-01

    Objective The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain.N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated affect by activating a signaling pathway that involves cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and/or extracellular regulated kinase (ERK)/cAMP-response element-binding protein (CREB).The present study investigated the contributions of the NMDAR glycine site and GluN2B subunit to the activation of ERK and CREB both in vitro and in vivo in rat rACC.Methods Immunohistochemistry and Western blot analysis were used to separately assess the expression of phospho-ERK (pERK) and phospho-CREB (pCREB) in vitro and in vivo.Double immunostaining was also used to determine the colocalization of pERK and pCREB.Results Both bath application of NMDA in brain slices in vitro and intraplantar injection of formalin into the rat hindpaw in vivo induced significant up-regulation of pERK and pCREB in the rACC,which was inhibited by the NMDAR antagonist DL-2-amino-5-phospho-novaleric acid.Selective blockade of the NMDAR GluN2B subunit and the glycinebinding site,or degradation of endogenous D-serine,a co-agonist for the glycine site,significantly decreased the upregulation of pERK and pCREB expression in the rACC.Further,the activated ERK predominantly colocalized with CREB.Conclusion Either the glycine site or the GluN2B subunit of NMDARs participates in the phosphorylation of ERK and CREB induced by bath application of NMDA in brain slices or hindpaw injection of 5% formalin in rats,and these might be fundamental molecular mechanisms underlying pain affect.

  20. Tobacco-specific Carcinogen 4-(Methylnitrosoamino)-1-(3-pyridyl )-1-butanone(NNK) Activating ERK1/2 MAP Kinases and Stimulating Proliferation of Hmnan Mammary Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cigarette smoking is correlated with the development of various cancers. 4 - (Methylnitrosoamino) -1 - ( 3 -pyridyl) -1-butanone (NNK) is one of the major tobacco-specific carcinogens in the cigarette smoke, which increases the risk of breast cancer. In the present study, it was demonstrated that NNK rapidly activated ERK1 and ERK2 MAP kinases in human normal mammary epithelial cells. It was found that there are two different routes for the activation of ERK1/2with NNK. One is from nicotinic receptor nAchR to MEK1/2, and the other is from tyrosine kinase containing receptor to MEK1/2. The tobacco-specific carcinogen NNK shows a strong proliferative effect on normal human mammary epithelial cells and cancer mammary epithelial cells.

  1. Mycobacterium tuberculosis PE_PGRS17 Promotes the Death of Host Cell and Cytokines Secretion via Erk Kinase Accompanying with Enhanced Survival of Recombinant Mycobacterium smegmatis

    Science.gov (United States)

    Chen, Tian; Zhao, Quanju; Li, Wu

    2013-01-01

    Tuberculosis (TB) remains a serious threat to global public health, largely due to the successful manipulation of the host immunity by its etiological agent Mycobacterium tuberculosis. The PE_PGRS protein family of M. tuberculosis might be a contributing factor. To investigate the roles of PE_PGRS17, the gene of PE_PGRS 17 was expressed in nonpathogenic fast growing Mycobacterium smegmatis. We found that the recombinant strain survives better than the control in macrophage cultures, accompanied by more host cell death and a marked higher secretion of tumor necrosis factor-alpha by a recombinant strain compared with control. Blocking the action of Erk kinase by an inhibitor can abolish the above effects. In brief, our data showed that PE_PGRS 17 might facilitate pathogen survival and disserve the host cell via remodeling the macrophages immune niche largely consisting of inflammatory cytokines. This furnishes a novel insight into the immune role of this mycobacterium unique gene family. PMID:23663047

  2. Novel protein regulates ERK pathway

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The ERK (extracellular signal-regulated kinase) pathway plays a critical role in the vital processes of living cells such as proliferation and differentiation.Recently, CAS scientists in Shanghai have discovered a novel mechanism of spatial regulation on ERK pathway. The result was published in the 4 September issue of the Proceedings of National Academy of Sciences(PNAS).

  3. ERK/MAPK activation involves hypoxia-induced MGr1-Ag/37LRP expression and contributes to apoptosis resistance in gastric cancer.

    Science.gov (United States)

    Liu, Lili; Zhang, Hongbo; Sun, Li; Gao, Yuqi; Jin, Haifeng; Liang, Shuhui; Wang, Yanxia; Dong, Mingqing; Shi, Yongquan; Li, Zhichao; Fan, Daiming

    2010-08-15

    We previously demonstrated that hypoxia increased the hypoxia-inducible factor (HIF-1)-dependent MGr1-Ag/37LRP expression, which enhanced adhesion of gastric cancer cells to laminin, inhibited drug-induced apoptosis and caused cell adhesion-mediated drug resistance (CAM-DR). Here, we investigated the role of extracellular-regulated kinase (ERK) 1/2 in the signaling mechanisms underlying these events. We found that hypoxia activated ERK activity in vitro and in vivo. Overexpression of mitogen-activated protein kinase (MAPK) kinase (MEK), which preferentially activated ERK, mimics, in a nonadditive way, hypoxia-induced activity of MGr1-Ag/37LRP promoter and expression of MGr1-Ag/37LRP. Furthermore, U0126, the MEK inhibitor, inhibited hypoxia- and MEK-induced MGr1-Ag/37LRP promoter activity in a dose-dependent manner. MEK inhibition also reversed hypoxia- and MEK-induced HIF-1 protein and its activity in a dose-dependent manner. We also investigated reactive oxygen species signaling this response. Exogenous addition of H(2)O(2) was sufficient to activate ERK in a dose-dependent profile. Reactive oxygen species scavengers of H(2)O(2) significantly inhibited hypoxia-induced ERK or HIF-1 activation and sequential expression of MGr1-Ag/37LRP. We also investigated the signaling in hypoxia-induced cell adhesion and apoptosis induced by vincristine. Hypoxia significantly enhanced adhesion of SGC7901 cells to laminin in a time-dependent manner, which might be inhibited by the MEK inhibitor U0126 and MGr1-Ag/37LRP siRNA. Consistent with results of adhesion assay, hypoxia-resistant apoptosis might be reversed by U0126 in a dose-dependent manner. Our results suggest that hypoxia-elicited MGr1-Ag/37LRP expression activated by HIF-1 depends on ERK activation. These events are dependent of reactive oxygen intermediates.

  4. Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes

    Directory of Open Access Journals (Sweden)

    Hee-Jeong Im

    2009-10-01

    Full Text Available Hee-Jeong Im,1–4 Andrew D Sharrocks,5 Xia Lin,6 Dongyao Yan,1 Jaesung Kim,1 Andre J van Wijnen,7 Robert A Hipskind81Departments of Biochemistry, 2Internal Medicine, 3Section of Rheumatology, Orthopedic Surgery, 4Rush University Medical Center, and Department of Bioengineering; University of Illinois at Chicago, IL USA; 5Faculty of Life Sciences, University of Manchester, Oxford Rd, Manchester, UK; 6Michael D DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA; 7Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA; 8Institute De Genetique Moleculaire de Montpellier, FranceAbstract: Degradation of the extracellular matrix (ECM by matrix metalloproteinases (MMPs and release of basic fibroblast growth factor (bFGF are principal aspects of the pathology of osteoarthritis (OA. ECM disruption leads to bFGF release, which activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK pathway and its downstream target the Ets-like transcription factor Elk-1. Previously we demonstrated that the bFGF-ERK-Elk-1 signaling axis is responsible for the potent induction of MMP-13 in human primary articular chondrocytes. Here we report that, in addition to phosphorylation of Elk-1, dynamic posttranslational modification of Elk-1 by small ubiquitin-related modifier (SUMO serves as an important mechanism through which MMP-13 gene expression is regulated. We show that bFGF activates Elk-1 mainly through the ERK pathway and that increased phosphorylation of Elk-1 is accompanied by decreased conjugation of SUMO to Elk-1. Reporter gene assays reveal that phosphorylation renders Elk-1 competent for induction of MMP-13 gene transcription, while sumoylation has the opposite effect. Furthermore, we demonstrate that the SUMO-conjugase Ubc9 acts as a key mediator for Elk-1 sumoylation. Taken together, our results suggest that sumoylation antagonizes the phosphorylation

  5. Extracellular acidosis induces neutrophil activation by a mechanism dependent on activation of phosphatidylinositol 3-kinase/Akt and ERK pathways.

    Science.gov (United States)

    Martínez, Diego; Vermeulen, Mónica; Trevani, Analía; Ceballos, Ana; Sabatté, Juan; Gamberale, Romina; Alvarez, María Eugenia; Salamone, Gabriela; Tanos, Tamara; Coso, Omar A; Geffner, Jorge

    2006-01-15

    Inflammation in peripheral tissues is usually associated with the development of local acidosis; however, there are few studies aimed at analyzing the influence of acidosis on immune cells. We have shown previously that extracellular acidosis triggers human neutrophil activation, inducing a transient increase in intracellular Ca2+ concentration, a shape change response, the up-regulation of CD18 expression, and a delay of apoptosis. In this study, we analyzed the signaling pathways responsible for neutrophil activation. We found that acidosis triggers the phosphorylation of Akt (the main downstream target of PI3K) and ERK MAPK, but not that of p38 and JNK MAPK. No degradation of IkappaB was observed, supporting the hypothesis that NF-kappaB is not activated under acidosis. Inhibition of PI3K by wortmannin or LY294002 markedly decreased the shape change response and the induction of Ca2+ transients triggered by acidosis, whereas the inhibition of MEK by PD98059 or U0126 significantly inhibited the shape change response without affecting the induction of Ca2+ transients. We also found that acidosis not only induces a shape change response and the induction of Ca2+ transients in human neutrophils but also stimulates the endocytosis of FITC-OVA and FITC-dextran. Stimulation of endocytosis was partially prevented by inhibitors of PI3K and MEK. Together, our results support the notion that the stimulation of human neutrophils by extracellular acidosis is dependent on the activation of PI3K/Akt and ERK pathways. Of note, using mouse peritoneal neutrophils we observed that the enhancement of endocytosis induced by acidosis was associated with an improved ability to present extracellular Ags through a MHC class I-restricted pathway.

  6. Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis

    Directory of Open Access Journals (Sweden)

    Fang Huang

    2016-06-01

    Full Text Available Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP. Further, pretreatment with antioxidant N-acetylcysteine (NAC effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125 and ERK1/2 inhibitor (PD98059 effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway.

  7. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Gita [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Mahalingam, S., E-mail: mahalingam@iitm.ac.in [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Department of Biotechnology, Laboratory of Molecular Virology and Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036 (India)

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  8. ERK-dependent phosphorylation of HSF1 mediates chemotherapeutic resistance to benzimidazole carbamates in colorectal cancer cells.

    Science.gov (United States)

    Wales, Christina T K; Taylor, Frederick R; Higa, Allan T; McAllister, Harvey A; Jacobs, Aaron T

    2015-07-01

    Drugs containing the benzimidazole carbamate scaffold include anthelmintic and antifungal agents, and they are now also recognized as having potential applications in the treatment of colorectal and other cancers. These agents act by binding to β-tubulin, and in doing so they disrupt microtubules, arrest cell division, and promote apoptotic cell death in malignant cells. We have evaluated several commercially available benzimidazole carbamates for cytotoxic activity in colorectal cancer cells. In addition to cytotoxicity, we also observe activation of the transcription factor, heat shock factor-1 (HSF1). HSF1 is well known to mediate a cytoprotective response that promotes tumor cell survival and drug resistance. Here, we show that biochemical inhibition with the HSF1 inhibitor KRIBB11 or siRNA-based silencing of HSF1 results in a significant enhancement of drug potency, causing an approximately two-fold decrease in IC50 values of parbendazole and nocodazole. We also define a mechanism for drug-induced HSF1 activation, which results from a phosphorylation event at Ser326 that is dependent on the activation of the extracellular regulated protein kinase-1/2 (ERK-1/2) mitogen-activated protein kinase pathway. Inhibition of the upstream kinase MEK-1/2 with U0126 attenuates the phosphorylation of both ERK-1/2 and HSF1, and significantly enhances drug cytotoxicity. From these data we propose a unique model whereby the ERK-1/2-dependent activation of HSF1 promotes chemotherapeutic resistance to benzimidazole carbamates. Therefore, targeting the ERK-1/2 signaling cascade is a potential strategy for HSF1 inhibition and a means of enhancing the cytotoxicity of these agents.

  9. Both mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinases (ERK) 1/2 and phosphatidylinositide-3-OH kinase (PI3K)/Akt pathways regulate activation of E-twenty-six (ETS)-like transcription factor 1 (Elk-1) in U138 glioblastoma cells.

    Science.gov (United States)

    Mut, Melike; Lule, Sevda; Demir, Ozlem; Kurnaz, Isil Aksan; Vural, Imran

    2012-02-01

    Epidermal growth factor (EGF) and its receptor (EGFR) have been shown to play a significant role in the pathogenesis of glioblastoma. In our study, the EGFR was stimulated with EGF in human U138 glioblastoma cells. We show that the activated mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinases (ERK) 1/2 pathway phosphorylated the E twenty-six (ETS)-like transcription factor 1 (Elk-1) mainly at serine 383 residue. Mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, UO126 and ERK inhibitor II, FR180204 blocked the Elk-1 phosphorylation and activation. The phosphatidylinositide-3-OH kinase (PI3K)/Akt pathway was also involved in the Elk-1 activation. Activation of the Elk-1 led to an increased survival and a proliferative response with the EGF stimulation in the U138 glioblastoma cells. Knocking-down the Elk-1 using an RNA interference technique caused a decrease in survival of the unstimulated U138 glioblastoma cells and also decreased the proliferative response to the EGF stimulation. The Elk-1 transcription factor was important for the survival and proliferation of U138 glioblastoma cells upon the stimulation of EGFR with EGF. The MAPK/ERK1/2 and PI3K/Akt pathways regulated this response via activation of the Elk-1 transcription factor. The Elk-1 may be one of the convergence points for pathways located downstream of EGFR in glioblastoma cells. Utilization of the Elk-1 as a therapeutic target may lead to a novel strategy in treatment of glioblastoma.

  10. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol-Hee [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Department of Pharmacology, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Lee, Byung-Hoon [College of Pharmacy and Multiscreening Center for Drug Development, Seoul National University, Seoul 151-742 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, College of Dentistry, Chosun University, Gwangju 501-759 (Korea, Republic of); Oh, Seon-Hee, E-mail: oshccw@hanmail.net [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our

  11. 14-3-3beta binds to big mitogen-activated protein kinase 1 (BMK1/ERK5) and regulates BMK1 function.

    Science.gov (United States)

    Zheng, Qinlei; Yin, Guoyong; Yan, Chen; Cavet, Megan; Berk, Bradford C

    2004-03-05

    Big mitogen-activated kinase 1 (BMK1/ERK5) is a member of the MAPK family activated by growth factors that mediates cell growth and survival. Previous data show that BMK1 can be activated by steady laminar flow and is atheroprotective by preventing endothelial cells from undergoing apoptosis. The primary structure of BMK1 is distinct from other MAPK members by virtue of a unique long C-tail, suggesting specific mechanisms of regulation. To characterize regulatory mechanisms for BMK1 function, we identified binding proteins by yeast two-hybrid analysis. Among these proteins, the scaffolding protein 14-3-3 was identified. BMK1 bound to 14-3-3beta in vitro and in vivo as demonstrated by glutathione S-transferase (GST)-14-3-3beta fusion protein pull-down assays and coimmunoprecipitation. Phosphorylation of BMK1 was most likely required for this interaction. GST-14-3-3beta pull-down assays using truncated constructs of BMK1 and site-directed BMK1 mutants demonstrated that the interaction requires serine 486 within the C terminus of BMK1. BMK1 bound to 14-3-3beta basally, and the interaction was greatly abrogated when BMK1 was activated. The interaction of 14-3-3beta and BMK1 inhibited kinase activities stimulated by constitutively active (CA)-MEK5 and epidermal growth factor. Mutation of serine 486 (BMK1-S486A) prevented the interaction with 14-3-3beta and enhanced BMK1 activity upon epidermal growth factor stimulation. These data demonstrate an inhibitory function for 14-3-3beta binding to BMK1 and show that serine 486 phosphorylation represents a novel regulatory mechanism for BMK1.

  12. Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer.

    Science.gov (United States)

    Young, Christian D; Zimmerman, Lisa J; Hoshino, Daisuke; Formisano, Luigi; Hanker, Ariella B; Gatza, Michael L; Morrison, Meghan M; Moore, Preston D; Whitwell, Corbin A; Dave, Bhuvanesh; Stricker, Thomas; Bhola, Neil E; Silva, Grace O; Patel, Premal; Brantley-Sieders, Dana M; Levin, Maren; Horiates, Marina; Palma, Norma A; Wang, Kai; Stephens, Philip J; Perou, Charles M; Weaver, Alissa M; O'Shaughnessy, Joyce A; Chang, Jenny C; Park, Ben Ho; Liebler, Daniel C; Cook, Rebecca S; Arteaga, Carlos L

    2015-07-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer*

    Science.gov (United States)

    Young, Christian D.; Zimmerman, Lisa J.; Hoshino, Daisuke; Formisano, Luigi; Hanker, Ariella B.; Gatza, Michael L.; Morrison, Meghan M.; Moore, Preston D.; Whitwell, Corbin A.; Dave, Bhuvanesh; Stricker, Thomas; Bhola, Neil E.; Silva, Grace O.; Patel, Premal; Brantley-Sieders, Dana M.; Levin, Maren; Horiates, Marina; Palma, Norma A.; Wang, Kai; Stephens, Philip J.; Perou, Charles M.; Weaver, Alissa M.; O'Shaughnessy, Joyce A.; Chang, Jenny C.; Park, Ben Ho; Liebler, Daniel C.; Cook, Rebecca S.; Arteaga, Carlos L.

    2015-01-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR. PMID:25953087

  14. Role of ERK/MAPK signalling pathway in anti-inflammatory effects of Ecklonia cavain activated human mast cell line-1 cells

    Institute of Scientific and Technical Information of China (English)

    Hye Kyung Kim

    2014-01-01

    Objective:The anti-inflammatory effects ofEcklonia cava(EC) and its mechanism of action were examined in phorbol-12 myristate13-acetate(30 nmol/L) andA23187(1 μmol/L)(PMACI) stimulated human mast cell line-1 cells.Methods:Nitric oxide content, inducible nitric oxide synthase and cyclooxygenase-2 protein expression, pro-inflammatory cytokines including IL-1β,TNF-α, andIL-6 mRNA and protein expressions were determined.In addition, extracellular regulated protein kinases/mitogen-activated protein kinase(ERK/MAPK) activation was examined.Results:EC dose-dependently suppressed inducible nitric oxide synthase and cyclooxygenase-2 protein expression and subsequently it reduces nitric oxide content inPMACI stimulated human mast cell line-1 cells.EC dose-dependently inhibited the mRNA as well as protein expression ofTNF-α,IL-1β, andIL-6 in thePMACI stimulated human mast cell line-1 cells without any cytotoxic effect.Furthermore,EC significantly inhibitedPMACI induced phosphorylation ofERK1/2 in a dose-dependent manner without affecting the total protein levels. Conclusions:EC exert its anti-inflammatory actions via inhibition ofERK/MAPK signalling pathway, suggesting thatEC is a potent and efficacious anti-inflammatory agent for mast cell-mediated inflammatory diseases.

  15. Oxygen-Glucose Deprivation Induces G2/M Cell Cycle Arrest in Brain Pericytes Associated with ERK Inactivation.

    Science.gov (United States)

    Wei, Wenjie; Yu, Zhiyuan; Xie, Minjie; Wang, Wei; Luo, Xiang

    2017-01-01

    Growing evidence has revealed that brain pericytes are multifunctional and contribute to the pathogenesis of a number of neurological disorders. However, the role of pericytes in cerebral ischemia, and especially the pathophysiological alterations in pericytes, remains unclear. In the present study, our aim was to determine whether the proliferation of pericytes is affected by cerebral ischemia and, if so, to identify the underlying mechanism(s). Cultured brain pericytes subjected to oxygen-glucose deprivation (OGD) were used as our model of cerebral ischemia; the protein expression levels of cyclin D1, cyclin E, cdk4, and cyclin B1 were determined by Western blot analysis, and cell cycle analysis was assessed by flow cytometry. The OGD treatment reduced the brain pericyte proliferation by causing G2/M phase arrest and downregulating the protein levels of cyclin D1, cyclin E, cdk4, and cyclin B1. Further studies demonstrated a simultaneous decrease in the activity of extracellular regulated protein kinases (ERK), suggesting a critical role of the ERK signaling cascade in the inhibition of OGD-induced pericyte proliferation. We suggest that OGD inhibition of the proliferation of brain pericytes is associated with the inactivation of the ERK signaling pathway, which arrests them in the G2/M phase.

  16. Astragalus Polysaccharide Suppresses Skeletal Muscle Myostatin Expression in Diabetes: Involvement of ROS-ERK and NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Min Liu

    2013-01-01

    Full Text Available Objective. The antidiabetes drug astragalus polysaccharide (APS is capable of increasing insulin sensitivity in skeletal muscle and improving whole-body glucose homeostasis. Recent studies suggest that skeletal muscle secreted growth factor myostatin plays an important role in regulating insulin signaling and insulin resistance. We hypothesized that regulation of skeletal muscle myostatin expression may be involved in the improvement of insulin sensitivity by APS. Methods. APS was administered to 13-week-old diabetic KKAy and nondiabetic C57BL/6J mice for 8 weeks. Complementary studies examined APS effects on the saturated acid palmitate-induced insulin resistance and myostatin expression in C2C12 cells. Results. APS treatment ameliorated hyperglycemia, hyperlipidemia, and insulin resistance and decreased the elevation of myostatin expression and malondialdehyde production in skeletal muscle of noninsulin-dependent diabetic KKAy mice. In C2C12 cells in vitro, saturated acid palmitate-induced impaired glucose uptake, overproduction of ROS, activation of extracellular regulated protein kinases (ERK, and NF-κB were partially restored by APS treatment. The protective effects of APS were mimicked by ERK and NF-κB inhibitors, respectively. Conclusion. Our study demonstrates elevated myostatin expression in skeletal muscle of type 2 diabetic KKAy mice and in cultured C2C12 cells exposed to palmitate. APS is capable of improving insulin sensitivity and decreasing myostatin expression in skeletal muscle through downregulating ROS-ERK-NF-κB pathway.

  17. Dual roles of extracellular signal-regulated kinase (ERK) in quinoline compound BPIQ-induced apoptosis and anti-migration of human non-small cell lung cancer cells.

    Science.gov (United States)

    Fong, Yao; Wu, Chang-Yi; Chang, Kuo-Feng; Chen, Bing-Hung; Chou, Wan-Ju; Tseng, Chih-Hua; Chen, Yen-Chun; Wang, Hui-Min David; Chen, Yeh-Long; Chiu, Chien-Chih

    2017-01-01

    2,9-Bis[2-(pyrrolidin-1-yl)ethoxy]-6-{4-[2-(pyrrolidin-1-yl)ethoxy] phenyl}-11H-indeno[1,2-c]quinoline-11-one (BPIQ), is a synthetic quinoline analog. A previous study showed the anti-cancer potential of BPIQ through modulating mitochondrial-mediated apoptosis. However, the effect of BPIQ on cell migration, an index of cancer metastasis, has not yet been examined. Furthermore, among signal pathways involved in stresses, the members of the mitogen-activated protein kinase (MAPK) family are crucial for regulating the survival and migration of cells. In this study, the aim was to explore further the role of MAPK members, including JNK, p38 and extracellular signal-regulated kinase (ERK) in BPIQ-induced apoptosis and anti-migration of human non-small cell lung cancer (NSCLC) cells. Western Blot assay was performed for detecting the activation of MAPK members in NSCLC H1299 cells following BPIQ administration. Cellular proliferation was determined using a trypan blue exclusion assay. Cellular apoptosis was detected using flow cytometer-based Annexin V/propidium iodide dual staining. Cellular migration was determined using wound-healing assay and Boyden's chamber assay. Zymography assay was performed for examining MMP-2 and -9 activities. The assessment of MAPK inhibition was performed for further validating the role of JNK, p38, and ERK in BPIQ-induced growth inhibition, apoptosis, and migration of NSCLC cells. Western Blot assay showed that BPIQ treatment upregulates the phosphorylated levels of both MAPK proteins JNK and ERK. However, only ERK inhibitor rescues BPIQ-induced growth inhibition of NSCLC H1299 cells. The results of Annexin V assay further confirmed the pro-apoptotic role of ERK in BPIQ-induced cell death of H1299 cells. The results of wound healing and Boyden chamber assays showed that sub-IC50 (sub-lethal) concentrations of BPIQ cause a significant inhibition of migration in H1299 cells accompanied with downregulating the activity of MMP-2 and -9, the

  18. Arachidonic acid enhances TPA-induced differentiation in human leukemia HL-60 cells via reactive oxygen species-dependent ERK activation.

    Science.gov (United States)

    Chien, Chih-Chiang; Wu, Ming-Shun; Shen, Shing-Chuan; Yang, Liang-Yo; Wu, Wen-Shin; Chen, Yen-Chou

    2013-04-01

    The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), is a potent stimulator of differentiation in human leukemia cells; however, the effects of arachidonic acid (AA) on TPA-induced differentiation are still unclear. In the present study, we investigated the contribution of AA to TPA-induced differentiation of human leukemia HL-60 cells. We found that treatment of HL-60 cells with TPA resulted in increases in cell attachment and nitroblue tetrazolium (NBT)-positive cells, which were significantly enhanced by the addition of AA. Stimulation of TPA-induced intracellular reactive oxygen species (ROS) production by AA was detected in HL-60 cells via a DCHF-DA analysis, and the addition of the antioxidant, N-acetyl-cysteine (NAC), was able to reduce TPA+AA-induced differentiation in accordance with suppression of intracellular peroxide elevation by TPA+AA. Furthermore, activation of extracellular-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by TPA+AA was identified in HL-60 cells, and the ERK inhibitor, PD98059, but not the JNK inhibitor, SP600125, inhibited TPA+AA-induced NBT-positive cells. Suppression of TPA+AA-induced ERK protein phosphorylation by PD98059 and NAC was detected, and AA enhanced ERK protein phosphorylation by TPA was in HL-60 cells. AA clearly increased TPA-induced HL-60 cell differentiation, as evidenced by a marked increase in CD11b expression, which was inhibited by NAC and PD98059 addition. Eicosapentaenoic acid (EPA) as well as AA showed increased intracellular peroxide production and differentiation of HL-60 cells elicited by TPA. Evidence of AA potentiation of differentiation by TPA in human leukemia cells HL-60 via activation of ROS-dependent ERK protein phosphorylation was first demonstrated herein.

  19. Heat Shock-induced Phosphorylation of TAR DNA-binding Protein 43 (TDP-43) by MAPK/ERK Kinase Regulates TDP-43 Function.

    Science.gov (United States)

    Li, Wen; Reeb, Ashley N; Lin, Binyan; Subramanian, Praveen; Fey, Erin E; Knoverek, Catherine R; French, Rachel L; Bigio, Eileen H; Ayala, Yuna M

    2017-03-24

    TAR DNA-binding protein (TDP-43) is a highly conserved and essential DNA- and RNA-binding protein that controls gene expression through RNA processing, in particular, regulation of splicing. Intracellular aggregation of TDP-43 is a hallmark of amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. This TDP-43 pathology is also present in other types of neurodegeneration including Alzheimer's disease. We report here that TDP-43 is a substrate of MEK, a central kinase in the MAPK/ERK signaling pathway. TDP-43 dual phosphorylation by MEK, at threonine 153 and tyrosine 155 (p-T153/Y155), was dramatically increased by the heat shock response (HSR) in human cells. HSR promotes cell survival under proteotoxic conditions by maintaining protein homeostasis and preventing protein misfolding. MEK is activated by HSR and contributes to the regulation of proteome stability. Phosphorylated TDP-43 was not associated with TDP-43 aggregation, and p-T153/Y155 remained soluble under conditions that promote protein misfolding. We found that active MEK significantly alters TDP-43-regulated splicing and that phosphomimetic substitutions at these two residues reduce binding to GU-rich RNA. Cellular imaging using a phospho-specific p-T153/Y155 antibody showed that phosphorylated TDP-43 was specifically recruited to the nucleoli, suggesting that p-T153/Y155 regulates a previously unappreciated function of TDP-43 in the processing of nucleolar-associated RNA. These findings highlight a new mechanism that regulates TDP-43 function and homeostasis through phosphorylation and, therefore, may contribute to the development of strategies to prevent TDP-43 aggregation and to uncover previously unexplored roles of TDP-43 in cell metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. OPN induces FoxM1 expression and localization through ERK 1/2, AKT, and p38 signaling pathway in HEC-1A cells.

    Science.gov (United States)

    Xie, Yunpeng; Li, Yinghua; Kong, Ying

    2014-12-16

    Mammalian embryo implantation is an extremely complex process and requires endometrial receptivity. In order to establish this receptivity, sequential proliferation and differentiation during the menstrual cycle is necessary. Forkhead box M1 (FoxM1) is described as a major oncogenic transcription factor in tumor initiation, promotion and progression. According to these functions, we believe that FoxM1 should also play an essential role in embryo implantation. Osteopontin (OPN), an adhesion molecule, has been studied extensively in reproduction. In this study, we observed the expression and distribution of FoxM1 during the proliferative-phase and secretory-phase human endometrium and the pre-implantation mouse uterus firstly. Then we observed the relationship between OPN and FoxM1. Our results showed that FoxM1 was mainly distributed in glandular epithelium. OPN increased the expression of FoxM1 in the human uterine epithelial cell line HEC-1A cells in a time- and concentration-dependent manner. OPN regulates FoxM1 to influence HEC-1A cell proliferation through extracellular regulated protein kinases (ERK 1/2), protein kinase B (PKB, AKT), and the p38 mitogen activated protein kinases (p38MAPK, p38) signaling pathway. Inhibition of ERK 1/2, AKT and p38 suppressed OPN-induced FoxM1 expression and location. Our data indicate that FoxM1 might be regulated by OPN to influence endometrial proliferation to establish endometrial receptivity.

  1. Apelin-13 induces ERK1/2 but not p38 MAPK activation through coupling of the human apelin receptor to the Gi2 pathway

    Institute of Scientific and Technical Information of China (English)

    Bo Bai; Jiyou Tang; Haiqing Liu; Jing Chen; Yalin Li; Wengang Song

    2008-01-01

    Apelin signaling to the family of mitogen-activated protein kinases (MAPKs), such as extracellular-regulated kinases 1/2 (ERK1/2) and p38 MAPK, through the coupling of apelin receptor (APJ) to G-protein, mediates important pathophysiological responses. Although apelin fragments have been reported to induce ERK1/2 activation through Gi-protein, the intracellular pathways by which APJ activates these MAPKs are only partially understood. Here, using stably transfected human embryonic kidney 293 (HEK293) cells overexpressing human APJ (HEK293-apelinR), we showed that apelin-13 signaling leads to ERK1/2 and p38 MAPK pathways through APJ activation. It was found in HEK293-apelinR cells that ERK1/2 activation was initiated by apelin13 at 5 min, with the peak of activation occurring at 15 min,and a return to the basal level within 60 min. The activation of ERK1/2 appeared to be dose-dependent with a significant activation being observed at 10 nM apelin-13 and maximal activation at 100 nM. However, phosphorylated-p38 MAPK was not detected in HEK293-apelinR cells treated with apelin13. We also shown that the apelin-13-induced ERK1/2 activation requires a coupling with pertussis toxin-sensitive G-protein, and that overexpression of dominant-negative Gi2 completely inhibits the apelin-13-induced ERK1/2 activation.In addition, treatment with apelin-13 resulted in a concentration-dependent reduction of forskolin-stimulated cAMP production. It is therefore suggested that apelin-13 activates ERK1/2 but not p38 MAPK, which involves the coupling of APJ to the Gi2 cascade. In conclusion, the ERK1/2, but not p38 MAPK pathway is activated by apelin- 13 through coupling of human APJ to Gi2-protein, which contributes to cellular responses.

  2. Aberrant Signaling through the HER2-ERK1/2 Pathway is Predictive of Reduced Disease-Free and Overall Survival in Early Stage Non-Small Cell Lung Cancer (NSCLC) Patients.

    Science.gov (United States)

    Scrima, Marianna; Zito Marino, Federica; Oliveira, Duarte Mendes; Marinaro, Cinzia; La Mantia, Elvira; Rocco, Gaetano; De Marco, Carmela; Malanga, Donatella; De Rosa, Nicla; Rizzuto, Antonia; Botti, Gerardo; Franco, Renato; Zoppoli, Pietro; Viglietto, Giuseppe

    2017-01-01

    Background: Purpose of this study was to evaluate the contribution of the Extracellular-regulated protein kinase (ERK)-1/2 pathway to oncogenic signaling elicited by the tyrosine kinase receptor HER2 in Non-Small Cell Lung Cancer (NSCLC) and to assess the prognostic value of these oncoproteins in NSCLC patients. Methods: Immunohistochemistry was performed to determine expression and activation of HER2 and ERK1/2 (detected by phosphorylation of Y1248 and T202/Y204, respectively) using Tissue Micro Arrays (TMA) containing matched normal and neoplastic tissues from 132 NSCLC patients. Survival analysis was carried out using the Kaplan-Meier method. Univariate and multivariate analysis were used to evaluate the prognostic value of pERK1/2, pHER2 and a combination thereof with clinical-pathological parameters such as age, lymph node status (N), size (T), stage (TNM) and grade. Results: We found that HER2 was overexpressed in 33/120 (27%) and activated in 41/114 (36%) cases; ERK1/2 was activated in 44/102 (43%) cases. A direct association was found between pERK1/2 and pHER2 (23/41; p=0.038). In addition, patients positive for pERK1/2 and for both pHER2 and pERK1/2 showed significantly worse overall survival (OS) and disease-free survival (DFS) compared with negative patients. Univariate and multivariate analysis of patients' survival revealed that positivity for pHER2-pERK1/2 and for pERK1/2 alone were independent prognostic factors of poor survival in NSCLC patients. In particular, this association was significantly important for DFS in stage I+II patients. Conclusion: This study provides evidence that activated ERK1/2 and/or the combined activation of HER2 and ERK1/2 are good indicators of poor prognosis in NSCLC patients, not only in unselected patients but also in early stage disease.

  3. On the nanotoxicity of PAMAM dendrimers: Superfect® stimulates the EGFR-ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells.

    Science.gov (United States)

    Akhtar, Saghir; Chandrasekhar, Bindu; Attur, Sreeja; Yousif, Mariam H M; Benter, Ibrahim F

    2013-05-01

    Polyamidoamine (PAMAM) dendrimers are cationic branch-like macromolecules that may serve as drug delivery systems for gene-based therapies such as RNA interference. For their safe use in the clinic, they should ideally only enhance drug delivery to target tissues and exhibit no adverse effects. However, little is known about their toxicological profiles in terms of their interactions with cellular signal transduction pathways such as the epidermal growth factor receptor (EGFR). The EGFR is an important signaling cascade that regulates cell growth, differentiation, migration, survival and apoptosis. Here, we investigated the impact of naked, unmodified Superfect (SF), a commercially available generation 6 PAMAM dendrimer, on the epidermal growth factor receptor (EGFR) tyrosine kinase-extracellular-regulated kinase 1/2 (ERK1/2) signaling pathway in human embryonic kidney (HEK 293) cells. At concentrations routinely used for transfection, SF exhibited time and dose-dependent stimulation of EGFR and ERK1/2 phosphorylation whereas AG1478, a selective EGFR tyrosine kinase antagonist, inhibited EGFR-ERK1/2 signaling. SF-induced phosphorylation of EGFR for 1h was partly reversible upon removal of the dendrimer and examination of cells 24 later. Co-treatment of SF with epidermal growth factor (EGF) ligand resulted in greater EGFR stimulation than either agent alone implying that the stimulatory effects of SF and the ligand are synergistic. Dendrimer-induced stimulation of EGFR-ERK1/2 signaling could be attenuated by the antioxidants apocynin, catalase and tempol implying that an oxidative stress dependent mechanism was involved. These results show for the first time that PAMAM dendrimers, aside from their ability to improve drug delivery, can modulate the important EGFR-ERK1/2 cellular signal transduction pathway - a novel finding that may have a bearing on their safe application as drug delivery systems.

  4. Myocardial ischemia-reperfusion enhances transcriptional expression of endothelin-1 and vasoconstrictor ETB receptors via the protein kinase MEK-ERK1/2 signaling pathway in rat

    DEFF Research Database (Denmark)

    Skovsted, Gry Freja; Kruse, Lars Schack; Berchtold, Lukas Adrian

    2017-01-01

    of proteins (pERK1/2, prepro-endothelin-1, endothelin-1, and endothelin ETA and ETB receptors) were analysed by Western blot and immunohistochemistry. We found that pERK1/2 was significantly augmented in the ischemic area 3 hours after ischemia-reperfusion; this correlated with increased ETB receptor and ET-1...... gene expressions in ischemic myocardium and in coronary arteries. ETB receptor-mediated vasoconstriction was observed to be increased in coronary arteries 24 hours after ischemia-reperfusion. Treatment with U0126 reduced pERK1/2, expression of ET-1 and ETB receptor, and ETB receptor...

  5. Prostaglandin E2 transactivates the colony-stimulating factor-1 receptor and synergizes with colony-stimulating factor-1 in the induction of macrophage migration via the mitogen-activated protein kinase ERK1/2.

    Science.gov (United States)

    Digiacomo, Graziana; Ziche, Marina; Dello Sbarba, Persio; Donnini, Sandra; Rovida, Elisabetta

    2015-06-01

    Prostaglandin E2 (PGE2), a key mediator of immunity, inflammation, and cancer, acts through 4 G-protein-coupled E-prostanoid receptors (EPs 1-4). Crosstalk between EPs and receptor tyrosine kinases also occurs. Colony-stimulating factor-1 receptor (CSF-1R) is an RTK that sustains the survival, proliferation, and motility of monocytes/macrophages, which are an essential component of innate immunity and cancer development. The aim of this study was to investigate on a possible crosstalk between EP and CSF-1R. In BAC1.2F5 and RAW264.7 murine macrophages, CSF-1 (EC₅₀ = 18.1 and 10.2 ng/ml, respectively) and PGE2 (EC₅₀ = 1.5 and 5.5 nM, respectively) promoted migration. PGE2 induced rapid CSF-1R phosphorylation that was dependent on Src family kinases (SFKs). CSF-1R inhibition reduced PGE2-elicited ERK1/2 phosphorylation and macrophage migration, indicating that CSF-1R plays a role in PGE2-mediated immunoregulation. EP4 appeared responsible for functional PGE2/CSF-1R crosstalk. Furthermore, PGE2 synergized with CSF-1 in inducing ERK1/2 phosphorylation and macrophage migration. ERK1/2 inhibition completely blocked migration induced by the combination CSF-1/PGE2. CSF-1/PGE2 functional interaction with respect to migration also occurred in bone marrow-derived murine macrophages (EC₅₀ CSF-1, 6.7 ng/ml; EC₅₀ PGE2, 16.7 nM). These results indicated that PGE2 transactivates CSF-1R and synergizes with its signaling at ERK1/2 level in promoting macrophage migration. © FASEB.

  6. Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    Ying JIN; En-zhi YAN; Ying FAN; Zhi-hong ZONG; Zhi-min QI; Zhi LI

    2005-01-01

    Aim: To observe whether an amyloid β (Aβ)-induced increase in interleukin (IL)1 β was accompanied by an increase in the p38 mitogen-activated protein kinase (MAPK) pathway and a decrease in the cell survival pathway, and whether sodium ferulate (SF) treatment was effective in preventing these Aβ-induced changes.Methods: Rats were injected intracerebroventricularly with Aβ25-35. Seven days after injection, immunohistochemical techniques for glial fibrillary acidic protein (GFAP) were used to determine the astrocyte infiltration and activation in hippocampal CA1 areas. The expression of IL-1 β, extracellular signal-regulated kinase (ERK), p38 MAPK, Akt/protein kinase B (PKB), Fas ligand and caspase-3 were determined by Western blotting. The caspase-3 activity was measured by cleavage of the caspase-3 substrate (Ac-DEVD-pNA). Reverse transcriptionpolymerase chain reaction was used to analyze the changes in IL- 1 βmRNA levels.Results:Intracerebroventricular injection of Aβ25-35 elicited astrocyte activation and infiltration and caused a strong inflammatory reaction characterized by increased IL-1 β production and elevated levels of IL-1 β mRNA. Increased IL-1 β synthesis was accompanied by increased activation of p38 MAPK and downregulation of phospho-ERK and phospho-Akt/PKB in hippocampal CA regions prepared from Aβ-treated rats, leading to cell death as assessed by activation of caspase-3. SF significantly prevented Aβ-induced increases in IL-1 β and p38 MAPK activation and also Aβ-induced changes in phospho-ERK and phospho-Akt/PKB expression levels. Conclusion: SF prevents Aβ-induced neurotoxicity through suppression of p38 MAPK activation and upregulation of phospho-ERK and phospho-Akt/PKB expression.survival signals ERK and Akt/PKB may contribute to the demise of the cells. These are significantly abrogated by SF treatment, which also attenuates Aβ-induced increase in caspase-3 activity and FasL expression.

  7. Inhibition of the nuclear factor kappa B (NF-kappa B) pathway by tetracyclic kaurene diterpenes in macrophages. Specific effects on NF-kappa B-inducing kinase activity and on the coordinate activation of ERK and p38 MAPK.

    Science.gov (United States)

    Castrillo, A; de Las Heras, B; Hortelano, S; Rodriguez, B; Villar, A; Bosca, L

    2001-05-11

    The anti-inflammatory action of most terpenes has been explained in terms of the inhibition of nuclear factor kappaB (NF-kappaB) activity. Ent-kaurene diterpenes are intermediates of the synthesis of gibberellins and inhibit the expression of NO synthase-2 and the release of tumor necrosis factor-alpha in J774 macrophages challenged with lipopolysaccharide. These diterpenes inhibit NF-kappaB and IkappaB kinase (IKK) activation in vivo but failed to affect in vitro the function of NF-kappaB, the phosphorylation and targeting of IkappaBalpha, and the activity of IKK-2. Transient expression of NF-kappaB-inducing kinase (NIK) activated the IKK complex and NF-kappaB, a process that was inhibited by kaurenes, indicating that the inhibition of NIK was one of the targets of these diterpenes. These results show that kaurenes impair the inflammatory signaling by inhibiting NIK, a member of the MAPK kinase superfamily that interacts with tumor necrosis factor receptor-associated factors, and mediate the activation of NF-kappaB by these receptors. Moreover, kaurenes delayed the phosphorylation of p38, ERK1, and ERK2 MAPKs, but not that of JNK, in response to lipopolysaccharide treatment of J774 cells. The absence of a coordinate activation of MAPK and IKK might contribute to a deficient activation of NF-kappaB that is involved in the anti-inflammatory activity of these molecules.

  8. Integrated bioinformatics, computational and experimental methods to discover novel Raf/extracellular-signal regulated kinase (ERK) dual inhibitors against breast cancer cells.

    Science.gov (United States)

    Chen, Yin; Zheng, Yaxin; Jiang, Qinglin; Qin, Feifei; Zhang, Yonghui; Fu, Leilei; He, Gu

    2017-02-15

    Beginning with our previously reported ERK inhibitor BL-EI001, we found Raf1 to be an important regulator in the ERK interactive network, and then we designed and synthesized a novel series of Raf1/ERK dual inhibitors against human breast cancers through integrative computational, synthetic and biological screening methods. Moreover, we found that compound 9d suppressed the proliferation of breast cancer cell lines and induced cellular apoptosis via a mitochondrial pathway with only partial dependence on Raf1 and ERK. Our results suggest that an integrative method including in silico design, chemical synthesis, biological screening and bioinformatics analysis could be an attractive strategy for the discovery of multi-target inhibitors against breast cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. 在肿瘤细胞模型中联合应用磷脂酰肌醇3激酶/蛋白酶B通路抑制剂BEZ235和细胞外调解蛋白激酶/丝裂原活化蛋白激酶通路抑制剂U0126的效果%Efficacy of Combination Treatment of the Inhibitor of Phosphatidyl Inositol-3-Kinase/Protein Kinase B Pathway BEZ235 and the Inhibitor of Extracellular Regulated Protein Kinase/Mitogen-activated Protein Kinase Pathway U0126 in A Tumor Cell Model

    Institute of Scientific and Technical Information of China (English)

    陈欣欣; 张舒; 石玉镯

    2013-01-01

    目的 探讨通过联合应用磷脂酰肌醇3激酶(PI3K)/蛋白酶B(AKT)通路抑制剂BEZ235和细胞外调解蛋白激酶(ERK)通路抑制剂U0126抑制膜受体酪氨酸激酶/PI3K/AKT/雷帕霉素靶蛋白(mTOR)通路与ERK/丝裂原活化蛋白激酶通路对细胞增殖的影响.方法 以磷酸酶和张力蛋白同源物缺失(PTEN-/-)的小鼠胚胎成纤维细胞(MEF)系作为研究对象,联合应用PI3K、mTOR双重抑制剂BEZ235及ERK激酶抑制剂U0126,通过MTT和Western blot方法检测药物对细胞增殖的影响.结果 BEZ235及U0126对PTEN-/-MEF细胞均有抑制作用,二者半数抑制浓度分别为6.257 nmol/L及22.85 μmol/L.但联合应用BEZ235与U0126,二者表现为拮抗的作用方式.结论 在PTEN缺失的细胞系中或PTEN突变的肿瘤的联合靶向治疗中,不推荐应用BEZ235与U0126联合使用.

  10. The Ca2+-calmodulin-dependent kinase II is activated in papillary thyroid carcinoma (PTC) and mediates cell proliferation stimulated by RET/PTC.

    Science.gov (United States)

    Rusciano, Maria Rosaria; Salzano, Marcella; Monaco, Sara; Sapio, Maria Rosaria; Illario, Maddalena; De Falco, Valentina; Santoro, Massimo; Campiglia, Pietro; Pastore, Lucio; Fenzi, Gianfranco; Rossi, Guido; Vitale, Mario

    2010-03-01

    RET/papillary thyroid carcinoma (PTC), TRK-T, or activating mutations of Ras and BRaf are frequent genetic alterations in PTC, all leading to the activation of the extracellular-regulated kinase (Erk) cascade. The aim of this study was to investigate the role of calmodulin-dependent kinase II (CaMKII) in the signal transduction leading to Erk activation in PTC cells. In normal thyroid cells, CaMKII and Erk were in the inactive form in the absence of stimulation. In primary PTC cultures and in PTC cell lines harboring the oncogenes RET/PTC-1 or BRaf(V600E), CaMKII was active also in the absence of any stimulation. Inhibition of calmodulin or phospholipase C (PLC) attenuated the level of CaMKII activation. Expression of recombinant RET/PTC-3, BRaf(V600E), or Ras(V12) induced CaMKII activation. Inhibition of CaMKII attenuated Erk activation and DNA synthesis in thyroid papillary carcinoma (TPC-1), a cell line harboring RET/PTC-1, suggesting that CaMKII is a component of the Erk signal cascade in this cell line. In conclusion, PTCs contain an active PLC/Ca(2+)/calmodulin-dependent signal inducing constitutive activation of CaMKII. This kinase is activated by BRaf(V600E), oncogenic Ras, and by RET/PTC. CaMKII participates to the activation of the Erk pathway by oncogenic Ras and RET/PTC and contributes to their signal output, thus modulating tumor cell proliferation.

  11. The Ethanol Extract of Fructus trichosanthis Promotes Fetal Hemoglobin Production via p38 MAPK Activation and ERK Inactivation in K562 Cells

    Directory of Open Access Journals (Sweden)

    Hui Li

    2011-01-01

    Full Text Available Pharmacological stimulation of fetal hemoglobin (HbF expression may be a promising approach for the treatment of beta-thalassemia. In this study, the effects of Fructus trichosanthis (FT were investigated in human erythroleukemic K562 cells for their gamma-globin mRNA and HbF-induction activities. The role of signaling pathways, including extracellular regulated protein kinase (ERK and p38 mitogen-activated protein kinase (MAPK, was also investigated. It was found that the ethanol extract of FT significantly increased gamma-globin mRNA and HbF levels, determined by real-time reverse transcription polymerase chain reaction and enzyme linked immunosorbent assay, respectively, in dose- and time-dependent manner. Total Hb (THb levels were also elevated in the concentrations without cytotoxicity (<80 μg mL−1. Pre-treatment with p38 MAPK inhibitor SB203580 blocked the stimulatory effects of FT extract in total and HbF induction. In contrast, no change in HbF was observed when treated with ERK inhibitor PD98059. Furthermore, FT ethanol extract activated p38 MAPK and inhibited ERK signaling pathways in K562 cells, as revealed in western blotting analysis. In addition, SB203580 significantly abolished p38 MAPK activation when the cells were treated with FT. In summary, the ethanol extract of FT was found to be a potent inducer of HbF synthesis in K562 cells. The present data delineated the role of ERK and p38 MAPK signaling as molecular targets for pharmacologic stimulation of HbF production upon FT treatment.

  12. Down-regulation of ERK1 and ERK2 activity during differentiation of the intestinal cell line HT-29.

    Science.gov (United States)

    Luongo, Diomira; Mazzarella, Giuseppe; Della, Ragione Fulvio; Maurano, Francesco; Rossi, Mauro

    2002-02-01

    The role and regulation of signal transduction pathways in proliferation and differentiation of intestinal epithelial cells are still poorly understood. However, growing evidences have been recently accumulated demonstrating that mitogen-activated protein kinases (MAPKs) play a pivotal function in the normal development of intestine. We have investigated, in the intestinal cell line HT-29, the regulation (namely activity and phosphorylation degree) of MAP kinases ERK 1 (p44) and ERK 2 (p42) during differentiation. Addition of fetal calf serum to HT-29 undifferentiated resting cells caused a rapid phosphorylation of both ERKs and an increase of their specific kinase activity. Moreover, nuclear translocation of ERK 1 and ERK 2 occurred concurrently to their activation, leading to the conclusion that ERK 1 and ERK 2 are classically regulated when quiescent HT-29 cells are induced to proliferate. Butyrate addition to the intestinal cell line resulted in terminal differentiation and in a selective down-regulation of ERK 2 activity (and phosphorylation degree) without any effect on ERK 1. Conversely, when HT-29 cells were differentiated by repeated passages in a glucose-free medium, we observed a progressive dephosphorylation and inactivation of p42 and p44 kinases along with the failure of serum to activate both the enzymes. Our findings suggest that, during the differentiation of intestinal cells, remarkable changes occur in ERK 1 and ERK 2 control mechanisms leading to an unresponsiveness of MAP kinase pathway.

  13. Effect of stimulus pre-exposure on inhibitory avoidance retrieval-associated changes in the phosphorylated form of the extracellular signal-regulated kinase-1 and -2 (pERK1/2).

    Science.gov (United States)

    Wang, Chia-Chuan; Chai, Sin-Chee; Holahan, Matthew R

    2010-01-01

    One goal of the present study was to determine how pre-exposure to a set of contextual cues affected subsequent reinforced inhibitory avoidance task performance using those cues (latent inhibition model). In addition, immunohistochemical assessment of the phosphorylated (activated) form of the extracellular signal-regulated kinase-1 and -2 (pERK1/2) was examined. Adult, male Long Evans rats were randomly assigned into either pre-exposure (PE) or different pre-exposure (DPE) groups. All rats received 3days of contextual pre-exposure (same or different context as that used for reinforced training) and were trained, 24h later, on an inhibitory avoidance task (with or without shock). Rats were euthanized 24h after training; half with a retention test and half without. Behaviorally, the PE group showed reduced latencies to enter the dark/shock compartment during the retention test compared to the DPE group showing the latent inhibition phenomenon. Compared to the shocked and tested DPE group, the shocked and tested PE group showed fewer pERK1/2-ir neurons in the secondary motor cortex, the anterior cingulate, the pre- and infra-limbic cortices, and the central nucleus of the amygdala. These regions showed similar numbers of pERK1/2-labeled neurons when comparing the shocked and tested PE group with the nonshocked and tested PE group. This suggests the possibility that brain regions showing decreased pERK1/2 levels in association with attenuated inhibitory avoidance performance may be involved in different aspects of the memory retrieval process.

  14. Glucose- and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets

    DEFF Research Database (Denmark)

    Maedler, Kathrin; Størling, Joachim; Sturis, Jeppe

    2004-01-01

    Increasing evidence indicates that a progressive decrease in the functional beta-cell mass is the hallmark of both type 1 and type 2 diabetes. The underlying causes, beta-cell apoptosis and impaired secretory function, seem to be partly mediated by macrophage production of interleukin (IL)-1beta......-regulated kinase (ERK) 1/2, an effect that was abrogated by 3 micromol/l NN414. Similarly, 1 micromol/l of the mitogen-activated protein kinase/ERK kinase 1/2 inhibitor PD098059 or 1 micromol/l of the l-type Ca(2+) channel blocker nimodipine prevented glucose- and IL-1beta-induced ERK activation, beta...

  15. Gene expression studies demonstrate that the K-ras/Erk MAP kinase signal transduction pathway and other novel pathways contribute to the pathogenesis of cumene-induced lung tumors.

    Science.gov (United States)

    Wakamatsu, Nobuko; Collins, Jennifer B; Parker, Joel S; Tessema, Mathewos; Clayton, Natasha P; Ton, Thai-Vu T; Hong, Hue-Hua L; Belinsky, Steven; Devereux, Theodora R; Sills, Robert C; Lahousse, Stephanie A

    2008-07-01

    National Toxicology Program (NTP) inhalation studies demonstrated that cumene significantly increased the incidence of alveolar/bronchiolar adenomas and carcinomas in B6C3F1 mice. Cumene or isopropylbenzene is a component of crude oil used primarily in the production of phenol and acetone. The authors performed global gene expression analysis to distinguish patterns of gene regulation between cumene-induced tumors and normal lung tissue and to look for patterns based on the presence or absence of K-ras and p53 mutations in the tumors. Principal component analysis segregated the carcinomas into groups with and without K-ras mutations, but failed to separate the tumors based on p53 mutation status. Expression of genes associated with the Erk MAP kinase signaling pathway was significantly altered in carcinomas with K-ras mutations compared to tumors without K-ras mutations or normal lung. Gene expression analysis also suggested that cumene-induced carcinomas with K-ras mutations have greater malignant potential than those without mutations. In addition, significance analysis of function and expression (SAFE) demonstrated expression changes of genes regulated by histone modification in carcinomas with K-ras mutations. The gene expression analysis suggested the formation of alveolar/bronchiolar carcinomas in cumene-exposed mice typically involves mutation of K-ras, which results in increased Erk MAP kinase signaling and modification of histones.

  16. Sulforaphane inhibits phorbol ester-stimulated IKK-NF-κB signaling and COX-2 expression in human mammary epithelial cells by targeting NF-κB activating kinase and ERK.

    Science.gov (United States)

    Kim, Ha-Na; Kim, Do-Hee; Kim, Eun-Hee; Lee, Mee-Hyun; Kundu, Joydeb Kumar; Na, Hye-Kyung; Cha, Young-Nam; Surh, Young-Joon

    2014-08-28

    Sulforaphane, an isothiocyanate present in cruciferous vegetables, has been reported to possess anti-inflammatory and cancer chemopreventive properties. However, the molecular mechanisms by which sulforaphane suppresses inflammation and carcinogenesis are yet to be fully elucidated. Since the aberrant expression of cyclooxygenase-2 (COX-2) links inflammation and cancer, the present study was aimed to elucidate the mechanisms by which sulforaphane modulates COX-2 overexpression in human mammary epithelial (MCF-10A) cells stimulated with a prototypic tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Treatment of MCF-10A cells with sulforaphane significantly inhibited TPA-induced expression of COX-2 protein and its mRNA transcript. Transient transfection of cells with deletion mutant constructs of COX-2 promoter revealed that the transcription factor nuclear factor-kappaB (NF-κB) plays a key role in TPA-induced COX-2 expression in MCF-10A cells. Pretreatment with sulforaphane significantly attenuated nuclear localization, DNA binding and the transcriptional activity of NF-κB through inhibition of phosphorylation and subsequent degradation of IκBα in MCF-10A cells stimulated with TPA. Sulforaphane also attenuated TPA-induced activation of IκB kinases (IKK), NF-κB-activating kinase (NAK) and extracellular signal-regulated kinase-1/2 (ERK1/2). Pharmacological inhibition of IKK or transient transfection of cells with dominant-negative mutant forms of this kinase abrogated TPA-induced NF-κB activation and COX-2 expression. In addition, the blockade of ERK1/2 activation negated the catalytic activity of IKKα, but not that of IKKβ, whereas silencing NAK by specific siRNA abrogated the IKKβ activity in TPA-treated cells. Taken together, sulforaphane inhibits TPA-induced NF-κB activation and COX-2 expression in MCF-10A cells by blocking two distinct signaling pathways mediated by ERK1/2-IKKα and NAK-IKKβ. Copyright © 2014 Elsevier Ireland Ltd. All rights

  17. Cocoa flavonoids up-regulate antioxidant enzyme activity via the ERK1/2 pathway to protect against oxidative stress-induced apoptosis in HepG2 cells.

    Science.gov (United States)

    Martín, María Angeles; Serrano, Ana Belén Granado; Ramos, Sonia; Pulido, María Izquierdo; Bravo, Laura; Goya, Luis

    2010-03-01

    Oxidative stress is widely recognized as an important mediator of apoptosis in liver cells and plays a pivotal role in the pathogenesis of several diseases. Cocoa flavonoids have shown a powerful antioxidant activity providing protection against oxidation and helping prevent oxidative stress-related diseases. However, the molecular mechanisms responsible for this protection are not fully understood. Thus, in this study we investigated the protective effect of a cocoa polyphenolic extract (CPE) against tert-butyl hydroperoxide (t-BOOH)-induced apoptosis and the molecular mechanisms involved in this process. Incubation of HepG2 cells with t-BOOH induced apoptosis as evidenced by caspase-3 activation. This effect was accompanied by increased reactive oxygen species formation and by transient activation of the extracellular regulated kinases (ERKs) as well as sustained activation of the c-Jun N-terminal kinases (JNKs). On the contrary, pretreatment of HepG2 cells with CPE prevented apoptosis through the reduction of reactive oxygen species generation and the modulation of the apoptotic pathways activated by t-BOOH. CPE treatment also activated survival signaling proteins, such as protein kinase B (AKT) and ERKs, and increased the activities of two antioxidant enzymes, glutathione peroxidase (GPx) and glutathione reductase (GR). ERK's implication on GPx and GR induction and the protective effect of CPE against t-BOOH-induced oxidative stress and apoptosis were confirmed through experiments with selective inhibitors. These findings suggest that CPE is an effective inductor of GPx and GR activities via ERK activation and that this up-regulation seems to be required to attenuate t-BOOH-induced injury.

  18. Urotensin II contributes to collagen synthesis and up-regulates Egr-1 expression in cultured pulmonary arterial smooth muscle cells through the ERK1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan 250061 (China); Cai, Zhifeng; Liu, Mengmeng [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan 250012 (China); Zhao, Cuifen, E-mail: zhaocuifen@sdu.edu.cn [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan 250012 (China); Li, Dong [Research Room of Hypothermia Medicine, Qilu Hospital, Shandong University, Jinan 250012 (China); Lv, Chenguang; Wang, Yuping; Xu, Tengfei [Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan 250061 (China)

    2015-11-27

    Aim: The objective of this study was to investigate the effects of urotensin II (UII) treatment on the proliferation and collagen synthesis of cultured rat pulmonary arterial smooth muscle cells (PASMCs) and to explore whether these effects are mediated by mitogen-activated protein kinase (MAPK) signaling pathways and early growth response 1 (Egr-1). Methods: The proliferation of cultured PASMCs stimulated with different doses of UII was detected by BrdU incorporation. The mRNA expression levels of procollagen I (procol I), procollagen III (procol III), extracellular regulated protein kinase 1/2 (ERK1/2), stress-stimulated protein kinase (Sapk), p38 MAPK (p38), and Egr-1 mRNA in cultured PASMCs after treatment with UII, the UII-specific antagonist urantide, and the ERK1/2 inhibitor PD98059 were detected by real-time polymerase chain reaction (PCR), and the protein expression levels of procol I, procol III, phosphorylated (p)-ERK1/2, p-Sapk, p-p38, and Egr-1 were detected by Western blotting. Results: Treatment with UII increased the proliferation of cultured PASMCs in a dose-dependent manner (P < 0.05). However, treatment with urantide and PD98059 inhibited the promoting effect of UII on PASMC proliferation (P < 0.05). Real-time PCR analysis showed that UII up-regulated the expression of procol I, procol III, ERK1/2, Sapk, and Egr-1 mRNA (P < 0.05), but not p38 mRNA. However, the up-regulating effect of UII was inhibited by PD98059 and urantide. Western blotting analysis showed that UII increased the synthesis of collagen I, collagen III, p-ERK1/2, p-Sapk, and Egr-1, and these effects also were inhibited by PD98059 and urantide (P < 0.05). Conclusions: Egr-1 participates in the UII-mediated proliferation and collagen synthesis of cultured rat PASMCs via activation of the ERK1/2 signaling pathway.

  19. Pseudomonas aeruginosa pyocyanin activates NRF2-ARE-mediated transcriptional response via the ROS-EGFR-PI3K-AKT/MEK-ERK MAP kinase signaling in pulmonary epithelial cells.

    Science.gov (United States)

    Xu, Ying; Duan, Chaohui; Kuang, Zhizhou; Hao, Yonghua; Jeffries, Jayme L; Lau, Gee W

    2013-01-01

    The redox-active pyocyanin (PCN) secreted by the respiratory pathogen Pseudomonas aeruginosa generates reactive oxygen species (ROS) and causes oxidative stress to pulmonary epithelial cells. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) confers protection against ROS-mediated cell death by inducing the expression of detoxifying enzymes and proteins via its binding to the cis-acting antioxidant response element (ARE). However, a clear relationship between NRF2 and PCN-mediated oxidative stress has not been established experimentally. In this study, we investigated the induction of NRF2-ARE response by PCN in the pulmonary epithelial cells. We analyzed the effect of PCN on NRF2 expression and nuclear translocation in cultured human airway epithelial cells, and in a mouse model of chronic PCN exposure. NRF2-dependent transcription of antioxidative enzymes was also assessed. Furthermore, we used inhibitors to examine the involvement of EGFR and its downstream signaling components that mediate NRF2-ARE-activation in response to PCN. PCN enhances the nuclear NRF2 accumulation and activates the transcription of ARE-mediated antioxidant genes. Furthermore, PCN activates NRF2 by inducing the EGFR-phosphoinositide-3-kinase (PI3K) signaling pathway and its main downstream effectors, AKT and MEK1/2-ERK1/2 MAP kinases. Inhibition of the EGFR-PI3K signaling markedly attenuates PCN-stimulated NRF2 accumulation in the nucleus. We demonstrate for the first time that PCN-mediated oxidative stress activates the EGFR-PI3K-AKT/MEK1/2-ERK1/2 MAP kinase signaling pathway, leading to nuclear NRF2 translocation and ARE responsiveness in pulmonary epithelial cells.

  20. A Novel Aziridine-based Bruton's Tyrosine Kinase Inhibitor Induces Apoptosis Through Down-regulation of p65/RelA Phosphorylation on Serine 536 and ERK1/2 in Mantle Cell Lymphoma.

    Science.gov (United States)

    Romanchikova, Nadezhda; Strods, Arnis; Strazdina, Julija; Strumfs, Boriss; Trapencieris, Peteris

    2016-11-01

    Mantle cell lymphoma (MCL) is an aggressive non-Hodgkin's lymphoma characterized by hyperactive neoplastic B-cells and extended tumor cell survival. Bruton's tyrosine kinase (BTK), a crucial kinase in the B-cell antigen receptor signaling pathway, has emerged as a novel target of MCL therapy. A novel BTK-targeting inhibitor, JuSt-23F was prepared. The WST-8 assay was used to determine cytotoxicity and half-maximal inhibitory concentration (IC50) values for JuSt-23F against the MCL cell lines Mino and Maver-1. JuSt-23F-mediated apoptosis was assessed using the annexin V assay. We detected phosphorylation of p65/RelA on serine 536 in whole Jurkat, Mino and Maver-1 cells treated with JuSt-23F and stimulated with tumor necrosis factor (TNFα). We assessed JuSt-23F-mediated phosphorylation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in T-cell lymphoma and MCL cells stimulated by phorbol-12-myristate-13-acetate (PMA). Our study suggests that JuSt-23F inhibits apoptosis selectively in B-cell lymphoma cells. JuSt-23F exerts its antiproliferative effects on MCL cells through targeting the downstream BTK signaling cascade via down-regulation of nuclear factor kappa-light-chain-enhancer of activated B-cells and ERK1/2 pathways. Thus, our findings propose the novel BTK inhibitor JuSt-23F as an attractive potential agent for investigation and treatment of MCL. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Procyanidin B2 3,3"-di-O-gallate induces oxidative stress-mediated cell death in prostate cancer cells via inhibiting MAP kinase phosphatase activity and activating ERK1/2 and AMPK.

    Science.gov (United States)

    Kumar, Rahul; Deep, Gagan; Wempe, Michael F; Surek, Joseph; Kumar, Amit; Agarwal, Rajesh; Agarwal, Chapla

    2017-09-06

    Neoplastic cells exhibit higher oxidative stress compared to normal cells; however, antioxidants based clinical trials have mostly failed. Another attractive therapeutic approach is to further increase the oxidative stress in cancer cells leading to cell death. Herein, we show that Procyanidin B2 3,3"-di-O-gallate (B2G2), the most active constituent of grape seed extract, treatment causes cell death in human prostate cancer (PCa) cells (LNCaP and 22Rv1) via increasing the reactive oxygen species (ROS) generation. Mechanistically, B2G2 treatment decreased the mitochondrial electron transport chain complex III activity leading to enhanced mitochondrial superoxide generation and decreased ATP production in LNCaP cells. Additional molecular studies revealed that B2G2-induced cell death was mediated mainly through ROS-induced sustained activation of ERK1/2, which was due to inhibition of MAP kinase phosphatase (MKP) activity as over-expression of MKP3 in LNCaP cells conferred significant protection against B2G2-induced cell death. Along with ERK1/2, AMP-activated protein kinase α (AMPKα) was also activated by B2G2 treatment, and pre-treatment with AMPKα inhibitor compound C significantly reversed the cytotoxic effects of B2G2 in LNCaP cells. Furthermore, pre-treatment of MKP3 over-expressing LNCaP cells with compound C further reduced the B2G2-induced cell death, suggesting the involvement of AMPKα along with MKP3 and ERK1/2 in the biological effects of B2G2. Together, these results for the first time identified that oxidative stress and MKP3 inhibition play a critical role in B2G2-induced cell death in PCa cells through sustained activation of both ERK1/2 and AMPKα. These results offer a unique opportunity to control this deadly malignancy through B2G2 use. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. ERK1 and ERK2 activation modulates diet-induced obesity in mice.

    Science.gov (United States)

    Khan, Amira Sayed; Subramaniam, Selvakumar; Dramane, Gado; Khelifi, Douadi; Khan, Naim Akhtar

    2017-06-01

    Obesity is a worldwide problem, and dietary lipids play an important role in its pathogenesis. Recently, Erk1 knock-out (ERK1(-/-)) mice have been shown to exhibit low preference for dietary fatty acids. Hence, we maintained Erk1(-/-) mice on a high-fat diet (HFD) to assess the implication of this mitogen-activated protein (MAP) kinase in obesity. The Erk1(-/-) mice, fed the HFD, were more obese than wild-type (WT) animals, fed the same diet. Erk1(-/-) obese mice gained more fat and liver mass than WT obese animals. No difference was observed in daily food and energy intake in HFD-fed both group of animals. However, feed efficiency was higher in Erk1(-/-) than WT animals. Blood cholesterol, triglyceride and insulin concentrations were higher in Erk1(-/-) obese mice compared to WT obese animals. Accordingly, homeostatic model assessment of insulin resistance (HOMA-IR) value was higher in Erk1(-/-) obese mice compared to WT obese animals. Interestingly, only Erk1(-/-) obese mice, but not WT-obese animals, exhibited high degree of phosphorylation of liver MEK, the upstream regulator of ERK1/2. This phenomenon was associated with high liver ERK2 phosphorylation in Erk1(-/-) obese mice which also had high liver acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FAS) mRNA expression, suggesting high lipogenesis in these animals. The Erk1(-/-) obese mice also had low PPAR-α and CPT1β mRNA, indicating low fatty acid oxidation. Our observations suggest that ERK1 and ERK2 might play key roles in the regulation of obesity. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Involvement of mitogen-activated protein kinases (MAPKs) during testicular ischemia-reperfusion injury in nuclear factor-kappaB knock-out mice.

    Science.gov (United States)

    Minutoli, Letteria; Antonuccio, Pietro; Polito, Francesca; Bitto, Alessandra; Fiumara, Tiziana; Squadrito, Francesco; Nicotina, Piero Antonio; Arena, Salvatore; Marini, Herbert; Romeo, Carmelo; Altavilla, Domenica

    2007-07-12

    Nuclear factor kappa-B (NF-kappaB), extracellular regulated kinase (ERK 1/2) and c-jun-N terminal kinase (JNK) play an important role in testicular ischemia. We investigated the patterns of ERK1/2, JNK and p38 activation in NF-kappaB knockout (KO) mice subjected to testicular torsion. KO and normal littermate wild-type (WT) animals underwent at 1 h testicular ischemia followed by 24 h reperfusion (TI/R). Sham testicular ischemia-reperfusion mice served as controls. ERK 1/2, JNK and p38 expression by western blot analysis, tumor necrosis factor-alpha (TNF-alpha) expression (RT-PCR and western blot analysis) and a complete histological examination were carried out. TI/R caused a greater increase in phosphorylated form of ERK 1/2 in KO mice than in WT animals in either the ischemic testis and the contralateral one. By contrary, active form of JNK and p38 were completely abrogated in both testes of KO mice, while WT animals showed a significant activation of those kinases in both testes. TNF-alpha expression was markedly reduced in KO mice when compared to WT mice either at the mRNA and the protein level. Finally TI/R-induced histological damage was markedly reduced in KO mice. Our data indicate that NF-kappaB plays a pivotal role in the development of testicular ischemia-reperfusion injury and suggest that, in the absence of the transcriptional factor, the up-stream signal JNK and p38 may be abrogated while ERK 1/2 activity is enhanced.

  4. Dimerumic Acid Inhibits SW620 Cell Invasion by Attenuating H2O2-Mediated MMP-7 Expression via JNK/C-Jun and ERK/C-Fos Activation in an AP-1-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Bing-Ying Ho, Yao-Ming Wu, King-Jen Chang, Tzu-Ming Pan

    2011-01-01

    Full Text Available Reactive oxygen species (ROS such as hydrogen peroxide (H2O2 in the tumor microenvironment play important roles in tumor invasion and metastasis. Recently, ROS have been reported to cause a significant increase in the production and expression of matrix metalloproteinase (MMP-7, which is closely correlated with metastatic colorectal cancer. The present study was undertaken to evaluate the scavenging activity of dimerumic acid (DMA for H2O2 isolated from Monascus-fermented rice to investigate the inhibitory effects of DMA on the invasive potential of SW620 human colon cancer cells, and to explore the mechanisms underlying both these phenomena. Our results showed that increased MMP-7 expression due to H2O2 exposure was mediated by activation of mitogen-activated protein kinases (MAPKs such as Jun N-terminal kinase (JNK, extracellular-regulated kinase (ERK, and p38 kinase. DMA pretreatment suppressed activation of H2O2-mediated MAPK pathways and cell invasion. Moreover, H2O2-triggered MMP-7 production was demonstrated via JNK/c-Jun and ERK/c-Fos activation in an activating protein 1 (AP-1-dependent manner. Taken together, these results suggest that DMA suppresses H2O2-induced cell invasion by inhibiting AP-1-mediated MMP-7 gene transcription via the JNK/c-Jun and ERK/c-Fos signaling pathways in SW620 human colon cancer cells. Our data suggest that DMA may be useful in minimizing the development of colorectal metastasis. In the future, DMA supplementation may be a beneficial antioxidant to enhance surgical outcomes.

  5. Pterostilbene Inhibits Human Multiple Myeloma Cells via ERK1/2 and JNK Pathway In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Bingqian Xie

    2016-11-01

    Full Text Available Multiple myeloma (MM is the second most common malignancy in the hematologic system, which is characterized by accumulation of plasma cells in bone marrow. Pterostilbene (PTE is a natural dimethylated analog of resveratrol, which has anti-oxidant, anti-inflammatory and anti-tumor properties. In the present study, we examined the anti-tumor effect of PTE on MM cell lines both in vitro and in vivo using the cell counting kit (CCK-8, apoptosis assays, cell cycle analysis, reactive oxygen species (ROS generation, JC-1 mitochondrial membrane potential assay, Western blotting and tumor xenograft models. The results demonstrated that PTE induces apoptosis in the H929 cell line and causes cell cycle arrest at G0/G1 phase by enhancing ROS generation and reducing mitochondrial membrane potential. The anti-tumor effect of PTE may be caused by the activation of the extracellular regulated protein kinases (ERK 1/2 and c-Jun N-terminal kinase (JNK signaling pathways. Additionally, mice treated with PTE by intraperitoneal injection demonstrated reduced tumor volume. Taken together, the results of this study indicate that the anti-tumor effect of PTE on MM cells may provide a new therapeutic option for MM patients.

  6. Growth-Factor-Driven Rescue to Receptor Tyrosine Kinase (RTK) Inhibitors through Akt and Erk Phosphorylation in Pediatric Low Grade Astrocytoma and Ependymoma

    NARCIS (Netherlands)

    Sie, Mariska; den Dunnen, Wilfred F. A.; Lourens, Harm Jan; Meeuwsen-de Boer, Tiny G. J.; Scherpen, Frank J. G.; Zomerman, Walderik W.; Kampen, Kim R.; Hoving, Eelco W.; de Bont, Eveline S. J. M.

    2015-01-01

    Up to now, several clinical studies have been started investigating the relevance of receptor tyrosine kinase (RTK) inhibitors upon progression free survival in various pediatric brain tumors. However, single targeted kinase inhibition failed, possibly due to tumor resistance mechanisms. The present

  7. Estrogen regulates excitatory amino acid carrier 1 (EAAC1) expression through sphingosine kinase 1 (SphK1) transacting FGFR-mediated ERK signaling in rat C6 astroglial cells.

    Science.gov (United States)

    Huang, C; Yuan, P; Wu, J; Huang, J

    2016-04-05

    Excitatory amino acid carrier 1 (EAAC1) is one important subtype of the excitatory amino acid transporters (EAATs), and its absence can increase the vulnerability to oxidative stress in neural tissue. Enhanced expression of EAAC1 can provide neuroprotection in multiple disorders, including ischemia and multiple sclerosis. However, the mechanism regulating EAAC1 expression is not fully understood. Using rat C6 astroglial cells, which specifically express EAAC1, we found that 17β-estradiol (E2) and (±)-1-[(3aR(∗),4S(∗),9bS(∗))-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone (G1), an agonist of the G-protein-coupled estrogen receptor (GPR30), strongly increased EAAC1 protein levels and protected cells from hydrogen peroxide (H2O2) toxicity. We further found that E2/G1 activated sphingosine kinase 1 (SphK1) via GPR30, resulting in the transcription of fibroblast growth factor 2 (FGF2), which stimulated its receptor (FGFR) and led to the phosphorylation of FGFR substrate 2α (FRS2α). This triggered downstream ERK1/2 signaling for the expression of EAAC1. Both the knockdown of FGF2 by siRNA and the pharmacological suppression of the FGFR-ERK cascade abolished the E2/G1 effect on EAAC1 expression. Overall, our work characterizes a signaling pathway by which E2 transactivates FGFR-ERK to induce EAAC1 expression in an FGF2-dependent manner. This occurs through SphK1 activation via GPR30 and leads to a resistance to H2O2 toxicity. This signal transduction pathway may provide novel insights into our understanding of the neuroprotective effects of E2 and may reveal new therapeutic targets or drugs for regulating the oxidative toxicity effects of various neurological diseases.

  8. Involvement of extracellular signal-regulated kinase (ERK1/2)-p53-p21 axis in mediating neural stem/progenitor cell cycle arrest in co-morbid HIV-drug abuse exposure.

    Science.gov (United States)

    Malik, Shaily; Saha, Rinki; Seth, Pankaj

    2014-06-01

    Neurological complications in opioid abusing Human Immunodeficiency Virus-1 (HIV-1) patients suggest enhanced neurodegeneration as compared to non-drug abusing HIV-1 infected population. Neural precursor cells (NPCs), the multipotent cells of the mammalian brain, are susceptible to HIV-1 infection and as opiates also perturb their growth kinetics, detailed mechanistic studies for their co-morbid exposure are highly warranted. Using a well characterized in vitro model of human fetal brain-derived neural precursor cells, we investigated alterations in NPC properties at both acute and chronic durations. Chronic morphine and Tat treatment attenuated proliferation in NPCs, with cells stalled at G1-phase of the cell cycle. Furthermore HIV-Tat and morphine exposure increased activation of extracellular signal-regulated kinase-1/2 (ERK1/2), enhanced levels of p53 and p21, and decreased cyclin D1 and Akt levels in NPCs. Regulated by ERK1/2 and p53, p21 was found to be indispensible for Tat and morphine mediated cell cycle arrest. Our study elaborates on the cellular and molecular machinery in NPCs and provides significant mechanistic details into HIV-drug abuse co-morbidity that may have far reaching clinical consequences both in pediatric as well as adult neuroAIDS.

  9. Neuritogenic Monoglyceride Derived from the Constituent of a Marine Fish for Activating the PI3K/ERK/CREB Signalling Pathways in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2013-12-01

    Full Text Available A neuritogenic monoglyceride, 1-O-(myristoyl glycerol (MG, was isolated from the head of Ilisha elongate using a PC12 cell bioassay system, and its chemical structure was elucidated using spectroscopic methods. MG significantly induced 42% of the neurite outgrowth of PC12 cells at a concentration of 10 μM. To study the structure-activity relationships of MG, a series of monoglycerides was designed and synthesised. Bioassay results indicated that the alkyl chain length plays a key role in the neuritogenic activity of the monoglycerides. The groups that link the propane-1,2-diol and alkyl chain were also investigated. An ester linkage, rather than an amido one, was found to be optimal for neuritogenic activity. Therefore, 1-O-(stearoyl glycerol (SG, which induces 57% of the neurite outgrowth of PC12 cells at 10 μM, was determined to be a lead compound for neuritogenic activity. We then investigated the mechanism of action of neurite outgrowth induced by SG on PC12 cells using protein specific inhibitors and Western blot analysis. The mitogen-activated kinase/ERK kinase (MEK inhibitor U0126 and the phosphatidylinositol-3 kinase (PI3K inhibitor LY294002 significantly decreased neurite outgrowth. At the same time, SG increased phosphorylation of CREB in protein level. Thus, SG-induced neuritogenic activity depends on the activation of the extracellular-regulated protein kinase (ERK, cAMP responsive element-binding protein (CREB and PI3K signalling pathways in PC12 cells.

  10. Cyanidin-3-O-galactoside and Blueberry Extracts Supplementation Improves Spatial Memory and Regulates Hippocampal ERK Expression in Senescence-accelerated Mice

    Institute of Scientific and Technical Information of China (English)

    TAN Long; YANG Hong Peng; PANG Wei; LU Hao; HU Yan Dan; LI Jing; LU Shi Jun; ZHANG Wan Qi; JIANG Yu Gang

    2014-01-01

    Objective To investigate whether the antioxidation and the regulation on the Extracellular Regulated Protein Kinases (ERK) signaling pathway are involved in the protective effects of blueberry on central nervous system. Methods 30 Senescence-accelerated mice prone 8 (SAMP8) mice were divided into three groups and treated with normal diet, blueberry extracts (200 mg/kg·bw/day) and cyaniding-3-O-galactoside (Cy-3-GAL) (50 mg/kg·bw/day) from blueberry for 8 weeks. 10 SAMR1 mice were set as control group. The capacity of spatial memory was assessed by Passive avoidance task and Morris water maze. Histological analyses on hippocampus were completed. Malondialdehyde (MDA) levels, Superoxide Dismutase (SOD) activity and the expression of ERK were detected. Results Both Cy-3-GAL and blueberry extracts were shown effective functions to relieve cellular injury, improve hippocampal neurons survival and inhibit the pyramidal cell layer damage. Cy-3-GAL and blueberry extracts also increased SOD activity and reduced MDA content in brain tissues and plasma, and increased hippocampal phosphorylated ERK (p-ERK) expression in SAMP8 mice. Further more, the passive avoidance task test showed that both the latency time and the number of errors were improved by Cy-3-GAL treatment, and the Morris Water Maze test showed significant decreases of latency were detected by Cy-3-GAL and blueberry extracts treatment on day 4. Conclusion Blueberry extracts may reverse the declines of cognitive and behavioral function in the ageing process through several pathways, including enhancing the capacity of antioxidation, altering stress signaling. Cy-3-GAL may be an important active ingredient for these biological effects.

  11. Cholera toxin, a typical protein kinase A activator, induces G1 phase growth arrest in human bladder transitional cell carcinoma cells via inhibiting the c-Raf/MEK/ERK signaling pathway.

    Science.gov (United States)

    Zheng, Xiaoke; Ou, Yanqiu; Shu, Minfeng; Wang, Youqiong; Zhou, Yuxi; Su, Xingwen; Zhu, Wenbo; Yin, Wei; Li, Shifeng; Qiu, Pengxin; Yan, Guangmei; Zhang, Jingxia; Hu, Jun; Xu, Dong

    2014-05-01

    The biotoxin cholera toxin has been demonstrated to have anti-tumor activity in numerous types of cancer, including glioma. However, the role of cholera toxin in the tumorigenesis of transitional cell carcinoma (TCC), the most common malignant tumor of the bladder, remains to be elucidated. To address this, in the present study, two TCC cell lines, T24 and UM-UC-3, were treated with cholera toxin [protein kinase A (PKA) activator] and KT5720 (PKA inhibitor). Cell survival and proliferation, cell cycle alterations and apoptosis were analyzed using Hoechst staining, the MTT assay, fluorescence microscopy and flow cytometry. Western blot analysis was used to detect the expression of proteins involved in cell cycle regulation. The results revealed that cholera toxin significantly induced G1 arrest and downregulated the expression of cyclin D1 and cyclin-dependent kinase 4/6 in the TCC cell lines, and this was rescued by KT5720. Furthermore, it was demonstrated that cholera toxin downregulated the activation of the c-Raf/Mek/Erk cascade, an important mediator of tumor cell proliferation, via the PKA-dependent c-Raf phosphorylation at Ser-43. Furthermore, inhibition of Mek activity with UO126 mimicked the effects of cholera toxin. In conclusion, these results confirmed that cholera toxin specifically inhibited proliferation and induced G1 phase arrest in human bladder TCC cells. This effect was due to PKA-dependent inactivation of the c-Raf/Mek/Erk pathway. This suggested that cholera toxin may be a viable therapeutic treatment against tumorigenesis and proliferation in bladder cancer.

  12. ERK phosphorylation regulates sleep and plasticity in Drosophila.

    Directory of Open Access Journals (Sweden)

    William M Vanderheyden

    Full Text Available Given the relationship between sleep and plasticity, we examined the role of Extracellular signal-regulated kinase (ERK in regulating baseline sleep, and modulating the response to waking experience. Both sleep deprivation and social enrichment increase ERK phosphorylation in wild-type flies. The effects of both sleep deprivation and social enrichment on structural plasticity in the LNvs can be recapitulated by expressing an active version of ERK (UAS-ERK(SEM pan-neuronally in the adult fly using GeneSwitch (Gsw Gsw-elav-GAL4. Conversely, disrupting ERK reduces sleep and prevents both the behavioral and structural plasticity normally induced by social enrichment. Finally, using transgenic flies carrying a cAMP response Element (CRE-luciferase reporter we show that activating ERK enhances CRE-Luc activity while disrupting ERK reduces it. These data suggest that ERK phosphorylation is an important mediator in transducing waking experience into sleep.

  13. Eriodictyol Protects Endothelial Cells against Oxidative Stress-Induced Cell Death through Modulating ERK/Nrf2/ARE-Dependent Heme Oxygenase-1 Expression

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2015-06-01

    Full Text Available The pathophysiology of cardiovascular diseases is complex and may involve oxidative stress-related pathways. Eriodictyol is a flavonoid present in citrus fruits that demonstrates anti-inflammatory, anti-cancer, neurotrophic, and antioxidant effects in a range of pathophysiological conditions including vascular diseases. Because oxidative stress plays a key role in the pathogenesis of cardiovascular disease, the present study was designed to verify whether eriodictyol has therapeutic potential. Upregulation of heme oxygenase-1 (HO-1, a phase II detoxifying enzyme, in endothelial cells is considered to be helpful in cardiovascular disease. In this study, human umbilical vein endothelial cells (HUVECs treated with eriodictyol showed the upregulation of HO-1 through extracellular-regulated kinase (ERK/nuclear factor erythroid 2-related factor 2 (Nrf2/antioxidant response element (ARE signaling pathways. Further, eriodictyol treatment provided protection against hydrogen peroxide-provoked cell death. This protective effect was eliminated by treatment with a specific inhibitor of HO-1 and RNA interference-mediated knockdown of HO-1 expression. These data demonstrate that eriodictyol induces ERK/Nrf2/ARE-mediated HO-1 upregulation in human endothelial cells, which is directly associated with its vascular protection against oxidative stress-related endothelial injury, and propose that targeting the upregulation of HO-1 is a promising approach for therapeutic intervention in cardiovascular disease.

  14. Atorvastatin Attenuates Bleomycin-Induced Pulmonary Fibrosis via Suppressing iNOS Expression and the CTGF (CCN2/ERK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    2013-12-01

    Full Text Available Pulmonary fibrosis is a progressive and fatal lung disorder with high mortality rate. To date, despite the fact that extensive research trials are ongoing, pulmonary fibrosis continues to have a poor response to available medical therapy. Statins, 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, known for its broad pharmacological activities, remains a remedy against multiple diseases. The present study investigated the antifibrotic potential of atorvastatin against bleomycin-induced lung fibrosis and to further explore the possible underlying mechanisms. Our results showed that atorvastatin administration significantly ameliorated the bleomycin mediated histological alterations and blocked collagen deposition with parallel reduction in the hydroxyproline level. Atorvastatin reduced malondialdehyde (MDA level and lung indices. Atorvastatin also markedly decreased the expression of inducible nitric oxide synthase (iNOS in lung tissues and, thus, prevented nitric oxide (NO release in response to bleomycin challenge. Furthermore, atorvastatin exhibited target down-regulation of connective tissue growth factor (CTGF (CCN2 and phosphorylation extracellular regulated protein kinases (p-ERK expression. Taken together, atorvastatin significantly ameliorated bleomycin-induced pulmonary fibrosis in rats, via the inhibition of iNOS expression and the CTGF (CCN2/ERK signaling pathway. The present study provides evidence that atorvastatin may be a potential therapeutic reagent for the treatment of lung fibrosis.

  15. Porphyromonas gingivalis-derived outer membrane vesicles promote calcification of vascular smooth muscle cells through ERK1/2-RUNX2.

    Science.gov (United States)

    Yang, Wen Wei; Guo, Bin; Jia, Wen Yuan; Jia, Yue

    2016-12-01

    The outer membrane vesicle (OMV) derived from Porphyromonas gingivalis plays an essential role in causing inflammation which, in turn, plays an important part in the pathogenesis of cardiovascular diseases such as atherosclerosis and thromboembolism. However, the contribution of oral bacteria to vascular calcification is yet to be determined. Here, we evaluated the effect of OMV on vascular smooth muscle cell (VSMC) calcification both in vitro and ex vivo. We established a reproducible P. gingivalis OMV-induced differentiation and calcification model of VSMCs in vitro. The results indicate that OMV promotes VSMC calcification in a concentration-dependent manner, modulating the expression of bone markers and SMC markers both on genes and proteins that are important for osteoblastic differentiation and mineralization of VSMCs. We also showed that the key osteogenic transcription factor, runt-related transcription factor 2 (Runx2), which is affected by upstream extracellular-regulated kinase (ERK) signaling, is a key regulator of OMV-induced VSMC differentiation and calcification. Taken together, our research demonstrates that Runx2 is a crucial component of OMV-induced calcification of VSMCs, and ERK signaling plays a vital role in mediating Runx2 up-regulation and VSMC calcification.

  16. The MAPK ERK5, but not ERK1/2, inhibits the progression of monocytic phenotype to the functioning macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuening [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States); Pesakhov, Stella [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Harrison, Jonathan S [Department of Medicine, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08903 (United States); Kafka, Michael; Danilenko, Michael [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Studzinski, George P, E-mail: studzins@njms.rutgers.edu [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States)

    2015-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D{sub 3} (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. - Highlights: • ERK5 has at least some functions in AML cells which are distinct from those of ERK1/2. • ERK5 activity negatively controls the expression of M-CSFR. • ERK5 retards the progression of differentiation from monocyte to functional macrophage.

  17. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Glisic, Branka; Kaisarevic, Sonja; Kovacevic, Radmila; Andric, Nebojsa, E-mail: nebojsa.andric@dbe.uns.ac.rs

    2013-07-01

    Worldwide used herbicide atrazine is linked to reproductive dysfunction in females. In this study, we investigated the effects and the mechanism of atrazine action in the ovary using a primary culture of immature granulosa cells. In granulosa cells, follicle-stimulating hormone (FSH) activates both cyclic adenosine monophosphate (cAMP) and extracellular-regulated kinase 1/2 (ERK1/2) cascades, with cAMP pathway being more important for luteinizing hormone receptor (LHR) and aromatase (CYP19A1) mRNA expression. We report that 48 h after atrazine exposure the FSH-stimulated LHR and CYP19A1 mRNA expression and estradiol synthesis were decreased, with LHR mRNA being more sensitive to atrazine than CYP19A1 mRNA. Inadequate acquisition of LHR in the FSH-stimulated and atrazine-exposed granulosa cells renders human chorionic gonadotropin (hCG) ineffective to stimulate amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr) mRNA expression, suggesting anti-ovulatory effect of atrazine. To dissect the signaling cascade involved in atrazine action in granulosa cells, we used U0126, a pharmacological inhibitor of ERK1/2. U0126 prevents atrazine-induced decrease in LHR and CYP19A1 mRNA levels and estradiol production in the FSH-stimulated granulosa cells. ERK1/2 inactivation restores the ability of hCG to induce expression of the ovulatory genes in atrazine-exposed granulosa cells. Cell-based ELISA assay revealed that atrazine does not change the FSH-stimulated ERK1/2 phosphorylation in granulosa cells. The results from this study reveal that atrazine does not affect but requires ERK1/2 phosphorylation to cause decrease in the FSH-induced LHR and CYP19A1 mRNA levels and estradiol production in immature granulosa cells, thus compromising ovulation and female fertility. - Highlights: • Atrazine inhibits estradiol production in FSH-stimulated granulosa cells. • Atrazine inhibits LHR and Cyp19a1 mRNA expression in FSH-stimulated granulosa cells. • Atrazine

  18. Activation of Extracellular Signal-Regulated Kinases (ERK 1/2) in the Locus Coeruleus Contributes to Pain-Related Anxiety in Arthritic Male Rats.

    Science.gov (United States)

    Borges, Gisela; Miguelez, Cristina; Neto, Fani; Mico, Juan Antonio; Ugedo, Luisa; Berrocoso, Esther

    2017-06-01

    There is increasing evidence suggesting that the Locus Coeruleus plays a role in pain-related anxiety. Indeed, we previously found that prolonged arthritis produces anxiety-like behavior in rats, along with enhanced expression of phosphorylated extracellular signal-regulated kinase 1/2 (a marker of plasticity) in the Locus Coeruleus. However, it is unknown how this effect correlates with the electrophysiological activity of Locus Coeruleus neurons or pain-related anxiety. Using the complete Freund's adjuvant model of monoarthritis in male Sprague-Dawley rats, we studied the behavioral attributes of pain and anxiety as well as Locus Coeruleus electrophysiology in vivo 1 (MA1W) and 4 weeks (MA4W) after disease induction. The manifestation of anxiety in MA4W was accompanied by dampened tonic Locus Coeruleus activity, which was coupled to an exacerbated evoked Locus Coeruleus response to noxious stimulation of the inflamed and healthy paw. When a mitogen-activating extracellular kinase inhibitor was administered to the contralateral Locus Coeruleus of MA4W, the phosphorylated extracellular signal-regulated kinase 1/2 levels in the Locus Coeruleus were restored and the exaggerated evoked response was blocked, reversing the anxiogenic-like behavior while pain hypersensitivity remained unaltered. As phosphorylated extracellular signal-regulated kinase 1/2 blockade in the Locus Coeruleus relieved anxiety and counteracted altered LC function, we propose that phosphorylated extracellular signal-regulated kinase 1/2 activation in the Locus Coeruleus plays a crucial role in pain-related anxiety.

  19. ERK5 and cell proliferation: nuclear localization is what matters

    Directory of Open Access Journals (Sweden)

    Nestor Gomez

    2016-09-01

    Full Text Available ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumour growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote

  20. Propyl gallate inhibits adipogenesis by stimulating extracellular signal-related kinases in human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Lee, Jeung-Eun; Kim, Jung-Min; Jang, Hyun-Jun; Lim, Se-Young; Choi, Seon-Jeong; Lee, Nan-Hee; Suh, Pann-Ghill; Choi, Ung-Kyu

    2015-04-01

    Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation.

  1. Daidzein stimulates osteogenesis facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via estrogen receptor-dependent MEK/ERK and PI3K/Akt activation.

    Science.gov (United States)

    Jin, Xin; Sun, Jing; Yu, Bo; Wang, Yue; Sun, Wei Jia; Yang, Jing; Huang, Su Hui; Xie, Wen Li

    2017-06-01

    Daidzein, a natural soy isoflavone, has a structure similar to estradiol and exhibiting bone-sparing effects against osteoporosis. However, the molecular mechanisms of osteogenesis remain unclear. We hypothesized that daidzein stimulates osteogenesis through estrogen receptor (ER)-dependent signal pathways. To test this hypothesis, we investigated the effects of daidzein compared with 17β-estradiol on proliferation, differentiation, and cisplatin-induced apoptosis in human osteoblast-like MG-63 cells containing 2 ER isoforms. The results showed that daidzein stimulated cell proliferation by altering cell cycle distribution, promoted cell differentiation by increasing the alkaline phosphatase activity and collagen content, and reduced cell apoptosis associated by up-regulating the expression of Bcl-xL. The above actions of daidzein were prevented by cotreatment with the ER antagonist ICI 182780. Using small interfering RNA technology, we further demonstrated that the effects of daidzein on alkaline phosphatase activity, collagen content, and cell apoptosis are mediated by both ERα and ERβ, whereas the effects on cell proliferation are primarily mediated by ERα. However, the effects of 17β-estradiol on osteoblastic proliferation and survival are mediated by both ER isotypes, and the effects on osteoblastic differentiation are primarily mediated by ERα. The use of specific inhibitors indicated that activation of the mitogen-activated protein kinase kinase/extracellular regulated kinase (MEK/ERK) and phosphoinositide 3-kinase/protein kinase B or PKB (PI3K/Akt) signaling pathway at least partially accounts for these effects of daidzein. Taken together, the results indicate that daidzein stimulates osteogenesis through facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via activation of MEK/ERK and PI3K/Akt in an ER-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The p38 MAP kinase inhibitor SB203580 enhances nuclear factor-kappa B transcriptional activity by a non-specific effect upon the ERK pathway

    NARCIS (Netherlands)

    Birkenkamp, KU; Tuyt, LML; Lummen, C; Wierenga, LTJ; Kruijer, W; Vellenga, E

    2000-01-01

    1 In the present study we investigated a possible role for the p38 mitogen-activated protein (MAP) kinase pathway in mediating nuclear factor-kappa B (NF-kappa B) transcriptional activity in the erythroleukaemic cell line TF-1. 2 TF-1 cells stimulated with the phosphatase inhibitor okadaic acid (OA)

  3. The NO-cGMP-PKG Signaling Pathway Regulates Synaptic Plasticity and Fear Memory Consolidation in the Lateral Amygdala via Activation of ERK/MAP Kinase

    Science.gov (United States)

    Ota, Kristie T.; Pierre, Vicki J.; Ploski, Jonathan E.; Queen, Kaila; Schafe, Glenn E.

    2008-01-01

    Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and…

  4. Erk1 positively regulates osteoclast differentiation and bone resorptive activity.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available The extracellular signal-regulated kinases (ERK1 and 2 are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/- bone marrow mononuclear cells (BMMNCs demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/- BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.

  5. Outer membrane protein A (OmpA of Shigella flexneri 2a induces TLR2-mediated activation of B cells: involvement of protein tyrosine kinase, ERK and NF-κB.

    Directory of Open Access Journals (Sweden)

    Rajsekhar Bhowmick

    Full Text Available B cells are critically important in combating bacterial infections and their differentiation into plasma cells and memory cells aids bacterial clearance and long-lasting immunity conferred by essentially all vaccines. Outer membrane protein A (OmpA of Shigella flexneri 2a has been demonstrated to induce the production of IgG and IgA in vivo following immunization of mice through intranasal route, but the direct involvement of B cells in OmpA-mediated immune regulation was not determined. Consequently, we investigated whether OmpA can modulate B cell functions and identified the molecular events involved in OmpA-induced B cell immune response in vitro. We show that OmpA of S. flexneri 2a activates B cells to produce protective cytokines, IL-6 and IL-10 as well as facilitates their differentiation into antibody secreting cells (ASCs. The immunostimulatory properties of OmpA are attributed to the increased surface expression of MHCII and CD86 on B cells. We also report here that B cell activation by OmpA is mediated strictly through recognition by TLR2, resulting in initiation of cascades of signal transduction events, involving increased phosphorylation of protein tyrosine kinases (PTKs, ERK and IκBα, leading to nuclear translocation of NF-κB. Importantly, a TLR2 antibody diminishes OmpA-induced upregulation of MHCII and CD86 on B cell surface as well as significantly inhibits B cell differentiation and cytokine secretion. Furthermore, we illustrate that B cell differentiation into ASCs and induction of cytokine secretion by OmpA are dependent on PTKs activity. Moreover, we identify that OmpA-induced B cell differentiation is entirely dependent on ERK pathway, whereas both NF-κB and ERK are essential for cytokine secretion by B cells. Overall, our data demonstrate that OmpA of S. flexneri 2a amplifies TLR signaling in B cells and triggers B cell immune response, which is critical for the development of an effective adaptive immunity to an

  6. The nucleotide receptor P2X7 mediates actin reorganization and membrane blebbing in RAW 264.7 macrophages via p38 MAP kinase and Rho.

    Science.gov (United States)

    Pfeiffer, Zachary A; Aga, Mini; Prabhu, Usha; Watters, Jyoti J; Hall, David J; Bertics, Paul J

    2004-06-01

    Extracellular nucleotides regulate macrophage function via P2X nucleotide receptors that form ligand-gated ion channels. In particular, P2X7 activation is characterized by pore formation, membrane blebbing, and cytokine release. P2X7 is also linked to mitogen-activated protein kinases (MAPK) and Rho-dependent pathways, which are known to affect cytoskeletal structure in other systems. As cytoskeletal function is critical for macrophage behavior, we have tested the importance of these pathways in actin filament reorganization during P2X7 stimulation in RAW 264.7 macrophages. We observed that the P2X7 agonists adenosine 5'-triphosphate (ATP) and 3'-O-(4-benzoylbenzoyl) ATP (BzATP) stimulated actin reorganization and concomitant membrane blebbing within 5 min. Disruption of actin filaments with cytochalasin D attenuated membrane blebbing but not P2X7-dependent pore formation or extracellular-regulated kinase (ERK)1/ERK2 and p38 activation, suggesting that these latter processes do not require intact actin filaments. However, we provide evidence that p38 MAPK and Rho activation but not ERK1/ERK2 activation is important for P2X7-mediated actin reorganization and membrane blebbing. First, activation of p38 and Rho was detected within 5 min of BzATP treatment, which is coincident with membrane blebbing. Second, the p38 inhibitors SB202190 and SB203580 reduced nucleotide-induced blebbing and actin reorganization, whereas the MAPK kinase-1/2 inhibitor U0126, which blocks ERK1/ERK2 activation, had no discernable effect. Third, the Rho-selective inhibitor C3 exoenzyme and the Rho effector kinase, Rho-associated coiled-coil kinase, inhibitor Y-27632, markedly attenuated BzATP-stimulated actin reorganization and membrane blebbing. These data support a model wherein p38- and Rho-dependent pathways are critical for P2X7-dependent actin reorganization and membrane blebbing, thereby facilitating P2X7 involvement in macrophage inflammatory responses.

  7. Osteopontin Promotes Invasion, Migration and Epithelial-Mesenchymal Transition of Human Endometrial Carcinoma Cell HEC-1A Through AKT and ERK1/2 Signaling

    Directory of Open Access Journals (Sweden)

    Yinghua Li

    2015-10-01

    Full Text Available Background/Aims: Osteopontin (OPN is an Extracellular Matrix (ECM molecule and is involved in many physiologic and pathologic processes, including cell adhesion, angiogenesis and tumor metastasis. OPN is a well-known multifunctional factor involved in various aspects of cancer progression, including endometrial cancer. In this study, we examined the significance of OPN in endometrial cancer. Methods: The proliferation, migration and invasion ability of HEC-1A cells were detected by Cell Counting Kit-8 (CCK-8, Wound scratch assay and transwell. Western blots were employed to detect the expression of Matrix metalloproteinase-2 (MMP-2 and epithelial-mesenchymal transition (EMT-related factors in HEC-1A cells treated with rhOPN. Results: rhOPN promotes cell proliferation, migration and invasion in HEC-1A cells. rhOPN influenced EMT-related factors and MMP-2 expression in HEC-1A cells. rhOPN promoted HEC-1A cells migration, invasion and EMT through protein kinase B (PKB/AKT and Extracellular regulated protein kinases (ERK1/2 signaling pathway. Conclusions: These results may open up a novel therapeutic strategy for endometrial cancer: namely, rhOPN have important roles in controlling growth of endometrial of cancer cells and suggest a novel target pathway for treatment of this cancer.

  8. Aurora B is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway and is a valuable potential target in melanoma cells.

    Science.gov (United States)

    Bonet, Caroline; Giuliano, Sandy; Ohanna, Mickaël; Bille, Karine; Allegra, Maryline; Lacour, Jean-Philippe; Bahadoran, Philippe; Rocchi, Stéphane; Ballotti, Robert; Bertolotto, Corine

    2012-08-24

    Metastatic melanoma is a deadly skin cancer and is resistant to almost all existing treatment. Vemurafenib, which targets the BRAFV600E mutation, is one of the drugs that improves patient outcome, but the patients next develop secondary resistance and a return to cancer. Thus, new therapeutic strategies are needed to treat melanomas and to increase the duration of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor response. The ERK pathway controls cell proliferation, and Aurora B plays a pivotal role in cell division. Here, we confirm that Aurora B is highly expressed in metastatic melanoma cells and that Aurora B inhibition triggers both senescence-like phenotypes and cell death in melanoma cells. Furthermore, we show that the BRAF/ERK axis controls Aurora B expression at the transcriptional level, likely through the transcription factor FOXM1. Our results provide insight into the mechanism of Aurora B regulation and the first molecular basis of Aurora B regulation in melanoma cells. The inhibition of Aurora B expression that we observed in vemurafenib-sensitive melanoma cells was rescued in cells resistant to this drug. Consistently, these latter cells remain sensitive to the effect of the Aurora B inhibitor. Noteworthy, wild-type BRAF melanoma cells are also sensitive to Aurora B inhibition. Collectively, our findings, showing that Aurora B is a potential target in melanoma cells, particularly in those vemurafenib-resistant, may open new avenues to improve the treatment of metastatic melanoma.

  9. Levo-tetrahydropalmatine attenuates the development and expression of methamphetamine-induced locomotor sensitization and the accompanying activation of ERK in the nucleus accumbens and caudate putamen in mice.

    Science.gov (United States)

    Zhao, N; Chen, Y; Zhu, J; Wang, L; Cao, G; Dang, Y; Yan, C; Wang, J; Chen, T

    2014-01-31

    Levo-tetrahydropalmatine (l-THP) is an alkaloid purified from corydalis and has been used in many traditional Chinese herbal preparations for its analgesic, sedative, and hypnotic properties. Previous studies indicated that l-THP has modest antagonist activity against dopamine receptors and thus it might have potential therapeutic effects on drug addiction. However, whether and how l-THP contributes to methamphetamine (METH)-induced locomotor sensitization remains unclear. Therefore, the current study aims to examine the roles of l-THP in the development and expression of METH-induced locomotor sensitization as well as the accompanying extracellular-regulated kinase (ERK) activation in the nucleus accumbens (NAc), caudate putamen (CPu) and prefrontal cortex (PFc) in mice. We found that moderate doses of METH (0.5 and 2 mg/kg) induced hyper-locomotor activity in mice on all METH injection days whereas high dose of METH (5 mg/kg)-treated mice displayed only acute locomotor response to METH and severe stereotyped behaviors on the first day after drug injection. Interestingly, only 2 mg/kg dose of METH-induced locomotor sensitization which was accompanied by the activation of ERK1/2 in the NAc and CPu in mice. Although l-THP (5 and 10 mg/kg) per se did not induce obvious changes in locomotor activities in mice, its co-administration with METH could significantly attenuate acute METH-induced hyper-locomotor activity, the development and expression of METH-induced locomotor sensitization, and the accompanying ERK1/2 activation in the NAc and CPu. These results suggest that l-THP has potential therapeutic effect on METH-induced locomotor sensitization, and the underlying molecular mechanism might be related to its inhibitory effect on ERK1/2 phosphorylation in the NAc and CPu.

  10. TFF3和ERK通路在甲状腺乳头状癌中的表达和意义%Expression and clinical significance of TFF3, ERK pathway in patients with papillary thyroid carcinoma

    Institute of Scientific and Technical Information of China (English)

    张芸芸; 张静; 张文静; 李燕萍; 吴靖芳; 原野; 薛刚

    2016-01-01

    目的 探讨三叶因子3(Trefoil Factor 3,TFF3)、细胞外调节蛋白激酶2(Extracellular Regulated Protein Kinases 2,ERK2)及其磷酸化状态(p-ERK1/2)在甲状腺乳头状癌(papillary thyroid carcinoma,PTC)中的表达水平和临床意义.方法 采用Western Blot和免疫组织化学法检测60例甲状腺乳头状癌组织,30例甲状腺腺瘤组织(adenoma,A),30例瘤旁正常甲状腺组织(normal group,N)TFF3、ERK2、p-ERK1/2蛋白的表达情况,分析三种指标在甲状腺乳头癌中的表达阳性率与其临床病理特征的关系.结果 Western Blot结果显示TFF3、ERK2、p-ERK1/2蛋白在甲状腺乳头状癌组织表达水平均高于正常组和腺瘤组(P<0.05).免疫组化结果显示TFF3、ERK2、p-ERK1/2阳性蛋白呈棕黄色颗粒,TFF3主要表达于胞浆,ERK2为胞浆(膜)阳性,p-ERK1/2以胞核阳性为主,部分细胞胞浆阳性.TFF3、ERK2、p-ERK1/2在甲状腺乳头状癌中阳性表达率分别为85.0%、81.7%、78.3%,明显高于腺瘤组和正常组(p<0.05),并与病理分期和淋巴结转移密切相关(P<0.05),TFF3与ERK2、p-ERK1/2的表达呈正相关(r=0.415,r=0.467,P<0.01).结论 TFF3可能通过ERK通路促进了甲状腺乳头状癌的发展及转移.

  11. Inhibition of nerve growth factor-induced neurite outgrowth from PC12 cells by dexamethasone: signaling pathways through the glucocorticoid receptor and phosphorylated Akt and ERK1/2.

    Directory of Open Access Journals (Sweden)

    Kazuki Terada

    Full Text Available Glucocorticoids are important mediators of the stress response and are commonly employed as drugs for the suppression of immune rejection after organ transplantation. Previous investigations uncovered the possibility of mood depression in patients undergoing long-term treatment with synthetic glucocorticoids, including dexamethasone (DEX. Exogenous glucocorticoids and their synthetic derivatives can also adversely affect the development of the central nervous system. Although neurite extension from rat pheochromocytoma-derived PC12 cells and a variety of primary neurons is stimulated by nerve growth factor (NGF, and signaling pathways triggered by the binding of NGF to tyrosine kinase receptor type 1 (TrkA function in both neurite outgrowth and neuronal survival, the effect of DEX on the activation of regulatory proteins and pathways downstream of TrkA has not been well characterized. To analyze the influence of DEX on NGF-induced neurite outgrowth and signaling, PC12 cells, a widely utilized model of neuronal differentiation, were pretreated with the glucocorticoid prior to NGF induction. NGF-induced neurite outgrowth was attenuated by pretreatment with DEX, even in the absence of DEX after the addition of NGF. Moreover, DEX suppressed the phosphorylation of Akt and extracellular-regulated kinase 1/2 (ERK1/2 in the neurite outgrowth signaling cascade initiated by NGF. Finally, the glucocorticoid receptor (GR antagonist, RU38486, counteracted the inhibitory effect of DEX pretreatment, not only on the phosphorylation of Akt and ERK1/2, but also on neurite extension from PC12 cells. These results suggest that DEX binding to the GR impairs NGF-promoted neurite outgrowth by interfering with the activation/phosphorylation of Akt and ERK1/2. These novel findings are likely to be useful for elucidating the central nervous system depressive mechanism(s of action of DEX and other glucocorticoids.

  12. Glucose- and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets

    DEFF Research Database (Denmark)

    Maedler, Kathrin; Størling, Joachim; Sturis, Jeppe

    2004-01-01

    -regulated kinase (ERK) 1/2, an effect that was abrogated by 3 micromol/l NN414. Similarly, 1 micromol/l of the mitogen-activated protein kinase/ERK kinase 1/2 inhibitor PD098059 or 1 micromol/l of the l-type Ca(2+) channel blocker nimodipine prevented glucose- and IL-1beta-induced ERK activation, beta......Increasing evidence indicates that a progressive decrease in the functional beta-cell mass is the hallmark of both type 1 and type 2 diabetes. The underlying causes, beta-cell apoptosis and impaired secretory function, seem to be partly mediated by macrophage production of interleukin (IL)-1beta...... and/or high-glucose-induced beta-cell production of IL-1beta. Treatment of type 1 and type 2 diabetic patients with the potassium channel opener diazoxide partially restores insulin secretion. Therefore, we studied the effect of diazoxide and of the novel potassium channel opener NN414, selective...

  13. Interaction with Shc prevents aberrant Erk activation in the absence of extracellular stimuli

    KAUST Repository

    Suen, KinMan

    2013-05-01

    Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a new mechanism by which the adaptor protein Shc directly binds the MAP kinase Erk, thus preventing its activation in the absence of extracellular stimuli. The Shc-Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex forms through unique binding sites on both the Shc PTB domain and the N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc - induced through interaction with the phosphorylated receptor - releases Erk, allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered a tumor suppressor in human cells. © 2013 Nature America, Inc. All rights reserved.

  14. A heteroglycan from the cyanobacterium Nostoc commune modulates LPS-induced inflammatory cytokine secretion by THP-1 monocytes through phosphorylation of ERK1/2 and Akt.

    Science.gov (United States)

    Olafsdottir, Astridur; Thorlacius, Gudny Ella; Omarsdottir, Sesselja; Olafsdottir, Elin Soffia; Vikingsson, Arnor; Freysdottir, Jona; Hardardottir, Ingibjorg

    2014-09-25

    Cyanobacteria (blue-green algae) have been consumed as food and used in folk medicine since ancient times to alleviate a variety of diseases. Cyanobacteria of the genus Nostoc have been shown to produce complex exopolysaccharides with antioxidant and antiviral activity. Furthermore, Nostoc sp. are common in cyanolichen symbiosis and lichen polysaccharides are known to have immunomodulating effects. Nc-5-s is a heteroglycan isolated from free-living colonies of Nostoc commune and its structure has been characterized in detail. The aim of this study was to determine the effects of Nc-5-s on the inflammatory response of lipopolysaccharide (LPS)-stimulated human THP-1 monocytes and how the effects are mediated. THP-1 monocytes primed with interferon-γ and stimulated with LPS in the presence of Nc-5-s secreted less of the pro-inflammatory cytokine interleukin (IL)-6 and more of the anti-inflammatory cytokine IL-10 than THP-1 monocytes stimulated without Nc-5-s. In contrast, Nc-5-s increased LPS-induced secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and IL-8. Nc-5-s decreased LPS-induced phosphorylation of the extracellular regulated kinase (ERK)1/2 and Akt kinase, but did not affect phosphorylation of the p38 kinase, activation of the nuclear factor kappa B pathway, nor DNA binding of c-fos. These results show that Nc-5-s has anti-inflammatory effects on IL-6 and IL-10 secretion by THP-1 monocytes, but its effects are pro-inflammatory when it comes to TNF-α and IL-8. Furthermore, they show that the effects of Nc-5-s may be mediated through the ERK1/2 pathway and/or the Akt/phosphoinositide 3-kinase pathway and their downstream effectors. The ability of Nc-5-s to decrease IL-6 secretion, increase IL-10 secretion and moderate ERK1/2 activation indicates a potential for its development as an anti-inflammatory agent. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. IL-6调节MPP+处理的SH-SY5Y细胞的ERK分泌%IL-6 modulates pERK secretion of SH-SY5Y cells treated by MPP+

    Institute of Scientific and Technical Information of China (English)

    李学忠; 陈强; 沈卉君; 庄原苏; 周小平

    2012-01-01

    Objective To observe the effects of IL-6 on the survival and the expression of extracellular regulated protein kinases ( pERK) of SH-SY5Y cells treated by l-methyl-4-phenylpyridinium(MPP+ ). Methods The SH-SY5Y cells treated by MPP+ were intervened with IL-6 and mophological changes and the expression and location of pERK were observed. Results After treated by MPP+ , the viability of SH-SY5Y cells decreased and the expression of pERK elevated, which peaked in 24 h and mainly located in the cytoplasm. After adminstration of IL-6, the expression of pERK was increased and peaked in 6 h and mainly located in the nucleus. IL-6 reduced the apoptosis of MPP+-treated SH-SY5Y cells and promoted the secretion of pERK, which was downregulated by EPK inhibitor U0126 in vitro. Conclusions IL-6 can regulate the exprsssion of pERK, decrease MPP+-induced cell injury and promote SH-SY5Y cell survival.%目的 观察IL-6对1-甲基-4-苯基吡啶(MPP+)处理的SH-SY5Y细胞的生长和pERK的影响.方法 对MPP+处理的SH-SY5Y细胞进行IL-6干预,观察细胞结构形态的改变以及pERK的含量变化和定位.结果 MPP+处理的SH-SY5Y细胞系细胞活力下降;细胞系pERK上升,高峰在24 h,主要定位于胞浆;IL-6干预的SH-SY5Y细胞系pERK上升,高峰在6h,多定位于胞核.IL-6可以降低MPP+处理的SH-SY5Y细胞系的凋亡,使pERK分泌高峰提前;加用ERK抑制剂U0126可以下调IL-6对Mpp+处理的SH-SY5Y细胞系的影响.结论 IL-6可以通过调节pERK,减少MPP+诱导的细胞损伤,促进SH-SY5Y细胞的存活.

  16. Heat Shock Protein 90 Indirectly Regulates ERK Activity by Affecting Raf Protein Metabolism

    Institute of Scientific and Technical Information of China (English)

    Fei DOU; Liu-Di YUAN; Jing-Jing ZHU

    2005-01-01

    Extracellular signal-regulated protein kinase (ERK) has been implicated in the pathogenesis of several nerve system diseases. As more and more kinases have been discovered to be the client proteins of the molecular chaperone Hsp90, the use of Hsp90 inhibitors to reduce abnormal kinase activity is a new treatment strategy for nerve system diseases. This study investigated the regulation of the ERK pathway by Hsp90. We showed that Hsp90 inhibitors reduce ERK phosphorylation without affecting the total ERK protein level. Further investigation showed that Raf, the upstream kinase in the Ras-Raf-MEK-ERK pathway,forms a complex with Hsp90 and Hsp70. Treating cells with Hsp90 inhibitors facilitates Raf degradation,thereby down-regulating the activity of ERK.

  17. The fruit juice of Morinda citrifolia (noni) downregulates HIF-1α protein expression through inhibition of PKB, ERK-1/2, JNK-1 and S6 in manganese-stimulated A549 human lung cancer cells.

    Science.gov (United States)

    Jang, Byeong-Churl

    2012-03-01

    High exposure of manganese is suggested to be a risk factor for many lung diseases. Evidence suggests anticancerous and antiangiogenic effects by products derived from Morinda citrifolia (noni) fruit. In this study, we investigated the effect of noni fruit juice (NFJ) on the expression of HIF-1α, a tumor angiogenic transcription factor in manganese-chloride (manganese)-stimulated A549 human lung carcinoma cells. Treatment with manganese largely induced expression of HIF-1α protein but did not affect HIF-1α mRNA expression in A549 cells, suggesting the metal-mediated co- and/or post-translational HIF-1α upregulation. Manganese treatment also led to increased phosphorylation of extracellular-regulated protein kinase-1/2 (ERK-1/2), c-Jun N-terminal kinase-1 (JNK-1), protein kinase B (PKB), S6 and eukaryotic translation initiation factor-2α (eIF-2α) in A549 cells. Of note, the exposure of NFJ inhibited the manganese-induced HIF-1α protein upregulation in a concentration-dependent manner. Importantly, as assessed by results of pharmacological inhibition and siRNA transfection studies, the effect of NFJ on HIF-1α protein downregulation seemed to be largely associated with the ability of NFJ to interfere with the metal's signaling to activate PKB, ERK-1/2, JNK-1 and S6 in A549 cells. It was further shown that NFJ could repress the induction of HIF-1α protein by desferoxamine or interleukin-1β (IL-1β), another HIF-1α inducer in A549 cells. Thus, the present study provides the first evidence that NFJ has the ability to strongly downregulate manganese-induced HIF-1α protein expression in A549 human lung cancer cells, which may suggest the NFJ-mediated beneficial effects on lung pathologies in which manganese and HIF-1α overexpression play pathogenic roles.

  18. THE MAPK ERK5, BUT NOT ERK1/2, INHIBITS THE PROGRESSION OF MONOCYTIC PHENOTYPE TO THE FUNCTIONING MACROPHAGE

    Science.gov (United States)

    Wang, Xuening; Pesakhov, Stella; Harrison, Jonathan S; Kafka, Michael; Danilenko, Michael; Studzinski, George P

    2014-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D3 (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. PMID:25447310

  19. Advanced Glycation End Products Affect Osteoblast Proliferation and Function by Modulating Autophagy Via the Receptor of Advanced Glycation End Products/Raf Protein/Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase/Extracellular Signal-regulated Kinase (RAGE/Raf/MEK/ERK) Pathway.

    Science.gov (United States)

    Meng, Hong-Zheng; Zhang, Wei-Lin; Liu, Fei; Yang, Mao-Wei

    2015-11-20

    The interaction between advanced glycation end products (AGEs) and receptor of AGEs (RAGE) is associated with the development and progression of diabetes-associated osteoporosis, but the mechanisms involved are still poorly understood. In this study, we found that AGE-modified bovine serum albumin (AGE-BSA) induced a biphasic effect on the viability of hFOB1.19 cells; cell proliferation was stimulated after exposure to low dose AGE-BSA, but cell apoptosis was stimulated after exposure to high dose AGE-BSA. The low dose AGE-BSA facilitates proliferation of hFOB1.19 cells by concomitantly promoting autophagy, RAGE production, and the Raf/MEK/ERK signaling pathway activation. Furthermore, we investigated the effects of AGE-BSA on the function of hFOB1.19 cells. Interestingly, the results suggest that the short term effects of low dose AGE-BSA increase osteogenic function and decrease osteoclastogenic function, which are likely mediated by autophagy and the RAGE/Raf/MEK/ERK signal pathway. In contrast, with increased treatment time, the opposite effects were observed. Collectively, AGE-BSA had a biphasic effect on the viability of hFOB1.19 cells in vitro, which was determined by the concentration of AGE-BSA and treatment time. A low concentration of AGE-BSA activated the Raf/MEK/ERK signal pathway through the interaction with RAGE, induced autophagy, and regulated the proliferation and function of hFOB1.19 cells.

  20. ERK信号转导通路对新生大鼠海马神经干细胞增殖的影响%Effect of ERK pathway on the proliferation of neural stem cells of hippocampus in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    佟雷; 王振宇; 季丽莉; 佟晓杰

    2011-01-01

    目的 探讨细胞外信号调解激酶(ERK)信号转导通路在新生大鼠海马神经干细胞增殖中的作用.方法 体外培养新生大鼠海马神经干细胞,传至第4代后进行单细胞克降培养并传代.将培养细胞分为2组,对照组采用神经干细胞培养液进行培养,实验组中在神经干细胞培养液的基础上添加不同浓度的ERK通路抑制剂U0126,Western Blot检测加入细胞中ERK及P-ERK的表达情况,MTT法检测其对神经干细胞增殖的影响.结果 神经干细胞加入U0126后ERK磷酸化水平明显低于对照组;当U0126浓度为10 M时,细胞的增殖速度较对照组明显降低.结论 神经干细胞的增殖可能与ERK信号转导通路有关.%Objective To study the effect of extracellular regulated signal kinase (ERK) pathway on the proliferation of neural stem cells of hippocampus in neonatal rats. Methods The hippocampus of neonatal rat was removed sterilely, neural stem cells (NSCs) were collected and cultured in serum-free medium. The Cell suspension was prepared and single cell clone was performed when the diameter of the fourth passage of the clone sphere was 200 μ m, the monoclonal cells were passaged and differentiated. NSCs were divided into control group cultured in the NSCs media and experimental group cultured in the mixture of NSCs media and ERK pathway inhibitor (U0126) . The expression of ERK protein was detected by westem blot and the proliferation of NSCs was evaluated by MTT. Results The expression of phosphorylate ERK protein in NSCs was lower in the experimental group than control group, the proliferation rate of the NSCs waq much lower in the experimental group than control group when the concentration of U0126 reached 10M. Conclusions The proliferation of neural stem ceUs decreased significantly when ERK signal transduction pathway was inhibited.

  1. DDR2 inhibition reduces migration and invasion of murine metastatic melanoma cells by suppressing MMP2/9 expression through ERK/NF-κB pathway.

    Science.gov (United States)

    Poudel, Barun; Lee, Young-Mi; Kim, Dae-Ki

    2015-04-01

    Metastatic melanoma is one of the most deadly and evasive cancers. Collagen I in the extracellular matrix promotes the migration and invasion of tumor cells through the production of matrix metalloproteinase (MMP) 2 and 9. Discoidin domain receptor (DDR) 2 is a collagen receptor that is implicated in several cancer types including breast and prostate cancers. However, the role of DDR2 in the migration and invasion of murine melanoma cells is less studied. In the present study, we investigated the effects and underlying mechanisms of DDR2 in migration and invasion of B16BL6 melanoma cells in response to collagen I. Results demonstrated that DDR2 is expressed and is phosphorylated by collagen I in the cells. Upon down-regulation of DDR2 using small-interfering RNA (siRNA) approach, both of the cell migratory and invasive phenotypes were significantly attenuated when compared with the control cells. This effect was mediated via suppression of MMP2/9 upon DDR2 inhibition. Furthermore, inhibition of DDR2 by specific siRNA markedly reduced the activation of extracellular regulated kinase (ERK) 1 and 2 and nuclear factor of kappa B (NF-κB) in the cells when compared with the control cells. Overall, these data demonstrated that DDR2 siRNA-mediated suppression of ERK1/2 and NF-κB could down-regulate the expressions of MMP2/9 in response to collagen I to reduce the migratory and invasive phenotypes of the cells.

  2. ERK3 is required for metaphase-anaphase transition in mouse oocyte meiosis.

    Directory of Open Access Journals (Sweden)

    Sen Li

    Full Text Available ERK3 (extracellular signal-regulated kinase 3 is an atypical member of the mitogen-activated protein (MAP kinase family of serine/threonine kinases. Little is known about its function in mitosis, and even less about its roles in mammalian oocyte meiosis. In the present study, we examined the localization, expression and functions of ERK3 during mouse oocyte meiotic maturation. Immunofluorescent analysis showed that ERK3 localized to the spindles from the pre-MI stage to the MII stage. ERK3 co-localized with α-tubulin on the spindle fibers and asters in oocytes after taxol treatment. Deletion of ERK3 by microinjection of ERK3 morpholino (ERK3 MO resulted in oocyte arrest at the MI stage with severely impaired spindles and misaligned chromosomes. Most importantly, the spindle assembly checkpoint protein BubR1 could be detected on kinetochores even in oocytes cultured for 10 h. Low temperature treatment experiments indicated that ERK3 deletion disrupted kinetochore-microtubule (K-MT attachments. Chromosome spreading experiments showed that knock-down of ERK3 prevented the segregation of homologous chromosomes. Our data suggest that ERK3 is crucial for spindle stability and required for the metaphase-anaphase transition in mouse oocyte maturation.

  3. Dexmedetomidine Dose-Dependently Attenuates Ropivacaine-Induced Seizures and Negative Emotions Via Inhibiting Phosphorylation of Amygdala Extracellular Signal-Regulated Kinase in Mice.

    Science.gov (United States)

    Zhai, Ming-Zhu; Wu, Huang-Hui; Yin, Jun-Bin; Cui, Yuan-Yuan; Mei, Xiao-Peng; Zhang, Han; Zhu, Xia; Shen, Xue-Feng; Kaye, Alan David; Chen, Guo-Zhong

    2016-05-01

    Ropivacaine (Ropi), one of the newest and safest amino amide local anesthetics, is linked to toxicity, including the potential for seizures, changes in behavior, and even cardiovascular collapse. Dexmedetomidine (Dex), an α2-adrenergic receptor agonist, has been widely used in anesthesia and critical care practice. To date, the underlying mechanisms of the effects of Dex premedication on Ropi-induced toxicity have not been clearly identified. In the current study, we investigated the effects of increasing doses of Dex premedication on 50% convulsive dose (CD50) of Ropi. With increasing doses of intraperitoneal (i.p.) Dex 10 min prior to each i.p. RopiCD50, the latency and duration of seizure activity were recorded. Open-field (OF) and elevated plus maze (EPM) test were used to measure negative behavioral emotions such as depression and anxiety. Immunohistochemistry and Western blot were utilized to investigate phosphorylation-extracellular regulated protein kinases (p-ERK) expression in the basolateral amygdala (BLA) on 2 h and in the central amygdala (CeA) on 24 h after convulsion in mice. The results of our investigation demonstrated that Dex dose-dependently increased RopiCD50, prolonged the latency and shortened the duration of each RopiCD50-induced seizure, improved the negative emotions revealed by both OF and EPM test, and inhibited p-ERK expression in the BLA and the CeA.

  4. Effect of ERK pathway on the proliferation of neural stem cells of hippocampus in neonatal rats%单胺氧化酶B在大鼠胃和十二指肠的分布

    Institute of Scientific and Technical Information of China (English)

    黄玉红; 姜敏; 孙明军; 傅宝玉

    2011-01-01

    目的 研究单胺氧化酶B(MAO-B)在大鼠胃和十二指肠组织中的表达,为进一步研究MAO与应激导致的胃肠功能紊乱间的关系提供形态学依据.方法 采用免疫荧光组织化学的方法,观察了MAO-B在大鼠胃和十二指肠组织中的分布.结果 MAO-B免疫反应阳性细胞分布在大鼠胃底腺、贲门腺、幽门腺腺体基底部的肠嗜铬细胞,胃粘膜腺体的壁细胞、主细胞、颈粘液细胞呈阴性反应.MAO-B免疫反应阳性细胞分布在十二指肠粘膜腺体的所有细胞,包括吸收细胞、杯状细胞和内分泌细胞.阳性物质分布于细胞质,细胞核阴性.结论 MAO-B在大鼠胃和十二指肠的表达,提示MAO-B可能在胃和十二指肠起着非常重要的作用.%Objective To study the effect of extracellular regulated signal kinase (ERK) pathway on the proliferation of neural stem cells of hippocampus in neonatal rats. Methods The hippocampus of neonatal rat was removed sterilely, neural stem cells (NSCs) were collected and cultured in serum-free medium. The Cell suspension was prepared and single cell clone was performed when the diameter of the fourth passage of the clone sphere was 200 μ m, the monoclonal cells were paasaged and differentiated. NSCs were divided into control group cultured in the NSCs media and experimental group cultured in the mixture of NSCs media and ERK pathway inhibitor (U0126) . The expression of ERK protein was detected by western blot and the proliferation of NSCs was evaluated by MTT. Results The expression of phosphorylate ERK protein in NSCs was lower in the experimental group than control group, the proliferation rate of the NSCs was much lower in the experimental group than control group when the concentration of U0126 reached 10M. Conclusions The proliferation of neural stem cells decreased significantly when ERK signal transduetion pathway was inhibited.

  5. Dual role of cAMP and involvement of both G-proteins and ras in regulation of ERK2 in Dictyostelium discoideum.

    Science.gov (United States)

    Knetsch, M L; Epskamp, S J; Schenk, P W; Wang, Y; Segall, J E; Snaar-Jagalska, B E

    1996-07-01

    Dictyostelium discoideum expresses two Extracellular signal Regulated Kinases, ERK1 and ERK2, which are involved in growth, multicellular development and regulation of adenylyl cyclase. Binding of extracellular cAMP to cAMP receptor 1, a G-protein coupled cell surface receptor, transiently stimulates phosphorylation, activation and nuclear translocation of ERK2. Activation of ERK2 by cAMP is dependent on heterotrimeric G-proteins, since activation of ERK2 is absent in cells lacking the Galpha4 subunit. The small G-protein rasD also activates ERK2. In cells overexpressing a mutated, constitutively active rasD, ERK2 activity is elevated prior to cAMP stimulation. Intracellular cAMP and cAMP-dependent protein kinase (PKA) are essential for adaptation of the ERK2 response. This report shows that multiple signalling pathways are involved in regulation of ERK2 activity in D.discoideum.

  6. Extracellular regulation of sperm transmembrane adenylyl cyclase by a forward motility stimulating protein.

    Directory of Open Access Journals (Sweden)

    Souvik Dey

    Full Text Available Forward motility stimulating factor (FMSF, a glycoprotein isolated from buffalo serum, binds to the surface of the mature sperm cells to promote their progressive motility. This article reports the mode of signal transduction of this extracellular factor in goat sperm. The mechanism was investigated by assaying intracellular second messenger level and forward motility in presence of different pharmacological modulators. Mg++-dependent Forskolin responsive form of transmembrane adenylyl cyclase (tmAC of goat spermatozoa was probed for its involvement in FMSF action. Dideoxyadenosine, a selective inhibitor of tmACs, was used to identify the role of this enzyme in the scheme of FMSF-signaling. Involvement of the α-subunit of G-protein in this regard has been inspected using GTPγS. Participation of protein kinase A (PKA and tyrosine kinase was checked using IP20 and genistein, respectively. FMSF promotes tmAC activity in a dose-dependent manner through receptor/G-protein activation to enhance intracellular cAMP and forward motility. Motility boosting effects of this glycoprotein are almost lost in presence of dideoxyadenosine. But, FMSF displayed substantial motility promoting activity when movement of spermatozoa was inhibited with KH7, the specific inhibitor of soluble adenylyl cyclase indicating tmAC to be the primary target of FMSF action. Involvement of cAMP in mediating FMSF action was confirmed by the application of dibutyryl cAMP. Observed motility regulatory effects with IP20 and genistein indicate contribution of PKA and tyrosine kinase in FMSF activity; enhanced phosphorylation of a tyrosine containing ≈50 kDa protein was detected in this regard. FMSF initiates a novel signaling cascade to stimulate tmAC activity that augments intracellular cAMP, which through downstream crosstalk of phosphokinases leads to enhanced forward motility in mature spermatozoa. Thus, this article for the first time describes conventional tm

  7. Docosahexaenoic acid inhibits cancer cell growth via p27Kip1, CDK2, ERK1/ERK2, and retinoblastoma phosphorylation.

    Science.gov (United States)

    Khan, Naim A; Nishimura, Kazuhiro; Aires, Virginie; Yamashita, Tomoko; Oaxaca-Castillo, David; Kashiwagi, Keiko; Igarashi, Kazuei

    2006-10-01

    Docosahexaenoic acid (DHA), a PUFA of the n-3 family, inhibited the growth of FM3A mouse mammary cancer cells by arresting their progression from the late-G(1) to the S phase of the cell cycle. DHA upregulated p27(Kip1) levels by inhibiting phosphorylation of mitogen-activated protein (MAP) kinases, i.e., ERK1/ERK2. Indeed, inhibition of ERK1/ERK2 phosphorylation by DHA, U0126 [chemical MAPK extracellularly signal-regulated kinase kinase (MEK) inhibitor], and MEK(SA) (cells expressing dominant negative constructs of MEK) resulted in the accumulation of p27(Kip1). MAP kinase (MAPK) inhibition by DHA did not increase p27(Kip1) mRNA levels. Rather, this fatty acid stabilized p27(Kip1) contents and inhibited MAPK-dependent proteasomal degradation of this protein. DHA also diminished cyclin E phosphorylation, cyclin-dependent kinase-2 (CDK2) activity, and phosphorylation of retinoblastoma protein in these cells. Our study shows that DHA arrests cell growth by modulating the phosphorylation of cell cycle-related proteins.

  8. TRAPPC4-ERK2 interaction activates ERK1/2, modulates its nuclear localization and regulates proliferation and apoptosis of colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Shu-Liang Zhao

    Full Text Available The trafficking protein particle complex 4 (TRAPPC4 is implicated in vesicle-mediated transport, but its association with disease has rarely been reported. We explored its potential interaction with ERK2, part of the ERK1/2 complex in the Extracellular Signal-regulated Kinase/ Mitogen-activated Protein Kinase (ERK-MAPK pathway, by a yeast two-hybrid screen and confirmed by co-immunoprecipitation (Co-IP and glutathione S-transferase (GST pull-down. Further investigation found that when TRAPPC4 was depleted, activated ERK1/2 specifically decreased in the nucleus, which was accompanied with cell growth suppression and apoptosis in colorectal cancer (CRC cells. Overexpression of TRAPPC4 promoted cell viability and caused activated ERK1/2 to increase overall, but especially in the nucleus. TRAPPC4 was expressed more highly in the nucleus of CRC cells than in normal colonic epithelium or adenoma which corresponded with nuclear staining of pERK1/2. We demonstrate here that TRAPPC4 may regulate cell proliferation and apoptosis in CRC by interaction with ERK2 and subsequently phosphorylating ERK1/2 as well as modulating the subcellular location of pERK1/2 to activate the relevant signaling pathway.

  9. The D Domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells

    Directory of Open Access Journals (Sweden)

    Zeyou Wang

    2016-11-01

    Full Text Available Abstract Background As a well-characterized key player in various signal transduction networks, extracellular-signal-regulated kinase (ERK1/2 has been widely implicated in the development of many malignancies. We previously found that Leucine-rich repeat containing 4 (LRRC4 was a tumor suppressor and a negative regulator of the ERK/MAPK pathway in glioma tumorigenesis. However, the precise molecular role of LRRC4 in ERK signal transmission is unclear. Methods The interaction between LRRC4 and ERK1/2 was assessed by co-immunoprecipitation and GST pull-down assays in vivo and in vitro. We also investigated the interaction of LRRC4 and ERK1/2 and the role of the D domain in ERK activation in glioma cells. Results Here, we showed that LRRC4 and ERK1/2 interact via the D domain and CD domain, respectively. Following EGF stimuli, the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and abrogates ERK1/2 activation and nuclear translocation. In glioblastoma cells, ectopic LRRC4 expression competitively inhibited the interaction of endogenous mitogen-activated protein kinase (MEK and ERK1/2. Mutation of the D domain decreased the LRRC4-mediated inhibition of MAPK signaling and its anti-proliferation and anti-invasion roles. Conclusions Our results demonstrated that the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. These findings identify a new mechanism underlying glioblastoma progression and suggest a novel therapeutic strategy by restoring the activity of LRRC4 to decrease MAPK cascade activation.

  10. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments.

    Science.gov (United States)

    Schevzov, Galina; Kee, Anthony J; Wang, Bin; Sequeira, Vanessa B; Hook, Jeff; Coombes, Jason D; Lucas, Christine A; Stehn, Justine R; Musgrove, Elizabeth A; Cretu, Alexandra; Assoian, Richard; Fath, Thomas; Hanoch, Tamar; Seger, Rony; Pleines, Irina; Kile, Benjamin T; Hardeman, Edna C; Gunning, Peter W

    2015-07-01

    ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor-stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.

  11. Epidermal Growth Factor Receptor Kinase Inhibitors Synergize with TCDD to Induce CYP1A1/1A2 in Human Breast Epithelial MCF10A Cells.

    Science.gov (United States)

    Joiakim, Aby; Mathieu, Patricia A; Shelp, Catherine; Boerner, Julie; Reiners, John J

    2016-05-01

    CYP1A1 and CYP1A2 are transcriptionally activated in the human normal breast epithelial cell line MCF10A following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Shifting MCF10A cultures to medium deficient in serum and epidermal growth factor (EGF) caused rapid reductions in the activated (i.e., phosphorylated) forms of extracellular regulated kinases (ERKs) and the epidermal growth factor receptor (EGFR). Shifting to serum/EGF-deficient medium also enhanced TCDD-mediated induction of cytochrome P450 (CYP)1A1 Treatment of cells cultured in complete medium with the EGFR inhibitors gefitinib (Iressa), AG1478, and CI-1033 resulted in concentration-dependent reductions of active EGFR and ERKs, and increased CYP1A1 mRNA content ∼3- to 18-fold above basal level. EGFR inhibitors synergized with TCDD and resulted in transient CYP1A1 and CYP1A2 mRNA accumulations ∼8-fold greater (maximum at 5 hours) than that achieved with only TCDD. AG1478, gefitinib, and TCDD individually induced small increases (∼1.2- to 2.5-fold) in CYP1A1 protein content but did not cause additive or synergistic accumulations of CYP1A1 protein when used in combination. The mitogen-activated protein kinase kinase inhibitor PD184352 inhibited ERK and EGFR activation in a concentration-dependent fashion without causing CYP1A1 mRNA accumulation. However, cotreatment with PD184352 potentiated TCDD-mediated CYP1A1 induction. TCDD-mediated induction of CYP1A1 in MCF7-TET on-EGFR cells, a MCF7 variant in which EGFR expression can be controlled, was not affected by the activity status of EGFR or ERKs. Hence, EGFR signaling mutes both basal and ligand-induced expression of two aryl hydrocarbon receptor-responsive P450s in MCF10A cultures. However, these effects are cell context-dependent. Furthermore, CYP1A1 mRNA and protein abundance are not closely coupled in MCF10A cultures.

  12. ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease

    Science.gov (United States)

    Maher, Pamela; Dargusch, Richard; Bodai, Laszlo; Gerard, Paul E.; Purcell, Judith M.; Marsh, J. Lawrence

    2011-01-01

    Huntington's disease (HD) is an inherited, progressive and ultimately fatal neurodegenerative disorder that is characterized by psychiatric, cognitive and motor symptoms. Among the pathways implicated in HD are those involving mitogen-activated protein kinase signaling and particularly the Ras-extracellular signal-regulated kinase (ERK) cascade. Studies in both cells and animal models suggest that ERK activation might provide a novel therapeutic target for the treatment of HD but compounds that specifically activate ERK are few. To test the hypothesis that pharmaceutical activation of ERK might be protective for HD, a polyphenol, fisetin, which was previously shown to activate the Ras-ERK cascade, was tested in three different models of HD: PC12 cells expressing mutant Httex1 under the control of an inducible promoter, Drosophila expressing mutant Httex1 and the R6/2 mouse model of HD. The results indicate that fisetin can reduce the impact of mutant huntingtin in each of these disease models. Prompted by this observation, we determined that the related polyphenol, resveratrol, also activates ERK and is protective in HD models. Notably, although more than a dozen small molecule inhibitors of ERK activation are in clinical trials, very few small molecule activators of ERK signaling are reported. Thus, fisetin, resveratrol and related compounds might be useful for the treatment of HD by virtue of their unique ability to activate ERK. PMID:20952447

  13. NADPH oxidase mediates β-amyloid peptide-induced activation of ERK in hippocampal organotypic cultures

    Science.gov (United States)

    Serrano, Faridis; Chang, Angela; Hernandez, Caterina; Pautler, Robia G; Sweatt, J David; Klann, Eric

    2009-01-01

    Background Previous studies have shown that beta amyloid (Aβ) peptide triggers the activation of several signal transduction cascades in the hippocampus, including the extracellular signal-regulated kinase (ERK) cascade. In this study we sought to characterize the cellular localization of phosphorylated, active ERK in organotypic hippocampal cultures after acute exposure to either Aβ (1-42) or nicotine. Results We observed that Aβ and nicotine increased the levels of active ERK in distinct cellular localizations. We also examined whether phospho-ERK was regulated by redox signaling mechanisms and found that increases in active ERK induced by Aβ and nicotine were blocked by inhibitors of NADPH oxidase. Conclusion Our findings indicate that NADPH oxidase-dependent redox signaling is required for Aβ-induced activation of ERK, and suggest a similar mechanism may occur during early stages of Alzheimer's disease. PMID:19804648

  14. A compendium of ERK targets.

    Science.gov (United States)

    Ünal, Evrim B; Uhlitz, Florian; Blüthgen, Nils

    2017-09-01

    The RAF-MEK-ERK cascade is one of the most studied signaling pathways as it controls many vital cellular programs. There has been an immense amount of effort to determine ERK target proteins involved in regulating these programs. Classical biochemical and genetic approaches have elicited hundreds of direct ERK substrates, and with the advent of phospho-proteomic technologies, numerous studies have expanded the number of ERK target proteins. Here, we compile a comprehensive ERK target phospho-site archive, in which we gathered information from various research studies, and we provide this archive as an online database to form a searchable compendium of ERK targets. © 2017 Federation of European Biochemical Societies.

  15. Role of ERK/MAPK in endothelin receptor signaling in human aortic smooth muscle cells

    DEFF Research Database (Denmark)

    Chen, Qing-wen; Edvinsson, Lars; Xu, Cang-Bao

    2009-01-01

    muscle cells (VSMCs) through activation of endothelin type A (ETA) and type B (ETB) receptors. The extracellular signal-regulated kinase 1 and 2 (ERK1/2) mitogen-activated protein kinases (MAPK) are involved in ET-1-induced VSMC contraction and proliferation. This study was designed to investigate...

  16. Cholesterol selectively regulates IL-5 induced mitogen activated protein kinase signaling in human eosinophils.

    Directory of Open Access Journals (Sweden)

    Mandy E Burnham

    Full Text Available Eosinophils function contributes to human allergic and autoimmune diseases, many of which currently lack curative treatment. Development of more effective treatments for eosinophil-related diseases requires expanded understanding of eosinophil signaling and biology. Cell signaling requires integration of extracellular signals with intracellular responses, and is organized in part by cholesterol rich membrane microdomains (CRMMs, commonly referred to as lipid rafts. Formation of these organizational membrane domains is in turn dependent upon the amount of available cholesterol, which can fluctuate widely with a variety of disease states. We tested the hypothesis that manipulating membrane cholesterol content in primary human peripheral blood eosinophils (PBEos would selectively alter signaling pathways that depend upon membrane-anchored signaling proteins localized within CRMMs (e.g., mitogen activated protein kinase [MAPK] pathway, while not affecting pathways that signal through soluble proteins, like the Janus Kinase/Signal Transducer and Activator of Transcription [JAK/STAT] pathway. Cholesterol levels were increased or decreased utilizing cholesterol-chelating methyl-β-cyclodextrin (MβCD, which can either extract membrane cholesterol or add exogenous membrane cholesterol depending on whether MβCD is preloaded with cholesterol. Human PBEos were pretreated with MβCD (cholesterol removal or MβCD+Cholesterol (MβCD+Chol; cholesterol delivery; subsequent IL-5-stimulated signaling and physiological endpoints were assessed. MβCD reduced membrane cholesterol in PBEos, and attenuated an IL-5-stimulated p38 and extracellular-regulated kinase 1/2 phosphorylation (p-p38, p-ERK1/2, and an IL-5-dependent increase in interleukin-1β (IL-1β mRNA levels. In contrast, MβCD+Chol treatment elevated PBEos membrane cholesterol levels and basal p-p38, but did not alter IL-5-stimulated phosphorylation of ERK1/2, STAT5, or STAT3. Furthermore, M

  17. Active Erk Regulates Microtubule Stability in H-ras-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Rene E. Harrison

    2001-01-01

    Full Text Available Increasing evidence suggests that activated erk regulates cell functions, at least in part, by mechanisms that do not require gene transcription. Here we show that the map kinase, erk, decorates microtubules (MTs and mitotic spindles in both parental and mutant active rastransfected 10T1 /2 fibroblasts and MCF10A breast epithelial cells. Approximately 20% of total cellular erk decorated MTs in both cell lines. A greater proportion of activated erk was associated with MTs in the presence of mutant active H-ras than in parental cells. Activation of erk by the ras pathway coincided with a decrease in the stability of MT, as detected by a stability marker. The MKK1 inhibitor, PD98059 and transfection of a dominant negative MKK1 blocked ras-induced instability of MTs but did not modify the association of erk with MTs or affect MT stability of the parental cells. These results indicate that the subset of active erk kinase that associates with MTs contributes to their instability in the presence of a mutant active ras. The MT-associated subset of active erk likely contributes to the enhanced invasive and proliferative abilities of cells containing mutant active H-ras.

  18. Hippocampal Erk Mechanisms Linking Prediction Error to Fear Extinction: Roles of Shock Expectancy and Contextual Aversive Valence

    Science.gov (United States)

    Huh, Kyu Hwan; Guzman, Yomayra F.; Tronson, Natalie C.; Guedea, Anita L.; Gao, Can; Radulovic, Jelena

    2009-01-01

    Extinction of fear requires learning that anticipated aversive events no longer occur. Animal models reveal that sustained phosphorylation of the extracellular signal-regulated kinase (Erk) in hippocampal CA1 neurons plays an important role in this process. However, the key signals triggering and regulating the activity of Erk are not known. By…

  19. Restoration of E-cadherin Cell-Cell Junctions Requires Both Expression of E-cadherin and Suppression of ERK MAP Kinase Activation in Ras-Transformed Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Li

    2008-12-01

    Full Text Available E-cadherin is a main component of the cell-cell adhesion junctions that play a principal role in maintaining normal breast epithelial cell morphology. Breast and other cancers that have up-regulated activity of Ras are often found to have down-regulated or mislocalized E-cadherin expression. Disruption of E-cadherin junctions and consequent gain of cell motility contribute to the process known as epithelial-to-mesenchymal transition (EMT. Enforced expression of E-cadherin or inhibition of Ras-signal transduction pathway has been shown to be effective in causing reversion of EMT in several oncogene-transformed and cancer-derived cell lines. In this study, we investigated MCF10A human breast epithelial cells and derivatives that were transformed with either activated H-Ras or N-Ras to test for the reversion of EMT by inhibition of Ras-driven signaling pathways. Our results demonstrated that inhibition of mitogen-activated protein kinase (MAPK kinase, but not PI3-kinase, Rac, or myosin light chain kinase, was able to completely restore E-cadherin cell-cell junctions and epithelial morphology in cell lines with moderate H-Ras expression. In MCF10A cells transformed by a high-level expression of activated H-Ras or N-Ras, restoration of E-cadherin junction required both the enforced reexpression of E-cadherin and suppression of MAPK kinase. Enforced expression of E-cadherin alone did not induce reversion from the mesenchymal phenotype. Our results suggest that Ras transformation has at least two independent actions to disrupt E-cadherin junctions, with effects to cause both mislocalization of E-cadherin away from the cell surface and profound decrease in the expression of E-cadherin.

  20. ERK5/BMK1 is a novel target of the tumor suppressor VHL: Implication in clear cell renal carcinoma

    OpenAIRE

    Arias-González, Laura; Moreno-Gimeno, Inmaculada; del Campo, Antonio Rubio; Leticia, Serrano-Oviedo; Valero, María Llanos; Esparís-Ogando, Azucena; de la Cruz-Morcillo, Miguel Ángel; Melgar-Rojas, Pedro; García-Cano, Jesús; Cimas, Francisco José; Hidalgo, María José Ruiz; Prado, Alfonso; Callejas-Valera, Juan Luis; Nam-Cha, Syong Hyun; Giménez-Bachs, José Miguel

    2013-01-01

    Extracellular signal-regulated kinase 5 (ERK5), also known as big mitogen-activated protein kinase (MAPK) 1, is implicated in a wide range of biologic processes, which include proliferation or vascularization. Here, we show that ERK5 is degraded through the ubiquitin-proteasome system, in a process mediated by the tumor suppressor von Hippel-Lindau (VHL) gene, through a prolyl hydroxylation-dependent mechanism. Our conclusions derive from transient transfection assays in Cos7 cells, as well a...

  1. ERK5/BMK1 Is a Novel Target of the Tumor Suppressor VHL: Implication in Clear Cell Renal Carcinoma12

    OpenAIRE

    Arias-González, Laura; Moreno-Gimeno, Inmaculada; del Campo, Antonio Rubio; Serrano-Oviedo, Leticia; Valero, María Llanos; Esparís-Ogando, Azucena; de la Cruz-Morcillo, Miguel Ángel; Melgar-Rojas, Pedro; García-Cano, Jesús; Cimas, Francisco José; Hidalgo, María José Ruiz; Prado, Alfonso; Callejas-Valera, Juan Luis; Nam-Cha, Syong Hyun; Giménez-Bachs, José Miguel

    2013-01-01

    Extracellular signal-regulated kinase 5 (ERK5), also known as big mitogen-activated protein kinase (MAPK) 1, is implicated in a wide range of biologic processes, which include proliferation or vascularization. Here, we show that ERK5 is degraded through the ubiquitin-proteasome system, in a process mediated by the tumor suppressor von Hippel-Lindau (VHL) gene, through a prolyl hydroxylation-dependent mechanism. Our conclusions derive from transient transfection assays in Cos7 cells, as well a...

  2. NS5ATP9 Contributes to Inhibition of Cell Proliferation by Hepatitis C Virus (HCV Nonstructural Protein 5A (NS5A via MEK/Extracellular Signal Regulated Kinase (ERK Pathway

    Directory of Open Access Journals (Sweden)

    Xuesong Gao

    2013-05-01

    Full Text Available Hepatitis C virus (HCV nonstructural protein 5A (NS5A is a remarkable protein as it clearly plays multiple roles in mediating viral replication, host-cell interactions and viral pathogenesis. However, on the impact of cell growth, there have been different study results. NS5ATP9, also known as KIAA0101, p15PAF, L5, and OEACT-1, was first identified as a proliferating cell nuclear antigen-binding protein. Earlier studies have shown that NS5ATP9 might play an important role in HCV infection. The aim of this study is to investigate the function of NS5ATP9 on hepatocellular carcinoma (HCC cell lines proliferation under HCV NS5A expression. The results showed that overexpression of NS5ATP9 inhibited the proliferation of Bel7402 cells, whereas knockdown of NS5ATP9 by interfering RNA promoted the growth of HepG2 cells. Under HCV NS5A expression, RNA interference (RNAi targeting of NS5ATP9 could reverse the inhibition of HepG2 cell proliferation, suggesting that NS5ATP9 might be an anti-proliferation gene that plays an important role in the suppression of cell growth mediated by HCV NS5A via MEK/ERK signaling pathway. These findings might provide new insights into HCV NS5A and NS5ATP9.

  3. Regulation of hepatitis C virus replication and gene expression by the MAPK-ERK pathway.

    Science.gov (United States)

    Pei, Rongjuan; Zhang, Xiaoyong; Xu, Song; Meng, Zhongji; Roggendorf, Michael; Lu, Mengji; Chen, Xinwen

    2012-10-01

    The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle. In the present study using a Huh7 cell line Con1 with an HCV replicon, we have shown that the MAPK-ERK pathway plays a significant role in the modulation of HCV replication and protein expression and might influence IFN-α signalling. Epithelial growth factor (EGF) was able to stimulate ERK activation and decreased HCV RNA load while a MAPK-ERK pathway inhibitor U0126 led to an elevated HCV RNA load and higher NS5A protein amounts in Con1 cells. It could be further demonstrated that the inhibition of the MAPK-ERK pathway facilitated the translation directed by the HCV internal ribosome entry site. Consistently, a U0126 treatment enhanced activity of the HCV reporter replicon in transient transfection assays. Thus, the MAPK-ERK pathway plays an important role in the regulation of HCV gene expression and replication. In addition, cyclin-dependent kinases (CDKs) downstream of ERK may also be involved in the modulation of HCV replication since roscovitine, an inhibitor of CDKs had a similar effect to that of U0126. Modulation of the cell cycle progression by cell cycle inhibitor or RNAi resulted consistently in changes of HCV RNA levels. Further, the replication of HCV replicon in Con1 cells was inhibited by IFN-α. The inhibitory effect of IFN-α could be partly reversed by pre-incubation of Con-1 cells with inhibitors of the MAPK-ERK pathway and CDKs. It could be shown that the MAPK-ERK inhibitors are able to partially modulate the expression of interferon-stimulated genes.

  4. Regulation of Hepatitis C Virus Replication and Gene Expression by the MAPK-ERK Pathway

    Institute of Scientific and Technical Information of China (English)

    Rongjuan Pei; Xiaoyong Zhang; Song Xu; Zhongji Meng; Michael Roggendorf; Mengji Lu; Xinwen Chen

    2012-01-01

    The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle.In the present study using a Huh7 cell line Con1 with an HCV replicon,we have shown that the MAPK-ERK pathway plays a significant role in the modulation of HCV replication and protein expression and might influence IFN-α signalling.Epithelial growth factor (EGF) was able to stimulate ERK activation and decreased HCV RNA load while a MAPK-ERK pathway inhibitor U0126 led to an elevated HCV RNA load and higher NS5A protein amounts in Con1 cells.It could be further demonstrated that the inhibition of the MAPK-ERK pathway facilitated the translation directed by the HCV internal ribosome entry site.Consistently,a U0126 treatment enhanced activity of the HCV reporter replicon in transient transfection assays.Thus,the MAPK-ERK pathway plays an important role in the regulation of HCV gene expression and replication.In addition,cyclin-dependent kinases (CDKs) downstream of ERK may also be involved in the modulation of HCV replication since roscovitine,an inhibitor of CDKs had a similar effect to that of U0126.Modulation of the cell cycle progression by cell cycle inhibitor or RNAi resulted consistently in changes of HCV RNA levels.Further,the replication of HCV replicon in Conl cells was inhibited by IFN-α.The inhibitory effect of IFN-α could be partly reversed by pre-incubation of Con-1 cells with inhibitors of the MAPK-ERK pathway and CDKs.It could be shown that the MAPK-ERK inhibitors are able to partially modulate the expression of interferon-stimulated genes.

  5. Serotonin-induced proliferation of pulmonary arterysmooth muscle cells is serotonin transporter and ERK pathway dependent

    Institute of Scientific and Technical Information of China (English)

    Huai-liangWANG

    2004-01-01

    AIM: To investigate the effect of serotonin transporter (5-HTT)inhibitor fluoxetine and antisense oligodeoxynucleotide (ODN)to extracelluar signal-regulated kinases (ERKs) on pulmonary arterial smooth muscle cells (PASMCs) proliferation induced by 5-HT. METHODS: Liposomal transfection was used to introduce ODNs to ERK1/2 into cultured rat PASMCs and the transfection efficiency was measured by observing the uptake of the

  6. WNK4 inhibits NCC protein expression through MAPK ERK1/2 signaling pathway.

    Science.gov (United States)

    Zhou, Bo; Wang, Dexuan; Feng, Xiuyan; Zhang, Yiqian; Wang, Yanhui; Zhuang, Jieqiu; Zhang, Xuemei; Chen, Guangping; Delpire, Eric; Gu, Dingying; Cai, Hui

    2012-03-01

    WNK [with no lysine (K)] kinase is a subfamily of serine/threonine kinases. Mutations in two members of this family (WNK1 and WNK4) cause pseudohypoaldosteronism type II featuring hypertension, hyperkalemia, and metabolic acidosis. WNK1 and WNK4 were shown to regulate sodium chloride cotransporter (NCC) activity through phosphorylating SPAK and OSR1. Previous studies including ours have also shown that WNK4 inhibits NCC function and its protein expression. A recent study reported that a phorbol ester inhibits NCC function via activation of extracellular signal-regulated kinase (ERK) 1/2 kinase. In the current study, we investigated whether WNK4 affects NCC via the MAPK ERK1/2 signaling pathway. We found that WNK4 increased ERK1/2 phosphorylation in a dose-dependent manner in mouse distal convoluted tubule (mDCT) cells, whereas WNK4 mutants with the PHA II mutations (E562K and R1185C) lost the ability to increase the ERK1/2 phosphorylation. Hypertonicity significantly increased ERK1/2 phosphorylation in mDCT cells. Knock-down of WNK4 expression by siRNA resulted in a decrease of ERK1/2 phosphorylation. We further showed that WNK4 knock-down significantly increases the cell surface and total NCC protein expressions and ERK1/2 knock-down also significantly increases cell surface and total NCC expression. These data suggest that WNK4 inhibits NCC through activating the MAPK ERK1/2 signaling pathway.

  7. TDAG51 is an ERK signaling target that opposes ERK-mediated HME16C mammary epithelial cell transformation

    Directory of Open Access Journals (Sweden)

    Ward Yvona

    2008-07-01

    Full Text Available Abstract Introduction Signaling downstream of Ras is mediated by three major pathways, Raf/ERK, phosphatidylinositol 3 kinase (PI3K, and Ral guanine nucleotide exchange factor (RalGEF. Ras signal transduction pathways play an important role in breast cancer progression, as evidenced by the frequent over-expression of the Ras-activating epidermal growth factor receptors EGFR and ErbB2. Here we investigated which signal transduction pathways downstream of Ras contribute to EGFR-dependent transformation of telomerase-immortalized mammary epithelial cells HME16C. Furthermore, we examined whether a highly transcriptionally regulated ERK pathway target, PHLDA1 (TDAG51, suggested to be a tumor suppressor in breast cancer and melanoma, might modulate the transformation process. Methods Cellular transformation of human mammary epithelial cells by downstream Ras signal transduction pathways was examined using anchorage-independent growth assays in the presence and absence of EGFR inhibition. TDAG51 protein expression was down-regulated by interfering small hairpin RNA (shRNA, and the effects on cell proliferation and death were examined in Ras pathway-transformed breast epithelial cells. Results Activation of both the ERK and PI3K signaling pathways was sufficient to induce cellular transformation, which was accompanied by up-regulation of EGFR ligands, suggesting autocrine EGFR stimulation during the transformation process. Only activation of the ERK pathway was sufficient to transform cells in the presence of EGFR inhibition and was sufficient for tumorigenesis in xenografts. Up-regulation of the PHLDA1 gene product, TDAG51, was found to correlate with persistent ERK activation and anchorage-independent growth in the absence or presence of EGFR inhibition. Knockdown of this putative breast cancer tumor-suppressor gene resulted in increased ERK pathway activation and enhanced matrix-detached cellular proliferation of Ras/Raf transformed cells. Conclusion

  8. Antagonism of Muscarinic Acetylcholine Receptors Alters Synaptic ERK Phosphorylation in the Rat Forebrain.

    Science.gov (United States)

    Mao, Li-Min; Wang, Henry H; Wang, John Q

    2016-12-28

    Acetylcholine (ACh) is a key transmitter in the mesocorticolimbic circuit. By interacting with muscarinic ACh receptors (mAChR) enriched in the circuit, ACh actively regulates various neuronal and synaptic activities. The extracellular signal-regulated kinase (ERK) is one of members of the mitogen-activated protein kinase family and is subject to the regulation by dopamine receptors, although the regulation of ERKs by limbic mAChRs is poorly understood. In this study, we investigated the role of mAChRs in the regulation of ERK phosphorylation (activation) in the mesocorticolimbic system of adult rat brains in vivo. We targeted a sub-pool of ERKs at synaptic sites. We found that a systemic injection of the mAChR antagonist scopolamine increased phosphorylation of synaptic ERKs in the striatum (caudate putamen and nucleus accumbens) and medial prefrontal cortex (mPFC). Increases in ERK phosphorylation in both forebrain regions were rapid and transient. Notably, pretreatment with a dopamine D1 receptor (D1R) antagonist SCH23390 blocked the scopolamine-stimulated ERK phosphorylation in these brain regions, while a dopamine D2 receptor antagonist eticlopride did not. Scopolamine and SCH23390 did not change the amount of total ERK proteins. These results demonstrate that mAChRs inhibit synaptic ERK phosphorylation in striatal and mPFC neurons under normal conditions. Blockade of this inhibitory mAChR tone leads to the upregulation of ERK phosphorylation likely through a mechanism involving the level of D1R activity.

  9. Regulation of Oncoprotein 18/Stathmin Signaling by ERK Concerns the Resistance to Taxol in Nonsmall Cell Lung Cancer Cells.

    Science.gov (United States)

    Lin, Xuechi; Liao, Ying; Chen, Xian; Long, Dan; Yu, Ting; Shen, Fang

    2016-03-01

    Taxol is a cytotoxic antiepithelioma chemotherapy drug widely used clinically, which results in appearing a broad range of taxol-resistant tumors. Oncoprotein 18 (Op18)/stathmin is a genetically highly conserved small-molecule cytosolic phosphoprotein and highly expressed in tumors. Extracellular signal-regulated kinase (ERK) is a main member of mitogen-activated protein kinases (MAPKs). The study demonstrated that combination of blockage of ERK signal by ERK inhibitor PD98059 and Taxol greatly promoted taxol-induced cellular apoptosis and growth inhibition, decreased the expression of Op18/stathmin and total levels of phosphor-Op18/stathmin, while weakened the cyclin-dependent kinase 2 (cdc2) activity and antiapoptotic protein Bcl-2 expression and inhibited IL-10 autocrine in taxol-resistant NCI-H1299 cells; Taxol-resistant NCI-H1299 cells expressed high levels of ERK and phosphor-ERK in contrast to taxol-sensitive CNE1 cells, and ERK mainly phosphorylated Op18/stathmin at Ser 25 site. These findings suggest that ERK-mediated Op18/stathmin is involved in taxol resistance of tumors; blockage of ERK signal improves the sensitivity of tumor cells to taxol, which provides new clues for treating taxol-resistant carcinomas.

  10. TSA Inhibits Adipogenic Differentiation in Mesenchymal Stem Cells by Activating ERK and p38 Kinase%去乙酰化酶抑制剂TSA通过激活ERK和p38抑制间充质干细胞成脂分化

    Institute of Scientific and Technical Information of China (English)

    龚雨琴; 季煜华; 李智耀; 王奎栋

    2012-01-01

    本文研究了丝裂原活化蛋白激酶(mitogen activated protein kinases,MAPKs)信号通路在组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitors,HDACis)曲古抑菌素A(trichostatin A,TSA)抑制间充质干细胞(mesenchymal stem cells,MSCs)C3 H10T1/2成脂分化中的调节机制.首先利用MTT法检测TSA对其增殖活性的影响;Western印迹法首先检测MAPKs信号通路中pERK和p-p38蛋白在间充质干细胞C3H10T1/2成脂分化过程中的表达情况,以及不同浓度、不同时间TSA处理对pERK和p-p38蛋白差异变化情况;其次再用Western印迹检测TSA对成脂分化过程中间充质干细胞pERK和p-p38蛋白表达的影响.MTT结果显示,TSA浓度在1 nmol/L ~ 100 nmol/L范围内抑制C3H10T1/2细胞的增殖活性,且TSA浓度约为60 nmol/L时即抑制一半以上的C3H10T1/2细胞增殖活性.Western印迹结果显示,TSA处理5 min ~80 min,及浓度在1 nmol/L ~ 100 nmol/L范围内激活MAPK信号通路中pERK和p-p38蛋白的表达;C3H10T1/2细胞成脂分化过程中,胞内pERK和p-p38蛋白的表达呈现下调趋势;而TSA抑制了成脂分化过程中C3H10T1/2细胞内pERK和p-p38蛋白的表达变化.本研究结果提示,在C3H10T1/2细胞成脂分化过程中,MAPK信号途径分子pERK和p-p38表达下调;TSA可能是通过活化pERK和p-p38进而抑制间充质干细胞C3H10T1/2成脂分化.%This paper was involved in the regulatory mechanism of mitogen activated protein kinases (MAPKs ) signaling pathways in the inhibition effect of trichostatin A ( TSA ) on adipogenic differentiation in mesenchymal stem cells (MSCs). C3H10T1/2 cells were used as a suitable model for this study. The proliferation of cells treated by TSA was detected by MTT method. Western blotting was first applied to detect the expression of pERK and p-p38 proteins after C3H10T1/2 cells treated with TSA or adipogenic differentiation medium ( ADM) , and then to detect the expression of pERK and p-p38 proteins in the

  11. Role of ERK/MAPK in endothelin receptor signaling in human aortic smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Edvinsson Lars

    2009-07-01

    Full Text Available Abstract Background Endothelin-1 (ET-1 is a potent vasoactive peptide, which induces vasoconstriction and proliferation in vascular smooth muscle cells (VSMCs through activation of endothelin type A (ETA and type B (ETB receptors. The extracellular signal-regulated kinase 1 and 2 (ERK1/2 mitogen-activated protein kinases (MAPK are involved in ET-1-induced VSMC contraction and proliferation. This study was designed to investigate the ETA and ETB receptor intracellular signaling in human VSMCs and used phosphorylation (activation of ERK1/2 as a functional signal molecule for endothelin receptor activity. Results Subconfluent human VSMCs were stimulated by ET-1 at different concentrations (1 nM-1 μM. The activation of ERK1/2 was examined by immunofluorescence, Western blot and phosphoELISA using specific antibody against phosphorylated ERK1/2 protein. ET-1 induced a concentration- and time- dependent activation of ERK1/2 with a maximal effect at 10 min. It declined to baseline level at 30 min. The ET-1-induced activation of ERK1/2 was completely abolished by MEK1/2 inhibitors U0126 and SL327, and partially inhibited by the MEK1 inhibitor PD98059. A dual endothelin receptor antagonist bosentan or the ETA antagonist BQ123 blocked the ET-1 effect, while the ETB antagonist BQ788 had no significant effect. However, a selective ETB receptor agonist, Sarafotoxin 6c (S6c caused a time-dependent ERK1/2 activation with a maximal effect by less than 20% of the ET-1-induced activation of ERK1/2. Increase in bosentan concentration up to 10 μM further inhibited ET-1-induced activation of ERK1/2 and had a stronger inhibitory effect than BQ123 or the combined use of BQ123 and BQ788. To further explore ET-1 intracellular signaling, PKC inhibitors (staurosporin and GF109203X, PKC-delta inhibitor (rottlerin, PKA inhibitor (H-89, and phosphatidylinositol 3-kinase (PI3K inhibitor (wortmannin were applied. The inhibitors showed significant inhibitory effects on ET-1

  12. Phosphorylated ERK5/BMK1 transiently accumulates within division spindles in mouse oocytes and preimplantation embryos

    Directory of Open Access Journals (Sweden)

    Maria A. Ciemerych

    2011-10-01

    Full Text Available MAP kinases of the ERK family play important roles in oocyte maturation, fertilization, and early embryo development. The role of the signaling pathway involving ERK5 MAP kinase during meiotic and mitotic M-phase of the cell cycle is not well known. Here, we studied the localization of the phosphorylated, and thus potentially activated, form of ERK5 in mouse maturing oocytes and mitotically dividing early embryos. We show that phosphorylation/dephosphorylation, i.e. likely activation/inactivation of ERK5, correlates with M-phase progression. Phosphorylated form of ERK5 accumulates in division spindle of both meiotic and mitotic cells, and precisely co-localizes with spindle microtubules at metaphase. This localization changes drastically in the anaphase, when phospho-ERK5 completely disappears from microtubules and transits to the cytoplasmic granular, vesicle-like structures. In telophase oocytes it becomes incorporated into the midbody. Dynamic changes in the localization of phospho-ERK5 suggests that it may play an important role both in meiotic and mitotic division. (Folia Histochemica et Cytobiologica 2011, Vol. 49, No. 3, 528–534

  13. ERK/MAPK通路参与肝癌产生多药耐药的胞内信号传导%The role of extracellular signal-regulated kinase/mitogen-activated protein kinase pathway in multidrug resistance of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    朱虹; 陈孝平; 罗顺峰; 关剑; 张万广; 张必翔; 茅彩萍

    2007-01-01

    目的 探讨微环境诱导肝癌产生多药耐药的胞内信号传导途径.方法 分别使HepG2细胞在缺氧、低糖环境下生长或稳定整合HBX基因,运用Western蛋白印迹法检测这些细胞内ERK/MAPK的活性.用ERK/MAPK特异性阻断剂U0126处理这些细胞后,用Western蛋白印迹法检测缺氧诱导因子-1α(HIF-1α)和多药耐药相关蛋白的表达变化,逆转录聚合酶链反应和免疫细胞化学技术分别检测HIF-1α在mRNA水平表达量和部位的改变.结果 不同环境下生长的HepG2细胞中,磷酸化/非磷酸化ERK/MAPK比例均有不同程度的增高.用U0126处理12 h后,这些细胞中HIF-1α和多药耐药相关蛋白的表达下降,且HIF-1α表达由胞核向胞质转位,其mRNA水平无显著变化.结论 ERK/MAPK信号通路是微环境诱导肝癌产生多药耐药的重要胞内信号传导途径.

  14. Ischemic postconditioning protects hypertrophic myocardium by ERK1/2 signaling pathway: experiment with mice%肥厚心肌缺血后适应时细胞外信号调节激酶的保护作用

    Institute of Scientific and Technical Information of China (English)

    李晓梅; 马依彤; 杨毅宁; 张健发; 陈邦党; 刘芬; 黄莺; 韩伟; 高晓明

    2009-01-01

    Objective To investigate the effects of ischemic postconditioning (IPest) in protecting hypertrophic myocardium subjected to ischemic-reperfusion (I/R) and to study the role of extracellular regulated protein kinase (ERK1/2) in mediating such protection. Methods Transverse aortic constriction (TAG) operation was performed on 12-week-old C57/BL mice to establish left ventricular hypertrophy models. Sixty-four isolated TAG mouse hearts were mounted onto the Langendorff perfusinn system and randomly divided into 4 equal group: (1) I/R group undergoing stable perfusion for 30 rain, ischemia for 30 min, and re-perfusion for 120 min (an I/R cycle) to cause hypertrophic myocardium I/R injury, (2) IPost group undergoing ischemia for 10s and reperfusion for 10s, totally 3 cycles (60s) before reperfusion for 120 rain, (3) I/R + PD98059 (an ERK1/2 inhibitor) group undergoing perfusion of Krebs-Henseleit(KH) buffer with PD98059 10-5>mol/L for 15 min and perfusion of KH buffer without PD98059 at the beginning of re-perfusion, and (4) IPost + PD98059 group undergoing 3 cycles of IPost and perfusion of KH buffer with PD98059 10-5mol/L for 15 min at the beginning of re-perfusion. Hemodynamic examination was conducted 120 min after re-perfusion to measure the left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), maximal uprising velocity of left ventricle pressure (dp/dtmax), and minimal uprising velocity of left ventricle pressure (dp/dtmin). After the I/R procedure the mvocardium of the left ventricle was isolated to detect the infarction size (IS). Weetem blotting was used to detect the protein expresson of extracellular signal-regulated kinase (ERK) 1/2, phospharylated ERK1/2, Bcl-2, Bax, and mitochondrial and cytosolic eytochrome (Cyt). C. TUNEL was used to detect the apoptotic rate. Results The LVSP and dp/dtmaxlevels of the IPost group were(85 ±4)mm Hg and (3811±230) mm Hg/s, both significantly higher than those of the I/R group [(68

  15. Effect of lead on ERK activity and the protective function of bFGF in rat primary culture astroglia

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; YE Li-ping; WANG Biao; CAO Shi-cheng; SUN Li-guang

    2007-01-01

    Objective:To observe the effects of lead on levels ofphosphorylated extracellular signal regulated kinase (p-ERK) in the cytoplasm of primary cultures of rat astroglial cells and the possible protective effect of basic fibroblast growth factor (bFGF)on lead-induced effects.Methods:The primary astroglia cells from 1~6 d old Wistar rats were cultured.The cells pretreated with the MEK1 (mitogen-activated protein kinase kinase 1) inhibitor PD98059 and bFGF,respectively,were exposed to Pb acetate of different concentrations for different times.Western blotting and reverse transcription polymerase chain reaction (RT-PCR)methods were used to detect the protein and mRNA expressions of ERK.Results:mRNA expression for ERK peaked 15 min after initiation of lead exposure (P<0.05) and protein expression of p-ERK peaked at 30 min (P<0.05).ERK mRNA levels and p-ERK protein levels returned to baseline after 60 and 120 min of lead exposure,respectively (P>0.05).The increase in p-ERK levels in lead-treated cells could be inhibited by PD098059.Activation of ERK in the cells by lead was prevented by pretreatment with bFGF.Total ERK protein levels did not change under the same experimental conditions (P>0.05).Conclusion:Low-level lead exposure resulted in transient activation of ERK through the MEK pathway,which then returned to basal levels in the continued presence of lead.Exogenous bFGF protected ERK signaling components in astroglia from lead poisoning.

  16. Moxibustion Inhibits the ERK Signaling Pathway and Intestinal Fibrosis in Rats with Crohn’s Disease

    Directory of Open Access Journals (Sweden)

    Xiaomei Wang

    2013-01-01

    Full Text Available Intestinal fibrosis is the main pathological process in Crohn’s disease (CD; acupuncture and moxibustion can inhibit the process of fibrosis in CD rats, but the regulatory mechanism remains unknown. The present study observed the effect of moxibustion on the extracellular signal-regulated kinase (ERK signaling pathway in the CD rat. The result shows that the phosphorylation of the Ras, Raf-1, MEK-1, and ERK-1/2 proteins and the expression of the corresponding mRNAs in the colon tissue of CD rat were significantly higher than the normal control group. Both treatments with mild moxibustion and with herb-separated moxibustion significantly reduced the expression of the Ras, Raf-1, MEK-1, and ERK-1/2 proteins and Ras and Raf-1 mRNA. MEK-1 and ERK-1/2 mRNA expression in each treatment group showed a downward trend, and the ERK-1/2 mRNA levels were significantly lower in the mild moxibustion group. It indicates that Ras, Raf-1, MEK-1, and ERK-1/2 are involved in the process of intestinal fibrosis in CD rats. Moxibustion can downregulate the abnormal expression of colonic Ras, Raf-1, MEK-1, and ERK-1/2 protein and mRNA levels in CD intestinal fibrosis in rats. Moxibustion may play a role in the treatment of CD intestinal fibrosis by regulating ERK signaling pathway.

  17. Prolonged Sulforaphane Treatment Activates Extracellular-Regulated Kinase 1/2 Signaling in Nontumorigenic Colon Cells but not Colon Cancer Cells

    Science.gov (United States)

    Sulforaphane (SFN) is a naturally occurring member of the isothiocyanate family of chemopreventive agents and the induction of cell cycle arrest and apoptosis is a key mechanism by which SFN exerts its colon cancer prevention. However, little is known about the differential effects of SFN on colon c...

  18. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1

    Directory of Open Access Journals (Sweden)

    Matthew J. Randall

    2013-01-01

    Full Text Available Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal. Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1, a critical enzyme involved in regulation of thioredoxin (Trx-mediated redox signaling, by alkylation at its selenocysteine (Sec residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1–30 μM resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases

  19. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1.

    Science.gov (United States)

    Randall, Matthew J; Spiess, Page C; Hristova, Milena; Hondal, Robert J; van der Vliet, Albert

    2013-01-01

    Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1-30 μM) resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases such as JNK, and

  20. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Margarida Ressurreição

    2014-06-01

    Full Text Available Protein kinases C (PKCs and extracellular signal-regulated kinases (ERKs are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.

  1. Nitric oxide promotes nicotine-triggered ERK signaling via redox reactions in PC12 cells.

    Science.gov (United States)

    Miyamoto, Yoshiaki; Sakai, Ryosuke; Maeda, Chiharu; Takata, Tsuyoshi; Ihara, Hideshi; Tsuchiya, Yukihiro; Watanabe, Yasuo

    2011-10-30

    Nitric oxide (NO), produced by neuronal NO synthase (nNOS), serves as a signaling molecule with diverse biological responses in the central nervous system (CNS). In the present study, we demonstrated that nNOS expression enhances the nicotine-triggered activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in nNOS-transfected PC12 (NPC12) cells. Treatment with nicotine increased the phosphorylation level of ERK1/2 in the NPC12 cells as compared with that in control PC12 cells. However, nicotine treatment failed to enhance ERK1/2 phosphorylation when NPC12 cells were pretreated with several selective inhibitors of NOS, the nicotinic acetylcholine receptors, L-type voltage-dependent Ca(2+) channels, protein kinase C, Src, epidermal growth factor receptor, and MEK. The nicotine-induced ERK1/2 phosphorylation in PC12 cells was observed by their pretreatment with a NO donor. Moreover, the enhancement of nicotine-induced ERK1/2 phosphorylation in the NPC12 cells was regulated by intracellular glutathione levels, but not by the soluble guanylate cyclase-cGMP-protein kinase G signaling. Meanwhile, depolarization stimulated ERK1/2 phosphorylation in both PC12 and NPC12 cells. Taken together, these findings suggest that nicotine modulates NO-dependent redox condition; the resulting calcium influx, would increase ERK1/2 phosphorylation in nNOS expressing cells. Blockade of NO pathway may be selective target to reduce ERK1/2 phosphorylation via attenuation of the nicotine responses in the CNS.

  2. Basic Fibroblast Growth Factor Regulates Persistent ERK Osciliations in Premaligant but not Malignant JB6 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas J.; Shankaran, Harish; Wiley, H. S.; Opresko, Lee K.; Chrisler, William B.; Quesenberry, Ryan D.

    2010-05-02

    basic fibroblast growth factor (bFGF or FGF2) plays an important role in epidermal wound healing in vivo and is associated with a persistent increased in the extracellular signal-regulated kinase (ERK) pathway in vitro. Here we have examined whether bFGF induces the closure of an experimental scratch wound in JB6 mouse epidermal cells and have explored the regulation of the ERK pathway by bFGF in the context of kinase oscillations. bFGF stimulation is associated with increases in cellular phospho-ERK and phospho-c-Jun levels. In addition, bFGF increases cell proliferation and a change in cell morphology (stellate appearance) in a dose-dependent fashion (0.1 – 100 ng/ml). bFGF treatment also promoted the closure of an experimental scratch wound in vitro. JB6 cells were stably transfected with an ERK1-GFP chimera to follow temporal ERK subcellular distribution patterns. We observe a persistent upregulation of the ERK pathway, as evidenced by a significant increase in nuclear ERK1-GFP levels at time points up to 24 hr after bFGF treatment. Interestingly, at the single cell level, ERK is observed to oscillate between nuclear and cytosolic compartments in response to bFGF treatment. Because this oscillatory behavior is asynchronous in the cell population, it is only clearly resolved at the single cell level. Collectively, data presented here are consistent with an important role for bFGF in wound healing and suggest a more complex regulation of the ERK pathway by bFGF than has previously been appreciated.

  3. Involvement of MEK/ERK pathway in cephaloridine-induced injury in rat renal cortical slices.

    Science.gov (United States)

    Kohda, Yuka; Hiramatsu, Jun; Gemba, Munekazu

    2003-07-20

    We have previously reported that free radical-mediated injury induced by cephaloridine (CER) is enhanced by phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, in rat renal cortical slices. We have also shown that PKC activation in mitochondria is involved in CER-induced nephrotoxicity in rats. We investigated the role of a downstream PKC pathway, a MEK/ERK pathway, in free radical-induced injury in rat renal cortical slices exposed to CER. Immediately after preparing slices from rat renal cortex, the slices were incubated in the medium containing MEK inhibitors. ERK1/2 activation was determined by Western blot analysis for phosphorylated ERK (pERK) 1/2 protein in nucleus fraction prepared from the slices exposed to CER. Prominently, CER caused not only increases in lipid peroxidation as an index of free radical generation and in LDH leakage as that of cell injury in the slices, but also marked activation of ERK1/2 in nucleus fraction. PD98059 and U0126, MEK1/2 inhibitors, significantly attenuated CER-induced increases in lipid peroxidation and LDH leakage in the slices. PD98059 also suppressed ERK1/2 activation in nucleus fraction prepared from the slices treated with CER. Inhibition of other MAP kinase pathways, p38 MAP kinase and c-Jun N-terminal kinase (JNK) had no effect on CER-induced increases in lipid peroxidation level and LDH leakage in the slices. The present results suggest that a MEK/ERK pathway down stream of a PKC pathway is probably involved in free radical-induced injury in rat renal cortical slices exposed to CER.

  4. Ser⁄ Thr residues at α3⁄β5 loop of Gαs are important in morphine-induced adenylyl cyclase sensitization but not mitogen-activated protein kinase phosphorylation

    Science.gov (United States)

    Seyedabadi, Mohammad; Ostad, Seyed Nasser; Albert, Paul R.; Dehpour, Ahmad R.; Rahimian, Reza; Ghazi-Khansari, Mahmoud; Ghahremani, Mohammad H.

    2015-01-01

    The signaling switch of β2-adrenergic and μ1-opioid receptors from stimulatory G-protein (Gαs) to inhibitory G-protein (Gαi) (and vice versa) influences adenylyl cyclase (AC) and extracellular-regulated kinase (ERK)1 ⁄ 2 activation. Post-translational modifications, including dephosphorylation of Gαs, enhance opioid receptor coupling to Gαs. In the present study, we substituted the Ser ⁄ Thr residues of Gαs at the α3 ⁄ β5 and α4 ⁄ β6 loops aiming to study the role of Gαs lacking Ser ⁄ Thr phosphorylation with respect to AC sensitization and mitogen-activated protein kinase activation. Isoproterenol increased the cAMP concentration (EC50 = 22.8 ± 3.4 μM) in Gαs-transfected S49 cyc– cells but not in nontransfected cells. However, there was no significant difference between the Gαs-wild-type (wt) and mutants. Morphine (10 μM) inhibited AC activity more efficiently in cyc– compared to Gαs-wt introduced cells (P < 0.05); however, we did not find a notable difference between Gαs-wt and mutants. Interestingly, Gαs-wt transfected cells showed more sensitization with respect to AC after chronic morphine compared to nontransfected cells (101 ± 12% versus 34 ± 6%; P < 0.001); μ1-opioid receptor interacted with Gαs, and both co-immunoprecipitated after chronic morphine exposure. Furthermore, mutation of T270A and S272A (P < 0.01), as well as T270A, S272A and S261A (P < 0.05), in α3 ⁄ β5, resulted in a higher level of AC supersensitization. ERK1⁄ 2 phosphorylation was rapidly induced by isoproterenol (by 9.5 ± 2.4-fold) and morphine (22 ± 2.2-fold) in Gαs-transfected cells; mutations of α3 ⁄ β5 and α4 ⁄ β6 did not affect the pattern or extent of mitogen-activated protein kinase activation. The findings of the present study show that Gαs interacts with the μ1-opioid receptor, and the Ser ⁄ Thr mutation to Ala at the α3 ⁄ β5 loop of Gαs enhances morphine-induced AC sensitization. In addition, Gαs was required for

  5. ERK Signal Suppression and Sensitivity to CH5183284/Debio 1347, a Selective FGFR Inhibitor.

    Science.gov (United States)

    Nakanishi, Yoshito; Mizuno, Hideaki; Sase, Hitoshi; Fujii, Toshihiko; Sakata, Kiyoaki; Akiyama, Nukinori; Aoki, Yuko; Aoki, Masahiro; Ishii, Nobuya

    2015-12-01

    Drugs that target specific gene alterations have proven beneficial in the treatment of cancer. Because cancer cells have multiple resistance mechanisms, it is important to understand the downstream pathways of the target genes and monitor the pharmacodynamic markers associated with therapeutic efficacy. We performed a transcriptome analysis to characterize the response of various cancer cell lines to a selective fibroblast growth factor receptor (FGFR) inhibitor (CH5183284/Debio 1347), a mitogen-activated protein kinase kinase (MEK) inhibitor, or a phosphoinositide 3-kinase (PI3K) inhibitor. FGFR and MEK inhibition produced similar expression patterns, and the extracellular signal-regulated kinase (ERK) gene signature was altered in several FGFR inhibitor-sensitive cell lines. Consistent with these findings, CH5183284/Debio 1347 suppressed phospho-ERK in every tested FGFR inhibitor-sensitive cell line. Because the mitogen-activated protein kinase (MAPK) pathway functions downstream of FGFR, we searched for a pharmacodynamic marker of FGFR inhibitor efficacy in a collection of cell lines with the ERK signature and identified dual-specificity phosphatase 6 (DUSP6) as a candidate marker. Although a MEK inhibitor suppressed the MAPK pathway, most FGFR inhibitor-sensitive cell lines are insensitive to MEK inhibitors and we found potent feedback activation of several pathways via FGFR. We therefore suggest that FGFR inhibitors exert their effect by suppressing ERK signaling without feedback activation. In addition, DUSP6 may be a pharmacodynamic marker of FGFR inhibitor efficacy in FGFR-addicted cancers.

  6. Stimulus-specific activation and actin dependency of distinct, spatially separated ERK1/2 fractions in A7r5 smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Susanne Vetterkind

    Full Text Available A proliferative response of smooth muscle cells to activation of extracellular signal regulated kinases 1 and 2 (ERK1/2 has been linked to cardiovascular disease. In fully differentiated smooth muscle, however, ERK1/2 activation can also regulate contraction. Here, we use A7r5 smooth muscle cells, stimulated with 12-deoxyphorbol 13-isobutylate 20-acetate (DPBA to induce cytoskeletal remodeling or fetal calf serum (FCS to induce proliferation, to identify factors that determine the outcomes of ERK1/2 activation in smooth muscle. Knock down experiments, immunoprecipitation and proximity ligation assays show that the ERK1/2 scaffold caveolin-1 mediates ERK1/2 activation in response to DPBA, but not FCS, and that ERK1/2 is released from caveolin-1 upon DPBA, but not FCS, stimulation. Conversely, ERK1/2 associated with the actin cytoskeleton is significantly reduced after FCS, but not DPBA stimulation, as determined by Triton X fractionation. Furthermore, cytochalasin treatment inhibits DPBA, but not FCS-induced ERK1/2 phosphorylation, indicating that the actin cytoskeleton is not only a target but also is required for ERK1/2 activation. Our results show that (1 at least two ERK1/2 fractions are regulated separately by specific stimuli, and that (2 the association of ERK1/2 with the actin cytoskeleton regulates the outcome of ERK1/2 signaling.

  7. GGPPS, a new EGR-1 target gene, reactivates ERK 1/2 signaling through increasing Ras prenylation.

    Science.gov (United States)

    Shen, Ning; Shao, Yue; Lai, Shan-Shan; Qiao, Long; Yang, Run-Lin; Xue, Bin; Pan, Fei-Yan; Chen, Hua-Qun; Li, Chao-Jun

    2011-12-01

    Cigarette smoke activates the extracellular signal-regulated kinase (ERK) 1/2 mitogen activated-protein kinase pathway, which, in turn, is responsible for early growth response gene-1 (EGR-1) activation. Here we provide evidence that EGR-1 activation can also reactivate ERK 1/2 mitogen activated-protein kinase through a positive feedback loop through its target gene (geranylgeranyl diphosphate synthase) GGPPS. For the first time, the GGPPS gene is identified as a target of EGR-1, as EGR-1 can directly bind to the predicted consensus-binding site in the GGPPS promoter and regulate its transcription. Long-term observations show that there are two ERK 1/2 phosphorylation peaks after cigarette smoke extract stimulation in human lung epithelial Beas-2B cells. The first peak (at 10 minutes) is responsible for EGR-1 accumulation, and the second (at 4 hours) is diminished after the disruption of EGR-1 transcriptional activity. EGR-1 overexpression enhances Ras prenylation and membrane association in a GGPPS-dependent manner, and it augments ERK 1/2 activation. Likewise, a great reduction of the second peak of ERK 1/2 phosphorylation is observed during long-term cigarette smoke extract stimulation in cells where GGPPS is disrupted. Thus, we have uncovered an intricate positive feedback loop in which ERK 1/2-activated EGR-1 promotes ERK 1/2 reactivation through promoting GGPPS transcription, which might affect cigarette smoke-related lung pathological processes.

  8. Molecular mechanism: ERK signaling, drug addiction and behavioral effects

    Science.gov (United States)

    Sun, Wei-Lun; Quizon, Pamela M.; Zhu, Jun

    2017-01-01

    Addiction to psychostimulants has been considered as a chronic psychiatric disorder, characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that results in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction. PMID:26809997

  9. Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects.

    Science.gov (United States)

    Sun, Wei-Lun; Quizon, Pamela M; Zhu, Jun

    2016-01-01

    Addiction to psychostimulants has been considered as a chronic psychiatric disorder characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that result in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction. Copyright © 2016. Published by Elsevier Inc.

  10. High temperature and hexane break pupal diapause in the flesh fly, Sarcophaga crassipalpis, by activating ERK/MAPK.

    Science.gov (United States)

    Fujiwara, Yoshihiro; Denlinger, David L

    2007-12-01

    Pupal diapause in the flesh fly, Sarcophaga crassipalpis, can be terminated by exposure to high temperatures or, artificially, with a topical application of organic solvents. To analyze the molecular mechanisms involved in diapause termination we explored the possibility that the mitogen-activated protein kinases (MAPK) are involved in this response. Levels of phospho-ERK increased within 10 min after hexane application. Extracellular signal-regulated kinase (ERK) was also activated when pupae were transferred from 20 to 25 degrees C, thus suggesting that ERK activation is a likely component of the signal transduction pathway used to initiate development in response to diapause-terminating signals. 20-Hydroxyecdysone and cyclic GMP terminate diapause in this fly, and the juvenile hormone analog methoprene shortens the diapause, but none of these agents activated ERK. ERK was readily activated in isolated abdomens treated with hexane, thus we conclude that ERK is directly activated by the hexane treatment. ERK activation was evident in the brain, epidermis, midgut and fat body, but not in the ventral nerve mass or ring gland, thus suggesting that ERK does not act directly on the ring gland to promote ecdysteroid synthesis but exerts its effect through stimulation of the brain.

  11. Role of ERK/MAPK in endothelin receptor signaling in human aortic smooth muscle cells

    DEFF Research Database (Denmark)

    Chen, Qing-wen; Edvinsson, Lars; Xu, Cang-Bao

    2009-01-01

    muscle cells (VSMCs) through activation of endothelin type A (ETA) and type B (ETB) receptors. The extracellular signal-regulated kinase 1 and 2 (ERK1/2) mitogen-activated protein kinases (MAPK) are involved in ET-1-induced VSMC contraction and proliferation. This study was designed to investigate...... the ETA and ETB receptor intracellular signaling in human VSMCs and used phosphorylation (activation) of ERK1/2 as a functional signal molecule for endothelin receptor activity. RESULTS: Subconfluent human VSMCs were stimulated by ET-1 at different concentrations (1 nM-1 microM). The activation of ERK1/2...... was examined by immunofluorescence, Western blot and phosphoELISA using specific antibody against phosphorylated ERK1/2 protein. ET-1 induced a concentration- and time- dependent activation of ERK1/2 with a maximal effect at 10 min. It declined to baseline level at 30 min. The ET-1-induced activation of ERK1/2...

  12. Erk5 Is a Key Regulator of Naive-Primed Transition and Embryonic Stem Cell Identity

    Directory of Open Access Journals (Sweden)

    Charles A.C. Williams

    2016-08-01

    Full Text Available Embryonic stem cells (ESCs can self-renew or differentiate into any cell type, a phenomenon known as pluripotency. Distinct pluripotent states, termed naive and primed pluripotency, have been described. However, the mechanisms that control naive-primed pluripotent transition are poorly understood. Here, we perform a targeted screen for kinase inhibitors, which modulate the naive-primed pluripotent transition. We find that XMD compounds, which selectively inhibit Erk5 kinase and BET bromodomain family proteins, drive ESCs toward primed pluripotency. Using compound selectivity engineering and CRISPR/Cas9 genome editing, we reveal distinct functions for Erk5 and Brd4 in pluripotency regulation. We show that Erk5 signaling maintains ESCs in the naive state and suppresses progression toward primed pluripotency and neuroectoderm differentiation. Additionally, we identify a specialized role for Erk5 in defining ESC lineage selection, whereby Erk5 inhibits a cardiomyocyte-specific differentiation program. Our data therefore reveal multiple critical functions for Erk5 in controlling ESC identity.

  13. Evidence for Elevated Cerebrospinal Fluid ERK1/2 Levels in Alzheimer Dementia

    Directory of Open Access Journals (Sweden)

    Philipp Spitzer

    2011-01-01

    Full Text Available Cerebrospinal fluid (CSF samples from 33 patients with Alzheimer dementia (AD, 21 patients with mild cognitive impairment who converted to AD during followup (MCI-AD, 25 patients with stable mild cognitive impairment (MCI-stable, and 16 nondemented subjects (ND were analyzed with a chemiluminescence immunoassay to assess the levels of the mitogen-activated protein kinase ERK1/2 (extracellular signal-regulated kinase 1/2. The results were evaluated in relation to total Tau (tTau, phosphorylated Tau (pTau, and beta-amyloid 42 peptide (Aβ42. CSF-ERK1/2 was significantly increased in the AD group as compared to stable MCI patients and the ND group. Western blot analysis of a pooled cerebrospinal fluid sample revealed that both isoforms, ERK1 and ERK2, and low amounts of doubly phosphorylated ERK2 were detectable. As a predictive diagnostic AD biomarker, CSF-ERK1/2 was inferior to tTau, pTau, and Aβ42.

  14. TgERK7 is involved in the intracellular proliferation of Toxoplasma gondii.

    Science.gov (United States)

    Li, Zhong-Yuan; Wang, Ze-Dong; Huang, Si-Yang; Zhu, Xing-Quan; Liu, Quan

    2016-09-01

    Toxoplasma gondii uses a unique mechanism to fulfill its asexual life cycles by which the parasite can infect all the warm-blooded animals including humans. Mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK) pathway widely existed in eukaryotic cells mediates the conversion of environmental stimuli to intracellular events such as proliferation and differentiation. Their counterparts have been identified in Apicomplexan parasites such as ERK7 in T. gondii. To confirm whether the unique mechanism of T. gondii is relevant to MAPK/ERK member, we created a mutant (ΔTgERK7) in GT1 tachyzoites using double homologous recombination method. Our results of virulence evaluation showed 100 % survival of all the ΔTgERK7-infected mice until 35 days post-challenge compared to no survival in wild-type GT1-infected group (10.6 ± 0.34 days). Furthermore, lower parasite loads were detected in the peritoneal fluid of ΔTgERK7-infected mice (P parasites was significantly prolonged in comparison with wild-type GT1 tachyzoites (P parasite.

  15. Intra-amygdala inhibition of ERK(1/2) potentiates the discriminative stimulus effects of alcohol.

    Science.gov (United States)

    Besheer, Joyce; Fisher, Kristen R; Cannady, Reginald; Grondin, Julie J M; Hodge, Clyde W

    2012-03-17

    Extracellular signal-regulated kinase (ERK(1/2)) has been implicated in modulating drug seeking behavior and is a target of alcohol and other drugs of abuse. Given that the discriminative stimulus (subjective/interoceptive) effects of drugs are determinants of abuse liability and can influence drug seeking behavior, we examined the role of ERK(1/2) in modulating the discriminative stimulus effects of alcohol. Using drug discrimination procedures, rats were trained to discriminate a moderate intragastric (IG) alcohol dose (1g/kg) versus water (IG). Following an alcohol (1g/kg) discrimination session phosphorylated ERK(1/2) (pERK(1/2)) immunoreactivity (IR) was significantly elevated in the amygdala, but not the nucleus accumbens. Therefore, we hypothesized that intra-amygdala inhibition of ERK(1/2) would disrupt expression of the discriminative stimulus effects of alcohol. However, intra-amygdala or accumbens administration of the MEK/ERK(1/2) inhibitor U0126 (1 and 3μg) had no effect on the discriminative stimulus effects of the training dose of alcohol (1g/kg). Contrary to our hypothesis, intra-amygdala infusion of U0126 (3μg) potentiated the discriminative stimulus effects of a low alcohol dose (0.5g/kg) and had no effect following nucleus accumbens infusion. Importantly, site-specific inhibition of pERK(1/2) in each brain region was confirmed. Therefore, the increase in pERK(1/2) IR in the amygdala following systemic alcohol administration may be reflective of the widespread effects of alcohol on the brain (activation/inhibition of brain circuits), whereas the site specific microinjection studies confirmed functional involvement of intra-amygdala ERK(1/2). These findings show that activity of the ERK signaling pathway in the amygdala can influence the discriminative stimulus effects of alcohol.

  16. The human Na(+)/H(+) exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2

    DEFF Research Database (Denmark)

    Hendus-Altenburger, Ruth; Pedraz-Cuesta, Elena; Olesen, Christina W;

    2016-01-01

    BACKGROUND: Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. METHODS AND RESULTS: Here, we identify...... the human Na(+)/H(+) exchanger 1 (hNHE1) as a membrane scaffold protein for ERK2 and show direct hNHE1-ERK1/2 interaction in cellular contexts. Using nuclear magnetic resonance (NMR) spectroscopy and immunofluorescence analysis we demonstrate that ERK2 scaffolding by hNHE1 occurs by one of three D...... and ERK2, and provides a molecular mechanism for the important ERK2 scaffolding function of the membrane protein hNHE1, which regulates the phosphorylation of both hNHE1 and ERK2....

  17. The three α1-adrenoceptor subtypes show different spatio-temporal mechanisms of internalization and ERK1/2 phosphorylation.

    Science.gov (United States)

    Perez-Aso, M; Segura, V; Montó, F; Barettino, D; Noguera, M A; Milligan, G; D'Ocon, P

    2013-10-01

    We analyzed the kinetic and spatial patterns characterizing activation of the MAP kinases ERK 1 and 2 (ERK1/2) by the three α1-adrenoceptor (α1-AR) subtypes in HEK293 cells and the contribution of two different pathways to ERK1/2 phosphorylation: protein kinase C (PKC)-dependent ERK1/2 activation and internalization-dependent ERK1/2 activation. The different pathways of phenylephrine induced ERK phosphorylation were determined by western blot, using the PKC inhibitor Ro 31-8425, the receptor internalization inhibitor concanavalin A and the siRNA targeting β-arrestin 2. Receptor internalization properties were studied using CypHer5 technology and VSV-G epitope-tagged receptors. Activation of α1A- and α1B-ARs by phenylephrine elicited rapid ERK1/2 phosphorylation that was directed to the nucleus and inhibited by Ro 31-8425. Concomitant with phenylephrine induced receptor internalization α1A-AR, but not α1B-AR, produced a maintained and PKC-independent ERK phosphorylation, which was restricted to the cytosol and inhibited by β-arrestin 2 knockdown or concanavalin A treatment. α1D-AR displayed constitutive ERK phosphorylation, which was reduced by incubation with prazosin or the selective α1D antagonist BMY7378. Following activation by phenylephrine, α1D-AR elicited rapid, transient ERK1/2 phosphorylation that was restricted to the cytosol and not inhibited by Ro 31-8425. Internalization of the α1D-AR subtype was not observed via CypHer5 technology. The three α1-AR subtypes present different spatio-temporal patterns of receptor internalization, and only α1A-AR stimulation translates to a late, sustained ERK1/2 phosphorylation that is restricted to the cytosol and dependent on β-arrestin 2 mediated internalization.

  18. Upregulated Ras/Raf/ERK1/2 signaling pathway:a new hope in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Tao Liu; Fu-jiang Cao; Dong-dong Xu; Yun-qiang Xu; Shi-qing Feng

    2015-01-01

    An increasing number of studies report that the Ras/Raf/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway has a death-promoting apoptotic function in neural cells. We hypothesized that the Ras/Raf/ERK1/2 signaling pathway may be abnormally regulated in rat injured spinal cord models. The weight drop method was used to establish rat spinal cord injury at T9. Western blot analysis and immunohistochemical staining revealed Ras expression was dramatically elevated, and the phosphorylations of A-Raf, B-Raf and C-Raf were all upregulated in the injured spinal cord. Both mitogen-activated protein kinase kinase 1/2 and ERK1/2, which belong to the Ras/Raf signaling kinases, were upregulated. These results indicate that Ras/Raf/ERK1/2 signaling may be upregulated in injured spinal cord and are involved in recovery after spinal cord injury.

  19. ERK/pERK expression and B-raf mutations in colon adenocarcinomas: correlation with clinicopathological characteristics

    Directory of Open Access Journals (Sweden)

    Levidou Georgia

    2012-02-01

    Full Text Available Abstract Background Colorectal (CRC carcinogenesis through various morphological stages has been linked to several genetic and epigenetic changes. The Raf/MEK/ERK (MAPK signal transduction cascade is an important mediator of a number of cellular fates. Methods In this study, we investigated the presence of B-raf and K-ras mutations in 94 consecutive cases of primary colon adenocarcinoma in correlation with the immunohistochemical expression of total and activated ERK and the expression of mismatch repair proteins (MMR hMLH1 and hMSH2 as well as their correlations with standard clinicopathological parameters. Results The immunostaining pattern for total and activated ERK was nuclear and cytoplasmic. hMLH1 and hMSH2 proteins were preserved in 45/63 (71.43% cases and 35/53 (66.04% cases respectively. Total ERK nuclear expression, was positively correlated with tumor stage (p = 0.049, whereas nuclear pERK expression was positively correlated with histological grade (p = 0.0113 and tumor stage (p = 0.0952, although the latter relationship was of marginal significance. DNA sequencing showed that 12 samples (12.7% had a mutation in B-RAF Exon 15 and none in Exon 11, whereas 22 (23.4% had a K-ras mutation. Disruption of the MAP kinase pathway-either through K-ras or B-raf mutation-was detected in 37% of all the examined cases, although the overexpression of total and activated ERK1/2 was not correlated with the mutational status of K-ras or B-raf genes. Finally, the preservation of hMLH1 or hMSH2 immunoexpression was not correlated with the presence of B-raf and/or K-ras mutations. Conclusions In this study, we present evidence that ERK activation occurs in a K-ras or B-raf -independent manner in the majority of primary colon cancer cases. Moreover, B-raf mutations are not associated with mismatch-repair deficiency through loss of hMLH1 or hMSH2 expression. Activated ERK could possibly be implicated in tumor invasiveness as well as in the acquisition of

  20. ERK regulates Golgi and centrosome orientation towards the leading edge through GRASP65.

    Science.gov (United States)

    Bisel, Blaine; Wang, Yanzhuang; Wei, Jen-Hsuan; Xiang, Yi; Tang, Danming; Miron-Mendoza, Miguel; Yoshimura, Shin-ichiro; Nakamura, Nobuhiro; Seemann, Joachim

    2008-09-08

    Directed cell migration requires the orientation of the Golgi and centrosome toward the leading edge. We show that stimulation of interphase cells with the mitogens epidermal growth factor or lysophosphatidic acid activates the extracellular signal-regulated kinase (ERK), which phosphorylates the Golgi structural protein GRASP65 at serine 277. Expression of a GRASP65 Ser277 to alanine mutant or a GRASP65 1-201 truncation mutant, neither of which can be phosphorylated by ERK, prevents Golgi orientation to the leading edge in a wound assay. We show that phosphorylation of GRASP65 with recombinant ERK leads to the loss of GRASP65 oligomerization and causes Golgi cisternal unstacking. Furthermore, preventing Golgi polarization by expressing mutated GRASP65 inhibits centrosome orientation, which is rescued upon disassembly of the Golgi structure by brefeldin A. We conclude that Golgi remodeling, mediated by phosphorylation of GRASP65 by ERK, is critical for the establishment of cell polarity in migrating cells.

  1. Cordyceps bassiana inhibits smooth muscle cell proliferation via the ERK1/2 MAPK signaling pathway.

    Science.gov (United States)

    Jin, Enze; Han, Seongho; Son, Mina; Kim, Sung-Whan

    2016-01-01

    Cordyceps belongs to a genus of acormycete fungi and is known to exhibit various pharmacological effects. The aim of this study was to investigate the effect of Cordyceps species on the proliferation of vascular smooth muscle cells (VSMC) and their underlying molecular mechanism. A cell proliferation assay showed that Cordyceps bassiana ethanol extract (CBEE) significantly inhibited VSMC proliferation. In addition, neointimal formation was significantly reduced by treatment with CBEE in the carotid artery of balloon-injured rats. We also investigated the effects of CBEE on the extracellular signal-regulated kinase (ERK) signal pathway. Western blot analysis revealed increased ERK 1/2 phosphorylation in VSMCs treated with CBEE. Pretreatment with U0126 completely abrogated CBEE-induced ERK 1/2 phosphorylation. In conclusion, CBEE exhibited anti-proliferative properties that affected VSMCs through the ERK1/2 MAPK signaling pathway. Our data may elucidate the inhibitory mechanism of this natural product.

  2. Synaptic GluN2B/CaMKIIα signalling induces synapto-nuclear transport of ERK and Jacob

    Directory of Open Access Journals (Sweden)

    Michelle Melgarejo da Rosa

    2016-08-01

    Full Text Available A central pathway in synaptic plasticity couples N-Methyl-D-Aspartate-receptor (NMDAR-signalling to the activation of extracellular signal-regulated kinases (ERKs cascade. ERK-dependency has been demonstrated for several forms of synaptic plasticity as well as learning and memory and includes local synaptic processes but also long-distance signalling to the nucleus. It is, however, controversial how NMDAR signals are connected to ERK activation in dendritic spines and nuclear import of ERK. The synapto-nuclear messenger Jacob couples NMDAR-dependent Ca2+-signalling to CREB-mediated gene expression. Protein transport of Jacob from synapse to nucleus essentially requires activation of GluN2B-containing NMDARs. Subsequent phosphorylation and binding of ERK1/2 to and ERK-dependent phosphorylation of serine 180 in Jacob encodes synaptic but not extrasynaptic NMDAR activation. In this study we show that stimulation of synaptic NMDAR in hippocampal primary neurons and induction of long-term potentiation (LTP in acute slices results in GluN2B-dependent activation of CaMKII-α and subsequent nuclear import of active ERK and serine 180 phosphorylated Jacob. On the contrary, no evidence was found that either GluN2A-containing NMDAR or RasGRF2 are upstream of ERK activation and nuclear import of Jacob and ERK.

  3. High Erk activity suppresses expression of the cell cycle inhibitor p27Kip1 in colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Raabe Thomas

    2010-02-01

    Full Text Available Abstract The molecular heterogeneity of human cancer cells at the level of signaling protein activities remains poorly understood. Using a panel of 64 colorectal (CRC cancer cell lines the activity status of the MAP kinases Erk1 and Erk2 was investigated. Erk1/2 activity varied greatly within the CRC cell line panel and was not detectably associated with the speed of cell growth in 10 CRC lines analyzed. As expected, mutations in K-Ras or B-Raf were often, albeit not always, linked to high Erk1/2 activity. The phosphorylation of several known Erk1/2 targets investigated did not generally reflect Erk1/2 activity in the 10 CRC lines analyzed. However, the reduction of Erk1/2 activity with MEK inhibitors generally abolished cell growth but only led to an increase of cellular p27Kip1 levels in CRC cells with high Erk1/2 activity levels. The results indicate that high Erk1/2 activation is utilized by some CRC lines to override the cell cycle brake p27Kip1, while others presumably rely on different mechanisms in order to inactivate this important cell cycle brake. Such detailed knowledge of the molecular diversity of cancer cell signaling mechanisms may eventually help to develop molecularly targeted, patient-specific therapeutic strategies and treatments.

  4. The FGFR/MEK/ERK/brachyury pathway is critical for chordoma cell growth and survival.

    Science.gov (United States)

    Hu, Yunping; Mintz, Akiva; Shah, Sagar R; Quinones-Hinojosa, Alfredo; Hsu, Wesley

    2014-07-01

    Recent evidence suggests that the expression of brachyury is necessary for chordoma growth. However, the mechanism associated with brachyury-regulated cell growth is poorly understood. Fibroblast growth factor (FGF), a regulator of brachyury expression in normal tissue, may also play an important role in chordoma pathophysiology. Using a panel of chordoma cell lines, we explored the role of FGF signaling and brachyury in cell growth and survival. Western blots showed that all chordoma cell lines expressed fibroblast growth factor receptor 2 (FGFR2), FGFR3, mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK), whereas no cell lines expressed FGFR1 and FGFR4. Results of enzyme-linked immunosorbent assay indicated that chordoma cells produced FGF2. Neutralization of FGF2 inhibited MEK/ERK phosphorylation, decreased brachyury expression and induced apoptosis while reducing cell growth. Activation of the FGFR/MEK/ERK/brachyury pathway by FGF2-initiated phosphorylation of FGFR substrate 2 (FRS2)-α (Tyr196) prevented apoptosis while promoting cell growth and epithelial-mesenchymal transition (EMT). Immunofluorescence staining showed that FGF2 promoted the translocation of phosphorylated ERK to the nucleus and increased brachyury expression. The selective inhibition of FGFR, MEK and ERK phosphorylation by PD173074, PD0325901 and PD184352, respectively, decreased brachyury expression, induced apoptosis, and inhibited cell growth and EMT. Moreover, knockdown of brachyury by small hairpin RNA reduced FGF2 secretion, inhibited FGFR/MEK/ERK phosphorylation and blocked the effects of FGF2 on cell growth, apoptosis and EMT. Those findings highlight that FGFR/MEK/ERK/brachyury pathway coordinately regulates chordoma cell growth and survival and may represent a novel chemotherapeutic target for chordoma.

  5. Non-transactivational, dual pathways for LPA-induced Erk1/2 activation in primary cultures of brown pre-adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Holmstroem, Therese E.; Mattsson, Charlotte L.; Wang, Yanling; Iakovleva, Irina; Petrovic, Natasa [Department of Physiology, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm (Sweden); Nedergaard, Jan, E-mail: jan@metabol.su.se [Department of Physiology, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm (Sweden)

    2010-10-01

    In many cell types, G-protein-coupled receptor (GPCR)-induced Erk1/2 MAP kinase activation is mediated via receptor tyrosine kinase (RTK) transactivation, in particular via the epidermal growth factor (EGF) receptor. Lysophosphatidic acid (LPA), acting via GPCRs, is a mitogen and MAP kinase activator in many systems, and LPA can regulate adipocyte proliferation. The mechanism by which LPA activates the Erk1/2 MAP kinase is generally accepted to be via EGF receptor transactivation. In primary cultures of brown pre-adipocytes, EGF can induce Erk1/2 activation, which is obligatory and determinant for EGF-induced proliferation of these cells. Therefore, we have here examined whether LPA, via EGF transactivation, can activate Erk1/2 in brown pre-adipocytes. We found that LPA could induce Erk1/2 activation. However, the LPA-induced Erk1/2 activation was independent of transactivation of EGF receptors (or PDGF receptors) in these cells (whereas in transformed HIB-1B brown adipocytes, the LPA-induced Erk1/2 activation indeed proceeded via EGF receptor transactivation). In the brown pre-adipocytes, LPA instead induced Erk1/2 activation via two distinct non-transactivational pathways, one G{sub i}-protein dependent, involving PKC and Src activation, the other, a PTX-insensitive pathway, involving PI3K (but not Akt) activation. Earlier studies showing LPA-induced Erk1/2 activation being fully dependent on RTK transactivation have all been performed in cell lines and transfected cells. The present study implies that in non-transformed systems, RTK transactivation may not be involved in the mediation of GPCR-induced Erk1/2 MAP kinase activation.

  6. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  7. From Peripheral to Central: The Role of ERK Signaling Pathway in Acupuncture Analgesia

    Science.gov (United States)

    Park, Ji-Yeun; Park, Jongbae J.; Jeon, Songhee; Doo, Ah-Reum; Kim, Seung-Nam; Lee, Hyangsook; Chae, Younbyoung; Maixner, William; Lee, Hyejung; Park, Hi-Joon

    2014-01-01

    Despite accumulating evidence of the clinical effectiveness of acupuncture, its mechanism remains largely unclear. We assume that molecular signaling around the acupuncture needled area is essential for initiating the effect of acupuncture. To determine possible bio-candidates involved in the mechanisms of acupuncture and investigate the role of such bio-candidates in the analgesic effects of acupuncture, we conducted 2 stepwise experiments. First, a genome-wide microarray of the isolated skin layer at the GB34-equivalent acupoint of C57BL/6 mice 1 hour after acupuncture found that a total of 236 genes had changed and that extracellular signal–regulated kinase (ERK) activation was the most prominent bio-candidate. Second, in mouse pain models using formalin and complete Freund adjuvant, we found that acupuncture attenuated the nociceptive behavior and the mechanical allodynia; these effects were blocked when ERK cascade was interrupted by the mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) inhibitor U0126 (.8 μg/μL). Based on these results, we suggest that ERK phosphorylation following acupuncture needling is a biochemical hallmark initiating the effect of acupuncture including analgesia. Perspective This article presents the novel evidence of the local molecular signaling in acupuncture analgesia by demonstrating that ERK activation in the skin layer contributes to the analgesic effect of acupuncture in a mouse pain model. This work improves our understanding of the scientific basis underlying acupuncture analgesia. PMID:24524846

  8. SIGNIFICANCE AND CORRELATION OF MAPK/ERK2 AND PI3-K IN HUMAN BREAST TUMORIGENESIS

    Institute of Scientific and Technical Information of China (English)

    MA Ping; LI Bai-lin; ZHANG Ying; SONG Min; SONG Ji-ye

    2006-01-01

    Objective: MAPK ((Mitogen-actived Protein Kinase) and PI3-K (Phosphatidylinositol 3-kinase) pathways have been implicated in the mitogenic pathways regulating cell growth, proliferation, differentiation and transformation and thus involved in tumorigenesis. This study was designed to examined the protein expression, activity and mRNA levels of both ERK and PI3-K in a series of breast tumors and adjacent mammary glands, and to figure out the changes of ERK2 and PI3-K during the dynamic process of breast tumorigenesis. Methods: A series of breast tumors and adjacent mammary glands were collected at surgery, including 37 cases of breast cancer, 6 cases of atypical hyperplasia-breast carcinoma in situ and 15 cases of benign conditions. Western blot, kinase activity assay and RT-PCR were used to detect the protein expression, kinase activity and mRNA level, respectively. Results: The revels of protein, activity and mRNA of ERK2 were elevated during the stages of both initiation and progression. The increasing tendency in breast cancer was equal to atypical hyperplasia -in situ carcinoma, but higher than in benign lesion and adjacent normal mammary gland. PI3-K was activated during the stage of progression of breast cancer. An inverse correlation between the activity of PI3-K and ERK2 in breast cancer was found. Conclusion: Our findings indicate that ERK2 may perform its function during both the stages of breast cancer initiation and breast cancer progression, while PI3-K may exert its effect during the stage of breast cancer progression. Both PI3-k and ERK2 are involved in the tumorigenesis of breast cancer.

  9. Altered ERK1/2 Signaling in the Brain of Learned Helpless Rats: Relevance in Vulnerability to Developing Stress-Induced Depression

    Directory of Open Access Journals (Sweden)

    Yogesh Dwivedi

    2016-01-01

    Full Text Available Extracellular signal-regulated kinase 1/2- (ERK1/2- mediated cellular signaling plays a major role in synaptic and structural plasticity. Although ERK1/2 signaling has been shown to be involved in stress and depression, whether vulnerability to develop depression is associated with abnormalities in ERK1/2 signaling is not clearly known. The present study examined ERK1/2 signaling in frontal cortex and hippocampus of rats that showed vulnerability (learned helplessness, (LH or resiliency (non-learned helplessness, (non-LH to developing stress-induced depression. In frontal cortex and hippocampus of LH rats, we found that mRNA and protein expressions of ERK1 and ERK2 were significantly reduced, which was associated with their reduced activation and phosphorylation in cytosolic and nuclear fractions, where ERK1 and ERK2 target their substrates. In addition, ERK1/2-mediated catalytic activities and phosphorylation of downstream substrates RSK1 (cytosolic and nuclear and MSK1 (nuclear were also lower in the frontal cortex and hippocampus of LH rats without any change in their mRNA or protein expression. None of these changes were evident in non-LH rats. Our study indicates that ERK1/2 signaling is differentially regulated in LH and non-LH rats and suggests that abnormalities in ERK1/2 signaling may be crucial in the vulnerability to developing depression.

  10. Pseudorabies Virus Triggers Glycoprotein gE-Mediated ERK1/2 Activation and ERK1/2-Dependent Migratory Behavior in T Cells

    Science.gov (United States)

    Setas Pontes, Maria; Devriendt, Bert

    2014-01-01

    ABSTRACT The interaction between viruses and immune cells of the host may lead to modulation of intracellular signaling pathways and to subsequent changes in cellular behavior that are of benefit for either virus or host. ERK1/2 (extracellular signal regulated kinase 1/2) signaling represents one of the key cellular signaling axes. Here, using wild-type and gE null virus, recombinant gE, and gE-transfected cells, we show that the gE glycoprotein of the porcine Varicellovirus pseudorabies virus (PRV) triggers ERK1/2 phosphorylation in Jurkat T cells and primary porcine T lymphocytes. PRV-induced ERK1/2 signaling resulted in homotypic T cell aggregation and increased motility of T lymphocytes. Our study reveals a new function of the gE glycoprotein of PRV and suggests that PRV, through activation of ERK1/2 signaling, has a substantial impact on T cell behavior. IMPORTANCE Herpesviruses are known to be highly successful in evading the immune system of their hosts, subverting signaling pathways of the host to their own advantage. The ERK1/2 signaling pathway, being involved in many cellular processes, represents a particularly attractive target for viral manipulation. Glycoprotein E (gE) is an important virulence factor of alphaherpesviruses, involved in viral spread. In this study, we show that gE has the previously uncharacterized ability to trigger ERK1/2 phosphorylation in T lymphocytes. We also show that virus-induced ERK1/2 signaling leads to increased migratory behavior of T cells and that migratory T cells can spread the infection to susceptible cells. In conclusion, our results point to a novel function for gE and suggest that virus-induced ERK1/2 activation may trigger PRV-carrying T lymphocytes to migrate and infect other cells susceptible to PRV replication. PMID:25473050

  11. 6-OHDA Induces Cycle Reentry and Apoetosis of PC12 Cells through Activation of ERK1/2 Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    Zhentao ZHANG; Tao WANG; Xuebing CAO; Shenggang SUN; Lan WANG

    2009-01-01

    This study investigated the effect and mechanism of cell cycle reentry induced by 6-hydrodopamine (6-OHDA) in PCI2 cells.By using neural differentiated PCI2 cells treated with 6-OHDA,the apoptosis model of dopaminergic neurons was established.Cell viability was measured by MTT.Cell apoptosis and the distribution of cell cycle were assessed by flow cytometry.Western blot was used to detect the activation of extracellular regulator kinasel/2 (ERK1/2) pathway and the phosphorylation of retinoblastoma protein (RB).Our results showed that after PC12 cells were treated wtih 6-OHDA,the viability of PC12 cells was declined in a concentration-dependent manner.Flow cytometry revealed that 6-OHDA could increase the apoptosis ratio of PC12 cells in a time-dependent manner.The percentage of cells in G0/G1 phase of cell cycle was decreased and that in S phase and G2/M phase increased.Simultaneously,ERK1/2 pathway was activated and phos- phorylated RB increased.It was concluded that 6-OHDA could induce cell cycle reentry of dopa-minergic neurons through the activation of ERK1/2 pathway and RB phosphorylation.The aberrant cell cycle reentry contributes to the apoptosis of dopaminergic neurons.

  12. Fluid shear stress inhibits TNF-α-induced osteoblast apoptosis via ERK5 signaling pathway.

    Science.gov (United States)

    Bin, Geng; Cuifang, Wang; Bo, Zhang; Jing, Wang; Jin, Jiang; Xiaoyi, Tan; Cong, Chen; Yonggang, Chen; Liping, An; Jinglin, Ma; Yayi, Xia

    2015-10-09

    Fluid shear stress (FSS) is a potent mechanical stimulus and prevents cells from TNF-a-induced apoptosis. Recently, Extracellular-signal-regulated kinase 5 (ERK5) has been found to be involved in regulation of cell survival. However, little is known about the role of ERK5 signaling pathway in FSS-mediated anti-apoptotic effects in osteoblast. In this study, we show that FSS blocks TNF-a-induced apoptosis of MC3T3-E1 cells via ERK5 signaling pathway. We found that physiological FSS for 1 h significantly decreased TNF-α-induced MC3T3-E1 cells apoptosis. After inhibition of ERK5 activity by XMD8-92, a highly-selective inhibitor of ERK5 activity, the ability of FSS to inhibit TNF-α induced apoptosis was significantly decreased. Analysis of anti-apoptotic mechanisms indicated that exposure of MC3T3-E1 cells to FSS for 1 h increased phosphorylation of Bad and inhibited caspase-3 activity. After treatment with XMD8-92, phosphorylation of Bad by FSS was significantly blocked, but caspase-3 activity was increased. In summary, these findings indicated that FSS inhibits TNF-α-mediated signaling events in osteoblast by a mechanism dependent on activation of ERK5, and Bad is a crucial downstream target for ERK5. Those results implied that ERK5 signaling pathway play a crucial role in FSS-mediated anti-apoptotic effect in osteoblast. Thus, ERK5 signaling pathway may be a new drug treatment target of osteoporosis and related bone-wasting diseases.

  13. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC.

    Science.gov (United States)

    Mateos, Melina V; Kamerbeek, Constanza B; Giusto, Norma M; Salvador, Gabriela A

    2016-06-01

    This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells.

  14. ERK5/BMK1 Is a Novel Target of the Tumor Suppressor VHL: Implication in Clear Cell Renal Carcinoma12

    Science.gov (United States)

    Arias-González, Laura; Moreno-Gimeno, Inmaculada; del Campo, Antonio Rubio; Serrano-Oviedo, Leticia; Valero, María Llanos; Esparís-Ogando, Azucena; de la Cruz-Morcillo, Miguel Ángel; Melgar-Rojas, Pedro; García-Cano, Jesús; Cimas, Francisco José; Hidalgo, María José Ruiz; Prado, Alfonso; Callejas-Valera, Juan Luis; Nam-Cha, Syong Hyun; Giménez-Bachs, José Miguel; Salinas-Sánchez, Antonio S; Pandiella, Atanasio; del Peso, Luis; Sánchez-Prieto, Ricardo

    2013-01-01

    Extracellular signal-regulated kinase 5 (ERK5), also known as big mitogen-activated protein kinase (MAPK) 1, is implicated in a wide range of biologic processes, which include proliferation or vascularization. Here, we show that ERK5 is degraded through the ubiquitin-proteasome system, in a process mediated by the tumor suppressor von Hippel-Lindau (VHL) gene, through a prolyl hydroxylation-dependent mechanism. Our conclusions derive from transient transfection assays in Cos7 cells, as well as the study of endogenous ERK5 in different experimental systems such as MCF7, HMEC, or Caki-2 cell lines. In fact, the specific knockdown of ERK5 in pVHL-negative cell lines promotes a decrease in proliferation and migration, supporting the role of this MAPK in cellular transformation. Furthermore, in a short series of fresh samples from human clear cell renal cell carcinoma, high levels of ERK5 correlate with more aggressive and metastatic stages of the disease. Therefore, our results provide new biochemical data suggesting that ERK5 is a novel target of the tumor suppressor VHL, opening a new field of research on the role of ERK5 in renal carcinomas. PMID:23730213

  15. ERK5/BMK1 Is a Novel Target of the Tumor Suppressor VHL: Implication in Clear Cell Renal Carcinoma

    Directory of Open Access Journals (Sweden)

    Laura Arias-González

    2013-06-01

    Full Text Available Extracellular signal-regulated kinase 5 (ERK5, also known as big mitogen-activated protein kinase (MAPK 1, is implicated in a wide range of biologic processes, which include proliferation or vascularization. Here, we show that ERK5 is degraded through the ubiquitin-proteasome system, in a process mediated by the tumor suppressor von Hippel-Lindau (VHL gene, through a prolyl hydroxylation-dependent mechanism. Our conclusions derive from transient transfection assays in Cos7 cells, as well as the study of endogenous ERK5 in different experimental systems such as MCF7, HMEC, or Caki-2 cell lines. In fact, the specific knockdown of ERK5 in pVHL-negative cell lines promotes a decrease in proliferation and migration, supporting the role of this MAPK in cellular transformation. Furthermore, in a short series of fresh samples from human clear cell renal cell carcinoma, high levels of ERK5 correlate with more aggressive and metastatic stages of the disease. Therefore, our results provide new biochemical data suggesting that ERK5 is a novel target of the tumor suppressor VHL, opening a new field of research on the role of ERK5 in renal carcinomas.

  16. Smad4 and ERK2 stimulated by transforming growth factor beta1 in rhabdomyosarcoma

    Institute of Scientific and Technical Information of China (English)

    GUO Hua; ZHANG Hong-ying; WANG Shou-li; YE Lü; YANG Guang-hua; BU Hong

    2007-01-01

    Background Transforming growth factor beta (TGF-beta) plays an essential role in the regulation of normal physiologic processes of cells. TGF-beta has been shown to regulate several mitogen-a ctivated protein kinases (MAPK) pathways in several epithelial cells. However, the effects of TGF-beta on soft tissue sarcoma are seldom reported. Our previous studies suggested that there should be some other signal transduction pathways besides Smads, which are important to regulate the growth of human embryonal rhabdomyosarcoma (RMS) cells. In the present study, we examined the expression and functional relations of extracellular signal-regulated kinase 2 (ERK2) and Smad4 in human RMS tissue and a RMS cell line, RD.Methods RD cells and normal human primary skeletal myoblasts (Mb) were treated with TGF-beta1 to establish the expression profile of ERK2 at the mRNA and protein levels detected by RT-PCR and immunofluorescence.Immunohistochemistry was used to detect the expression of ERK2 and Smad4 in 50 tissue specimens of human RMS and 23 specimens of normal skeletal muscles. Follow-up of specimens was performed 6 months to 70 months later.Results RD cells and human RMS tissues showed the higher expression of ERK2 and Smad4 than the normal control,either the protein level or the mRNA level. And, exogenous TGF-beta1 stimulation can lead to higher expression of ERK2and its nuclear translocation, so TGF-beta1 can also activated MAPK (ERK2) pathway, resulting in a sustained activation of ERK2 for at least 2 hours. Immunohistochemistry analysis, however, showed that there was no correlation between ERK2 and Smad4 protein. The overexpression of ERK2 and Smad4 had no indicative effects on histological subtypes,histological grading, gender, age, and prognosis.Conclusions In RMS, signaling of TGF-beta1 from cell surface to nucleus can also be directed through the MAPK (ERK2) pathway besides the TGF-beta1/Smads pathway. The activation of ERK2 by TGF-beta1 may be Smad4independent

  17. Dopamine D1 Receptors Regulate Protein Synthesis-Dependent Long-Term Recognition Memory via Extracellular Signal-Regulated Kinase 1/2 in the Prefrontal Cortex

    Science.gov (United States)

    Nagai, Taku; Takuma, Kazuhiro; Kamei, Hiroyuki; Ito, Yukio; Nakamichi, Noritaka; Ibi, Daisuke; Nakanishi, Yutaka; Murai, Masaaki; Mizoguchi, Hiroyuki; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2007-01-01

    Several lines of evidence suggest that extracellular signal-regulated kinase1/2 (ERK1/2) and dopaminergic system is involved in learning and memory. However, it remains to be determined if the dopaminergic system and ERK1/2 pathway contribute to cognitive function in the prefrontal cortex (PFC). The amount of phosphorylated ERK1/2 was increased in…

  18. IL-1β-Induced Accumulation of Amyloid: Macroautophagy in Skeletal Muscle Depends on ERK

    Directory of Open Access Journals (Sweden)

    Karsten Schmidt

    2017-01-01

    Full Text Available The pathology of inclusion body myositis (IBM involves an inflammatory response and β-amyloid deposits in muscle fibres. It is believed that MAP kinases such as the ERK signalling pathway mediate the inflammatory signalling in cells. Further, there is evidence that autophagic activity plays a crucial role in the pathogenesis of IBM. Using a well established in vitro model of IBM, the autophagic pathway, MAP kinases, and accumulation of β-amyloid were examined. We demonstrate that stimulation of muscle cells with IL-1β and IFN-γ led to an increased phosphorylation of ERK. The ERK inhibitor PD98059 diminished the expression of proinflammatory markers as well as the accumulation of β-amyloid. In addition, IL-1β and IFN-γ led to an increase of autophagic activity, upregulation of APP, and subsequent accumulation of β-sheet aggregates. Taken together, the data demonstrate that the ERK pathway contributes to formation of β-amyloid and regulation of autophagic activity in muscle cells exposed to proinflammatory cell stress. This suggests that ERK serves as an important mediator between inflammatory mechanisms and protein deposition in skeletal muscle and is a crucial element of the pathology of IBM.

  19. Control of the segmentation process by graded MAPK/ERK activation in the chick embryo.

    Science.gov (United States)

    Delfini, Marie-Claire; Dubrulle, Julien; Malapert, Pascale; Chal, Jérome; Pourquié, Olivier

    2005-08-01

    The regular spacing of somites during vertebrate embryogenesis involves a dynamic gradient of FGF signaling that controls the timing of maturation of cells in the presomitic mesoderm (PSM). How the FGF signal is transduced by PSM cells is unclear. Here, we first show that the FGF gradient is translated into graded activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway along the PSM in the chicken embryo. Using in ovo electroporation of PSM cells, we demonstrate that constitutive activation of ERK signaling in the PSM blocks segmentation by preventing maturation of PSM cells, thus phenocopying the overexpression of FGF8. Conversely, inhibition of ERK phosphorylation mimics a loss of function of FGF signaling in the PSM. Interestingly, video microscopy analysis of cell movements shows that ERK regulates the motility of PSM cells, suggesting that the decrease of cell movements along the PSM enables mesenchymal PSM cells to undergo proper segmentation. Together, our data demonstrate that ERK is the effector of the gradient of FGF in the PSM that controls the segmentation process.

  20. The Hinge-Helix 1 Region of Peroxisome Proliferator-Activated Receptor γ1 (PPARγ1) Mediates Interaction with Extracellular Signal-Regulated Kinase 5 and PPARγ1 Transcriptional Activation: Involvement in Flow-Induced PPARγ Activation in Endothelial Cells

    OpenAIRE

    Akaike, Masashi; Che, Wenyi; Marmarosh, Nicole-Lerner; Ohta, Shinsuke; Osawa, Masaki; Ding,Bo; Berk, Bradford C.; Yan, Chen; Abe, Jun-ichi

    2004-01-01

    Peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors that form a subfamily of the nuclear receptor gene family. Since both flow and PPARγ have atheroprotective effects and extracellular signal-regulated kinase 5 (ERK5) kinase activity is significantly increased by flow, we investigated whether ERK5 kinase regulates PPARγ activity. We found that activation of ERK5 induced PPARγ1 activation in endothelial cells (ECs). However, we could not detect PPARγ p...

  1. Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR.

    Science.gov (United States)

    Xu, Xiaohua; Balsiger, Robert; Tyrrell, Jean; Boyaka, Prosper N; Tarran, Robert; Cormet-Boyaka, Estelle

    2015-06-01

    Cystic fibrosis transmembrane conductance regulator plays a key role in maintenance of lung fluid homeostasis. Cigarette smoke decreases CFTR expression in the lung but neither the mechanisms leading to CFTR loss, nor potential ways to prevent its loss have been identified to date. The molecular mechanisms leading to down-regulation of CFTR by cigarette smoke were determined using pharmacologic inhibitors and silencing ribonucleic acids (RNAs). Using human bronchial epithelial cells, here we show that cigarette smoke induces degradation of CFTR that is attenuated by lysosomal inhibitors, but not proteasome inhibitors. Cigarette smoke can activate multiple signaling pathways in airway epithelial cells, including the MEK/Erk1/2 MAPK (MEK: mitogen-activated protein kinase/ERK kinase Erk1/2: extracellular signal-regulated kinase 1/2 MAPK: Mitogen-activated protein kinase) pathway regulating cell survival. Interestingly, pharmacological inhibition of the MEK/Erk1/2 MAPK pathway prevented the loss of plasma membrane CFTR upon cigarette smoke exposure. Similarly, decreased expression of Erk1/2 using silencing RNAs prevented the suppression of CFTR protein by cigarette smoke. Conversely, specific inhibitors of the c-Jun N-terminal kinase (JNK) or p38 MAPK pathways had no effect on CFTR decrease after cigarette smoke exposure. In addition, inhibition of the MEK/Erk1/2 MAPK pathway prevented the reduction of the airway surface liquid observed upon cigarette smoke exposure of primary human airway epithelial cells. Finally, addition of the antioxidant N-acetylcysteine inhibited activation of Erk1/2 by cigarette smoke and precluded the cigarette smoke-induced decrease of CFTR. These results show that the MEK/Erk1/2 MAPK pathway regulates plasma membrane CFTR in human airway cells. The MEK/Erk1/2 MAPK pathway should be considered as a target for strategies to maintain/restore CFTR expression in the lung of smokers. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Adenovirus-induced extracellular signal-regulated kinase phosphorylation during the late phase of infection enhances viral protein levels and virus progeny

    DEFF Research Database (Denmark)

    Schümann, Michael; Dobbelstein, Matthias

    2006-01-01

    during the late phase of infection. Pharmacologic inhibition of ERK phosphorylation reduced virus recovery by >100-fold. Blocking MEK/ERK signaling affected virus DNA replication and mRNA levels only weakly but strongly reduced the amount of viral proteins, independently of the kinases MNK1 and PKR....... Hence, adenovirus induces the oncogenic Raf/MEK/ERK signaling pathway to enhance viral progeny by sustaining the levels of viral proteins. Concerning therapy, our results suggest that the use of Raf/MEK/ERK inhibitors will interfere with the propagation of oncolytic adenoviruses.......The Raf/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling cascade enhances tumor cell proliferation in many cases. Here, we show that adenovirus type 5, a small DNA tumor virus used in experimental cancer therapy, strongly induces ERK phosphorylation...

  3. Activation and subcellular distribution of ERK1/2 following cerebral ischemia/reperfusion in rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-min; ZHANG Guang-yi; ZHANG Quan-guang; YANG Fang; MA Wen-dong; LI Qi-jia

    2006-01-01

    Objective:To investigate the activation (phosphorylation) and subcellular localization of extracellular signal-regulated kinase(ERK1/2), as well as the possible mechanism, following cerebral ischemia and ischemia/reperfusion in rat hippocampus. Methods: Transient brain ischemia was induced by the four-vessel occlusion method in Sprague-Dawley rats. Western blot analysis. Results: During cerebral ischemia without reperfusion ERK1/2 activation immediately increased with a peak at 5 min and then decreased in the cytosol fraction, which was paralleled by the increase of ERK1/2 activation in the nucleus fraction. During reperfusion, ERK1/2 was activated with peaks occurring at 10 min in the cytosol and at 30 min in the nucleus, respectively. Under those conditions, the protein expressions had no significant change. In order to clarify the possible mechanism of ERK1/2 activation, the rats were intraperitoneally administrated with N-methyl D aspartate (NMDA) receptor antagonist dextromethorphan(DM), L-type voltage-gated Ca2+ channel (L-VGCC) antagonist nifedipine (ND) 20 min before ischemia, finding that DM and ND markedly prevented ERK1/2 activation of nucleus fraction induced by reperfusion, not by ischemia. Conclusion: These results suggested that the nuclear translocation mainly occurred during is chemia, while ischemia-reperfusion induced ERK1/2 activation both in the cytosol and the nucleus. Two type calcium channels contributed, at least partially, to the activation of ERK1/2.

  4. Knockout of ERK5 causes multiple defects in placental and embryonic development

    Directory of Open Access Journals (Sweden)

    Murry-Tait Victoria

    2003-12-01

    Full Text Available Abstract Backgroud ERK5 is a member of the mitogen activated protein kinase family activated by certain mitogenic or stressful stimuli in cells, but whose physiological role is largely unclear. Results To help determine the function of ERK5 we have used gene targeting to inactivate this gene in mice. Here we report that ERK5 knockout mice die at approximately E10.5. In situ hybridisation for ERK5, and its upstream activator MKK5, showed strong expression in the head and trunk of the embryo at this stage of development. Between E9.5 and E10.5, multiple developmental problems are seen in the ERK5-/- embryos, including an increase in apoptosis in the cephalic mesenchyme tissue, abnormalities in the hind gut, as well as problems in vascular remodelling, cardiac development and placental defects. Conclusion Erk5 is essential for early embryonic development, and is required for normal development of the vascular system and cell survival.

  5. Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain

    Science.gov (United States)

    Yufune, Shinya; Satoh, Yasushi; Akai, Ryosuke; Yoshinaga, Yosuke; Kobayashi, Yasushi; Endo, Shogo; Kazama, Tomiei

    2016-01-01

    In animal models, neonatal exposure to general anesthetics significantly increased neuronal apoptosis with subsequent behavioral deficits in adulthood. Although the underlying mechanism is largely unknown, involvement of extracellular signal-regulated kinases (ERKs) is speculated since ERK phosphorylation is decreased by neonatal anesthetic exposure. Importance of ERK phosphorylation for neuronal development is underscored by our recent finding that transient suppression of ERK phosphorylation during the neonatal period significantly increased neuronal apoptosis and induced behavioral deficits. However, it is still unknown as to what extent decreased ERK phosphorylation contributes to the mechanism underlying anesthetic-induced toxicity. Here we investigated the causal relationship of decreased ERK phosphorylation and anesthetic-induced toxicity in the developing brain. At postnatal day 6 (P6), mice were exposed to sevoflurane (2%) or the blood-brain barrier-penetrating MEK inhibitor, α-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile (SL327) (50 mg/kg). Transient suppression of ERK phosphorylation by an intraperitoneal injection of SL327 at P6 significantly increased apoptosis similar to sevoflurane-induced apoptosis. Conversely, SL327 administration at P14 or P21 did not induce apoptosis, even though ERK phosphorylation was inhibited. Restoring ERK phosphorylation by administration of molecular hydrogen ameliorated sevoflurane-induced apoptosis. Together, our results strongly suggests that suppressed ERK phosphorylation is critically involved in the mechanism underlying anesthetic-induced toxicity in the developing brain. PMID:26905012

  6. ERK inhibition with PD184161 mitigates brain damage in a mouse model of stroke.

    Science.gov (United States)

    Gladbach, Amadeus; van Eersel, Janet; Bi, Mian; Ke, Yazi D; Ittner, Lars M

    2014-05-01

    Ischemic stroke is a leading cause of death. It has previously been shown that blocking activation of extracellular signal-regulated kinase (ERK) with the MEK inhibitor U0126 mitigates brain damage in rodent models of ischemic stroke. Here we show that the newer MEK inhibitor PD184161 reduces cell death and altered gene expression in cultured neurons and mice undergoing excitotoxicity, and has similar protective effects in a mouse model of stroke. This further supports ERK inhibition as a potential treatment for stroke.

  7. Activation of ERK/CREB pathway in spinal cord contributes to chronic constrictive injury-induced neuropathic pain in rats

    Institute of Scientific and Technical Information of China (English)

    Xue-song SONG; Jun-li CAO; Yan-bing XU; Jian-hua HE; Li-cai ZHANG; Yin-ming ZENG

    2005-01-01

    Aim: To investigate whether activation and translocation of extracellular signalregulated kinase (ERK) is involved in the induction and maintenance of neuropathic pa in, and effects of activation and translocation of ERK on expression of pCREB and Fos in the chronic neuropathic pain.Methods: Lumbar intrathecal catheters were chronically implanted in male Sprague-Dawley rats.The left sciatic nerve was loosely ligated proximal to the sciatica's trifurcation at approximately 1.0 mm intervals with 4-0 silk sutures.The mitogen-activated protein kinase kinase (MEK) inhibitor U0126 or phosphorothioate-modified antisense oligonucleotides (ODN) were intrathecally administered every 12 h, 1 d pre-chronic constriction injury (CCI) and 3 d post-CCI.Thermal and mechanical nociceptive thresholds were assessed with the paw withdrawal latency (PWL) to radiant heat and yon Frey filaments.The expression of pERK, pCREB, and Fos were assessed by both Western blotting and immunohistochemical analysis.Results: Intrathecal injection of U0126 or ERK antisense ODN significantly attenuated CCI-induced mechanical allodynia and thermal hyperalgesia.CCI significantly increased the expression of p-ERK-IR neurons in the ipsilateral spinal dorsal horn to injury, not in the contralateral spinal dorsal horn.The time courses of pERK expression showed that the levels of both cytosol and nuclear pERK, but not total ERK, were increased at all points after CCI and reached a peak level on postoperative d 5.CCI also significantly increased the expression of pCREB and Fos.Phospho-CREB-positive neurons were distributed in all laminae of the bilateral spinal cord and Fos was expressed in laminae Ⅰ and Ⅱ of the ipsilateral spinal dorsal horn.Intrathecal injection of U0126 or ERK antisense ODN markedly suppressed the increase of CCI-induced pERK, pCREB and c-Fos expression in the spinal cord.Conclusion:The activation of ERK pathways contributes to neuropathic pain in CCI rats, and the function of pERK may

  8. Testosterone and Voluntary Exercise, Alone or Together Increase Cardiac Activation of AKT and ERK1/2 in Diabetic Rats

    Science.gov (United States)

    Chodari, Leila; Mohammadi, Mustafa; Mohaddes, Gisou; Alipour, Mohammad Reza; Ghorbanzade, Vajiheh; Dariushnejad, Hassan; Mohammadi, Shima

    2016-01-01

    Background Impaired angiogenesis in cardiac tissue is a major complication of diabetes. Protein kinase B (AKT) and extracellular signal regulated kinase (ERK) signaling pathways play important role during capillary-like network formation in angiogenesis process. Objectives To determine the effects of testosterone and voluntary exercise on levels of vascularity, phosphorylated Akt (P- AKT) and phosphorylated ERK (P-ERK) in heart tissue of diabetic and castrated diabetic rats. Methods Type I diabetes was induced by i.p injection of 50 mg/kg of streptozotocin in animals. After 42 days of treatment with testosterone (2mg/kg/day) or voluntary exercise alone or in combination, heart tissue samples were collected and used for histological evaluation and determination of P-AKT and P-ERK levels by ELISA method. Results Our results showed that either testosterone or exercise increased capillarity, P-AKT, and P-ERK levels in the heart of diabetic rats. Treatment of diabetic rats with testosterone and exercise had a synergistic effect on capillarity, P-AKT, and P-ERK levels in heart. Furthermore, in the castrated diabetes group, capillarity, P-AKT, and P-ERK levels significantly decreased in the heart, whereas either testosterone treatment or exercise training reversed these effects. Also, simultaneous treatment of castrated diabetic rats with testosterone and exercise had an additive effect on P-AKT and P-ERK levels. Conclusion Our findings suggest that testosterone and exercise alone or together can increase angiogenesis in the heart of diabetic and castrated diabetic rats. The proangiogenesis effects of testosterone and exercise are associated with the enhanced activation of AKT and ERK1/2 in heart tissue.

  9. Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells.

    Directory of Open Access Journals (Sweden)

    Zhiyong Deng

    Full Text Available Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73 and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation.

  10. Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells.

    Science.gov (United States)

    Deng, Zhiyong; Sui, Guangchao; Rosa, Paulo Mottin; Zhao, Weiling

    2012-01-01

    Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73) and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS) potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation.

  11. The Src family kinases: distinct functions of c-Src, Yes, and Fyn in the liver.

    Science.gov (United States)

    Reinehr, Roland; Sommerfeld, Annika; Häussinger, Dieter

    2013-04-01

    The Src family kinases Yes, Fyn, and c-Src play a pivotal role in regulating diverse liver functions such as bile flow, proteolysis, apoptosis, and proliferation and are regulated by anisoosmotic cell volume changes, death receptor ligands, and bile acids. For example, cell swelling leads to an integrin-sensed and focal adhesion kinase-mediated activation of c-Src-triggering choleresis, proteolysis inhibition, regulatory volume decrease via p38MAPK and proliferation via the activation of the epidermal growth factor receptor and extracellular regulated kinases 1 and 2. In contrast, hepatocyte shrinkage generates an almost instantaneous oxidative stress response that triggers the activation of c-Jun N-terminal kinase and the Src family kinases Fyn and Yes. Whereas Fyn activation mediates cholestasis, Yes triggers CD95 activation and apoptosis. This review will discuss the role of Src family kinases in the regulation of liver function with emphasis on their role in osmo-signaling and bile acid signaling.

  12. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Zheng Xu

    2016-12-01

    Full Text Available Diabetes mellitus is a chronic metabolic condition that affects carbohydrate, lipid and protein metabolism and may impair numerous organs and functions of the organism. Cardiac dysfunction afflicts many patients who experience the oxidative stress of the heart. Diabetic cardiomyopathy (DCM is one of the major complications that accounts for more than half of diabetes-related morbidity and mortality cases. Chronic hyperglycemia and hyperlipidemia from diabetes mellitus cause cardiac oxidative stress, endothelial dysfunction, impaired cellular calcium handling, mitochondrial dysfunction, metabolic disturbances, and remodeling of the extracellular matrix, which ultimately lead to DCM. Although many studies have explored the mechanisms leading to DCM, the pathophysiology of DCM has not yet been fully clarified. In fact, as a potential mechanism, the associations between DCM development and mitogen-activated protein kinase (MAPK activation have been the subjects of tremendous interest. Nonetheless, much remains to be investigated, such as tissue- and cell-specific processes of selection of MAPK activation between pro-apoptotic vs. pro-survival fate, as well as their relation with the pathogenesis of diabetes and associated complications. In general, it turns out that MAPK signaling pathways, such as extracellular signal-regulated kinase 1/2 (ERK1/2, c-Jun N-terminal protein kinase (JNK and p38 MAP kinase, are demonstrated to be actively involved in myocardial dysfunction, hypertrophy, fibrosis and heart failure. As one of MAPK family members, the activation of ERK1/2 has also been known to be involved in cardiac hypertrophy and dysfunction. However, many recent studies have demonstrated that ERK1/2 signaling activation also plays a crucial role in FGF21 signaling and exerts a protective environment of glucose and lipid metabolism, therefore preventing abnormal healing and cardiac dysfunction. The duration, extent, and subcellular compartment of ERK1

  13. Superior Long-Term Synaptic Memory Induced by Combining Dual Pharmacological Activation of PKA and ERK with an Enhanced Training Protocol

    Science.gov (United States)

    Liu, Rong-Yu; Neveu, Curtis; Smolen, Paul; Cleary, Leonard J.; Byrne, John H.

    2017-01-01

    Developing treatment strategies to enhance memory is an important goal of neuroscience research. Activation of multiple biochemical signaling cascades, such as the protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways, is necessary to induce long-term synaptic facilitation (LTF), a correlate of long-term memory (LTM).…

  14. Brain-derived neurotrophic factor activation of extracellular signal-regulated kinase is autonomous from the dominant extrasynaptic NMDA receptor extracellular signal-regulated kinase shutoff pathway.

    Science.gov (United States)

    Mulholland, P J; Luong, N T; Woodward, J J; Chandler, L J

    2008-01-24

    NMDA receptors bidirectionally modulate extracellular signal-regulated kinase (ERK) through the coupling of synaptic NMDA receptors to an ERK activation pathway that is opposed by a dominant ERK shutoff pathway thought to be coupled to extrasynaptic NMDA receptors. In the present study, synaptic NMDA receptor activation of ERK in rat cortical cultures was partially inhibited by the highly selective NR2B antagonist Ro25-6981 (Ro) and the less selective NR2A antagonist NVP-AAM077 (NVP). When Ro and NVP were added together, inhibition appeared additive and equal to that observed with the NMDA open-channel blocker MK-801. Consistent with a selective coupling of extrasynaptic NMDA receptors to the dominant ERK shutoff pathway, pre-block of synaptic NMDA receptors with MK-801 did not alter the inhibitory effect of bath-applied NMDA on ERK activity. Lastly, in contrast to a complete block of synaptic NMDA receptor activation of ERK by extrasynaptic NMDA receptors, activation of extrasynaptic NMDA receptors had no effect upon ERK activation by brain-derived neurotrophic factor. These results suggest that the synaptic NMDA receptor ERK activation pathway is coupled to both NR2A and NR2B containing receptors, and that the extrasynaptic NMDA receptor ERK inhibitory pathway is not a non-selective global ERK shutoff.

  15. Involvement of Raf-1/MEK/ERK1/2 signaling pathway in zinc-induced injury in rat renal cortical slices.

    Science.gov (United States)

    Kohda, Yuka; Matsunaga, Yoshiko; Shiota, Ryugo; Satoh, Tomohiko; Kishi, Yuko; Kawai, Yoshiko; Gemba, Munekazu

    2006-08-01

    Zinc is an essential nutrient that can also be toxic. We have previously reported that zinc-related renal toxicity is due, in part, to free radical generation in the renal epithelial cell line, LLC-PK(1) cells. We have also shown that an MEK1/2 inhibitor, U0126, markedly inhibits zinc-induced renal cell injury. In this study, we investigated the role of an upstream MEK/ERK pathway, Raf-1 kinase pathway, and the transcription factor and ERK substrate Elk-1, in rat renal cortical slices exposed to zinc. Immediately after preparing slices from rat renal cortex, the slices were incubated in medium containing Raf-1 and MEK inhibitors. ERK1/2 and Elk-1 activation were determined by Western blot analysis for phosphorylated ERK (pERK) 1/2 and phosphorylated Elk-1 (pElk-1) in nuclear fractions prepared from slices exposed to zinc. Zinc caused not only increases in 4-hydroxynonenal (4-HNE) modified protein and lipid peroxidation, as an index of oxidant stress, and decreases in PAH accumulation, as that of renal cell injury in the slices. Zinc also induced a rapid increase in ERK/Elk-1 activity accompanied by increased expressions of pERK and pElk-1 in the nuclear fraction. A Raf-1 kinase inhibitor and an MEK1/2 inhibitor U0126 significantly attenuated zinc-induced decreases PAH accumulation in the slices. The Raf-1 kinase inhibitor and U0126 also suppressed ERK1/2 activation in nuclear fractions prepared from slices treated with zinc. The present results suggest that a Raf-1/MEK/ERK1/2 pathway and the ERK substrate Elk-1 are involved in free radical-induced injury in rat renal cortical slices exposed to zinc.

  16. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Claire [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); Lafosse, Jean-Michel [CHU Toulouse, Hopital Rangueil, Service d' orthopedie et Traumatologie, Toulouse F-31000 (France); Malavaud, Bernard [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); CHU Toulouse, Hopital Rangueil, Service d' Urologie et de Transplantation Renale, Toulouse F-31000 (France); Cuvillier, Olivier, E-mail: olivier.cuvillier@ipbs.fr [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France)

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  17. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1

    DEFF Research Database (Denmark)

    Jensen, Claus Antonio Juel; Buch, M B; Krag, T O;

    1999-01-01

    90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation of th...... of Ser(227), Ser(369), and Ser(386). Our study extend recent findings which implicate PDK1 in the activation of protein kinases B and C and p70(S6K), suggesting that PDK1 controls several major growth factor-activated signal transduction pathways.......90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation...... of the linker region at Ser(369), catalyzed by extracellular signal-regulated kinase (ERK), and at Ser(386), catalyzed by the C-terminal kinase, after its activation by ERK. In addition, the N-terminal kinase must be phosphorylated at Ser(227) in the activation loop by an as yet unidentified kinase. Here, we...

  18. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer

    Science.gov (United States)

    Lim, Do Young; Shin, Seung Ho; Lee, Mee-Hyun; Malakhova, Margarita; Kurinov, Igor; Wu, Qiong; Xu, Jinglong; Jiang, Yanan; Dong, Ziming; Liu, Kangdong; Lee, Kun Yeong; Bae, Ki Beom; Choi, Bu Young; Deng, Yibin; Bode, Ann; Dong, Zigang

    2016-01-01

    Various carcinogens induce EGFR/RAS/MAPK signaling, which is critical in the development of lung cancer. In particular, constitutive activation of extracellular signal-regulated kinase 2 (ERK2) is observed in many lung cancer patients, and therefore developing compounds capable of targeting ERK2 in lung carcinogenesis could be beneficial. We examined the therapeutic effect of catechol in lung cancer treatment. Catechol suppressed anchorage-independent growth of murine KP2 and human H460 lung cancer cell lines in a dose-dependent manner. Catechol inhibited ERK2 kinase activity in vitro, and its direct binding to the ERK2 active site was confirmed by X-ray crystallography. Phosphorylation of c-Myc, a substrate of ERK2, was decreased in catechol-treated lung cancer cells and resulted in reduced protein stability and subsequent down-regulation of total c-Myc. Treatment with catechol induced G1 phase arrest in lung cancer cells and decreased protein expression related to G1-S progression. In addition, we showed that catechol inhibited the growth of both allograft and xenograft lung cancer tumors in vivo. In summary, catechol exerted inhibitory effects on the ERK2/c-Myc signaling axis to reduce lung cancer tumor growth in vitro and in vivo, including a preclinical patient-derived xenograft (PDX) model. These findings suggest that catechol, a natural small molecule, possesses potential as a novel therapeutic agent against lung carcinogenesis in future clinical approaches. PMID:27167001

  19. Activation of ERK1/2 in spinal cord contributes to the development of acute cystic pain in rabbits

    Institute of Scientific and Technical Information of China (English)

    Yong-Hong WANG; Li-Cai ZHANG; Yin-Ming ZENG

    2006-01-01

    Objective To investigate the role of activated extracellular signal-regulated kinase 1/2 (ERK1/2) in spinal cord in the development of cystic pain in rabbit. Methods We observed the relationship between the activation of ERK1/2 in spinal cord and nociceptive behaviors, as well as the effect of U0126, a mitogen-activated protein kinase (MEK, upstream protein of ERK1/2) inhibitor, on cystic pain in rabbits by behavioral test, immunohistochemistry and western blot analysis. Results After injecting 0.5 ml formalin into gallbladder, the behaviors such as grasping of the cheek and licking of theabdomen increased in 30 min, with a significant increase in pERK1/2 expression in the spinal cord, as well as the pERK1/2 immunoreactive cells located in laminae Ⅴ~Ⅶ and X of the dorsal horn and ventral horn of T6 spinal cord. Administration of U0126 (100 ~400 μg/kg body weight, i.v., 10 min before instillation of formalin) could attenuated nociceptive behaviors dose-dependently, but could not restrain the nociceptive behaviors completely even at the maximal efficient dose of 400 μg/kg body weight. Conclusion Activated ERK1/2 in the spinal cord at least partly participates in the development of acute inflammatory cystic pain induced by formalin in rabbits.

  20. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer.

    Science.gov (United States)

    Lim, Do Young; Shin, Seung Ho; Lee, Mee-Hyun; Malakhova, Margarita; Kurinov, Igor; Wu, Qiong; Xu, Jinglong; Jiang, Yanan; Dong, Ziming; Liu, Kangdong; Lee, Kun Yeong; Bae, Ki Beom; Choi, Bu Young; Deng, Yibin; Bode, Ann; Dong, Zigang

    2016-06-07

    Various carcinogens induce EGFR/RAS/MAPK signaling, which is critical in the development of lung cancer. In particular, constitutive activation of extracellular signal-regulated kinase 2 (ERK2) is observed in many lung cancer patients, and therefore developing compounds capable of targeting ERK2 in lung carcinogenesis could be beneficial. We examined the therapeutic effect of catechol in lung cancer treatment. Catechol suppressed anchorage-independent growth of murine KP2 and human H460 lung cancer cell lines in a dose-dependent manner. Catechol inhibited ERK2 kinase activity in vitro, and its direct binding to the ERK2 active site was confirmed by X-ray crystallography. Phosphorylation of c-Myc, a substrate of ERK2, was decreased in catechol-treated lung cancer cells and resulted in reduced protein stability and subsequent down-regulation of total c-Myc. Treatment with catechol induced G1 phase arrest in lung cancer cells and decreased protein expression related to G1-S progression. In addition, we showed that catechol inhibited the growth of both allograft and xenograft lung cancer tumors in vivo. In summary, catechol exerted inhibitory effects on the ERK2/c-Myc signaling axis to reduce lung cancer tumor growth in vitro and in vivo, including a preclinical patient-derived xenograft (PDX) model. These findings suggest that catechol, a natural small molecule, possesses potential as a novel therapeutic agent against lung carcinogenesis in future clinical approaches.

  1. Impaired activation of mitogen-activated protein kinases after hemorrhagic shock.

    Science.gov (United States)

    Khadaroo, Rachel G; Lu, Ziyue; Powers, Kinga A; Papia, Giuseppe; Kapus, Andras; Rotstein, Ori D

    2002-08-01

    Patients sustaining major trauma are at risk of developing organ dysfunction. We have previously shown that resuscitated hemorrhagic shock primes for increased lung injury in response to lippolysaccharide (LPS), in part by preventing upregulation of the counterinflammatory cytokine IL-10. Because the mitogen-activated protein kinase (MAPK) family is known to participate in LPS signaling, we hypothesized that altered upstream signaling through these kinases might contribute to impaired LPS-simulated IL-10 release after shock and resuscitation. Rats were bled to a mean arterial pressure of 40 mm Hg and maintained for 1 hour, then resuscitated. Alveolar macrophages were retrieved at the end of resuscitation and exposed to LPS (0.5 microg/mL). Western blotting for p38, extracellular-regulated protein kinase, and c-Jun NH2-terminal kinase was performed on whole cell lysates. In some studies, the alveolar macrophages were preincubated with the p38 inhibitor or the extracellular-regulated protein kinase inhibitor before LPS stimulation. IL-10 levels were measured by enzyme-linked immunosorbent assay. LPS caused an early activation in all members of the MAPK family, whereas antecedent shock both delayed and attenuated the LPS induction. To discern whether this reduction in LPS-stimulated MAPK activation after shock might contribute to reduced IL-10, specific inhibitors were used. Inhibition of p38 MAPK completely inhibited LPS-induced IL-10 production, whereas blockade of extracellular-regulated protein kinase pathway had no effect. Shock resuscitation impairs LPS-induced activation of the members of the MAPK family. For the critical counterinflammatory cytokine IL-10, inhibition of p38 activation appears to contribute to the reduced levels of this cytokine in response to LPS. This study provides in vitro evidence for altered signaling through p38 MAPK, as a mechanism leading to failed upregulation of a counterinflammatory cytokine, and thus the propagation of an

  2. Taurine inhibits osteoblastic differentiation of vascular smooth muscle cells via the ERK pathway.

    Science.gov (United States)

    Liao, Xiao-bo; Zhou, Xin-min; Li, Jian-ming; Yang, Jin-fu; Tan, Zhi-ping; Hu, Zhuo-wei; Liu, Wei; Lu, Ying; Yuan, Ling-qing

    2008-05-01

    Vascular calcification develops within atherosclerotic lesions and results from a process similar to osteogenesis. Taurine is a free beta-amino acid and plays an important physiological role in mammals. We have recently demonstrated that vascular smooth muscle cells (VSMCs) express a functional taurine transporter. To evaluate the possible role of taurine in vascular calcification, we assessed its effects on osteoblastic differentiation of VSMCs in vitro. The results showed that taurine inhibited the beta-glycerophosphate-induced osteoblastic differentiation of VSMCs as evidenced by both the decreasing alkaline phosphate (ALP) activity and expression of the core binding factor alpha1 (Cbfalpha1). Taurine also activated the extracellular signal-regulated protein kinase (ERK) pathway. Inhibition of ERK pathway reversed the effect of taurine on ALP activity and Cbfalpha1 expression. These results suggested that taurine inhibited osteoblastic differentiation of vascular cells via the ERK pathway.

  3. Anaplasma phagocytophilum AptA modulates Erk1/2 signalling.

    Science.gov (United States)

    Sukumaran, Bindu; Mastronunzio, Juliana E; Narasimhan, Sukanya; Fankhauser, Sarah; Uchil, Pradeep D; Levy, Roie; Graham, Morven; Colpitts, Tonya Michelle; Lesser, Cammie F; Fikrig, Erol

    2011-01-01

    Anaplasma phagocytophilum causes human granulocytic anaplasmosis, one of the most common tick-borne diseases in North America. This unusual obligate intracellular pathogen selectively persists within polymorphonuclear leucocytes. In this study, using the yeast surrogate model we identified an A. phagocytophilum virulence protein, AptA (A. phagocytophilum toxin A), that activates mammalian Erk1/2 mitogen-activated protein kinase. This activation is important for A. phagocytophilum survival within human neutrophils. AptA interacts with the intermediate filament protein vimentin, which is essential for A. phagocytophilum-induced Erk1/2 activation and infection. A. phagocytophilum infection reorganizes vimentin around the bacterial inclusion, thereby contributing to intracellular survival. These observations reveal a major role for the bacterial protein, AptA, and the host protein, vimentin, in the activation of Erk1/2 during A. phagocytophilum infection.

  4. Parsing ERK Activation Reveals Quantitatively Equivalent Contributions From Epidermal Growth Factor Receptor and HER2 In Human Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hendriks, Bart S.; Orr, Galya; Wells, Alan H.; Wiley, H. S.; Lauffenburger, Douglas A.

    2005-02-18

    HER2, a member of the EGFR tyrosine kinase family, functions as an accessory EGFR signaling component and alters EGFR trafficking by heterodimerization. HER2 overexpression leads to aberrant cell behavior including enhanced proliferation and motility. Here we apply a combination of computational modeling and quantitative experimental studies of the dynamic interactions between EGFR and HER2, and their downstream activation of extracellular signal-related kinase (ERK) to understand this complex signaling system. Using cells expressing different levels of HER2 relative to the EGFR, we can separate relative contributions of EGFR and HER2 to signaling amplitude and duration. Based on our model calculations, we demonstrate that, in contrast with previous suggestions in the literature, the intrinsic capabilities of EGFR and HER2 to activated ERK are quantitatively equivalent . We find that HER2-mediated effects on EGFR dimerization and trafficking are sufficient to explain the detected HER2-mediated amplification of EGF-induced ERK signaling. Our model suggests that transient amplification of ERK activity by HER2 arises predominantly from the 2-to-1 stoichiometry of receptor kinase to bound ligand in EGFR/HER2 heterodimers compared to the 1-to-1 stoichiometry of the EGFR homodimer, but alterations in receptor trafficking, with resultant EGFR sparing, cause the sustained HER2-mediated enhancement of ERK signaling.

  5. ERK is involved in the reorganization of somatosensory cortical maps in adult rats submitted to hindlimb unloading.

    Directory of Open Access Journals (Sweden)

    Erwan Dupont

    Full Text Available Sensorimotor restriction by a 14-day period of hindlimb unloading (HU in the adult rat induces a reorganization of topographic maps and receptive fields. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of intracellular MAPK signaling pathway since Extracellular-signal-Regulated Kinase 1/2 (ERK1/2 is known to play a significant role in the control of synaptic plasticity. In order to better understand the mechanisms underlying cortical plasticity in adult rats submitted to a sensorimotor restriction, we analyzed the time-course of ERK1/2 activation by immunoblot and of cortical reorganization by electrophysiological recordings, on rats submitted to hindlimb unloading over four weeks. Immunohistochemistry analysis provided evidence that ERK1/2 phosphorylation was increased in layer III neurons of the somatosensory cortex. This increase was transient, and parallel to the changes in hindpaw cortical map area (layer IV. By contrast, receptive fields were progressively enlarged from 7 to 28 days of hindlimb unloading. To determine whether ERK1/2 was involved in cortical remapping, we administered a specific ERK1/2 inhibitor (PD-98059 through osmotic mini-pump in rats hindlimb unloaded for 14 days. Results demonstrate that focal inhibition of ERK1/2 pathway prevents cortical reorganization, but had no effect on receptive fields. These results suggest that ERK1/2 plays a role in the induction of cortical plasticity during hindlimb unloading.

  6. Role of extracellular signal-regulated kinases 1 and 2 and p38 mitogen-activated protein kinase pathways in regulating replication of Penicillium marneffei in human macrophages.

    Science.gov (United States)

    Chen, Renqiong; Li, Xiqing; Lu, Sha; Ma, Tuan; Huang, Xiaowen; Mylonakis, Eleftherios; Liang, Yuheng; Xi, Liyan

    2014-05-01

    Penicillium marneffei (P. marneffei) is a human pathogen which persists in macrophages and threatens the immunocompromised patients. To elucidate the mechanisms involved, we investigated the role of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (p38) pathways in cytokine expression, phagosome-lysosome fusion and replication of P. marneffei in P. marneffei-infected human macrophages. Analysis of both ERK1/2 and p38 showed rapid phosphorylation in response to P. marneffei. Using specific inhibitors of p38 (SB203580) and MAP kinase kinase-1 (PD98059), we found that ERK1/2 and p38 were essential for P. marneffei-induced tumor necrosis factor-α production, whereas p38, but not that of ERK, was essential for IL-10 production. Furthermore, the presence of PD98059 always decreased phagosomal acidification and maturation and increased intracellular multiplication of P. marneffei, whereas the use of SB203580 always increased phagosomal acidification and maturation and decreased intracellular replication. These data suggest that a proper balance of between ERK1/2 and p38 may play an important role in controlling the replication of P. marneffei. Our findings further indicate a novel therapeutic avenue for treating P. marneffei by stimulating ERK1/2 or activating ERK1/2-dependent mechanisms.

  7. Melanocortin 4 receptor activates ERK-cFos pathway to increase brain-derived neurotrophic factor expression in rat astrocytes and hypothalamus.

    Science.gov (United States)

    Ramírez, D; Saba, J; Carniglia, L; Durand, D; Lasaga, M; Caruso, C

    2015-08-15

    Melanocortins are neuropeptides with well recognized anti-inflammatory and anti-apoptotic effects in the brain. Of the five melanocortin receptors (MCR), MC4R is abundantly expressed in the brain and is the only MCR present in astrocytes. We have previously shown that MC4R activation by the α-melanocyte stimulating hormone (α-MSH) analog, NDP-MSH, increased brain-derived neurotrophic factor (BDNF) expression through the classic cAMP-Protein kinase A-cAMP responsive element binding protein pathway in rat astrocytes. Now, we examined the participation of the mitogen activated protein kinases pathway in MC4R signaling. Rat cultured astrocytes treated with NDP-MSH 1 µM for 1 h showed increased BDNF expression. Inhibition of extracellular signal-regulated kinase (ERK) and ribosomal p90 S6 kinase (RSK), an ERK substrate, but not of p38 or JNK, prevented the increase in BDNF expression induced by NDP-MSH. Activation of MC4R increased cFos expression, a target of both ERK and RSK. ERK activation by MC4R involves cAMP, phosphoinositide-3 kinase (PI3K) and the non receptor tyrosine kinase, Src. Both PI3K and Src inhibition abolished NDP-MSH-induced BDNF expression. Moreover, we found that intraperitoneal injection of α-MSH induces BDNF and MC4R expression and activates ERK and cFos in male rat hypothalamus. Our results show for the first time that MC4R-induced BDNF expression in astrocytes involves ERK-RSK-cFos pathway which is dependent on PI3K and Src, and that melanocortins induce BDNF expression and ERK-cFos activation in rat hypothalamus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Activation of the Erk Pathway Is Required for TGF-β1-Induced EMT In Vitro

    Directory of Open Access Journals (Sweden)

    Lu Xie

    2004-09-01

    Full Text Available Transforming growth factor-β1 (TGF-β1 can be tumorsuppressive through the activation of the Smadmediated signaling pathway. TGF-β1 can also enhance tumor progression by stimulating epithelial-tomesenchymal transition (EMT through additional pathways. EMT is characterized by the acquisition of a fibroblast-like cell morphology, dissolution of tight junctions, disruption of adherence junctions, and formation of actin stress fibers. There is evidence linking the activation of mitogen-activated protein kinase pathways to the induction of TGF-α1-mediated EMT. However, the role of Erk in the induction of TGF-β1-mediated EMT remains unclear. TGF-β1 treatment of normal murine mammary gland (NMuMG epithelial cells resulted in increased gene expression of Ras, Raf, MEK1/2, and Erki/2, as shown by microarray analysis and real-time polymerase chain reaction. Upon 24 and 48 hours of treatment with TGIF-α1, NMuMG and mouse cortical tubule (MCT epithelial cells underwent EMT as shown by changes in cell morphology, delocalization of zonula occludens-1 and E-cadherin from cell-cell junctions, and formation of actin stress fibers. TGF-β1 treatment also resulted in increased levels of phosphorylated Erk and Erk kinase activity. Treatment with an MEK inhibitor, U0126, inhibited increased Erk phosphorylation and kinase activity, and blocked TGF-β1 -induced EMT in both cell lines. These data show that TGF-β1 induces the activation of the Erk signaling pathway, which is required for TGF-β1 -mediated EMT in vitro.

  9. The importance of domain closure for the auto-activation of ERK2

    Science.gov (United States)

    Barr, Daniel; Oashi, Taiji; Burkhard, Kimberly; Lucius, Sarah; Samadani, Ramin; Zhang, Jun; Shapiro, Paul; MacKerell, Alexander D.; van der Vaart, Arjan

    2011-01-01

    Extracellular signal-regulated kinases-1 and 2 (ERK1/2) play a critical role in regulating cell division and have been implicated in cancer. In addition to activation by the MAPK/ERK kinases 1 and 2 (MEK1/2), certain mutants of ERK2 can be activated by auto-phosphorylation. To identify the mechanism of auto-activation, we have performed a series of molecular dynamics simulations of ERK1/2 in various stages of activation as well as the constitutively active Q103A, I84A, L73P and R65S ERK2 mutants. Our simulations indicate the importance of domain closure for auto-activation and activity regulation, with that event occurring prior to folding of the activation lip and of loop L16. Results indicate that the second phosphorylation event to T183 disrupts hydrogen bonding involving D334 thereby allowing the kinase to lock into the active conformation. Based on the simulations, three predictions were made: G83A was suggested to impede activation, K162M was suggested to perturb the interface between the N and C-domain leading to activation, and Q64C was hypothesized to stop folding of loop L16 thereby perturbing the homodimerization interface. Functional analysis of the mutants validated the predictions concerning the G83A and Q64C mutants. The K162M mutant did not autoactivate as predicted however, which may be due to the location of the residue on the protein surface near the ED substrate docking domain. PMID:21842857

  10. DA-9801 promotes neurite outgrowth via ERK1/2-CREB pathway in PC12 cells.

    Science.gov (United States)

    Won, Jong Hoon; Ahn, Kyong Hoon; Back, Moon Jung; Ha, Hae Chan; Jang, Ji Min; Kim, Ha Hyung; Choi, Sang-Zin; Son, Miwon; Kim, Dae Kyong

    2015-01-01

    In the present study, we examined the mechanisms underlying the effect of DA-9801 on neurite outgrowth. We found that DA-9801 elicits its effects via the mitogen-activated protein kinase (MEK) extracellular signal-regulated kinase (ERK)1/2-cAMP response element-binding protein (CREB) pathway. DA-9801, an extract from a mixture of Dioscorea japonica and Dioscorea nipponica, was reported to promote neurite outgrowth in PC12 cells. The effects of DA-9801 on cell viability and expression of neuronal markers were evaluated in PC12 cells. To investigate DA-9801 action, specific inhibitors targeting the ERK signaling cascade were used. No cytotoxicity was observed in PC12 cells at DA-9801 concentrations of less than 30 µg/mL. In the presence of nerve growth factor (NGF, 2 ng/mL), DA-9801 promoted neurite outgrowth and increased the relative mRNA levels of neurofilament-L (NF-L), a marker of neuronal differentiation. The Raf-1 inhibitor GW5074 and MEK inhibitor PD98059 significantly attenuated DA-9801-induced neurite outgrowth. Additionally, the MEK1 and MEK2 inhibitor SL327 significantly attenuated the increase in the percentage of neurite-bearing PC12 cells induced by DA-9801 treatment. Conversely, the selective p38 mitogen-activated protein kinase inhibitor SB203580 did not attenuate the DA-9801 treatment-induced increase in the percentage of neurite-bearing PC12 cells. DA-9801 enhanced the phosphorylation of ERK1/2 and CREB in PC12 cells incubated with and without NGF. Pretreatment with PD98059 blocked the DA-9801-induced phosphorylation of ERK1/2 and CREB. In conclusion, DA-9801 induces neurite outgrowth by affecting the ERK1/2-CREB signaling pathway. Insights into the mechanism underlying this effect of DA-9801 may suggest novel potential strategies for the treatment of peripheral neuropathy.

  11. Lentivirus-mediated ERK2 siRNA reduces joint capsule fibrosis in a rat model of post-traumatic joint contracture.

    Science.gov (United States)

    Li, Fengfeng; Liu, Shen; Fan, Cunyi

    2013-10-17

    Extracellular signal-regulated kinase (ERK)-2 is presumed to play an important role in the development of post-traumatic joint contractures. Using a rat injury model, we investigated whether treatment with ERK2 small interfering RNA (siRNA) could reduce the extent of joint capsule fibrosis after an induced injury. Rats were separated into three groups (n = 32 each): non-operated control group, operated contracture group and contracture-treatment group. Stable post-traumatic joint contracture was created through surgical intra-articular joint injury followed by eight weeks of immobilization. In the contracture-treatment group, the rats were treated with lentivirus (LV)-mediated ERK2 siRNA at days 3 and 7 post-surgery. The posterior joint capsule was assessed by western blotting, immunohistochemistry and biochemical analysis for changes in ERK2, phosphorylated (p)-ERK2, myofibroblast, total collagen and relative collagen Type III expression level. Biomechanical testing was used to assess the development of flexion contractures. Statistical analysis was performed using an analysis of variance. In the operated contracture group, rats that developed flexion contractures also showed elevated phosphorylated p-ERK2 expression. In the contracture-treatment group, ERK2 siRNA significantly reduced p-ERK2 expression levels, as well as the severity of flexion contracture development (p contractures and the resultant increase of joint capsule fibrosis can be reduced by LV-mediated ERK2 siRNA treatment.

  12. pERK 1/2 inhibit Caspase-8 induced apoptosis in cancer cells by phosphorylating it in a cell cycle specific manner.

    Science.gov (United States)

    Mandal, Ranadip; Raab, Monika; Matthess, Yves; Becker, Sven; Knecht, Rainald; Strebhardt, Klaus

    2014-03-01

    ERK 1/2 are found to be hyperactive in many cancers. Active ERK 1/2 (pERK 1/2) are known to protect cancer cells from undergoing death receptor-mediated apoptosis, although the mechanism(s) behind this is poorly understood. Through in vitro kinase assays and mass-spectrometry we demonstrate that pERK 1/2 can phosphorylate pro-Caspase-8 at S387. Also, in EGFR-overexpressing Type I and II ovarian and breast cancer cell lines respectively, ERK 1/2 remain active only during the interphase. During this period, pERK 1/2 could inhibit Trail-induced apoptosis, most effectively during the G1/S phase. By knocking-down the endogenous pro-Caspase-8 using RNAi and replacing it with its non-phosphorylatable counterpart (S387A), a significant increase in Caspase-8 activity upon Trail stimulation was observed, even in the presence of pERK 1/2. Taken together, we propose that a combination of Trail and an inhibitor of ERK 1/2 activities could potentially enhance of Trail's effectiveness as an anti-cancer agent in ERK 1/2 hyperactive cancer cells.

  13. ERK1/2 contributes negative regulation to STAT3 activity in HSS-transfected HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Signal transducer and activator of transcription 3 (STAT3) is a recently characterized transcription factor which is essential to liver regeneration. We have previously reported that hepatic stimulator substance (HSS), a novel growthpromoting substance, phosphorylated the epidermal growth factor (EGF) receptors and activated downstream RasMAP kinase (extracellular signal-regulated kinases, ERK1/2) cascade. However, whether HSS signal is related to STAT3pathway remains unclear. The present study is aiming to explore the regulatory effect of activation of ERK1/2 evoked by HSS on STAT3 phosphorylation and STAT3 signaling. Human hepatoma cell line HepG2 was stably transfected with HSS cDNA and HSS expression was measured by Northern blot. The results showed that the transfection of HSS into HepG2 resulted in remarkable increase in cellular proliferation as compared with the non-transfected cells, and it was further proved that the cellular proliferation in the HSS-transfected cells was related to ERK1/2 activation. Treatment of the cells with 50 μM of PD98059, an ERK1/2 specific upstream inhibitor, resulted in ERK1/2 inactivation completely.Inhibition of ERK1/2 allowed the tyrosine of STAT3 to be phosphorylated in a dose-dependent manner to PD98059.Furthermore, transient transfection of STAT3 mutant (STAT3S727A) into HSS-bearing cells could remarkably reverse the inhibitory effect of ERK1/2 on STAT3 phosphorylation. Based upon these results, it is concluded that ERK1/2negatively modulates STAT3 phosphorylation and this function is dependent on residual serine-727 (S727) of STAT3.

  14. [The expression of MKP-1 and p-ERK(1/2) in primary ovarian epithelial tumor tissues].

    Science.gov (United States)

    Zhou, Jian Wei; Gan, Ning Yue; Zhang, Wei Jiang

    2009-06-01

    To investigate the expression of mitogen activated protein kinase phosphatase-1 (MKP-1) and phosphorylation extracellular signal-regulated kinases (p-ERK(1/2)) in primary ovarian epithelial tumor tissues, and provide experiment's foundation on the new treatment in ovarian cancer. Expression of MKP-1 and p-ERK(1/2) in tissues from 64 patients with primary ovarian epithelial tumor, 35 patients with ovarian epithelial bordline tumor, 32 patients with ovarian epithelial benign tumor and 26 normal ovarian tissues was detected by immunohistochemistry. Western-blot was also used for detecting the expression of MKP-1 and p-ERK(1/2) protein in these tissues. Immunohistochemistry and Western-blot assay showed that the expression of MKP-1 was gradually decreased in normal ovarian tissues, benign tumor, bordline tumor and carcinoma respectively, and there were significant differences among them (P ERK(1/2) was gradually increased in normal ovarian tissues, benign tumor, bordline tumor and carcinoma respectively, and there were also significant differences among them (P ERK(1/2) expression level in the carcinoma tissues of stage III/IV patients was significantly higher than that of stage I/II patients. Expression of MKP-1 and p-ERK(1/2) in same ovarian carcinoma tissues detected by immunohistochemistry and Western-blot assay showed significant negative correlation (r = -0.90, P ERKs may play a role in the development of ovarian carcinoma. The abnormal expression of MKP-1 and p-ERK(1/2) probably assists in promoting the development and progression of ovarian carcinoma.

  15. Isolation and Characterization of Activators of ERK/MAPK from Citrus Plants

    Directory of Open Access Journals (Sweden)

    Takashi Yoshida

    2012-02-01

    Full Text Available Extracellular signal-regulated kinases 1/2 (ERK1/2, components of the mitogen-activated protein kinase (MAPK signaling cascade, have been recently shown to be involved in synaptic plasticity and in the development of long-term memory in the central nervous system (CNS. We therefore examined the ability of Citrus compounds to activate ERK1/2 in cultured rat cortical neurons, whose activation might have a protective effect against neurodegenerative neurological disorders. Among the samples tested, extracts prepared from the peels of Citrus grandis (Kawachi bankan were found to have the greatest ability to activate ERK1/2. The active substances were isolated by chromatographic separation, and one of them was identified to be 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF. HMF significantly induced the phosphorylation of cAMP response element-binding protein (CREB, a downstream target of activated ERK1/2, which appears to be a critical step in the signaling cascade for the structural changes underlying the development of long-term potentiation (LTP. In addition, the administration of HMF into mice treated with NMDA receptor antagonist MK-801 restored the MK-801-induced deterioration of spatial learning performance in the Morris mater-maze task. Taken together, these results suggest that HMF is a neurotrophic agent for treating patients with memory disorders.

  16. Vinculin modulation of paxillin–FAK interactions regulates ERK to control survival and motility

    Science.gov (United States)

    Subauste, M. Cecilia; Pertz, Olivier; Adamson, Eileen D.; Turner, Christopher E.; Junger, Sachiko; Hahn, Klaus M.

    2004-01-01

    Cells lacking vinculin are highly metastatic and motile. The reasons for this finding have remained unclear. Both enhanced survival and motility are critical to metastasis. Here, we show that vinculin null (vin−/−) cells and cells expressing a vinculin Y822F mutant have increased survival due to up-regulated activity of extracellular signal–regulated kinase (ERK). This increase is shown to result from vinculin's modulation of paxillin–FAK interactions. A vinculin fragment (amino acids 811–1066) containing the paxillin binding site restored apoptosis and suppressed ERK activity in vin−/− cells. Both vinY822F and vin−/− cells exhibit increased interaction between paxillin and focal adhesion kinase (FAK) and increased paxillin and FAK phosphorylation. Transfection with paxillin Y31FY118F dominant-negative mutant in these cells inhibits ERK activation and restores apoptosis. The enhanced motility of vin−/− and vinY822F cells is also shown to be due to a similar mechanism. Thus, vinculin regulates survival and motility via ERK by controlling the accessibility of paxillin for FAK interaction. PMID:15138291

  17. mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK.

    Science.gov (United States)

    Melemedjian, Ohannes K; Khoutorsky, Arkady; Sorge, Robert E; Yan, Jin; Asiedu, Marina N; Valdez, Arely; Ghosh, Sourav; Dussor, Gregory; Mogil, Jeffrey S; Sonenberg, Nahum; Price, Theodore J

    2013-07-01

    Mammalian target of rapamycin complex 1 (mTORC1) inhibitors are extensively used as immunosuppressants to prevent transplant rejection and in treatment of certain cancers. In patients, chronic treatment with rapamycin or its analogues (rapalogues) has been reported to lead to sensory hypersensitivity and pain conditions via an unknown mechanism. Here, we show that pharmacological or genetic inhibition of mTORC1 activates the extracellular signal-regulated kinase (ERK) pathway in sensory neurons via suppression of S6K1 to insulin receptor substrate 1 negative feedback loop. As a result, increased ERK activity induces sensory neuron sensitization, mechanical hypersensitivity, and spontaneous pain. The clinically available adenosine monophosphate-activated protein kinase activator, metformin, which is an antidiabetic drug, prevents rapamycin-induced ERK activation and the development of mechanical hypersensitivity and spontaneous pain. Taken together, our findings demonstrate that activation of the ERK pathway in sensory neurons as a consequence of mTORC1 inhibition leads to the development of pain. Importantly, this effect is abolished by co-treatment with metformin, thus providing a potential treatment option for rapalogue-evoked pain. Our findings highlight the physiological relevance of feedback signaling through mTORC1 inhibition and have important implications for development of pain therapeutics that target the mTOR pathway.

  18. PTK6 promotes cancer migration and invasion in pancreatic cancer cells dependent on ERK signaling.

    Directory of Open Access Journals (Sweden)

    Hiroaki Ono

    Full Text Available Protein Tyrosine Kinase 6 (PTK6 is a non-receptor type tyrosine kinase that may be involved in some cancers. However, the biological role and expression status of PTK6 in pancreatic cancer is unknown. Therefore in this study, we evaluated the functional role of PTK6 on pancreatic cancer invasion. Five pancreatic cancer cell lines expressed PTK6 at varying levels. PTK6 expression was also observed in human pancreatic adenocarcinomas. PTK6 suppression by siRNA significantly reduced both cellular migration and invasion (0.59/0.49 fold for BxPC3, 0.61/0.62 for Panc1, 0.42/0.39 for MIAPaCa2, respectively, p<0.05 for each. In contrast, forced overexpression of PTK6 by transfection of a PTK6 expression vector in Panc1 and MIAPaCa2 cells increased cellular migration and invasion (1.57/1.67 fold for Panc1, 1.44/1.57 for MIAPaCa2, respectively, p<0.05. Silencing PTK6 reduced ERK1/2 activation, but not AKT or STAT3 activation, while PTK6 overexpression increased ERK1/2 activation. U0126, a specific inhibitor of ERK1/2, completely abolished the effect of PTK6 overexpression on cellular migration and invasion. These results suggest that PTK6 regulates cellular migration and invasion in pancreatic cancer via ERK signaling. PTK6 may be a novel therapeutic target for pancreatic cancer.

  19. ERK activation is required for CCK-mediated pancreatic adaptive growth in mice.

    Science.gov (United States)

    Holtz, Bryan J; Lodewyk, Kevin B; Sebolt-Leopold, Judith S; Ernst, Stephen A; Williams, John A

    2014-10-01

    High levels of cholecystokinin (CCK) can stimulate pancreatic adaptive growth in which mature acinar cells divide, leading to enhanced pancreatic mass with parallel increases in protein, DNA, RNA, and digestive enzyme content. Prolonged release of CCK can be induced by feeding trypsin inhibitor (TI) to disrupt normal feedback control. This leads to exocrine growth in a CCK-dependent manner. The extracellular signal-related kinase (ERK) pathway regulates many proliferative processes in various tissues and disease models. The aim of this study was to evaluate the role of ERK signaling in pancreatic adaptive growth using the MEK inhibitors PD-0325901 and trametinib (GSK-1120212). It was determined that PD-0325901 given two times daily by gavage or mixed into powdered chow was an effective and specific inhibitor of ERK signaling in vivo. TI-containing chow led to a robust increase in pancreatic mass, protein, DNA, and RNA content. This pancreatic adaptive growth was blocked in mice fed chow containing the MEK inhibitors. PD-0325901 blocked TI-induced ERK-regulated early response genes, cell-cycle proteins, and mitogenesis by acinar cells. It was determined that ERK signaling is necessary for the initiation of pancreatic adaptive growth but not necessary to maintain it. PD-0325901 blocked adaptive growth when given before cell-cycle initiation but not after mitogenesis had been established. Furthermore, GSK-1120212, a chemically distinct inhibitor of the ERK pathway that is now approved for clinical use, inhibited growth similar to PD-0325901. These data demonstrate that the ERK pathway is required for CCK-stimulated pancreatic adaptive growth.

  20. ERK signaling mediates enhanced angiotensin Ⅱ-induced rat aortic constriction following chronic intermittent hypoxia

    Institute of Scientific and Technical Information of China (English)

    GUO Xue-ling; DENG Yan; SHANG Jin; LIU Kui; XU Yong-jian; LIU Hui-guo

    2013-01-01

    Background Obstructive sleep apnea (OSA) has been recognized as an independent risk factor for systemic hypertension.The study investigated the functional consequences of chronic intermittent hypoxia (CIH) on aortic constriction induced by angiotensin Ⅱ (Ang Ⅱ) and the possible signaling involving ERK1/2 and contractile proteins such as myosin light chain kinase (MLCK),myosin phosphatase targeting subunit (MYPT1) and myosin light chain (MLC).Methods Male Wistar rats were randomly divided into CIH group and normoxia group and exposed to either CIH procedure or air-air cycles.Phosphorylation of ERK1/2,MYPT1 and MLC was assessed by Western blotting following constrictor studies in the presence or absence of PD98059 (10 μmol/L).Results CIH-exposure resulted in more body weight gain and elevated blood pressure,which could be attenuated by pretreatment with PD98059.Endothelium-removed aortic rings from CIH rats exhibited higher constrictor sensitivity to Ang Ⅱ (Emax:(138.56±5.78)% versus (98.45±5.31)% of KCI; pD2:7.98±0.14 versus 8.14±0.05,respectively).CIH procedure exerted complex effects on ERK expressions (total ERK1/2 decreased whereas the ratio of phosphorylated to total ERK1/2increased).CIH aortas had higher MLCK mRNA and basal phosphorylation of MYPT1 and MLC.In parallel to greater increases in phosphorylation of ERK1/2,MYPT1 and MLC,Ang Ⅱ-induced aortic constriction was significantly enhanced in CIH rats,which was largely reversed by PD98059.However vascular constriction of normoxia rats remained unchanged despite similar but smaller changing tendency of proteins phosphorylation.Conclusion These data suggest that CIH exposure results in aortic hyperresponsiveness to Ang Ⅱ,presumably owing to more activated ERK1/2 signaling pathway.

  1. Efficient inhibition of the formation of joint adhesions by ERK2 small interfering RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fengfeng; Ruan, Hongjiang [Department of Orthopaedics, The Sixth Affiliated People' s Hospital, Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China); Fan, Cunyi, E-mail: fancunyi888@hotmail.com [Department of Orthopaedics, The Sixth Affiliated People' s Hospital, Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China); Zeng, Bingfang; Wang, Chunyang; Wang, Xiang [Department of Orthopaedics, The Sixth Affiliated People' s Hospital, Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China)

    2010-01-01

    Transforming growth factor-{beta}1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which extracellular signal-regulated kinase (ERK)2 is considered to be crucial. Based on these theories, we examined the effects of a lentivirus-mediated small interfering RNA (siRNA) targeting ERK2 on the suppression of joint adhesion formation in vivo. The effects were assessed in vivo from different aspects including the adhesion score, histology and joint contracture angle. We found that the adhesions in the ERK2 siRNA group became soft and weak, and were easily stretched. Accordingly, the flexion contracture angles in the ERK2 siRNA group were also reduced (P < 0.05 compared with the control group). The animals appeared healthy, with no signs of impaired wound healing. In conclusion, local delivery of a lentivirus-mediated siRNA targeting ERK2 can ameliorate joint adhesion formation effectively and safely.

  2. Bradykinin promotes neuron-generating division of neural progenitor cells through ERK activation.

    Science.gov (United States)

    Pillat, Micheli M; Lameu, Claudiana; Trujillo, Cleber A; Glaser, Talita; Cappellari, Angélica R; Negraes, Priscilla D; Battastini, Ana M O; Schwindt, Telma T; Muotri, Alysson R; Ulrich, Henning

    2016-09-15

    During brain development, cells proliferate, migrate and differentiate in highly accurate patterns. In this context, published results indicate that bradykinin functions in neural fate determination, favoring neurogenesis and migration. However, mechanisms underlying bradykinin function are yet to be explored. Our findings indicate a previously unidentified role for bradykinin action in inducing neuron-generating division in vitro and in vivo, given that bradykinin lengthened the G1-phase of the neural progenitor cells (NPC) cycle and increased TIS21 (also known as PC3 and BTG2) expression in hippocampus from newborn mice. This role, triggered by activation of the kinin-B2 receptor, was conditioned by ERK1/2 activation. Moreover, immunohistochemistry analysis of hippocampal dentate gyrus showed that the percentage of Ki67(+) cells markedly increased in bradykinin-treated mice, and ERK1/2 inhibition affected this neurogenic response. The progress of neurogenesis depended on sustained ERK phosphorylation and resulted in ERK1/2 translocation to the nucleus in NPCs and PC12 cells, changing expression of genes such as Hes1 and Ngn2 (also known as Neurog2). In agreement with the function of ERK in integrating signaling pathways, effects of bradykinin in stimulating neurogenesis were reversed following removal of protein kinase C (PKC)-mediated sustained phosphorylation.

  3. ERK reinforces actin polymerization to power persistent edge protrusion during motility.

    Science.gov (United States)

    Mendoza, Michelle C; Vilela, Marco; Juarez, Jesus E; Blenis, John; Danuser, Gaudenz

    2015-05-19

    Cells move through perpetual protrusion and retraction cycles at the leading edge. These cycles are coordinated with substrate adhesion and retraction of the cell rear. We tracked spatial and temporal fluctuations in the molecular activities of individual moving cells to elucidate how extracellular signal-regulated kinase (ERK) signaling controlled the dynamics of protrusion and retraction cycles. ERK is activated by many cell surface receptors, and we found that ERK signaling specifically reinforced cellular protrusions so that they translated into rapid, sustained forward motion of the leading edge. Using quantitative fluorescent speckle microscopy and cross-correlation analysis, we showed that ERK controlled the rate and timing of actin polymerization by promoting the recruitment of the actin nucleator Arp2/3 to the leading edge. These findings support a model in which surges in ERK activity induced by extracellular cues enhance Arp2/3-mediated actin polymerization to generate protrusion power phases with enough force to counteract increasing membrane tension and to promote sustained motility.

  4. Upregulated Ras/Raf/ERK1/2 signaling pathway: a new hope in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2015-01-01

    Full Text Available An increasing number of studies report that the Ras/Raf/extracellular signal-regulated kinase 1/2 (ERK1/2 signaling pathway has a death-promoting apoptotic function in neural cells. We hypothesized that the Ras/Raf/ERK1/2 signaling pathway may be abnormally regulated in rat injured spinal cord models. The weight drop method was used to establish rat spinal cord injury at T 9 . Western blot analysis and immunohistochemical staining revealed Ras expression was dramatically elevated, and the phosphorylations of A-Raf, B-Raf and C-Raf were all upregulated in the injured spinal cord. Both mitogen-activated protein kinase kinase 1/2 and ERK1/2, which belong to the Ras/Raf signaling kinases, were upregulated. These results indicate that Ras/Raf/ERK1/2 signaling may be upregulated in injured spinal cord and are involved in recovery after spinal cord injury.

  5. MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases?

    Science.gov (United States)

    Fanger, G R; Gerwins, P; Widmann, C; Jarpe, M B; Johnson, G L

    1997-02-01

    Regulation of the mitogen-activated protein kinase (MAPK) family members - which include the extracellular response kinases (ERKs), p38/HOG1, and the c-Jun amino-terminal kinases (JNKs) - plays a central role in mediating the effects of diverse stimuli encompassing cytokines, hormones, growth factors and stresses such as osmotic imbalance, heat shock, inhibition of protein synthesis and irradiation. A rapidly increasing number of kinases that activate the JNK pathways has been described recently, including the MAPK/ERK kinase kinases, p21-activated kinases, germinal center kinase, mixed lineage kinases, tumor progression locus 2, and TGF-beta-activated kinase. Thus, regulation of the JNK pathway provides an interesting example of how many different stimuli can converge into regulating pathways critical for the determination of cell fate.

  6. Lentivirus-Mediated ERK2 siRNA Reduces Joint Capsule Fibrosis in a Rat Model of Post-Traumatic Joint Contracture

    Directory of Open Access Journals (Sweden)

    Cunyi Fan

    2013-10-01

    Full Text Available Extracellular signal-regulated kinase (ERK-2 is presumed to play an important role in the development of post-traumatic joint contractures. Using a rat injury model, we investigated whether treatment with ERK2 small interfering RNA (siRNA could reduce the extent of joint capsule fibrosis after an induced injury. Rats were separated into three groups (n = 32 each: non-operated control group, operated contracture group and contracture-treatment group. Stable post-traumatic joint contracture was created through surgical intra-articular joint injury followed by eight weeks of immobilization. In the contracture-treatment group, the rats were treated with lentivirus (LV-mediated ERK2 siRNA at days 3 and 7 post-surgery. The posterior joint capsule was assessed by western blotting, immunohistochemistry and biochemical analysis for changes in ERK2, phosphorylated (p-ERK2, myofibroblast, total collagen and relative collagen Type III expression level. Biomechanical testing was used to assess the development of flexion contractures. Statistical analysis was performed using an analysis of variance. In the operated contracture group, rats that developed flexion contractures also showed elevated phosphorylated p-ERK2 expression. In the contracture-treatment group, ERK2 siRNA significantly reduced p-ERK2 expression levels, as well as the severity of flexion contracture development (p < 0.01. Myofibroblast numbers and measurements of total collagen content were also significantly reduced following ERK2 siRNA (p < 0.01. Relative collagen type III expression as a proportion of total of Types I and III collagen, however, was significantly increased in response to ERK2 siRNA (p < 0.01. Our findings demonstrate a role for ERK2 in the induction of joint capsule fibrosis after injury. Furthermore, we show that development of flexion contractures and the resultant increase of joint capsule fibrosis can be reduced by LV-mediated ERK2 siRNA treatment.

  7. Phasic phosphorylation of caldesmon and ERK 1/2 during contractions in human myometrium.

    Science.gov (United States)

    Paul, Jonathan; Maiti, Kaushik; Read, Mark; Hure, Alexis; Smith, Julia; Chan, Eng-Cheng; Smith, Roger

    2011-01-01

    Human myometrium develops phasic contractions during labor. Phosphorylation of caldesmon (h-CaD) and extracellular signal-regulated kinase 1/2 (ERK 1/2) has been implicated in development of these contractions, however the phospho-regulation of these proteins is yet to be examined during periods of both contraction and relaxation. We hypothesized that protein phosphorylation events are implicated in the phasic nature of myometrial contractions, and aimed to examine h-CaD and ERK 1/2 phosphorylation in myometrium snap frozen at specific stages, including; (1) prior to onset of contractions, (2) at peak contraction and (3) during relaxation. We aimed to compare h-CaD and ERK 1/2 phosphorylation in vitro against results from in vivo studies that compared not-in-labor (NIL) and laboring (L) myometrium. Comparison of NIL (n = 8) and L (n = 8) myometrium revealed a 2-fold increase in h-CaD phosphorylation (ser-789; P = 0.012) during onset of labor in vivo, and was associated with significantly up-regulated ERK2 expression (P = 0.022), however no change in ERK2 phosphorylation was observed (P = 0.475). During in vitro studies (n = 5), transition from non-contracting tissue to tissue at peak contraction was associated with increased phosphorylation of both h-CaD and ERK 1/2. Furthermore, tissue preserved at relaxation phase exhibited diminished levels of h-CaD and ERK 1/2 phosphorylation compared to tissue preserved at peak contraction, thereby producing a phasic phosphorylation profile for h-CaD and ERK 1/2. h-CaD and ERK 1/2 are phosphorylated during myometrial contractions, however their phospho-regulation is dynamic, in that h-CaD and ERK 1/2 are phosphorylated and dephosphorylated in phase with contraction and relaxation respectively. Comparisons of NIL and L tissue are at risk of failing to detect these changes, as L samples are not necessarily preserved in the midst of an active contraction.

  8. Effect of pERK2 on extracellular matrix turnover of the fibrotic joint capsule in a post-traumatic joint contracture model

    OpenAIRE

    Sun, Yangbai; Li, Fengfeng; Fan, Cunyi

    2015-01-01

    Lentivirus (LV)-mediated extracellular signal-regulated kinase (ERK)2 small interfering RNA (siRNA) has previously been demonstrated to reduce post-traumatic joint contractures: In the present study, the effect of ERK2 siRNA on extracellular matrix turnover within fibrotic joint capsules in post-traumatic joint contractures was examined. Rats were randomly assigned to one of three groups as follows: The non-operated control (CON), operated contracture (ORC) and contracture-treatment (CNT) gro...

  9. Differential induction of c-Fos and phosphorylated ERK by a noxious stimulus after peripheral nerve injury.

    Science.gov (United States)

    Tabata, Mitsuyasu; Terayama, Ryuji; Maruhama, Kotaro; Iida, Seiji; Sugimoto, Tomosada

    2017-10-02

    In this study, we compared induction of c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) in the spinal dorsal horn after peripheral nerve injury. We examined the spinal dorsal horn for noxious heat-induced c-Fos and p-ERK protein-like immunoreactive (c-Fos- and p-ERK-IR) neuron profiles after tibial nerve injury. The effect of administration of a MEK 1/2 inhibitor (PD98059) on noxious heat-induced c-Fos expression was also examined after tibial nerve injury. A large number of c-Fos- and p-ERK-IR neuron profiles were induced by noxious heat stimulation to the hindpaw in sham-operated animals. A marked reduction in the number of c-Fos- and p-ERK-IR neuron profiles was observed in the medial 1/3 (tibial territory) of the dorsal horn at 3 and 7 days after nerve injury. Although c-Fos-IR neuron profiles had reappeared by 14 days after injury, the number of p-ERK-IR neuron profiles remained decreased in the tibial territory of the superficial dorsal horn. Double immunofluorescence labeling for c-Fos and p-ERK induced by noxious heat stimulation to the hindpaw at different time points revealed that a large number of c-Fos-IR, but not p-ERK-IR, neuron profiles were distributed in the tibial territory after injury. Although administration of a MEK 1/2 inhibitor to the spinal cord suppressed noxious heat-induced c-Fos expression in the peroneal territory, this treatment did not alter c-Fos induction in the tibial territory after nerve injury. ERK phosphorylation may be involved in c-Fos induction in normal nociceptive responses, but not in exaggerated c-Fos induction after nerve injury.

  10. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway.

    Science.gov (United States)

    Wu, Xue; Yang, Longlong; Zheng, Zhao; Li, Zhenzhen; Shi, Jihong; Li, Yan; Han, Shichao; Gao, Jianxin; Tang, Chaowu; Su, Linlin; Hu, Dahai

    2016-03-01

    Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto‑oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metalloproteinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing.

  11. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway.

    Science.gov (United States)

    Nepal, Manoj; Li, Liang; Cho, Hyoung Kwon; Park, Jong Kun; Soh, Yunjo

    2013-12-01

    Endochondral bone formation occurs when mesenchymal cells condense to differentiate into chondrocytes, the primary cell types of cartilage. The aim of the present study was to identify novel factors regulating chondrogenesis. We investigated whether kaempferol induces chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Kaempferol treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Kaempferol-treated ATDC5 cells stained more intensely with alcian blue staining than control cells, suggesting greater synthesis of matrix proteoglycans in the kaempferol-treated cells. Similarly, kaempferol induced greater activation of alkaline phosphatase activity than control cells, and it enhanced the expression of chondrogenic marker genes, such as collagen type I, collagen type X, OCN, Runx2, and Sox9. Kaempferol induced an acute activation of extracellular signal-regulated kinase (ERK) but not c-jun N-terminal kinase or p38 MAP kinase. PD98059, an inhibitor of MAPK/ERK, decreased in stained cells treated with kaempferol. Furthermore, kaempferol greatly expressed the protein and mRNA levels of BMP-2, suggesting chondrogenesis was stimulated via a BMP-2 pathway. Taken together, our results suggest that kaempferol has chondromodulating effects via an ERK/BMP-2 signaling pathway and could potentially be used as a therapeutic agent for bone growth disorders.

  12. Erk1/2 mediates leptin receptor signaling in the ventral tegmental area.

    Directory of Open Access Journals (Sweden)

    Richard Trinko

    Full Text Available Leptin acts on the ventral tegmental area (VTA to modulate neuronal function and feeding behavior in rats and mice. To identify the intracellular effectors of the leptin receptor (Lepr, downstream signal transduction events were assessed for regulation by direct leptin infusion. Phosphorylated signal transducer and activator of transcription 3 (pSTAT3 and phosphorylated extracellular signal-regulated kinase-1 and -2 (pERK1/2 were increased in the VTA while phospho-AKT (pAKT was unaffected. Pretreatment of brain slices with the mitogen-activated protein kinase kinase -1 and -2 (MEK1/2 inhibitor U0126 blocked the leptin-mediated decrease in firing frequency of VTA dopamine neurons. The anorexigenic effects of VTA-administered leptin were also blocked by pretreatment with U0126, which effectively blocked phosphorylation of ERK1/2 but not STAT3. These data demonstrate that pERK1/2 may have a critical role in mediating both the electrophysiogical and behavioral effects of leptin receptor signaling in the VTA.

  13. Regulation of mitogen-activated protein kinase pathways by the plasma membrane Na+/H+ exchanger, NHE1

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Darborg, Barbara Vasek; Rentsch, Maria Louise;

    2006-01-01

    The mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, play a major role in the regulation of pivotal cellular processes such as cell death/survival balance, cell cycle progression, and cell migration. MAP...

  14. ERK1/2 inhibition attenuates cerebral blood flow reduction and abolishes ET(B) and 5-HT(1B) receptor upregulation after subarachnoid hemorrhage in rat

    DEFF Research Database (Denmark)

    Beg, Saema A S; Hansen-Schwartz, Jacob A; Vikman, Petter J

    2006-01-01

    -regulated kinase (ERK1/2). In the present study, we hypothesized that inhibition of ERK1/2 alters the ET(B) and 5-HT(1B) receptor upregulation and at the same time prevents the sustained cerebral blood flow (CBF) reduction associated with SAH. The ERK1/2 inhibitor SB386023-b was injected intracisternally...... in conjunction with and after the induced SAH in rats. At 2 days after the SAH, cerebral arteries were harvested for quantitative real-time polymerase chain reaction, immunohistochemistry and analysis of contractile responses to endothelin-1 (ET-1; ET(A) and ET(B) receptor agonist) and 5-carboxamidotryptamine (5...

  15. Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons.

    Science.gov (United States)

    Beck, Katherina; Ehmann, Nadine; Andlauer, Till F M; Ljaschenko, Dmitrij; Strecker, Katrin; Fischer, Matthias; Kittel, Robert J; Raabe, Thomas

    2015-11-01

    Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling.

  16. Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons

    Directory of Open Access Journals (Sweden)

    Katherina Beck

    2015-11-01

    Full Text Available Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2 acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling.

  17. B7-H4 Treatment of T Cells Inhibits ERK, JNK, p38, and AKT Activation.

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    Full Text Available B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3(+ T cells with a B7-H4.Ig fusion protein inhibits anti-CD3 elicited T-cell receptor (TCR/CD28 signaling events, including phosphorylation of the MAP kinases, ERK, p38, and JNK. B7-H4.Ig treatment also inhibited the phosphorylation of AKT kinase and impaired its kinase activity as assessed by the phosphorylation of its endogenous substrate GSK-3. Expression of IL-2 is also reduced by B7-H4. In contrast, the phosphorylation state of the TCR proximal tyrosine kinases ZAP70 and lymphocyte-specific protein tyrosine kinase (LCK are not affected by B7-H4 ligation. These results indicate that B7-H4 inhibits T-cell proliferation and IL-2 production through interfering with activation of ERK, JNK, and AKT, but not of ZAP70 or LCK.

  18. Flagellin of Pseudomonas aeruginosa induces transforming growth factor beta 1 expression in normal bronchial epithelial cells through mitogen activated protein kinase cascades

    Institute of Scientific and Technical Information of China (English)

    YANG Jing-jing; WANG Dan-dan; SUN Tie-ying

    2011-01-01

    Background Acute lung infection due to Pseudomonas aeruginosa (P. Aeruginosa) is a serious problem, especially in patients with structural lung conditions or immune compromised hosts, leading to an overwhelming threat with a high risk of morbidity and mortality. As an outcome of infection, fibrosis can be linked with chronic lung diseases. But some fibrotic manifestations, such as an irreversible decrease of lung function and fibrous bands seen on chest imaging, have been found after an acute infection with P. Aeruginosa. Fibrogenesis/remodeling resulting from acute lung infection by P.aeruginosa is rarely reported. This study was designed to explore the relation between fibrogenesis/remodeling and acute infection by P. Aeruginosa in vitro. We used flagellin protein from P. Aeruginosa, a key initiator of acute P.aeruginosa lung infection, to elucidate mechanisms by which acute lung infection with P. Aeruginosa can cause fibrogenesis/remodeling.Methods We studied the effect of flagellin from P. Aeruginosa (flagellin for short) on the transforming growth factor beta 1 (TGF-β1) and interleukin-8 (IL-8) expression, and the possible involvement of the signaling pathway, tumor necrosis factor receptor-associated factor 6 (TRAF6)/mitogen activated protein kinase (MAPK) pathway. Flagellin was purified from the P. Aeruginosa standard strain, PAO1. Normal bronchial epithelial cells BEAS-2B were challenged with different concentrations of flagellin, and cell viability assessment was performed by cell counting kit-8. BEAS-2B cells were incubated with flagellin with the specific MAPK inhibitors or TRAF6 siRNA. Cell lysates and the cultured supernatant were collected. The level of TGF-β1 and IL-8 were detected by enzyme-linked immunosorbant assay (ELISA). Western blotting was used to detect the protein levels of MAPK signal proteins p38, c-Jun NH2-terminal kinase (JNK) and extracellular regulated kinase (ERK).Results Expression of TGF-β1 in BEAS-2B cells was elevated by

  19. SRC protein tyrosine kinase, c-Jun N-terminal kinase (JNK), and NF-kappaBp65 signaling in commercial and wild-type turkey leukocytes

    Science.gov (United States)

    Studies comparing signaling in wild-type turkey (WT) leukocytes and commercial turkey (CT) leukocytes found that the activity of protein tyrosine kinases (PTK) and MAP kinases, ERK 1/2 and p38, were significantly higher in WT leukocytes compared to CT lines upon exposure to both SE and OPSE on days...

  20. Neuropeptide FF activates ERK and NF kappa B signal pathways in differentiated SH-SY5Y cells.

    Science.gov (United States)

    Sun, Yu-long; Zhang, Xiao-yuan; He, Ning; Sun, Tao; Zhuang, Yan; Fang, Quan; Wang, Kai-rong; Wang, Rui

    2012-11-01

    Neuropeptide FF (NPFF) has been reported to play important roles in regulating diverse biological processes. However, little attention has been focused on the downstream signal transduction pathway of NPFF. Here, we used the differentiated neuroblastoma cell line, dSH-SY5Y, which endogenously expresses hNPFF2 receptor, to investigate the signal transduction downstream of NPFF. In particular we investigated the regulation of the extracellular signal-regulated protein kinase (ERK) and the nuclear factor kappa B (NF-κB) pathways by NPFF in these cells. NPFF rapidly and transiently stimulated ERK. H89, a selective inhibitor of cyclic AMP-dependent protein kinase A (PKA), inhibited the NPFF-activated ERK pathway, indicating the involvement of PKA in the NPFF-induced ERK activation. Down-regulation of nitric oxide synthases also attenuated NPFF-induced ERK activation, suggesting that a nitric oxide synthase-dependent pathway is involved. Moreover, the core upstream components of the NF-κB pathway were also significantly activated in response to NPFF, suggesting that the NF-κB pathway is involved in the signal transduction pathway of NPFF. Collectively, these data demonstrate that nitric oxide synthases are involved in the signal transduction pathway of NPFF, and provide the first evidence for the interaction between NPFF and the NF-κB pathway. These advances in our interpretation of the NPFF pathway mechanism will aid the comprehensive understanding of its function and provide novel molecular insight for further study of the NPFF system.

  1. Erk regulation of actin capping and bundling by Eps8 promotes cortex tension and leader bleb-based migration.

    Science.gov (United States)

    Logue, Jeremy S; Cartagena-Rivera, Alexander X; Baird, Michelle A; Davidson, Michael W; Chadwick, Richard S; Waterman, Clare M

    2015-07-11

    Within the confines of tissues, cancer cells can use blebs to migrate. Eps8 is an actin bundling and capping protein whose capping activity is inhibited by Erk, a key MAP kinase that is activated by oncogenic signaling. We tested the hypothesis that Eps8 acts as an Erk effector to modulate actin cortex mechanics and thereby mediate bleb-based migration of cancer cells. Cells confined in a non-adhesive environment migrate in the direction of a very large 'leader bleb.' Eps8 bundling activity promotes cortex tension and intracellular pressure to drive leader bleb formation. Eps8 capping and bundling activities act antagonistically to organize actin within leader blebs, and Erk mediates this effect. An Erk biosensor reveals concentrated kinase activity within leader blebs. Bleb contents are trapped by the narrow neck that separates the leader bleb from the cell body. Thus, Erk activity promotes actin bundling by Eps8 to enhance cortex tension and drive the bleb-based migration of cancer cells under non-adhesive confinement.

  2. Ras-Mek-Erk signaling regulates Nf1 heterozygous neointima formation.

    Science.gov (United States)

    Stansfield, Brian K; Bessler, Waylan K; Mali, Raghuveer; Mund, Julie A; Downing, Brandon D; Kapur, Reuben; Ingram, David A

    2014-01-01

    Neurofibromatosis type 1 (NF1) results from mutations in the NF1 tumor-suppressor gene, which encodes neurofibromin, a negative regulator of diverse Ras signaling cascades. Arterial stenosis is a nonneoplastic manifestation of NF1 that predisposes some patients to debilitating morbidity and sudden death. Recent murine studies demonstrate that Nf1 heterozygosity (Nf1(+/-)) in monocytes/macrophages significantly enhances intimal proliferation after arterial injury. However, the downstream Ras effector pathway responsible for this phenotype is unknown. Based on in vitro assays demonstrating enhanced extracellular signal-related kinase (Erk) signaling in Nf1(+/-) macrophages and vascular smooth muscle cells and in vivo evidence of Erk amplification without alteration of phosphatidylinositol 3-kinase signaling in Nf1(+/-) neointimas, we tested the hypothesis that Ras-Erk signaling regulates intimal proliferation in a murine model of NF1 arterial stenosis. By using a well-established in vivo model of inflammatory cell migration and standard cell culture, neurofibromin-deficient macrophages demonstrate enhanced sensitivity to growth factor stimulation in vivo and in vitro, which is significantly diminished in the presence of PD0325901, a specific inhibitor of Ras-Erk signaling in phase 2 clinical trials for cancer. After carotid artery injury, Nf1(+/-) mice demonstrated increased intimal proliferation compared with wild-type mice. Daily administration of PD0325901 significantly reduced Nf1(+/-) neointima formation to levels of wild-type mice. These studies identify the Ras-Erk pathway in neurofibromin-deficient macrophages as the aberrant pathway responsible for enhanced neointima formation.

  3. Axonal outgrowth is associated with increased ERK 1/2 activation but decreased caspase 3 linked cell death in Schwann cells after immediate nerve repair in rats

    Directory of Open Access Journals (Sweden)

    Kanje Martin

    2011-01-01

    Full Text Available Abstract Background Extracellular-signal regulated kinase (ERK1/2 is activated by nerve damage and its activation precedes survival and proliferation of Schwann cells. In contrast, activation of caspase 3, a cysteine protease, is considered as a marker for apoptosis in Schwann cells. In the present study, axonal outgrowth, activation of ERK1/2 by phosphorylation (p-ERK 1/2 and immunoreactivity of cleaved caspase 3 were examined after immediate, delayed, or no repair of transected rat sciatic nerves. Results Axonal outgrowth, detected by neurofilament staining, was longer after immediate repair than after either the delayed or no repair conditions. Immediate repair also showed a higher expression of p-ERK 1/2 and a lower number of cleaved caspase 3 stained Schwann cells than after delayed nerve repair. If the transected nerve was not repaired a lower level of p-ERK 1/2 was found than in either the immediate or delayed repair conditions. Axonal outgrowth correlated to p-ERK 1/2, but not clearly with cleaved caspase 3. Contact with regenerating axons affected Schwann cells with respect to p-ERK 1/2 and cleaved caspase 3 after immediate nerve repair only. Conclusion The decreased regenerative capacity that has historically been observed after delayed nerve repair may be related to impaired activation of Schwann cells and increased Schwann cell death. Outgrowing axons influence ERK 1/2 activation and apoptosis of Schwann cells.

  4. Computational design, chemical synthesis, and biological evaluation of a novel ERK inhibitor (BL-EI001) with apoptosis-inducing mechanisms in breast cancer.

    Science.gov (United States)

    Liu, Bo; Fu, Leilei; Zhang, Cui; Zhang, Lan; Zhang, Yonghui; Ouyang, Liang; He, Gu; Huang, Jian

    2015-03-30

    Extracellular signal-regulated kinase1/2 (ERK1/2) plays a crucial role in the resistance of apoptosis in carcinogenesis; however, its targeted small-molecule inhibitors still remain to be discovered. Thus, in this study, we computationally and experimentally screened a series of small-molecule inhibitors targeting ERK toward different types of human breast cancer cells. Subsequently, we synthesized some candidate ERK inhibitors, identified a novel ERK inhibitor (BL-EI001) with anti-proliferative activities, and analyzed the BL-EI001/ERK complex. Moreover, we found that BL-EI001 induced breast cancer cell apoptosis via mitochondrial pathway but independent on Ras/Raf/MEK pathway. In addition, we carried out proteomics analyses for exploring some possible BL-EI001-induced apoptotic pathways, and further found that BL-EI001-induced apoptosis affected ERK phosphorylation in breast cancer. Further, we found that BL-EI001 bear anti-tumor activities without remarkable toxicities, and also induced mitochondrial apoptosis by targeting ERK in vivo. Taken together, these results demonstrate that in silico design and experimental discovery of a synthesized small-molecule ERK inhibitor (BL-EI001)as a potential novel apoptosis-inducing drug in the treatment of breast cancer.

  5. Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids.

    Science.gov (United States)

    Su, Heng; McClarty, Grant; Dong, Feng; Hatch, Grant M; Pan, Zhixing K; Zhong, Guangming

    2004-03-01

    Chlamydiae, a diverse group of obligate intracellular pathogens replicating within cytoplasmic vacuoles of eukaryotic cells, are able to acquire lipids from host cells. Here we report that activation of the host Raf-MEK-ERK-cPLA2 signaling cascade is required for the chlamydial uptake of host glycerophospholipids. Both the MAP kinase pathway (Ras/Raf/MEK/ERK) and Ca(2+)-dependent cytosolic phospholipase A2 (cPLA2) were activated in chlamydia-infected cells. The inhibition of cPLA2 activity resulted in the blockade of the chlamydial uptake of host glycerophospholipids and impairment in chlamydial growth. Blocking either c-Raf-1 or MEK1/2 activity prevented the chlamydial activation of ERK1/2, leading to the suppression of both chlamydial activation of the host cPLA2 and uptake of glycerophospholipids from the host cells. The chlamydia-induced phosphorylation of cPLA2 was also blocked by a dominant negative ERK2. Furthermore, activation of both ERK1/2 and cPLA2 was dependent on chlamydial growth and restricted within chlamydia-infected cells, suggesting an active manipulation of the host ERK-cPLA2 signaling pathway by chlamydiae.

  6. Phosphorylation of the Transcription Factor Ets-1 by ERK2: Rapid Dissociation of ADP and Phospho-Ets-1

    Science.gov (United States)

    Callaway, Kari; Waas, William F.; Mark A, Rainey; Ren, Pengyu; Dalby, Kevin N.

    2010-01-01

    ERK2 a major effector of the BRAF oncogene is a promiscuous protein kinase that has a strong preference to phosphorylate substrates on Ser-Pro or Thr-Pro motifs. As part of a program to understand the fundamental basis for ERK2 substrate recognition and catalysis we have studied the mechanism by which ERK2 phosphorylates the transcription factor Ets-1 on Thr-38. A feature of the mechanism in the forward direction is a partially rate-limiting product release step, koff = 59 ± 6 s−1, which is significant, because in order to approach maximum efficiency substrates for ERK2 may evolve to ensure that ADP dissociation is rate-limiting. To further understand the mechanism of product release, the binding of the products to ERK2 was assessed and the reaction was examined in the reverse direction. These studies demonstrated that phospho-Ets-1 (p-Ets) binds > 20-fold more tightly to ERK2 than ADP (Kd = 7.3 and 165 μM respectively), revealed that the products exhibit little interaction energetically, while bound to ERK2 and that they can dissociate ERK2 in a random order. The overall equilibrium for the reaction in solution (Keq = 250 M−1) was found to be similar to that while bound to the enzyme (Kint = 525 M−1). To determine what limits koff several pre-steady-state experiments were performed. A catalytic trapping approach furnished a rate-constant of k−ADPa=61±12s−1 for the dissociation of ADP from the abortive ternary complex, ERK2•Ets•ADP. To examine p-Ets dissociation the binding of a fluorescent derivative (p-Ets-F), which binds ERK2 with similar affinity to p-Ets, was examined by stopped-flow kinetics. Using this approach p-Ets-F was found to bind through a single-step mechanism, with the following parameters, k−p-Ets-F = 121 ± 3.8 s−1 and kp-Ets-F = 9.4 ± 0.3 × 106 M−1s−1. Similar results were found in the presence of saturating ADP. These data suggest that koff may be limited by the dissociation of both products and are consistent with the

  7. Prostaglandin F2α stimulates PI3K/ERK/mTOR signaling and skeletal myotube hypertrophy.

    Science.gov (United States)

    Markworth, James F; Cameron-Smith, David

    2011-03-01

    Cyclooxygenase (COX) enzymes mediate the synthesis of proinflammatory prostaglandin (PG) species from cellular arachidonic acid. COX/PGs have been implicated in skeletal muscle growth/regeneration; however, the mechanisms by which PGs influence skeletal muscle adaptation are poorly understood. The present study aimed to investigate PGF(2α) signaling and its role in skeletal myotube hypertrophy. PGF(2α) or the FP receptor agonist fluprostenol increased C2C12 myotube diameter. This effect was abolished by the FP receptor antagonist AL8810 and mammalian target of rapamycin (mTOR) inhibition. PGF(2α) stimulated time- and dose-dependent increases in the phosphorylation of extracellular receptor kinase (ERK)1/2 (Thr202/Tyr204), p70S6 kinase (p70S6K) (Thr389 and Thr421/Ser424), and eukaryotic initiation factor 4G (eIF4G) (Ser1108) without influencing Akt (Ser473). Pretreatment with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 and the ERK inhibitor PD98059 blocked F prostanoid receptor signaling responses, whereas rapamycin blocked heightened p70S6K/eIF4G phosphorylation without influencing ERK1/2 phosphorylation. These data suggest that activation of the F prostanoid receptor is coupled to C2C12 myotube growth and intracellular signaling via a PI3K/ERK/mTOR-dependent pathway.

  8. ERK信号转导通路与类风湿关节炎%ERK signaling pathway in rheumatoid arthritis

    Institute of Scientific and Technical Information of China (English)

    王建竹; 孔祥英; 林娜

    2011-01-01

    The excessive activation of extracellular signal - regulated kinase( ERK ) signaling pathway, which is a significant feature of rheumatoid arthritic( RA ) arthropathy, plays an important role in the process of synoviocyte dysfunction and destruction of cartilage and bone.Understanding the pathomechanism of ERK signaling in RA provides a new target for developing new drug and therapeutic strategy.This review summarizes the current knowledge of the activation, regulation and function of ERK pathway, and also analyzes the role of this signaling transduction in the destruction of joints and the pathogenesis of RA.%@@ 丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)信号转导通路是细胞外信号引起细胞核内反应的重要通路,而细胞外信号调节激酶(extracellular signal-regulated kinase, ERK)通路是MAPKs家族中的重要成员,其异常活化与类风湿关节炎(rheumatoid arthritis,RA)关节破坏的病理过程密切相关.

  9. Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif)

    Science.gov (United States)

    Ng, Mei Ying; Wang, Mei; Casey, Patrick J.; Gan, Yunn-Hwen; Hagen, Thilo

    2017-01-01

    Cycle inhibiting factors (Cifs) are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL) and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK signaling without significant activation of other signaling pathways downstream of receptor tyrosine kinases. Importantly, we found that the ability of Cif to activate ERK is dependent on its deamidase activity, but independent of Cullin E3 ligase inhibition. This suggests that apart from Nedd8, other cellular targets of Cif-dependent deamidation exist. We provide evidence that the mechanism involved in Cif-mediated ERK activation is dependent on recruitment of the Grb2-SOS1 complex to the plasma membrane. Further investigation revealed that Cif appears to modify the phosphorylation status of SOS1 in a region containing the CDC25-H and proline-rich domains. It is known that prolonged Cullin E3 ligase inhibition leads to cellular apoptosis. Therefore, we hypothesize that ERK activation is an important mechanism to counter the pro-apoptotic effects of Cif. Indeed, we show that Cif dependent ERK activation promotes phosphorylation of the proapoptotic protein Bim, thereby potentially conferring a pro-survival signal. In summary, we identified a novel deamidation-dependent mechanism of action of the B. pseudomallei virulence factor Cif/CHBP to activate MAPK/ERK signaling. Our study demonstrates that bacterial proteins such as Cif can serve as useful molecular tools to uncover novel aspects of mammalian signaling pathways. PMID:28166272

  10. Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif).

    Science.gov (United States)

    Ng, Mei Ying; Wang, Mei; Casey, Patrick J; Gan, Yunn-Hwen; Hagen, Thilo

    2017-01-01

    Cycle inhibiting factors (Cifs) are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL) and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK signaling without significant activation of other signaling pathways downstream of receptor tyrosine kinases. Importantly, we found that the ability of Cif to activate ERK is dependent on its deamidase activity, but independent of Cullin E3 ligase inhibition. This suggests that apart from Nedd8, other cellular targets of Cif-dependent deamidation exist. We provide evidence that the mechanism involved in Cif-mediated ERK activation is dependent on recruitment of the Grb2-SOS1 complex to the plasma membrane. Further investigation revealed that Cif appears to modify the phosphorylation status of SOS1 in a region containing the CDC25-H and proline-rich domains. It is known that prolonged Cullin E3 ligase inhibition leads to cellular apoptosis. Therefore, we hypothesize that ERK activation is an important mechanism to counter the pro-apoptotic effects of Cif. Indeed, we show that Cif dependent ERK activation promotes phosphorylation of the proapoptotic protein Bim, thereby potentially conferring a pro-survival signal. In summary, we identified a novel deamidation-dependent mechanism of action of the B. pseudomallei virulence factor Cif/CHBP to activate MAPK/ERK signaling. Our study demonstrates that bacterial proteins such as Cif can serve as useful molecular tools to uncover novel aspects of mammalian signaling pathways.

  11. Intracellular signaling via ERK/MAPK completes the pathway for tubulogenic fibronectin in MDCK cells.

    Science.gov (United States)

    Liu, Zhao; Greco, Andres J; Hellman, Nathan E; Spector, June; Robinson, Jonathan; Tang, Oliver T; Lipschutz, Joshua H

    2007-02-16

    A classic in vitro model of branching morphogenesis utilizes the Madin-Darby canine kidney (MDCK) cell line. MDCK Strain II cells form hollow monoclonal cysts in a three-dimensional collagen matrix over the course of 10 days and tubulate in response to hepatocyte growth factor (HGF). We and our colleagues previously showed that activation of the extracellular-signal regulated kinase (ERK, aka MAPK) pathway is necessary and sufficient to induce tubulogenesis in MDCK cells. We also showed in a microarray study that one of the genes upregulated by HGF was the known tubulogene fibronectin. Given that HGF activates a multitude of signaling pathways, including ERK/MAPK, to test the intracellular regulatory pathway, we used two distinct inhibitors of ERK activation (U0126 and PD098059). Following induction of MDCK Type II cells with HGF, tubulogenic fibronectin mRNA was upregulated fourfold by real-time PCR, and minimal or no change in fibronectin expression was seen when HGF was added with either U0126 or PD098059. We confirmed these results using an MDCK cell line inducible for Raf, which is upstream of ERK. Following activation of Raf, fibronectin mRNA and protein expression were increased to a similar degree as was seen following HGF induction. Furthermore, MDCK Strain I cells, which originate from collecting ducts and have constitutively active ERK, spontaneously initiate tubulogenesis. We show here that MDCK Strain I cells have high levels of fibronectin mRNA and protein compared to MDCK Strain II cells. When U0126 and PD098059 were added to MDCK Strain I cells, fibronectin mRNA, and protein levels were decreased to levels seen in MDCK Strain II cells. These data allow us to complete what we believe is the first description of a tubulogenic pathway from receptor/ligand (HGF/CMET), through an intracellular signaling pathway (ERK/MAPK), to transcription and, finally, secretion of a critical tubuloprotein (fibronectin).

  12. Sangivamycin induces apoptosis by suppressing Erk signaling in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wakao, Kazufumi [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu-shi 400-8511 (Japan); Watanabe, Tadashi [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Takadama, Tadatoshi; Ui, Sadaharu [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu-shi 400-8511 (Japan); Shigemi, Zenpei; Kagawa, Hiroki [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Higashi, Chizuka; Ohga, Rie; Taira, Takahiro [Department of Molecular Cell Biology, Faculty of Medicine, University of Yamanashi, Chuoh-shi 409-3898 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2014-02-07

    Highlights: • Sangivamycin induces the apoptosis of B cell lymphoma PEL cells. • Sangivamycin suppresses Erk signaling by inhibiting Erk phosphorylation in PEL cells. • The activation of Erk signaling is essential for PEL cell survival. • Sangivamycin induces the apoptosis of PEL cells without production of progeny virus. • Sangivamycin may serve as a novel drug for the treatment of PEL. - Abstract: Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that

  13. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se-Hee [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Schmitt, Christopher E.; Woolls, Melissa J. [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States); Holland, Melinda B. [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Kim, Jun-Dae [Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States); Jin, Suk-Won, E-mail: suk-won.jin@yale.edu [Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States)

    2013-01-25

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.

  14. Phosphorylation of mitogen-activated protein kinase by one-trial and multi-trial classical conditioning.

    Science.gov (United States)

    Crow, T; Xue-Bian, J J; Siddiqi, V; Kang, Y; Neary, J T

    1998-05-01

    The pathway supporting the conditioned stimulus (CS) is one site of plasticity that has been studied extensively in conditioned Hermissenda. Several signal transduction pathways have been implicated in classical conditioning of this preparation, although the major emphasis has been on protein kinase C. Here we provide evidence for the activation and phosphorylation of a mitogen-activated protein kinase (MAPK) pathway by one-trial and multi-trial conditioning. A one-trial in vitro conditioning procedure consisting of light (CS) paired with the application of 5-HT results in the increased incorporation of 32PO4 into proteins detected with two-dimensional gel electrophoresis. Two of the phosphoproteins have molecular weights of 44 and 42 kDa, consistent with extracellular signal-regulated protein kinases (ERK1 and ERK2). Phosphorylation of the 44 and 42 kDa proteins by one-trial conditioning was inhibited by pretreatment with PD098059, A MEK1 (ERK-Activating kinase) inhibitor. Assays of ERK activity with brain myelin basic protein as a substrate revealed greater ERK activity for the group that received one-trial conditioning compared with an unpaired control group. Western blot analysis of phosphorylated ERK using antibodies recognizing the dually phosphorylated forms of ERK1 and ERK2 showed an increase in phosphorylation after one-trial conditioning compared with unpaired controls. The increased phosphorylation of ERK after one-trial conditioning was blocked by pretreatment with PD098059. Hermissenda that received 10 or 15 conditioning trials showed significant behavioral suppression compared with pseudo-random controls. After conditioning and behavioral testing, the conditioned animals showed significantly greater phosphorylation of ERK compared with the pseudo-random controls. These results show that the ERK-MAPK signaling pathway is activated in Pavlovian conditioning of Hermissenda.

  15. Initial analysis of peripheral lymphocytic extracellular signal related kinase activation in autism.

    Science.gov (United States)

    Erickson, Craig A; Ray, Balmiki; Wink, Logan K; Bayon, Baindu L; Pedapati, Ernest V; Shaffer, Rebecca; Schaefer, Tori L; Lahiri, Debomoy K

    2017-01-01

    Dysregulation of extracellular signal-related kinase (ERK) activity has been potentially implicated in the pathophysiology of autistic disorder (autism). ERK is part of a central intracellular signaling cascade responsible for a myriad of cellular functions. ERK is expressed in peripheral blood lymphocytes, and measurement of activated (phosphorylated) lymphocytic ERK is commonly executed in many areas of medicine. We sought to conduct the first study of ERK activation in humans with autism by utilizing a lymphocytic ERK activation assay. We hypothesized that ERK activation would be enhanced in peripheral blood lymphocytes from persons with autism compared to those of neurotypical control subjects. We conducted an initial study of peripheral lymphocyte ERK activation in 45 subjects with autism and 26 age- and gender-matched control subjects (total n = 71). ERK activation was measured using a lymphocyte counting method (primary outcome expressed as lymphocytes staining positive for cytosolic phosphorylated ERK divided by total cells counted) and additional Western blot analysis of whole cell phosphorylated ERK adjusted for total ERK present in the lymphocyte lysate sample. Cytosolic/nuclear localization of pERK activated cells were increased by almost two-fold in the autism subject group compared to matched neurotypical control subjects (cell count ratio of 0.064 ± 0.044 versus 0.034 ± 0.031; p = 0.002). Elevated phosphorylated ERK levels in whole cell lysates also showed increased activated ERK in the autism group compared to controls (n = 54 total) in Western blot analysis. The results of this first in human ERK activation study are consistent with enhanced peripheral lymphocytic ERK activation in autism, as well as suggesting that cellular compartmentalization of activated ERK may be altered in this disorder. Future work will be required to explore the impact of concomitant medication use and other subject characteristics such as level of cognitive

  16. p16(INK4A) inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-β1.

    Science.gov (United States)

    Silva, Gabriela; Aboussekhra, Abdelilah

    2016-05-01

    Extracellular signal-regulated kinase (ERK) is a downstream component of the evolutionarily conserved mitogen-activated protein kinase-signaling pathway, which controls the expression of a plethora of genes implicated in various physiological processes. This pathway is often hyper-activated by mutations or abnormal extracellular signaling in different types of human cancer, including the most common primary malignant bone tumor osteosarcomas. p16(INK4A) is an important tumor suppressor gene frequently lost in osteosarcomas, and is associated with the progression of these malignancies. We have shown, here, that the ERK1/2 protein kinase is also activated by p16(INK4A) down-regulation in osteosarcoma cells and normal human as well as mouse cells. This inhibitory effect is associated with the suppression of the upstream kinase MEK1/2, and is mediated via the repression of miR-21-5p and the consequent up-regulation of the MEK/ERK antagonist SPRY2 in osteosarcoma cells. Furthermore, we have shown that p16(INK4) inhibits the migration/invasion abilities of these cells through miR-21-5p-dependent inhibition of ERK1/2. In addition, we present clear evidence that p16(INK4) represses the paracrine pro-migratory effect of osteosarcoma cells on stromal fibroblasts through the inhibition of the TGF-β1 expression/secretion. This effect is also ERK1/2-dependent, indicating that in addition to their cell-autonomous actions, p16(INK4) and ERK1/2 have also non-cell-autonomous cancer-related functions. Together, these results indicate that the tumor suppressor p16(INK4) protein represses the carcinogenic process of osteosarcoma cells not only as a cell cycle regulator, but also as a negative regulator of pro-carcinogenic/-metastatic pathways. This indicates that targeting the ERK pathway is of utmost therapeutic value.

  17. Celastrol-Induced Suppression of the MiR-21/ERK Signalling Pathway Attenuates Cardiac Fibrosis and Dysfunction

    Directory of Open Access Journals (Sweden)

    Mian Cheng

    2016-05-01

    Full Text Available Backgroud: Myocardial fibrosis results in myocardial remodelling and dysfunction. Celastrol, a traditional oriental medicine, has been suggested to have cardioprotective effects. However, its underlying mechanism is unknown. This study investigated the ability of celastrol to prevent cardiac fibrosis and dysfunction and explored the underlying mechanisms. Methods: Animal and cell models of cardiac fibrosis were used in this study. Myocardial fibrosis was induced by transverse aortic constriction (TAC in mice. Cardiac hypertrophy and fibrosis were evaluated based on histological and biochemical measurements. Cardiac function was evaluated by echocardiography. The levels of transforming growth factor beta 1 (TGF-β1, extracellular signal regulated kinases 1/2 (ERK1/2 signalling were measured using Western blotting, while the expression of miR-21was analyzed by real-time qRT-PCR in vitro and in vivo. In vitro studies, cultured cardiac fibroblasts (CFs were treated with TGF-β1 and transfected with microRNA-21(miR21. Results: Celastrol treatment reduced the increased collagen deposition and down-regulated α-smooth muscle actin (α-SMA, atrial natriuretic peptide (ANP, brain natriuretic peptides (BNP, beta-myosin heavy chain (β-MHC, miR-21 and p-ERK/ERK. Cardiac dysfunction was significantly attenuated by celastrol treatment in the TAC mice model. Celastrol treatment reduced myocardial fibroblast viability and collagen content and down-regulated α-SMA in cultured CFs in vitro. Celastrol also inhibited the miR-21/ERK signalling pathway. Celastrol attenuated miR-21 up-regulation by TGF-β1 and decreased elevated p-ERK/ERK levels in CFs transfected with miR-21. Conclusion: MiR-21/ERK signalling could be a potential therapeutic pathway for the prevention of myocardial fibrosis. Celastrol ameliorates myocardial fibrosis and cardiac dysfunction, these probably related to miR-21/ERK signaling pathways in vitro and in vivo.

  18. ERK5 activation by Gq-coupled muscarinic receptors is independent of receptor internalization and β-arrestin recruitment.

    Directory of Open Access Journals (Sweden)

    Guzmán Sánchez-Fernández

    Full Text Available G-protein-coupled receptors (GPCRs are known to activate both G protein- and β-arrestin-dependent signalling cascades. The initiation of mitogen-activated protein kinase (MAPK pathways is a key downstream event in the control of cellular functions including proliferation, differentiation, migration and apoptosis. Both G proteins and β-arrestins have been reported to mediate context-specific activation of ERK1/2, p38 and JNK MAPKs. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has been described to involve a direct interaction between Gαq and two novel effectors, PKCζ and MEK5. However, the possible contribution of β-arrestin towards this pathway has not yet been addressed. In the present work we sought to investigate the role of receptor internalization processes and β-arrestin recruitment in the activation of ERK5 by Gq-coupled GPCRs. Our results show that ERK5 activation is independent of M1 or M3 muscarinic receptor internalization. Furthermore, we demonstrate that phosphorylation-deficient muscarinic M1 and M3 receptors are still able to fully activate the ERK5 pathway, despite their reported inability to recruit β-arrestins. Indeed, the overexpression of Gαq, but not that of β-arrestin1 or β-arrestin2, was found to potently enhance ERK5 activation by GPCRs, whereas silencing of β-arrestin2 expression did not affect the activation of this pathway. Finally, we show that a β-arrestin-biased mutant form of angiotensin II (SII; Sar1-Ile4-Ile8 AngII failed to promote ERK5 phosphorylation in primary cardiac fibroblasts, as compared to the natural ligand. Overall, this study shows that the activation of ERK5 MAPK by model Gq-coupled GPCRs does not depend on receptor internalization, β-arrestin recruitment or receptor phosphorylation but rather is dependent on Gαq-signalling.

  19. MicroRNA-155 attenuates activation of hepatic stellate cell by simultaneously preventing EMT process and ERK1 signalling pathway.

    Science.gov (United States)

    Dai, Weiping; Zhao, Juan; Tang, Nan; Zeng, Xin; Wu, Kaiming; Ye, Changhong; Shi, Jian; Lu, Cuihua; Ning, Beifang; Zhang, Junping; Lin, Yong

    2015-04-01

    Epithelial-mesenchymal transition (EMT) process and extracellular signal-regulated kinase 1 (ERK1) signalling pathway play pivotal roles in hepatic stellate cell (HSC) activation, which is associated with the altered expression patterns of microRNAs (miRNAs). miR-155 is considered a typical multifunctional miRNA to regulate many biological processes. However, little attention has been given to the contributions of miR-155 to simultaneous regulation of EMT process and ERK1 pathway during HSC activation. Differential expression of miR-155 was assessed in activated HSC, sera and liver tissues from cirrhotic patients. Whether miR-155 could directly interact with 3'-untranslated region (3'-UTR) of T cell factor 4 (TCF4) and angiotensin II receptor type 1 (AGTR1) respectively was detected by luciferase reporter assay. The effects of enhanced miR-155 on EMT process and ERK1 pathway, cell apoptosis in HSC activation were also evaluated. A significant decrease in miR-155 expression was observed in activated HSC, sera or liver tissues of cirrhotic patients. MiR-155 was found to simultaneously interact with 3'-UTR of TCF4 and AGTR1 mRNAs, which are known as important regulators associated with EMT and ERK1 pathway repectively. Inhibiting miR-155 expression could stimulate the EMT state and ERK1 pathway activity, thus contributing to HSC activation. Forced miR-155 expression markedly decreased the mesenchymal markers and phosphorylated ERK1 level, and enhanced E-cadherin expression, leading to the synchronous inhibitory effect on EMT and ERK1 pathway and inducing HSC apoptosis. Our results implicate that miR-155 plays an important role in regulating the pathological network involving EMT process and ERK1 pathway during HSC activation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Effects of Inhibiting JAK on Invasion and Metastasis of the Human Breast Cancer Cells through ERK Signaling Transduction Pathway

    Institute of Scientific and Technical Information of China (English)

    Jing Zhao; Hong-fang Chen; Hua-yu Deng

    2009-01-01

    Objective: To explore the effects of Janus activated kinase (JAK) inhibitor AG490 on the phosphorylation of extracellular signal regulated protein kinase (ERK) in human breast cancer cells MDA-MB-231 and the roles of JAK in the invasion and metastasis of the human breast cancer cells through ERK signaling transduction pathways.Methods: MDA-MB-231 cells were treated with 20 (mol/L, 40 (mol/L, 80 (mol/L Janus kinase inhibitor AG490 for 24, 48 and 72 h. Proliferation and adhesion of MDA-MB-231 cells to matrigel were measured with MTT assay. When treated with 40 (mol/L AG490 for 24 h, the expressions of P-ERK and MMP-9 of cells were detected by Western-blot and invasion and metastasis of MDA-MB-231 cells were evaluated with transwell chamber.Results: After being treated with 20 (mol/L, 40 (mol/L, 80 (mol/L AG490 for 24, 48 and 72 h, the proliferation of MDA-MB-231 cells was inhibited in a dose-and time-dependent manner. MDA-MB-231 cells treated with 40 (mol/L AG490 for 30, 60, 90 and 120 min resulted in the increasing adhesion of cells to Matrigel in a time-dependent manner. However, capacity of adhesion in the group treated with AG490 was significantly decreased in comparison with the control group (P<0.01). The expression level of P-ERK and MMP-9 were decreased when treated with AG490. After treatment with 40 (mol/L AG490, in invasion assay, the number of cells in AG490 treated group to migrate to filter coated with Matrigel was reduced compared with control group (P<0.05). Meanwhile, in migration assay, the number of cells in AG490 treated group to migrate to filter was also decreased compared with control group (P<0.05).Conclusion: Our study indicates that JAK kinase could affect the activity of ERK signal transduction pathway through the phosphorylation of ERK. The inhibitory effects of JAK kinase on MMP-9 expression and invasion of breast cancer cells were associated with the down-regulation of the ERK signaling pathway.

  1. MK3 controls Polycomb target gene expression via negative feedback on ERK

    Directory of Open Access Journals (Sweden)

    Prickaerts Peggy

    2012-08-01

    Full Text Available Abstract Background Gene-environment interactions are mediated by epigenetic mechanisms. Polycomb Group proteins constitute part of an epigenetic cellular transcriptional memory system that is subject to dynamic modulation during differentiation. Molecular insight in processes that control dynamic chromatin association and dissociation of Polycomb repressive complexes during and beyond development is limited. We recently showed that MK3 interacts with Polycomb repressive complex 1 (PRC1. The functional relevance of this interaction, however, remained poorly understood. MK3 is activated downstream of mitogen- and stress-activated protein kinases (M/SAPKs, all of which fulfill crucial roles during development. We here use activation of the immediate-early response gene ATF3, a bona fide PRC1 target gene, as a model to study how MK3 and its effector kinases MAPK/ERK and SAPK/P38 are involved in regulation of PRC1-dependent ATF3 transcription. Results Our current data show that mitogenic signaling through ERK, P38 and MK3 regulates ATF3 expression by PRC1/chromatin dissociation and epigenetic modulation. Mitogenic stimulation results in transient P38-dependent H3S28 phosphorylation and ERK-driven PRC1/chromatin dissociation at PRC1 targets. H3S28 phosphorylation by itself appears not sufficient to induce PRC1/chromatin dissociation, nor ATF3 transcription, as inhibition of MEK/ERK signaling blocks BMI1/chromatin dissociation and ATF3 expression, despite induced H3S28 phosphorylation. In addition, we establish that concomitant loss of local H3K27me3 promoter marking is not required for ATF3 activation. We identify pERK as a novel signaling-induced binding partner of PRC1, and provide evidence that MK3 controls ATF3 expression in cultured cells via negative regulatory feedback on M/SAPKs. Dramatically increased ectopic wing vein formation in the absence of Drosophila MK in a Drosophila ERK gain-of-function wing vein patterning model, supports the

  2. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    Science.gov (United States)

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  3. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells

    DEFF Research Database (Denmark)

    Frödin, M; Peraldi, P; Van Obberghen, E

    1994-01-01

    reported. In rat pheochromocytoma PC12 cells, we demonstrate here a stimulation of the MAP kinase isozyme extracellular signal-regulated kinase 1 (ERK1) following elevation of intracellular cAMP after exposure of the cells to isobutylmethylxanthine, cholera toxin, forskolin, or cAMP-analogues. cAMP acted...

  4. EXPRESSION AND SIGNIFICANCE OF ERK PROTEIN IN HUMAN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    张秀梅; 李柏林; 宋敏; 宋继谒

    2004-01-01

    Objective: To investigate the expression of ERK and p-ERK protein in human breast cancer and their corresponding tissue, to assess the significance of ERK signal pathway in tumorigenesis and progression of breast carcinoma. Methods: 40 breast cancer cases were used in S-P immunohistochemistry technique and Western Blot study. Results: The expression of ERK1, ERK2, and p- ERK protein levels increased remarkably in breast cancer tissues in comparison to normal tissues (P<0.01). The expression was upregulated by 1.32-, 1.53-and 4.27-fold, respectively. The overexpressions of ERK1, ERK2, and p- ERK proteins were obviously correlated with clinical stage of breast cancer. Protein levels of ERK and p-ERK were higher in stage III patients than in stage I and stage II patients (P<0.05). These proteins were strongly related with axillary lymph node metastasis of breast cancer, but not correlated with histopathological type and status of ER and PR of breast cancer. Expression of ERK1, and ERK2, protein showed a positive linear correlation. Conclusion: ERK signal transduction pathway is a key factor during human breast tumorigenesis and breast cancer progression.

  5. ERK8 is a negative regulator of O-GalNAc glycosylation and cell migration.

    Science.gov (United States)

    Chia, Joanne; Tham, Keit Min; Gill, David James; Bard-Chapeau, Emilie Anne; Bard, Frederic A

    2014-03-11

    ER O-glycosylation can be induced through relocalisation GalNAc-Transferases from the Golgi. This process markedly stimulates cell migration and is constitutively activated in more than 60% of breast carcinomas. How this activation is achieved remains unclear. Here, we screened 948 signalling genes using RNAi and imaging. We identified 12 negative regulators of O-glycosylation that all control GalNAc-T sub-cellular localisation. ERK8, an atypical MAPK with high basal kinase activity, is a strong hit and is partially localised at the Golgi. Its inhibition induces the relocation of GalNAc-Ts, but not of KDEL receptors, revealing the existence of two separate COPI-dependent pathways. ERK8 down-regulation, in turn, activates cell motility. In human breast and lung carcinomas, ERK8 expression is reduced while ER O-glycosylation initiation is hyperactivated. In sum, ERK8 appears as a constitutive brake on GalNAc-T relocalisation, and the loss of its expression could drive cancer aggressivity through increased cell motility. DOI: http://dx.doi.org/10.7554/eLife.01828.001.

  6. Activation of Proteinkinase ERK Mediates Induction of Macrophage MMP-12 by OxLDL

    Institute of Scientific and Technical Information of China (English)

    He Chun-yan; Zhou Xin; Li Xiao-ming; Yu Hong; Hong Jia-ling

    2004-01-01

    The present study was undertaken to investigate the effect of oxidized low density lipoprotein (oxLDL) on the expression of macrophage matrix metalloproteinase-12 (MMP-12), and the possible mechanisms. Activation of extracellular signal-regulated kinase 1/2 (ERK1/2) was detected by Western blot analysis. Enzymatic activity of MMP-12 was determined by β-casein zymogra-phy. RT-PCR analysis was used to measure the mRNA expression level of MMP-12. OxLDL-stimulated macrophages produced increased casein-degrading activities and oxLDL also significantly increased the mRNA level of MMP-12 in a dose-dependent manner. OxLDL stimulated the phosphorylation of ERK1/2 in macrophages. The use of the specific inhibitor indicated that the ERK1/2 signaling pathway was required for the induction of MMP-12. These data demonstrated that oxLDL induced MMP-12 expression in macrophages through an ERK1/2-dependent pathway.

  7. Saturated fatty acids activate ERK signaling to downregulate hepatic sortilin 1 in obese and diabetic mice.

    Science.gov (United States)

    Bi, Lipeng; Chiang, John Y L; Ding, Wen-Xing; Dunn, Winston; Roberts, Benjamin; Li, Tiangang

    2013-10-01

    Hepatic VLDL overproduction is a characteristic feature of diabetes and an important contributor to diabetic dyslipidemia. Hepatic sortilin 1 (Sort1), a cellular trafficking receptor, is a novel regulator of plasma lipid metabolism and reduces plasma cholesterol and triglycerides by inhibiting hepatic apolipoprotein B production. Elevated circulating free fatty acids play key roles in hepatic VLDL overproduction and the development of dyslipidemia. This study investigated the regulation of hepatic Sort1 in obesity and diabetes and the potential implications in diabetic dyslipidemia. Results showed that hepatic Sort1 protein was markedly decreased in mouse models of type I and type II diabetes and in human individuals with obesity and liver steatosis, whereas increasing hepatic Sort1 expression reduced plasma cholesterol and triglycerides in mice. Mechanistic studies showed that the saturated fatty acid palmitate activated extracellular signal-regulated kinase (ERK) and inhibited Sort1 protein by mechanisms involving Sort1 protein ubiquitination and degradation. Consistently, hepatic ERK signaling was activated in diabetic mice, whereas blocking ERK signaling by an ERK inhibitor increased hepatic Sort1 protein in mice. These results suggest that increased saturated fatty acids downregulate liver Sort1 protein, which may contribute to the development of dyslipidemia in obesity and diabetes.

  8. Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition.

    Directory of Open Access Journals (Sweden)

    Fabio Penna

    Full Text Available BACKGROUND: The onset of cachexia is a frequent feature in cancer patients. Prominent characteristic of this syndrome is the loss of body and muscle weight, this latter being mainly supported by increased protein breakdown rates. While the signaling pathways dependent on IGF-1 or myostatin were causally involved in muscle atrophy, the role of the Mitogen-Activated-Protein-Kinases is still largely debated. The present study investigated this point on mice bearing the C26 colon adenocarcinoma. METHODOLOGY/PRINCIPAL FINDINGS: C26-bearing mice display a marked loss of body weight and muscle mass, this latter associated with increased phosphorylated (p-ERK. Administration of the ERK inhibitor PD98059 to tumor bearers attenuates muscle depletion and weakness, while restoring normal atrogin-1 expression. In C26 hosts, muscle wasting is also associated with increased Pax7 expression and reduced myogenin levels. Such pattern, suggestive of impaired myogenesis, is reversed by PD98059. Increased p-ERK and reduced myosin heavy chain content can be observed in TNFα-treated C2C12 myotubes, while decreased myogenin and MyoD levels occur in differentiating myoblasts exposed to the cytokine. All these changes are prevented by PD98059. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that ERK is involved in the pathogenesis of muscle wasting in cancer cachexia and could thus be proposed as a therapeutic target.

  9. Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis.

    Science.gov (United States)

    Nishio, Takashi; Usami, Mai; Awaji, Mizuki; Shinohara, Sumire; Sato, Kazuomi

    2016-01-01

    Acetylsalicylic acid (ASA) is widely used as an analgesic/antipyretic drug. It exhibits a wide range of biological effects, including preventative effects against heart attack and stroke, and the induction of apoptosis in various cancer cells. We previously found that ASA inhibits melanogenesis in B16 melanoma cells. However, the mechanisms of how ASA down-regulates melanin synthesis remain unclear. Here, we investigated the effect of ASA on melanogenic pathways, such as extracellular signal-regulated kinase (ERK) and microphthalmia-associated transcription factor (Mitf) transcription. ASA significantly inhibited melanin synthesis in a dose-dependent manner without oxidative stress and cell death. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that the inhibitory effect of ASA might be due to the inhibition of Mitf gene transcription. Interestingly, ASA also induced ERK phosphorylation. Additionally, treatment with PD98059, a specific ERK phosphorylation inhibitor, abolished the anti-melanogenic effect of ASA. These results suggest that the depigmenting effect of ASA results from down-regulation of Mitf, which is induced by both the induction of ERK phosphorylation and the inhibition of Mitf transcription.

  10. Regulation and function of TPL-2,an IκB kinase-regulated MAP kinase kinase kinase

    Institute of Scientific and Technical Information of China (English)

    Thorsten Gantke; Srividya Sriskantharajah; Steven C Ley

    2011-01-01

    The IκB kinase(IKK)complex plays a well-documented role in innate and adaptive immunity.This function has been widely attributed to its role as the central activator of the NF-κB family of transcription factors.However,another important consequence of IKK activation is the regulation of TPL-2,a MEK kinase that is required for activation of ERK-1/2 MAP kinases in myeioid cells following Toll-like receptor and TNF receptor stimulation.In unstimulated cells,TPL-2 is stoichiometrically complexed with the NF-κB inhibitory protein NF-κB1 p105,which blocks TPL-2 access to its substrate MEK,and the ubiquitin-binding protein ABIN-2(A20-binding inhibitor of NF-κB 2),both of which are required to maintain TPL-2 protein stability.Following agonist stimulation,the IKK complex phosphorylates p105,triggering its K48-1inked ubiquitination and degradation by the proteasome.This releases TPL-2 from p105-mediated inhibition,facilitating activation of MEK,in addition to modulating NF-κB activation by liberating associated Rel subunits for translocation into the nucleus.IKK-induced proteolysis of 0105,therefore,can directly regulate both NF-κB and ERK MAP kinase activation via NF-κB1 p105.TPL-2 is critical for production of the proinflammatory cytokine TNF during inflammatory responses.Consequently,there has been considerable interest in the pharmaceutical industry to develop selective TPL-2 inhibitors as drugs for the treatment of TNF-dependent inflammatory,diseases,such as rheumatoid arthritis and inflammatory bowel disease.This review summarizes our current understanding of the regulation of TPL-2 signaling function,and also the complex positive and negative roles of TPL-2 in immune and inflammatory responses.

  11. Optimization of ERK Activity Biosensors for both Ratiometric and Lifetime FRET Measurements

    Directory of Open Access Journals (Sweden)

    Pauline Vandame

    2014-01-01

    Full Text Available Among biosensors, genetically-encoded FRET-based biosensors are widely used to localize and measure enzymatic activities. Kinases activities are of particular interest as their spatiotemporal regulation has become crucial for the deep understanding of cell fate decisions. This is especially the case for ERK, whose activity is a key node in signal transduction pathways and can direct the cell into various processes. There is a constant need for better tools to analyze kinases in vivo, and to detect even the slightest variations of their activities. Here we report the optimization of the previous ERK activity reporters, EKAR and EKAREV. Those tools are constituted by two fluorophores adapted for FRET experiments, which are flanking a specific substrate of ERK, and a domain able to recognize and bind this substrate when phosphorylated. The latter phosphorylation allows a conformational change of the biosensor and thus a FRET signal. We improved those biosensors with modifications of: (i fluorophores and (ii linkers between substrate and binding domain, resulting in new versions that exhibit broader dynamic ranges upon EGF stimulation when FRET experiments are carried out by fluorescence lifetime and ratiometric measurements. Herein, we characterize those new biosensors and discuss their observed differences that depend on their fluorescence properties.

  12. Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression

    Science.gov (United States)

    Cheng, Hsin-Lin; Hsieh, Ming-Ju; Yang, Jia-Sin; Lin, Chiao-Wen; Lue, Ko-Haung; Lu, Ko-Hsiu; Yang, Shun-Fa

    2016-01-01

    Nobiletin, a polymethoxyflavone, has a few pharmacological activities, including anti-inflammation and anti-cancer effects. However, its effect on human osteosarcoma progression remains uninvestigated. Therefore, we examined the effectiveness of nobiletin against cellular metastasis of human osteosarcoma and the underlying mechanisms. Nobiletin, up to 100 μM without cytotoxicity, significantly decreased motility, migration and invasion as well as enzymatic activities, protein levels and mRNA expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in U2OS and HOS cells. In addition to inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the inhibitory effect of nobiletin on the DNA-binding activity of the transcription factor nuclear factor-kappa B (NF-κB), cAMP response element-binding protein (CREB), and specificity protein 1 (SP-1) in U2OS and HOS cells. Co-treatment with ERK and JNK inhibitors and nobiletin further reduced U2OS cells migration and invasion. These results indicated that nobiletin inhibits human osteosarcoma U2OS and HOS cells motility, migration and invasion by down-regulating MMP-2 and MMP-9 expressions via ERK and JNK pathways and through the inactivation of downstream NF-κB, CREB, and SP-1. Nobiletin has the potential to serve as an anti-metastatic agent for treating osteosarcoma. PMID:27144433

  13. Brain-derived neurotrophic factor induces migration of endothelial cells through a TrkB-ERK-integrin αVβ3-FAK cascade.

    Science.gov (United States)

    Matsuda, Shinji; Fujita, Tsuyoshi; Kajiya, Mikihito; Takeda, Katsuhiro; Shiba, Hideki; Kawaguchi, Hiroyuki; Kurihara, Hidemi

    2012-05-01

    Brain-derived neurotrophic factor (BDNF) promotes the regeneration of periodontal tissue. Since angiogenesis is important for tissue regeneration, investigating effect of BDNF on endothelial cell function may help to reveal its mechanism, whereby, BDNF promotes periodontal tissue regeneration. In this study, we examined the influence of BDNF on migration in human microvascular endothelial cells (HMVECs), focusing on the effects on extracellular signal-regulated kinase (ERK), integrin α(V)β(3), and focal adhesion kinase (FAK). The migration of endothelial cells was assessed with a modified Boyden chamber and a wound healing assay. The expression of integrin α(V)β(3) and the phosphorylation of ERK and FAK were analyzed by immunoblotting and immunofluorescence microscopy. BDNF (25 ng/ml) induced cell migration. PD98059, an ERK inhibitor, K252a, a specific inhibitor for TrkB, a high affinity receptor of BDNF, and an anti-integrin α(V)β(3) antibody suppressed the BDNF-induced migration. BDNF increased the levels of integrin α(V)β(3) and phosphorylated ERK1/2 and FAK. The ERK inhibitor and TrkB inhibitor also reduced levels of integrin α(V)β(3) and phosphorylated FAK. We propose that BDNF stimulates endothelial cell migration by a process involving TrkB/ERK/integrin α(V)β(3)/FAK, and this may help to enhance the regeneration of periodontal tissue.

  14. Relative role of upstream regulators of Akt, ERK and CREB in NCAM- and FGF2-mediated signalling

    DEFF Research Database (Denmark)

    Ditlevsen, D.K.; Owczarek, S.; Berezin, V.

    2008-01-01

    demonstrated previously to be involved in NCAM signalling. For comparison, we also evaluated the role of upstream signalling cascades on fibroblast growth factor 2 (FGF2)-mediated phosphorylation of ERK, Akt, and CREB and found that FGF2 required the activity of both FGFR and Src-family kinases...... for phosphorylation of ERK, Akt, and CREB. MEK was required for phosphorylation of ERK and CREB, but not Akt, whereas G(0)/G(i)-proteins were necessary for phosphorylation of Akt and CREB, and cGMP was necessary for Akt phosphorylation. We thus demonstrate that even though NCAM and FGF2 have many signalling features...... in common, and even though both are known to activate FGFR, there are a number of differences in the intracellular signalling network activated by the NCAM ligand C3d and the FGFR ligand FGF2....

  15. The human Na+/H+ exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2

    DEFF Research Database (Denmark)

    Hendus-Altenburger, Ruth; Pedraz Cuesta, Elena; Olesen, Christina Wilkens

    2016-01-01

    BACKGROUND: Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. METHODS AND RESULTS: Here, we identify...... the human Na(+)/H(+) exchanger 1 (hNHE1) as a membrane scaffold protein for ERK2 and show direct hNHE1-ERK1/2 interaction in cellular contexts. Using nuclear magnetic resonance (NMR) spectroscopy and immunofluorescence analysis we demonstrate that ERK2 scaffolding by hNHE1 occurs by one of three D...... in vitro, in a distinct temporal order, with the phosphorylation rates at the individual sites being modulated by the docking sites in a distant dependent manner. CONCLUSIONS: This work characterizes a new type of scaffolding complex, which we term a "shuffle complex", between the disordered hNHE1-tail...

  16. Kinase activity ranking using phosphoproteomics data (KARP) quantifies the contribution of protein kinases to the regulation of cell viability.

    Science.gov (United States)

    Wilkes, Edmund H; Casado, Pedro; Rajeeve, Vinothini; Cutillas, Pedro R

    2017-09-01

    Cell survival is regulated by a signaling network driven by the activity of protein kinases; however, determining the contribution that each kinase in the network makes to such regulation remains challenging. Here, we report a computational approach that uses mass spectrometry-based phosphoproteomics data to rank protein kinases based on their contribution to cell regulation. We found that the scores returned by this algorithm, which we have termed kinase activity ranking using phosphoproteomics data (KARP), were a quantitative measure of the contribution that individual kinases make to the signaling output. Application of KARP to the analysis of eight hematological cell lines revealed that cyclin-dependent kinase (CDK) 1/2, casein kinase (CK) 2, extracellular signal-related kinase (ERK), and p21-activated kinase (PAK) were the most frequently highly ranked kinases in these cell models. The patterns of kinase activation were cell-line specific yet showed a significant association with cell viability as a function of kinase inhibitor treatment. Thus, our study exemplifies KARP as an untargeted approach to empirically and systematically identify regulatory kinases within signaling networks. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. The role of ERK-1/2 in the N/OFQ-induced inhibition of delayed rectifier potassium currents

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [Laboratory of Neural Electrophysiology, Department of Physiology, Harbin Medical University, Harbin 150081 (China); Cui, Qingbo [Department of Pediatric Surgery, The 2nd Hospital of Harbin Medical University, Harbin 150081 (China); Li, Yurong [Laboratory of Neural Electrophysiology, Department of Physiology, Harbin Medical University, Harbin 150081 (China); Li, Baoxin [Institute of Pharmacology, Harbin Medical University, Harbin 150081 (China); Yang, Xu; Cui, Lanwei; Jin, Hongbo [Laboratory of Neural Electrophysiology, Department of Physiology, Harbin Medical University, Harbin 150081 (China); Qu, Lihui, E-mail: lihui_qu@yahoo.com.cn [Laboratory of Neural Electrophysiology, Department of Physiology, Harbin Medical University, Harbin 150081 (China)

    2010-04-16

    Nociceptin/orphanin FQ (N/OFQ) is an endogenous opioid-like heptadecapeptide involved in many neurocognitive functions, including learning and memory. Our previous report showed that N/OFQ inhibits the delayed rectifier potassium current (I{sub K}), and this effect is associated with protein kinase C (PKC) activation. Therefore, we wanted to determine if extracellular signal-regulated kinase-1/2 (ERK-1/2) signaling is regulated by N/OFQ and associated with the effect of N/OFQ on the I{sub K}. In the current study, we tested if N/OFQ and two PKC activators [phorbol 12,13-dibutyrate (PDBu) and ingenol 3,20-dibenzoate (IDB)] affected the phosphorylation level of ERK-1/2 and its nuclear substrate, ETS-like transcription factor-1 (Elk-1), using western blots. In addition, we tested if ERK-1/2 affected the N/OFQ-induced inhibition of the I{sub K} by using whole-cell patch-clamp recordings in acutely dissociated rat parietal cortical neurons. We found that N/OFQ, PDBu, and IDB increased the amount of phosphorylated ERK-1/2 and Elk-1; U0126, a specific inhibitor for ERK-1/2, attenuated the inhibitory effect of N/OFQ on the I{sub K}. These data suggest that the ERK-1/2 pathway, at least in part, mediates the inhibitory effect of N/OFQ on the I{sub K} in acutely dissociated rat cerebral parietal cortical neurons.

  18. The role of ERK-1/2 in the N/OFQ-induced inhibition of delayed rectifier potassium currents.

    Science.gov (United States)

    Wang, Wei; Cui, Qingbo; Li, Yurong; Li, Baoxin; Yang, Xu; Cui, Lanwei; Jin, Hongbo; Qu, Lihui

    2010-04-16

    Nociceptin/orphanin FQ (N/OFQ) is an endogenous opioid-like heptadecapeptide involved in many neurocognitive functions, including learning and memory. Our previous report showed that N/OFQ inhibits the delayed rectifier potassium current (I(K)), and this effect is associated with protein kinase C (PKC) activation. Therefore, we wanted to determine if extracellular signal-regulated kinase-1/2 (ERK-1/2) signaling is regulated by N/OFQ and associated with the effect of N/OFQ on the I(K). In the current study, we tested if N/OFQ and two PKC activators [phorbol 12,13-dibutyrate (PDBu) and ingenol 3,20-dibenzoate (IDB)] affected the phosphorylation level of ERK-1/2 and its nuclear substrate, ETS-like transcription factor-1 (Elk-1), using western blots. In addition, we tested if ERK-1/2 affected the N/OFQ-induced inhibition of the I(K) by using whole-cell patch-clamp recordings in acutely dissociated rat parietal cortical neurons. We found that N/OFQ, PDBu, and IDB increased the amount of phosphorylated ERK-1/2 and Elk-1; U0126, a specific inhibitor for ERK-1/2, attenuated the inhibitory effect of N/OFQ on the I(K). These data suggest that the ERK-1/2 pathway, at least in part, mediates the inhibitory effect of N/OFQ on the I(K) in acutely dissociated rat cerebral parietal cortical neurons.

  19. The transcriptional activity of hepatocyte nuclear factor 4 alpha is inhibited via phosphorylation by ERK1/2

    Science.gov (United States)

    Bacquet, Caroline; Kiss, Judit; Sipeki, Szabolcs; Martin, Ludovic; Buday, László; Bálint, Bálint L.; Arányi, Tamás

    2017-01-01

    Hepatocyte nuclear factor 4 alpha (HNF4α) nuclear receptor is a master regulator of hepatocyte development, nutrient transport and metabolism. HNF4α is regulated both at the transcriptional and post-transcriptional levels by different mechanisms. Several kinases (PKA, PKC, AMPK) were shown to phosphorylate and decrease the activity of HNF4α. Activation of the ERK1/2 signalling pathway, inducing proliferation and survival, inhibits the expression of HNF4α. However, based on our previous results we hypothesized that HNF4α is also regulated at the post-transcriptional level by ERK1/2. Here we show that ERK1/2 is capable of directly phosphorylating HNF4α in vitro at several phosphorylation sites including residues previously shown to be targeted by other kinases, as well. Furthermore, we also demonstrate that phosphorylation of HNF4α leads to a reduced trans-activational capacity of the nuclear receptor in luciferase reporter gene assay. We confirm the functional relevance of these findings by demonstrating with ChIP-qPCR experiments that 30-minute activation of ERK1/2 leads to reduced chromatin binding of HNF4α. Accordingly, we have observed decreasing but not disappearing binding of HNF4α to the target genes. In addition, 24-hour activation of the pathway further decreased HNF4α chromatin binding to specific loci in ChIP-qPCR experiments, which confirms the previous reports on the decreased expression of the HNF4a gene due to ERK1/2 activation. Our data suggest that the ERK1/2 pathway plays an important role in the regulation of HNF4α-dependent hepatic gene expression. PMID:28196117

  20. ERK1/2 signaling plays an important role in topoisomerase II poison-induced G2/M checkpoint activation.

    Science.gov (United States)

    Kolb, Ryan H; Greer, Patrick M; Cao, Phu T; Cowan, Kenneth H; Yan, Ying

    2012-01-01

    Topo II poisons, which target topoisomerase II (topo II) to generate enzyme mediated DNA damage, have been commonly used for anti-cancer treatment. While clinical evidence demonstrate a capability of topo II poisons in inducing apoptosis in cancer cells, accumulating evidence also show that topo II poison treatment frequently results in cell cycle arrest in cancer cells, which was associated with subsequent resistance to these treatments. Results in this report indicate that treatment of MCF-7 and T47D breast cancer cells with topo II poisons resulted in an increased phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and an subsequent induction of G2/M cell cycle arrest. Furthermore, inhibition of ERK1/2 activation using specific inhibitors markedly attenuated the topo II poison-induced G2/M arrest and diminished the topo II poison-induced activation of ATR and Chk1 kinases. Moreover, decreased expression of ATR by specific shRNA diminished topo II poison-induced G2/M arrest but had no effect on topo II poison-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling had little, if any, effect on topo II poison-induced ATM activation. In addition, ATM inhibition by either incubation of cells with ATM specific inhibitor or transfection of cells with ATM specific siRNA did not block topo II poison-induced G2/M arrest. Ultimately, inhibition of ERK1/2 signaling greatly enhanced topo II poison-induced apoptosis. These results implicate a critical role for ERK1/2 signaling in the activation of G2/M checkpoint response following topo II poison treatment, which protects cells from topo II poison-induced apoptosis.

  1. Differential role for ERK2 in anoxia-induced activation of transcription and translation of Hsp70 in NIH 3T3 cells

    DEFF Research Database (Denmark)

    Ossum, Carlo; Lauritsen, Anders N.; Karottki, Dorina Gabriela

    2011-01-01

    transcription and translation of Hsp70 during recovery from chemical anoxia and the role of the extracellular signal regulated kinase ERK2 in this induction of Hsp70. 10 mM azide for 30 minutes (chemical anoxia) significantly inhibited the activity of ERK2 (measured as phospho-ERK) but the ERK-2 activity...... is rapidly increased in a MEK-independen manner, when azide is washed out of the cells. Chemical anoxia and overnight recovery induced Hsp70 expression (analyzed by Western blotting) and this was inhibited by actinomycin D as well as by cycloheximide showing that induction of both translation......Hsp70 has the ability to enhance the recovery of stressed cells by its ability to catalyze the reassembly of damaged proteins. Such a chaperoning function is essential for the Hsp70-mediated protection against anoxic stress that causes protein denaturation. We have studied induction of both...

  2. Suppression of ERK activation in urethral epithelial cells infected with Neisseria gonorrhoeae and its isogenic minD mutant contributes to anti-apoptosis.

    Science.gov (United States)

    Liu, GuanQun L; Parti, Rajinder P; Dillon, Jo-Anne R

    2015-04-01

    In gonococci-infected transduced human urethral epithelial cells (THUEC), the role of ERK, a mitogen-activated protein kinase (MAPK), in apoptosis is unknown. We observed lowering of ERK activation in THUEC following infection with anti-apoptosis-inducing Neisseria gonorrhoeae strain CH811. An isogenic cell division mutant of this strain, Ng CJSD1 (minD deficient), which is large and abnormally shaped, reduced ERK phosphorylation levels even more than its parental strain in THUEC. This led to higher anti-apoptosis in mutant-infected cells as compared to the parental strain-infected cells. Our results suggest that N. gonorrhoeae infection reduces ERK activation in THUEC contributing to anti-apoptosis.

  3. Reduced levels of Dusp3/Vhr phosphatase impair normal spindle bipolarity in an Erk1/2 activity-dependent manner.

    Science.gov (United States)

    Tambe, Mahesh Balasaheb; Narvi, Elli; Kallio, Marko

    2016-08-01

    Dual specificity phosphatase-3 (Dusp3/Vhr) regulates cell cycle progression by counteracting the effects of mitogen-activated protein kinases (Mapk) Erk1/2 and Jnk. Despite the known upregulation of Dusp3 at M phase in mammalian cells, its mitotic functions are poorly characterized. Here, we report that loss of Dusp3 by RNAi leads to the formation of multipolar spindles in human mitotic cancer cells in an Erk1/2-dependent manner. In the phosphatase-silenced cells, the normal bipolar spindle structure was restored by chemical inhibition of Erk1/2 and ectopic overexpression of Dusp3. We propose that at M phase Dusp3 keeps Erk1/2 activity in check to facilitate normal mitosis.

  4. Melanocortin-induced PKA activation inhibits AMPK activity via ERK-1/2 and LKB-1 in hypothalamic GT1-7 cells.

    Science.gov (United States)

    Damm, Ellen; Buech, Thomas R H; Gudermann, Thomas; Breit, Andreas

    2012-04-01

    α-Melanocyte-stimulating hormone (α-MSH)-induced activation of the melanocortin-4 receptor in hypothalamic neurons increases energy expenditure and inhibits food intake. Active hypothalamic AMP-activated protein kinase (AMPK) has recently been reported to enhance food intake, and in vivo experiments suggested that intrahypothalamic injection of melanocortins decreased food intake due to the inhibition of AMPK activity. However, it is not clear whether α-MSH affects AMPK via direct intracellular signaling cascades or if the release of paracrine factors is involved. Here, we used a murine, hypothalamic cell line (GT1-7 cells) and monitored AMPK phosphorylation at Thr(172), which has been suggested to increase AMPK activity. We found that α-MSH dephosphorylated AMPK at Thr(172) and consequently decreased phosphorylation of the established AMPK substrate acetyl-coenzyme A-carboxylase at Ser(79). Inhibitory effects of α-MSH on AMPK were blocked by specific inhibitors of protein kinase A (PKA) or ERK-1/2, pointing to an important role of both kinases in this process. Because α-MSH-induced activation of ERK-1/2 was blunted by PKA inhibitors, we propose that ERK-1/2 serves as a link between PKA and AMPK in GT1-7 cells. Furthermore, down-regulation of liver kinase B-1, but not inhibition of calcium-calmodulin-dependent kinase kinase-β or TGFβ-activated kinase-1 decreased basal phosphorylation of AMPK and its dephosphorylation induced by α-MSH. Thus, we propose that α-MSH inhibits AMPK activity via a linear pathway, including PKA, ERK-1/2, and liver kinase B-1 in GT1-7 cells. Given the importance of the melanocortin system in the formation of adipositas, detailed knowledge about this pathway might help to develop drugs targeting obesity.

  5. Metformin Restrains Pancreatic Duodenal Homeobox-1 (PDX-1) Function by Inhibiting ERK Signaling in Pancreatic Ductal Adenocarcinoma.

    Science.gov (United States)

    Zhou, G; Yu, J; Wang, A; Liu, S-H; Sinnett-Smith, J; Wu, J; Sanchez, R; Nemunaitis, J; Ricordi, C; Rozengurt, E; Brunicardi, F C

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most potent and perilous diseases known, with a median survival rate of 3-5 months due to the combination of only advanced stage diagnosis and ineffective therapeutic options. Metformin (1,1-Dimethylbiguanide hydrochloride), the leading drug used for type 2 diabetes mellitus, emerges as a potential therapy for PDAC and other human cancers. Metformin exerts its anticancer action via a variety of adenosine monophosphate (AMP)-activated protein kinase (AMPK)- dependent and/or AMPK-independent mechanisms. We present data here showing that metformin downregulated pancreatic transcription factor pancreatic duodenal homeobox-1 (PDX-1), suggesting a potential novel mechanism by which metformin exerts its anticancer action. Metformin inhibited PDX-1 expression at both protein and mRNA levels and PDX-1 transactivity as well in PDAC cells. Extracellular signal-regulated kinase (ERK) was identified as a PDX-1-interacting protein by antibody array screening in GFP-PDX-1 stable HEK293 cells. Co-transfection of ERK1 with PDX-1 resulted in an enhanced PDX-1 expression in HEK293 cells in a dose-dependent manner. Immunoprecipitation/Western blotting analysis confirmed the ERK-PDX-1 interaction in PANC-1 cells stimulated by epidermal growth factor (EGF). EGF induced an enhanced PDX-1 expression in PANC-1 cells and this stimulation was inhibited by MEK inhibitor PD0325901. Metformin inhibited EGF-stimulated PDX-1 expression with an accompanied inhibition of ERK kinase activation in PANC- 1 cells. Taken together, our studies show that PDX-1 is a potential novel target for metformin in PDAC cells and that metformin may exert its anticancer action in PDAC by down-regulating PDX-1 via a mechanism involving inhibition of ERK signaling.

  6. Comparison of MEK/ERK pathway inhibitors on the upregulation of vascular G-protein coupled receptors in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Ansar, Saema; Edvinsson, Lars

    2010-01-01

    on translational level and increased respective contractions. The prostanoid TP receptor mediated contraction curve was left-wards shifted by organ culture. Organ culture was associated with elevated pERK1/2 in the vascular smooth muscle cells: the MEK1/2 inhibitor U0126 attenuated the endothelin ET(B) receptor......Organ culture is an in vitro method for investigating cellular mechanisms involved in upregulation of vasocontractile G-protein coupled receptors. We hypothesize that mitogen-activated-protein kinase (MEK) and/or extracellular-signal-regulated kinase (ERK) specific inhibitors will attenuate the G......-protein coupled receptor expression following organ culture. Rat cerebral arteries were incubated 48h in the presence of MEK/ERK specific inhibitors U0126, PD98059, SL327, or AG126 for different time periods. Contractile responses by activation of endothelin receptor type A and type B, serotonin receptor 5-HT(1B...

  7. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions

    Directory of Open Access Journals (Sweden)

    Salvadore Christopher

    2004-09-01

    Full Text Available Abstract Background The mitogen-activated protein kinases (MAPKs have been shown to participate in a wide array of cellular functions. A role for some MAPKs (e.g., extracellular signal-regulated kinase, Erk1/2 has been documented in response to certain physiological stimuli, such as ischemia, visceral pain and electroconvulsive shock. We recently demonstrated that restraint stress activates the Erk MAPK pathway, but not c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK or p38MAPK, in several rat brain regions. In the present study, we investigated the effects of a different stressor, acute forced swim stress, on the phosphorylation (P state of these MAPKs in the hippocampus, neocortex, prefrontal cortex, amygdala and striatum. In addition, effects on the phosphorylation state of the upstream activators of the MAPKs, their respective MAPK kinases (MAPKKs; P-MEK1/2, P-MKK4 and P-MKK3/6, were determined. Finally, because the Erk pathway can activate c-AMP response element (CRE binding (CREB protein, and swim stress has recently been reported to enhance CREB phosphorylation, changes in P-CREB were also examined. Results A single 15 min session of forced swimming increased P-Erk2 levels 2–3-fold in the neocortex, prefrontal cortex and striatum, but not in the hippocampus or amygdala. P-JNK levels (P-JNK1 and/or P-JNK2/3 were increased in all brain regions about 2–5-fold, whereas P-p38MAPK levels remained essentially unchanged. Surprisingly, levels of the phosphorylated MAPKKs, P-MEK1/2 and P-MKK4 (activators of the Erk and JNK pathways, respectively were increased in all five brain regions, and much more dramatically (P-MEK1/2, 4.5 to > 100-fold; P-MKK4, 12 to ~300-fold. Consistent with the lack of forced swim on phosphorylation of p38MAPK, there appeared to be no change in levels of its activator, P-MKK3/6. P-CREB was increased in all but cortical (prefrontal, neocortex areas. Conclusions Swim stress specifically and markedly

  8. Gain-of-function mutations in the Toll-like Receptor pathway: TPL2-mediated ERK1/ERK2 MAPK activation, a path to tumorigenesis in lymphoid neoplasms?

    Directory of Open Access Journals (Sweden)

    Simon eRousseau

    2016-05-01

    Full Text Available Lymphoid neoplasms form a family of cancers affecting B-cells, T-cells and NK cells. The Toll-Like Receptor (TLR signalling adapter molecule MYD88 is the most frequently mutated gene in these neoplasms. This signalling adaptor relays signals from TLRs to downstream effector pathways such as the Nuclear Factor kappa B (NFB and Mitogen Activated Protein Kinase (MAPK pathways to regulate innate immune responses (Kawai and Akira, 2010. Gain-of-function mutations such as MYD88[L265P] activate downstream signalling pathways in absence of cognate ligands for TLRs, resulting in increased cellular proliferation and survival. This article reports an analysis of non-synonymous somatic mutations found in the TLR signaling network in lymphoid neoplasms. In accordance with previous reports, mutations map to MYD88 pro-inflammatory signaling and not TRIF-mediated Type I IFN production. Interestingly, the analysis of somatic mutations found downstream of the core TLR-signaling network uncovered a strong association with the ERK1/2 MAPK cascade. In support of this analysis, heterologous expression of MYD88[L265P] in HEK 293 cells led to ERK1/2 MAPK phosphorylation in addition to NFB activation. Moreover, this activation is dependent on the protein kinase Tumour Promoting Locus-2 (TPL-2, activated downstream of the IKK complex. Activation of ERK1/2 would then lead to activation, amongst others, of MYC and hnRNP A1, two proteins previously shown to contribute to tumour formation in lymphoid neoplasms. Taken together, this analysis suggests that TLR-mediated tumorigenesis occurs via the TPL2-mediated ERK1/2 activation. Therefore, the hypothesis proposed is that inhibition of ERK1/2 MAPK activation would prevent tumour growth downstream of MYD88[L265]. It will be interesting to test whether pharmacological inhibitors of this pathway show efficacy in primary tumour cells derived from hematologic malignancies such as Waldenstrom’s Macroglobulinemia, where the

  9. MAP kinase meets mitosis: A role for Raf Kinase Inhibitory Protein in spindle checkpoint regulation

    Directory of Open Access Journals (Sweden)

    Rosner Marsha

    2007-01-01

    Full Text Available Abstract Raf Kinase Inhibitory Protein (RKIP is an evolutionarily conserved protein that functions as a modulator of signaling by the MAP kinase cascade. Implicated as a metastasis suppressor, Raf Kinase Inhibitory Protein depletion correlates with poor prognosis for breast, prostate and melanoma tumors but the mechanism is unknown. Recent evidence indicates that Raf Kinase Inhibitory Protein regulates the mitotic spindle assembly checkpoint by controlling Aurora B Kinase activity, and the mechanism involves Raf/MEK/ERK signaling. In contrast to elevated MAP kinase signaling during the G1, S or G2 phases of the cell cycle that activates checkpoints and induces arrest or senescence, loss of RKIP during M phase leads to bypass of the spindle assembly checkpoint and the generation of chromosomal abnormalities. These results reveal a role for Raf Kinase Inhibitory Protein and the MAP kinase cascade in ensuring the fidelity of chromosome segregation prior to cell division. Furthermore, these data highlight the need for precise titration of the MAP kinase signal to ensure the integrity of the spindle assembly process and provide a mechanism for generating genomic instability in tumors. Finally, these results raise the possibility that RKIP status in tumors could influence the efficacy of treatments such as poisons that stimulate the Aurora B-dependent spindle assembly checkpoint.

  10. Propylene Glycol Alginate Sodium Sulfate Alleviates Cerulein-Induced Acute Pancreatitis by Modulating the MEK/ERK Pathway in Mice

    Science.gov (United States)

    Zhang, Hui; Li, Yueyue; Li, Linqiang; Liu, Hua; Hu, Liangkai; Dai, Ying; Chen, Jianqing; Xu, Shuqi; Chen, Weimin; Xu, Xiaorong; Xu, Xuanfu

    2017-01-01

    Previous studies have focused on the effects of propylene glycol alginate sodium sulfate (PSS) against thrombosis, but the anti-inflammatory potential is unknown. Therefore, we specifically focused on the protective effects of PSS on cerulein-induced acute pancreatitis (AP) using a mouse model, and investigated the mechanism of PSS on autophagy and apoptosis via the Mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. Cerulein (100 ug/kg) was used to induce AP by ten intraperitoneal injections at hourly intervals in Balb/C mice. Pretreatment with vehicle or PSS was carried out 1 h before the first cerulein injection and two doses (25 mg/kg and 50 mg/kg) of PSS were injected intraperitoneally. The severity of AP was assessed by pathological score, biochemistry, pro-inflammatory cytokine levels, myeloperoxidase (MPO) activity and MEK/ERK activity. Furthermore, pancreatic histological scores, serum amylase and lipase activities, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β interleukin (IL)-6 levels, and MPO activity were significantly reduced by PSS via up-regulated MEK/ERK activity. The representative molecules of apoptosis and autophagy, such as Bcl-2, Bax, Lc-3, Beclin-1, P62, were remarkably reduced. Taken together, these results indicate that PSS attenuates pancreas injury by inhibiting autophagy and apoptosis through a mechanism involving the MEK/ERK signaling pathway. PMID:28218693

  11. Dihydrotestosterone Potentiates EGF-Induced ERK Activation by Inducing SRC in Fetal Lung Fibroblasts

    Science.gov (United States)

    Smith, Susan M.; Murray, Sandy; Pham, Lucia D.; Minoo, Parviz; Nielsen, Heber C.

    2014-01-01

    Lung maturation is regulated by interactions between mesenchymal and epithelial cells, and is delayed by androgens. Fibroblast–Type II cell communications are dependent on extracellular signal-regulated kinases (ERK) 1/2 activation by the ErbB receptor ligands epidermal growth factor (EGF), transforming growth factor (TGF)-α, and neuregulin (Nrg). In other tissues, dihydrotestosterone (DHT) has been shown to activate SRC by a novel nontranscriptional mechanism, which phosphorylates EGF receptors to potentiate EGF-induced ERK1/2 activation. This study sought to determine if DHT potentiates EGFR signaling by a nontranscriptional mechanism. Embryonic day (E)17 fetal lung cells were isolated from dams treated with or without DHT since E12. Cells were exposed to 30 ng/ml DHT for periods of 30 minutes to 3 days before being stimulated with 100 ng/ml EGF, TGF-α, or Nrg for up to 30 minutes. Lysates were immunoblotted for ErbB and SRC pathway signaling intermediates. DHT increased ERK1/2 activation by EGF, TGF-α, and Nrg in fibroblasts and Type II cells. Characterization in fibroblasts showed that potentiation of the EGF pathway was significant after 60 minutes of DHT exposure and persisted in the presence of the translational inhibitor cycloheximide. SRC and EGF receptor phosphorylation was increased by DHT, as was EGF-induced SHC1 phosphorylation and subsequent association with GRB2. Finally, SRC silencing, SRC inhibition with PP2, and overexpression of a dominant-negative SRC each prevented DHT from increasing EGF-induced ERK1/2 phosphorylation. These results suggest that DHT activates SRC to potentiate the signaling pathway leading from the EGF receptor to ERK activation in primary fetal lung fibroblasts. PMID:24484548

  12. Taurine Inhibits Myocardial Fibrosis via PKC-ERK1/2 Signaling Pathways

    Institute of Scientific and Technical Information of China (English)

    WANG Li-ying; LI Hong; YANG Shi-jie

    2012-01-01

    Previous studies have demonstrated the important role of taurine in inhibiting proliferation of myofibroblasts(myoFb) and myocardial fibrosis.However,the underlying mechanisms are unclear.The present study was designed to shed light on this issue through exploring the signal pathways via in vitro experiments.Angiotension Ⅱ (AngⅡ) treatment significantly increased myoFb proliferation and the levels of collagens Ⅰ and Ⅲ(P<0.05),whereas taurine,PKCαt(PKC:protein kinase C) specific inhibitor L-threo-dihydro-sphingosine(D4681),ERK1/2 inhibitor (PD98095) abrogated myoFb proliferation and collagen levels(P<0.05,P<0.01,respectively),and increased the G0/G1 phase rate and decreased S phase rate.Immunocytochemistry,confocal fluorescence staining and image analysis showed that taurine could inhibit the translocation and expression of p-PKCαtin membrane,and then inhibit nuclear translocation and expression of p-ERK1/2.These results have statistically significant differences compared with those of AngⅡ group(P<0.0l).Western blot results also show that taurine could inhibit the protein expression of p-PKCαt and p-ERK1/2.We used p-PKCα specific inhibitor D4681 in order to elucidate the relationship between p-PKCα and p-ERK1/2 in signal transduction pathways.Finally,the results show that the protein expression of p-ERK1/2 and nuclear translocation were suppressed in D4681 group.

  13. Serum thymic factor, FTS, attenuates cisplatin nephrotoxicity by suppressing cisplatin-induced ERK activation.

    Science.gov (United States)

    Kohda, Yuka; Kawai, Yoshiko; Iwamoto, Noriaki; Matsunaga, Yoshiko; Aiga, Hiromi; Awaya, Akira; Gemba, Munekazu

    2005-11-01

    Serum thymic factor (FTS), a thymic peptide hormone, has been reported to attenuate the bleomycin-induced pulmonary injury and also experimental pancreatitis and diabetes. In the present study, we investigated the effect of FTS on cis-diamminedichloroplatinum II (cisplatin)-induced nephrotoxicity. We have already demonstrated that cephaloridine, a nephrotoxic antibiotic, leads to extracellular signal-regulated protein kinase (ERK) activation in the rat kidney, which probably contributes to cephaloridine-induced renal dysfunction. The aim of this study was to examine the effect of cisplatin on ERK activation in the rat kidney and also the effect of FTS on cisplatin-induced nephrotoxicity in rats. In vitro treatment of LLC-PK1 cells with FTS significantly ameliorated cisplatin-induced cell injury. Treatment of rats with intravenous cisplatin for 3 days markedly induced renal dysfunction and increased platinum contents in the kidney cortex. An increase in pERK was detected in the nuclear fraction prepared from the rat kidney cortex from days 1 to 3 after injection of cisplatin. FTS suppressed cisplatin-induced renal dysfunction and ERK activation in the kidney. FTS did not influence any Pt contents in the kidney after cisplatin administration. FTS has been shown to enhance the in vivo expression of heat shock protein (HSP) 70 in the kidney cortex. The beneficial role of FTS against cisplatin nephrotoxicity may be mediated in part by HSP70, as suggested by its up-regulation in the kidney cortex treated with FTS alone. Our results suggest that FTS participates in protection from cisplatin-induced nephrotoxicity by suppressing ERK activation caused by cisplatin.

  14. Zn2+ -induced ERK activation mediates PARP-1-dependent ischemic-reoxygenation damage to oligodendrocytes.

    Science.gov (United States)

    Domercq, Maria; Mato, Susana; Soria, Federico N; Sánchez-gómez, M Victoria; Alberdi, Elena; Matute, Carlos

    2013-03-01

    Much of the cell death following episodes of anoxia and ischemia in the mammalian central nervous system has been attributed to extracellular accumulation of glutamate and ATP, which causes a rise in [Ca(2+)](i), loss of mitochondrial potential, and cell death. However, restoration of blood flow and reoxygenation are frequently associated with exacerbation of tissue injury (the oxygen paradox). Herein we describe a novel signaling pathway that is activated during ischemia-like conditions (oxygen and glucose deprivation; OGD) and contributes to ischemia-induced oligodendroglial cell death. OGD induced a retarded and sustained increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation after restoring glucose and O(2) (reperfusion-like conditions). Blocking the ERK1/2 pathway with the MEK inhibitor UO126 largely protected oligodendrocytes against ischemic insults. ERK1/2 activation was blocked by the high-affinity Zn(2+) chelator TPEN, but not by antagonists of AMPA/kainate or P2X7 receptors that were previously shown to be involved in ischemic oligodendroglial cell death. Using a high-affinity Zn(2+) probe, we showed that ischemia induced an intracellular Zn(2+) rise in oligodendrocytes, and that incubation with TPEN prevented mitochondrial depolarization and ROS generation after ischemia. Accordingly, exposure to TPEN and the antioxidant Trolox reduced ischemia-induced oligodendrocyte death. Moreover, UO126 blocked the ischemia-induced increase in poly-[ADP]-ribosylation of proteins, and the poly[ADP]-ribose polymerase 1 (PARP-1) inhibitor DPQ significantly inhibited ischemia-induced oligodendroglial cell death-demonstrating that PARP-1 was required downstream in the Zn(2+)-ERK oligodendrocyte cell death pathway. Chelation of cytosolic Zn(2+), blocking ERK signaling, and antioxidants may be beneficial for treating CNS white matter ischemia-reperfusion injury. Importantly, all the inhibitors of this pathway protected oligodendrocytes when applied

  15. Orexin A induces autophagy in HCT-116 human colon cancer cells through the ERK signaling pathway.

    Science.gov (United States)

    Wen, Jing; Zhao, Yuyan; Guo, Lei

    2016-01-01

    Orexins are a class of peptides which have a potent influence on a broad variety of cancer cells. Autophagy is closely associated with tumors; however, its function is not yet completely understood. In this study, we aimed to determine whether orexin A induces autophagy in HCT‑116 human colon cancer cells and to elucidate the molecular mechanisms involved. For this purpose, HCT‑116 cells were treated with orexin A, and cell viability was then measured by MTT assay, and apoptosis was determined by flow cytometry. The expression levels of autophagy‑related proteins were measured by western blot analysis. Quantitative analysis of autophagy following acridine orange (AO) staining was performed using fluorescence microscopy, and cellular morphology was observed under a transmission electron microscope. In addition, the HCT‑116 cells were treated with the extracellular signal‑regulated kinase (ERK) inhibitor, U0126, or the autophagy inhibitor, chloroquine, in combination with orexin A in order to examine the activation of ERK. We found that orexin A significantly inhibited the viability of the HCT‑116 cells. Both autophagy and apoptosis were activated during the orexin A‑induced death of HCT‑116 cells. When the HCT‑116 cells were treated with orexin A for 24 h, an accumulation of punctate microtubule-associated protein-1 light chain 3 (LC3) and an increase in LC3‑Ⅱ protein levels were also detected, indicating the activation of autophagy. Moreover, orexin A upregulated ERK phosphorylation; however, U0126 or chloroquine abrogated ERK phosphorylation and decreased autophagy, compared to treatment with orexin A alone. Therefore, our findings demonstratedm that orexin A induced autophagy through the ERK pathway in HCT‑116 human colon cancer cells. The inhibition of autophagy may thus prove to be an effective strategy for enhancing the antitumor potential of orexin A as a treatment for colon cancer.

  16. Inhibition of ERK1/2 worsens intestinal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Kechen Ban

    Full Text Available BACKGROUND: The role of extracellular signal-regulated protein kinase (ERK in intestinal ischemia/reperfusion (I/R injury has not been well investigated. The aim of the current study was to examine the effect of inhibition of the ERK pathway in an in vitro and in vivo model of intestinal I/R injury. METHODS: ERK1/2 activity was inhibited using the specific inhibitor, U0126, in intestinal epithelial cells under hypoxia/reoxygenation conditions and in mice subjected to 1 hour of intestinal ischemia followed by 6 hours reperfusion. In vitro, cell proliferation was assessed by MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay, apoptosis by DNA fragmentation, and migration using an in vitro model of intestinal wound healing. Cells were also transfected with a p70S6K plasmid and the effects of overexpression similarly analyzed. In vivo, the effects of U0126 on intestinal cell proliferation and apoptosis, intestinal permeability, lung and intestinal neutrophil infiltration and injury, and plasma cytokine levels were measured. Survival was also assessed after U0126. Activity of p70S6 kinase (p70S6K was measured by Western blot. RESULTS: In vitro, inhibition of ERK1/2 by U0126 significantly decreased cell proliferation and migration but enhanced cell apoptosis. Overexpression of p70S6K promoted cell proliferation and decreased cell apoptosis. In vivo, U0126 significantly increased cell apoptosis and decreased cell proliferation in the intestine, increased intestinal permeability, intestinal and lung neutrophil infiltration, and injury, as well as systemic pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β. Mortality was also significantly increased by U0126. Inhibition of ERK1/2 by U0126 also abolished activity of p70S6K both in vitro and in vivo models. CONCLUSION: Pharmacologic inhibition of ERK1/2 by U0126 worsens intestinal IR injury. The detrimental effects are mediated, at least in part, by inhibition of p70S6K, the major

  17. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiamin; Wu, Kewen; Lin, Feng; Luo, Qing; Yang, Li; Shi, Yisong [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Song, Guanbin, E-mail: song@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Sung, Kuo-Li Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412 (United States)

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.

  18. E-cadherin promotes proliferation of human ovarian cancer cells in vitro via activating MEK/ERK pathway

    Institute of Scientific and Technical Information of China (English)

    Ling-ling DONG; Lian LIU; Chun-hong MA; Ji-sheng LI; Chao DU; Shan XU; Li-hui HAN; Li LI; Xiu-wen WANG

    2012-01-01

    Aim:E-cadherin is unusually highly expressed in most ovarian cancers.This study was designed to investigate the roles of E-cadherin in the carcinogenesis and progression of ovarian cancers.Methods:Human ovarian adenocarcinoma cell line SKOV-3 was examined.E-cadherin gene CDH1 in SKOV-3 cells was knocked down via RNA interference (RNAi),and the resultant variation of biological behavior was observed using CCK-8 and colony formation experiment.E-cadherin-mediated Ca2+-dependent cell-cell adhesion was used to study the mechanisms underlying the effects of E-cadherin on the proliferation and survival of SKOV-3 cells.The expression levels of E-cadherin,extracellular signal-related kinase (ERK),phosphorylated ERK (P-ERK) were measured using Western blot assays.Results:Transfection with CDH1-siRNA for 24-96 h significantly suppressed the growth and proliferation of SKOV-3 cells.E-cadhednmediated calcium-dependent cell-cell adhesion of SKOV-3 cells resulted in a rapid increase of P-ERK,but did not modify the expression of ERK protein.The phosphorylation of ERK in the cells was blocked by pretreatment with the MEK1 specific inhibitor PD98059 (50μmol/L),but not bythe PI3K inhibitor wortmannin (1μmol/L) or PKA inhibitor H89 (10 μmol/L).Conclusion:E-cadherin may function as a tumor proliferation enhancer via activating the MEK/ERK pathway in development of ovarian epithelial cancers.

  19. Activation of ERK1/2 and TNF-α production are regulated by calcium/calmodulin signaling pathway during Penicillium marneffei infection within human macrophages.

    Science.gov (United States)

    Chen, Renqiong; Ji, Guangquan; Wang, Ling; Ren, Hong; Xi, Liyan

    2016-04-01

    Previous study have shown that Penicillium marneffei (P. marneffei)-induced TNF-α production via an extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase-dependent mechanism is an important host defence mechanism against P. marneffei in human macrophages. Therefore, we explore signaling pathway that regulates TNF-α secretion and activation of ERK1/2 by intracellular signaling mechanisms during P. marneffei infection. We found that ERK1/2 activation was dependent on the calcium/calmodulin/calmodulin kinase Ⅱ pathway in P. marneffei-infected human macrophages. In contrast, P. marneffei-induced p38 MAPK activation was negatively regulated by calcium/calmodulin/calmodulin kinase Ⅱ signaling pathway. Furthermore, TNF-α production in P. marneffei-infected human macrophages was also dependent on Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway. These data suggest that Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway plays vital regulatory roles in macrophage activation and subsequent cytokine production during P. marneffei infection.

  20. Nuclear EGFRvIII resists hypoxic microenvironment induced apoptosis via recruiting ERK1/2 nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hui; Yang, Jinfeng; Xing, Wenjing; Dong, Yucui [Dept. of Immunology, Harbin Medical University, Harbin 150081 (China); Key Lab Infection & Immunity, Heilongjiang Province, Harbin 150081 (China); Ren, Huan, E-mail: renhuan@ems.hrbmu.edu.cn [Dept. of Immunology, Harbin Medical University, Harbin 150081 (China); Key Lab Infection & Immunity, Heilongjiang Province, Harbin 150081 (China)

    2016-02-05

    Glioblastoma (GBM) is the most aggressive type of primary brain tumor. Its interaction with the tumor microenvironment promotes tumor progression. Furthermore, GBM bearing expression of EGFRvIII displays more adaptation to tumor microenvironment related stress. But the mechanisms were poorly understood. Here, we presented evidence that in the human U87MG glioblastoma tumor model, EGFRvIII overexpression led aberrant kinase activation and nuclear translocation of EGFRvIII/ERK1/2 under hypoxia, which induced growth advantage by resisting apoptosis. Additionally, EGFRvIII defective in nuclear entry impaired this capacity in hypoxia adaptation, and partially interrupted ERK1/2 nuclear translocation. Pharmacology or genetic interference ERK1/2 decreased hypoxia resistance triggered by EGFRvIII expression, but not EGFRvIII nuclear translocation. In summary, this study identified a novel role for EGFRvIII in hypoxia tolerance, supporting an important link between hypoxia and subcellular localization alterations of the receptor. - Highlights: • Nuclear translocation of EGFRvIII contributes to GBM cell apoptotic resistance by hypoxia. • Nuclear ERK1/2 facilitates EGFRvIII in hypoxia resistance. • EGFRvIII nuclear translocation is not dependent on ERK1/2.

  1. Sustained ERK Activation Underlies Reprogramming in Regeneration-Competent Salamander Cells and Distinguishes Them from Their Mammalian Counterparts

    Directory of Open Access Journals (Sweden)

    Maximina H. Yun

    2014-07-01

    Full Text Available In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural reprogramming during regeneration. Here, we have identified the extent of extracellular signal-regulated kinase (ERK activation as a key component of such mechanisms. We show that sustained ERK activation following serum induction is required for re-entry into the cell cycle of postmitotic salamander muscle cells, partially by promoting the downregulation of p53 activity. Moreover, ERK activation induces epigenetic modifications and downregulation of muscle-specific genes such as Sox6. Remarkably, while long-term ERK activation is found in salamander myotubes, only transient activation is seen in their mammalian counterparts, suggesting that the extent of ERK activation could underlie differences in regenerative competence between species.

  2. Sustained ERK activation underlies reprogramming in regeneration-competent salamander cells and distinguishes them from their mammalian counterparts.

    Science.gov (United States)

    Yun, Maximina H; Gates, Phillip B; Brockes, Jeremy P

    2014-07-08

    In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural reprogramming during regeneration. Here, we have identified the extent of extracellular signal-regulated kinase (ERK) activation as a key component of such mechanisms. We show that sustained ERK activation following serum induction is required for re-entry into the cell cycle of postmitotic salamander muscle cells, partially by promoting the downregulation of p53 activity. Moreover, ERK activation induces epigenetic modifications and downregulation of muscle-specific genes such as Sox6. Remarkably, while long-term ERK activation is found in salamander myotubes, only transient activation is seen in their mammalian counterparts, suggesting that the extent of ERK activation could underlie differences in regenerative competence between species.

  3. Synergistic suppression of t(8;21)-positive leukemia cell growth by combining oridonin and MAPK1/ERK2 inhibitors

    Science.gov (United States)

    Morozov, Alexey; Poymenova, Nadezhda; Dmitriev, Sergey E.; Buzdin, Anton; Stocking, Carol; Kovalchuk, Olga; Prassolov, Vladimir

    2017-01-01

    One of the most common chromosomal translocations in acute myeloid leukemia is t(8;21)(q22;q22), which results in the appearance of abnormal transcripts encoding for the fusion protein RUNX1-ETO. Therefore, this oncoprotein is considered to be a pertinent and promising target for treating t(8;21) leukemia. Previously, we have shown that downregulation of RUNX1-ETO leads to activation of intracellular signaling pathways enhancing cell survival and determined that the protein ERK2 can mediate activation of most of these pathways. Here we used a combination of oridonin (natural tetracycline diterpenoid), which has been shown to exhibit anti-RUNX1-ETO activity, and ERK2 kinase inhibitors. We found that treatment of leukemic t(8;21)-positive Kasumi-1 cells with oridonin cause decrease of phosphorylated ERK1/2. Treatment of these cells with ERK2 inhibitors makes them more sensitive to RUNX1-ETO inhibition with oridonin. Therefore we postulate that simultaneous inhibition of RUNX1-ETO and ERK2 cause synergistic effect on survival of leukemic cells. PMID:28915648

  4. Xenon preconditioning differently regulates p44/42 MAPK (ERK 1/2) and p46/54 MAPK (JNK 1/2 and 3) in vivo

    NARCIS (Netherlands)

    N.C. Weber; J. Stursberg; N.M. Wirthle; O. Toma; W. Schlack; B. Preckel

    2006-01-01

    Background. Xenon (Xe) induces preconditioning (PC) of the rat heart in vivo via activation of p38 mitogen-activated protein kinase (MAPK). The role of ERK 1/2 and JNK 1/2 and 3 in Xe-PC has yet not been determined. Methods. For infarct size measurements, anaesthetized rats were subjected to 25 min

  5. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant

    DEFF Research Database (Denmark)

    Frogne, Thomas; Benjaminsen, Rikke V; Sonne-Hansen, Katrine

    2008-01-01

    activation was observed only in the parental MCF-7 cells. The downstream kinases pAkt and pErk were increased in five of seven and in all seven resistant cell lines, respectively. Treatment with the EGFR inhibitor gefitinib preferentially inhibited growth and reduced the S phase fraction in the resistant...

  6. Mnk kinase pathway: Cellular functions and biological outcomes

    Institute of Scientific and Technical Information of China (English)

    Sonali; Joshi; Leonidas; C; Platanias

    2014-01-01

    The mitogen-activated protein kinase(MAPK) interacting protein kinases 1 and 2(Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs(p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E(eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4 E. The role of Mnk kinases in inflammation and inflammationinduced malignancies is also discussed.

  7. Heart failure-specific changes in protein kinase signalling.

    Science.gov (United States)

    Lorenz, Kristina; Stathopoulou, Konstantina; Schmid, Evelyn; Eder, Petra; Cuello, Friederike

    2014-06-01

    Among the myriad of molecular alterations occurring in heart failure development, aggravation of the disease is often attributed to global or local changes in protein kinase activity, thus making protein kinases attractive targets for therapeutic intervention. Since protein kinases do not only have maladaptive roles, but also contribute to the physiological integrity of cells, it is a challenging task to circumvent undesired inhibition of protein kinase activity. Identification of posttranslational modifications and/or protein-protein interactions that are exclusively apparent under pathophysiological conditions provides exciting information for alternative non-kinase inhibitory treatment strategies that eliminate maladaptive functions of a protein kinase, but preserve the beneficial ones. Here, we focus on the disease-specific regulation of a number of protein kinases, namely, Ca(2+)/calmodulin-dependent protein kinase II isoform δ (CaMKIIδ), G protein-coupled receptor kinase 2 (GRK2), extracellular signal-regulated kinase 1 and 2 (ERK1/2), protein kinase D (PKD) and protein kinase C isoform β2 (PKCβ2), which are embedded in complex signal transduction pathways implicated in heart failure development, and discuss potential avenues for novel treatment strategies to combat heart disease.

  8. Smooth muscle archvillin is an ERK scaffolding protein.

    Science.gov (United States)

    Gangopadhyay, Samudra S; Kengni, Edouard; Appel, Sarah; Gallant, Cynthia; Kim, Hak Rim; Leavis, Paul; DeGnore, Jon; Morgan, Kathleen G

    2009-06-26

    ERK influences a number of pathways in all cells, but how ERK activities are segregated between different pathways has not been entirely clear. Using immunoprecipitation and pulldown experiments with domain-specific recombinant fragments, we show that smooth muscle archvillin (SmAV) binds ERK and members of the ERK signaling cascade in a domain-specific, stimulus-dependent, and pathway-specific manner. MEK binds specifically to the first 445 residues of SmAV. B-Raf, an upstream regulator of MEK, constitutively interacts with residues 1-445 and 446-1250. Both ERK and 14-3-3 bind to both fragments, but in a stimulus-specific manner. Phosphorylated ERK is associated only with residues 1-445. An ERK phosphorylation site was determined by mass spectrometry to reside at Ser132. A phospho-antibody raised to this site shows that the site is phosphorylated during alpha-agonist-mediated ERK activation in smooth muscle tissue. Phosphorylation of SmAV by ERK decreases the association of phospho-ERK with SmAV. These results, combined with previous observations, indicate that SmAV serves as a new ERK scaffolding protein and provide a mechanism for regulation of ERK binding, activation, and release from the signaling complex.

  9. Constitutively activated ERK sensitizes cancer cells to doxorubicin: Involvement of p53-EGFR-ERK pathway

    Indian Academy of Sciences (India)

    RATNA KUMARI; SURBHI CHOUHAN; SNAHLATA SINGH; RISHI RAJ CHHIPA; AMRENDRA KUMAR AJAY; MANOJ KUMAR BHAT

    2017-03-01

    The tumour suppressor gene p53 is mutated in approximately 50% of the human cancers. p53 is involved in genotoxicstress-induced cellular responses. The role of EGFR and ERK in DNA-damage-induced apoptosis is well known. Weinvestigated the involvement of activation of ERK signalling as a consequence of non-functional p53, in sensitivity ofcells to doxorubicin. We performed cell survival assays in cancer cell lines with varying p53 status: MCF-7 (wild-typep53, WTp53), MDA MB-468 (mutant p53, MUTp53), H1299 (absence of p53, NULLp53) and an isogenic cell lineMCF-7As (WTp53 abrogated). Our results indicate that enhanced chemosensitivity of cells lacking wild-type p53function is because of elevated levels of EGFR which activates ERK. Additionally, we noted that independent of p53status, pERK contributes to doxorubicin-induced cell death.

  10. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2).

    Science.gov (United States)

    Anderson, David R; Meyers, Marvin J; Vernier, William F; Mahoney, Matthew W; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Schindler, John F; Reitz, David B; Mourey, Robert J

    2007-05-31

    A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model. The structure-activity relationships of this series, the selectivity for MK-2 and their activity in both in vitro and in vivo models are discussed. The observed selectivity is discussed with the aid of an MK-2/inhibitor crystal structure.

  11. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1999-01-01

    by growth factors, peptide hormones and neurotransmitters, and Jun kinase (JNK) and p38 MAPK, which are activated by cellular stress stimulus as well as growth factors. This review describes the family of 90 kDa ribosomal S6 kinases (RSK; also known as p90rsk or MAPK-activated protein kinase-1, MAPKAP-K1......-related kinases that are activated by ERK as well as p38 MAPK were discovered and named mitogen- and stress-activated protein kinases (MSK). A number of cellular functions of RSK have been proposed. (1) Regulation of gene expression via association and phosphorylation of transcriptional regulators including c-Fos...

  12. Jiawei Wendan decoction affects mitogen-activated protein kinase signal pathway in the hippocampus of depression rats

    Institute of Scientific and Technical Information of China (English)

    Liping Zhang; Man Zhang; Li Wu; Meng Xia; Guangbin Li

    2011-01-01

    A previous study from our group showed that Jiawei Wendan decoction inhibits protein expression of interleukin-1β, 2, and 6, as well as plasma neuropeptide Y, P substance and somatostatin in the hippocampus of depression rat models. The present study analyzed the influence of Jiawei Wendan decoction on the mitogen-activated protein kinase signal transduction pathway in the hippocampus. Results demonstrated that Jiawei Wendan decoction effectively upregulated expression of small molecular G proteins, extracellular regulated kinase 1/2, and activated ribosomal S6 kinase protein in the rat hippocampus. In addition, Jiawei Wendan decoction exhibits antidepressant effects similar to fluoxetine. The underlying mechanisms were shown to be dependent on increased mitogen-activated protein kinase signal transduction pathway activity.

  13. Regulation of ERK1/2 activity by ghrelin-activated growth hormone secretagogue receptor 1A involves a PLC/PKCɛ pathway

    Science.gov (United States)

    Mousseaux, Delphine; Le Gallic, Lionel; Ryan, Joanne; Oiry, Catherine; Gagne, Didier; Fehrentz, Jean-Alain; Galleyrand, Jean-Claude; Martinez, Jean

    2006-01-01

    The growth hormone secretagogue receptor 1a (GHSR-1a) is a G-protein coupled receptor, involved in the biological actions of ghrelin by triggering inositol phosphates and calcium intracellular second messengers. It has also been reported that ghrelin could activate the 44- and 42-kDa extracellular signal-regulated protein kinases (ERK1/2) in different cell lines, but it is not clear whether this regulation is GHSR-1a dependent or not. To provide direct evidence for the coupling of GHSR-1a to ERK1/2 activation, this pathway has been studied in a heterologous expression system. Thus, in Chinese hamster ovary (CHO) cells we showed that ghrelin induced, via the human GHSR-1a, a transient and dose-dep endent activation of ERK1/2 leading to activation of the transcriptional factor Elk1. We then investigated the precise mechanisms involved in GHSR-1a-mediated ERK1/2 activation using various specific inhibitors and dominant-negative mutants and found that internalization of GHSR-1a was not necessary. Our results also indicate that phospholipase C (PLC) was involved in GHSR-1a-mediated ERK1/2 activation, however, pathways like tyrosine kinases, including Src, and phosphoinositide 3-kinases were not found to be involved. GHSR-1a-mediated ERK1/2 activation was abolished both by a general protein kinase C (PKC) inhibitor, Gö6983, and by PKC depletion using overnight pretreatment with phorbol ester. Moreover, the calcium chelator, BAPTA-AM, and the inhibitor of conventional PKCs, Gö6976, had no effect on the GHSR-1a-mediated ERK1/2 activation, suggesting the involvement of novel PKC isoforms (ɛ, δ), but not conventional or atypical PKCs. Further analyses suggest that PKCɛ is required for the activation of ERK1/2. Taken together, these data suggest that ghrelin, through GHSR-1a, activates the Elk1 transcriptional factor and ERK1/2 by a PLC- and PKCɛ-dependent pathway. PMID:16582936

  14. Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Aiping Lan

    Full Text Available Hydrogen sulfide (H(2S has been proposed as a novel neuromodulator and neuroprotective agent. Cobalt chloride (CoCl(2 is a well-known hypoxia mimetic agent. We have demonstrated that H(2S protects against CoCl(2-induced injuries in PC12 cells. However, whether the members of mitogen-activated protein kinases (MAPK, in particular, extracellular signal-regulated kinase1/2(ERK1/2 and p38MAPK are involved in the neuroprotection of H(2S against chemical hypoxia-induced injuries of PC12 cells is not understood. We observed that CoCl(2 induced expression of transcriptional factor hypoxia-inducible factor-1 alpha (HIF-1α, decreased cystathionine-β synthase (CBS, a synthase of H(2S expression, and increased generation of reactive oxygen species (ROS, leading to injuries of the cells, evidenced by decrease in cell viability, dissipation of mitochondrial membrane potential (MMP , caspase-3 activation and apoptosis, which were attenuated by pretreatment with NaHS (a donor of H(2S or N-acetyl-L cystein (NAC, a ROS scavenger. CoCl(2 rapidly activated ERK1/2, p38MAPK and C-Jun N-terminal kinase (JNK. Inhibition of ERK1/2 or p38MAPK or JNK with kinase inhibitors (U0126 or SB203580 or SP600125, respectively or genetic silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2 or Si-p38MAPK significantly prevented CoCl(2-induced injuries. Pretreatment with NaHS or NAC inhibited not only CoCl(2-induced ROS production, but also phosphorylation of ERK1/2 and p38MAPK. Thus, we demonstrated that a concurrent activation of ERK1/2, p38MAPK and JNK participates in CoCl(2-induced injuries and that H(2S protects PC12 cells against chemical hypoxia-induced injuries by inhibition of ROS-activated ERK1/2 and p38MAPK pathways. Our results suggest that inhibitors of ERK1/2, p38MAPK and JNK or antioxidants may be useful for preventing and treating hypoxia-induced neuronal injury.

  15. ERK 5/MAPK PATHWAY HAS A MAJOR ROLE IN 1α,25-(OH)2 VITAMIN D3-INDUCED TERMINAL DIFFERENTIATION OF MYELOID LEUKEMIA CELLS

    Science.gov (United States)

    Wang, Xuening; Pesakhov, Stella; Weng, Ashley; Kafka, Michael; Gocek, Elzbieta; Nguyen, Mai; Harrison, Jonathan S.; Danilenko, Michael; Studzinski, George P.

    2013-01-01

    Vitamin D derivatives, including its physiological form 1α,25(OH)2 vitamin D3 (1,25D), have anti-tumor actions demonstrated in cell culture and confirmatory epidemiological associations are frequently reported. However, their promise for use in the cancer clinic is still incompletely fulfilled, suggesting that a better understanding of the molecular events initiated by these compounds is needed for therapeutic advances. While ERK1/2 has been intensely investigated and is known to transmit signals for cell survival, growth, and differentiation, the role of other MAPK pathways has been studied sporadically. Therefore, we utilized acute myeloid leukemia (AML) cells in culture (HL60 and U937), to determine if ERK5 has a role in 1,25D-induced terminal differentiation which is distinct from the previously shown involvement of ERK1/2. We previously found that inhibition of kinase activity of ERK5 by specific pharmacological inhibitors BIX02189 or XMD8-92 results in higher expression of general myeloid marker CD11b, but a lower expression of the monocytic marker CD14. In contrast, the inhibition of the ERK1/2 pathway by PD98059 or U0126 reduced the expression of all differentiation markers studied. We report here for the first time that the differentiation changes induced by ERK5 inhibitors are accompanied by the inhibition of cell proliferation, and this occurs in the both G1 and G2 phases of the cell cycle. Of note, inhibition of ERK5 auto-phosphorylation by XMD8-92 results in a particularly robust cell cycle arrest in G2 phase in AML cells. This study provides a link between the 1,25D-elevated ERK5 pathway and changes in the cell cycle phase transitions in AML cells. Thus, combinations of vitamin D derivatives and ERK5 inhibitors may be more successful in cancer clinics than 1,25D or analogs alone. PMID:24514755

  16. Neuroprotective effects of Argon are mediated via an ERK-1/2 dependent regulation of heme-oxygenase-1 in retinal ganglion cells.

    Science.gov (United States)

    Ulbrich, Felix; Kaufmann, Kai B; Coburn, Mark; Lagrèze, Wolf Alexander; Roesslein, Martin; Biermann, Julia; Buerkle, Hartmut; Loop, Torsten; Goebel, Ulrich

    2015-08-01

    Retinal ischemia and reperfusion injuries (R-IRI) damage neuronal tissue permanently. Recently, we demonstrated that Argon exerts anti-apoptotic and protective properties. The molecular mechanism remains unclear. We hypothesized that Argon inhalation exert neuroprotective effects in rats retinal ganglion cells (RGC) via an ERK-1/2 dependent regulation of heat-shock proteins. Inhalation of Argon (75 Vol%) was performed after R-IRI on the rats' left eyes for 1 h immediately or with delay. Retinal tissue was harvested after 24 h to analyze mRNA and protein expression of heat-shock proteins -70, -90 and heme-oxygenase-1, mitogen-activated protein kinases (p38, JNK, ERK-1/2) and histological changes. To analyze ERK dependent effects, the ERK inhibitor PD98059 was applicated prior to Argon inhalation. RGC count was analyzed 7 days after injury. Statistics were performed using anova. Argon significantly reduced the R-IRI-affected heat-shock protein expression (p ERK-1/2 expression (p ERK-1/2 before Argon inhalation resulted in significantly lower vital RGCs (p ERK-1/2 activation in Müller cells. We conclude, that Argon treatment protects R-IRI-induced apoptotic loss of RGC via an ERK-1/2 dependent regulation of heme-oxygenase-1. We proposed the following possible mechanism for Argon-mediated neuroprotection: Argon exerts its protective effects via an induction of an ERK with subsequent suppression of the heat shock response. In conclusion, ischemia and reperfusion injuries and subsequent neuronal apoptosis are attenuated. These novel findings may open up new opportunities for Argon as a therapeutic option, especially since Argon is not toxic.

  17. Cardiopulmonary bypass reduces peripheral microvascular contractile function by inhibition of mitogen-activated protein kinase activity.

    Science.gov (United States)

    Khan, Tanveer A; Bianchi, Cesario; Araujo, Eugenio G; Ruel, Marc; Voisine, Pierre; Li, Jianyi; Liddicoat, John R; Sellke, Frank W

    2003-08-01

    Mitogen-activated protein kinases (MAPK) have been implicated in pathophysiologic responses to cardiopulmonary bypass (CPB). MAPK are deactivated by phosphatases, such as MAPK phosphatase-1 (MKP-1). We hypothesized that MAPK mediate peripheral microvascular contractile dysfunction caused by CPB in humans. Skeletal muscle was harvested before and after CPB. Protein levels of MKP-1 and activated extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 were measured. MKP-1 gene expression was measured. Peripheral microvessel responses to vasopressors were studied by videomicroscopy. Contractile function also was measured after MAPK inhibition with PD98059 (ERK1/2) and SB203580 (p38). ERK1/2, p38, and MKP-1 were localized by immunohistochemistry and in situ hybridization. ERK1/2 and p38 activity was decreased in peripheral tissue after CPB. MKP-1 was increased after CPB. Contractile responses of peripheral arterioles to phenylephrine and vasopressin were decreased after CPB. Microvessel reactivity also was reduced after treatment with PD98059 and SB203580. ERK1/2, p38, and MKP-1 localized to peripheral arterioles in tissue sections. CPB reduces ERK1/2 and p38 activity in peripheral tissue, potentially by MKP-1. Contractile responses of peripheral arterioles to phenylephrine and vasopressin are dependent on ERK1/2 and p38 and are decreased after CPB. These results suggest that alterations in MAPK pathways in part regulate peripheral microvascular dysfunction after CPB in humans.

  18. Effects of tributyltin chloride in ascidian embryos: modulation of kinase-mediated signalling pathways

    Directory of Open Access Journals (Sweden)

    F Damiani

    2009-03-01

    Full Text Available We studied the effects of various TBT concentrations by assaying the activity of ERK 1/2 (p44/42 and phospho-ERK1/2 (phospho-p44/42, proteins with a key role in ascidian development, and tyrosine kinase-dependent pathway. The effects of this xenobiotic and the role of some signalling mechanisms on ascidian embryos were examined by using Western immunoblotting. The tyrosine phosphorylation pattern in the ascidians Ciona intestinalis and Phallusia mammillata development was examined and different levels of protein phosphorylation were found as a response to TBT at μM range. To determine whether another key signalling pathway was activated, the effects of TBT on the phosphorylation state of a component of tyrosine kinase-mediated signal transduction MAPK, ERK 1/2 (p44/42 were evaluated. Embryos of Ciona intestinalis exposed to 0.1, 0.25 and 0.5 μM TBT showed a slight decrement in the level of phosphorylated ERK, while a remarkable decrement in level of phopshorylated ERK were observed at higher TBT concentrations (0.5 μM to 10 μM. These data indicated that exposures to TBT induced changes in the total pattern of phosphotyrosine and in the phosphorylation levels of ERK 1/2 but there were no changes on the overall level of total ERK in ascidian embryos.

  19. Salmonella induces SRC protein tyrosine kinase, c-Jun N-terminal kinase (JNK), and NF-kappaBp65 signaling pathways in commercial and wild-type turkey leukocytes

    Science.gov (United States)

    Previous studies comparing signaling in wild-type turkey (WT) leukocytes and commercial turkey (CT) leukocytes found that the activity of protein tyrosine kinases and MAP kinases, ERK 1/2 and p38, were significantly higher in WT leukocytes compared to CT lines upon exposure to both SE and OPSE on d...

  20. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S;

    2006-01-01

    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen...

  1. Activation of ERK1/2 by store-operated calcium entry in rat parotid acinar cells.

    Directory of Open Access Journals (Sweden)

    Stephen P Soltoff

    Full Text Available The regulation of intracellular Ca(2+ concentration ([Ca(2+]i plays a critical role in a variety of cellular processes, including transcription, protein activation, vesicle trafficking, and ion movement across epithelial cells. In many cells, the activation of phospholipase C-coupled receptors hydrolyzes membrane phosphoinositides and produces the depletion of endoplasmic reticulum Ca(2+ stores, followed by the sustained elevation of [Ca(2+]i from Ca(2+ entry across the plasma membrane via store-operated Ca(2+ entry (SOCE. Ca(2+ entry is also increased in a store-independent manner by arachidonate-regulated Ca(2+ (ARC channels. Using rat parotid salivary gland cells, we examined multiple pathways of Ca(2+ entry/elevation to determine if they activated cell signaling proteins and whether this occurred in a pathway-dependent manner. We observed that SOCE activates extracellular signal-related kinases 1 and 2 (ERK1/2 to ∼3-times basal levels via a receptor-independent mechanism when SOCE was initiated by depleting Ca(2+ stores using the endoplasmic reticulum Ca(2+-ATPase inhibitor thapsigargin (TG. TG-initiated ERK1/2 phosphorylation increased as rapidly as that initiated by the muscarinic receptor agonist carbachol, which promoted an increase to ∼5-times basal levels. Notably, ERK1/2 phosphorylation was not increased by the global elevation of [Ca(2+]i by Ca(2+ ionophore or by Ca(2+ entry via ARC channels in native cells, although ERK1/2 phosphorylation was increased by Ca(2+ ionophore in Par-C10 and HSY salivary cell lines. Agents and conditions that blocked SOCE in native cells, including 2-aminoethyldiphenyl borate (2-APB, SKF96363, and removal of extracellular Ca(2+, also reduced TG- and carbachol-stimulated ERK1/2 phosphorylation. TG-promoted ERK1/2 phosphorylation was blocked when SRC and Protein Kinases C (PKC were inhibited, and it was blocked in cells pretreated with β-adrenergic agonist isoproterenol. These observations demonstrate

  2. Two G protein-coupled receptors activate Na+/H+ exchanger isoform 1 in Chinese hamster lung fibroblasts through an ERK-dependent pathway.

    Science.gov (United States)

    Wallert, M A; Thronson, H L; Korpi, N L; Olmschenk, S M; McCoy, A C; Funfar, M R; Provost, J J

    2005-02-01

    The sodium hydrogen exchanger isoform 1 (NHE1) is present in nearly all cells. Regulation of proton flux via the exchanger is a permissive step in cell growth and tumorgenesis and is vital in control of cell volume. The regulation of NHE1 by growth factors involves the Ras-extracellular signal regulated kinase (ERK) pathway, however, the mechanism for G protein-coupled receptor (GPCR) activation of NHE1 is not well established. In this report, the relationship between GPCRs, ERK, and NHE1 in CCL39 cells is investigated. We give evidence that two agonists, the specific alpha(1)-adrenergic agonist, phenylephrine and the water-soluble lipid mitogen, lysophosphatidic acid (LPA) activate NHE1 in CCL39 cells. Activation of ERK by phenylephrine and LPA occurs in a dose- and time-dependent manner. Optimal ERK activation was observed at 10 min and displayed a maximum stimulation at 100 microM phenylephrine and 10 microM LPA. alpha(1)-Adrenergic stimulation also led to a rise in steady-state pH(i) of 0.16+/-0.02 pH units, and incubation with LPA induced a 0.43+/-0.06 pH unit increase in pH(i). Phenylephrine-induced activation of NHE1 transport and ERK activity was inhibited by pretreating the cells with the MEK inhibitor PD98059. While only half of the LPA activatable exchange activity was abolished by PD98059 and U0126. To further demonstrate the specificity of the phenylephrine and LPA regulation of NHE1 and ERK, CCL39 cells were transfected with a kinase inactive MEK. The data indicate that ERK activation is essential for phenylephrine stimulation of NHE1, and that ERK and RhoA are involved in LPA stimulation of NHE1 by more than one mechanism. In addition, evidence of the convergence of these two pathways is shown by the loss of NHE1 activity when both pathways are inhibited and by the partial additivity of the two agonists on ERK and NHE1 activity. These studies indicate a direct involvement of ERK in the alpha(1)-adrenergic activation of NHE1 and a significant role for

  3. Impaired inflammatory pain and thermal hyperalgesia in mice expressing neuron-specific dominant negative mitogen activated protein kinase kinase (MEK

    Directory of Open Access Journals (Sweden)

    Kaplan David

    2006-01-01

    Full Text Available Abstract Background Numerous studies have implicated spinal extracellular signal-regulated kinases (ERKs as mediators of nociceptive plasticity. These studies have utilized pharmacological inhibition of MEK to demonstrate a role for ERK signaling in pain, but this approach cannot distinguish between effects of ERK in neuronal and non-neuronal cells. The present studies were undertaken to test the specific role of neuronal ERK in formalin-induced inflammatory pain. Dominant negative MEK (DN MEK mutant mice in which MEK function is suppressed exclusively in neurons were tested in the formalin model of inflammatory pain. Results Formalin-induced second phase spontaneous pain behaviors as well as thermal hyperalgesia measured 1 – 3 hours post-formalin were significantly reduced in the DN MEK mice when compared to their wild type littermate controls. In addition, spinal ERK phosphorylation following formalin