WorldWideScience

Sample records for extracellular polysaccharides eps

  1. Effects of lead(II) on the extracellular polysaccharide (EPS) production and colony formation of cultured Microcystis aeruginosa.

    Science.gov (United States)

    Bi, Xiang-dong; Zhang, Shu-lin; Dai, Wei; Xing, Ke-zhing; Yang, Fan

    2013-01-01

    To investigate the effects of lead(II) on the production of extracellular polysaccharides (EPS), including bound extracellular polysaccharides (bEPS) and soluble extracellular polysaccharides (sEPS), and the colony formation of Microcystis aeruginosa, cultures of M. aeruginosa were exposed to four concentrations (5.0, 10.0, 20.0 and 40.0 mg/L) of lead(II) for 10 d under controlled laboratory conditions. The results showed that 5.0 and 10.0 mg/L lead(II) stimulated M. aeruginosa growth throughout the experiment while 20.0 and 40.0 mg/L lead(II) inhibited M. aeruginosa growth in the first 2 d exposure and then stimulated it. As compared to the control group, significant increases in the bEPS and sEPS production were observed in 20.0 and 40.0 mg/L lead(II) treatments (P bEPS production, which conversely promoted colony formation, suggesting that heavy metals might be contributing to the bloom-forming of M. aeruginosa in natural conditions.

  2. Endurance of Australian dry-savannah cyanobacteria regulated by extra-cellular polysaccharides - EPS and environment

    Science.gov (United States)

    Williams, W.; Budel, B.; Reichenberger, H.; Rose, N.

    2012-04-01

    Cyanobacterial crusts are an important driver of ecosystem function throughout Queensland's dry savannah. Annually there is very little rainfall during the winter-dry season. In the summer-wet season build-up early storms precede its onset; days are low in humidity with high ambient (>40°C) and soil surface temperatures (60-74°C). In the wet season monsoon rains and tropical storms result in vast flooded plains and ephemeral wetlands, leaving the ground saturated for several weeks. At Boodjamulla National Park (NW Qld), cyanobacterial crusts were sampled during the dry season, after 125 days without rain. An Imaging PAM (Walz) was used to determine the resurrection and quantum yield of Photosystem II (PSII). The crusts were periodically watered for ten days and multiple PAM measurements were made on a daily basis. PSII in cyanobacteria showed no signs of resurrection; however new Nostoc colonies emerged on the eighth day. Microscopic examination revealed other cyanobacteria remained in a desiccated state and EPS seemed hydrophobic. In the following dry season, crust samples were preserved at 40°C at low humidity. During the wet season these samples were reintroduced into their natural environment of high humidity and subject to periodic rains. The resurrection of PSII commenced within two hours of the first rainfall and was fully functional within 24 hours at which time existing cyanobacterial cells rapidly re-hydrated and EPS exhibited hydrophilicity. These are the first field studies demonstrating the environmental conditions controlling the function of cyanobacterial EPS and the resurrection of PSII. Mass EPS production occurs several times throughout the wet season. Eventually, as the humidity drops, temperatures remain high and sunny conditions prevail the EPS hardens and dries forming thick hydrophobic polymeric surfaces. As temperatures rise and fall, crusts crack and curl, then start to disintegrate after the first rains of the wet season before new

  3. Anionic Polyacrylamide (PAM) and Extracellular Polysaccharides (EPS) effects on flocculation and aggregate stability of soil

    Science.gov (United States)

    Albalasmeh, A. A.; Gharaibeh, M. A.; Ghezzehei, T. A.

    2015-12-01

    Soil structure influences many soil properties including aeration, water retention, drainage, bulk density, and resistance to erosion and indirectly influences most biological and chemical processes that occur in and around soil. A significant amount of literature showed that PAM plays an important role to control erosion. However, researchers are looking for more natural alternative for PAM. This study evaluated two anionic polymers including low and high molecular weight (MW), root exudates and bacterial exudates. We evaluated their influence on the rate and efficacy of colloid flocculation and the percent of water stable aggregates. We found that PAM was more effective than EPS in flocculating the colloids and all polymers increased the percent of stable soil aggregates although the PAM was more effective. These data suggest that the EPS would be less effective than PAM for reducing water erosion owing to its lesser flocculation and aggregate stabilizing potential.

  4. Influence of extracellular polysaccharides (EPS) produced by two different green unicellular algae on membrane filtration in an algae-based biofuel production process.

    Science.gov (United States)

    Matsumoto, Takaki; Yamamura, Hiroshi; Hayakawa, Jyunpei; Watanabe, Yoshimasa; Harayama, Shigeaki

    2014-01-01

    In the present study, two strains of green algae named S1 and S2, categorized as the same species of Pseudo-coccomyxa ellipsoidea but showing 99% homology, were cultivated under the same conditions and filtrated with a microfiltration membrane. On the basis of the results of the extracellular polysaccharides (EPS) characteristics of these two green algae and the degree of fouling, the influence of these characteristics on the performance of membrane filtration was investigated. There was no difference in the specific growth rate between the S1 and S2 strains; however, large differences were seen in the amount and quality of EPS between S1 and S2. When the S1 and S2 strains were filtered with a membrane, the trend in the increase in transmembrane pressure (TMP) was quite different. The filtration of the S1 strain showed a rapid increase in TMP, whereas the TMP of the filtration of the S2 strain did not increase at all during the operation. This clearly demonstrated that the characteristics of each strain affect the development of membrane fouling. On the basis of the detailed characterization of solved-EPS (s-EPS) and bound-EPS (b-EPS), it was clarified that s-EPS mainly contributed to irreversible fouling for both operations and the biopolymer-like organic matter contained in b-EPS mainly contributed to reversible fouling.

  5. Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety.

    Science.gov (United States)

    Chentir, Imene; Hamdi, Marwa; Doumandji, Amel; HadjSadok, Abelkader; Ouada, Hatem Ben; Nasri, Moncef; Jridi, Mourad

    2017-07-05

    The interactive effects of light intensity and NaCl concentration were investigated for Spirulina two-step cultivation process using Full Factorial Design. In the experiment interval, light intensity had no effect while the NaCl concentration had significant effect on the enhancement of extracellular polymeric substances (EPS) production. Interestingly, results revealed a significant negative interaction between light and NaCl concentration indicating that high NaCl concentration (40gL(-1)) and low light intensity (10μmol photons m(-2)s(-1)) enhanced the EPS production. Under these conditions, EPS production reached a maximum of 1.02gg(-1) of biomass (dry weight), which is 1.67-folds greater than EPS content under optimal growth conditions (10μmol photons m(-2)s(-1), 1gL(-1), 30°C). Desalting and deproteinezation steps of EPS were efficient to obtain polysaccharides (PS) with high carbohydrate (67.3±1.1%), low soluble proteins (5.14±0.32%), ash (5.85±0.71%) and sulfate (2.42±0.12%) contents. Rheological studies of PS at different concentrations (1%, 2.5% and 5%) revealed that the viscosity of the solution increased with the increase of PS concentration. In addition, PS exhibited a non Newtonian shear-thinning nature, a predominant gel-like behavior and a good resistance to consecutive heating-cooling cycles. The adopted process could be, then, a promising and economic strategy to enhance EPS production and extract polysaccharides with interesting rheological properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  7. Incorporation of bacterial extracellular polysaccharide by black fly larvae (Simuliidae)

    Science.gov (United States)

    Couch, C.A.; Meyer, J.L.; Hall, R.O.

    1996-01-01

    Black fly larvae (Simulium) assimilated, with high efficiency (80-90%), bacterial extracellular polysaccharide (EPS) extracted from laboratory cultures of a pseudomonad isolated from the Ogeechee River. Incorporation was traced using 13C-labelled EPS offered to larvae as a coating on a mixture of 1-??m latex beads and kaolin particles. These EPS-coated particles were used to simulate natural particles, both living and dead. Solubility, protein, and nitrogen content of the EPS suggested it was a slime rather than a capsular polysaccharide. Glycosyl composition of the EPS was glucose and galactose in ?? and ?? linkages, with pyruvate, succinate, and possibly malonate constituent groups. To evaluate the incorporation of C derived from protein associated with the EPS matrix, feeding experiments were conducted using EPS with and without proteins extracted. Black fly larvae incorporated 7.2 ??g EPS C larva-1 d-1 from EPS that did not have proteins extracted, and 19.5 ??g EPS C larva-1 d-1 from EPS with proteins extracted. Carbon in protein that is typically associated with EPS was not solely or selectively incorporated. EPS incorporation rates are similar to rates of cellular bacterial carbon incorporation previously estimated for Ogeechee River black fly larvae. If EPS is generally available as a food resource, the importance of bacteria in detrital food webs may be underestimated by studies that examine only the consumption of bacterial cells.

  8. Overview of microalgal extracellular polymeric substances (EPS) and their applications.

    Science.gov (United States)

    Xiao, Rui; Zheng, Yi

    2016-11-15

    Microalgae have been studied as natural resources for a number of applications, most particularly food, animal feed, biofuels, pharmaceuticals, and nutraceuticals. In addition to the intracellular compounds of interest, microalgae can also excrete various extracellular polymeric substances (EPS) into their immediate living environment during their life cycle to form a hydrated biofilm matrix. These microalgal EPS mainly consist of polysaccharides, proteins, nucleic acids and lipids. Most notably, EPS retain their stable matrix structure and form a 3-D polymer network for cells to interact with each other, and mediate their adhesion to surfaces. EPS also play a role as extracellular energy and carbon sinks. They are also abundant source of structurally and compositionally diverse biopolymers which possess unique bioactivities for special high-value applications, specifically as antivirals, antitumor agents, antioxidants, anticoagulants and anti-inflammatories. Their superior rheological properties also make microalgal EPS particularly useful in mechanical engineering (e.g., biolubricants and drag reducers) and food science/engineering (e.g., thickener and preservatives) applications. The chemical composition and structure of EPS appear to correlate with their applications, but the fundamentals of such relationship are not well understood. This article summarizes previous research on microalgal EPS derived from green algae, diatoms and red algae, including compositions/functions/structure, production, and potential applications. The importance of exopolysaccharides and EPS proteins, with their particular metabolic characteristics, are also described because of their potential high-value applications. This review concludes with potential future research areas of microalgal EPS. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The production-influencing factors of extracellular polysacchadde(EPS) from a Strain of lactic acid bacteria and EPS extraction

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying; SUN Liping; ZENG Yong; WANG Lei; AN Liguo

    2006-01-01

    The influencing factors of extracellular polysaccharide(EPS)produced from a strain of lactic acid bacteria(LAB L15)were studied by using the phenol-H2SO4 method.It was demonstrated that the strain produced EPS at the most amount when it was incubated for 40-48 h and when the pH value was 4 under 30℃.Glucose was the most suitable carbon source for LAB-producing EPS.The rough EPS was obtained from L15 culture after centrifugation,dialysis,deprotein,decoloration,and ethanol-precipitation.The sample was at least composed of two polysaccharides mat were completely different in molecular weight and the amount.The purified EPS was passed through the SephadexG-200 colunm and it showed that it was a sample purified by thin layer chromatography.

  10. Structural investigation of an extracellular polysaccharide produced by the cariogenic bacterium Streptococcus mutans strain UA159

    NARCIS (Netherlands)

    Li, Bo; Dobruchowska, Justyna M.; Hoogenkamp, Michel A.; Gerwig, Gerrit J.

    2012-01-01

    The structure of an extracellular polysaccharide EPS159 produced from sucrose by Streptococcus mutans UA159 was investigated through the main oligosaccharides obtained from partial acid hydrolysis, monosaccharide/methylation analysis, and 1D/2D H-1 NMR spectroscopy. The results showed that EPS159 co

  11. Deposition kinetics of extracellular polymeric substances (EPS) on silica in monovalent and divalent salts.

    Science.gov (United States)

    Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping

    2009-08-01

    The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.

  12. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme.

    Science.gov (United States)

    Han, Pei-pei; Sun, Ying; Jia, Shi-ru; Zhong, Cheng; Tan, Zhi-lei

    2014-05-25

    The influences of different wavelengths of light (red 660nm, yellow 590nm, green 520nm, blue 460nm, purple 400nm) and white light on extracellular polysaccharide (EPS) and capsular polysaccharide (CPS) production by Nostoc flagelliforme in liquid culture were demonstrated in this study. The results showed that, compared with white light, red and blue lights significantly increased both EPS and CPS production while yellow light reduced their production; purple and green lights stimulated EPS production but inhibited CPS formation. Nine constituent monosaccharides and one uronic acid were detected in both EPS and CPS, and their ratios showed significant differences among treatment with different light wavelengths. However, the advanced structure of EPS and CPS from various light conditions did not present obvious difference through Fourier transform infrared spectroscopy and X-ray diffraction characterization. These findings establish a basis for development of high-yielding polysaccharide production process and understanding their regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Comparison of two chemical extraction methods for proteins and polysaccharides of Spirogyra fluviatilis in extracellular polymeric substances

    Science.gov (United States)

    Chang, Shuiping; Lee, Yichao

    2017-05-01

    Under natural circumstances, Spirogyra fluviatilis excretes large amounts of extracellular polymeric substances (EPS) and forms a mucilage layer. This study used two algal EPS extraction methods such as NH4OH and formaldehyde-NaOH to compare the extraction yields of EPS and the levels of its primary components of polysaccharides and proteins. The results indicated that the extraction yields of EPS using formaldehyde-NaOH and NH4OH are 8.05 mg EPS/g-fresh algae and 5.26 mg EPS/g-fresh algae, respectively. The ratio of proteins to polysaccharides in EPS is around 0.24 to 0.34, which is not a significant difference between the two extraction methods. In other words, the level of polysaccharides is always higher than the level of proteins in EPS extraction with both two methods

  14. Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria

    Science.gov (United States)

    Li, Shan-Wei; Sheng, Guo-Ping; Cheng, Yuan-Yuan; Yu, Han-Qing

    2016-12-01

    Although the capacity for electroactive bacteria to convert environmental metallic minerals and organic pollutants is well known, the role of the redox properties of microbial extracellular polymeric substances (EPS) in this process is poorly understood. In this work, the redox properties of EPS from two widely present electroactive bacterial strains (Shewanella oneidensis and Pseudomonas putida) were explored. Electrochemical analysis demonstrates that the EPS extracted from the two strains exhibited redox properties. Spectroelectrochemical and protein electrophoresis analyses indicate that the extracted EPS from S. oneidensis and P. putida contained heme-binding proteins, which were identified as the possible redox components in the EPS. The results of heme-mediated behavior of EPS may provide an insight into the important roles of EPS in electroactive bacteria to maximize their redox capability for biogeochemical cycling, environmental bioremediation and wastewater treatment.

  15. Influences of influent carbon source on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge.

    Science.gov (United States)

    Ye, Fenxia; Peng, Ge; Li, Ying

    2011-08-01

    It is necessary to understand the bioflocculation, settling and dewatering characteristics in the activated sludge process in order to establish more efficient operational strategies. The influences of carbon source on the extracellular polymeric substances (EPS) and flocculation, settling and dewatering properties of the activated sludge were investigated. Laboratory-scale completely mixed activated sludge processes were used to grow the activated sludge with different carbon sources of starch, glucose and sodium acetate. The sludge fed with acetate had highest loosely bound EPS (LB-EPS) and that fed with starch lowest. The amount of tightly bound EPS (TB-EPS), protein content in LB-EPS, polysaccharide content and protein contents in TB-EPS, were independent of the influent carbon source. The polysaccharide content in LB-EPS of the activated sludge fed with sodium acetate was lower slightly than those of starch and glucose. The sludge also had a nearly consistent flocs size and the sludge volume index (SVI) value. ESS content of the sludge fed with sodium acetate was higher initially, although it was similar to those fed with glucose and starch finally. However, the specific resistance to filtration and normalized capillary suction time fluctuated first, but finally were stable at around 5.0×10(8)mkg(-1) and 3.5 s Lg(-1) SS, respectively. Only the protein content in LB-EPS weakly correlated with the flocs size and SVI of the activated sludge. But there was no correlation between any other EPS contents or components and the physicochemical properties of the activated sludge.

  16. Structure of an Extracellular Polysaccharide from a Strain of Lactic Acid Bacteria

    Institute of Scientific and Technical Information of China (English)

    顾笑梅; 马桂荣; 吴厚铭

    2003-01-01

    A new extracellular polysaccharide (EPS-I) isolated and purified from Z222, a strain of Lactic acid bacteria has been investigated. Sugar composition analysis, methylation analysis and 1H NMR and 13C NMR spectroscopy reveal that the EPS-I is composed of a pentasaccharide repeating unit. The sequence of sugar residue was determined by using two-dlmensional NMR spectroscopy, including heteronudear multiple-bond correlation(HMBC) and nuclear overhauser effect spectroscopy (NOESY).

  17. Extracellular polysaccharides as target compounds for the immunological detection of Aspergillus and Penicillium in food.

    OpenAIRE

    Kamphuis, H.J.

    1992-01-01

    This thesis is devoted to the immunological detection of Aspergillus and Penicillium in food products. More specifically, the immunogenicity, antigenicity, production and structure of the water-soluble extracellular polysaccharides (EPS) of these moulds have been studied, and a latex-agglutination assay, based on the detection of EPS has been developed.For the detection of moulds many methods are available, each of them with specific advantages and disadvantages, mostly related to reliability...

  18. Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp.

    Science.gov (United States)

    Ge, Hongmei; Xia, Ling; Zhou, Xuping; Zhang, Delu; Hu, Chunxiang

    2014-02-01

    A study on the effects of light intensity (40 and 80 μE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.

  19. Extracellular polysaccharides as target compounds for the immunological detection of Aspergillus and Penicillium in food.

    NARCIS (Netherlands)

    Kamphuis, H.J.

    1992-01-01

    This thesis is devoted to the immunological detection of Aspergillus and Penicillium in food products. More specifically, the immunogenicity, antigenicity, production and structure of the water-soluble extracellular polysaccharides (EPS) of these moulds have been studied, and a latex-agglutination a

  20. Production and composition of extracellular polysaccharide synthesized by a Rhizobium isolate of Vigna mungo (L.) Hepper.

    Science.gov (United States)

    Mandal, Santi Mohan; Ray, Bimalendu; Dey, Satyahari; Pati, Bikas Ranjan

    2007-08-01

    An extracellular polysaccharide (EPS) was produced by a Rhizobium sp. isolated from the root nodules of Vigna mungo (L.) Hepper. Maximum EPS production (346 mg l(-1)) was when the yeast extract basal medium was supplemented with mannitol (1%), biotin (1.5 mg l(-1)) and asparagine (0.3%). Ribose (53%) and mannose (47%) were the principle monomers of the EPS. Chemical, chromatographic and spectroscopic analysis showed that this polymer, which has Man(4)Rib(1) as an oligomeric subunit, has an apparent molecular mass of 750 kDa.

  1. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.

    Science.gov (United States)

    Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo

    2014-07-01

    Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+).

  2. Crucial Role of Extracellular Polysaccharides in Desiccation and Freezing Tolerance in the Terrestrial Cyanobacterium Nostoc commune

    Science.gov (United States)

    Tamaru, Yoshiyuki; Takani, Yayoi; Yoshida, Takayuki; Sakamoto, Toshio

    2005-01-01

    The cyanobacterium Nostoc commune is adapted to the terrestrial environment and has a cosmopolitan distribution. In this study, the role of extracellular polysaccharides (EPS) in the desiccation tolerance of photosynthesis in N. commune was examined. Although photosynthetic O2 evolution was not detected in desiccated colonies, the ability of the cells to evolve O2 rapidly recovered after rehydration. The air-dried colonies contained approximately 10% (wt/wt) water, and field-isolated, natural colonies with EPS were highly water absorbent and were rapidly hydrated by atmospheric moisture. The cells embedded in EPS in Nostoc colonies were highly desiccation tolerant, and O2 evolution was not damaged by air drying. Although N. commune was determined to be a mesophilic cyanobacterium, the cells with EPS were heat tolerant in a desiccated state. EPS could be removed from cells by homogenizing colonies with a blender and filtering with coarse filter paper. This treatment to remove EPS did not damage Nostoc cells or their ability to evolve O2, but O2 evolution was significantly damaged by desiccation treatment of the EPS-depleted cells. Similar to the EPS-depleted cells, the laboratory culture strain KU002 had only small amount of EPS and was highly sensitive to desiccation. In the EPS-depleted cells, O2 evolution was also sensitive to freeze-thaw treatment. These results strongly suggest that EPS of N. commune is crucial for the stress tolerance of photosynthesis during desiccation and during freezing and thawing. PMID:16269775

  3. Extraction and Analysis of Extracellular Polymeric Substances (EPS): Comparison of Methods and EPS Levels in Salmonella pullorum SA 1685

    Science.gov (United States)

    The extracellular polymeric substances (EPS) production and composition for Salmonella pullorum SA 1685 exposed to artificial groundwater (AGW) has been examined utilizing three EPS extraction methods: lyophilization, ethanol, and sonication. Experiments were carried out to evaluate the robustness...

  4. EXTRACELLULAR POLYSACCHARIDES OF POTATO RING ROT PATHOGEN

    Directory of Open Access Journals (Sweden)

    Shafikova Т.N.

    2006-03-01

    Full Text Available Many bacteria, including phytopathogenic ones produce extracellular polysaccharides or exopolysaccharides which are universal molecules. Causal agent of potato ring rot, Clavibacter michiganensis subspecies sepedonicus, secretes exopolysaccharides which role in pathogenesis is poorly investigated. The aim of our research is to ascertain the composition and structure of Clavibacter michiganensis subspecies sepedonicus exopolysaccharides. Exopolysaccharides of Clavibacter michiganensis subspecies sepedonicus are determined to consist of 4-6 anionic and neutral components which have molecular weights from 700 kDa. Glucose is a major monomer of polysaccharides and arabinose, rhamnose and mannose are minor monomers. Glucose is present in α-Dglucopyranose and β-D-glucopyranose configurations. Calcium is determined to be a component of exopolysaccharides. Components of exopolysaccharides of potato ring rot pathogen are probably capableto associate via calcium ions and other ionic interactions that may result in a change of their physiological activity. Further studies of Clavibacter michiganensis subspecies sepedonicus exopolysaccharides composition and structure can serve a base for the synthesis of their chemical analogues with elicitor action.

  5. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms.

    Science.gov (United States)

    Jia, Fangxu; Yang, Qing; Liu, Xiuhong; Li, Xiyao; Li, Baikun; Zhang, Liang; Peng, Yongzhen

    2017-02-27

    Sludge aggregation and biofilm formation are the most effective approaches to solve the washout of anammox microorganisms. In this study, the structure and composition of EPS (extracellular polymeric substances) were investigated to elucidate the factors for the anammox aggregation property. Anammox sludge taken from 18 lab-scale and pilot-scale reactors treating different types of wastewater was analyzed using EEM-PARAFAC (excitation-emission matrix and parallel factor analysis), FTIR (fourier transform infrared spectroscopy) and real-time PCR combined with multivariate statistical analysis. The results showed that slime and TB-EPS (tightly bound EPS) were closely related with water quality and sludge morphology, and could be used as the indicators for anammox microbial survival ability and microbial aggregate morphology. Furthermore, slime secreted from anammox bacterial cells may be exhibited higher viscosity to the sludge surface and easily formed the gel network to aggregate. Large amounts of hydrophobic groups of protein in TB-EPS promoted the microbial aggregation. The mechanisms of anammox aggregation explored in this study enhanced the understanding of anammox stability in wastewater treatment processes.

  6. Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell?

    Science.gov (United States)

    Pereira, Sara; Micheletti, Ernesto; Zille, Andrea; Santos, Arlete; Moradas-Ferreira, Pedro; Tamagnini, Paula; De Philippis, Roberto

    2011-02-01

    Many cyanobacteria produce extracellular polymeric substances (EPS) mainly of polysaccharidic nature. These EPS can remain associated to the cell surface as sheaths, capsules and/or slimes, or be liberated into the surrounding environment as released polysaccharides (RPS). The ability of EPS-producing cyanobacteria to remove heavy metals from aqueous solutions has been widely reported in the literature, focusing mainly on the biotechnological potential. However, the knowledge of the effects of the metals in the cell's survival/growth is still scarce, particularly when they are simultaneously exposed to more than one metal. This work evaluated the effects of different concentrations of Cu(2+) and/or Pb(2+) in the growth/survival of Gloeothece sp. PCC 6909 and its sheathless mutant Gloeothece sp. CCY 9612. The results obtained clearly showed that both phenotypes are more severely affected by Cu(2+) than Pb(2+), and that the mutant is more sensitive to the former metal than the wild-type. Evident ultrastructural changes were also observed in the wild-type and mutant cells exposed to high levels (10 mg l(-1)) of Cu(2+). Moreover, in bi-metal systems, Pb(2+) was preferentially removed compared with Cu(2+), being the RPS of the mutant that is the most efficient polysaccharide fraction in metal removal. In these systems, the simultaneous presence of Cu(2+) and Pb(2+) caused a mutual inhibition in the adsorption of each metal.

  7. Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation.

    Science.gov (United States)

    Burdman, S; Jurkevitch, E; Soria-Díaz, M E; Serrano, A M; Okon, Y

    2000-08-15

    The exopolysaccharide (EPS) and capsular polysaccharide (CPS) composition of four Azospirillum brasilense strains differing in their aggregation capacity was analyzed by high performance anion exchange chromatography. When growing the different strains in an aggregation inducing medium containing a high carbon:nitrogen (C:N) ratio, both EPS and CPS showed a positive correlation between aggregation and the relative amount of arabinose. Arabinose was not detected in polysaccharides from Sp72002, a pleiotrophic Tn5 mutant strain impaired in aggregation. Arabinose was also not detected in extracellular polysaccharides of bacteria grown in a low C:N ratio, non-inducing aggregation medium, with exception for a relatively small amount found in the CPS of FAJ0204, a super-aggregating mutant strain. The only monosaccharides able to significantly inhibit aggregation at low sugar concentration when tested in a bioassay were arabinose (at a higher extent) and galactose. The possibility that residues of arabinose present in the extracellular polysaccharides are involved in the aggregation of A. brasilense is discussed.

  8. Production of extracellular polysaccharide by Bacillus megaterium RB-05 using jute as substrate.

    Science.gov (United States)

    Chowdhury, Sougata Roy; Basak, Ratan Kumar; Sen, Ramkrishna; Adhikari, Basudam

    2011-06-01

    Bacillus megaterium RB-05 was grown on glucose and on "tossa-daisee" (Corchorus olitorius)-derived jute, and production and composition of extracellular polysaccharide (EPS) were monitored. An EPS yield of 0.065 ± 0.013 and of 0.297 g ± 0.054 g(-1) substrate after 72 h was obtained for glucose and jute, respectively. EPS production in the presence of jute paralleled bacterial cellulase activity. High performance liquid chromatography (HPLC), matrix assisted LASER desorption/ionization-time of flight (MALDI-ToF) mass spectroscopy, and fourier transform infrared (FT-IR) spectroscopy demonstrated that the EPS synthesized in jute culture (JC) differed from that synthesized in glucose mineral salts medium (GMSM). While fucose was only a minor constituent (4.9 wt.%) of EPS from GMSM, it a major component (41.9 wt.%) of EPS synthesized in JC. This study establishes jute as an effective fermentation substrate for EPS production by a cellulase-producing bacterium. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants.

    Directory of Open Access Journals (Sweden)

    Annett Milling

    Full Text Available Ralstonia solanacearum, which causes bacterial wilt of diverse plants, produces copious extracellular polysaccharide (EPS, a major virulence factor. The function of EPS in wilt disease is uncertain. Leading hypotheses are that EPS physically obstructs plant water transport, or that EPS cloaks the bacterium from host plant recognition and subsequent defense. Tomato plants infected with R. solanacearum race 3 biovar 2 strain UW551 and tropical strain GMI1000 upregulated genes in both the ethylene (ET and salicylic acid (SA defense signal transduction pathways. The horizontally wilt-resistant tomato line Hawaii7996 activated expression of these defense genes faster and to a greater degree in response to R. solanacearum infection than did susceptible cultivar Bonny Best. However, EPS played different roles in resistant and susceptible host responses to R. solanacearum. In susceptible plants the wild-type and eps(- mutant strains induced generally similar defense responses. But in resistant Hawaii7996 tomato plants, the wild-type pathogens induced significantly greater defense responses than the eps(- mutants, suggesting that the resistant host recognizes R. solanacearum EPS. Consistent with this idea, purified EPS triggered significant SA pathway defense gene expression in resistant, but not in susceptible, tomato plants. In addition, the eps(- mutant triggered noticeably less production of defense-associated reactive oxygen species in resistant tomato stems and leaves, despite attaining similar cell densities in planta. Collectively, these data suggest that bacterial wilt-resistant plants can specifically recognize EPS from R. solanacearum.

  10. Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria.

    Science.gov (United States)

    Cuthbertson, Leslie; Mainprize, Iain L; Naismith, James H; Whitfield, Chris

    2009-03-01

    Many bacteria export extracellular polysaccharides (EPS) and capsular polysaccharides (CPS). These polymers exhibit remarkably diverse structures and play important roles in the biology of free-living, commensal, and pathogenic bacteria. EPS and CPS production represents a major challenge because these high-molecular-weight hydrophilic polymers must be assembled and exported in a process spanning the envelope, without compromising the essential barrier properties of the envelope. Emerging evidence points to the existence of molecular scaffolds that perform these critical polymer-trafficking functions. Two major pathways with different polymer biosynthesis strategies are involved in the assembly of most EPS/CPS: the Wzy-dependent and ATP-binding cassette (ABC) transporter-dependent pathways. They converge in an outer membrane export step mediated by a member of the outer membrane auxiliary (OMA) protein family. OMA proteins form outer membrane efflux channels for the polymers, and here we propose the revised name outer membrane polysaccharide export (OPX) proteins. Proteins in the polysaccharide copolymerase (PCP) family have been implicated in several aspects of polymer biogenesis, but there is unequivocal evidence for some systems that PCP and OPX proteins interact to form a trans-envelope scaffold for polymer export. Understanding of the precise functions of the OPX and PCP proteins has been advanced by recent findings from biochemistry and structural biology approaches and by parallel studies of other macromolecular trafficking events. Phylogenetic analyses reported here also contribute important new insight into the distribution, structural relationships, and function of the OPX and PCP proteins. This review is intended as an update on progress in this important area of microbial cell biology.

  11. Microbially produced extracellular poly-saccharidic Pu(IV)- binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.C.; Roberts, K.A.; Schwehr, K.A.; Santschi, P.H. [Texas A and M University at Galveston, 5007 Ave U, Galveston, TX 77551 (United States)

    2005-07-01

    Full text of publication follows: The investigation of the Pu-binding properties of ligands for diverse extracellular polysaccharides (EPS) is of relevance for the quantitative understanding of colloidal barriers to radionuclide migration. The EPS isolated for this study were from four different bacteria species: a) two aerobic soil bacteria: Shewanella putrefaciens CN32 and Pseudomonas fluorescens Biovar II; and b) one anaerobic bacterium, Clostridium sp. BC1. EPS from these bacteria were isolated through repeated ethanol precipitations. The neutral monosaccharides in the EPS from Pseudomonas florescens Biovar II that were determined by GC-MS consisted of rhamnose, fucose, ribose, arabinose, xylose, mannose, galactose and glucose. The potentially Pu(IV) binding EPS ligands were mainly composed of carboxylic acids and other minor poly-anionic groups, e.g., sulphates and phosphates. Up to 70 % of total carbohydrates were hydrophilic uronic acids, and total carbohydrates made up 23-31% of organic carbon for P. florescens Biovar II and 9-17% of organic carbon for S. putrefaciens CN32. Besides the neutral and acidic sugars in the EPS, there were also 2-13 % of more hydrophobic proteins among these bacterial EPS. Pu binding to these exo-polymers showed log Kd values of about 5 - 6, with results strongly dependent on procedural details (e.g., removal of colloids in Pu(IV) tracer and reagent solutions). We hypothesize that the relative hydrophobicity of the EPS ligands affects the outcome in ternary sorption studies with colloidal silica. Experiments with varying relative hydrophobicities of EPS will elucidate the different sorption strengths and/or attachment potentials of the Pu-binding ligands to inorganic surfaces. (authors)

  12. Extracellular Polysaccharide Production in a Scytonemin-Deficient Mutant of Nostoc punctiforme Under UVA and Oxidative Stress.

    Science.gov (United States)

    Soule, Tanya; Shipe, Dexter; Lothamer, Justin

    2016-10-01

    Some cyanobacteria can protect themselves from ultraviolet radiation by producing sunscreen pigments. In particular, the sheath pigment scytonemin protects cells against long-wavelength UVA radiation and is only found in cyanobacteria which are capable of extracellular polysaccharide (EPS) production. The presence of a putative glycosyltransferase encoded within the scytonemin gene cluster, along with the localization of scytonemin and EPS to the extracellular sheath, prompted us to investigate the relationship between scytonemin and EPS production under UVA stress. In this study, it was hypothesized that there would be a relationship between the biosynthesis of scytonemin and EPS under both UVA and oxidative stress, since the latter is a by-product of UVA radiation. EPS production was measured following exposure of wild-type Nostoc punctiforme and the non-scytonemin-producing strain SCY59 to UVA and oxidative stress. Under UVA, SCY59 produced significantly more EPS than the unstressed controls and the wild type, while both strains produced more EPS under oxidative stress compared to the controls. The results suggest that EPS secretion occurs in response to the oxidative stress by-product of UVA rather than as a direct response to UVA radiation.

  13. Sequestration of Reactive Blue 4 by free and immobilized Bacillus subtilis cells and its extracellular polysaccharides.

    Science.gov (United States)

    Binupriya, Arthur Raj; Sathishkumar, Muthuswamy; Ku, Chang Sub; Yun, Soon-Il

    2010-03-01

    Bacillus subtilis a gram positive bacteria and its extracellular polysaccharide were used in free form as well as immobilized form as biosorbent for sequestration of an anionic dye, Reactive Blue 4 (RB) in aqueous phase. The dye uptake enhanced with decrease in pH. Extracellular polymeric substances (EPS) and free cells were found to be better adsorbents when compared to alginate immobilized cells (IC) and EPS (IEPS). The presence of functional groups in free cells and EPS was confirmed by FT-IR analysis. Immobilization resulted in poor adsorption performance due to increase in mass transfer resistance by the polymeric matrix. High Q(max) and b values were noted in the case of free cells and free EPS in contrast to IC and IEPS. From the kinetic experiments, the adsorption system was found to be a pseudo-first-order reaction at low dye concentration. Desorption of RB was found to be 100% in 1N NaOH. However, the alginate beads were found to be unstable under high alkaline conditions of NaOH.

  14. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    Directory of Open Access Journals (Sweden)

    Q. Gao

    2012-01-01

    Full Text Available The surface microlayer (SML represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW. Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS. During the Arctic Summer Cloud-Ocean Study (ASCOS in August 2008, particulate and dissolved organic matter (POM, DOM samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW DOM and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Experimentally-generated aerosol particles were enriched in polysaccharides by factors of 22–70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides was one of the possible mechanisms for the enrichment of polysaccharides in the SML.

  15. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  16. Immunological and biochemical characterization of extracellular polysaccharides of mucoralean moulds.

    NARCIS (Netherlands)

    Ruiter, de G.A.

    1993-01-01

    In this thesis the characterization is described of the antigenic determinants (epitopes) of the extracellular polysaccharides (EPSs) from moulds belonging to the order of Mucorales. Detailed knowledge of the structure of these epitopes allows for further development of a new generation of methods f

  17. Mutation breeding of extracellular polysaccharide-producing microalga Crypthecodinium cohnii by a novel mutagenesis with atmospheric and room temperature plasma.

    Science.gov (United States)

    Liu, Bin; Sun, Zheng; Ma, Xiaonian; Yang, Bo; Jiang, Yue; Wei, Dong; Chen, Feng

    2015-04-13

    Extracellular polysaccharides (EPS) produced by marine microalgae have the potential to be used as antioxidants, antiviral agents, immunomodulators, and anti-inflammatory agents. Although the marine microalga Crypthecodinium cohnii releases EPS during the process of docosahexaenoic acid (DHA) production, the yield of EPS remains relatively low. To improve the EPS production, a novel mutagenesis of C. cohnii was conducted by atmospheric and room temperature plasma (ARTP). Of the 12 mutants obtained, 10 mutants exhibited significantly enhanced EPS yield on biomass as compared with the wild type strain. Among them, mutant M7 was the best as it could produce an EPS volumetric yield of 1.02 g/L, EPS yield on biomass of 0.39 g/g and EPS yield on glucose of 94 mg/g, which were 33.85%, 85.35% and 57.17% higher than that of the wild type strain, respectively. Results of the present study indicated that mutagenesis of the marine microalga C. cohnii by ARTP was highly effective leading to the high-yield production of EPS.

  18. Production and characterization of an extracellular polysaccharide of antarctic marine bacteria Pseudoalteromonas sp. S-15-13

    Institute of Scientific and Technical Information of China (English)

    LI Jiang; CHEN Kaoshan; LIN Xuezheng; HE Peiqing; LI Guangyou

    2006-01-01

    Twenty-seven antarctic bacteria producing extracellular polysaccharide (EPS) were selected from 57 strains by staining technology. The effects of major environmental factors on the growth and EPS production of Pseudoalteromonas sp. S-15-13 were investigated, and the EPS was separated and purified for characterization analysis. The results showed that the optimal conditions for the EPS production were culture period, 56 h; growth temperature, 8 ℃; carbon source, 1.0% glucose; NaCl concentration, 3.0%; pH 6.0~7.0. The EPS was purified by cold ethanol precipitation, proteins removal, ion exchange chromatography and gel chromatography technology. The molecular mass of EPS-II was 62 kDa as determined by the high performance gel permeation chromatography. Its sugar composition was a homopolymer of mannose analyzed by gas chromatograph spectroscopy. After repeated freezing and thawing of the bacteria biomass in the presence of EPS, the bacterial growth was much higher than that observed after freezing in the absence of EPS and the difference augmented with the increase of freeze-thaw cycles. It is hypothesized that the adaptation of Pseudoalteromonas sp. S-15-13 to the antarctic marine conditions, characterized by low temperature, high NaCl concentration and repeated freeze-thaw cycles, might be related to the EPS production ability.

  19. Highly virulent strains of Pseudomonas solanacearum that are defective in extracellular-polysaccharide production

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Peilin; Iwata, Michiaki; Sequeira, L. (Dept. of Agriculture (USA)); Leong, S. (Univ. of Wisconsin, Madison (USA))

    1990-07-01

    Extracellular polysaccharide (EPS) has long been regarded as one of the mos important factors involved in wilting of plants by Pseudomonas solanacearum. By means of transposon Tn5 mutagensis, the authors have isolated a class of mutants that have an afluidal colony morphology but retain the ability to cause severe wilting and death of tobacco plants. One such mutant, KD700, was studied in detail. By marker exchange mutagenesis, the altered colony morphology was shown to be the result of a single Tn5 insertion in a 14.3-kilobase EcoRI fragment. This defect could be corrected by introducing a homologous clone from a cosmid library of the wild-type, parental strain K60. The Tn5-containing fragment was introduced into other P. solanacearum wild-type strains by marker exchange, and these altered strains had the same afluidal phenotype as KD700. N-Acetylgalactosamine (GalNac), the major constituent of EPS of all wild-type strains of P. solanacearum, was not detected by gas chromatography-mass spectrometry analysis of vascular fluids from wilting plants infected by KD700. In contrast, GalNac was readily detected in similar fluids of plants infected by K60. Polysaccharides extracted from culture filtrates of KD700 contained approximately one-fifth of the GalNac present in polysaccharides from K60. No differences in growth rates in culture or in planta between the mutant and the parental strains were observed. Since strains that are deficient in EPS production can remain highly virulent to tobacco, they conclude that EPS, or at least its GalNac-containing component, may not be required for disease development by P. solanacearum.

  20. Abiotic factors in colony formation: effects of nutrition and light on extracellular polysaccharide production and cell aggregates of Microcystis aeruginosa

    Science.gov (United States)

    Yang, Zhen; Kong, Fanxiang

    2013-07-01

    Colony morphology is important for Microcystis to sustain a competitive advantage in eutrophic lakes. The mechanism of colony formation in Microcystis is currently unclear. Extracellular polysaccharide (EPS) has been reported to play an important role in cell aggregate formation of some phytoplankton. Microcystis aeruginosa was cultivated under varied abiotic conditions, including different nutrient, light, and temperature conditions, to investigate their effects on EPS production and morphological change. The results show that nutrient concentration and light intensity have great effects on EPS productionin M. aeruginosa. There was a considerable increase in EPS production after M. aeruginosa was cultivated in adjusted culture conditions similar to those present in the field (28.9 mg C/L, 1.98 mg N/L, 0.65 mg P/L, light intensity: 100 μmol/(m2 · s)). These results indicate that abiotic factors might be one of the triggers for colony formation in Microcystis.

  1. Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms.

    Science.gov (United States)

    Knowles, Emily J; Castenholz, Richard W

    2008-11-01

    Two major stresses that threaten rock-inhabiting microbial communities are desiccation and freezing; both result in a loss of liquid water in the cells. The mechanisms necessary to tolerate these extremes may be similar, but are not well understood. In both cases extracellular polysaccharides (EPS) seem to play an important role. This study examines whether the EPS released by a rock-inhabiting phototroph can have a protective effect on other members of similar and neighboring microbial communities. This interaction was modeled by adding EPS isolated from the cryptoendolithic cyanobacterium Nostoc sp. to cells of the cryptoendolithic green alga Chlorella sp. and to cells of the epilithic cyanobacterium Chroococcidiopsis sp. The cells were then subjected to desiccation and freezing and the survival rates were determined by vital staining, using membrane integrity as a measure of viability. The results clearly demonstrate the importance of exogenous EPS in the desiccation tolerance of both species, while mixed results were found for the freezing trials.

  2. Functions and behaviors of activated sludge extracellular polymeric substances (EPS): a promising environmental interest

    Institute of Scientific and Technical Information of China (English)

    TIAN Yu; ZHENG Lei; SUN De-zhi

    2006-01-01

    Extracellular polymeric substances (EPS) are the predominant constituents of activated sludge and represent up to 80% of the mass of activated sludge. They play a crucial role in the flocculation, settling and dewatering of activated sludge. Furthermore,EPS also show great efficiency in binding heavy metals. So EPS are key factors influencing reduction in sludge volume and mass, as well as activity and utilization of sludge. EPS are of considerable environmental interest and hundreds of articles on EPS have been published abroad, while information on EPS in China is limited. In this paper, results of over 60 publications related to constituents and characteristics of EPS and their influences on flocculation, settling and dewatering of sludge are compiled and analyzed.Metal-binding ability of EPS is also discussed, together with a brief consideration of possible research interests in the future.

  3. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    Science.gov (United States)

    Gao, Q.; Leck, C.; Rauschenberg, C.; Matrai, P. A.

    2012-07-01

    The surface microlayer (SML) represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW). Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS). During the Arctic Summer Cloud Ocean Study (ASCOS) in August 2008, particulate organic matter (POM, with size range > 0.22 μm) and dissolved organic matter (DOM, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW) DOM (> 5 kDa) and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Aerosol particles, artificially generated by bubbling experiments, were enriched in polysaccharides by factors of 22-70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides could be one of the possible mechanisms for the enrichment of polysaccharides in the high Arctic open lead SML.

  4. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    Directory of Open Access Journals (Sweden)

    Q. Gao

    2012-07-01

    Full Text Available The surface microlayer (SML represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW. Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS. During the Arctic Summer Cloud Ocean Study (ASCOS in August 2008, particulate organic matter (POM, with size range > 0.22 μm and dissolved organic matter (DOM, < 0.22 μm, obtained after filtration samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW DOM (> 5 kDa and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Aerosol particles, artificially generated by bubbling experiments, were enriched in polysaccharides by factors of 22–70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides could be one of the possible mechanisms for the

  5. Production of extracellular polymeric substances (EPS) by Serratia sp.1 using wastewater sludge as raw material and flocculation activity of the EPS produced.

    Science.gov (United States)

    Bezawada, J; Hoang, N V; More, T T; Yan, S; Tyagi, N; Tyagi, R D; Surampalli, R Y

    2013-10-15

    Growth profile and extracellular polymeric substances (EPS) production of Serratia sp.1 was studied in shake flask fermentation for 72 h using wastewater sludge as raw material. Maximum cell concentration of 6.7 × 10(9) cfu/mL was obtained at 48 h fermentation time. EPS dry weight, flocculation activity and dewaterability of different EPS (tightly bound or TB-EPS, loosely bound or LB-EPS and broth-EPS or B-EPS) were also measured. The highest concentration of LB-EPS (2.45 g/L) and TB-EPS (0.99 g/L) were attained at 48 h of fermentation. Maximum flocculation activity and dewaterability (ΔCST) of TB-EPS (76.4%, 14.5s and 76.5%, 15.5s), LB-EPS (67.8%, 8.1s and 64.7%, 7.6s) and broth EPS (61%, 6.1s and 70.4%, 6.8s) were obtained at 36 and 48 h of growth. Higher flocculation activity and dewaterability were achieved with TB-EPS than with the two other EPS. Characterization of TB-EPS and LB-EPS was done in terms of their protein and carbohydrate content. Protein content was much higher in TB-EPS where as carbohydrate content was only slightly higher in TB-EPS than LB-EPS. Morphology of the Serratia strain after fermentation in sludge and TSB was observed under a scanning electron microscope and the cell size was found to be bigger in the sludge medium than the TSB medium.

  6. Extracellular Polysaccharides Matrix - An Often Forgotten Virulence Factor in Oral Biofilm Research

    Institute of Scientific and Technical Information of China (English)

    Hyun Koo; Jin Xiao; Marlise I. Klein

    2009-01-01

    @@ Oral diseases related to dental biofilms continue to afflict the majority of the world's population. Among them, dental caries continues to be the single most prevalent and costly oral infectious disease (Marsh, 2003; Dye et al., 2007). Dental caries results from the interaction of specific bacteria with constituents of the diet within a dental biofilm known as plaque (Bowen, 2002). Sucrose is considered to be the "arch criminal" from the dietary aspect because it serves as a substrate for synthesis of extracellular (EPS) and intracellular (IPS) polysaccharides in dental biofilm and is also fermentable (Bowen, 2002). However, it is important to emphasize that additional sugars and starch can certainly contribute to the pathogenesis (Bowen et al., 1980; Firestone et al., 1982; Thurnheer et al., 2008). Streptococcus mutans (S. mutans), a member of the oral microbial community, is generally regarded as the primary microbial culprit although additional microorganisms may be involved (Hamada and Slade, 1980; Loesche, 1986; Beighton, 2005). This bacterium (i) effectively utilizes dietary sucrose (and possibly starch) to synthesize large amounts of EPS through glucosyltransferases (Gtfs) and a fructosyltransferase (Ftfs), (ii) adheres tenaciously to glucan-coated surfaces, and (iii) is also acidogenic and acid-tolerant, which are critical virulence properties involved in the pathogenesis of dental caries.

  7. Nicotine promotes Streptococcus mutans extracellular polysaccharide synthesis, cell aggregation and overall lactate dehydrogenase activity.

    Science.gov (United States)

    Huang, R; Li, M; Gregory, R L

    2015-08-01

    Several epidemiology studies have reported a positive relationship between smoking and dental caries. Nicotine, an alkaloid component of tobacco, has been demonstrated to stimulate biofilm formation and metabolic activity of Streptococcus mutans, one of the most important pathogens of dental caries. The first aim of the present study was to explore the possible mechanisms leading to increased biofilm by nicotine treatment from three aspects, extracellular polysaccharides (EPS) synthesis, glucosyltransferase (Gtf) synthesis and glucan-binding protein (Gbp) synthesis at the mRNA and protein levels. The second aim was to investigate how nicotine affects S. mutans virulence, particular in lactate dehydrogenase (LDH) activity. Confocal laser scanning microscopy results demonstrated that both biofilm bacterial cell numbers and EPS were increased by nicotine. Gtf and GbpA protein expression of S. mutans planktonic cells were upregulated while GbpB protein expression of biofilm cells were downregulated by nicotine. The mRNA expression trends of those genes were mostly consistent with results on protein level but not statistically significant, and gtfD and gbpD of biofilm cells were inhibited. Nicotine was not directly involved in S. mutans LDH activity. However, since it increases the total number of bacterial cells in biofilm, the overall LDH activity of S. mutans biofilm is increased. In conclusion, nicotine stimulates S. mutans planktonic cell Gtf and Gbp expression. This leads to more planktonic cells attaching to the dental biofilm. Increased cell numbers within biofilm results in higher overall LDH activity. This contributes to caries development in smokers.

  8. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria.

    Science.gov (United States)

    Yue, Zheng-Bo; Li, Qing; Li, Chuan-chuan; Chen, Tian-hu; Wang, Jin

    2015-10-01

    Extracellular polymeric substances (EPS) play an important role in the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB). In this paper, Desulfovibrio desulfuricans was used as the test strain to explore the effect of heavy metals on the components and adsorption ability of EPS. Fourier-transform infrared (FTIR) spectroscopy analysis results showed that heavy metals did not influence the type of functional groups of EPS. Potentiometric titration results indicated that the acidic constants (pKa) of the EPS fell into three ranges of 3.5-4.0, 5.9-6.7, and 8.9-9.8. The adsorption site concentrations of the surface functional groups also increased. Adsorption results suggested that EPS had a specific binding affinity for the dosed heavy metal, and that EPS extracted from the Zn(2+)-dosed system had a higher binding affinity for all heavy metals. Additionally, Zn(2+) decreased the inhibitory effects of Cd(2+) and Cu(2+) on the SRB.

  9. Extracellular acidic polysaccharide production by a two-membered bacterial coculture.

    Science.gov (United States)

    Kurata, Shinya; Yamada, Kazutaka; Takatsu, Kyoko; Hanada, Satoshi; Koyama, Osamu; Yokomaku, Toyokazu; Kamagata, Yoichi; Kanagawa, Takahiro; Kurane, Ryuichiro

    2003-01-01

    A two-membered coculture of strains KYM-7 and KYM-8, identified as Cellulomonas cellulans and Agrobacterium tumefaciens, respectively, produced a large amount of an extracellular polysaccharide, designated APK-78, from starch. Each strain in pure culture produced only very little amount of polysaccharide from starch; the coexistence of the two strains from the early stage of cultivation was indispensable for a large amount of polysaccharide to be produced. The polysaccharide APK-78 was acidic and composed of glucose, galactose, succinic acid, and pyruvic acid with a molar ratio of 8.1:1.0:1.7:1.0, indicating that it is a succinoglycan type of polysaccharide.

  10. Abiotic factors in colony formation: effects of nutrition and light on extracellular polysaccharide production and cell aggregates of Microcystis aeruginosa

    Institute of Scientific and Technical Information of China (English)

    YANG Zhen; KONG Fanxiang

    2013-01-01

    Colony morphology is important for Microcystis to sustain a competitive advantage in eutrophic lakes.The mechanism of colony formation in Microcystis is currently unclear.Extracellular polysaccharide (EPS) has been reported to play an important role in cell aggregate formation of some phytoplankton.Microcystis aeruginosa was cultivated under varied abiotic conditions,including different nutrient,light,and temperature conditions,to investigate their effects on EPS production and morphological change.The results show that nutrient concentration and light intensity have great effects on EPS production in M.aeruginosa.There was a considerable increase in EPS production after M.aeruginosa was cultivated in adjusted culture conditions similar to those present in the field (28.9 mg C/L,1.98 mg N/L,0.65 mg P/L,light intensity:100 μmol/(m2·s)).These results indicate that abiotic factors might be one of the triggers for colony formation in Microcystis.

  11. Conversion of cheese whey into a fucose- and glucuronic acid-rich extracellular polysaccharide by Enterobacter A47.

    Science.gov (United States)

    Antunes, Sílvia; Freitas, Filomena; Alves, Vítor D; Grandfils, Christian; Reis, Maria A M

    2015-09-20

    Cheese whey was used as the sole substrate for the production of extracellular polysaccharides (EPS) by Enterobacter A47. An EPS concentration of 6.40 g L(-1) was reached within 3.2 days of cultivation, corresponding to a volumetric productivity of 2.00 g L(-1) d(-1). The produced EPS was mainly composed of glucuronic acid (29 mol%) and fucose (29 mol%), with lower contents of glucose and galactose (21 mol% each) and a total acyl groups content of 32 wt.%. The polymer had an average molecular weight of 1.8×10(6) Da, with a polydispersity index of 1.2, and an intrinsic viscosity of 8.0 dL g(-1). EPS aqueous solutions (1.0 wt.% in 0.01 M NaCl, at pH 8.0) presented a shear thinning behavior with a viscosity of the first Newtonian plateau approaching 0.1 Pas. This novel glucuronic acid-rich polymer possesses interesting rheological properties, which, together with its high content of glucuronic acid and fucose, two bioactive sugar monomers, confers it a great potential for use in high-value applications, such as cosmetics and pharmaceuticals.

  12. Extracellular Polymeric Substances of Aphanizomenon flos-aquae (EPS-A) Induced Apoptosis in Astrocytes of Zebrafish.

    Science.gov (United States)

    Lv, Ying; Xue, Xing; Tao, Ling; Zhang, Delu; Hu, Chunxiang; Ren, Jun

    2016-03-01

    In this study, extracellular polymeric substances of Aphanizomenon flos-aquae (EPS-A) were investigated in order to explore their effect on astrocytes of zebrafish and potential risk for environment. Astrocytes were treated with varying concentrations of EPS-A, the results showed that EPS-A inhibited astrocytes growth in a dose-and time-dependent manner. With the concentrations of EPS-A increasing, the adherent ability of astrocytes decreased and the number of astrocytes floating in the culture medium increased. When treated with 2.35 µg/mL EPS-A, EPS-A induced cell cycle arrest and made the collapse of mitochondrial membrane potential and then led to astrocytes apoptosis. The results suggested that EPS-A could pose a threat to zebrafish and represent risk for environment, so regularly monitoring the presence of EPS-A was very important in nutrient-rich freshwaters when A. flos-aquae blooms broke out.

  13. Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum

    NARCIS (Netherlands)

    Staats, N.; de Winder, B.; Stal, L.J.; Mur, L.R.

    1999-01-01

    The production and composition of extracellular polymeric substances (EPS) in axenic batch cultures of the benthic marine epipelic diatoms Navicula salinarum and Cylindrotheca closterium were investigated. EPS was secreted into the medium and the bulk was loosely associated with the cells. Neither N

  14. A new classification paradigm of extracellular polymeric substances (EPS) in activated sludge: separation and characterization of exopolymers between floc level and microcolony level.

    Science.gov (United States)

    Wang, Bin-Bin; Chang, Qing; Peng, Dang-Cong; Hou, Yin-Ping; Li, Hui-Juan; Pei, Li-Ying

    2014-11-01

    Extracellular polymeric substances (EPS) play a crucial role in the formation of activated sludge flocs. However, until now, the EPS are rather classified by the method used for extraction than by a theoretical consideration of their function and composition. In this paper, a new classification paradigm of EPS was proposed, which offered a novel approach to identify the role of EPS in the formation of activated sludge flocs. The current study gave an exploration to distinguish the EPS in the floc level (extra-microcolony polymers, EMPS) and in the microcolony level (extra-cellular polymers, ECPS). It was found that cation exchange resin treatment is efficient to disintegrate the flocs for EMPS extraction, however, inefficient to disaggregate the microcolonies for ECPS harvesting. A two-steps extraction strategy (cation exchange resin treatment followed by ultrasonication-high speed centrifugation treatment) was suggested to separate these two types of EPS in activated sludge flocs and the physicochemical characteristics of EMPS and ECPS were compared. The protein/polysaccharide ratio of ECPS was higher than that of EMPS and the molecular weight of proteins in EMPS and ECPS were found to be different. The ECPS contained higher molecular weight proteins and more hydrophobic substances than the EMPS contained. The result of excitation-emission matrix fluorescence spectroscopy analysis also showed that the EMPS and the ECPS have different fluorescent expressions and the components of EMPS were more diverse than that of ECPS. All results reported herein demonstrated that two different types of exopolymers exist in the activated sludge flocs and the inter-particle forces for aggregation of activated sludge flocs are not identical between the floc level and the microcolony level. It suggested that cation bridging interactions are more crucial in floc level flocculation, while the entanglement and hydrophobic interactions are more important in microcolony level cohesion.

  15. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols

    NARCIS (Netherlands)

    Abzac, D' P.; Bordas, F.; Hullebusch, E.; Lens, P.N.L.; Guibaud, G.

    2010-01-01

    The characteristics of the extracellular polymeric substances (EPS) extracted with nine different extraction protocols from four different types of anaerobic granular sludge were studied. The efficiency of four physical (sonication, heating, cationic exchange resin (CER), and CER associated with son

  16. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols

    NARCIS (Netherlands)

    Abzac, D' P.; Bordas, F.; Hullebusch, E.; Lens, P.N.L.; Guibaud, G.

    2010-01-01

    The characteristics of the extracellular polymeric substances (EPS) extracted with nine different extraction protocols from four different types of anaerobic granular sludge were studied. The efficiency of four physical (sonication, heating, cationic exchange resin (CER), and CER associated with

  17. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching.

    Science.gov (United States)

    Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio

    2016-01-01

    We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution.

  18. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching

    Science.gov (United States)

    Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio

    2016-01-01

    We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution. PMID:26947441

  19. Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures

    Directory of Open Access Journals (Sweden)

    V Bianciotto

    2009-12-01

    Full Text Available Arbuscular mycorrhizal (AM fungi, one of the most important component of the soil microbial community, establish physical interactions with naturally occurring and genetically modified bacterial biofertilizers and biopesticides, commonly referred to as plant growth-promoting rhizobacteria (PGPR. We have used a genetic approach to investigate the bacterial components possibly involved in the attachment of two PGPR (Azospirillum and Rhizobium to AM roots and AM fungal structures. Mutants affected in extracellular polysaccharides (EPS have been tested in in vitro adhesion assays and shown to be strongly impaired in the attachment to both types of surfaces as well as to quartz fibers. Anchoring of rhizobacteria to AM fungal structures may have special ecological and biotechnological significance because it may facilitate colonisation of new rhizospheres by the bacteria, and may be an essential trait for the development of mixed inocula.

  20. Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures.

    Science.gov (United States)

    Bianciotto, V; Andreotti, S; Balestrini, R; Bonfante, P; Perotto, S

    2001-01-01

    Arbuscular mycorrhizal (AM) fungi, one of the most important component of the soil microbial community, establish physical interactions with naturally occurring and genetically modified bacterial biofertilizers and biopesticides, commonly referred to as plant growth-promoting rhizobacteria (PGPR). We have used a genetic approach to investigate the bacterial components possibly involved in the attachment of two PGPR (Azospirillum and Rhizobium) to AM roots and AM fungal structures. Mutants affected in extracellular polysaccharides (EPS) have been tested in in vitro adhesion assays and shown to be strongly impaired in the attachment to both types of surfaces as well as to quartz fibers. Anchoring of rhizobacteria to AM fungal structures may have special ecological and biotechnological significance because it may facilitate colonisation of new rhizospheres by the bacteria, and may be an essential trait for the development of mixed inocula.

  1. Physical characterization and diel dynamics of different fractions of extracellular polysaccharides in an axenic culture of a benthic diatom

    NARCIS (Netherlands)

    de Brouwer, J.F.C.; Wolfstein, K.; Stal, L.J.

    2002-01-01

    The excretion of extracellular polymeric substances (EPS) by an axenic culture of the benthic diatom Cylindrotheca closterium was investigated. Two sequential extraction steps proved to be sufficient to remove the bulk of the EPS present. Soluble EPS was recovered by a simple centrifugation step and

  2. The role of glucose kinase in carbohydrate utilization and extracellular polysaccharide production in Xanthomonas campestris pathovar campestris.

    Science.gov (United States)

    Lu, Guang-Tao; Yang, Zheng-Jiu; Peng, Fang-Yin; Tan, Yi-Ning; Tang, Yong-Qin; Feng, Jia-Xun; Tang, Dong-Jie; He, Yong-Qiang; Tang, Ji-Liang

    2007-12-01

    The genome of the Xanthomonas campestris pathovar campestris (Xcc) strain 8004 encodes three uncharacterized proteins, XC1166, XC1223 and XC1976, annotated as glucose kinase (Glk) by bioinformatic studies. Here we have investigated the biochemical characteristics and physiological roles of these proteins with particular reference to the synthesis of extracellular polysaccharide (EPS). XC1166, XC1223 and XC1976 were overexpressed as fusion proteins with a His(6) affinity tag and purified by nickel affinity chromatography. The standard Glk activity assay revealed that all three proteins possessed apparent Glk activity, with XC1976-His(6) being the most active; the specific activity values were 1.16x10(6) U mg(-1) for XC1166-His(6), 4.36x10(7) U mg(-1) for XC1223-His(6) and 2.63x10(8) U mg(-1) for XC1976-His(6). TLC analysis showed, however, that only XC1976-His(6) could phosphorylate glucose. Insertional mutants of XC1166, XC1223 and XC1976 were generated using the suicide plasmid pK18mob. Although mutant strains with insertions in XC1166 or XC1223 had Glk activity similar to that of the wild-type strain, the XC1976 mutant had only about 6% of the wild-type activity. Mutation in XC1976 had complex effects on EPS production. In media containing arabinose, glucose, galactose, sucrose or maltose, the XC1976 mutant produced about 40-75% of the wild-type level of EPS, whereas in medium containing fructose, the mutant showed a 30% increase in EPS production compared to the wild-type strain. The XC1976 mutant also showed attenuated virulence on the host plant Chinese radish (Raphanus sativus). The results indicate that XC1976 has the most significant role for the parameters tested.

  3. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols

    OpenAIRE

    2010-01-01

    The characteristics of the extracellular polymeric substances (EPS) extracted with nine different extraction protocols from four different types of anaerobic granular sludge were studied. The efficiency of four physical (sonication, heating, cationic exchange resin (CER), and CER associated with sonication) and four chemical (ethylenediaminetetraacetic acid, ethanol, formaldehyde combined with heating, or NaOH) EPS extraction methods was compared to a control extraction protocols (i.e., centr...

  4. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    LENUS (Irish Health Repository)

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  5. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Directory of Open Access Journals (Sweden)

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  6. Glyceraldehyde-3-phosphate dehydrogenase of Xanthomonas campestris pv. campestris is required for extracellular polysaccharide production and full virulence.

    Science.gov (United States)

    Lu, Guang-Tao; Xie, Jia-Ri; Chen, Lei; Hu, Jiang-Ru; An, Shi-Qi; Su, Hui-Zhao; Feng, Jia-Xun; He, Yong-Qiang; Jiang, Bo-Le; Tang, Dong-Jie; Tang, Ji-Liang

    2009-05-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in glucose catabolism, converting glyceraldehyde 3-phosphates to 1,3-bisphosphoglycerates. Open reading frame (ORF) XC_0972 in the genome of Xanthomonas campestris pv. campestris (Xcc) strain 8004 is the only ORF in this strain annotated to encode a GAPDH. In this work, we have demonstrated genetically that this ORF encodes a unique GAPDH in Xcc strain 8004, which seems to be constitutively expressed. A GAPDH-deficient mutant could still grow in medium with glucose or other sugars as the sole carbon source, and no phosphofructokinase activity was detectable in strain 8004. These facts suggest that Xcc may employ the Entner-Doudoroff pathway, but not glycolysis, to utilize glucose. The mutant could not utilize pyruvate as sole carbon source, whereas the wild-type could, implying that the GAPDH of Xcc is involved in gluconeogenesis. Furthermore, inactivation of the Xcc GAPDH resulted in impairment of bacterial growth and virulence in the host plant, and reduction of intracellular ATP and extracellular polysaccharide (EPS). This reveals that GAPDH is required for EPS production and full pathogenicity of Xcc.

  7. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.

    Science.gov (United States)

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-08-01

    N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.

  8. Contribution of extracellular polymeric substances (EPS) and their subfractions to the sludge aggregation in membrane bioreactor coupled with worm reactor.

    Science.gov (United States)

    Li, Zhipeng; Tian, Yu; Ding, Yi; Wang, Haoyu; Chen, Lin

    2013-09-01

    This study focused on the effect of predated sludge recycle on the contribution of extracellular polymeric substances (EPSs) and their subfractions to sludge aggregation in combined MBR system. It was observed that aggregation abilities of sludge samples were decreased by worm predation. Furthermore, worm predation enhanced the energy barriers and weakened the secondary energy minimum in the interaction energy profiles of slime, loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS). Further investigations demonstrated that the content decrease and structural change of different EPS fractions induced by worm predation may be the reason for the decreased aggregation of sludge. Concomitantly, the adsorption tests and atomic force microscopy observation confirmed that the worm predation decreased the adsorption of slime, LB-EPS and TB-EPS on membrane. This would indicate the worm predation could keep an optimum EPS level for which floc structure was maintained and the fouling propensity of mixed liquid was reduced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Optimization of Cultural Conditions for Production of Extracellular Polymeric Substances (EPS by Serpentine Rhizobacterium Cupriavidus pauculus KPS 201

    Directory of Open Access Journals (Sweden)

    Arundhati Pal

    2013-01-01

    Full Text Available Extracellular polymeric substances (EPS are complex biopolymers produced by a wide array of microorganisms for protection against dessication, aggregation, adhesion, and expression of virulence. Growth associated production of EPS by Ni-resistant Cupriavidus pauculus KPS 201 was determined in batch culture using sodium gluconate as the sole carbon source. The optimum pH and temperature for EPS production were 6.5 and 25°C, respectively. Optimal EPS yield (118 μg/mL was attained at 0.35% Na-gluconate after 72 h of growth. Cupriavidus KPS 201 cells also utilized glutamate, acetate, pyruvate, fumarate, malate, malonate, formate, citrate, and succinate for EPS production. Although EPS production was positively influenced by the increase of nitrogen and phosphate in the growth medium, it was negatively influenced by nickel ions. Compositional analysis of the purified EPS showed that it is a homopolymer of rhamnose containing uronic acid, protein, and nucleic acid. Presence of lipids was also detected with spectroscopy. Non-destructive EPS mediated biofilm formation of KPS 201 was also visualized by epifluorescence microscopy.

  10. miRNA profiling of circulating EpCAM(+) extracellular vesicles: promising biomarkers of colorectal cancer

    DEFF Research Database (Denmark)

    Ostenfeld, Marie Stampe; Jensen, Steffen Grann; Jeppesen, Dennis Kjølhede

    2016-01-01

    R-222-3p). These findings indicate that the miRNAs are of tumour origin and may have potential as non-invasive biomarkers for detection of CRC. This work describes a non-invasive blood-based method for sensitive detection of cancer with potential for clinical use in relation to diagnosis and screening......Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. These contain biomolecules, including proteins and microRNAs (miRNAs). Both circulating EVs and miRNAs have received much attention as biomarker candidates for non-invasive diagnostics....... Here we describe a sensitive analytical method for isolation and subsequent miRNA profiling of epithelial-derived EVs from blood samples of patients with colorectal cancer (CRC). The epithelial-derived EVs were isolated by immunoaffinity-capture using the epithelial cell adhesion molecule (Ep...

  11. Evaluation of size exclusion chromatography (SEC) for the characterization of extracellular polymeric substances (EPS) in anaerobic granular sludges

    NARCIS (Netherlands)

    Simon, S.; Pairo, B.; Villain, M.; Abzac, D' P.; Hullebusch, E.; Lens, P.N.L.; Guibaud, G.

    2009-01-01

    The extracellular polymeric substances (EPS) extracted from three granular and one flocculant anaerobic sludges were characterised by size exclusion chromatography (SEC) using two serially linked chromatographic columns in order to obtain more detailed chromatograms. A Superdex peptide 10/300 GL (0.

  12. Evaluation of size exclusion chromatography (SEC) for the characterization of extracellular polymeric substances (EPS) in anaerobic granular sludges

    NARCIS (Netherlands)

    Simon, S.; Pairo, B.; Villain, M.; Abzac, D' P.; Hullebusch, E.; Lens, P.N.L.; Guibaud, G.

    2009-01-01

    The extracellular polymeric substances (EPS) extracted from three granular and one flocculant anaerobic sludges were characterised by size exclusion chromatography (SEC) using two serially linked chromatographic columns in order to obtain more detailed chromatograms. A Superdex peptide 10/300 GL

  13. Effects of extraction procedures on metal binding properties of extracellular polymeric substances (EPS) from anaerobic granular sludges

    NARCIS (Netherlands)

    Abzac, D' P.; Bordas, F.; Hullebusch, E.; Lens, P.N.L.; Guibaud, G.

    2010-01-01

    The effects of the extraction procedure of extracellular polymeric substances (EPS) on their proton/metal binding properties were studied. Nine extraction procedures (one control, four physical and four chemical procedures) were applied to four types of anaerobic granular sludges. The binding capaci

  14. THE COMPLEX EXTRACELLULAR POLYSACCHARIDES OF MAINLY CHAIN-FORMING FRESHWATER DIATOM SPECIES FROM EPILITHIC BIOFILMS(1).

    Science.gov (United States)

    Bahulikar, Rahul A; Kroth, Peter G

    2008-12-01

    Diatoms are dominant organisms in phototrophic biofilms in aquatic habitats. They produce copious amounts of extracellular polymeric substances (EPS), which mainly consist of carbohydrates and traces of proteins and glycoproteins. This study focuses on the characterization of EPS from a total of 14 diatoms belonging to the six genera Achnanthes, Cymbella, Fragilaria, Punctastriata, Staurosira, and Pseudostaurosira, all of which were isolated from epilithic biofilms of the littoral zone of Lake Constance. EPS from all isolates were extracted by a sequential extraction procedure resulting in five different fractions. The monosaccharide composition of each fraction was analyzed by HPLC equipped with a pulse amperiometric detector, yielding results similar to those obtained by probing the EPS structures with monomer-specific fluorophore-linked lectins. Significant differences in carbohydrate composition occurred in the different fractions of single isolates. Most of the diatom isolates in our study form chain-like colonies in which the cells are attached to each other by intercellular pads. Here we demonstrate that these pads can be dissolved in hot bicarbonate and that they show a heterogeneous composition of monosaccharides in contrast to other fractions, which mostly were dominated by one or two monosaccharides. Principal component analysis indicates a correlation between carbohydrate composition of EPS fractions and the phylogenetic relationship of the respective species, indicating that EPS analyses under defined culture conditions may support taxonomic analyses.

  15. Structure of an extracellular polysaccharide produced by Lactobacillus rhamnosus strain C83

    Energy Technology Data Exchange (ETDEWEB)

    Vanhaverbeke, C.; Bosso, C.; Colin-Morel, P.; Gey, C.; Heyraud, A. [Centre de Recherches sur les Macromolecules Vegetales, CNRS and Universite Joseph Fourier, B.P.53, F-38041 Grenoble (France); Gamar-Nourani, L.; Blondeau, K.; Simonet, J.-M. [Institut de Genetique et Microbiologie, Laboratoire de Genetique Moleculaire des Bacteries d' Interet Industriel, CNRS URA 2225, Batiment 360, Universite de Paris Sud, F-91405 Orsay (France)

    1998-12-31

    The extracellular polysaccharide produced by Lactobacillus rhamnosus strain C83 was found to be composed of d-glucose and d-galactose in a molar ratio of 2:3. The primary structure of the polysaccharide was shown by sugar analysis, methylation analysis, FABMS, partial acid hydrolysis and nuclear magnetic resonance (NMR) spectroscopy to consist of a pentasaccharide repeating unit having the following structure:-3)-{alpha}-d-Glcp-(1-2)-{beta}-d-Galf-(1-6)-{alpha}-d-Galp-(1-6) -{alpha}-d-Glcp-(1-3)-{beta}-d-Galf-(1-. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Export of Extracellular Polysaccharides Modulates Adherence of the Cyanobacterium Synechocystis

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, ML; Allen, R; Luo, YQ; Curtiss, R

    2013-09-10

    The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter), slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.

  17. Bacterial extracellular polymeric substances (EPS): A carrier of heavy metals in the marine food-chain

    Digital Repository Service at National Institute of Oceanography (India)

    Bhaskar, P.V.; Bhosle, N.B.

    The ecological implications of metal binding properties of bacterial EPS and its possible role in the bioaccumulation of pollutants in the marine food-chain was investigated using a partially purified and chemically characterized microbial EPS...

  18. Role of extracellular polymeric substances (EPS from Pseudomonas putida strain MnB1 in dissolution of natural rhodochrosite

    Directory of Open Access Journals (Sweden)

    H. Wang

    2014-05-01

    Full Text Available Microbially mediated oxidation of Mn(II to Mn oxides have been demonstrated in previous studies, however, the mechanisms of bacteria how to dissolve and oxidize using a solid Mn(II origin are poorly understood. In this study, we examined the role of extracellular polymeric substances (EPS from P. putida strain MnB1 in enhancing dissolution of natural rhodochrosite. The results showed that P. putida strain MnB1 cell can effectively dissolve and oxidize natural rhodochrosite to generate Mn oxides, and EPS were found to play an important role in increasing dissolution of natural rhodochrosite. Compared with EPS-free treatment, dissolution rate of natural rhodochrosite in the presence of bacterial EPS was significantly increased with decreasing initial pH and increasing EPS concentration, ionic strength and rhodochrosite dosage (p < 0.05. The fourier-transform infrared spectroscopy (FTIR analysis implies that the functional groups like N-H, C=O and C-H in EPS contributed to the dissolution of natural rhodochrosite. This study is helpful for understanding the mechanisms of the formation of biogenic Mn oxides using a solid Mn(II origin.

  19. Effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans during chalcopyrite bioleaching

    Institute of Scientific and Technical Information of China (English)

    Run-lan Yu; Jing Liu; Jian-xi Tan; Wei-min Zeng; Li-juan Shi; Guo-hua Gu; Wen-qing Qin; Guan-zhou Qiu

    2014-01-01

    The pH value plays an important role in the bioleaching of sulphide minerals. The effect of pH values on the extracellular poly-saccharide secreted by Acidithiobacillus ferrooxidans was investigated in different phases of bacterial growth during chalcopyrite bioleach-ing. It is found that extracellular polysaccharide secretion from the cells attached to chalcopyrite is more efficiently than that of the free cells in the bioleaching solution. Three factors, pH values, the concentration of soluble metal ions, and the bacterial growth and metabolism, affect extracellular polysaccharide secretion in the free cells, and are related to the bacterial growth phase. Extracellular polysaccharide secretion from the attached cells is mainly dependent on the pH value of the bacterial culture.

  20. A Polysaccharide-Degrading Marine Bacterium Flammeovirga sp.MY04 and Its Extracellular Agarase System

    Institute of Scientific and Technical Information of China (English)

    HAN Wenjun; GU Jingyan; YAN Qiujie; LI Jungang; WU Zhihong; GU Qianqun; LI Yuezhong

    2012-01-01

    Bacteria of the genus Flammeovirga can digest complex polysaccharides(CPs),but no details have been reported regarding the CP depolymerases of these bacteria.MY04,an agarolytic marine bacterium isolated from coastal sediments,has been identified as a new member of the genus Flammeovirga.The MY04 strain is able to utilize multiple CPs as a sole carbon source and grows well on agarose,mannan,or xylan.This strain produces high concentrations of extracellular proteins (490mgL-1± 18.2 mgL-1liquid culture)that exhibit efficient and extensive degradation activities on various polysaccharides,especially agarose.These proteins have an activity of 310 U mg-1± 9.6 Umg-1 proteins.The extracellular agarase system(EAS)in the crude extracellular enzymes contains at least four agarose depolymerases,which are with molecular masses of approximately 30-70 kDa.The EAS is stable at a wide range of pH values(6.0-11.0),temperatures(0-50℃),and sodium chloride(NaCl)concentrations(0-0.9mol L-1).Two major degradation products generated from agarose by the EAS are identified to be neoagarotetraose and neoagarohexaose,suggesting that β-agarases are the major constituents of the MY04 EAS.These results suggest that the Flammeovirga strain MY04 and its polysaccharide-degradation system hold great promise in industrial applications.

  1. Relevance of fucose-rich extracellular polysaccharides produced by Rhizobium sullae strains nodulating Hedysarum coronarium l. legumes.

    Science.gov (United States)

    Gharzouli, Razika; Carpéné, Marie-Anne; Couderc, François; Benguedouar, Ammar; Poinsot, Véréna

    2013-03-01

    Specific and complex interactions between soil bacteria, known as rhizobia, and their leguminous host plants result in the development of root nodules. This process implies a complex dialogue between the partners. Rhizobia synthesize different classes of polysaccharides: exopolysaccharides (EPS), Kdo-rich capsular polysaccharides, lipopolysaccharides, and cyclic β-(1,2)-glucans. These polymers are actors of a successful symbiosis with legumes. We focus here on studying the EPS produced by Rhizobium sullae bacteria that nodulate Hedysarum coronarium L., largely distributed in Algeria. We describe the influence of the carbon source on the production and on the composition of EPS produced by R. sullae A6 and RHF strains. High-molecular-weight EPS preserve the bacteria from desiccation. The structural characterization of the EPS produced by R. sullae strains has been performed through sugar analysis by gas chromatography-mass spectrometry. The low-molecular-weight EPS of one strain (RHF) has been totally elucidated using nuclear magnetic resonance and quantitative time-of-flight tandem mass spectrometry analyses. An unusual fucose-rich EPS has been characterized. The presence of this deoxy sugar seems to be related to nodulation capacity.

  2. Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia

    Directory of Open Access Journals (Sweden)

    Natalia Nocelli

    2016-05-01

    Full Text Available Bacterial surface components and extracellular compounds, particularly flagella, lipopolysaccharides (LPSs, and exopolysaccharides (EPSs, in combination with environmental signals and quorum-sensing signals, play crucial roles in bacterial autoaggregation, biofilm development, survival, and host colonization. The nitrogen-fixing species Sinorhizobium meliloti (S. meliloti produces two symbiosis-promoting EPSs: succinoglycan (or EPS I and galactoglucan (or EPS II. Studies of the S. meliloti/alfalfa symbiosis model system have revealed numerous biological functions of EPSs, including host specificity, participation in early stages of host plant infection, signaling molecule during plant development, and (most importantly protection from environmental stresses. We evaluated functions of EPSs in bacterial resistance to heavy metals and metalloids, which are known to affect various biological processes. Heavy metal resistance, biofilm production, and co-culture were tested in the context of previous studies by our group. A range of mercury (Hg II and arsenic (As III concentrations were applied to S. meliloti wild type strain and to mutant strains defective in EPS I and EPS II. The EPS production mutants were generally most sensitive to the metals. Our findings suggest that EPSs are necessary for the protection of bacteria from either Hg (II or As (III stress. Previous studies have described a pump in S. meliloti that causes efflux of arsenic from cells to surrounding culture medium, thereby protecting them from this type of chemical stress. The presence of heavy metals or metalloids in culture medium had no apparent effect on formation of biofilm, in contrast to previous reports that biofilm formation helps protect various microorganism species from adverse environmental conditions. In co-culture experiments, EPS-producing heavy metal resistant strains exerted a protective effect on AEPS-non-producing, heavy metal-sensitive strains; a phenomenon

  3. Competitive adsorption of Reactive Orange 16 and Reactive Brilliant Blue R on polyaniline/bacterial extracellular polysaccharides composite-A novel eco-friendly polymer

    Energy Technology Data Exchange (ETDEWEB)

    Janaki, V. [Department of Chemistry, Periyar University, Salem 636011, Tamil Nadu (India); Vijayaraghavan, K. [Singapore-Delft Water Alliance, National University of Singapore, 117577 (Singapore); Ramasamy, A.K. [Department of Chemistry, Periyar University, Salem 636011, Tamil Nadu (India); Lee, Kui-Jae [Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570752 (Korea, Republic of); Oh, Byung-Taek, E-mail: btoh@jbnu.ac.kr [Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570752 (Korea, Republic of); Kamala-Kannan, Seralathan, E-mail: kannan@jbnu.ac.kr [Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570752 (Korea, Republic of)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Competitive adsorption of reactive dyes onto polyaniline/bacterial extracellular polysaccharides composite. Black-Right-Pointing-Pointer The composite have functional groups of both polyaniline and bacterial extracellular polysaccharides. Black-Right-Pointing-Pointer The presence of Reactive Brilliant Blue R diminished the uptake of Reactive Orange 16. Black-Right-Pointing-Pointer Electrostatic interaction was identified as a major mechanism in adsorption process. Black-Right-Pointing-Pointer Reactive Brilliant Blue R and Reactive Orange 16 adsorption was endothermic process. - Abstract: The performance of polyaniline/extracellular polymeric substances (Pn/EPS) composite as an adsorbent to remove the anionic reactive dyes, Reactive Brilliant Blue R (RBBR) and Reactive Orange 16 (RO), was investigated in single and binary systems. The pH{sub pzc} of Pn/EPS composite was calculated as 3.7 through potentiometric mass titration method. Electrostatic interaction between the dye anion and the nitrogen present in the polymer was identified as a major mechanism in adsorption process. Single component isotherms followed the Langmuir model with the maximum adsorption capacity of 0.5775 mmol g{sup -1} for RBBR and 0.4748 mmol g{sup -1} for RO. In binary system, both the reactive dye anions compete with each other and resulted in lower uptake. Binary adsorption data were interpreted well by the Sheindorf-Rehbun-Sheintuch equation as compared to extended Langmuir model with constant interaction factor. Kinetic analysis of single solute followed pseudo-first order model. Thermodynamic studies computed that RBBR and RO adsorption was endothermic, spontaneous, and feasible process.

  4. Extracellular polymeric substances (EPS of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles.

    Directory of Open Access Journals (Sweden)

    Alexandra Kroll

    Full Text Available Streams are potential receiving compartments for engineered nanoparticles (NP. In streams, NP may remain dispersed or settle to the benthic compartment. Both dispersed and settling NP can accumulate in benthic biofilms called periphyton that are essential to stream ecosystems. Periphytic organisms excrete extracellular polymeric substances (EPS that interact with any material reaching the biofilms. To understand the interaction of NP with periphyton it is therefore crucial to study the interaction of NP with EPS. We investigated the influence of EPS on the physicochemical properties of selected NP (CeO2, Ag under controlled conditions at pH 6, 7.6, 8.6 and light or dark exposure. We extracted EPS from five different periphyton communities, characterized the extracts, and exposed CeO2 and carbonate-stabilized Ag NP (0.5 and 5 mg/L, both 25 nm primary particle size and AgNO3 to EPS (10 mg/L over two weeks. We measured NP size distribution, shape, primary particle size, surface plasmon resonance, and dissolution. All EPS extracts were composed of biopolymers, building blocks of humic substances, low molecular weight (Mr acids, and small amphiphilic or neutral compounds in varying concentrations. CeO2 NP were stabilized by EPS independent of pH and light/dark while dissolution increased over time in the dark at pH 6. EPS induced a size increase in Ag NP in the light with decreasing pH and the formation of metallic Ag NP from AgNO3 at the same conditions via EPS-enhanced photoreduction. NP transformation and formation were slower in the extract with the lowest biopolymer and low Mr acid concentrations. Periphytic EPS in combination with naturally varying pH and light/dark conditions influence the properties of the Ag and CeO2 NP tested and thus the exposure conditions within biofilms. Our results indicate that periphytic organisms may be exposed to a constantly changing mixture of engineered and naturally formed Ag NP and Ag+.

  5. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus.

    Science.gov (United States)

    Li, Yinuo; Sun, Hong; Ma, Xiaoyuan; Lu, Ann; Lux, Renate; Zusman, David; Shi, Wenyuan

    2003-04-29

    Myxococcus xanthus is a Gram-negative bacterium with a complex life cycle that includes vegetative swarming and fruiting-body formation. Social (S)-motility (coordinated movement of large cell groups) requires both type IV pili and fibrils (extracellular matrix material consisting of polysaccharides and protein). Little is known about the role of this extracellular matrix, or fibril material, in pilus-dependent motility. In this study, mutants lacking fibril material and, therefore, S-motility were found to be hyperpiliated. We demonstrated that addition of fibril material resulted in pilus retraction and rescued this phenotype. The fibril material was further examined to determine the component(s) that were responsible for triggering pilus retraction. Protein-free fibril material was found to be highly active in correcting hyperpiliation. However, the amine sugars present in hydrolyzed fibril material, e.g., glucosamine and N-acetylglucosamine (GlcNAc) had no effect on fibril(-) mutants, but, interestingly, cause hyperpiliation in wild-type cells. In contrast, chitin, a natural GlcNAc polymer, was found to restore pilus retraction in hyperpiliated mutants, indicating that a polysaccharide containing amine sugars is likely required for pilus retraction. These data suggest that the interaction of type IV pili with amine-containing polysaccharides on cell and slime-trail surfaces may trigger pilus retraction, resulting in S-motility and slime-trailing behaviors.

  6. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil.

    Science.gov (United States)

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose.

  7. Characterization of the rcsA Gene from Pantoea sp. Strain PPE7 and Its Influence on Extracellular Polysaccharide Production and Virulence on Pleurotus eryngii

    Science.gov (United States)

    Kim, Min Keun; Lee, Sun Mi; Seuk, Su Won; Ryu, Jae San; Kim, Hee Dae; Kwon, Jin Hyeuk; Choi, Yong Jo; Yun, Han Dae

    2017-01-01

    RcsA is a positive activator of extracellular polysaccharide (EPS) synthesis in the Enterobacteriaceae. The rcsA gene of the soft rot pathogen Pantoea sp. strain PPE7 in Pleurotus eryngii was cloned by PCR amplification, and its role in EPS synthesis and virulence was investigated. The RcsA protein contains 3 highly conserved domains, and the C-terminal end of the open reading frame shared significant amino acid homology to the helix-turn-helix DNA binding motif of bacterial activator proteins. The inactivation of rcsA by insertional mutagenesis created mutants that had decreased production of EPS compared to the wild-type strain and abolished the virulence of Pantoea sp. strain PPE7 in P. eryngii. The Pantoea sp. strain PPE7 rcsA gene was shown to strongly affect the formation of the disease symptoms of a mushroom pathogen and to act as the virulence factor to cause soft rot disease in P. eryngii. PMID:28592946

  8. Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol.

    Science.gov (United States)

    Freitas, Filomena; Alves, Vitor D; Pais, Joana; Costa, Nuno; Oliveira, Cristina; Mafra, Luís; Hilliou, Loic; Oliveira, Rui; Reis, Maria A M

    2009-01-01

    A new extracellular charged polysaccharide composed mainly by galactose, with lower amounts of mannose, glucose and rhamnose, was produced by the cultivation of Pseudomonas oleovorans NRRL B-14682 using glycerol as the sole carbon source. Thermal and solid-state NMR analysis showed that this polymer is essentially amorphous, with a glass transition temperature of 155.7 degrees C. The exopolysaccharide aqueous solutions have viscoelastic properties similar to that of Guar gum, but with affinity to salts as a result of its polyelectrolyte character. In addition, the exopolysaccharide has demonstrated good flocculating and emulsifying properties and film-forming capacity. These properties make this polymer a good alternative to more expensive natural polysaccharides, such as Guar gum, in several applications in the food, pharmaceutical, cosmetic, textile, paper and petroleum industries.

  9. Sulfation of extracellular polysaccharides of red microalgae: preparation, characterization and properties.

    Science.gov (United States)

    Geresh, Shimona; Mamontov, Anna; Weinstein, Jacob

    2002-01-04

    Polysaccharides are natural polymers with a variety of properties that may be translated into significant commercial applications. A program of chemical modifications of the extracellular polysaccharides of red microalgae, such as Porphyridium sp. and Rhodella reticulata, has been undertaken by our group in order to tailor new properties and hence to broaden the spectrum of potential applications. These algal biopolymers are anionic in nature due to the presence of uronic acids (about 10%) and sulfate half esters (about 7%). In the current study, the sulfate content of these biopolymers was increased to 35-40% by means of sulfation agents such as pyridine SO(3), DMF.SO(3) and ClSO(3)H. Reaction conditions were optimized in a model system based on potato starch as the model polysaccharide (type of reagent, temperature and time of reaction). After work-up procedures, the highest sulfate content was obtained by sulfation of the polysaccharide of Porphyridium sp. with a mixture of ClSO(3)H and pyridine at 70 degrees C for 1 h. The sulfated products were characterized by chemical and rheological analyses, IR spectroscopy, and GPC-HPLC chromatography. "Oversulfated" polymers (having sulfate contents exceeding 20%) with high molecular weights were found to inhibit mammalian cell growth when used at certain concentrations; for example, over 80% inhibition was obtained when oversulfated polymers at a concentration of 200 microg/ml were tested on T-cell lymphoma line 24-1. These preliminary results indicate that the modified polysaccharides do indeed exhibit potential therapeutic properties.

  10. Molecular and chemical features of the excreted extracellular polysaccharides in Induced Biological Soil Crusts of different ages

    Science.gov (United States)

    Rossi, Federico; Lanzhou, Chen; Liu, Yongding; Adessi, Alessandra; De Philippis, Roberto

    2014-05-01

    , assessing the activity of two key enzymes for sugar degradation: dehydrogenase and sucrase. The results obtained demonstrated a high complexity in terms of monosaccharidic composition and molecular weight, the latter resulting differently distributed between the two fractions. Enzymatic activity resulted mainly directed to the more soluble, low - molecular weight carbohydrates. The data presented represent a first study of the biochemical processes involving carbon from EPS released by IBSCs on bare substrates after the colonization of soils by the inoculated cyanobacteria. Bowker MA (2007) Biological soil crusts rehabilitation in theory and practice: an underexploited opportunity. Restoration Ecology 15(1): 13 - 23. Mager DM, Thomas AD (2011) Extracellular polysaccharides from cyanobacterial soil crusts: A review of their role in dryland soil processes. Journal of Arid Environments 75: 91 - 97. Rossi F, Diels L, Olguin E, De Philippis R (2013) Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification. New Biotechnology. DOI: . http://dx.doi.org/10.1016/j.nbt.2013.12.002.

  11. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative.

    Science.gov (United States)

    Chen, Lulu; Ren, Zhi; Zhou, Xuedong; Zeng, Jumei; Zou, Jing; Li, Yuqing

    2016-01-01

    Dental caries, a biofilm-related oral disease, is a result of disruption of the microbial ecological balance in the oral environment. Streptococcus mutans, which is one of the primary cariogenic bacteria, produces glucosyltransferases (Gtfs) that synthesize extracellular polysaccharides (EPSs). The EPSs, especially water-insoluble glucans, contribute to the formation of dental plaque, biofilm stability, and structural integrity, by allowing bacteria to adhere to tooth surfaces and supplying the bacteria with protection against noxious stimuli and other environmental attacks. The identification of novel alternatives that selectively inhibit cariogenic organisms without suppressing oral microbial residents is required. The goal of the current study is to investigate the influence of an oxazole derivative on S. mutans biofilm formation and the development of dental caries in rats, given that oxazole and its derivatives often exhibit extensive and pharmacologically important biological activities. Our data shows that one particular oxazole derivative, named 5H6, inhibited the formation of S. mutans biofilms and prevented synthesis of extracellular polysaccharides by antagonizing Gtfs in vitro, without affecting the growth of the bacteria. In addition, topical applications with the inhibitor resulted in diminished incidence and severity of both smooth and sulcal surface caries in vivo with a lower percentage of S. mutans in the animals' dental plaque compared to the control group (P < 0.05). Our results showed that this oxazole derivative has the capacity to inhibit biofilm formation and cariogenicity of S. mutans.

  12. Identification of an Efflux Transporter LmrB Regulating Stress Response and Extracellular Polysaccharide Synthesis in Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-06-01

    Full Text Available Efflux transporters have been implicated in regulating bacterial virulence properties such as resistance to antibiotics, biofilm formation and colonization. The pathogenicity of Streptococcus mutans, the primary etiologic agent of human dental caries, relies on the bacterium’s ability to form biofilms on tooth surface. However, the studies on efflux transporters in S. mutans are scare and the function of these transporters remained to be clarified. In this study, we identified an efflux transporter (LmrB in S. mutans through cloning the lmrB gene into Escherichia coli. Introducing lmrB into E. coli conferred a multidrug-resistant phenotype and resulted in higher EtBr efflux activity which could be suppressed by efflux inhibitor. To explore whether LmrB was involved in S. mutans virulence properties regulation, we constructed the lmrB inactivation mutant and examined the phenotypes of the mutant. It was found that LmrB deficiency resulted in increased IPS storage and prolonged acid production. Enhanced biofilm formation characterized by increased extracellular polysaccharides (EPS production and elevated resistance to hydrogen peroxide and antimicrobials were also observed in lmrB mutant. To gain a better understanding of the global role of LmrB, a transcriptome analysis was performed using lmrB mutant strain. The expression of 107 genes was up- or down-regulated in the lmrB mutant compared with the wild type. Notably, expression of genes in several genomic islands was differentially modulated, such as stress-related GroELS and scnRK, sugar metabolism associated glg operons and msmREFGK transporter. The results presented here indicate that LmrB plays a vital global role in the regulation of several important virulence properties in S. mutans.

  13. Polysaccharides of St. John's Wort Herb Stimulate NHDF Proliferation and NEHK Differentiation via Influence on Extracellular Structures and Signal Pathways.

    Science.gov (United States)

    Abakuks, S; Deters, A M

    2012-01-01

    St. John's Wort herb extracts often contain undesirable or volitional polysaccharides. As polysaccharides exhibit structure-dependent biological functions in the present study water-soluble polysaccharides were extracted from herb material, fractionated by anion exchange chromatography into four main polysaccharide fractions (denominated as Hp1, Hp2, Hp3 and Hp4) and characterized by HPAEC-PAD, CE, IR and GC-MS. Biological activity on human skin keratinocytes and fibroblasts was assessed by investigation of their effect on proliferation, metabolism, cytotoxicity, apoptosis and differentiation. The underlying mechanisms were investigated in gene expression studies. Polysaccharide fraction Hp1 was mainly composed of β-D-glucose. Hp2, Hp3 and Hp4 contained pectic structures and arabinogalactan proteins varying in composition and quantity. Polysaccharides of Hp1 induced the keratinocyte differentiation by inhibiting the gene expression of the epidermal growth factor and insulin receptor. While the collagen secretion of fibroblasts was stimulated by each polysaccharide fraction only Hp1 stimulated the synthesis. The fibroblast proliferation was reduced by Hp1 and increased by Hp4. This effect was related to the influence on genes that referred to oxidative stress, metabolism, transcription processes and extracellular proteins. In conclusion polysaccharides have been shown as biologically active ingredients of aqueous St. John's Wort extracts with a relation between their structural characteristics and function.

  14. Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Berg, D.J.C. van den; Robijn, G.W.; Janssen, A.C.; Giuseppin, M.L.F.; Vreeker, R.; Kamerling, J.P.; Ledeboer, A.M.

    1995-01-01

    A novel exopolysaccharide (EPS) produced by Lactobacillus sake 0-1 (CBS 532.92) has been isolated and characterized. When the strain was grown on glucose, the produced EPS contained glucose and rhamnose in a molar ratio of 3:2 and the average molecular mass distribution (M(infm)) was determined at 6

  15. Cyclic-di-GMP signalling meets extracellular polysaccharide synthesis in Bacillus subtilis.

    Science.gov (United States)

    Kampf, Jan; Stülke, Jörg

    2017-06-01

    In order to resist harmful environmental conditions, many bacteria form multicellular aggregates called biofilms. In these biofilms, they protect themselves in a self-produced matrix consisting of extracellular polysaccharides, proteins and DNA. In many bacteria, biofilm formation is stimulated in the presence of the second messenger cyclic di-GMP. In this issue of Environmental Microbiology Reports, Bedrunka and Graumann have studied matrix production by the proteins encoded in the Bacillus subtilis ydaJKLMN operon. For the first time, they were able to provide a link between c-di-GMP signalling and matrix production in this bacterium. The work demonstrates that the c-di-GMP receptor protein YdaK forms a membrane-bound complex with the YdaM and YdaN proteins, and that this interaction with YdaK is required for polysaccharide production by YdaL, YdaM and YdaN. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans.

    Science.gov (United States)

    Cheng, Xingqun; Zheng, Xin; Zhou, Xuedong; Zeng, Jumei; Ren, Zhi; Xu, Xin; Cheng, Lei; Li, Mingyun; Li, Jiyao; Li, Yuqing

    2016-03-01

    Cyclic diadenosine monophosphate (c-di-AMP) has been implicated in the control of many important bacterial activities. However, the function of this molecule in Streptococcus mutans, the primary aetiological agent of human dental caries, is unknown. In this study, we identified and characterized a diadenylate cyclase, named CdaA, in S. mutans. Furthermore, we showed that in-frame deletion of the cdaA gene in S. mutans causes decreased c-di-AMP levels, increased sensitivity to hydrogen peroxide and increased production of extracellular polysaccharides. Global gene expression profiling revealed that more than 200 genes were significantly upregulated or downregulated (> 2.0-fold) in the cdaA mutant. Interestingly, genes with increased or decreased expression were clustered in cellular polysaccharide biosynthetic processes and oxidoreductase activity respectively. Notably, the expression of several genomic islands, such as GTF-B/C, TnSmu, CRISPR1-Cas and CRISPR2-Cas, was found to be altered in the cdaA mutant, indicating a possible link between these genomic islands and c-di-AMP signalling. Collectively, the results reported here show that CdaA is an important global modulator in S. mutans and is required for optimal growth and environmental adaption. This report also paves the way to unveil further the roles of c-di-AMP signalling networks in the biology and pathogenicity of S. mutans.

  17. Extracellular polymeric substances act as transient media in extracellular electron transfer of Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhang, Jingdong; Ulstrup, Jens

    without extracting EPS or cells collected from log stage or early-steady stage cultures with little EPS. Therefore, microbial cells are believed in contact directly with each other or electrode. Such attempt apparently ignored the role of EPS in microbial EET, even though many components of EPS......It is well known that microorganism is surrounded by extracellular polymeric substances (EPS) which include polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids. However, previous studies on microbial extracellular electron transfer (EET) are conducted on cells......, such as DNA, humic acids and some proteins, are electrochemically active or semiconductive. Herein, we report experimental evidences of EPS role on EET for Shewanella oneidensis MR-1. Atomic force microscopy clearly showed that the cell surface was cleaned and few EPS could be observed on MR-1 after...

  18. Effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts under experimental conditions

    Institute of Scientific and Technical Information of China (English)

    WANG WeiBo; YANG CuiYun; TANG DongShan; LI DunHai; LIU YongDing; HU ChunXiang

    2007-01-01

    Soil cyanobacterial crusts occur throughout the world, especially in the semiarid and arid regions. It always encounters sand burial, which is an important feature of mobile sand dunes. A greenhouse study was conducted to determine the effects of sand burial on biomass, chlorophyll fluorescence andextracellular polysaccharides of man-made cyanobacterial crusts in six periods of time (0, 5, 10, 15, 20 and 30 d after burying) and at five depths (0, 0.2, 0.5, 1 and 2cm). The results indicated that with the increase of the burial time and burial depth extracellular polysaccharides content and Fv/Fm decreased correspondingly and there were no significant differences between 20 and 30 burial days under different burial depths. The degradation of chlorophyll a content appeared only at 20 and 30 burial days and there was also no significant difference between them under different burial depths. It was also observed a simultaneous decrease of the values of the Fv/Fm and the content of extracellular polysaccharides happened in the crusted cyanobacterium Microcoleus vaginatus Gom. It may suggest that there exists a relationship between extracellular polysaccharides and recovery of the activity of photosystem Ⅱ (PS Ⅱ) after rehydration.

  19. Extracellular polymeric substances (EPS) in upflow anaerobic sludge blanket (UASB) reactors operated under high salinity conditions.

    Science.gov (United States)

    Ismail, S B; de La Parra, C J; Temmink, H; van Lier, J B

    2010-03-01

    Considering the importance of stable and well-functioning granular sludge in anaerobic high-rate reactors, a series of experiments were conducted to determine the production and composition of EPS in high sodium concentration wastewaters pertaining to anaerobic granule properties. The UASB reactors were fed with either fully acidified substrate (FAS) consisting of an acetate medium (reactor R1) or partly acidified substrate (PAS) consisting of acetate, gelatine and starch medium (reactors R2, R3, and R4). For EPS extraction, the cation exchange resin (CER) method was used. Strength and particle size distribution were determined by assessing the formation of fines sludge under conditions of high shear rate and by laser diffraction, respectively. Batch tests were performed in 0.25L bottles to study Ca(2+) leaching from anaerobic granular sludge when incubated in 20g Na(+)/L in the absence of feeding for 30 days. Results show a steady increase in the bulk liquid Ca(2+) concentration during the incubation period. UASB reactor results show that the amounts of extracted proteins were higher from reactors R2 and R3, fed with PAS compared to the sludge samples from reactor R1, fed with FAS. Strikingly, the amount of extracted proteins also increased for all reactor sludges, irrespective of the Na(+) concentration applied in the feed, i.e. 10 or 20gNa(+)/L. PAS grown granular sludges showed an important increase in particle size during the operation of the UASB reactors. Results also show that, addition of 1gCa(2+)/L to the high salinity wastewater increases the granules' strength. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: Corrosion inhibition by extracellular polymeric substances (EPS)

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, R.; Wei, L.; Fuerbeth, W. [Karl-Winnacker-Institut, DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main (Germany); Grooters, M.; Kuklinski, A. [University of Duisburg-Essen, Biofilm Centre, Geibelstrasse 41, 47057 Duisburg (Germany)

    2010-12-15

    Extracellular polymeric substances (EPS) were studied with regard to their potential application as inhibitors of biocorrosion. EPS that have been isolated from biofilms of sulphate-reducing bacteria (SRB) were adsorbed on samples of high alloyed steel (type 1.4301) at different temperatures. The samples were exposed to SRB containing solution and afterwards analysed by fluorescence microscopy (FM). The results show that the EPS form an incomplete layer and lead to a smaller amount of cell adhesion when compared to pure surfaces. The results are discussed with regard to the application of EPS for the prevention of biofilm formation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors

    Directory of Open Access Journals (Sweden)

    Wang Cheng-Li

    2012-08-01

    Full Text Available Abstract Background The fungus of Ganoderma is a traditional medicine in Asia with a variety of pharmacological functions including anti-cancer activities. We have purified an extracellular heteropolysaccharide fraction, PS-F2, from the submerged mycelia culture of G. formosanum and shown that PS-F2 exhibits immunostimulatory activities. In this study, we investigated the molecular mechanisms of immunostimulation by PS-F2. Results PS-F2-stimulated TNF-α production in macrophages was significantly reduced in the presence of blocking antibodies for Dectin-1 and complement receptor 3 (CR3, laminarin, or piceatannol (a spleen tyrosine kinase inhibitor, suggesting that PS-F2 recognition by macrophages is mediated by Dectin-1 and CR3 receptors. In addition, the stimulatory effect of PS-F2 was attenuated in the bone marrow-derived macrophages from C3H/HeJ mice which lack functional Toll-like receptor 4 (TLR4. PS-F2 stimulation triggered the phosphorylation of mitogen-activated protein kinases JNK, p38, and ERK, as well as the nuclear translocation of NF-κB, which all played essential roles in activating TNF-α expression. Conclusions Our results indicate that the extracellular polysaccharides produced by G. formosanum stimulate macrophages via the engagement of multiple pattern-recognition receptors including Dectin-1, CR3 and TLR4, resulting in the activation of Syk, JNK, p38, ERK, and NK-κB and the production of TNF-α.

  2. Extracellular polymeric substances play roles in extracellular electron transfer of Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhang, En-Hua; Christensen, Hans Erik Mølager

    It is well known that microorganism is surrounded by extracellular polymeric substances (EPS) which include polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids. However, previous studies on microbial extracellular electron transfer (EET) are conducted on cells...... the extraction (Figure 1.a and 1.b). Comparing to cells in control group, MR-1 treated at 38 °C for EPS extraction showed different electrochemical characterizations as revealed by differential pulse voltammetry (Figure 1.c). EPS extracted from MR-1 also was proved to be electrochemically active. The present...

  3. Characterization of Co-Cultivation of Cyanobacteria on Growth, Productions of Polysaccharides and Extracellular Proteins, Nitrogenase Activity, and Photosynthetic Activity.

    Science.gov (United States)

    Xue, Chuizhao; Wang, Libo; Wu, Tong; Zhang, Shiping; Tang, Tao; Wang, Liang; Zhao, Quanyu; Sun, Yuhan

    2017-01-01

    Cyanobacteria as biofertilizers are benefit to reduce the use of chemical fertilizers and reestablish the ecological system in soil. In general, several strains of cyanobacteria were involved in the biofertilizers. The co-cultivation of cyanobacteria were characterized on growth profile, production of polysaccharides and extracellular proteins, nitrogenase activity, and photosynthetic activity for three selected N2-fixing cyanobacteria, Anabaena cylindrica (B1611 and F243) and Nostoc sp. (F280). After eight-day culture, the highest dry weights were obtained in F280 pure culture and co-cultivation of B1611 and F280. Higher production of extracellular proteins and cell-bonding polysaccharides (CPS) were observed in co-cultivations compared with pure culture. The highest released polysaccharides (RPS) contents were obtained in pure culture of F280 and co-cultivation of F280 and F243. Galactose and glucose were major components of CPS and RPS in all samples. Trehalose was a specific component of RPS in F280 pure culture. Based on the monosaccharide contents of CPS and RPS, F280 was the dominant species in the related treatments of co-cultivation. The nitrogenase activities in all treatments exhibited a sharp rise at the late stage while a significant decrease existed when three cyanobacteria strains were mixed. Photosynthetic activities for all treatments were determined with rapid light curve, and the related parameters were estimated.

  4. The key residue within the second extracellular loop of human EP3 involved in selectively turning down PGE2- and retaining PGE1-mediated signaling in live cells.

    Science.gov (United States)

    Akasaka, Hironari; Thaliachery, Natasha; Zheng, Xianghai; Blumenthal, Marissa; Nikhar, Sameer; Murdoch, Emma E; Ling, Qinglan; Ruan, Ke-He

    2017-02-15

    Key residues and binding mechanisms of PGE1 and PGE2 on prostanoid receptors are poorly understood due to the lack of X-ray structures for the receptors. We constructed a human EP3 (hEP3) model through integrative homology modeling using the X-ray structure of the β2-adrenergic receptor transmembrane domain and NMR structures of the thromboxane A2 receptor extracellular loops. PGE1 and PGE2 docking into the hEP3 model showed differing configurations within the extracellular ligand recognition site. While PGE2 could form possible binding contact with S211, PGE1 is unable to form similar contacts. Therefore, S211 could be the critical residue for PGE2 recognition, but is not a significant for PGE1. This prediction was confirmed using HEK293 cells transfected with hEP3 S211L cDNA. The S211L cells lost PGE2 binding and signaling. Interestingly, the S211L cells retained PGE1-mediated signaling. It indicates that S211 within the second extracellular loop is a key residue involved in turning down PGE2 signaling. Our study provided information that S211L within EP3 is the key residue to distinguish PGE1 and PGE2 binding to mediate diverse biological functions at the initial recognition step. The S211L mutant could be used as a model for studying the binding mechanism and signaling pathway specifically mediated by PGE1. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria

    Science.gov (United States)

    Pereira, Sara B.; Mota, Rita; Vieira, Cristina P.; Vieira, Jorge; Tamagnini, Paula

    2015-10-01

    Many cyanobacteria produce extracellular polymeric substances (EPS) with particular characteristics (e.g. anionic nature and presence of sulfate) that make them suitable for industrial processes such as bioremediation of heavy metals or thickening, suspending or emulsifying agents. Nevertheless, their biosynthetic pathway(s) are still largely unknown, limiting their utilization. In this work, a phylum-wide analysis of genes/proteins putatively involved in the assembly and export of EPS in cyanobacteria was performed. Our results demonstrated that most strains harbor genes encoding proteins related to the three main pathways: Wzy-, ABC transporter-, and Synthase-dependent, but often not the complete set defining one pathway. Multiple gene copies are mainly correlated to larger genomes, and the strains with reduced genomes (e.g. the clade of marine unicellular Synechococcus and Prochlorococcus), seem to have lost most of the EPS-related genes. Overall, the distribution of the different genes/proteins within the cyanobacteria phylum raises the hypothesis that cyanobacterial EPS production may not strictly follow one of the pathways previously characterized. Moreover, for the proteins involved in EPS polymerization, amino acid patterns were defined and validated constituting a novel and robust tool to identify proteins with similar functions and giving a first insight to which polymer biosynthesis they are related to.

  6. Microbial short-chain fatty acid production and extracellular enzymes activities during in vitro fermentation of polysaccharides from the seeds of Plantago asiatica L. treated with microwave irradiation.

    Science.gov (United States)

    Hu, Jie-Lun; Nie, Shao-Ping; Li, Chang; Fu, Zhi-Hong; Xie, Ming-Yong

    2013-06-26

    Effects of microwave irradiation on microbial short-chain fatty acid production and the activites of extracellular enzymes during in vitro fermentation of the polysaccharide from Plantago asiatica L. were investigated in this study. It was found that the apparent viscosity, average molecular weight, and particle size of the polysaccharide decreased after microwave irradiation. Reducing sugar amount increased with molecular weight decrease, suggesting the degradation may derive from glycosidic bond rupture. The polysaccharide surface topography was changed from large flakelike structure to smaller chips. FT-IR showed that microwave irradiation did not alter the primary functional groups in the polysaccharide. However, short-chain fatty acid productions of the polysaccharide during in vitro fermentation significantly increased after microwave irradiation. Activities of microbial extracellular enzymes xylanase, arabinofuranosidase, xylosidase, and glucuronidase in fermentation cultures supplemented with microwave irradiation treated polysaccharide were also generally higher than those of untreated polysaccharide. This showed that microwave irradiation could be a promising degradation method for the production of value-added polysaccharides.

  7. Extracellular polysaccharides do not inhibit the reaction between Streptococcus mutans and its specific immunoglobulin G (IgG) or penetration of the IgG through S. mutans biofilm.

    Science.gov (United States)

    Zhu, M; Takenaka, S; Sato, M; Hoshino, E

    2001-02-01

    The present study investigated whether extracellular polysaccharides inhibit reaction between Streptococcus mutans and its specific immunoglobulin G (IgG) and penetration of the IgG through S. mutans biofilm. The planktonic organisms with or without extracellular polysaccharides were prepared, incubated with rabbit IgG against whole cell of S. mutans and fluorescein isothiocyanate (FITC)-conjugated goat affinity purified antibody to rabbit IgG. Biofilms with or without extracellular polysaccharides were formed on cover glasses and incubated with rabbit IgG against S. mutans and FITC-conjugated goat antibody to rabbit IgG. Then, biofilms were stained with propidium iodide. The amount of specific IgG binding on S. mutans was determined by FITC intensity with a fluorescence microplate reader. The penetration of IgG through biofilms was determined by confocal laser scanning microscopy. The results showed that the fluorescence intensity of FITC in planktonic organisms with extracellular polysaccharides was similar to that in planktonic organisms without extracellular polysaccharides, indicating that extracellular polysaccharides did not inhibit the reaction between S. mutans and its specific IgG. Although biofilms of S. mutans with extracellular polysaccharides were much thicker and denser than those without extracellular polysaccharides, the speed with which IgG penetrated through both of the biofilms did not differ significantly, suggesting that penetration of IgG through S. mutans biofilm was not affected by extracellular polysaccharides.

  8. Screening and characterization of extracellular polysaccharides produced by Leuconostoc kimchii isolated from traditional fermented pulque beverage.

    Science.gov (United States)

    Torres-Rodríguez, Ingrid; Rodríguez-Alegría, María Elena; Miranda-Molina, Alfonso; Giles-Gómez, Martha; Conca Morales, Rodrigo; López-Munguía, Agustín; Bolívar, Francisco; Escalante, Adelfo

    2014-01-01

    We report the screening and characterization of EPS produced by LAB identified as Leuconostoc kimchii isolated from pulque, a traditional Mexican fermented, non-distilled alcoholic beverage produced by the fermentation of the sap extracted from several (Agave) maguey species. EPS-producing LAB constitutes an abundant bacterial group relative to total LAB present in sap and during fermentation, however, only two EPS-producing colony phenotypes (EPSA and EPSB, respectively) were detected and isolated concluding that despite the high number of polymer-producing LAB their phenotypic diversity is low. Scanning electron microcopy analysis during EPS-producing conditions revealed that both types of EPS form a uniform porous structure surrounding the bacterial cells. The structural characterization of the soluble and cell-associated EPS fractions of each polymer by enzymatic and acid hydrolysis, as by 1D- and 2D-NMR, showed that polymers produced by the soluble and cell-associated fractions of EPSA strain are dextrans consisting of a linear backbone of linked α-(1→6) Glcp in the main chain with α-(1→2) and α-(1→3)-linked branches. The polymer produced by the soluble fraction of EPSB strain was identified as a class 1 dextran with a linear backbone containing consecutive α-(1→6)-linked D-glucopyranosyl units with few α-(1→3)-linked branches, whereas the cell-associated EPS is a polymer mixture consisting of a levan composed of linear chains of (2→6)-linked β-D-fructofuranosyl residues with β-(2→6) connections, and a class 1 dextran. According to our knowledge this is the first report of dextrans and a levan including their structural characterization produced by L. kimchii isolated from a traditional fermented source.

  9. Isolation, chemical characteristics and immunity activity of an extracellular polysaccharide EPSⅠ isolated from Antarctic bacterium Pseudoalteromonas sp. S-15-13

    Institute of Scientific and Technical Information of China (English)

    Li Jiang; Chen Kaoshan; Sun Xiuqin; Song Jinping; Li Guangyou

    2007-01-01

    A new extracelluar polysaccharide (EPS) was isolated and purified from Antarctic bacterium S-15-13, identified as Pseudoalteromonas sp. After being separated and purified by DEAE-Sephadex A-50 ionexchange and Sephadex G-100 gel chromatography, two mains fractions (EPSⅠ and EPSⅡ ) were obtained. EPSⅠ was composed of mannose, glucose and galactose with a molecular weight of 23kDa and EPSⅡ was composed of mannose only with a molecular weight of 62kDa. The effect of the polysaccharide EPSⅠ on the cellular immune response of mice was investigated. Results demonstrated that EPSⅠ could markedly facilitate lymphocyte proliferation, and might be a strong immunomodulator.

  10. Withania somnifera attenuates acid production, acid tolerance and extra-cellular polysaccharide formation of Streptococcus mutans biofilms.

    Science.gov (United States)

    Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2014-01-01

    Withania somnifera (Ashwagandha) is a plant of the Solanaceae family. It has been widely used as a remedy for a variety of ailments in India and Nepal. The plant has also been used as a controlling agent for dental diseases. The aim of the present study was to evaluate the activity of the methanol extract of W. somnifera against the physiological ability of cariogenic biofilms and to identify the components of the extract. To determine the activity of the extract, assays for sucrose-dependent bacterial adherence, glycolytic acid production, acid tolerance, and extracellular polysaccharide formation were performed using Streptococcus mutans biofilms. The viability change of S. mutans biofilms cells was also determined. A phytochemical analysis of the extract was performed using TLC and LC/MS/MS. The extract showed inhibitory effects on sucrose-dependent bacterial adherence (≥ 100 μg/ml), glycolytic acid production (≥ 300 μg/ml), acid tolerance (≥ 300 μg/ml), and extracellular polysaccharide formation (≥ 300 μg/ml) of S. mutans biofilms. However, the extract did not alter the viability of S. mutans biofilms cells in all concentrations tested. Based on the phytochemical analysis, the activity of the extract may be related to the presence of alkaloids, anthrones, coumarines, anthraquinones, terpenoids, flavonoids, and steroid lactones (withanolide A, withaferin A, withanolide B, withanoside IV, and 12-deoxy withastramonolide). These data indicate that W. somnifera may be a potential agent for restraining the physiological ability of cariogenic biofilms.

  11. Structural characterization and anti-aging activity of a novel extracellular polysaccharide from fungus Phellinus sp. in a mammalian system.

    Science.gov (United States)

    Ma, Xiao-Kui; Guo, Dan Dan; Peterson, Eric Charles; Dun, Ying; Li, Dan Yang

    2016-08-10

    Little is known about the chemical structure of purified extracellular polysaccharides from Phellinus sp., a fungal species with known medicinal properties. A combination of IR spectroscopy, methylation analysis and NMR were performed for the structural analysis of a purified extracellular polysaccharide derived from Phellinus sp. culture, denoted as SHP-1, along with an evaluation of the anti-aging effect in vivo of the polysaccharide supplementation. The structure of SHP-1 was established, with a backbone composed of →2,4)-α-d-glucopyranose-(1→ and →2)-β-d-mannopyranose-(1→ and two terminal glucopyranose branches. Biochemical analysis from mammalian animal experiments demonstrated that SHP-1 possesses the ability to enhance antioxidant enzyme activities, such as catalase (CAT) and superoxide dismutase (SOD) activities, Trolox equivalent antioxidant capacity (TEAC) in serum of d-galactose-aged mice, while reducing lipofuscin levels, another indicator of cell aging, indicating a potential association with anti-aging activities in a dose dependent manner. This compound had a favourable influence on immune organ indices, and a marked amelioration ability of histopathological hepatic lesions such as necrosis, karyolysis and reduced inflammation and apoptosis in mouse hepatocytes. These results suggest that SHP-1 has strong antioxidant activities and a significant protective effect against oxidative stress or hepatotoxicity induced by d-galactose in mice and it could be developed as a food ingredient or a pharmaceutical to prevent many age-associated diseases such as major depressive disorder and hepatotoxicity. To our knowledge, this is the first report on the antioxidant effects of a novel purified exopolysaccharide derived from Phellinus sp.

  12. CHANGES IN THE MORPHOLOGY AND POLYSACCHARIDE CONTENT OF MICROCYSTIS AERUGINOSA (CYANOBACTERIA) DURING FLAGELLATE GRAZING(1).

    Science.gov (United States)

    Yang, Zhou; Kong, Fanxiang; Shi, Xiaoli; Zhang, Min; Xing, Peng; Cao, Huansheng

    2008-06-01

    To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies.

  13. Evaluating filterability of different types of sludge by statistical analysis: The role of key organic compounds in extracellular polymeric substances.

    Science.gov (United States)

    Xiao, Keke; Chen, Yun; Jiang, Xie; Zhou, Yan

    2017-03-01

    An investigation was conducted for 20 different types of sludge in order to identify the key organic compounds in extracellular polymeric substances (EPS) that are important in assessing variations of sludge filterability. The different types of sludge varied in initial total solids (TS) content, organic composition and pre-treatment methods. For instance, some of the sludges were pre-treated by acid, ultrasonic, thermal, alkaline, or advanced oxidation technique. The Pearson's correlation results showed significant correlations between sludge filterability and zeta potential, pH, dissolved organic carbon, protein and polysaccharide in soluble EPS (SB EPS), loosely bound EPS (LB EPS) and tightly bound EPS (TB EPS). The principal component analysis (PCA) method was used to further explore correlations between variables and similarities among EPS fractions of different types of sludge. Two principal components were extracted: principal component 1 accounted for 59.24% of total EPS variations, while principal component 2 accounted for 25.46% of total EPS variations. Dissolved organic carbon, protein and polysaccharide in LB EPS showed higher eigenvector projection values than the corresponding compounds in SB EPS and TB EPS in principal component 1. Further characterization of fractionized key organic compounds in LB EPS was conducted with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). A numerical multiple linear regression model was established to describe relationship between organic compounds in LB EPS and sludge filterability.

  14. Polysaccharides of St. John’s Wort Herb Stimulate NHDF Proliferation and NEHK Differentiation via Influence on Extracellular Structures and Signal Pathways

    Directory of Open Access Journals (Sweden)

    S. Abakuks

    2012-01-01

    Full Text Available St. John's Wort herb extracts often contain undesirable or volitional polysaccharides. As polysaccharides exhibit structure-dependent biological functions in the present study water-soluble polysaccharides were extracted from herb material, fractionated by anion exchange chromatography into four main polysaccharide fractions (denominated as Hp1, Hp2, Hp3 and Hp4 and characterized by HPAEC-PAD, CE, IR and GC-MS. Biological activity on human skin keratinocytes and fibroblasts was assessed by investigation of their effect on proliferation, metabolism, cytotoxicity, apoptosis and differentiation. The underlying mechanisms were investigated in gene expression studies. Polysaccharide fraction Hp1 was mainly composed of β-D-glucose. Hp2, Hp3 and Hp4 contained pectic structures and arabinogalactan proteins varying in composition and quantity. Polysaccharides of Hp1 induced the keratinocyte differentiation by inhibiting the gene expression of the epidermal growth factor and insulin receptor. While the collagen secretion of fibroblasts was stimulated by each polysaccharide fraction only Hp1 stimulated the synthesis. The fibroblast proliferation was reduced by Hp1 and increased by Hp4. This effect was related to the influence on genes that referred to oxidative stress, metabolism, transcription processes and extracellular proteins. In conclusion polysaccharides have been shown as biologically active ingredients of aqueous St. John's Wort extracts with a relation between their structural characteristics and function.

  15. Study of extracellular polymeric substances in the biofilms of a suspended biofilter for nitric oxide removal.

    Science.gov (United States)

    Li, Han; Huang, Shaobin; Zhou, Shaofeng; Chen, Pengfei; Zhang, Yongqing

    2016-11-01

    The extraction and quantitative analysis of extracellular polymeric substances (EPS) have been frequently reported in studies of activated sludge. However, little is currently known about the EPS in the biofilms of biofilter systems. This study investigates the EPS in biofilms of Chelatococcus daeguensis TAD1 established in a suspended biofilter for nitric oxide (NO) removal under thermophilic conditions. Polysaccharide was the main EPS component under all experimental operation conditions of the aerobic biofilter, although the EPS contents and components varied under different operating conditions. As the concentration of the inlet NO varied from 200 to 2000 mg/m(3), the EPS and protein contents generally increased. At the highest inlet concentration (2000 mg/m(3)), the EPS and protein contents reached 0.118 and 0.055 mg/g, respectively (representing increases of 7.3 and 35 %, respectively, over the inlet concentration of 200 mg/m(3)). In contrast, the polysaccharide content was quite stable against inlet NO concentration. Decreasing the empty bed residence time increased the EPS and polysaccharide contents, but exerted little effect on the protein content. Varying the pH of the circulating fluid from 4 to 8 changed the EPS and its components in complex ways. We also found a strong correlation between the total EPS content and the NO removal efficiency. Therefore, it is possible to take EPS into consideration for biofilter control.

  16. Effects of sand burial on biomass, chlorophyll fluores-cence and extracellular polysaccharides of man-made cyanobacterial crusts under experimental conditions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soil cyanobacterial crusts occur throughout the world, especially in the semiarid and arid regions. It always encounters sand burial, which is an important feature of mobile sand dunes. A greenhouse study was conducted to determine the effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts in six periods of time (0, 5, 10, 15, 20 and 30 d after burying) and at five depths (0, 0.2, 0.5, 1 and 2cm). The results indicated that with the increase of the burial time and burial depth extracellular polysaccharides content and Fv/Fm decreased correspondingly and there were no significant differences between 20 and 30 burial days under dif-ferent burial depths. The degradation of chlorophyll a content appeared only at 20 and 30 burial days and there was also no significant difference between them under different burial depths. It was also observed a simultaneous decrease of the values of the Fv/Fm and the content of extracellular poly-saccharides happened in the crusted cyanobacterium Microcoleus vaginatus Gom. It may suggest that there exists a relationship between extracellular polysaccharides and recovery of the activity of pho-tosystem II (PS II) after rehydration.

  17. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS).

    Science.gov (United States)

    Zhang, Weijun; Cao, Bingdi; Wang, Dongsheng; Ma, Teng; Xia, Hua; Yu, Dehong

    2016-01-01

    Extracellular polymeric substances (EPS) are highly hydrated biopolymers and play important roles in bioflocculation, floc stability, and solid-water separation processes. Destroying EPS structure will result in sludge reduction and release of trapped water. In this study, the effects of combined process of peracetic acid (PAA) pre-oxidation and chemical re-flocculation on morphological properties and distribution and composition of EPS of the resultant sludge flocs were investigated in detail to gain insights into the mechanism involved in sludge treatment. It was found that sludge particles were effectively solubilized and protein-like substances were degraded into small molecules after PAA oxidation. A higher degradation of protein-like substances was observed at acid environments under PAA oxidation. Microscopic analysis revealed that no integral sludge floc was observed after oxidation with PAA at high doses. The floc was reconstructed with addition of inorganic coagulants (polyaluminium chloride (PACl) and ferric chloride (FeCl3)) and PACl performed better in flocculation due to its higher charge neutralization and bridging ability. Combined oxidative lysis and chemical re-flocculation provide a novel solution for sludge treatment.

  18. The Azospirillum brasilense Sp7 noeJ and noeL genes are involved in extracellular polysaccharide biosynthesis.

    Science.gov (United States)

    Lerner, Anat; Castro-Sowinski, Susana; Valverde, Angel; Lerner, Hadas; Dror, Rachel; Okon, Yaacov; Burdman, Saul

    2009-12-01

    Azospirillum brasilense is a plant root-colonizing bacterium that exerts beneficial effects on the growth of many agricultural crops. Extracellular polysaccharides of the bacterium play an important role in its interactions with plant roots. The pRhico plasmid of A. brasilense Sp7, also named p90, carries several genes involved in synthesis and export of cell surface polysaccharides. We generated two Sp7 mutants impaired in two pRhico-located genes, noeJ and noeL, encoding mannose-6-phosphate isomerase and GDP-mannose 4,6-dehydratase, respectively. Our results demonstrate that in A. brasilense Sp7, noeJ and noeL are involved in lipopolysaccharide and exopolysaccharide synthesis. noeJ and noeL mutant strains were significantly altered in their outer membrane and cytoplasmic/periplasmic protein profiles relative to the wild-type strain. Moreover, both noeJ and noeL mutations significantly affected the bacterial responses to several stresses and antimicrobial compounds. Disruption of noeL, but not noeJ, affected the ability of the A. brasilense Sp7 to form biofilms. The pleiotropic alterations observed in the mutants could be due, at least partially, to their altered lipopolysaccharides and exopolysaccharides relative to the wild-type.

  19. Extracellular polysaccharide production by a strain of Pleurotus djamor isolated in the south of Brazil and antitumor activity on Sarcoma 180.

    Science.gov (United States)

    Borges, Gisele Martini; De Barba, Fabiana Figueredo Molin; Schiebelbein, Ana Paula; Pereira, Bruna Parmezzani; Chaves, Mariane Bonatti; Silveira, Marcia Luciane Lange; Pinho, Mauro Souza Leite; Furlan, Sandra Aparecida; Wisbeck, Elisabeth

    2013-12-01

    Polysaccharides with medicinal properties can be obtained from fruiting bodies, mycelium and culture broth of several fungus species. This work was carried out in batch culture using a stirred tank reactor with two different initial glucose concentrations (40-50 g/L) and pH values (3.0-4.0) to enhance extracellular polysaccharides production by Pleurotus djamor UNIVILLE 001 and evaluate antitumor effect of intraperitonial administration of Pleurotus djamor extract on sarcoma 180 animal model. According to factorial design, the low pH value (pH 3.0) led to a gain of 1.6 g/L on the extracellular polysaccharide concentration, while glucose concentration in the tested range had no significant effect on the concentration of polysaccharide. With 40 g/L initial glucose concentration and pH 3.0, it was observed that yield factor of extracellular polysaccharide on substrate (YP/S = 0.072) and maximum extracellular polysaccharide productivity (Q(Pmax) = 11.26 mg/L.h) were about 188% and 321% respectively higher than those obtained in the experiment performed at pH 4.0. Under these conditions, the highest values of the yield factor of biomass on substrate (YX/S = 0.24) and maximal biomass productivity (Q(Xmax) = 32.2 mg/L.h) were also reached. In tumor response study, mean tumor volume on the 21th day was 35.3 cm(3) in untreated group and 1.6 cm(3) in treated group (p = 0.05) with a tumor inhibition rate of 94%. These impressive results suggests an inhibitory effect of P.djamor extract on cancer cells.

  20. Extracellular polysaccharide production by a strain of Pleurotus djamor isolated in the south of Brazil and antitumor activity on Sarcoma 180

    Directory of Open Access Journals (Sweden)

    Gisele Martini Borges

    2013-12-01

    Full Text Available Polysaccharides with medicinal properties can be obtained from fruiting bodies, mycelium and culture broth of several fungus species. This work was carried out in batch culture using a stirred tank reactor with two different initial glucose concentrations (40-50 g/L and pH values (3.0-4.0 to enhance extracellular polysaccharides production by Pleurotus djamor UNIVILLE 001 and evaluate antitumor effect of intraperitonial administration of Pleurotus djamor extract on sarcoma 180 animal model. According to factorial design, the low pH value (pH 3.0 led to a gain of 1.6 g/L on the extracellular polysaccharide concentration, while glucose concentration in the tested range had no significant effect on the concentration of polysaccharide. With 40 g/L initial glucose concentration and pH 3.0, it was observed that yield factor of extracellular polysaccharide on substrate (Y P/S = 0.072 and maximum extracellular polysaccharide productivity (Q Pmax = 11.26 mg/L.h were about 188% and 321% respectively higher than those obtained in the experiment performed at pH 4.0. Under these conditions, the highest values of the yield factor of biomass on substrate (Y X/S = 0.24 and maximal biomass productivity (Q Xmax = 32.2 mg/L.h were also reached. In tumor response study, mean tumor volume on the 21th day was 35.3 cm³ in untreated group and 1.6 cm³ in treated group (p = 0.05 with a tumor inhibition rate of 94%. These impressive results suggests an inhibitory effect of P.djamor extract on cancer cells.

  1. EPS-Then and Now.

    Science.gov (United States)

    Flemming, Hans-Curt

    2016-11-18

    "Slime" played a brief and spectacular role in the 19th century founded by the theory of primordial slime by Ernst Haeckel. However, that substance was never found and eventually abandoned. Further scientific attention slowly began in the 1930s referring to slime as a microbial product and then was inspired by "How bacteria stick" by Costerton et al. in 1978, and the matrix material was considered to be polysaccharides. Later, it turned out that proteins, nucleic acids and lipids were major other constituents of the extracellular polymeric substances (EPS), an acronym which was highly discussed. The role of the EPS matrix turns out to be fundamental for biofilms, in terms of keeping cells in proximity and allowing for extended interaction, resource capture, mechanical strength and other properties, which emerge from the life of biofilm organisms, including enhanced tolerance to antimicrobials and other stress. The EPS components are extremely complex and dynamic and fulfil many functional roles, turning biofilms into the most ubiquitous and successful form of life on Earth.

  2. Selective reactivity of monochloramine with extracellular matrix components affects the disinfection of biofilm and detached clusters.

    Science.gov (United States)

    Xue, Zheng; Lee, Woo Hyoung; Coburn, Kimberly M; Seo, Youngwoo

    2014-04-01

    The efficiency of monochloramine disinfection was dependent on the quantity and composition of extracellular polymeric substances (EPS) in biofilms, as monochloramine has a selective reactivity with proteins over polysaccharides. Biofilms with protein-based (Pseudomonas putida) and polysaccharide based EPS (Pseudomonas aeruginosa), as well as biofilms with varied amount of polysaccharide EPS (wild-type and mutant P. aeruginosa), were compared. The different reactivity of EPS components with monochloramine influenced disinfectant penetration, biofilm inactivation, as well as the viability of detached clusters. Monochloramine transport profiling measured by a chloramine-sensitive microelectrode revealed a broader diffusion boundary layer between bulk and biofilm surface in the P. putida biofilm compared to those of P. aeruginosa biofilms. The reaction with proteins in P. putida EPS multiplied both the time and the monochloramine mass required to achieve a full biofilm penetration. Cell viability in biofilms was also spatially influenced by monochloramine diffusion and reaction within biofilms, showing a lower survival in the surface section and a higher persistence in the middle section of the P. putida biofilm compared to the P. aeruginosa biofilms. While polysaccharide EPS promoted biofilm cell viability by obstructing monochloramine reactive sites on bacterial cells, protein EPS hindered monochloramine penetration by reacting with monochloramine and reduced its concentration within biofilms. Furthermore, the persistence of bacterial cells detached from biofilm (over 70% for P. putida and ∼40% for polysaccharide producing P. aeruginosa) suggested that currently recommended monochloramine residual levels may underestimate the risk of water quality deterioration caused by biofilm detachment.

  3. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: a fluorescence quenching study.

    Science.gov (United States)

    Pan, Xiangliang; Liu, Jing; Zhang, Daoyong; Chen, Xi; Song, Wenjuan; Wu, Fengchang

    2010-05-15

    Binding of dicamba to soluble EPS (SEPS) and bound EPS (BEPS) from aerobic activated sludge was investigated using fluorescence spectroscopy. Two protein-like fluorescence peaks (peak A with Ex/Em=225 nm/342-344 nm and peak B with Ex/Em=275/340-344 nm) were identified in SEPS and BEPS. Humic-like fluorescence peak C (Ex/Em=270-275 nm/450-460 nm) was only found in BEPS. Fluorescence of the peaks A and B for SEPS and peak A for BEPS were markedly quenched by dicamba at all temperatures whereas fluorescence of peaks B and C for BEPS was quenched only at 298 K. A dynamic process dominated the fluorescence quenching of peak A of both SEPS and BEPS. Fluorescence quenching of peak B and C was governed a static process. The effective quenching constants (logK(a)) were 4.725-5.293 for protein-like fluorophores of SEPS and 4.23-5.190 for protein-like fluorophores of BEPS, respectively. LogK(a) for humic-like substances was 3.85. Generally, SEPS had greater binding capacity for dicamba than BEPS, and protein-like substances bound dicamba more strongly than humic-like substances. Binding of dicamba to SEPS and BEPS was spontaneous and exothermic. Electrostatic force and hydrophobic interaction forces play a crucial role in binding of dicamba to EPS.

  4. Polysaccharides enriched in rare sugars: bacterial sources, production and applications

    Directory of Open Access Journals (Sweden)

    Christophe eRoca

    2015-04-01

    Full Text Available Microbial extracellular polysaccharides (EPS, produced by a wide range of bacteria, are high molecular weight biopolymers, presenting an extreme diversity in terms of chemical structure and composition. They may be used in many applications, depending on their chemical and physical properties. A rather unexplored aspect is the presence of rare sugars in the composition of some EPS. Rare sugars, such as rhamnose or fucose, may provide EPS with additional biological properties compared to those composed of more common sugar monomers.This review gives a brief overview of these specific EPS and their producing bacteria. Cultivation conditions are summarized, demonstrating their impact on the EPS composition, together with downstream processing. Finally, their use in different areas, including cosmetics, food products, pharmaceuticals and biomedical applications, are discussed.

  5. 绞股蓝内生真菌产胞外多糖发酵条件的优化%Optimization of Fermentation Conditions of Extracellular Polysaccharide Produced by Endophytic Fungi from Gynostemma pentaphyllum

    Institute of Scientific and Technical Information of China (English)

    李传民; 曹健; 张慧茹; 兰亚莉

    2016-01-01

    Extracellular polysaccharide produced by endophytic fungi JY25 from the medicinal plants Gy-nostemma pentaphyllum had anti-cancer,anti-oxidation and other bioactive effects. The fermentation condi-tions were optimized to obtain the highest EPS. The incubation time,inoculum dose,carbon sources and nitrogen sources were optimized by single factor test and the orthogonal test with the yield of extracellular polysaccharide as the test aim. The optimized results of single factor test showed that the optimum culture cycle was 8 d,the optimum inoculum dose was 7%,the optimum carbon source was glucose,and the opti-mum nitrogen source was yeast powder. The optimized results of orthogonal test indicated that the optimum culture cycle was 8 d,the optimum inoculum dose was 5%,the optimum application rate of glucose was 40 g/L,and the optimum application rate of yeast powder was 5 g/L,under the above conditions the yield of extracellular polysaccharide reached 271. 40 mg/L.%药用植物绞股蓝内生真菌JY25胞外多糖具有抗癌、抗氧化等多种活性作用,对其发酵条件进行优化,以期达到高产胞外多糖的效果. 以胞外多糖产量为检验指标,采用单因素和正交试验对培养时间、接种量、碳源、氮源进行优化. 单因素试验结果表明,绞股蓝内生真菌JY25产胞外多糖的最佳培养周期为8 d,最佳接种量为7%,最佳碳源为葡萄糖,最佳氮源为酵母粉;正交试验优化后发现,产胞外多糖的最佳发酵条件为培养时间8 d、接种量5%、葡萄糖添加量40 g/L、酵母粉添加量5 g/L,在此条件下胞外多糖的产量达到271. 40 mg/L.

  6. Characterization of an extracellular polysaccharide produced by Bacillus sp.RL-2

    Institute of Scientific and Technical Information of China (English)

    LUO Ping; LUO Gu-yuan; JI Fang-ying; CAI Jiang-wei

    2005-01-01

    A strain secreting a strongly acidic polysaccharide flocculating agent was isolated from activated sludge, and identified as Bacillus brevis. The bioflocculant was produced by RL-2 during the late logarithmic growth in the batch culture and was recovered from supernatant by ethanol precipitation. The bioflocculant is thermo-stable as its activity remains stable after heated at 100℃ for 45 min. Its flocculating activity with kaolin suspensions was stimulated by the addition of Ca2+, Al3+ and Cu2+. The flocculant consists of glucose, mannose, and galacturonic acid. Its average molecular mass was estimated to be approximately 2.86×105 by the method of viscosity. The flocculant aggregates various inorganic and organic compounds in solution.

  7. Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization.

    Science.gov (United States)

    Cao, Bin; Ahmed, Bulbul; Kennedy, David W; Wang, Zheming; Shi, Liang; Marshall, Matthew J; Fredrickson, Jim K; Isern, Nancy G; Majors, Paul D; Beyenal, Haluk

    2011-07-01

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) to U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells with minimal EPS, we show that (i) bEPS from Shewanella sp. HRCR-1 biofilms contribute significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; (ii) bEPS can be considered a functional extension of the cells for U(VI) immobilization and they likely play more important roles at lower initial U(VI) concentrations; and (iii) the U(VI) reduction efficiency is dependent upon the initial U(VI) concentration and decreases at lower concentrations. To quantify the relative contributions of sorption and reduction to U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(VI). We found that, when reduced, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated the reactivity of laEPS, while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, possibly facilitated U(VI) reduction.

  8. Contribution of Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms to U(VI) Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Bin; Ahmed, B.; Kennedy, David W.; Wang, Zheming; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Isern, Nancy G.; Majors, Paul D.; Beyenal, Haluk

    2011-06-05

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) in U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells without EPS, we showed that i) bEPS from Shewanella sp. HRCR-1 biofilms contributed significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; ii) bEPS could be considered as a functional extension of the cells for U(VI) immobilization and they likely play more important roles at initial U(VI) concentrations; and iii) U(VI) reduction efficiency was found to be dependent upon initial U(VI) concentration and the efficiency decreased at lower concentrations. To quantify relative contribution of sorption and reduction in U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(V). We found that, when in reduced form, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated reactivity of laEPS while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, might facilitate U(VI) reduction.

  9. Structure of Plant Cell Walls : XVIII. An Analysis of the Extracellular Polysaccharides of Suspension-Cultured Sycamore Cells.

    Science.gov (United States)

    Stevenson, T T; McNeil, M; Darvill, A G; Albersheim, P

    1986-04-01

    The water-soluble polysaccharides (SEPS) secreted into the medium by suspension-cultured sycamore cells were examined to determine whether the polysaccharides were the same as those present in the walls of sycamore cells. The SEPS were made more amenable to fractionation by treatment with a highly purified alpha-1,4-endopolygalacturonase (EPG). The EPG-treated SEPS were fractionated by anion-exchange and gelpermeation chromatography. The following polysaccharides were found: xyloglucan, arabinoxylan, at least two arabinogalactans, a rhamnogalacturonan-II-like polysaccharide, and a polygalacturonic acid-rich polysaccharide. The oligogalacturonide fragments expected from EPG-digested homogalacturonan were also identified. Evidence was obtained for the presence of a rhamnogalacturonan-I-like polysaccharide. All of the above polysaccharides have been isolated from or are believed to be present in sycamore cell walls. Furthermore, all of the noncellulosic polysaccharides known to be present in sycamore cell-walls appear to be present in the SEPS.

  10. Separation and Purification of Intracellular and Extracellular Polysaccharides from Isochrysis galbana and Their Antimicrobial Activity%球等鞭金藻胞内和胞外多糖的分离纯化及其抑菌活性

    Institute of Scientific and Technical Information of China (English)

    孙颖颖; 周豹; 徐深圳; 李文浩; 阎斌伦

    2012-01-01

    采用分级沉淀、Sephadex G-75凝胶柱层析和DEAE-52离子交换柱层析对球等鞭金藻胞内粗多糖(IPS)进行分离;对胞外粗多糖(IEPS)则进行Sephadex G-100凝胶柱层析分离。在此基础上,分析所获多糖组分对大肠杆菌、枯草芽孢杆菌、金黄色葡萄球菌和变形杆菌等细菌的抑菌活性。同时,通过紫外光谱和红外光谱测定,比较IPS和IEPS结构的异同。结果表明:IPS和IEPS均具有抑菌活性,前者抑制大肠杆菌、枯草芽孢杆菌和金黄色葡萄球菌的生长,后者抑制大肠杆菌和枯草芽孢杆菌的生长;IPS经DEAE-52纤维素柱层析分离,获得2个多糖组分:IPSⅠ和IPSⅡ。IEPS经Sephadex G-100凝胶柱层析分离,获得3个多糖组分:IEPSA、IEPSB和IEPSC。活性检测表明,IPSⅠ和IPSⅡ抑制枯草芽孢杆菌和金黄色葡萄球菌的生长;IEPSA、IEPSB和IEPSC抑制大肠杆菌的生长;紫外光谱表明,IPS和IEPS均不含核酸、游离或裸露的蛋白质和色素;IPS和IEPS的红外光谱比较相似,以半乳糖为构架,均含有酰氨取代基,但不同之处在于,后者不含硫酸取代基。%Two crude polysaccharides,intracellular polysaccharide(IPS) and extracellular polysaccharide(EPS),were isolated from the cells and culture supernatant of Isochrysis galbana through hot-water extraction.The separation and purification of IPS and EPS,and their antimicrobial activities against Escherichia coli,Bacillus subtilis,Staphylococcus aureus and Proteus sp.were investigate,respectively.IPS was separated by ethanol-precipitation and purified by Sephadex G-75 gel chromatography,or by DEAE-52 column chromatography,while EPS was fractionated by Sephadex G-100 gel filtration chromatography.Finally,IPS and EPS were analyzed by UV and IR spectroscopy.The results indicated that: 1) IPS could inhibit the growth of Escherichia coli,Bacillus subtilis and Staphylococcus aureus.EPS could inhibit the growth of Escherichia coli and

  11. Solid-state cultivation of Grifola frondosa (Dicks: Fr) S.F. Gray biomass and immunostimulatory effects of fungal intra- and extracellular beta-polysaccharides.

    Science.gov (United States)

    Svagelj, Mirjan; Berovic, Marin; Boh, Bojana; Menard, Anja; Simcic, Sasa; Wraber, Branka

    2008-01-01

    Grifola frondosa strain GF3, was cultivated on solid-state substrate consisting of milled whole corn plant (Zea mays) and olive press cake supplemented with mineral additives and olive oil. Maintenance of the moisture content in the solid substrate is of crucial importance. Moistures higher than 70% promote growth of G. frondosa mycelium and polysaccharide production. Four fractions of pure extracellular beta-D-glucans with total mass 127.2mg and four fractions of intracellular polysaccharides with total mass 47.2mg were isolated. Polysaccharides were further separated by ion-exchange, gel and affinity chromatography. Isolated polysaccharide fractions from fungal mycelium proved to induce moderate amounts of TNF-alpha in PBMC cells in vitro. The extent of TNF-alpha induction was up to 322pgmL(-1) at a polysaccharide concentration of 200microgmL(-1) for the intracellular fraction. The TNF-alpha inducing activity is comparable to romurtide, which has been used as a supporting therapy in cancer patients treated with radiotherapy and/or chemotherapy.

  12. STXM and NanoSIMS investigations on EPS fractions before and after adsorption to goethite.

    Science.gov (United States)

    Liu, Xinran; Eusterhues, Karin; Thieme, Jürgen; Ciobota, Valerian; Höschen, Carmen; Mueller, Carsten W; Küsel, Kirsten; Kögel-Knabner, Ingrid; Rösch, Petra; Popp, Jürgen; Totsche, Kai U

    2013-04-01

    Extracellular polymeric substances (EPS) are expected to be an important source for the formation of mineral-organic associations in soil. Because such formations affect the composition of mobile and immobile organic matter as well as the reactivity of minerals, we investigated the composition of EPS before and after adsorption to goethite. Raman measurements on EPS extracted from Bacillus subtilis distinguished four fractions rich in proteins, polysaccharides, lipids, or lipids and proteins. Scanning transmission X-ray microscopy identified three different EPS-fractions that varied in their composition in proteins, nonaromatic proteins, and polysaccharides. Reaction of EPS with goethite led to a preferential adsorption of lipids and proteins. The organic coverage was heterogeneous, consisting of ~100 × 200 nm large patches of either lipid-rich or protein-rich material. Nanoscale secondary ion mass spectrometry showed a strong S enrichment in aggregates of ~400 nm in the goethite adsorbed EPS. From our simplified model system, we learned that only a small portion (<10%) of EPS was immobilized via adsorption to goethite. This fraction formed a coating of subμm spaced protein-rich and lipid-rich domains, i.e., of two materials which will strongly differ in their reactive sites. This will finally affect further adsorption, the particle mobility and eventually also colloidal stability.

  13. Effects of solution conditions on the physicochemical properties of stratification components of extracellular polymeric substances in anaerobic digested sludge

    Institute of Scientific and Technical Information of China (English)

    Dongqin Yuan; Yili Wang

    2013-01-01

    The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular polymeric substances (EPS) in anaerobic digested sludge were determined.The total EPS in anaerobic digested sludge were extracted by the cation exchange resin method.Another EPS extraction method,the centrifugation and sonication technique was employed to stratify the EPS into three fractions:slime,loosely bound (LB)-EPS,and tightly bound (TB)-EPS from the outside to the inside of the anaerobic digested sludge.Proteins and polysaccharides were dispersed uniformly across the different EPS fractions,and humic-like substances were mainly partitioned in the slime,with TB-EPS second.Protein was the major constituent of the LB-EPS and TB-EPS,and the corresponding ratios ranged from 54.0% to 65.6%.The hydrophobic part in the EPS chemical components was primarily comprised of protein and DNA,while the hydrophilic part was mainly composed of polysaccharide.In the slime,the hydrophobic values of several EPS chemical components (protein,polysaccharide,humic-like substances and DNA) were all below 50%.The protein/polysaccharide ratio had a significant influence on the Zeta potentials and isoelectric point values of the EPS:the greater the protein/polysaccharide ratio of the EPS was,the greater the Zeta potential and the higher the isoeleetric point value were.All Zeta potentials of the EPS showed a decreasing trend with increasing pH.The corresponding isoeleetric point values (pH) were 2.8 for total EPS,2.2 for slime,2.7 for LB-EPS,and 2.6 for TB-EPS.As the ionic strength increased,the Zeta potentials sharply increased and then gradually became constant without charge reversal.In addition,as the temperature increased (< 40℃),the apparent viscosity of the EPS decreased monotonically and then gradually became stable between 40 and 60℃.

  14. Seasonal dynamics of extracellular polymeric substances (EPS) in surface sediments of a diatom-dominated intertidal mudflat (Marennes-Oléron, France)

    Science.gov (United States)

    Pierre, Guillaume; Zhao, Jean-Michel; Orvain, Francis; Dupuy, Christine; Klein, Géraldine L.; Graber, Marianne; Maugard, Thierry

    2014-09-01

    Numerous field-based investigations have highlighted that the production of extracellular polymeric substances (EPS) is physico-chemically and ecologically important for intertidal mudflats. EPS are largely secreted by marine benthic diatoms and their quantity and quality are environmental-dependant. This paper focused on the dynamic pathways, concentration rates and monosaccharides composition of colloidal, bound and residual carbohydrates extracted by using a cationic exchange resin from a diatom-dominated intertidal mudflat (Marennes-Oléron, France) during two different sampling periods: winter (February 2008) and summer (July 2008). A wide range of biotic and abiotic parameters were also studied to better understand the effect of environmental parameters, e.g., chlorophyll a, salinity, pore water amount, emersion time, luminosity, C:N ratio and tidal coefficient. Multiple colorimetric assays coupled to gas chromatographic analyses were carried out to perform the biochemical characterizations. Firstly, the quantity of carbohydrates produced during winter (5.28 μg·μg chl a- 1) was more important than during summer (2.04 μg·μg chl a- 1). Yet, more proteins were found during summer for the colloidal and bound fractions (0.73 and 1.04 μg·μg chl a- 1). Further investigations showed that the dynamic pathways were equivalent between winter and summer: bound carbohydrates (BC) quantities increased during the sediment emersion periods on the contrary to colloidal carbohydrates (CC) which tended to drop throughout the emersion time. The quality in monosaccharides was fraction-dependant, whatever the season. CC were always glucose-rich confirming their role of carbon source. BC were mainly composed of rhamnose whose the ratio increased during the emersion period, thus conferring adhesive properties to the extracellular matrix bounding diatoms cells. Residual carbohydrates (RC) were composed of various monosaccharides and a major increase of glucose content was

  15. Study on Jerusalem artichoke Pickle Fermented Directly by LactobaciUus plantarum Producing Higher Extracellular Polysaccharide%高产胞外多糖的植物乳杆菌直投发酵菊芋泡菜的研究

    Institute of Scientific and Technical Information of China (English)

    崔树茂; 郭钦; 刘崇万; 董英

    2011-01-01

    采用自主研发的高产胞外多糖的植物乳杆菌直投式泡菜发酵剂制备菊芋泡菜,研究其发酵过程中泡菜液pH、总酸、活菌数、维生素c、氨基酸态氮和可溶性固形物含量的变化,同时探讨菊芋主要成分菊粉对植物乳杆菌生长的影响,并测定该菌胞外多糖的产量。结果表明,菊粉可促进植物乳杆菌的生长,37℃培养24h,该菌胞外多糖产量高达471mg/L。与自然发酵相比,直投发酵的菊芋泡菜各项指标均优于自然发酵,其泡菜液pH达到3.46、总酸含量达到0.36%,活菌数保持在4.3×10^8CFU/mL、维生素C含量为16.92%、氨基酸态氮含量为0.033%、可溶性固形物含量达到15%。得到的菊芋泡菜酸度适宜,呈诱人乳白色,活菌含量高,且富含植物乳杆菌胞外多糖,为老少皆宜的益生泡菜产品。%Jerusalem artichoke polysaccharidc and extraccllular polysaccharide of lactic acid bacteria have different functional properties which are probiotic. In this paper, a Lactobacillus plantarum with high EPS-produclng capacity was selected for direct vat set (DVS) culture starter and prepared for Jerusalem artichoke pickles. The changes of the pH, total acid, viable count, vitamin C, amino acid nitrogen and soluble solids content in the pickle liquid were studied, while the effect of inulin which is the main component of artichoke on growth of Lactobacillus plantarum was studied. The yield of extracellular polysaccharide produced by the strain was determined. The results showed that inulin could promote the growth of Lactobacillus plantarum, and the yield of extracellular polysaccharide was up to 471 mg/L after 24h under the temperature of 37℃. Various indexes of Jerusalem artichoke pickle direct investment indicators were better than natural fermentation. The pH was up to 3.46, total acid content was 0.36% , the number of viable cells remained at 4.3×10^8 CFU/mL, content of

  16. Marine Polysaccharide Networks and Diatoms at the Nanometric Scale

    Directory of Open Access Journals (Sweden)

    Tea Mišić Radić

    2013-10-01

    Full Text Available Despite many advances in research on photosynthetic carbon fixation in marine diatoms, the biophysical and biochemical mechanisms of extracellular polysaccharide production remain significant challenges to be resolved at the molecular scale in order to proceed toward an understanding of their functions at the cellular level, as well as their interactions and fate in the ocean. This review covers studies of diatom extracellular polysaccharides using atomic force microscopy (AFM imaging and the quantification of physical forces. Following a brief summary of the basic principle of the AFM experiment and the first AFM studies of diatom extracellular polymeric substance (EPS, we focus on the detection of supramolecular structures in polysaccharide systems produced by marine diatoms. Extracellular polysaccharide fibrils, attached to the diatom cell wall or released into the surrounding seawater, form distinct supramolecular assemblies best described as gel networks. AFM makes characterization of the diatom polysaccharide networks at the micro and nanometric scales and a clear distinction between the self-assembly and self-organization of these complex systems in marine environments possible.

  17. Extracellular polymeric substances and dewaterability of waste activated sludge during anaerobic digestion.

    Science.gov (United States)

    Ye, Fenxia; Liu, Xinwen; Li, Ying

    2014-01-01

    Anaerobic digestion of waste activated sludge was conducted to gain insight into the mechanisms underlying change in sludge dewaterability during its anaerobic digestion. Unexpectedly, the results indicated that sludge dewatering properties measured by capillary suction time only deteriorated after 10 days of anaerobic digestion, after which dewaterability recovered and remained stable. The loosely bound extracellular polymeric substance (LB-EPS) content increased three-fold after 20 days of anaerobic digestion, and did not change significantly during the remaining 30 days. The tightly bound EPS (TB-EPS) content reduced slightly after 20 days of anaerobic digestion, and stabilized during the last 30 days. Polysaccharides (PS) and proteins (PN) content in LB-EPS increased after 10 days of anaerobic digestion. However, PS and PN contents in TB-EPS decreased slightly. The relationship analysis showed that only LB-EPS correlated with dewaterability of the sludge during anaerobic digestion.

  18. Structural and functional properties of organic matters in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) after heat pretreatment with waste sludge.

    Science.gov (United States)

    Sun, Jian; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian; Wang, Guangce

    2016-11-01

    The effects of heat pretreatment on waste sludge hydrolysis were investigated in this study. Heat pretreatment was conducted at 65°C, 80°C, 100°C and 121°C for 5min, 10min, 15min, 20min, 25min and 30min. Not only analyzed the changes of SCOD (Soluble chemical oxygen demand), carbohydrate and protein, but also evaluated the structural and functional properties of organics in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) by using three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy with fluorescence regional integration (FRI) analysis. The SCOD in DOM increased with pretreated temperatures. The optimal heat hydrolysis temperature and time were selected by further studying the biodegradable and non-biodegradable components. After treated at 80°C for 25min, the fluorescence intensity and percent fluorescence response (Pi,n) of easily biodegradable soluble microbial by-product substance were higher than others, and little non-biodegradable fulvic acid-like substance was accumulated.

  19. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Yang, Liang; Hu, Yifan; Liu, Yang

    2011-01-01

    Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several d...... polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.......Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several...

  20. Enhanced Production of Polysaccharide Through the Overexpression of Homologous Uridine Diphosphate Glucose Pyrophosphorylase Gene in a Submerged Culture of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes).

    Science.gov (United States)

    Ji, Sen-Lin; Liu, Rui; Ren, Meng-Fei; Li, Huan-Jun; Xu, Jun-Wei

    2015-01-01

    This study aimed to improve polysaccharide production by engineering the biosynthetic pathway in Ganoderma lucidum through the overexpression of the homologous UDP glucose pyrophosphorylase (UGP) gene. The effects of UGP gene overexpression on intracellular polysaccharide (IPS) content, extracellular polysaccharide (EPS) production, and transcription levels of 3 genes encoding the enzymes involved in polysaccharide biosynthesis, including phosphoglucomutase (PGM), UGP, and α-1,3-glucan synthase (GLS), were investigated. The maximum IPS content and EPS production in G. lucidum overexpressing the UGP gene were 24.32 mg/100 mg dry weight and 1.66 g/L, respectively, which were higher by 42% and 36% than those of the wild-type strain. The transcription levels of PGM, UGP, and GLS were up-regulated by 1.6, 2.6, and 2.4-fold, respectively, in the engineered strain, suggesting that increased polysaccharide biosynthesis may result from a higher expression of those genes.

  1. Influences of environmental factors on bacterial extracellular polymeric substances production in porous media

    Science.gov (United States)

    Xia, Lu; Zheng, Xilai; Shao, Haibing; Xin, Jia; Peng, Tao

    2014-11-01

    Bioclogging of natural porous media occurs frequently under a wide range of conditions. It may influence the performance of permeable reactive barrier and constructed wetland. It is also one of the factors that determine the effect of artificial groundwater recharge and in situ bioremediation process. In this study, a series of percolation column experiments were conducted to simulate bioclogging process in porous media. The predominant bacteria in porous media which induced clogging were identified to be Methylobacterium, Janthinobacterium, Yersinia, Staphylococcus and Acidovorax, most of which had been shown to effectively produce viscous extracellular polymeric substances (EPS). The column in which EPS production was maximized also coincided with the largest reduction in saturated hydraulic conductivity of porous media. In addition, carbon concentration was the most significant factor to affect polysaccharide, protein and EPS secretion, followed by phosphorus concentration and temperature. The coupled effect of carbon and phosphorus concentration was also very important to stimulate polysaccharide and EPS production.

  2. Activity of glycosidases from freshwater heterotrophic microorganisms on the degradation of extracellular polysaccharide produced by Anabaena spiroides (Cyanobacteria Atividade de glicosidases liberadas por microorganismos heterotróficos de água doce na degradação do polissacarídeo extracelular produzido por Anabaena spiroides (Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Vanessa Colombo

    2004-06-01

    Full Text Available The activity of specific glycosidases during the degradation of the extracellular polysaccharide (EPS produced by Anabaena spiroides was determined using MUF-substrates (MUF-monosaccharides. Polysaccharide degradation was found to occur in a two-phase process. The first consisted of high enzymatic activity that consumed 41% of the EPS at a relatively high rate, while the second consumed the remaining polysaccharide (59% at a slower rate. A transition phase from the higher to the slower degradation rates was marked by a replacement of bacterial populations from coccoid to bacillus cells. During the degradation process, the bacterial biomass increased with the decrease of EPS, as revealed by bacterial cell counts. The enzymatic activity detected through the substrates MUF-alpha-D- and MUF-beta-D-glucoside was higher than that detected by other substrates tested. The remaining glycosides were MUF-alpha-L-rhamnopyranoside, MUF-beta-D-galactoside, MUF-alpha-D-mannopyranoside, MUF-beta-D-fucoside, MUF-beta-D-mannopyranoside, MUF-alpha-L-arabinopyranoside, and MUF-beta-L-fucoside. The fluorescence emitted by each MUF-substrate was proportional to the concentration of the corresponding monosaccharide in A. spiroides EPS. This demonstrates the susceptibility of EPS produced by A. spiroides to enzymatic attack by bacterial populations.A atividade de glicosidases durante a degradação do polissacarídeo extracelular (EPS produzido por Anabaena spiroides foi detectada e quantificada utilizando-se MUF-substratos (MUF-monossacarídeos. O consumo total do polissacarídeo efetuou-se em duas fases, uma primeira de alta atividade enzimática que rapidamente consumiu 41% do polissacarídeo e uma segunda, mais lenta, que consumiu o polissacarídeo restante (59%. A mudança de fase coincidiu com a sucessão de uma população de bactérias cocóides por outra de bacilos. A biomassa bacteriana, quantificada por contagens de células, aumentou com a degradação do

  3. Characteristics of extracellular polymeric substances of phototrophic biofilms at different aquatic habitats.

    Science.gov (United States)

    Fang, Fang; Lu, Wen-Tao; Shan, Qi; Cao, Jia-Shun

    2014-06-15

    Three different phototrophic biofilms obtained from a natural lake (Sample 1), drinking water plant (Sample 2) and wastewater treatment plant (Sample 3) were investigated. Diatoms and green algae were the dominant algae of three biofilms, and the biomass was highest in biofilm of Sample 2. The three phototrophic biofilms also had variable extracellular polymeric substances (EPS) concentrations and compositions. Total EPS concentration of 14.80 mg/g DW was highest in biofilm of Sample 2, followed by biofilms of Samples 3 and 1 (13.11 and 12.29 mg/g DW). Tightly bound EPS (TB-EPS) were the main fraction, and polysaccharides and protein were the main components of total EPS in all three biofilms. However, the compositions of loosely bound EPS (LB-EPS) and TB-EPS were different in three biofilms. Fourier-transform infrared and fluorescence spectra indicated different structure and compositions of LB-EPS and TB-EPS. These results demonstrated the characteristics of EPS produced by phototrophic biofilms varied and had compact relation to their growth environmental conditions.

  4. Extracellular Matrix Assembly in Diatoms (Bacillariophyceae) (I. A Model of Adhesives Based on Chemical Characterization and Localization of Polysaccharides from the Marine Diatom Achnanthes longipes and Other Diatoms).

    Science.gov (United States)

    Wustman, B. A.; Gretz, M. R.; Hoagland, K. D.

    1997-04-01

    Extracellular adhesives from the diatoms Achnanthes longipes, Amphora coffeaeformis, Cymbella cistula, and Cymbella mexicana were characterized by monosaccharide and methylation analysis, lectin-fluorescein isothiocyanate localization, and cytochemical staining. Polysaccharide was the major component of adhesives formed during cell motility, synthesis of a basal pad, and/or production of a highly organized shaft. Hot water-insoluble/hot 0.5 M NaHCO3-soluble anionic polysaccharides from A. longipes and A. coffeaeformis adhesives were primarily composed of galactosyl (64-70%) and fucosyl (32-42%) residues. In A. longipes polymers, 2,3-, t-, 3-, and 4-linked/substituted galactosyl, t-, 3-, 4-, and 2-linked fucosyl, and t- and 2-linked glucuronic acid residues predominated. Adhesive polysaccharides from C. cistula were EDTA-soluble, sulfated, consisted of 83% galactosyl (4-, 4,6-, and 3,4-linked/substituted) and 13% xylosyl (t-, 4f/5p-, and 3p-linked/substituted) residues, and contained no uronosyl residues. Ulex europaeus agglutinin uniformly localized [alpha](1,2)-L-fucose units in C. cistula and Achnanthes adhesives formed during motility and in the pads of A. longipes. D-Galactose residues were localized throughout the shafts of C. cistula and capsules of A. coffeaeformis. D-Mannose and/or D-glucose, D-galactose, and [alpha](t)-L-fucose residues were uniformly localized in the outer layers of A. longipes shafts by Cancavalia ensiformis, Abrus precatorius, and Lotus tetragonolobus agglutinin, respectively. A model for diatom cell adhesive structure was developed from chemical characterization, localization, and microscopic observation of extracellular adhesive components formed during the diatom cell-attachment process.

  5. Extracellular polymeric substances enhanced mass transfer of polycyclic aromatic hydrocarbons in the two-liquid-phase system for biodegradation.

    Science.gov (United States)

    Zhang, Yinping; Wang, Fang; Yang, Xinglun; Gu, Chenggang; Kengara, Fredrick Orori; Hong, Qing; Lv, Zhengyong; Jiang, Xin

    2011-05-01

    The objective was to elucidate the role of extracellular polymeric substances (EPS) in biodegradation of polycyclic aromatic hydrocarbons in two-liquid-phase system (TLPs). Therefore, biodegradation of phenanthrene (PHE) was conducted in a typical TLPs--silicone oil-water--with PHE-degrading bacteria capable of producing EPS, Sphingobium sp. PHE3 and Micrococcus sp. PHE9. The results showed that the presence of both strains enhanced mass transfer of PHE from silicone oil to water, and that biodegradation of PHE mainly occurred at the interfaces. The ratios of tightly bound (TB) proteins to TB polysaccharides kept almost constant, whereas the ratios of loosely bound (LB) proteins to LB polysaccharides increased during the biodegradation. Furthermore, polysaccharides led to increased PHE solubility in the bulk water, which resulted in an increased PHE mass transfer. Both LB-EPS and TB-EPS (proteins and polysaccharides) correlated with PHE mass transfer in silicone oil, indicating that both proteins and polysaccharides favored bacterial uptake of PHE at the interfaces. It could be concluded that EPS could facilitate microbial degradation of PHE in the TLPs.

  6. Extracellular polysaccharide production by a novel osmotolerant marine strain of Alteromonas macleodii and its application towards biomineralization of silver.

    Directory of Open Access Journals (Sweden)

    Ananya Mehta

    Full Text Available The present study demonstrates exopolysaccharide production by an osmotolerant marine isolate and also describes further application of the purified polysaccharide for production of colloidal suspension of silver nanoparticles with narrow size distribution. Phylogenetic analysis based on 16S r RNA gene sequencing revealed close affinity of the isolate to Alteromonas macleodii. Unlike earlier reports, where glucose was used as the carbon source, lactose was found to be the most suitable substrate for polysaccharide production. The strain was capable of producing 23.4 gl(-1 exopolysaccharide with a productivity of 7.8 gl(-1 day(-1 when 15% (w/v lactose was used as carbon source. Furthermore, the purified polysaccharide was able to produce spherical shaped silver nanoparticles of around 70 nm size as characterized by Uv-vis spectroscopy, Dynamic light scattering and Transmission electron microscopy. These observations suggested possible commercial potential of the isolated strain for production of a polysaccharide which has the capability of synthesizing biocompatible metal nanoparticle.

  7. Binding of Pu(IV) to galacturonic acid and extracellular polymeric substances (EPS) from Shewanella putrefaciens, Clostridium sp. and Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Harper, R.M. [Dept. of Environmental Sciences, Huxley Coll. of the Environment, Western Washington Univ., WA (United States); Kantar, C. [Dept. of Environmental Engineering, Mersin Univ., Ciftllikkoy, Mersin (Turkey); Honeyman, B.D. [Environmental Science and Engineering Div., Colorado School of Mines, Golden, CO (United States)

    2008-07-01

    The conditional stability constants for trace-level concentrations of Pu(IV) complexing with galacturonic acid and EPS, isolated from axenic Clostridium sp., P. fluorescens and Shewanella putrefaciens CN32 cultures, were determined at pH 4 and an ionic strength of 0.1 M NaCl using an ion-exchange technique. The analysis of ion-exchange data with Schubert's technique indicates that the Pu binding by galacturonic acid and EPS from Clostridium sp. and S. putrefaciens can be described based on the formation of 1: 1 Pu(IV)-ligand complexes. However, the accurate description of Pu binding by EPS from P. fluorescens requires postulation of a mixture of 1: 1/1: 2 complexes between Pu(IV) and ligands under the experimental conditions studied. The results from the ion-exchange experiments were also modeled based on a non-electrostatic, discrete ligand approach in which bacterial EPS is conceptualized as being composed of a suite of monoprotic acids, HL{sub 1}, of arbitrarily-assigned pK{sub a} (i) values (e.g., 4, 6 and 8). The examination of ion-exchange data in a chemical model suggested that only the pK{sub a} 4 (L{sub 1}) and 6 (L{sub 2}) ligands are sufficient to accurately simulate the Pu(IV)/EPS binding, implying that carboxylic groups in EPS are the primary binding sites for complexing with Pu(IV) under the experimental conditions examined. The affinity of EPS for complexing Pu(IV) decreases in the order of Clostridium sp. > S. putrefaciens > P. fluorescens although the concentrations of carboxylic groups in EPS decrease in the order of P. fluorescens > S. putrefaciens > Clostridium sp. This discrepancy may be due to differences in binding affinities between Na{sup +} ion in solution and EPS ligands. At I = 0.1 M, models demonstrated that the EPS from P. fluorescens exhibits a much stronger affinity for the Na{sup +} ion compared to ligands from other EPS; therefore, the deprotonated carboxylic sites of EPS from P. fluorescens are hypothesized to be mostly bound

  8. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress.

    Science.gov (United States)

    Zhao, Linting; She, Zonglian; Jin, Chunji; Yang, Shiying; Guo, Liang; Zhao, Yangguo; Gao, Mengchun

    2016-09-01

    The composition and distribution of extracellular polymeric substance (EPS) both from suspended sludge and attached biofilm were investigated in a simultaneous nitrification and denitrification (SND) system with the increase of the salinity from 1.0 to 3.0 %. Fourier-transform infrared (FTIR) spectroscopy and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy were used to examine proteins (PN), polysaccharides (PS) and humic substances (HS) present in EPS. High total nitrogen removal (above 83.9 %) via SND was obtained in the salinity range of 1.0-2.5 %. Total EPS in the sludge increased from 150.2 to 200.6 mg/gVSS with the increase of salinity from 1.0 to 3.0 %, whereas the corresponding values in the biofilm achieved the maximum of 288.6 mg/g VSS at 2.0 % salinity. Dominant composition of EPS was detected as HS in both sludge and biofilm, having the percentages of 50.6-68.6 and 41.1-69.9 % in total EPS, respectively. Both PN and PS contents in soluble EPS (S-EPS), loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) of sludge and biofilm increased with the increased salinity. The FTIR spectrum and 3D-EEM fluorescence spectroscopy of S-EPS, LB-EPS and TB-EPS in the sludge and biofilm showed the changes of functional groups and conformations of the compositions in EPS with the increase of salinity. The results demonstrated that the characteristics of EPS varied from sludge to biofilm. The obtained results could provide a better understanding of the salinity effect on the EPS characteristics in a SND system.

  9. Isolation, Purification of Extracellular Polysaccharide from Viili and Its Effect on the Lifespan of Caenorhabditis elegans%Viili中胞外多糖的分离纯化及对秀丽线虫寿命的影响

    Institute of Scientific and Technical Information of China (English)

    王昌禄; 韩晓梅; 陈勉华; 王玉荣; 李风娟; 韩洪杰; 罗成

    2011-01-01

    The extracelluar polysaccharide (EPS) from Viili was obtained by Sevage method, ethanol deposition, the DEAE gel chromatography column and Sephadex G - 200 chromatography column. Then the effect of Viili EPS on longevity of Caenorhabditis elegans was detected by lifespan test. At 20℃, the mean lifespan of C. elegans was 17.13 ±0.53 d with Viili EPS 200 μg · mL-1. Compared with the control, the Viili EPS- treated groups showed significant increase in the mean lifespan of C. elegans( p < O. 001 ).%采用Sevage法脱蛋白、乙醇沉淀、DEAE-纤维素离子交换柱层析和Sephadex G-200分子筛层析法,从Viili中分离纯化得到Viili中乳酸菌胞外多糖(EPS).采用秀丽线虫进行寿命实验,观察Viili EPS延长秀丽线虫寿命的效果,在20℃下,饲喂Viili EPS 200 mg·L-1组秀丽线虫的平均寿命为17.13±0.53 d,与空白组相比,Viili EPS能够显著延长线虫的平均寿命(p< 0.001).

  10. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae

    Directory of Open Access Journals (Sweden)

    Rui Manuel Santos Costa de Morais

    2013-01-01

    Full Text Available Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina, and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS. It goes through the most studied activities of sulphated polysaccharides (sPS or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review.

  11. Bioactivity and applications of sulphated polysaccharides from marine microalgae.

    Science.gov (United States)

    Raposo, Maria Filomena de Jesus; de Morais, Rui Manuel Santos Costa; Bernardo de Morais, Alcina Maria Miranda

    2013-01-23

    Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina), and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS). It goes through the most studied activities of sulphated polysaccharides (sPS) or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review.

  12. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae

    Science.gov (United States)

    de Jesus Raposo, Maria Filomena; de Morais, Rui Manuel Santos Costa; de Morais, Alcina Maria Miranda Bernardo

    2013-01-01

    Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina), and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS). It goes through the most studied activities of sulphated polysaccharides (sPS) or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review. PMID:23344113

  13. Competitive adsorption of Reactive Orange 16 and Reactive Brilliant Blue R on polyaniline/bacterial extracellular polysaccharides composite--a novel eco-friendly polymer.

    Science.gov (United States)

    Janaki, V; Vijayaraghavan, K; Ramasamy, A K; Lee, Kui-Jae; Oh, Byung-Taek; Kamala-Kannan, Seralathan

    2012-11-30

    The performance of polyaniline/extracellular polymeric substances (Pn/EPS) composite as an adsorbent to remove the anionic reactive dyes, Reactive Brilliant Blue R (RBBR) and Reactive Orange 16 (RO), was investigated in single and binary systems. The pH(pzc) of Pn/EPS composite was calculated as 3.7 through potentiometric mass titration method. Electrostatic interaction between the dye anion and the nitrogen present in the polymer was identified as a major mechanism in adsorption process. Single component isotherms followed the Langmuir model with the maximum adsorption capacity of 0.5775 mmol g(-1) for RBBR and 0.4748 mmol g(-1) for RO. In binary system, both the reactive dye anions compete with each other and resulted in lower uptake. Binary adsorption data were interpreted well by the Sheindorf-Rehbun-Sheintuch equation as compared to extended Langmuir model with constant interaction factor. Kinetic analysis of single solute followed pseudo-first order model. Thermodynamic studies computed that RBBR and RO adsorption was endothermic, spontaneous, and feasible process.

  14. Sulfated Modification of Extracellular Polysaccharide from Submerged Fermentation of Ganoderma lucidum%发酵灵芝胞外多糖硫酸化修饰

    Institute of Scientific and Technical Information of China (English)

    沈洁; 刘昱均; 张珏

    2015-01-01

    The extracellular polysaccharides from submerged fermentation of Ganoderma lucidum exhibit low anticancer activity. Sulfation of polysaccharides is an important approach to improve anticancer activity of polysaccharides. In addition, the degree of sulfated substitution (DS) is closely related to its biological activities. In order to understand the relationship between DS and sulfated conditions and obtain the sulfated derivatives with different DS, the sulfuric acid esterification reagent and the relationship between the sulfated reaction conditions and DS were further investigated. The results showed that aminosulfonic acid offered milder reaction conditions than that of chlorosulfonic acid. On the other hand, the addition of urea also gave mild reaction conditions and improved DS.%发酵灵芝胞外多糖表现出微弱的抗肿瘤活性,硫酸化是改善多糖抑癌活性的重要途径,而多糖的硫酸化取代度与其生物活性密切相关。为了了解硫酸化取代度与硫酸化条件之间的关系,以获取不同取代度的产品,对发酵灵芝胞外多糖的硫酸化试剂以及硫酸化反应条件与取代度之间的关系进行了较深入研究。实验结果表明,氨基磺酸比氯磺酸的硫酸化过程更加缓和,尿素的加入也有利于缓和反应条件,提高取代度。

  15. Polysaccharide production by submerged and solid-state cultures from several medicinal higher Basidiomycetes.

    Science.gov (United States)

    Montoya, Sandra; Sanchez, Oscar Julian; Levin, Laura

    2013-01-01

    Polysaccharides produced by microorganisms represent an industrially unexploited market. An important number of polysaccharides have been isolated from fungi, especially mushrooms, with many interesting biological functions, such as antitumor, hypoglycemic, and immunostimulating activities. In the search of new sources of fungal polysaccharides, the main goal of this research was to test the ability of several species of basidiomycetes, among them various edible mushrooms, to produce both extracellular polysaccharides (EPSs) and intracellular polysaccharides (IPSs). Among 10 species screened for production of EPSs in submerged cultures with glucose, soy oil, and yeast extract, the best results were obtained with Ganoderma lucidum (0.79 g/L EPS) and Pleurotus ostreatus (0.75 g/L EPS). Agitation strongly improved EPS production in most of the studied strains. Eight of 10 species assayed successfully developed basidiomes during synthetic "bag-log" cultivation on a substrate consisting of oak sawdust and corn bran. This work describes for the first time the environmental factors required for fruiting of 4 species under such conditions: Schizophyllum commune, Ganoderma applanatum, Trametes versicolor, and T. trogii. IPSs were extracted from the carpophores. The IPS content of the carpophores varied from 1.4% (G. applanatum) up to 5.5% and 6% in G. lucidum and Grifola frondosa, respectively.

  16. Different Types of Diatom-Derived Extracellular Polymeric Substances Drive Changes in Heterotrophic Bacterial Communities from Intertidal Sediments

    Science.gov (United States)

    Bohórquez, Julio; McGenity, Terry J.; Papaspyrou, Sokratis; García-Robledo, Emilio; Corzo, Alfonso; Underwood, Graham J. C.

    2017-01-01

    Intertidal areas support extensive diatom-rich biofilms. Such microphytobenthic (MPB) diatoms exude large quantities of extracellular polymeric substances (EPS) comprising polysaccharides, glycoproteins and other biopolymers, which represent a substantial carbon pool. However, degradation rates of different EPS components, and how they shape heterotrophic communities in sediments, are not well understood. An aerobic mudflat-sediment slurry experiment was performed in the dark with two different EPS carbon sources from a diatom-dominated biofilm: colloidal EPS (cEPS) and the more complex hot-bicarbonate-extracted EPS. Degradation rate constants determined over 9 days for three sediment fractions [dissolved organic carbon (DOC), total carbohydrates (TCHO), and (cEPS)] were generally higher in the colloidal-EPS slurries (0.105–0.123 d−1) compared with the hot-bicarbonate-extracted-EPS slurries (0.060–0.096 d−1). Addition of hot-bicarbonate-EPS resulted in large increases in dissolved nitrogen and phosphorous by the end of the experiment, indicating that the more complex EPS is an important source of regenerated inorganic nutrients. Microbial biomass increased ~4–6-fold over 9 days, and pyrosequencing of bacterial 16S rRNA genes revealed that the addition of both types of EPS greatly altered the bacterial community composition (from 0 to 9 days) compared to a control with no added EPS. Bacteroidetes (especially Tenacibaculum) and Verrucomicrobia increased significantly in relative abundance in both the hot-bicarbonate-EPS and colloidal-EPS treatments. These differential effects of EPS fractions on carbon-loss rates, nutrient regeneration and microbial community assembly improve our understanding of coastal-sediment carbon cycling and demonstrate the importance of diverse microbiota in processing this abundant pool of organic carbon. PMID:28289404

  17. [The gene wxcA of Xanthomonas campestris pv. campestris 8004 strain involved in EPS yield].

    Science.gov (United States)

    Lu, Guang-Tao; Tang, Ji-Liang; Wei, Guang-Ning; He, Yong-Qiang; Chen, Bao-Shan

    2004-07-01

    Xanthomonas campestris pv. campestris (Xcc), the pathogenic agent of black rot disease in cruciferous plants, produces large amount of extracellular polysaccharide (EPS), which has found wide applications in industry. For the great commercial value of the xanthan gum, many of the genes involved in EPS biosynthesis have been cloned and the mechanism of EPS biosynthesis also has been studied. In order to clone genes involved in EPS biosynthesis, Xcc wild-type strain 8004 was mutagenized with transposon Tn5 gusA5, and a number of EPS-defective mutants were isolated in our previous work. The Tn5 gusA5 inserted sites of these mutants were located by using thermal asymmetric interlaced PCR, and results showed that two EPS-defective mutants were insertion mutants of the gene wxcA which involved in lipopolysaccharide (LPS) biosynthesis. The gene wxcA involved in lipopolysaccharide biosynthesis but dose not extracellular polysaccharide in others' report. wxcA::Tn5 gusA5 mutant 021C12, the polar mutant, was complemented with recombinant plasmid pLATC8570 harboring an intact wxcA gene in this work, but the yield of EPS of the wxcA::Tn5 gusA5 mutant was not restored. In order to identify the function of wxcA gene of Xcc 8004 strain, the gene wxcA was deleted by gene replacement strategy, and the no-polar mutant of wxcA was obtained. DeltawxcA mutant strain, named Xcc 8570, was confirmed by using both PCR and southern analysis. Beside the LPS biosynthesis of deltawxcA mutant was affected, The EPS yield of deltawxcA mutant strain reduced by 50% as compared with the wild-type strain 8004. DeltawxcA mutant could be complemented in trans with the intact wxcA gene, and the EPS yield of the mutant was restored. The combined data showed that wxcA gene not only involved in LPS biosynthesis but also EPS yield in Xcc 8004 strain.

  18. Pathogenicity of EPS-deficient mutants (gumB-, gumD and gumE - ) of Xanthomonas campestris pv. campestris

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Three extracellular polysaccharide (EPS) -deficient mutants of the pathogen Xanthomonas campestris pv. campestris, gumB - , gumD - and gumE- were constructed by Tn5 gusA5 mutagenesis in this study. The results of pathogenicity bioassay showed that three mutants had the obviously decreased pathogenicity on radish ( Raphanus sativus L. ) leaves. Because dead body of the bacteria still caused symptoms, it seemed that some unknown factors on the bac terial cell surface might play certain roles in the pathogenicity of the pathogen. The extracted raw EPS could lead to the chlorotic symptom on radish leaves, and its virulence was increased with the increase of EPS dosage, which suggested that EPS was a main component that caused the danage on radish leaves.

  19. 集胞藻胞外聚合物(EPS)与氯霉素的相互作用%Interaction between Chloramphenicol and the Extracellular Polymeric Substances from Cyanobacterium Synechocystis sp.

    Institute of Scientific and Technical Information of China (English)

    付庆龙; 张道勇; 牟书勇; 潘响亮

    2012-01-01

    Three-dimensional excitation emission matrix (EEM ) fluorescence spectroscopy was used to examine the interaction between chloramphenicol ( CAP) and the extracellular polymeric substances (EPS) from Synechocystis sp. The results showed that there were six particular fluorescence peaks in the spectra of EPS. Peak A (EX/EM =205/304) , peak B (EX/EM =230/302) , peak C (EJEm = 235/354) and peak D (EX/EM =260/372) represented the protein-like fluorescence substances, and the other two peaks at ExIEm = 275/446 (peak E) and EX/EM =350/452 (peak F) reflected the humic-like fluorophores. With the exception of peak F, all the fluorescence peaks could be significantly quenched by CAP. This indicated that the fluorophores material can play a role with CAP, but not between CAP and those reflected by peak F. The reaction between CAP and the fluorophores in EPS was a static process, and formed stable EPS-CAP complexes. The effective quenching and binding constants for fluorophores of EPS were 3. 28-4. 49 and 4. 54-8. 13, respectively. The strong combination of EPS to CAP implied that EPS may play an important role in the transfer and transformation of CAP in aquatic environments.%通过利用激发-发射矩阵(EEM)荧光光谱,研究蓝藻集胞藻EPS(胞外聚合物)与CAP(氯霉素)的相互作用.结果表明:EPS含有6个峰,其中峰A(Ex/Em=205/304)、峰B(Ex/Em=230/302)、峰C(Ex/Em=235/354)和峰D(Ex/Em=260/372)为类蛋白峰,峰E(Ex/Em=275/446)和峰F(Ex/Em=350/452)为类腐殖质峰.除峰F外,其他各峰都能被CAP猝灭,说明它们所代表的物质能够与CAP发生作用;而峰F则几乎不被CAP猝灭,即荧光峰F不与CAP发生作用.CAP与EPS中荧光基团的反应属于静态猝灭,生成稳定的不发荧光的EPS-CAP络合物,其有效猝灭常数为3.28~4.49,结合常数为4.54~8.13.EPS与CAP强的络合作用意味着环境中普遍存在的EPS可能深刻地影响CAP在水环境中的迁移与转化.

  20. Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge.

    Science.gov (United States)

    Ramesh, A; Lee, D J; Lai, J Y

    2007-03-01

    This study extracted the soluble microbial products and loosely bound and tightly bound extracellular polymeric substances (EPS) from suspended sludge from a membrane bioreactor, original and aerobically/anaerobically digested, and compared their fouling potentials on a microfiltration membrane. The resistance of cake layer accounts for 95-98% of the total filtration resistances when filtering the whole sludges, with anaerobically digested sludge presenting the highest resistance among the three tested sludges. The tightly bound EPS has the highest potential to foul the membrane; however, the loosely bound EPS contribute most of the filtration resistances of the whole sludges. The foulants corresponding to the irreversible fouling have chemical fingerprints similar to those from loosely bound EPS, which have a greater predilection to proteins and humic substances than to polysaccharides.

  1. The Extracellular Matrix in Photosynthetic Mats: A Cyanobacterial Gingerbread House

    Science.gov (United States)

    Stuart, R.; Stannard, W.; Bebout, B.; Pett-Ridge, J.; Mayali, X.; Weber, P. K.; Lipton, M. S.; Lee, J.; Everroad, R. C.; Thelen, M.

    2014-12-01

    Hypersaline laminated cyanobacterial mats are excellent model systems for investigating photoautotrophic contributions to biogeochemical cycling on a millimeter scale. These self-sustaining ecosystems are characterized by steep physiochemical gradients that fluctuate dramatically on hour timescales, providing a dynamic environment to study microbial response. However, elucidating the distribution of energy from light absorption into biomass requires a complete understanding of the various constituents of the mat. Extracellular polymeric substances (EPS), which can be composed of proteins, polysaccharides, lipids and DNA are a major component of these mats and may function in the redistribution of nutrients and metabolites within the community. To test this notion, we established a model mat-building culture for comparison with the phylogenetically diverse natural mat communities. In these two systems we determined how proteins and glycans in the matrix changed as a function of light and tracked nutrient flow from the matrix. Using mass spectrometry metaproteomics analysis, we found homologous proteins in both field and culture extracellular matrix that point to cyanobacterial turnover of amino acids, inorganic nutrients, carbohydrates and nucleic acids from the EPS. Other abundant functions identified included oxidative stress response from both the cyanobacteria and heterotrophs and cyanobacterial structural proteins that may play a role in mat cohesion. Several degradative enzymes also varied in abundance in the EPS in response to light availability, suggesting active secretion. To further test cyanobacterial EPS turnover, we generated isotopically-labeled EPS and used NanoSIMS to trace uptake of this labeled EPS. Our findings suggest Cyanobacteria may facilitate nutrient transfer to other groups, as well as uptake of their own products through degradation of EPS components. This work provides evidence for the essential roles of EPS for storage, structural

  2. Influences of Extracellular Polymeric Substances on the Dewaterability of Sewage Sludge during Bioleaching

    Science.gov (United States)

    Zhang, Xueying; Zhou, Lixiang

    2014-01-01

    Extracellular polymeric substances (EPS) play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system), the capillary suction time (CST) of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92) and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide) in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement. PMID:25050971

  3. Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching.

    Directory of Open Access Journals (Sweden)

    Jun Zhou

    Full Text Available Extracellular polymeric substances (EPS play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system, the capillary suction time (CST of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92 and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement.

  4. Extraction and structural properties of Acanthophora muscoides (Rhodophyceae extracellular matrix sulfated polysaccharides and their effects on coagulation

    Directory of Open Access Journals (Sweden)

    José Ariévilo Gurgel Rodrigues

    2016-06-01

    Full Text Available Acanthophora muscoides (Rhodophyta contains structurally heterogeneous sulfated polysaccharides (Am-SPs with pharmacological importance; however, its matrix SPs composition has not been still extensively investigated. This study sequentially extracted and compared the structural features and the in vitro anticoagulant effects of the Am-SPs. Papain-extraction sequence yielded Am.E-1, Am.E-2 and Am.E-3 containing differences among the relative proportions of sulfate (26.18-33% and hexoses (42.02-60.67% based on chemical analyses. One- (1H and two-dimensions (1H/13C nuclear magnetic resonance experiments showed very complex Am-SPs composed of alternating 4-linked-α-galactopyranosyl units and 3-linked-β-galactopyranosyl units presenting variable sulfation, CH3 substitutions and3,6-anhydro-α-L-galactose units and pyruvated-D-galactose residues, respectively, typical of agarocolloids. Different chromatographic profiles (DEAE-cellulose were observed, with fractions (Am I, Am II and Am III eluted with 0.5, 0.75 and/or 1 M of NaCl, respectively revealing charge density patterns and distinct mobility to heparin by agarose-electrophoresis and, when analyzed by polyacrylamide-electrophoresis, a dispersive migration and similar mobility as chondroitin-6-sulfate for Am I fractions were noted. Regarding the activated partial thromboplastin time test, fractions had no virtually anticoagulation (1.47→3.07 IU mg-1 in comparison with 193 IU mg-1 heparin. Therefore, Am-SPs show significantly lower anticoagulation than heparin.

  5. Polysaccharide capsule and suilysin contribute to extracellular survival of Streptococcus suis co-cultivated with primary porcine phagocytes.

    Science.gov (United States)

    Benga, Laurentiu; Fulde, Marcus; Neis, Christina; Goethe, Ralph; Valentin-Weigand, Peter

    2008-11-25

    Streptococcus suis is a major cause of meningitis, sepsis and arthritis in piglets and a zoonotic agent. Survival in the blood circulation system represents a major step in pathogenesis of S. suis infections. To get further insights into the mechanisms of S. suis survival in the host, we compared a highly virulent S. suis serotype 2 strain with its non-encapsulated and suilysin-deficient mutants in their abilities to resist phagocytosis and killing by polymorphonuclear neutrophils (PMNs) and mononuclear cells. PMNs displayed a higher capacity to take up encapsulated bacteria than mononuclear cells, whereas both cell types internalized efficiently non-encapsulated S. suis. Differentiation of extracellular and intracellular survival of the WT strain revealed that in PMNs the majority of the cell-associated streptococci were intracellular, whereas in mononuclear cells the majority remained attached to the cell surface. S. suis survived mainly extracellularly, since both cells killed intracellular bacteria to a similar extent. As a consequence of different resistance to phagocytosis, only the encapsulated S. suis strains survived co-cultivation with PMNs. Comparison of the WT strain with its encapsulated suilysin-deficient mutant revealed reduced survival of the mutant after co-cultivation with PMNs. Involvement of suilysin in inhibition of phagocytosis was further confirmed by the use of anti-suilysin antibodies and recombinant suilysin. Kinetic experiments with PMNs suggested that reduced survival of the mutant strain was mainly associated with an increased uptake, whilst both strains adhered similarly. Concluding, our results indicate that the capsule and the suilysin play important roles in S. suis survival in the host by interfering with phagocytic uptake.

  6. Effect of acemannan, an extracted polysaccharide from Aloe vera, on BMSCs proliferation, differentiation, extracellular matrix synthesis, mineralization, and bone formation in a tooth extraction model.

    Science.gov (United States)

    Boonyagul, Sani; Banlunara, Wijit; Sangvanich, Polkit; Thunyakitpisal, Pasutha

    2014-07-01

    Aloe vera is a traditional wound healing medicine. We hypothesized acemannan, a polysaccharide extracted from Aloe vera gel, could affect bone formation. Primary rat bone marrow stromal cells (BMSCs) were treated with various concentrations of acemannan. New DNA synthesis, VEGF, BMP-2, alkaline phosphatase activity, bone sialoprotein, osteopontin expression, and mineralization were determined by [(3)H] thymidine incorporation assay, ELISA, biochemical assay, western blotting, and Alizarin Red staining, respectively. In an animal study, mandibular right incisors of male Sprague-Dawley rats were extracted and an acemannan treated sponge was placed in the socket. After 1, 2, and 4 weeks, the mandibles were dissected. Bone formation was evaluated by dual-energy X-ray absorptiometry and histopathological examination. The in vitro results revealed acemannan significantly increased BMSC proliferation, VEGF, BMP-2, alkaline phosphatase activity, bone sialoprotein and osteopontin expression, and mineralization. In-vivo results showed acemannan-treated groups had higher bone mineral density and faster bone healing compared with untreated controls. A substantial ingrowth of bone trabeculae was observed in acemannan-treated groups. These data suggest acemannan could function as a bioactive molecule inducing bone formation by stimulating BMSCs proliferation, differentiation into osteoblasts, and extracellular matrix synthesis. Acemannan could be a candidate natural biomaterial for bone regeneration.

  7. Effect of proteins, polysaccharides, and particle sizes on sludge dewaterability

    Institute of Scientific and Technical Information of China (English)

    SHAO Liming; HE Peipei; YU Guanghui; HE Pinjing

    2009-01-01

    Four batch experiments of hydrolysis and acidification were carried out to investigate the distributions of proteins (PN) and polysaccharides (PS) in the sludge, the PN/PS ratio, the particle sizes, and their relationship with sludge dewaterability (as determined by capillary suction time, CST). The sludge flocs were stratified through centrifugation- and ultrasound-based method into four layers: (1) slime, (2) loosely bound extracellular polymeric substances (LB-EPS), (3) tightly bound EPS (TB-EPS), and (4) pellet. The results showed that PN was mainly partitioned in the pellet (80.7%) and TB-EPS (9.6%) layers, while PS distributed evenly in the four layers. During hydrolysis and acidification, PN was transferred from the pellet and TB-EPS layers to the slime layer, but PS had no significant transfer trends. The mean particle sizes of the sludge flocs decreased with hydrolysis and acidification. The pH had a more significant influence on the dewaterability of sludge flocs than temperature. Sludge dewaterability during hydrolysis and acidification processes greatly deteriorated from 9.7 s at raw sludge to 340--450 s under alkaline conditions. However, it was just slightly increased under acidic conditions. Further investigation suggested that CST was affected by soluble PN, soluble PN/PS, and particle sizes of sludge flocs, but was affected slightly by total PN, PS, or PN/PS in the whole sludge flocs and other layers (except slime).

  8. Importance of extracellular proteins in maintaining structural integrity of aerobic granules.

    Science.gov (United States)

    Xiong, Yanghui; Liu, Yu

    2013-12-01

    Aerobic granules developed through self-immobilization of microorganisms are compact and structured microbial consortia embedded in a matrix of extracellular polymeric substances (EPS). This study investigated the contribution of extracellular proteins (PN) to maintaining the structural integrity of aerobic granule. It was found that hydrolysis of PN induced by Proteinase K led to significant disintegration of aerobic granules, whereas a substantial reduction of extracellular polysaccharides (PS) was also observed. It was proposed that hydrolysis of extracellular proteins present in the EPS matrix of aerobic granules led to collapse of the EPS matrix, and subsequent disintegration of aerobic granule. These suggested that extracellular proteins would be essential for maintaining structural stability of EPS matrix of aerobic granules. In addition, it was revealed that production of signaling molecules, such as autoinducer-2 (AI-2) and N-acyl homoserine lactones (AHLs) was also inhibited probably due to hydrolysis of quorum sensing receptor proteins by Proteinase K. This in turn provided an additional explanation for the observed Proteinase K-triggered dispersal of aerobic granules.

  9. 盐度和pH对底栖硅藻胞外多聚物的影响%Production of extracellular polymeric substances (EPS) by benthic diatom: effect of salinity and pH

    Institute of Scientific and Technical Information of China (English)

    陈长平; 高亚辉; 林鹏

    2006-01-01

    研究了盐度和pH值对底栖硅藻新月简柱藻(Cylindrotheca closterium(Her.)Reimann et Lewin)增殖、蛋白质含量和胞外多聚物(Extracellular Polymeric Substances,EPS)的影响.结果表明新月筒柱藻最适生长的盐度和pH值分别是15和8,属半咸水性生活.高盐度(>15)和低pH值(<pH8)的胁迫促进了胞外多聚物(EPS)的积累,说明EPS的存在可能有利于缓解外界的不利条件.胶体EPS和附着EPS对盐度和pH值的响应不同,反应了两种EPS功能上的差异.盐度和pH值对新月筒柱藻胞内碳水化合物的影响不显著.

  10. Sucrose fed-batch strategy enhanced biomass, polysaccharide, and ganoderic acids production in fermentation of Ganoderma lucidum 5.26.

    Science.gov (United States)

    Wei, Zhen-hua; Liu, Lianliang; Guo, Xiao-feng; Li, Yan-jun; Hou, Bao-chao; Fan, Qiu-ling; Wang, Kai-xiang; Luo, Yingdi; Zhong, Jian-jiang

    2016-01-01

    Ganoderma, as a Chinese traditional medicine, has multiple bioactivities. However, industrial production was limited due to low yield during Ganoderma fermentation. In this work, sucrose was found to greatly enhance intracellular polysaccharide (IPS) content and specific extracellular polysaccharide (EPS) production rate. The mechanism was studied by analyzing the activities of enzymes related to polysaccharide biosynthesis. The results revealed that sucrose regulated the activities of phosphoglucomutase and phosphoglucose isomerase. When glucose and sucrose mixture was used as carbon source, biomass, polysaccharide and ganoderic acids (GAs) production was greatly enhanced. A sucrose fed-batch strategy was developed in 10-L bioreactor, and was scaled up to 300-L bioreactor. The biomass, EPS and IPS production was 25.5, 2.9 and 4.8 g/L, respectively, which was the highest biomass and IPS production in pilot scale. This study provides information for further understanding the regulation mechanism of Ganoderma polysaccharide biosynthesis. It demonstrates that sucrose fed-batch is a useful strategy for enhancing Ganoderma biomass, polysaccharide and GAs production.

  11. PssP2 is a polysaccharide co-polymerase involved in exopolysaccharide chain-length determination in Rhizobium leguminosarum.

    Directory of Open Access Journals (Sweden)

    Małgorzata Marczak

    Full Text Available Production of extracellular polysaccharides is a complex process engaging proteins localized in different subcellular compartments, yet communicating with each other or even directly interacting in multicomponent complexes. Proteins involved in polymerization and transport of exopolysaccharide (EPS in Rhizobium leguminosarum are encoded within the chromosomal Pss-I cluster. However, genes implicated in polysaccharide synthesis are common in rhizobia, with several homologues of pss genes identified in other regions of the R. leguminosarum genome. One such region is chromosomally located Pss-II encoding proteins homologous to known components of the Wzx/Wzy-dependent polysaccharide synthesis and transport systems. The pssP2 gene encodes a protein similar to polysaccharide co-polymerases involved in determination of the length of polysaccharide chains in capsule and O-antigen biosynthesis. In this work, a mutant with a disrupted pssP2 gene was constructed and its capabilities to produce EPS and enter into a symbiotic relationship with clover were studied. The pssP2 mutant, while not altered in lipopolysaccharide (LPS, displayed changes in molecular mass distribution profile of EPS. Lack of the full-length PssP2 protein resulted in a reduction of high molecular weight EPS, yet polymerized to a longer length than in the RtTA1 wild type. The mutant strain was also more efficient in symbiotic performance. The functional interrelation between PssP2 and proteins encoded within the Pss-I region was further supported by data from bacterial two-hybrid assays providing evidence for PssP2 interactions with PssT polymerase, as well as glycosyltransferase PssC. A possible role for PssP2 in a complex involved in EPS chain-length determination is discussed.

  12. pH control strategy in a shaken minibioreactor for polysaccharide production by medicinal mushroom Phellinus linteus and its anti-hyperlipemia activity.

    Science.gov (United States)

    Zou, Xiang; Guo, Xia; Sun, Min

    2009-02-01

    A process at various pH values ranging from 4.5 to 7.5 for production of mycelia and extracellular polysaccharide (EPS) by P. linteus fermentation in pH-controlled shaken bioreactor was investigated. A two-stage pH control strategy in which pH value was kept at 6.5 for the first 24 h, and then switched to 4.5 was developed successfully to enhance simultaneously the cell growth and EPS production. The maximum cell density and EPS production reached 15.13 +/- 0.1 g/l on day 6 and 6.74 +/- 0.1 g/l on day 4, respectively. The anti- hyperlipemia effect of EPS and intracellular polysaccharide (IPS) extracted from mycelia were observed that both EPS and IPS can obviously reduce the serum triglyceride (TG), the blood cholesterol (TC) and serum low density lipoprotein (LDL) level, and increase the high density lipoprotein (HDL) level of the hyperlipemia mice. Polysaccharides from submerged cultivation of medicinal fungus P. linteus have favorable potency to develop anti-hyperlipermia drugs.

  13. [Identification and cloning of a novel gene involved in EPS biosynthesis of Xanthomonas campestris pv. campestris].

    Science.gov (United States)

    Lu, Guang-Tao; Tang, Ji-Liang; He, Yong-Qiang; Chen, Bao-Shan; Tang, Dong-Jie

    2003-11-01

    Xanthomonas campestris pv. campestris ( Xcc), causative agent of the black rot disease of cruciferous crops worldwide, produces large amount of extracellular polysaccharide( EPS), which has found wide applications in industry. In order to clone genes involved in EPS biosynthesis, Xcc wild-type strain 8004 was mutagenized with transposon Tn5gus A5, and a number of EPS-defective mutants were isolated. The Tn5gusA5 insertion sites in the mutants were analyzed by using thermal asymmetric interlaced PCR(TAIL-PCR), and the corresponding genes were identified by homology blast to the completely sequenced genome of Xcc 8004 strain. A novel gene, waxE, identified from the EPS-defective mutant 151D09, was found to be disrupted by the insertion of Tn5gusA5 in the open reading frame(ORF) with genome coordinates 4478998bp to 4479819bp.This gene showed 52% similarity to the kdtX gene of Serratia marcescens and 50% to the waaE of Klebsiella pneumoniae at amino acid level, with characteristics of glycostransferase 2 family domain. In order to identify the function of waxE gene, waxE gene deletion mutant of Xcc 8004 was constructed by gene replacement strategy in which waxE gene of genome was replaced by kanamycin resistant gene kan. The waxE gene deletion mutant strain, named Xcc 8570, was confirmed by both PCR and southern analysis. The growth rate of the deletion mutant 8570 in rich medium was not affected, but the EPS yield reduced by 35% as compared with the wildtype strain 8004. The deletion mutant could be completmented in trans with plasmid pLATC8976 harboring an intact waxE gene, and the EPS yield of the mutant was restored. The combined data showed that waxE gene involved in EPS biosynthesis in Xcc.

  14. A Look inside the Listeria monocytogenes Biofilms Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Angelo Colagiorgi

    2016-07-01

    Full Text Available Listeria monocytogenes is a foodborne pathogen able to persist in food industry and is responsible for a severe illness called listeriosis. The ability of L. monocytogenes to persist in environments is due to its capacity to form biofilms that are a sessile community of microorganisms embedded in a self-produced matrix of extracellular polymeric substances (EPS’s. In this review, we summarized recent efforts performed in order to better characterize the polymeric substances that compose the extracellular matrix (ECM of L. monocytogenes biofilms. EPS extraction and analysis led to the identification of polysaccharides, proteins, extracellular DNA, and other molecules within the listerial ECM. All this knowledge will be useful for increasing food protection, suggesting effective strategies for the minimization of persistence of L. monocytogenes in food industry environments.

  15. Viscoelastic Properties of Extracellular Polymeric Substances Can Strongly Affect Their Washing Efficiency from Reverse Osmosis Membranes.

    Science.gov (United States)

    Ferrando Chavez, Diana Lila; Nejidat, Ali; Herzberg, Moshe

    2016-09-01

    The role of the viscoelastic properties of biofouling layers in their removal from the membrane was studied. Model fouling layers of extracellular polymeric substances (EPS) originated from microbial biofilms of Pseudomonas aeruginosa PAO1 differentially expressing the Psl polysaccharide were used for controlled washing experiments of fouled RO membranes. In parallel, adsorption experiments and viscoelastic modeling of the EPS layers were conducted in a quartz crystal microbalance with dissipation (QCM-D). During the washing stage, as shear rate was elevated, significant differences in permeate flux recovery between the three different EPS layers were observed. According to the amount of organic carbon remained on the membrane after washing, the magnitude of Psl production provides elevated resistance of the EPS layer to shear stress. The highest flux recovery during the washing stage was observed for the EPS with no Psl. Psl was shown to elevate the layer's shear modulus and shear viscosity but had no effect on the EPS adhesion to the polyamide surface. We conclude that EPS retain on the membrane as a result of the layer viscoelastic properties. These results highlight an important relation between washing efficiency of fouling layers from membranes and their viscoelastic properties, in addition to their adhesion properties.

  16. 蛹虫草高产胞外虫草素和虫草多糖的诱变育种%Enhanced production of extracellular cordycepin and polysaccharide in Cordyceps militaris by mutation breeding

    Institute of Scientific and Technical Information of China (English)

    孟泽彬; 文庭池; 康冀川; 康超; 王永江

    2012-01-01

    通过诱变获得高产胞外虫草素和虫草多糖的蛹虫草菌株.采用紫外线诱变(UV)、化学诱变(LiCl)、复合诱变(UV-LiCl) 3种方式对蛹虫草孢子进行诱变;发酵检测存活菌株的胞外虫草素和虫草多糖的含量.结果:以胞外虫草素为指标,3种诱变方式的最大正突变率分别为化学突变(29.2%)>紫外突变(28.6%)>复合诱变(26.5%);以胞外多糖为指标,最大正突变率分别为紫外诱变(35.7%)>复合诱变(33.3%)>化学诱变(27.0%).紫外诱变突变株Z-5-1胞外虫草素产量达0.842g/L,比出发菌株高311%;紫外诱变突变株Z-4-7胞外虫草多糖产量达5.250g/L,比出发菌株高148%.在连续培养5代后,仍具有较好的遗传稳定性.紫外诱变能获得较高的蛹虫草正突变率,同时能获得高产虫草素、虫草多糖的突变株.%The aim was to obtain high-yield strains of extracellular cordycepin and polysaccharide of Cordyceps mititaris. Three kind of mutation way, ultraviolet radiation (UV)、lithium chloride (LiCl) and compound mutagenesis (UV-LiCl) were used to deal with the spores of Cordyceps militaris. Fermenting the survival strains and detecting their content of extracellular cordycepin and cordyceps polysaccharide. The results showed: the maximum positive mutation rate order of extracellular cordycepin was LiCl (29.2%)>UV(28.6%)>UV-LiCl(26.5%) respectively, and that of extracellular polysaccharide was UV(35.7%)>UV-LiCl(33.3%)>LiCl(27.0%). The UV-induced mutant strain Z-5-1 had the highest extracellular cordycepin yield of 0.842g/L, which was 311% higher than that of the original strain. And the UV-induced mutant strain Z-4-7 had the highest extracellular Cordyceps polysaccharide production of 5.250g/L, which was 148% higher than that of the original strain. UV mutagenesis could obtain a higher positive mutation rate for Cordyceps militaris, while could produce good mutant strains with high-yield of extracellular cordycepin and

  17. Improved polysaccharide production in a submerged culture of Ganoderma lucidum by the heterologous expression of Vitreoscilla hemoglobin gene.

    Science.gov (United States)

    Li, Huan-Jun; Zhang, De-Huai; Yue, Tong-Hui; Jiang, Lu-Xi; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2016-01-10

    Expression of Vitreoscilla hemoglobin (VHb) gene was used to improve polysaccharide production in Ganoderma lucidum. The VHb gene, vgb, under the control of the constitutive glyceraldehyde-3-phosphate dehydrogenase gene promoter was introduced into G. lucidum. The activity of expressed VHb was confirmed by the observation of VHb specific CO-difference spectrum with a maximal absorption at 419 nm for the transformant. The effects of VHb expression on intracellular polysaccharide (IPS) content, extracellular polysaccharide (EPS) production and transcription levels of three genes encoding the enzymes involved in polysaccharide biosynthesis, including phosphoglucomutase (PGM), uridine diphosphate glucose pyrophosphorylase (UGP), and β-1,3-glucan synthase (GLS), were investigated. The maximum IPS content and EPS production in the vgb-bearing G. lucidum were 26.4 mg/100mg dry weight and 0.83 g/L, respectively, which were higher by 30.5% and 88.2% than those of the wild-type strain. The transcription levels of PGM, UGP and GLS were up-regulated by 1.51-, 1.55- and 3.83-fold, respectively, in the vgb-bearing G. lucidum. This work highlights the potential of VHb to enhance G. lucidum polysaccharide production by large scale fermentation.

  18. Studies of polysaccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies : structural characterization and effect on the complement system of polysaccharides from Nostoc commune

    NARCIS (Netherlands)

    Brüll, L.P.; Huang, Z.; Thomas-Oates, J.E.; Smestad-Paulsen, B.; Cohen, E.H.; Michaelsen, T.E.

    2000-01-01

    The cyanobacterium Nostoc commune Vaucher produces quite complex extracellular polysaccharides. The cyanobacterium is nitrogen fixing, and on growing the cyanobacterium in media with and without nitrogen, different types of extracellular polysaccharides were obtained. These were also different from

  19. 具鞘微鞘藻胞外多糖抗紫外辐射活性研究%Research on anti-ultraviolet radiation activity of extracellular polysaccharide from Microcoleus vaginatus Gom

    Institute of Scientific and Technical Information of China (English)

    唐倩; 周楠; 唐东山; 曾铁兵; 朱洪; 张晓文

    2015-01-01

    This paper studied the protective effect of extracellular polysaccharide from Microcoleus vaginatus Gom. for E. coli under UV radiation. In the experiment,we prepared bacterial suspension by mixing E. coli with polysaccharide solution,exposed them to ultraviolet radiation,and cultivated for several days and counted the number of E. coli,then computed UV survival rate of E. coli as well as anti ultraviolet radiation rate of polysaccharide. The results showed that,the UV survival rate of E. coli under 15W UV light irradiation conditions was higher than that under the 20W irradiation. Ir-radiated by 20W UV lamp for 40 seconds,the polysaccharide solution of 400 mg/L can achieved 41% of anti-radiation rate,which was 1. 71 times and 1. 47 times that of polysaccharide solution of 200mg/L and 800 mg/L respectively. While irradiated by 15W UV lamp irradiation for 40s,the anti ultraviolet radiation rate was 29% for polysaccharide solution of 400 mg/L,which was 1. 38 times and 1. 32 times that of solution of 200 mg/L and 800 mg/L. The results implied that extracellular polysaccharide from Microcoleus vaginatus Gom. had a certain degree of reinforcing effect for theanti UV radiation of E. coli ,and polysaccharide solution of 400 mg/L worked better than that of oth-er concentrations.%主要研究具鞘微鞘藻胞外多糖在紫外辐射下对大肠埃希氏菌的保护作用,将大肠埃希氏菌与多糖溶液混合制成菌悬液,再分别进行紫外辐射,培养后计数并计算大肠埃希氏菌紫外存活率及多糖抗紫外辐射率。结果表明:15 W紫外灯照射条件下大肠埃希氏菌存活率略高于20 W紫外灯照射条件下大肠埃希氏菌存活率。20 W紫外灯辐射40 s条件下,400 mg/L的多糖溶液的抗紫外辐射率最高达41%,为200 mg/L、800 mg/L多糖溶液抗辐射率的1.71倍和1.47倍;15 W紫外灯辐射40 s条件下,400 mg/L的多糖溶液的抗紫外辐射率为29%,为200 mg/L、800 mg

  20. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids.

  1. 双孢菇深层发酵培养基的响应面优化%Optimization of submerged fermentation medium of Agaricus bisporus for extracellular polysaccharide production by response surface analysis

    Institute of Scientific and Technical Information of China (English)

    毛勇; 毛健; 李华钟; 孟祥勇

    2013-01-01

    The effect of carbon sources,nitrogen source and mineral salt on extracellular polysaccharide production by submerged fermentation medium of Agaricus bisporus had been studied. On the base of single factors experiments,response surface analysis was applied to optimize the submerged fermentation medium of Agaricus bisporus for extracellular polysaccharide production. The quadratic regression analysis was applied to get the optimal level of main factors,and optimal quality concentrations of the variables were obtained as follows:glucose 35.7g/L,KH2PO4 2.1g/L and peptone 3.1g/L. Under these optimal conditions,the predicted and experimental production of extracellular polysaccharide was high up to 1.86g/L and 1.87g/L,respectively.%研究了碳源、氮源、无机盐对双孢菇胞外多糖产量的影响.在单因素实验的基础上,采用响应面实验设计对双孢菇(Agaricus bisporus)深层发酵生产胞外多糖的培养基进行了优化,并建立了葡萄糖、KH2PO4、蛋白胨变化的二次回归方程,探讨了各因子对胞外多糖产量的影响.最终确定适宜的培养基条件为葡萄糖35.7g/L,KH2PO42.1g/L,蛋白胨3.1g/L;在此条件下可得到胞外多糖的最大产量,预测值为1.86g/L,对实验结果进行验证,得到胞外多糖的产量为1.87g/L.

  2. EPS composition and calcification potential of tufa-dominating cyanobacteria investigated by Scanning Transmission X-ray Microscopy (STXM) and Laser Scanning Microscopy (LSM)

    Science.gov (United States)

    Zippel, Barbara; Dynes, James J.; Obst, Martin; Lawrence, John R.; Neu, Thomas R.

    2010-05-01

    Tufa deposits in freshwater habitats are the result of calcium carbonate precipitation within interfacial microbial ecosystems. Calcite precipitation is influenced by the saturation index and the occurrence of extracellular polymeric substances (EPS) which are produced by a variety of microorganisms. In theory, the first important step of biologically induced calcification processes is the adsorption of calcium ions by extracellular polymeric substances (EPS) produced by cyanobacteria. In the present study we take advantage of Laser Scanning Microscopy (LSM) and combine it with Synchrotron imaging using Scanning Transmission X-ray Microscopy (STXM). STXM represents a technique that allows simultaneous analysis of inorganic and organic constituents as a scale of 50 nm. By means of STXM it is possible to differentiate between calcium carbonate phases at the Ca L-edge. Furthermore, STXM has also been used at the C K-edge to map the major biomolecules (proteins, lipids, and polysaccharides). The purpose of this study is to find out if there are differences in calcium adsorption depending on specific composition of the EPS produced by filamentous cyanobacteria isolated from a German hard water creek (Westerhöfer Bach, Harz Mountains). The goal was to elucidate the potential of biofilms constituents, including microbial cell surfaces as well as extracellular polymeric substances, in triggering the formation of calcium carbonate in tufa systems. For this purpose three filamentous cyanobacteria (Pseudanabaena sp., Leptolyngbya sp. and Nostoc sp.) were cultivated in creek-adapted as well as standard media (BG11) on polycarbonate slides. In situ EPS composition was detected by means of fluorescence lectin-binding approach (FLBA) using 23 commercially available lectins with different specificities for mono- and disaccharides and amino sugars. For CaCO3 nucleation experiments cyanobacterial biofilms grown on polycarbonate slides were deposited in NaHCO3/CaCl2 solutions

  3. Separation and Purification of Extracellular Polysaccharide from Biofouling Layer of MBR%MBR膜污染层中胞外多糖的分离纯化

    Institute of Scientific and Technical Information of China (English)

    孙赛玉; 李秀芬; 陈坚

    2008-01-01

    探讨了MBR膜污染层胞外多糖的分离提取及纯化方法.结果表明,采用80 ℃水浴法提取物中胞外多糖含量为86.0%,粗多糖经酶解-Sevag法去除蛋白质,通过DEAE-纤维52、Sephacry-400 HR柱分离纯化得到多糖EPS-A1.紫外光谱分析多糖EPS-A1未见蛋白质与核酸的特征吸收峰,红外光谱分析其具有典型的多糖特征吸收峰.

  4. Microbial Extracellular Polymeric Substances (EPSs in Ocean Systems

    Directory of Open Access Journals (Sweden)

    Alan W. Decho

    2017-05-01

    Full Text Available Microbial cells (i.e., bacteria, archaea, microeukaryotes in oceans secrete a diverse array of large molecules, collectively called extracellular polymeric substances (EPSs or simply exopolymers. These secretions facilitate attachment to surfaces that lead to the formation of structured ‘biofilm’ communities. In open-water environments, they also lead to formation of organic colloids, and larger aggregations of cells, called ‘marine snow.’ Secretion of EPS is now recognized as a fundamental microbial adaptation, occurring under many environmental conditions, and one that influences many ocean processes. This relatively recent realization has revolutionized our understanding of microbial impacts on ocean systems. EPS occur in a range of molecular sizes, conformations and physical/chemical properties, and polysaccharides, proteins, lipids, and even nucleic acids are actively secreted components. Interestingly, however, the physical ultrastructure of how individual EPS interact with each other is poorly understood. Together, the EPS matrix molecules form a three-dimensional architecture from which cells may localize extracellular activities and conduct cooperative/antagonistic interactions that cannot be accomplished efficiently by free-living cells. EPS alter optical signatures of sediments and seawater, and are involved in biogeomineral precipitation and the construction of microbial macrostructures, and horizontal-transfers of genetic information. In the water-column, they contribute to the formation of marine snow, transparent exopolymer particles (TEPs, sea-surface microlayer biofilm, and marine oil snow. Excessive production of EPS occurs during later-stages of phytoplankton blooms as an excess metabolic by product and releases a carbon pool that transitions among dissolved-, colloidal-, and gel-states. Some EPS are highly labile carbon forms, while other forms appear quite refractory to degradation. Emerging studies suggest that EPS

  5. Effect of Different Metal Ions on Mycelium Growth and Extracellular Polysaccharide in Medicinal Mushroom Phellinus igniarius%金属离子对桑黄菌丝体及胞外多糖含量的影响

    Institute of Scientific and Technical Information of China (English)

    高慧娟; 刘雨晴; 李娟辉; 董瑞丽; 王晓琴; 贺旭阳; 张万恒; 张芬琴

    2013-01-01

      筛选出促进桑黄菌丝体生物量和胞外多糖的金属离子。通过测定平板上菌丝体生长速度,液体发酵的菌丝体干重和胞外多糖含量,确定金属离子对桑黄生长的影响。在固体平板培养中,Mg2+、Fe2+、Ca2+对桑黄的生长速度具有明显的促进作用,Na+对菌丝生长速度无明显的促进作用,而在液体摇瓶发酵中,1、3 mg/mL Mg2+,0.9 mg/mL Fe2+,3、5、7 mg/mL Ca2+以及3 mg/mL Na+增加菌丝体干重量,较空白对照差异显著,是空白对照的5倍~8倍。在3 mg/mL K+和Na+,7 mg/mL Ca2+,0.7 mg/mL Fe2+,0.1 mg/mL Zn2+的培养基中桑黄分泌的胞外粗多糖含量分别为0.4760、0.7105、0.5200、0.4516和0.6820 g/100 mL,较空白对照显著差异。一定浓度的金属离子对桑黄菌丝体的生长和胞外多糖分泌有一定的促进作用。%To screen the different mineral ions for promoting the growth of mycelia and crude extracellular polysaccharide of hellinus igniarius. Impact of metal ions on the Santo effect on the growth of P. linteus was identified by determination of growth rate of Mycelia in solid surface culture method in medium with different metal ions, mycelia dry weight and crude extracellular polysaccharide obtained in shake -flsak fermentation. The results show that the medium with Mg2+,Fe2+,Ca2+could obviously promote the growth of the mycelia of P. inteus on plate cultivation, while the Na+has no obvious role.In medium with 1 mg/mL and 3 mg/mL Mg2+, 0.9 mg/mL Fe2+, 3,5 mg/mL and 7mg/mL Ca2+,and 3 mg/mLNa+,the dry weight of mycelia were 5-8 folds than that of control medium,In medium with 3 mg/mL K+and Na+, 7mg/mL Ca2+,0.7 mg/mL Fe2+and 0.1 mg/mL Zn2+, the contains of extracellular polysaccharide secreted by P.inteus were 0.476 0, 0.710 5, 0.520 0, 0.451 6 g/100 mL and 0.6820 g/100 mL,respecrively, the difference was significient compared with control medium. The different metal ions had the role of promoting the growth of

  6. Different resistance to UV-B radiation of extracellular polymeric substances of two cyanobacteria from contrasting habitats

    Directory of Open Access Journals (Sweden)

    Wenjuan Song

    2016-08-01

    Full Text Available The effects of UV-B radiation (UVBR on photosynthetic activity (Fv/Fm of aquatic Synechocystis sp. and desert Chroococcus minutus and effects on composition and fluorescence property of extracellular polymeric substances (EPS from Synechocystis sp. and Chroococcus minutus were comparatively investigated. The desert cyanobacterium species C. minutus showed higher tolerance of PSII activity (Fv/Fm to UVBR than the aquatic Synechocystis sp., and the inhibited PSII activity of C. minutus could be fully recovered while that of Synechocystis sp. could be partly recovered. UVBR had significant effect on the yield and biochemical composition of EPS of both species. Protein-like and humic acid-like substances were detected in EPS from Synechocystis sp., and protein-like and phenol-like fluorescent compounds were detected in EPS from C. minutus. Proteins in EPS of desert and aquatic species were significantly decomposed under UVBR, and the latter was more easily decomposed. The polysaccharides were much more resistant to UVBR than the proteins for both species. Polysacchrides of Synechocystis sp. was degraded slightly but those of C. minutus was little decomposed. The higher tolerance to UVBR of the desert cyanobacterium can be attributed to the higher resistance of its EPS to photodegradation induced by UVBR in comparison with the aquatic species

  7. Characterization of the wzc gene from Pantoea sp. strain PPE7 and its influence on extracellular polysaccharide production and virulence on Pleurotus eryngii.

    Science.gov (United States)

    Kim, Min Keun; Lee, Young Han; Kim, Hyeran; Lee, Jeongyeo; Ryu, Jae San

    2015-01-01

    To characterize of the pathogenicity gene from the soft rot pathogen Pantoea sp. PPE7 in Pleurotus eryngii, we constructed over 10,000 kanamycin-resistant transposon mutants of Pantoea sp. strain PPE7 by transposon mutagenesis. One mutant, Pantoea sp. NPPE9535, did not cause a soft rot disease on Pleurotus eryngii was confirmed by the pathogenicity test. The transposon was inserted into the wzc gene and the disruption of the wzc gene resulted in the reduction of polysaccharide production and abolished the virulence of Pantoea sp. strain PPE7 in P. eryngii. Analysis of the hydropathic profile of this protein indicated that it is composed of two main domains: an N-terminal domain including two transmembrane α-helices and a C-terminal cytoplasmic domain consisting of a tyrosine-rich region. Comparative analysis indicated that the amino acid sequence of Wzc is similar to that of a number of proteins involved in the synthesis or export of polysaccharides in other bacterial species. Purified GST-Wzc was found to affect the phosphorylation of tyrosine residue in vivo. These results showed that the wzc gene might play an important role in the virulence of Pantoea sp. strain PPE7 in P. eryngii.

  8. Extracellular polymeric substances for Zn (II) binding during its sorption process onto aerobic granular sludge.

    Science.gov (United States)

    Wei, Dong; Li, Mengting; Wang, Xiaodong; Han, Fei; Li, Lusheng; Guo, Jie; Ai, Lijie; Fang, Lulu; Liu, Ling; Du, Bin; Wei, Qin

    2016-01-15

    The aim of this study was to evaluate the interaction between extracellular polymeric substances (EPS) and Zn (II) during the sorption process of Zn (II) onto aerobic granular sludge. Batch results showed that the adsorption rate of Zn (II) onto aerobic granular sludge was better fitted with pseudo-second order kinetics model, and the adsorption isotherm data agreed well with Freundlich equation. Extracellular polymeric substances (EPS) for Zn (II) binding during sorption process was investigated by using a combination of three-dimensional excitation-emission matrix (3D-EEM), synchronous fluorescence spectra, two-dimensional correlation spectroscopy (2D-COS) and Fourier transform infrared spectroscopy (FTIR). Results implied that the main composes of EPS, including polysaccharide (PS) and protein (PN), decreased from 5.92±0.13 and 23.55±0.76 mg/g SS to 4.11±0.09 and 9.55±0.68 mg/g SS after the addition of different doses of Zn (II). 3D-EEM showed that the intensities of PN-like substances and humic-like substances were obviously decreased during the sorption process. According to synchronous fluorescence spectra, the quenching mechanism between PN-like substances and Zn (II) was mainly caused by a static quenching process. Additionally, 2D-COS indicated that PN-like substances were more susceptible to Zn (II) binding than humic-like substances. It was also found that the main functional groups for complexation of Zn (II) and EPS were OH groups, N-H groups and C=O stretching vibration. The findings of this study are significant to reveal the fate of heavy metal during its sorption process onto aerobic granular sludge through EPS binding, and provide useful information on the interaction between EPS and heavy metal.

  9. Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method.

    Science.gov (United States)

    Santos, Carla; Silva, Carla J; Büttel, Zsófia; Guimarães, Rodrigo; Pereira, Sara B; Tamagnini, Paula; Zille, Andrea

    2014-01-01

    A series of polyvinyl alcohol (PVA), PVA/chitosan (CS) and PVA/cyanobacterial extracellular polymeric substances (EPS) blended nanofibrous membranes were produced by electrospinning using a microfiltration poly(vinylidene fluoride) (PVDF) basal membrane, for potential applications in water filtration. Nanofibres were obtained from solutions of 20% (w/w) PVA with 1% (w/w) CS or EPS, using a weight ratio of 60/40. Blended nanofibres have shown a smooth morphology, no beads formation and diameters between 50 and 130 nm. Thermo-mechanical analysis demonstrated that there were inter and/or intramolecular hydrogen bonds between the molecules of PVA/CS and PVA/EPS in the blends. The electrospun blended PVA/EPS membrane showed better tensile mechanical properties when compared with PVA and PVA/CS, and resisted more against disintegration in the temperature range between 10 and 50 °C. Finally, the blended membranes have shown an increase in chromium binding capacity of 5%. This is the first successful report of a blended membrane of electrospinned cyanobacterial polysaccharide with PVA.

  10. EpCAM nuclear localization identifies aggressive Thyroid Cancer and is a marker for poor prognosis

    Directory of Open Access Journals (Sweden)

    MacMillan Christina

    2010-06-01

    Full Text Available Abstract Background Proteolytic cleavage of the extracellular domain (EpEx of Epithelial cell adhesion molecule (EpCAM and nuclear signaling by its intracellular oncogenic domain Ep-ICD has recently been implicated in increased proliferation of cancer cells. The clinical significance of Ep-ICD in human tumors remains an enigma. Methods EpEx, Ep-ICD and β-catenin immunohistochemistry using specific antibodies was conducted on 58 archived thyroid cancer (TC tissue blocks from 34 patients and correlated with survival analysis of these patients for up to 17 years. Results The anaplastic (ATC and aggressive thyroid cancers showed loss of EpEx and increased nuclear and cytoplasmic accumulation of Ep-ICD. In contrast, the low grade papillary thyroid cancers (PTC showed membranous EpEx and no detectable nuclear Ep-ICD. The ATC also showed concomitant nuclear expression of Ep-ICD and β-catenin. Kaplan-Meier Survival analysis revealed reduced overall survival (OS for TC patients showing nuclear Ep-ICD expression or loss of membranous EpEx (p Conclusion We report reciprocal loss of membrane EpEx but increased nuclear and cytoplasmic accumulation of Ep-ICD in aggressive TC; nuclear Ep-ICD correlated with poor OS of TC patients. Thus nuclear Ep-ICD localization may serve as a useful biomarker for aggressive TC and may represent a novel diagnostic, prognostic and therapeutic target for aggressive TC.

  11. Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Lingzhan; Wang, Chao; Hou, Jun, E-mail: hhuhjyhj@126.com; Wang, Peifang; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi [Hohai University, Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education (China)

    2015-10-15

    Stability of engineered nanoparticles in aquatic environment is an essential parameter to evaluate their fate, bioavailability, and potential toxic effects toward living organisms. As CuO NPs enter the wastewater systems, they will encounter extracellular polymeric substances (EPS) from microbial community before directly interacting with bacterial cells. EPS may play an important role in affecting the stability and the toxicity of CuO NPs in aquatic environment. In this study, the influences of flocculent sludge-derived EPS, as well as model protein (BSA) and natural polysaccharides (alginate) on the dissolution kinetics and colloidal stability of CuO NPs were investigated. Results showed that the presence of NOMs strongly suppressed CuO NPs aggregation, confirmed by DLS, zeta potentials, and TEM analysis. The enhanced stability of CuO NPs in the presence of EPS and alginate were attributed to the electrostatic combined with steric repulsion, while the steric-hindrance effect may be the predominant mechanism retarding nano-CuO aggregation for BSA. Higher degrees of copper release were achieved with the increasing concentrations of NOMs. EPS are more effective than alginate and BSA in releasing copper, probably due to the abundant functional groups and the excellent metal-binding capacity. The ratio of free-Cu{sup 2+}/total dissolved Cu significantly decreased in the presence of EPS, indicating that EPS may affect the speciation and Cu bioavailability in aqueous environment. These results may be important for assessing the fate and transport behaviors of CuO NPs in the environment as well as for setting up usage regulation and treatment strategy.

  12. Study on the Optimum Fermentation Condition and Physico-Chemical Property of Extracellular Polysaccharide Producing Strain BIT-BP004%菌株BIT-BP004产胞外多糖影响因素及发酵液理化特性的研究

    Institute of Scientific and Technical Information of China (English)

    汪小平; 付娜; 王平; 赵静; 梅晓丹

    2012-01-01

    从辽河油田油水样品中分离得到一株高产胞外多糖的菌株BIT-BP004。通过对其培养条件的考察和优化。得到最适宜的培养条件为:蔗糖7.5g/L。NaNO30.3g/L,l(2HPO41.5g/L,KI-12PO43g/L,MgSO40.1g/L,CaCl20.01g/L,初始pH为6,接茵量1%。培养24h后的胞外多糖产量为4.11g/L。同时,通过正交实验考察了温度、矿化度和pH值对BIT-BP004发酵液理化性能的影响。结果表明,不同实验条件对发酵液黏度影响较大。影响能力大小依次为温度〉矿化度〉pH,其中温度是影响发酵液黏度的决定性因素。图5表5参10%An extracellular polysaccharide (EPS) producing bacteria, named BIT-BP004, was isolated from oil/water sample of Liaohe oilfield. The optimal medium compositions in shake scale for strain BIT-BP004 were determined as follows: sucrose 7.5 g/L, NaNO3 0.5 g/L, K2HPO4 1.5 g/L, KH2PO4 3 g/L, MgSO4 0.1 g/L, CaCl2 0.01 g/L, initial pH 6 and ineculant's volume 1%. The EPS yield was 4. 11 g/L in batch culture after 24 h. By orthogonal design, the factors of temperature, mineral salt concentration and pH value were selected to assay the physico-chemical property of fermentation. The results showed that experiment factors had a larger effect on viscosity of fermentation, and the affection capacity was arranged as follows, temperature 〉 mineral salt concentration 〉 pH, indicating that temperature was a decisive factor on the viscosity of the fermentation broth.

  13. Desorption of Hg(II) and Sb(V) on extracellular polymeric substances: effects of pH, EDTA, Ca(II) and temperature shocks.

    Science.gov (United States)

    Zhang, Daoyong; Lee, Duu-Jong; Pan, Xiangliang

    2013-01-01

    Extracellular polymeric substances (EPS) existed ubiquitously in biological systems affect the mobility and availability of heavy metals in the environments. The adsorption-desorption behaviors of Hg(II) and Sb(V) on EPS were investigated. The sorption rates follow Sb(V) > Hg(II), and the desorption rates follow reverse order. Applications of ethylene diamine tetraacetic acid (EDTA), Ca(II) and pH shocks affect desorption rates and desorbed quantities of Hg(II) from EPS-Hg complex. Temperature shock minimally affects the desorption rate of Hg(II). Conversely, the EPS-Sb complex is stable subjected to EDTA, Ca(II), temperature or pH shocks. The excitation-emission matrix (EEM) fluorescence spectroscopy and fast-Fourier (FT-IR) analysis showed that Hg(II) and Sb(V) principally interacted with polysaccharides and protein-like compounds in the EPS, respectively. The EPS-Hg complex presents a time bomb that may release high levels of Hg(II) in short time period under environmental shocks.

  14. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples.

  15. Effects of combined oleic acid and fluoride at sub-MIC levels on EPS formation and viability of Streptococcus mutans UA159 biofilms.

    Science.gov (United States)

    Cai, Jian-Na; Kim, Mi-A; Jung, Ji-Eun; Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2015-01-01

    Despite the widespread use of fluoride, dental caries, a biofilm-related disease, remains an important health problem. This study investigated whether oleic acid, a monounsaturated fatty acid, can enhance the effect of fluoride on extracellular polysaccharide (EPS) formation by Streptococcus mutans UA159 biofilms at sub-minimum inhibitory concentration levels, via microbiological and biochemical methods, confocal fluorescence microscopy, and real-time PCR. The combination of oleic acid with fluoride inhibited EPS formation more strongly than did fluoride or oleic acid alone. The superior inhibition of EPS formation was due to the combination of the inhibitory effects of oleic acid and fluoride against glucosyltransferases (GTFs) and GTF-related gene (gtfB, gtfC, and gtfD) expression, respectively. In addition, the combination of oleic acid with fluoride altered the bacterial biovolume of the biofilms without bactericidal activity. These results suggest that oleic acid may be useful for enhancing fluoride inhibition of EPS formation by S. mutans biofilms, without killing the bacterium.

  16. The Crystal Structure of a Binary Complex of Two Pseudopilins: EpsI And EpsJ From the Type 2 Secretion System of Vibrio Vulnificus

    Energy Technology Data Exchange (ETDEWEB)

    Yanez, M.E.; Korotkov, K.V.; Abendroth, J.; Hol, W.G.J.

    2009-05-28

    Type II secretion systems (T2SS) translocate virulence factors from the periplasmic space of many pathogenic bacteria into the extracellular environment. The T2SS of Vibrio cholerae and related species is called the extracellular protein secretion (Eps) system that consists of a core of multiple copies of 11 different proteins. The pseudopilins, EpsG, EpsH, EpsI, EpsJ and EpsK, are five T2SS proteins that are thought to assemble into a pseudopilus, which is assumed to interact with the outer membrane pore, and may actively participate in the export of proteins. We report here biochemical evidence that the minor pseudopilins EpsI and EpsJ from Vibrio species interact directly with one another. Moreover, the 2.3 {angstrom} resolution crystal structure of a complex of EspI and EpsJ from Vibrio vulnificus represents the first atomic resolution structure of a complex of two different pseudopilin components from the T2SS. Both EpsI and EpsJ appear to be structural extremes within the family of type 4a pilin structures solved to date, with EpsI having the smallest, and EpsJ the largest, 'variable pilin segment' seen thus far. A high degree of sequence conservation in the EpsI:EpsJ interface indicates that this heterodimer occurs in the T2SS of a large number of bacteria. The arrangement of EpsI and EpsJ in the heterodimer would correspond to a right-handed helical character of proteins assembled into a pseudopilus.

  17. Characterization of a Viral EPS-Depolymerase, a Potential Tool for Control of Fire Blight.

    Science.gov (United States)

    Kim, W S; Geider, K

    2000-11-01

    ABSTRACT A 3.3-kb fragment of genomic DNA from bacteriophage Phi-Ea1h encoding an amylovoran-directed depolymerase lyase was sequenced, and three open reading frames (ORFs) were detected. The first ORF could encode a lysozyme and the second a holin that may form a pore supporting cell lysis by the lysozyme. The third ORF encodes a protein of 657 amino acids and deletion mutation in this DNA fragment abolished extracellular polysaccharide (EPS)-degrading activity. A putative promoter and a ribosome binding sequence were located in front of the gene. A polymerase chain reaction product spanning the gene was inserted into multi copy plasmids including fusions with a Histidine-tagged sequence to facilitate its purification on a nickel nitrilotriacetic acid column. Maximal activity of the purified protein was observed between pH 4 and 5 at 52 degrees C. Visualized by staining with fluorescein isothiocyanate-labeled lectin from Abrus precatorious, the enzyme degraded the EPS-capsules of Erwina amylovora. In virulence assays, no symptoms were detected for a low inoculum of an E. amylovora strain when pear slices were soaked in a solution of depolymerase in contrast to control slices without addition of the enzyme. Furthermore, gfp- or lux-labeled E. amylovora cells were not propagated, when their amylovoran capsules were removed by the depolymerase. The enzyme could be a tool for biological control of fire blight.

  18. Influence of extracellular polymeric substances on deposition and redeposition of Pseudomonas aeruginosa to surfaces

    NARCIS (Netherlands)

    Gomez-Suarez, C; Pasma, J; van der Borden, AJ; Wingender, J; Flemming, HC; Busscher, HJ; van der Mei, HC

    2002-01-01

    In this study, the role of extracellular polymeric substances (EPS) in the initial adhesion of EPS-producing Pseudomonas aeruginosa SG91 and SG81R1, a non-EPS-producing strain, to substrata with different hydrophobicity was investigated. The release of EPS by SG81 was concurrent with a decrease in s

  19. Biological Activities of the Polysaccharides Produced in Submerged Culture of Two Edible Pleurotus ostreatus Mushrooms

    Science.gov (United States)

    Vamanu, Emanuel

    2012-01-01

    Exopolysaccharides (EPS) and internal (intracellular) polysaccharides (IPS) obtained from the Pleurotus ostreatus M2191 and PBS281009 cultivated using the batch system revealed an average of between 0.1–2 (EPS) and 0.07–1.5 g/L/day (IPS). The carbohydrate analysis revealed that the polysaccharides comprised 87–89% EPS and 68–74% IPS. The investigation of antioxidant activity in vitro revealed a good antioxidant potential, particularly for the IPS and EPS isolated from PBS281009, as proved by the EC50 value for DPPH, ABTS scavenging activity, reducing power, and iron chelating activity. PMID:22778553

  20. Extracellular polymeric substances of the marine fouling diatom Amphora rostrata Wm. Sm.

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Bhosle, N.B.

    decrease. Planktonic ('free') and biofilm extracellular polymeric substances (EPS) from the adherent cells of A. rostrata were studied. Both types of EPS were produced during the logarithmic phase of growth. However, production was higher during...

  1. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275.

    Science.gov (United States)

    Li, Siqian; Shah, Nagendra P

    2014-12-15

    Polysaccharides from Pleurotus eryngii (PEPS) and exopolysaccharides from Streptococcus thermophilus ASCC 1275 (ST1275 EPS) were sulphated, and antioxidant and antibacterial activities of sulphated and crude polysaccharides were determined. Degree of sulphonation of PEPS and ST1275 EPS was 0.69 and 0.31, respectively. Characteristic bands in FT-IR spectra indicated that the sulphate group was at the C6 position of the galactose skeleton. Antioxidant activities of PEPS and ST1275 EPS were significantly (P<0.05) improved after sulphonation. For tested crude and sulphated polysaccharides, sulphated PEPS had the largest inhibition zone against Escherichia coli ATCC 25922 and Staphylococcus aureus CMCC 26003 while sulphated ST1275 EPS had the largest inhibition zone against Listeria monocytogenes CMCC 54001. Furthermore, sulphated PEPS had the lowest minimum inhibitory concentration (MIC) for E. coli ATCC 25922, and both sulphated PEPS and sulphated ST1275 EPS had the lowest MICs on S. aureus CMCC 26003 and L. monocytogenes CMCC 54001.

  2. Regulated intramembrane proteolysis and degradation of murine epithelial cell adhesion molecule mEpCAM.

    Directory of Open Access Journals (Sweden)

    Matthias Hachmeister

    Full Text Available Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is highly and frequently expressed in carcinomas and (cancer-stem cells, and which plays an important role in the regulation of stem cell pluripotency. We show here that murine EpCAM (mEpCAM is subject to regulated intramembrane proteolysis in various cells including embryonic stem cells and teratocarcinomas. As shown with ectopically expressed EpCAM variants, cleavages occur at α-, β-, γ-, and ε-sites to generate soluble ectodomains, soluble Aβ-like-, and intracellular fragments termed mEpEX, mEp-β, and mEpICD, respectively. Proteolytic sites in the extracellular part of mEpCAM were mapped using mass spectrometry and represent cleavages at the α- and β-sites by metalloproteases and the b-secretase BACE1, respectively. Resulting C-terminal fragments (CTF are further processed to soluble Aβ-like fragments mEp-β and cytoplasmic mEpICD variants by the g-secretase complex. Noteworthy, cytoplasmic mEpICD fragments were subject to efficient degradation in a proteasome-dependent manner. In addition the γ-secretase complex dependent cleavage of EpCAM CTF liberates different EpICDs with different stabilities towards proteasomal degradation. Generation of CTF and EpICD fragments and the degradation of hEpICD via the proteasome were similarly demonstrated for the human EpCAM ortholog. Additional EpCAM orthologs have been unequivocally identified in silico in 52 species. Sequence comparisons across species disclosed highest homology of BACE1 cleavage sites and in presenilin-dependent γ-cleavage sites, whereas strongest heterogeneity was observed in metalloprotease cleavage sites. In summary, EpCAM is a highly conserved protein present in fishes, amphibians, reptiles, birds, marsupials, and placental mammals, and is subject to shedding, γ-secretase-dependent regulated intramembrane proteolysis, and proteasome-mediated degradation.

  3. Extracellular polysaccharide production by Thraustochytrid protists

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, R.; Raghukumar, S.; Tharanathan, R.; Bhosle, N.B.

    and thixotrophic paints), flocculants (in water clarification and ore extraction), foam stabilizers (in beer and fire-fighting fluids), gelling agents (in cell and enzyme technology and foods), hydrating agents (in cosmetics and pharmaceuticals), and as inhibitors...

  4. Oligo- and polysaccharide synthesis by Rhizobium leguminosarum and Rhizobium meliloti.

    OpenAIRE

    Breedveld, M W

    1992-01-01

    Rhizobium and Agrobacterium species are capable of synthesizing a variety of extracellular and cellular oligo- and polysaccharides. Changes in environmental conditions may all affect the composition, physical properties, and relative amounts of oligo- and polysaccharides. Interest in the field of Rhizobium polys accharides has resulted from a development in two distinct areas, (i) the role of oligo- and polysaccharides in the microbe- plant interaction, and (ii) studies on the physico- chemic...

  5. Oligo- and polysaccharide synthesis by Rhizobium leguminosarum and Rhizobium meliloti

    NARCIS (Netherlands)

    Breedveld, M.W.

    1992-01-01

    Rhizobium and Agrobacterium species are capable of synthesizing a variety of extracellular and cellular oligo- and polysaccharides. Changes in environmental conditions may all affect the composition, physical properties, and relative amounts of

  6. Oligo- and polysaccharide synthesis by Rhizobium leguminosarum and Rhizobium meliloti.

    NARCIS (Netherlands)

    Breedveld, M.W.

    1992-01-01

    Rhizobium and Agrobacterium species are capable of synthesizing a variety of extracellular and cellular oligo- and polysaccharides. Changes in environmental conditions may all affect the composition, physical properties, and relative amounts of oligo- and polysaccharides. Interest in the field of Rh

  7. Polysaccharide Degradation

    Science.gov (United States)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  8. Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria.

    Science.gov (United States)

    Ercole, Claudia; Bozzelli, Paola; Altieri, Fabio; Cacchio, Paola; Del Gallo, Maddalena

    2012-08-01

    This study highlights the role of specific outer bacterial structures, such as the glycocalix, in calcium carbonate crystallization in vitro. We describe the formation of calcite crystals by extracellular polymeric materials, such as exopolysaccharides (EPS) and capsular polysaccharides (CPS) isolated from Bacillus firmus and Nocardia calcarea. Organic matrices were isolated from calcifying bacteria grown on synthetic medium--in the presence or absence of calcium ions--and their effect on calcite precipitation was assessed. Scanning electron microscopy observations and energy dispersive X-ray spectrometry analysis showed that CPS and EPS fractions were involved in calcium carbonate precipitation, not only serving as nucleation sites but also through a direct role in crystal formation. The utilization of different synthetic media, with and without addition of calcium ions, influenced the biofilm production and protein profile of extracellular polymeric materials. Proteins of CPS fractions with a molecular mass between 25 and 70 kDa were overexpressed when calcium ions were present in the medium. This higher level of protein synthesis could be related to the active process of bioprecipitation.

  9. EP BICYCLE POOL - VIGNETTES 2002

    CERN Multimedia

    EP-SMI Help Desk

    2002-01-01

    The vignettes (insurance certificates) for 2002 become obligatory from 1 June. If you have a bicycle from the EP Pool, please bring it to the EP-SMI Help Desk (Building 124) on any working day up to 31 May between 8h.30 - 12h.00 or 13h.30 - 17h.30. EP-SMI Help Desk

  10. Enhanced Polar System (EPS)

    Science.gov (United States)

    2015-12-01

    integrated onto a classified host), the User Terminals (acquired separately by the users), the Gateway (a fixed installation), and the Control and...The Gateway segment is acquired through the Space and Naval Warfare Systems Command (SPAWAR) Systems Center- Pacific (SC- PAC ). The Gateway also...for the Gateway is the responsibility of SSC- PAC . For CAPS, the EPS depots are as follows: • Ogden Air Logistics Center, Hill Air Force Base (AFB

  11. Antioxidant properties of polysaccharides obtained by batch cultivation of Pleurotus ostreatus mycelium.

    Science.gov (United States)

    Vamanu, Emanuel

    2013-01-01

    The antioxidant activity of the exopolysaccharides (EPS) and intracellular polysaccharides (IPS) obtained from the mycelia obtained by submerged culture of two edible Pleurotus ostreatus strains, PQMZ91109 and PSI101109 in a batch bioreactor was determined. EPS and IPS showed significant antioxidant activities (in vitro) especially in the scavenging effect on the DPPH and ABTS radicals, reducing power and chelating effect on ferrous ions. The tests proved the differences between the two mushrooms, concerning the biological activity of polysaccharides. The data sustain that P. ostreatus polysaccharides are natural antioxidant for pharmaceutical and food industries, particularly PSI101109.

  12. A mathematical model of quorum sensing regulated EPS production in biofilm communities.

    Science.gov (United States)

    Frederick, Mallory R; Kuttler, Christina; Hense, Burkhard A; Eberl, Hermann J

    2011-04-10

    Biofilms are microbial communities encased in a layer of extracellular polymeric substances (EPS). The EPS matrix provides several functional purposes for the biofilm, such as protecting bacteria from environmental stresses, and providing mechanical stability. Quorum sensing is a cell-cell communication mechanism used by several bacterial taxa to coordinate gene expression and behaviour in groups, based on population densities. We mathematically model quorum sensing and EPS production in a growing biofilm under various environmental conditions, to study how a developing biofilm impacts quorum sensing, and conversely, how a biofilm is affected by quorum sensing-regulated EPS production. We investigate circumstances when using quorum-sensing regulated EPS production is a beneficial strategy for biofilm cells. We find that biofilms that use quorum sensing to induce increased EPS production do not obtain the high cell populations of low-EPS producers, but can rapidly increase their volume to parallel high-EPS producers. Quorum sensing-induced EPS production allows a biofilm to switch behaviours, from a colonization mode (with an optimized growth rate), to a protection mode. A biofilm will benefit from using quorum sensing-induced EPS production if bacteria cells have the objective of acquiring a thick, protective layer of EPS, or if they wish to clog their environment with biomass as a means of securing nutrient supply and outcompeting other colonies in the channel, of their own or a different species.

  13. Sulfated polysaccharides and immune response: promoter or inhibitor?

    Science.gov (United States)

    Chen, D; Wu, X Z; Wen, Z Y

    2008-06-01

    Sulfated polysaccharides, which frequently connect to core protein, are expressed not only on cell surface but also throughout the extracellular matrix. Besides providing structural integrity of cells, sulfated polysaccharides interact with a variety of sulfated polysaccharides-binding proteins, such as growth factors, cytokines, chemokines and proteases. Sulfated polysaccharides play two-edged roles, inhibitor and promoter, in immune response. Some sulfated polysaccharides act as the immunosuppressor by blocking inflammatory signal transduction induced by proinflammatory cytokines, suppressing the activation of complement and inhibiting the process that leukocytes adhere to and pass through endothelium. On the contrary, the interaction between immune cells and sulfated polysaccharides produced by bacteria, endothelial cells and immune cells initiate the occurrence of immune response. It promotes the processes of recognizing and arresting antigen, migrating transendothelium, moving into and out of immune organ and enhancing the proliferation of lymphocyte. The structure of sulfated polysaccharides, such as molecular weight and sulfated sites heterogeneity, especially the degree of disaccharide sulfation, position of the sulfate moiety and organization of sulfated domains, may play critical role in their controversial effects. As a consequence, the interaction between sulfated polysaccharides and sulfated polysaccharide-binding proteins may be changed by modifying the structure of sulfated polysaccharides chains. The administration of drug targeting sulfated polysaccharide-protein interaction may be useful in treating inflammatory related diseases.

  14. 海洋微藻裂壶藻发酵液胞外多糖的制备及活性研究%Preparation of extracellular polysaccharide from fermentation liquor of marine microalgae Schizochytrium and study on the bioactivities

    Institute of Scientific and Technical Information of China (English)

    汪少芸; 江勇; 孟春; 欧阳艳华; 林祥志

    2011-01-01

    使用乙醇沉淀法从海洋微藻裂壶藻Schizochytrium sp.TIO1101的发酵液中提取胞外多糖,再经732阳离子交换树脂分离得到酸性多糖、弱碱性多糖和碱性多糖三种主要的多糖组分,并分别测定其还原力活性、DPPH自由基清除活性和羟基自由基清除活性等抗氧化活性和抗菌活性.结果表明,弱碱性多糖具有最高的抗氧化活性.抑制真菌活性实验表明,三种多糖组分对苹果轮纹病菌(Physalospora piricola)、瓜果腐霉病菌(Pythium aphanitermatum)、葡萄灰霉病菌(Botrytis cinerea)和甜瓜枯萎病菌(Fusarium pathogens)都表现出抑菌活性,并且对葡萄灰霉病菌(Botrytis cinerea)的抑菌效果最为明显.%The ethanol precipitation was executed to extract exopolysaccharide from the fermentation solution of marine microalgae Schizochytrium sp. TI01101. The extracted exopolysaccharide solution was then applied to 732 cationic exchange resin for further separation, the elution was isolated with in to three major polysaccharide components; acidic polysaccharide, weak alkaline polysaccharides and alkaline polysaccharides. And the polysaccharides were assessed for antioxidant activity against reduc ing power activity, DPPH radical scavenging activity and hydroxyl radical scavenging activity assays, respectively. The results indicated that weak alkaline polysaccharides showed significant antioxidant activity. Antifungal activity experiment showed all three polysaccharide components demonstrated antifungal activity to Physalospora piricola, Pythium aphanidermatum, Botrytis cinerea and Fusarium pathogens to some extent, particularly showing high effect on Botrytis cinerea.

  15. The soluble EP2 receptor FuEP2/Ex2 suppresses endometrial cancer cell growth in an orthotopic xenograft model in nude mice.

    Science.gov (United States)

    Takahashi, Tetsuyuki; Ogawa, Hirohisa; Izumi, Keisuke; Uehara, Hisanori

    2011-07-01

    Endometrial cancer is one of the most common gynecologic malignancies and many factors influence in its growth and development. As in many other types of cancer, prostaglandin E(2) (PGE(2)) is thought to be an accelerator of cell proliferation and endometrial cancer progression. In this study, we examined the effect of FuEP2/Ex2, a soluble decoy receptor for PGE(2) on growth of endometrial cancer cells. A stable transfectant expressing FuEP2/Ex2 was established from human endometrial cancer Ishikawa cells (Ish-FuEP2/Ex2). Ish-FuEP2/Ex2 cells expressed FuEP2/Ex2 mRNA and protein. Expression levels of E-prostanoid receptor 1 (EP1), EP2, EP3, EP4, and F-prostanoid receptor (FP) were almost the same in Ish-FuEP2/Ex2 and vector control cells. Growth rates of Ish-FuEP2/Ex2 under normal culture conditions were also similar to vector control cells, although PGE(2)-induced growth stimulation was completely inhibited in Ish-FuEP2/Ex2 or by Ish-FuEP2/Ex2 culture medium. Moreover, phosphorylation of extracellular signal-regulated kinase (ERK) and induction of cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), cyclin D1, and c-fos mRNA by PGE(2) were not observed in Ish-FuEP2/Ex2 and Ish-FuEP2/Ex2 culture medium-treated vector control cells, although they were found when treated with prostaglandin F(2α). An orthotopic xenograft model in athymic nude mice revealed that Ish-FuEP2/Ex2-injected mice had significantly decreased mean tumor area. The proportion of Ki-67-positive cells in the tumor lesion was also significantly lower in Ish-FuEP2/Ex2-injected mice. These findings suggest that an EP-targeting strategy using FuEP2/Ex2 may be of use in the treatment of endometrial cancer.

  16. Polysaccharides from Probiotics: New Developments as Food Additives

    Directory of Open Access Journals (Sweden)

    Philippe Michaud

    2010-01-01

    Full Text Available Microbial polysaccharides with nutraceutical potential and bioactive properties have been investigated in detail during the last few decades. There is an increasing demand in food industries for live microbes or polysaccharides produced by them which assert health benefits other than dietetic constituents. Although there are a large number of exopolysaccharide (EPS-producing bacteria, the titers are low for commercialization. This manuscript deals with the polysaccharides produced by probiotic strains, with major emphasis on the EPSs, their properties, applications and some of the strategies adopted which would be helpful in better understanding of the process in the near future. Research on the improved EPS biosynthesis is essential for obtaining high yields. Therefore, to reach commercialization, metabolic engineering must be applied.

  17. A maladaptive role for EP4 receptors in mouse mesangial cells.

    Directory of Open Access Journals (Sweden)

    Guang-xia Yang

    Full Text Available Roles of the prostaglandin E2 E-prostanoid 4 receptor (EP4 on extracellular matrix (ECM accumulation induced by TGF-β1 in mouse glomerular mesangial cells (GMCs remain unknown. Previously, we have identified that TGF-β1 stimulates the expression of FN and Col I in mouse GMCs. Here we asked whether stimulation of EP4 receptors would exacerbate renal fibrosis associated with enhanced glomerular ECM accumulation. We generated EP4(Flox/Flox and EP4(+/- mice, cultured primary WT, EP4(Flox/Flox and EP4(+/- GMCs, AD-EP4 transfected WT GMCs (EP4 overexpression and AD-Cre transfected EP4(Flox/Flox GMCs (EP4 deleted. We found that TGF-β1-induced cAMP and PGE2 synthesis decreased in EP4 deleted GMCs and increased in EP4 overexpressed GMCs. Elevated EP4 expression in GMCs augmented the coupling of TGF-β1 to FN, Col I expression and COX2/PGE2 signaling, while TGF-β1 induced FN, Col I expression and COX2/PGE2 signaling were down-regulated in EP4 deficiency GMCs. 8 weeks after 5/6 nephrectomy (Nx, WT and EP4(+/- mice exhibited markedly increased accumulation of ECM compared with sham-operated controls. Albuminuria, blood urea nitrogen and creatinine (BUN and Cr concentrations were significantly increased in WT mice as compared to those of EP4(+/- mice. Urine osmotic pressure was dramatically decreased after 5/6 Nx surgery in WT mice as compared to EP4(+/- mice. The pathological changes in kidney of EP4(+/- mice was markedly alleviated compared with WT mice. Immunohistochemical analysis showed significant reductions of Col I and FN in the kidney of EP4(+/- mice compared with WT mice. Collectively, this investigation established EP4 as a potent mediator of the pro-TGF-β1 activities elicited by COX2/PGE2 in mice GMCs. Our findings suggested that prostaglandin E2, acting via EP4 receptors contributed to accumulation of ECM in GMCs and promoted renal fibrosis.

  18. Effects of Impellor Speed and Aeration Rate on Mycelial Biomass and Extracellular Polysaccharide Production,Reducing Sugar Consumption and Dissolved Oxygen Levels in Fermentor-grown Cultures of Phellinus baumii%不同搅拌转速和通气量对桑黄深层发酵培养的影响

    Institute of Scientific and Technical Information of China (English)

    雷萍; 吴亚召; 张文隽; 陈旭; 吕德平; 安军民

    2014-01-01

    The effects of impellor speed and aeration rate on mycelial biomass and extracellular polysaccharide production,reducing sugar consumption and dissolved oxygen levels during growth of Phellinus baumii in a 20-L fermentor were determined.Highest biomass (12.65 g/L)and extracellular polysaccharide(2.99 g/L) yields,and the most rapid decrease in dissolved oxygen levels,were recorded when the impellor speed was set at 150 r/min.Mycelial pellets were globose and compact,and the proportion of hyphal filaments was low. Highest yields of mycelial biomass (12.69 g/L)and extracellular polysaccharide(3.0 g/L),and the most rapid decrease in dissolved oxygen levels,were recorded when the aeration rate was set at 1∶0.65 vvm (air volume/culture volume/min).At this setting,the fungal mycelium grew well and formed compact pellets of uniform size.%探讨在20 L搅拌式发酵罐中,转速和通气量对桑黄菌丝生物量、胞外多糖产率、溶氧以及菌丝形态的影响。结果表明,实验范围内,转速为150 r/min时,桑黄菌丝体生物量最大(12.65 g/L),胞外多糖得率最高(2.99 g/L),相对溶氧下降最快,菌球小球状、较紧密、丝状体比例小;通气量为1∶0.65 vvm,桑黄菌丝体生物量最大(12.69 g/L),胞外多糖得率最高(3.00 g/L),相对溶氧下降最快,菌球大小均匀、紧密、生长良好。

  19. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wenjie; Ma, Zhanqiang; Sun, Liangliang; Han, Mengsha; Lu, Jianjun; Li, Zhenxiu; Mohamad, Osama Abdalla; Wei, Gehong, E-mail: weigehong@nwsuaf.edu.cn

    2013-10-15

    Highlights: • EPS produced by Sinorhizobium meliloti CCNWSX0020 restricts uptake of Cu{sup 2+}. • We focused on the EPS, which is divided into three main parts. • LB-EPS played a more important role than S-EPS and TB-EPS in Cu{sup 2+} immobilization. • Proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (-COOH), hydroxyl (-OH), and amide (N-H), primarily involved in metal ion binding. -- Abstract: The copper tolerance gene of wild-type heavy metal-tolerance Sinorhizobium meliloti CCNWSX0020 was mutated by transposon Tn5-a. The mutant was sensitive up to 1.4 mM Cu{sup 2+}. Production, components, surface morphology, and functional groups of extracellular polymeric substances (EPS) of the wild-type strains were compared with sensitive mutant in immobilization of Cu{sup 2+}. EPS produced by S. meliloti CCNWSX0020 restricts uptake of Cu{sup 2+}. The cell wall EPS were categorized based on the compactness and fastness: soluble EPS (S-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS). LB-EPS played a more important role than S-EPS and TB-EPS in Cu{sup 2+} immobilization. Scanning electron microscopy (SEM) analysis LB-EPS had rough surface and many honeycomb pores, making them conducive to copper entry; therefore, they may play a role as a microbial protective barrier. Fourier transform-infrared (FT-IR) analysis further confirm that proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (-COOH), hydroxyl (-OH), and amide (N-H), primarily involved in metal ion binding.

  20. Toxicity assessment of 4-chlorophenol to aerobic granular sludge and its interaction with extracellular polymeric substances

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Dong; Wang, Yifan; Wang, Xiaodong; Li, Mengting; Han, Fei; Ju, Luyu; Zhang, Ge; Shi, Li; Li, Kai; Wang, Bingfeng [School of Resources and Environmental Sciences, University of Jinan, Jinan 250022 (China); Du, Bin, E-mail: dubin61@gmail.com [School of Resources and Environmental Sciences, University of Jinan, Jinan 250022 (China); Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wei, Qin [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2015-05-30

    Highlights: • Toxicity of 4-CP to aerobic granular sludge process was evaluated. • 3D-EEM characterized the interaction between EPS and 4-CP. • Tryptophan was the main substance result in fluorescence quenching. • The mechanism of fluorescence quenching belongs to static quenching. - Abstract: The main objective of this study was to evaluate the toxicity of 4-chlorophenol (4-CP) to aerobic granular sludge in the process of treating ammonia rich wastewater. In the short-term exposure of 4-CP of 5 and 10 mg/L, ammonia nitrogen removal efficiencies in the batch reactors decreased to 87.18 ± 2.81 and 41.16 ± 3.55%, which were remarkably lower than that of control experiment (99.83 ± 0.54%). Correspondingly, the respirometric activities of heterotrophic and autotrophic bacteria of aerobic granular sludge were significantly inhibited in the presence of 4-CP. Moreover, the main components of extracellular polymeric substances (EPS) including polysaccharides and proteins increased from 18.74 ± 0.29 and 22.57 ± 0.34 mg/g SS to 27.79 ± 0.51 and 24.69 ± 0.38 mg/g SS, respectively, indicating that the presence of 4-CP played an important role on the EPS production. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy further showed that the intensities of EPS samples were obviously quenched with the increased of 4-CP concentrations. To be more detailed, synchronous fluorescence spectra indicated that the interaction between EPS and 4-CP was mainly caused by tryptophan residues. The mechanism of fluorescence quenching belongs to static quenching with a formation constant (K{sub A}) of 0.07 × 10{sup 4} L/mol, implying the strong formation of EPS and 4-CP complex. The results could provide reliable and accurate information to determine the potential toxicity of 4-CP on the performance of aerobic granular sludge system.

  1. G{sub Ep}/G{sub Mp} ratio by polarization transfer in ep {yields} ep

    Energy Technology Data Exchange (ETDEWEB)

    Mark K. Jones; Konrad A. Aniol; F.T. Baker; J. Berthot; Pierre Bertin; William Bertozzi; A. Besson; Louis Bimbot; Werner Boeglin; Ed Brash; D. Brown; John Calarco, Larry S. Cardman; C.-C. Chang; Jian-ping Chen; Eugene Chudakov; Steve Churchwell; Evaristo Cisbani; Dan Dale; R. De Leo; Alexandre Deur; Brian Diederich; John Domingo; Martin B. Epstein; Lars Ewell; Kevin Fissum; A. Fleck; Helene Fonvieille; Salvatore Frullani; J. Gao; Franco Garibaldi; Ashot Gasparian; G. Gerstner; Shalev Gilad; Ron Gilman.; Alexander Glamazdin; Charles Glashausser; Javier Gomez; V. Gorbenko; A. Green; Jens-Ole Hansen; Howell, C.R.; Huber, G.M.; Mauro Iodice; Kees de Jager; Stephanie Jaminion; Xiangdong Jiang; William Kahl; James J. Kelly; M. Khayat; Laird H. Kramer; G. Kumbartzki; Michael Kuss; E. Lakuriki; G. Lavessiere; John J. LeRose; Meme Liang; Richard Lindgren; Nilanga Liyanage; George Lolos; R. Macri; Richard Madey; Sergey Malov; Dimitri Margaziotis; Pete Markowitz; Kathy McCormick; Justin McIntyre; R.L. van der Meer; R. Michaels; B.D. Milbrath; Jean Mougey; S.K. Nanda; E.A.J.M. Offerman; Z. Papandreou; Charles F. Perdrisat; Gerassimos G. Petratos; N.M. Piskunov; R.I. Pomatsalyuk; David Prout; Vina Punjabi; Gilles Quemener; Ronald Ransome; Brian Raue; Yves Roblin; Rikki Roche; Gary Rutledge; Paul Rutt; Arun Saha; Teijiro Saito; Adam Sarty; Timothy Smith; P. Sorokin; Steffen Strauch; R. Suleiman; K. Takahashi; Jeff Templon; Luminita Todor; Paul E. Ulmer; Guido M. Urciuoli; Pascal Vernin; B. Vlahovic; H. Voskanyan, H.; Krishni Wijesooriya; Bogdan Wojtsekhowski; R.J. Woo; F. Xiong; George Dan Zainea; Z.-L. Zhou

    2000-02-14

    The ratio of the proton's elastic electromagnetic form factors, G{sub Ep}/G{sub Mp} was obtained by measuring P{sub t} and P{ell}, the transverse and the longitudinal recoil proton polarization, respectively. For elastic ep {yields} ep, G{sub Ep}/G{sub Mp} is proportional to P{sub t}/P{ell}. Simultaneous measurement of P{sub t} and P{ell} in a polarimeter provides good control of the systematic uncertainty. The results for the ratio G{sub Ep}/G{sub Mp} show a systematic decrease as Q{sup 2} increases from 0.5 to 3.5 GeV{sup 2}, indicating for the first time a definite difference in the spatial distribution of charge and magnetization currents in the proton.

  2. The carrot extracellular lipid transfer protein ep2.

    NARCIS (Netherlands)

    Sterk, P.

    1994-01-01

    In many plant species embryos can develop from cultured somatic cells in a process referred to as somatic embryogenesis. Apart from their cellular origin somatic embryos develop through the same characteristic morphological stages, i.e. globular, heart and torpedo stages, observed during zygotic emb

  3. Nuclear Ep-ICD expression is a predictor of poor prognosis in "low risk" prostate adenocarcinomas.

    Directory of Open Access Journals (Sweden)

    Jasmeet Assi

    Full Text Available Molecular markers for predicting prostate cancer (PCa that would have poor prognosis are urgently needed for a more personalized treatment for patients. Regulated intramembrane proteolysis of Epithelial cell adhesion molecule results in shedding of the extracellular domain (EpEx and release of its intracellular domain (Ep-ICD which triggers oncogenic signaling and might correlate to tumor aggressiveness. This study aimed to explore the potential of Ep-ICD and EpEx to identify PCa that have poor prognosis.Immunohistochemical analysis of Ep-ICD and EpEx was carried out in normal prostate tissues (n = 100, benign prostate hyperplasia (BPH, n = 83, and prostate cancer (n = 249 using domain specific antibodies. The expression of Ep-ICD and EpEx was correlated with clinico- pathological parameters and disease free survival (DFS.Reduced expression of nuclear Ep-ICD and membrane EpEx was observed in PCa in comparison with BPH and normal prostate tissues (p = 0.006, p < 0.001 respectively. For patients who had PCa with Gleason Score less than 7, preserved nuclear Ep-ICD emerged as the most significant marker in multivariate analysis for prolonged DFS, where these patients did not have recurrence during follow up of up to 12 years (p = 0.001.Reduced expression of nuclear Ep-ICD was associated with shorter disease free survival in patients with a Gleason Score less than 7 and may be useful in identifying patients likely to have aggressive tumors with poor prognosis. Furthermore, nuclear Ep-ICD can differentiate between normal and prostate cancer tissues for ambiguous cases.

  4. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu²⁺.

    Science.gov (United States)

    Hou, Wenjie; Ma, Zhanqiang; Sun, Liangliang; Han, Mengsha; Lu, Jianjun; Li, Zhenxiu; Mohamad, Osama Abdalla; Wei, Gehong

    2013-10-15

    The copper tolerance gene of wild-type heavy metal-tolerance Sinorhizobium meliloti CCNWSX0020 was mutated by transposon Tn5-a. The mutant was sensitive up to 1.4mM Cu(2+). Production, components, surface morphology, and functional groups of extracellular polymeric substances (EPS) of the wild-type strains were compared with sensitive mutant in immobilization of Cu(2+). EPS produced by S. meliloti CCNWSX0020 restricts uptake of Cu(2+). The cell wall EPS were categorized based on the compactness and fastness: soluble EPS (S-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS). LB-EPS played a more important role than S-EPS and TB-EPS in Cu(2+) immobilization. Scanning electron microscopy (SEM) analysis LB-EPS had rough surface and many honeycomb pores, making them conducive to copper entry; therefore, they may play a role as a microbial protective barrier. Fourier transform-infrared (FT-IR) analysis further confirm that proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (COOH), hydroxyl (OH), and amide (NH), primarily involved in metal ion binding.

  5. Extracellular polymeric substances of bacteria and their potential environmental applications.

    Science.gov (United States)

    More, T T; Yadav, J S S; Yan, S; Tyagi, R D; Surampalli, R Y

    2014-11-01

    Biopolymers are considered a potential alternative to conventional chemical polymers because of their ease of biodegradability, high efficiency, non-toxicity and non-secondary pollution. Recently, extracellular polymeric substances (EPS, biopolymers produced by the microorganisms) have been recognised by many researchers as a potential flocculent for their applications in various water, wastewater and sludge treatment processes. In this context, literature information on EPS is widely dispersed and is very scarce. Thus, this review marginalizes various studies conducted so far about EPS nature-production-recovery, properties, environmental applications and moreover, critically examines future research needs and advanced application prospective of the EPS. One of the most important aspect of chemical composition and structural details of different moieties of EPS in terms of carbohydrates, proteins, extracellular DNA, lipid and surfactants and humic substances are described. These chemical characteristics of EPS in relation to formation and properties of microbial aggregates as well as degradation of EPS in the matrix (biomass, flocs etc) are analyzed. The important engineering properties (based on structural characteristics) such as adsorption, biodegradability, hydrophilicity/hydrophobicity of EPS matrix are also discussed in details. Different aspects of EPS production process such as bacterial strain maintenance; inoculum and factors affecting EPS production were presented. The important factors affecting EPS production include growth phase, carbon and nitrogen sources and their ratio, role of other nutrients (phosphorus, micronutrients/trace elements, and vitamins), impact of pH, temperature, metals, aerobic versus anaerobic conditions and pure and mixed culture. The production of EPS in high concentration with high productivity is essential due to economic reasons. Therefore, the knowledge about all the aspects of EPS production (listed above) is highly

  6. Effect of free ammonium and free nitrous acid on the activity, aggregate morphology and extracellular polymeric substance distribution of ammonium oxidizing bacteria in partial nitrification.

    Science.gov (United States)

    Yao, Qian; Peng, Dangcong; Wang, Bo; Chen, Yuanyuan; Li, Jiaqi; Zhao, Qiaodi; Wang, Binbin

    2017-09-01

    Successful partial nitrification not only guarantees the inhibition of nitrite oxidation, but also does not excessively retard the ammonia oxidation rate. Therefore, the performance of ammonium oxidizing bacteria (AOB) during partial nitrification is fundamental to this process. In this study, two lab-scale partial nitrification bioreactors containing different inhibition conditions-one with free ammonium (FA) inhibition, the other with free nitrous acid (FNA) inhibition-were used to compare the differences between activity, quantity, aggregation morphology and extracellular polymeric substance (EPS) distribution of AOB. The results showed that although stable, long-term, partial nitrification was achieved in both reactors, there were differences in AOB activity, microbial spatial distribution and EPS characteristic. In the FA bioreactor, FA concentration was conducted at more than 40 mg/L, which had a strong impact on the metabolism of AOB. The activity and quantity decreased by 50%. Higher EPS (42.44 ± 2.31 mg g(-1) mixed liquor volatile suspended solids [MLVSS]) and protein were introduced into the EPS matrix. However, in the FNA bioreactor, the FNA concentration was about 0.23 mg/L. It did not reach a level to affect AOB metabolism. The AOB activity and quantity were maintained at high levels and the total EPS content was 28.29 ± 2.04 mg g(-1) MLVSS. Additionally, the microscopic results showed that in the FA bioreactor, AOB cells aggregated in microcolonies, while they appeared to be self-flocculating with no specific conformation in the other reactor. β-polysaccharides located inside sludge flocs in the FA bioreactor but only accumulated around the outer layer of activated sludge flocs in the FNA condition. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Natural antigenic differences in the functionally equivalent extracellular DNABII proteins of bacterial biofilms provide a means for targeted biofilm therapeutics.

    Science.gov (United States)

    Rocco, C J; Davey, M E; Bakaletz, L O; Goodman, S D

    2017-04-01

    Bacteria that persist in the oral cavity exist within complex biofilm communities. A hallmark of biofilms is the presence of an extracellular polymeric substance (EPS), which consists of polysaccharides, extracellular DNA (eDNA), and proteins, including the DNABII family of proteins. The removal of DNABII proteins from a biofilm results in the loss of structural integrity of the eDNA and the collapse of the biofilm structure. We examined the role of DNABII proteins in the biofilm structure of the periodontal pathogen Porphyromonas gingivalis and the oral commensal Streptococcus gordonii. Co-aggregation with oral streptococci is thought to facilitate the establishment of P. gingivalis within the biofilm community. We demonstrate that DNABII proteins are present in the EPS of both S. gordonii and P. gingivalis biofilms, and that these biofilms can be disrupted through the addition of antisera derived against their respective DNABII proteins. We provide evidence that both eDNA and DNABII proteins are limiting in S. gordonii but not in P. gingivalis biofilms. In addition, these proteins are capable of complementing one another functionally. We also found that whereas antisera derived against most DNABII proteins are capable of binding a wide variety of DNABII proteins, the P. gingivalis DNABII proteins are antigenically distinct. The presence of DNABII proteins in the EPS of these biofilms and the antigenic uniqueness of the P. gingivalis proteins provide an opportunity to develop therapies that are targeted to remove P. gingivalis and biofilms that contain P. gingivalis from the oral cavity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Biodegradation of Enteromorpha polysaccharides by intestinal micro-community from Siganus oramin

    Science.gov (United States)

    Zhang, Zhibiao; Han, Xuefeng; Xu, Yan; Li, Jin; Li, Yuanyou; Hu, Zhong

    2016-12-01

    Micro-communities are supposed to have more potential functions of biodegradation of polysaccharides than single strain; however, the intestinal micro-communities involved in the biodegradation of Enteromorpha polysaccharides (EP) were seldom reported. In order to obtain the EP-degrading micro-community, the intestines of Siganus oramin was obtained to isolate the micro-communities, which were enriched by 0.3% of EP as the sole carbon source. A stable micro-community with EP degradative capability was achieved after seven generations of subculture, named H1. Results showed that H1 was able to degrade 75% of EP within 24 hours, and the activity of EP lyases reached 500 U mL-1 in 32 hours. With denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library analysis, ten bacteria closely related to Marinomonas pontica, Microbacterium sp., Leucobacter chironomi, Cyclobacterium sp., Algoriphagus winogradskyi, Pseudoalteromonas sp. and Vibrio sp. were determined. Furthermore, compared with the DGGE bands sequence and the clone library analysis, the dominant bacteria of the EP-biodegrading micro- community were Pseudoalteromonas sp. and Vibrio sp., with the respective proportion of 38% and 46%, and they should play an important role in EP degradation together with other degrading bacteria in the micro-community H1.

  9. Role of extracellular polymeric substances (EPSs) in membrane fouling of membrane bioreactor coupled with worm reactor.

    Science.gov (United States)

    Tian, Yu; Li, Zhipeng; Chen, Lin; Lu, Yaobin

    2012-11-01

    This study focused on the effect of worm reactor on the fouling behaviors of extracellular polymeric substances (EPSs) in the MBR coupled with Static Sequencing Batch Worm Reactor (SSBWR-MBR). The filtration tests showed that the C-EPS (EPS in Control-MBR) and S-EPS (EPS in SSBWR-MBR) resulted in 76% and 67% of flux decrement, respectively. On both fouling layers, the preferential accumulation was protein, but the adsorption efficiency for protein in C-EPS was 20% higher than that in S-EPS. In comparison with the membrane fouled by C-EPS, the bio-volume of protein on the membrane fouled by S-EPS reduced 33%, and the protein porosity increased 20%. Meanwhile, the S-EPS approaching the membrane had to overcome×2.4 stronger repulsive interaction energy than C-EPS, and the membrane fouled by S-EPS exhibited relatively smoother compared to that fouled by C-EPS. As a result, the fouling potential of S-EPS was lower than that of C-EPS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. 球等鞭金藻胞外多糖的体外抗氧化活性和理化性质的初步分析%Study of in vitro antioxidation and physical and chemical characteristics analysis of extracellular polysaccharides iso-lated from Isochrysis galbana

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    The extracellular polysaccharides, ECPSⅢ, has been successfully isolated from marine microalgae Isochrysis galbana through a combination of anion-exchange column chromatography and repeated gel chromatog-raphy in previous study. Its in vitro antioxidant activities and physical and chemical properties were investigated. The results showed that ECPSⅢ has good antioxidant activities and perticularly it has relative stronger scavenging activities against superoxide radical and hydroxyl radical. ECPSⅢ is a acidic polysaccharide rich in sulfuric acid radicals and uronic acid. The contents of sulfuric acid radicals and uronic acid were 76.90 mg/g and 17.1%in ECPSⅢ, respectively.%  前期研究采用离子交换柱层析和凝胶柱层析,制备到一种球等鞭金藻胞外纯多糖ECPSⅢ。在此基础上,采用化学比色法研究了 ECPSⅢ的体外抗氧化活性;同时,通过测定 ECPSⅢ中的硫酸基和糖醛酸含量,初步分析了ECPSⅢ的理化性质。结果表明, ECPSⅢ具有清除超氧阴离子(O2·¯)、羟基自由基(·OH)和过氧化氢(H2O2)等活性氧的能力和一定的还原力。其中, ECPSⅢ对O2·¯和·OH的清除能力较强。ECPSⅢ中的硫酸基和糖醛酸含量分别为76.90 mg/g和17.1%,是一种富含硫酸基和糖醛酸的酸性多糖。

  11. Prostaglandin E2 prevents hyperosmolar-induced human mast cell activation through prostanoid receptors EP2 and EP4.

    Directory of Open Access Journals (Sweden)

    Ivonne Torres-Atencio

    Full Text Available BACKGROUND: Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2 are probably also released and could explain the refractory period observed in patients with EIB. OBJECTIVE: This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. METHODS: We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP antagonists for EP(1-4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. RESULTS: Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP(2 and EP(4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone. CONCLUSIONS: Our data show a protective role for the PGE2 receptors EP(2 and EP(4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition.

  12. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.

    Science.gov (United States)

    Jin, Juntao; Guan, Yuntao

    2014-10-01

    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products.

  13. Biodegradation ofEnteromorpha Polysaccharides by Intestinal Micro-Community from Siganus oramin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhibiao; HAN Xuefeng; XU Yan; LI Jin; LI Yuanyou; HU Zhong

    2016-01-01

    Micro-communities are supposed to have more potential functions of biodegradation of polysaccharides than single strain; however, the intestinal micro-communities involved in the biodegradation ofEnteromorpha polysaccharides (EP) were sel-dom reported. In order to obtain the EP-degrading micro-community, the intestines ofSiganus oramin was obtained to isolate the micro-communities, which were enriched by 0.3% of EPas the sole carbon source. A stable micro-community with EP degradative capability was achieved after seven generations of subculture, named H1. Results showed that H1 was able to degrade 75% of EP within 24 hours, and the activity of EP lyases reached 500UmL−1 in 32 hours. With denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library analysis, ten bacteria closely related toMarinomonas pontica, Microbacteriumsp.,Leucobacter chironomi, Cyclobacteriumsp.,Algoriphagus winogradskyi, Pseudoalteromonassp. andVibrio sp.were determined. Furthermore, compared with the DGGE bands sequence and the clone library analysis, the dominant bacteria of the EP-biodegrading mi-cro-community werePseudoalteromonassp. andVibrio sp., with the respective proportion of 38% and 46%, and they should play an important role in EP degradation together with other degrading bacteria in the micro-community H1.

  14. Growth regulation of primary human keratinocytes by prostaglandin E receptor EP2 and EP3 subtypes.

    Science.gov (United States)

    Konger, R L; Malaviya, R; Pentland, A P

    1998-02-04

    We examined the contribution of specific EP receptors in regulating cell growth. By RT-PCR and northern hybridization, adult human keratinocytes express mRNA for three PGE2 receptor subtypes associated with cAMP signaling (EP2, EP3, and small amounts of EP4). In actively growing, non-confluent primary keratinocyte cultures, the EP2 and EP4 selective agonists, 11-deoxy PGE1 and 1-OH PGE1, caused complete reversal of indomethacin-induced growth inhibition. The EP3/EP2 agonist (misoprostol), and the EP1/EP2 agonist (17-phenyl trinor PGE2), showed less activity. Similar results were obtained with agonist-induced cAMP formation. The ability of exogenous dibutyryl cAMP to completely reverse indomethacin-induced growth inhibition support the conclusion that growth stimulation occurs via an EP2 and/or EP4 receptor-adenylyl cyclase coupled response. In contrast, activation of EP3 receptors by sulprostone, which is virtually devoid of agonist activity at EP2 or EP4 receptors, inhibited bromodeoxyuridine uptake in indomethacin-treated cells up to 30%. Although human EP3 receptor variants have been shown in other cell types to markedly inhibit cAMP formation via a pertussis toxin sensitive mechanisms, EP3 receptor activation and presumably growth inhibition was independent of adenylyl cyclase, suggesting activation of other signaling pathways.

  15. Extracellular polymeric substances: quantification and use in erosion experiments

    Science.gov (United States)

    Perkins, R. G.; Paterson, D. M.; Sun, H.; Watson, J.; Player, M. A.

    2004-10-01

    Extracellular polymeric substances (EPS) is a generic term often applied to high molecular weight polymers implicated in the biostabilisation of natural sediments. Quantitative analysis of in situ EPS production rates and sediment contents has usually involved extraction of EPS in saline media prior to precipitation in alcohol and quantification against a glucose standard (phenol-sulphuric acid assay). Extracted and synthetic EPS has also been used to create engineered sediments for erosion experiments. This study investigated two steps in the EPS extraction procedure, saline extraction and alcohol precipitation. Comparisons of the effects of different extracted polymers were made in sediment erosion experiments using engineered sediments. Sediment EPS content decreased as the salinity of the extractant increased, with highest values obtained for extraction in fresh water. Potential errors were observed in the quantification of the soluble colloidal polymer fraction when divided into EPS and lower molecular weight polymers (LMW) as used in many studies. In erosion studies, 15 mg kg-1 of alcohol (IMS) extracted EPS polymer (in 5 g kg-1 IMS precipitate, equivalent to approximately 5 g salt kg-1 sediment dry weight) decreased the erosion threshold of cohesive sediments whereas 30 mg kg-1 (in 10 g kg-1 IMS precipitate, approximately 10 g salt kg-1 sediment dry weight) had no effect compared to controls. This could be due to the influence of EPS on water content: low levels of EPS did not bind but prevented desiccation, lowering sediment stability against controls. At higher EPS content, binding effects balanced water content effects. Salt alone (at 10 g kg-1) slightly increased the erosion threshold after a 6-h desiccation period. In comparison, carbohydrates produced without alcohol precipitation (rotary evaporation) increased the erosion threshold at both 0.5 and 1.0 g EPS kg-1 dry weight of sediment. It was concluded that the role of microphytobenthic polymers in

  16. The detection of EpCAM

    NARCIS (Netherlands)

    Wit, De Sanne; Dalum, Van Guus; Lenferink, Aufried T.M.; Tibbe, Arjan G.J.; Hiltermann, T.J.N.; Groen, Harry J.M.; Rijn, Van C.J.M.; Terstappen, Leon W.M.M.

    2015-01-01

    EpCAM expressing circulating tumor cells, detected by CellSearch, are predictive of short survival in several cancers and may serve as a liquid biopsy to guide therapy. Here we investigate the presence of EpCAM+ CTC detected by CellSearch and EpCAM- CTC discarded by CellSear

  17. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium Arthrospira platensis strain MMG-9

    NARCIS (Netherlands)

    Ahmed, M.; Moerdijk-Poortvliet, T.C.W.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated strai

  18. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium

    NARCIS (Netherlands)

    Ahmed, M.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated strai

  19. Sulphonated modification of polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275 and antioxidant activities investigation using CCD and Caco-2 cell line models.

    Science.gov (United States)

    Li, Siqian; Shah, Nagendra P

    2017-06-15

    Polysaccharides extracted from Pleurotus eryngii (PEPS) and Streptococcus thermophilus ASCC 1275 (EPS) were sulphonated and their composition determined. Antioxidant activities of crude and sulphonated polysaccharides (S.PEPS and S.EPS) were investigated using the ABTS radical scavenging test and CCD and Caco-2 cell models. Degrees of sulphonation for S.PEPS and S.EPS were 0.73 and 0.37, respectively. Results showed that S.PEPS and S.EPS had significantly higher scavenging capacities than PEPS and EPS in the ABTS radical scavenging test. Reactive oxygen species and malondialdehyde in H2O2 treated CCD 841 CoN (CCD) and Caco-2 cells were significantly inhibited by PEPS, EPS, S.PEPS and S.EPS compared to the control group. Additionally, S.PEPS and S.EPS significantly improved superoxide dismutase, catalase and glutathione peroxidase activities in H2O2 treated CCD and Caco-2 cells compared to PEPS, EPS and control groups. Results indicated that sulphonation was effective in improving antioxidant activities of both PEPS and EPS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. EPS Young Physicist Prize - CORRECTION

    CERN Multimedia

    2009-01-01

    The original text for the article 'Prizes aplenty in Krakow' in Bulletin 30-31 assigned the award of the EPS HEPP Young Physicist Prize to Maurizio Pierini. In fact he shared the prize with Niki Saoulidou of Fermilab, who was rewarded for her contribution to neutrino physics, as the article now correctly indicates. We apologise for not having named Niki Saoulidou in the original article.

  1. Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Nimisha, E-mail: joshi.nimisha@gmail.com [School of GeoSciences, Microbial Geochemistry Laboratory, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW (United Kingdom); Ngwenya, Bryne T. [School of GeoSciences, Microbial Geochemistry Laboratory, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW (United Kingdom); French, Christopher E. [School of Biological Sciences, Institute of Cell Biology, Darwin Building, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR (United Kingdom)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Demonstration that bacteria engineered for EPS overproduction have better survival against Ag nanotoxicity. Black-Right-Pointing-Pointer EPS destabilises Ag nanoparticles and promotes their aggregation. Black-Right-Pointing-Pointer TEM demonstration that EPS traps the Ag nanoparticles outside the cell. Black-Right-Pointing-Pointer EPS from overexpressing strains offers protection to non-EPS strains of bacteria. Black-Right-Pointing-Pointer EPS polymer analogues such as xanthan also produce a similar response. - Abstract: The increasing production and use of engineered nanoparticles, coupled with their demonstrated toxicity to different organisms, demands the development of a systematic understanding of how nanoparticle toxicity depends on important environmental parameters as well as surface properties of both cells and nanomaterials. We demonstrate that production of the extracellular polymeric substance (EPS), colanic acid by engineered Escherichia coli protects the bacteria against silver nanoparticle toxicity. Moreover, exogenous addition of EPS to a control strain results in an increase in cell viability, as does the addition of commercial EPS polymer analogue xanthan. Furthermore, we have found that an EPS producing strain of Sinorhizobium meliloti shows higher survival upon exposure to silver nanoparticles than the parent strain. Transmission electron microscopy (TEM) observations showed that EPS traps the nanoparticles outside the cells and reduces the exposed surface area of cells to incoming nanoparticles by inducing cell aggregation. Nanoparticle size characterization in the presence of EPS and xanthan indicated a marked tendency towards aggregation. Both are likely effective mechanisms for reducing nanoparticle toxicity in the natural environment.

  2. Qualitative and quantitative analysis of extracellular polymeric substances in partial nitrification and full nitrification reactors.

    Science.gov (United States)

    Wei, Dong; Yan, Tao; Zhang, Keyi; Chen, Ya; Wu, Na; Du, Bin; Wei, Qin

    2017-09-01

    In present study, two column-type sequencing batch reactors with alternative anoxic/aerobic phases were operated and compared under partial nitrification and full nitrification modes by controlling different dissolved oxygen (DO) conditions. During steady state, the characterizations of extracellular polymeric substances (EPS) from two reactors were qualitatively and quantitatively analyzed through chemical and spectroscopic approaches. Data implied that partial nitrification reactor had relatively higher total nitrogen (TN) removal efficiency and loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) contents. According to excitation emission matrix (EEM) spectra, LB-EPS and TB-EPS from two kinds of reactors expressed similar fluorescence peak locations but different intensities. Fluorescence regional integration (FRI) further suggested that Region IV was the main fraction in both types of EPS fractions. Moreover, TB-EPS exhibited a greater number of molecular weight fractions than those of LB-EPS. Both EPS fractions had similar functional groups, which represented the complex nature of EPS compositions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella.

    Science.gov (United States)

    Malang, Saskia Katharina; Maina, Ndegwa Henry; Schwab, Clarissa; Tenkanen, Maija; Lacroix, Christophe

    2015-04-01

    With their broad functional properties, lactic acid bacteria derived high molar mass exopolysaccharides (EPS) and oligosaccharides are of great interest for food, medical and pharmaceutical industry. EPS formation by 123 strains of Weissella cibaria and Weissella confusa, was evaluated. Dextran formation from sucrose was observed for all tested strains while 18 strains produced fructan in addition to dextran. Six isolates synthesized a highly ropy polymer from glucose associated with the formation of a cell-bound, capsular polysaccharide (CPS) composed of glucose, O-acetyl groups and two unidentified monomer components. The soluble EPSs of nine strains were identified as low α-1,3-branched dextran, levan and inulin type polymers using NMR. In addition to glucan and fructan, W. confusa produced gluco- and fructooligosaccharides. Partial dextransucrase and fructansucrase sequences were characterized in the selected Weissella strains. Our study reports the first structural characterization of fructan type EPS from Weissella as well as the first Weissella strain producing inulin. Production of more than one EPS-type by single strains may have high potential for development of applications combining EPS technological and nutritional benefits.

  4. 浒苔多糖的酶法提取、纯化及初步结构鉴定%Study on the Extraction, Purification and Structural Characterization of Polysaccharide from Enteromorpha

    Institute of Scientific and Technical Information of China (English)

    吕海涛; 肖宝石; 高玉杰

    2013-01-01

    Polysaccharide was extracted from Enteromorpha by hot water-papain. The crude Enteromorpha polysaccharide was separated and purified by DEAE ion-exchange cellulose chromatography and four kinds of polysaccharide components were obtained. The identification of purification with Sephadex G -100 gel chromatography implied that EP1 was homogeneous polysaccharide. From the result of FTIR, EP1 had the polysaccharide characteristic absorption peak and the sulfur acid radical existence. There were no nucleic acid and protein absorbance at 260 nm and 280 nm on the ultraviolet spectrum. The monosaccharide composition of EP1 was analyzed by HPLC, which was Man∶Rha∶Glu∶Xyl=0.09∶1.0∶3.1∶0.29.%  采用热水-木瓜蛋白酶法从浒苔中提取多糖,用DEAE-52纤维柱对浒苔粗多糖分离,得到4个多糖EP1、EP2、EP3和EP4组分。经Sephadex G-100凝胶柱进行纯度鉴定,表明EP1是均一多糖,红外光谱表明EP1具有多糖的特征吸收峰及硫酸基存在,紫外光谱表明EP1在260 nm和280 nm没有核酸和蛋白质的特征吸收峰,HPLC法分析表明EP1的单糖组成为:甘露糖∶鼠李糖∶葡萄糖∶木糖=0.09∶1.0∶3.1∶0.29。

  5. Mixed messages from benthic microbial communities exposed to nanoparticulate and ionic silver: 3D structure picks up nano-specific effects, while EPS and traditional endpoints indicate a concentration-dependent impact of silver ions.

    Science.gov (United States)

    Kroll, Alexandra; Matzke, Marianne; Rybicki, Marcus; Obert-Rauser, Patrick; Burkart, Corinna; Jurkschat, Kerstin; Verweij, Rudo; Sgier, Linn; Jungmann, Dirk; Backhaus, Thomas; Svendsen, Claus

    2016-03-01

    Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag(+)) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential functions in stream ecosystems are unknown. The effects of exposure of periphyton to 2 and 20 μg/L Ag(+) (AgNO3) and AgNP (polyvinylpyrrolidone stabilised) were investigated in artificial indoor streams. The extracellular polymeric substances (EPS) and 3D biofilm structure, biomass, algae species, Ag concentrations in the water phase and bioassociated Ag were analysed. A strong decrease in total Ag was observed within 4 days. Bioassociated Ag was proportional to dissolved Ag indicating a rate limitation by diffusion across the diffusive boundary layer. Two micrograms per liter of AgNO3 or AgNP did not induce significant effects despite detectable bioassociation of Ag. The 20-μg/L AgNO3 affected green algae and diatom communities, biomass and the ratio of polysaccharides to proteins in EPS. The 20-μg/L AgNO3 and AgNP decreased biofilm volume to about 50 %, while the decrease of biomass was lower in 20 μg/L AgNP samples than the 20-μg/L AgNO3 indicating a compaction of the NP-exposed biofilms. Roughness coefficients were lower in 20 μg/L AgNP-treated samples. The more traditional endpoints (biomass and diversity) indicated silver ion concentration-dependent effects, while the newly introduced parameters (3D structure and EPS) indicated both silver ion concentration-dependent effects and effects related to the silver species applied.

  6. The excreted polysaccharide of Pleurotus eryngii inhibits the foam-cell formation via down-regulation of CD36.

    Science.gov (United States)

    Chen, Jingjing; Yong, Yangyang; Xia, Xian; Wang, Zeliang; Liang, Youxing; Zhang, Shizhu; Lu, Ling

    2014-11-04

    Previous study has verified the polysaccharide from the fruiting body of Pleurotus eryngii (PEPE) is capable of decreasing the lipid content in both of cell-line and mouse model. However, little is known about underlying mechanisms and whether this bioactive polysaccharide exists in submerged culture. Here, we verified the excreted polysaccharides EP and EP-1 from submersion culture of P. eryngii have the remarkable inhibitory effects on lipid accumulation in macrophage-derived foam cells. Structure analysis indicates EP-1 consists of D-types of glucose, galactose and mannose with the main β(1 → 3)-glucan glycosidic linkage branched at O-6 by α-D-glucose while EP digested by β-1,3-glucanase fails to decrease the lipid accumulation, suggesting that the special structure is essential for its function. Expression analysis suggests that EP is able to cause the down-regulation of the scavenger receptor-CD36 on both transcription and protein levels. Most importantly, EP can be obtained by fermentation in a mass-production.

  7. Human mast cells express multiple EP receptors for prostaglandin E2 that differentially modulate activation responses.

    Science.gov (United States)

    Feng, Chunli; Beller, Elizabeth M; Bagga, Savita; Boyce, Joshua A

    2006-04-15

    Prostaglandin E2 (PGE2) blocks mast-cell (MC)-dependent allergic responses in humans but activates MCs in vitro. We assessed the functions of the EP receptors for PGE2 on cultured human MCs (hMCs). hMCs expressed the EP3, EP2, and EP4 receptors. PGE2 stimulated the accumulation of cyclic adenosine monophosphate (cAMP), and suppressed both Fc epsilonRI-mediated eicosanoid production and tumor necrosis factor-alpha (TNF-alpha) generation. PGE2 also caused phosphorylation of extracellular signal-regulated kinase (ERK), exocytosis, and production of prostaglandin D2 (PGD2), as well as leukotriene C4 (LTC4) when protein kinase A (PKA) was inhibited. An EP3 receptor-selective agonist, AE-248, mimicked PGE2-mediated ERK phosphorylation, exocytosis, and eicosanoid formation. Selective agonists of both EP2 and EP4 receptors (AE1-259-01 and AE-329, respectively) stimulated cAMP accumulation. No selective agonist, alone or in combination, was as effective as PGE2. AE-248, AE1-259-01, and AE-329 all inhibited Fc epsilonRI-mediated TNF-alpha generation, while AE1-259-01 blocked eicosanoid production. PGE2 caused the expression of inducible cAMP early repressor (ICER) by a pathway involving PKA and ERK. Thus, while PGE2 activates MCs through EP3 receptors, it also counteracts Fc epsilonRI-mediated eicosanoid production through EP2 receptors and PKA, and blocks cytokine transcription. These functions explain the potency of PGE2 as a suppressor of early- and late-phase allergic responses.

  8. Chemical analysis of cellular and extracellular carbohydrates of a biofilm-forming strain Pseudomonas aeruginosa PA14.

    Directory of Open Access Journals (Sweden)

    Charlène Coulon

    Full Text Available BACKGROUND: Pseudomonas aeruginosa is a gram-negative bacterium and an opportunistic pathogen, which causes persisting life-threatening infections in cystic fibrosis (CF patients. Biofilm mode of growth facilitates its survival in a variety of environments. Most P. aeruginosa isolates, including the non-mucoid laboratory strain PA14, are able to form a thick pellicle, which results in a surface-associated biofilm at the air-liquid (A-L interface in standing liquid cultures. Exopolysaccharides (EPS are considered as key components in the formation of this biofilm pellicle. In the non-mucoid P. aeruginosa strain PA14, the "scaffolding" polysaccharides of the biofilm matrix, and the molecules responsible for the structural integrity of rigid A-L biofilm have not been identified. Moreover, the role of LPS in this process is unclear, and the chemical structure of the LPS O-antigen of PA14 has not yet been elucidated. PRINCIPAL FINDINGS: In the present work we carried out a systematic analysis of cellular and extracellular (EC carbohydrates of P. aeruginosa PA14. We also elucidated the chemical structure of the LPS O-antigen by chemical methods and 2-D NMR spectroscopy. Our results showed that it is composed of linear trisaccharide repeating units, identical to those described for P. aeruginosa Lanýi type O:2a,c (Lanýi-Bergman O-serogroup 10a, 10c; IATS serotype 19 and having the following structure: -4-α-L-GalNAcA-(1-3-α-D-QuiNAc-(1-3- α-L-Rha-(1-. Furthermore, an EC O-antigen polysaccharide (EC O-PS and the glycerol-phosphorylated cyclic β-(1,3-glucans were identified in the culture supernatant of PA14, grown statically in minimal medium. Finally, the extracellular matrix of the thick biofilm formed at the A-L interface contained, in addition to eDNA, important quantities (at least ∼20% of dry weight of LPS-like material. CONCLUSIONS: We characterized the chemical structure of the LPS O-antigen and showed that the O-antigen polysaccharide is

  9. Chemical Analysis of Cellular and Extracellular Carbohydrates of a Biofilm-Forming Strain Pseudomonas aeruginosa PA14

    Science.gov (United States)

    Coulon, Charlène; Vinogradov, Evgeny; Filloux, Alain; Sadovskaya, Irina

    2010-01-01

    Background Pseudomonas aeruginosa is a Gram-negative bacterium and an opportunistic pathogen, which causes persisting life-threatening infections in cystic fibrosis (CF) patients. Biofilm mode of growth facilitates its survival in a variety of environments. Most P. aeruginosa isolates, including the non-mucoid laboratory strain PA14, are able to form a thick pellicle, which results in a surface-associated biofilm at the air-liquid (A–L) interface in standing liquid cultures. Exopolysaccharides (EPS) are considered as key components in the formation of this biofilm pellicle. In the non-mucoid P. aeruginosa strain PA14, the “scaffolding” polysaccharides of the biofilm matrix, and the molecules responsible for the structural integrity of rigid A–L biofilm have not been identified. Moreover, the role of LPS in this process is unclear, and the chemical structure of the LPS O-antigen of PA14 has not yet been elucidated. Principal Findings In the present work we carried out a systematic analysis of cellular and extracellular (EC) carbohydrates of P. aeruginosa PA14. We also elucidated the chemical structure of the LPS O-antigen by chemical methods and 2-D NMR spectroscopy. Our results showed that it is composed of linear trisaccharide repeating units, identical to those described for P. aeruginosa Lanýi type O:2a,c (Lanýi-Bergman O-serogroup 10a, 10c; IATS serotype 19) and having the following structure: -4)-α-L-GalNAcA-(1–3)-α-D-QuiNAc-(1–3)- α-L-Rha-(1-. Furthermore, an EC O-antigen polysaccharide (EC O-PS) and the glycerol-phosphorylated cyclic β-(1,3)-glucans were identified in the culture supernatant of PA14, grown statically in minimal medium. Finally, the extracellular matrix of the thick biofilm formed at the A-L interface contained, in addition to eDNA, important quantities (at least ∼20% of dry weight) of LPS-like material. Conclusions We characterized the chemical structure of the LPS O-antigen and showed that the O-antigen polysaccharide is

  10. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, Angeles [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain)], E-mail: aguileraba@inta.es; Souza-Egipsy, Virginia [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); San Martin-Uriz, Patxi [Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Amils, Ricardo [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2008-07-30

    To evaluate the importance of the extracellular matrix in relation to heavy metal binding capacity in extreme acidic environments, the extracellular polymeric substances (EPS) composition of 12 biofilms isolated from Rio Tinto (SW, Spain) was analyzed. Each biofilm was composed mainly by one or two species of eukaryotes, although other microorganisms were present. EPS ranged from 130 to 439 mg g{sup -1} biofilm dry weight, representing between 15% and the 40% of the total biofilm dry weight (DW). Statistically significant differences (p < 0.05) were found in the amount of total EPS extracted from biofilms dominated by the same organism at different sampling points. The amount of EPS varied among different biofilms collected from the same sampling location. Colloidal EPS ranged from 42 to 313 mg g{sup -1} dry weight; 10% to 30% of the total biofilm dry weight. Capsular EPS ranged from 50 to 318 mg g{sup -1} dry weight; 5% to 30% of the total biofilm dry weight. Seven of the 12 biofilms showed higher amounts of capsular than colloidal EPS (p < 0.05). Total amount of EPS decreased when total cell numbers and pH increased. There was a positive correlation between EPS concentration and heavy metal concentration in the water. Observations by low temperature scanning electron microscopy (LTSEM) revealed the mineral adsorption in the matrix of EPS and onto the cell walls. EPS in all biofilms were primarily composed of carbohydrates, heavy metals and humic acid, plus small quantities of proteins and DNA. After carbohydrates, heavy metals were the second main constituents of the extracellular matrix. Their total concentrations ranged from 3 to 32 mg g{sup -1} biofilm dry weight, reaching up to 16% of the total composition. In general, the heavy metal composition of the EPS extracted from the biofilms closely resembled the metal composition of the water from which the biofilms were collected.

  11. Prostaglandin E2 regulates pancreatic stellate cell activity via the EP4 receptor.

    Science.gov (United States)

    Charo, Chantale; Holla, Vijaykumar; Arumugam, Thiruvengadam; Hwang, Rosa; Yang, Peiying; Dubois, Raymond N; Menter, David G; Logsdon, Craig D; Ramachandran, Vijaya

    2013-04-01

    Pancreatic stellate cells are source of dense fibrotic stroma, a constant pathological feature of chronic pancreatitis and pancreatic adenocarcinoma. We observed correlation between levels of cyclooxygenase 2 (COX-2) and its product prostaglandin E2 (PGE2) and the extent of pancreatic fibrosis. The aims of this study were to delineate the effects of PGE2 on immortalized human pancreatic stellate cells (HPSCs) and to identify the receptor involved. Immunohistochemistry, reverse transcription-polymerase chain reaction and quantitative reverse transcription-polymerase chain reaction were used to assess COX-2, extracellular matrix, and matrix metalloproteinase gene expression. Eicosanoid profile was determined by liquid chromatography-tandem mass spectrometry. Human pancreatic stellate cell proliferation was assessed by MTS assay, migration by Boyden chamber assay, and invasion using an invasion chamber. Transient silencing was obtained by small interfering RNA. Human pancreatic stellate cells express COX-2 and synthesize PGE2. Prostaglandin E2 stimulated HPSC proliferation, migration, and invasion and stimulated expression of both extracellular matrix and matrix metalloproteinase genes. Human pancreatic stellate cells expressed all 4 EP receptors. Only blocking the EP4 receptor resulted in abrogation of PGE2-mediated HPSC activation. Specificity of EP4 for the effects of PGE2 on stellate cells was confirmed using specific antagonists. Our data indicate that PGE2 regulates pancreatic stellate cell profibrotic activities via EP4 receptor, thus suggesting EP4 receptor as useful therapeutic target for pancreatic cancer to reduce desmoplasia.

  12. Hydrophobic features of EPS extracted from anaerobic granular sludge: an investigation based on DAX-8 resin fractionation and size exclusion chromatography.

    Science.gov (United States)

    Cao, Feishu; Bourven, Isabelle; Lens, Piet N L; van Hullebusch, Eric D; Pechaud, Yoan; Guibaud, Gilles

    2017-04-01

    The hydrophobic fractionation of extracellular polymeric substances (EPS) extracted from anaerobic granular sludge was performed on the DAX-8 resin (two elution pH conditions, i.e., pH 2 and pH 5 were tested). The impact of seven different EPS extraction methods on EPS hydrophobicity features was assessed. The results showed that the extraction methods and bulk solution pH influenced dramatically the biochemical composition of the EPS, and in turn, the hydrophobicity determined. Besides, EPS extracting reagents i.e., formaldehyde, ethanol, sodium dodecyl sulfate (SDS), and Tween 20 not only introduced extra carbon content in the total organic carbon (TOC) measurement but also interacted with the DAX-8 resin. By comparing the apparent molecular weight (aMW) distribution of untreated and pH-adjusted EPS samples, more complete EPS aMW information was preserved at pH 5. Thus, elution at pH 5 was preferred in this study for the qualitative analysis of EPS hydrophobic features. The hydrophobic fraction of EPS retained by the resin at pH 5 was ascribed to a wide aMW range, ranging from >440 to 0.3 kDa. Within this range, EPS molecules ranging from 175 to 31 kDa were mostly retained by the DAX-8 resin, which indicates that these EPS molecules are highly hydrophobic.

  13. The roles of loosely-bound and tightly-bound extracellular polymer substances in enhanced biological phosphorus removal.

    Science.gov (United States)

    Long, Xiangyu; Tang, Ran; Fang, Zhendong; Xie, Chaoxin; Li, Yongqin; Xian, Guang

    2017-09-22

    Extracellular polymeric substances (EPS) have be founded to participate in the process of enhanced biological phosphorus removal (EBPR), but the exact role of EPS in EBPR process is unclear. In this work, the roles of loosely-bound EPS (LB-EPS), tightly-bound EPS (TB-EPS) and microbial cell in EBPR were explored, taking the activated sludge from 4 lab-scale A/O-SBR reactors with different temperatures and organic substrates as objects. It was founded that the P of EBPR activated sludge was mainly stored in TB-EPS, but the P of non-EBPR activated sludge was primarily located in microbial cell. The P release and uptake of EBPR activated sludge was attributed to the combined action of TB-EPS and microbial cell. Furthermore, TB-EPS played an more important role than microbial cell in EBPR process. With the analysis of (31)P NMR spectroscopy, both polyP and orthoP were the main phosphorus species of TB-EPS in EBPR sludge, but only orthoP was the main phosphorus species of LB-EPS and microbial cell. During the anaerobic-aerobic cycle, the roles of LB-EPS, TB-EPS and microbial cell in transfer and transformation of P in EBPR sludge were obviously different. LB-EPS transported and retained orthoP, and microbial cell directly anaerobically released or aerobically absorbed orthoP. Importantly, TB-EPS not only transported and retained orthoP, but also participated in biological phosphorus accumulation. The EBPR performance of sludge was closely related with the polyp in TB-EPS, which might be synthesized and decomposed by extracellular enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of extracellular polymer substances on aerobic granulation in sequencing batch reactors

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-ping; LIU Li-li; YAO Jie; SUN Li-xin; CAI Wei-min

    2009-01-01

    The effects of extracellular polymeric substances (EPS) on aerobic granulation in sequencing batch reactors (SBR) were investigated by evaluating the EPS content, and the relationship between EPS composition and surface properties of glucose-fed aerobic granules. The results show that aerobic granular sludge contains more EPS than seed sludge, and it is about 47 mg/gMLSS. Corresponding to the changes of EPS, the surface charge of microorganisms in granules increases from -0. 732 to -0. 845 meq/gMLSS, whereas the hydrophobicry changes significantly from 48.46% to 73. 16%. It is obviously that changes of EPS in sludge alter the negative surface charge and hydrophobieity of microorganisms in granules, enhance the polymeric interaction and promote the aerobic granulation. Moreover, EPS can serve as carbon and energy reserves in granulation, thus the growth between the interior and exterior bacteria is balanced, and the integrality of granules is maintained.SEM observation of the granules exhibits that EPS in granules are ropy ; by mixing with bacteria, compact matrix structure can be formed. The distribution of EPS in granules profiles the importance of EPS storage. It can be concluded that EPS play a crucial role in aerobic granulation.

  15. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms.

    Science.gov (United States)

    Klein, Marlise I; Hwang, Geelsu; Santos, Paulo H S; Campanella, Osvaldo H; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  16. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    Directory of Open Access Journals (Sweden)

    Marlise eKlein

    2015-02-01

    Full Text Available Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS, eDNA and lipoteichoic acid (LTA. EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  17. QCD studies in ep collisions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.H. [Univ. of Wisconsin, Madison, WI (United States). Physics Dept.

    1997-06-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.

  18. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  19. Effects of Polysaccharide Elicitors from Endophytic Fusarium oxysporum Fat9 on the Growth, Flavonoid Accumulation and Antioxidant Property of Fagopyrum tataricum Sprout Cultures

    Directory of Open Access Journals (Sweden)

    Lingyun Zhong

    2016-11-01

    Full Text Available The purpose of this study was to evaluate the effects of four different fungal polysaccharides, named water-extracted mycelia polysaccharide (WPS, sodium hydroxide-extracted mycelia polysaccharide (SPS, hydrochloric-extracted mycelia polysaccharide (APS, and exo-polysaccharide (EPS obtained from the endophytic Fusarium oxysporum Fat9 on the sprout growth, flavonoid accumulation, and antioxidant capacity of tartary buckwheat. Without visible changes in the appearance of the sprouts, the exogenous polysaccharide elicitors strongly stimulated sprout growth and flavonoid production, and the stimulation effect was closely related with the polysaccharide (PS species and its treatment dosage. With application of 200 mg/L of EPS, 200 mg/L of APS, 150 mg/L of WPS, or 100 mg/L of SPS, the total rutin and quercetin yields of buckwheat sprouts were significantly increased to 41.70 mg/(100 sprouts, 41.52 mg/(100 sprouts, 35.88 mg/(100 sprouts, and 32.95 mg/(100 sprouts, respectively. This was about 1.11 to 1.40-fold compared to the control culture of 31.40 mg/(100 sprouts. Moreover, the antioxidant capacity of tartary buckwheat sprouts was also enhanced after treatment with the four PS elicitors. Furthermore, the present study revealed the polysaccharide elicitation that caused the accumulation of functional flavonoid by stimulating the phenylpropanoid pathway. The application of beneficial fungal polysaccharide elicitors may be an effective approach to improve the nutritional and functional characteristics of tartary buckwheat sprouts.

  20. Effects of Polysaccharide Elicitors from Endophytic Fusarium oxysporum Fat9 on the Growth, Flavonoid Accumulation and Antioxidant Property of Fagopyrum tataricum Sprout Cultures.

    Science.gov (United States)

    Zhong, Lingyun; Niu, Bei; Tang, Lin; Chen, Fang; Zhao, Gang; Zhao, Jianglin

    2016-11-25

    The purpose of this study was to evaluate the effects of four different fungal polysaccharides, named water-extracted mycelia polysaccharide (WPS), sodium hydroxide-extracted mycelia polysaccharide (SPS), hydrochloric-extracted mycelia polysaccharide (APS), and exo-polysaccharide (EPS) obtained from the endophytic Fusarium oxysporum Fat9 on the sprout growth, flavonoid accumulation, and antioxidant capacity of tartary buckwheat. Without visible changes in the appearance of the sprouts, the exogenous polysaccharide elicitors strongly stimulated sprout growth and flavonoid production, and the stimulation effect was closely related with the polysaccharide (PS) species and its treatment dosage. With application of 200 mg/L of EPS, 200 mg/L of APS, 150 mg/L of WPS, or 100 mg/L of SPS, the total rutin and quercetin yields of buckwheat sprouts were significantly increased to 41.70 mg/(100 sprouts), 41.52 mg/(100 sprouts), 35.88 mg/(100 sprouts), and 32.95 mg/(100 sprouts), respectively. This was about 1.11 to 1.40-fold compared to the control culture of 31.40 mg/(100 sprouts). Moreover, the antioxidant capacity of tartary buckwheat sprouts was also enhanced after treatment with the four PS elicitors. Furthermore, the present study revealed the polysaccharide elicitation that caused the accumulation of functional flavonoid by stimulating the phenylpropanoid pathway. The application of beneficial fungal polysaccharide elicitors may be an effective approach to improve the nutritional and functional characteristics of tartary buckwheat sprouts.

  1. Localization of prostaglandin E(2) EP2 and EP4 receptors in the rat kidney

    DEFF Research Database (Denmark)

    Jensen, B L; Stubbe, J; Hansen, P B

    2001-01-01

    -selective agonist, dose dependently raised cAMP levels in microdissected DTL and outer medullary vasa recta specimens but had no effect in EP2-negative outer medullary collecting duct segments. Dietary salt intake did not alter EP2 expression in the kidney medulla. These results suggest that PGE(2) may act......We investigated the localization of cAMP-coupled prostaglandin E(2) EP2 and EP4 receptor expression in the rat kidney. EP2 mRNA was restricted to the outer and inner medulla in rat kidney, as determined by RNase protection assay. RT-PCR analysis of microdissected resistance vessels and nephron...... segments showed EP2 expression in descending thin limb of Henle's loop (DTL) and in vasa recta of the outer medulla. The EP4 receptor was expressed in distal convoluted tubule (DCT) and cortical collecting duct (CCD) in preglomerular vessels, and in outer medullary vasa recta. Butaprost, an EP2 receptor...

  2. An Advance in the Research on Bioremediation of Heavy Metal Pollution by Microbial Extracellular Polymeric Substances%微生物胞外聚合物修复重金属污染研究进展

    Institute of Scientific and Technical Information of China (English)

    张广柱; 董鹏; 王繁业

    2009-01-01

    Extracellular polymeric substances (EPS) of mlcroblal origin are a complex mixture of biopoly-mers comprising polysaccharides, proteins, nucleic acids, uronic acids, humics, lipids, and etc. Functionally, EPS aid in cell-to-cell aggregation, adhesion to substratum, formation of floes, protection from desiccation and resistance to harmful exogenous materials. In addition, the exopolymers serve as bio-sorbing agents by accumulating nutrients from the surrounding environment and also play a crucial role in bio-sorption of heavy metals. Being poly-anionic in nature, EPS form complexes with metal cations resulting in metal immobilization. Moreover, enzymatic activities in EPS also assist detoxification of heavy metals by transformation and subsequent precipitation. Structures and functions of EPS were summarised focusing on their formation, separation and composition. Cationic bonding behaviour of EPS from various origins as well as the mechanism of remedying heavy metal pollution were presented.%微生物胞外聚合物(EPS)是由多糖、蛋白质、核酸、糖羧酸,腐殖质和脂类等生物聚合体组成的复杂混合物.EPS具有聚合细胞、固定基质、形成絮凝、保持水分及阻止有害外源物质等功能.此外,EPS还可作为生物吸附剂来吸附周围环境中营养物质,并且在重金属生物吸附中发挥关键作用.EPS为天然的聚阴离子物质.可固定金属离子形成复合物.EPS中的酶可通过转换和沉淀作用来加速重金属的去毒.文章综述了EPS的结构和功能,重点是其生成、分离、组成,介绍各种来源EPS的阳离子键合性能,及其重金属修复机理.

  3. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    Science.gov (United States)

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Suppression of prostaglandin E2 receptor subtype EP2 by PPARgamma ligands inhibits human lung carcinoma cell growth.

    Science.gov (United States)

    Han, ShouWei; Roman, Jesse

    2004-02-20

    Prostaglandin E(2) (PGE(2)), a major cyclooxygenase (COX-2) metabolite, plays important roles in tumor biology and its functions are mediated through one or more of its receptors EP1, EP2, EP3, and EP4. We have shown that the matrix glycoprotein fibronectin stimulates lung carcinoma cell proliferation via induction of COX-2 expression with subsequent PGE(2) protein biosynthesis. Ligands of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibited this effect and induced cellular apoptosis. Here, we explore the role of the PGE(2) receptor EP2 in this process and whether the inhibition observed with PPARgamma ligands is related to effects on this receptor. We found that human non-small cell lung carcinoma cell lines (H1838 and H2106) express EP2 receptors, and that the inhibition of cell growth by PPARgamma ligands (GW1929, PGJ2, ciglitazone, troglitazone, and rosiglitazone [also known as BRL49653]) was associated with a significant decrease in EP2 mRNA and protein levels. The inhibitory effects of BRL49653 and ciglitazone, but not PGJ2, were reversed by a specific PPARgamma antagonist GW9662, suggesting the involvement of PPARgamma-dependent and -independent mechanisms. PPARgamma ligand treatment was associated with phosphorylation of extracellular regulated kinase (Erk), and inhibition of EP2 receptor expression by PPARgamma ligands was prevented by PD98095, an inhibitor of the MEK-1/Erk pathway. Butaprost, an EP2 agonist, like exogenous PGE(2) (dmPGE(2)), increased lung carcinoma cell growth, however, GW1929 and troglitazone blocked their effects. Our studies reveal a novel role for EP2 in mediating the proliferative effects of PGE(2) on lung carcinoma cells. PPARgamma ligands inhibit human lung carcinoma cell growth by decreasing the expression of EP2 receptors through Erk signaling and PPARgamma-dependent and -independent pathways.

  5. Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression using Sub-Inhibitory Concentrations of Bismuth Thiols

    Energy Technology Data Exchange (ETDEWEB)

    Badireddy, Appala R.; Korpol, Bhoom Reddy; Chellam, Shankararaman; Gassman, Paul L.; Engelhard, Mark H.; Lea, Alan S.; Rosso, Kevin M.

    2008-10-21

    Free and capsular EPS produced by Escherichia coli and Serratia marcescens were characterized in detail using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Total EPS production decreased upon treatment with sub-inhibitory concentrations of lipophilic bismuth thiols (bismuth dimercaptopropanol, BisBAL; bismuth ethanedithiol, BisEDT; and bismuth pyrithione, BisPYR), BisBAL being most effective. Bismuth thiols also influenced acetylation and carboxylation of polysaccharides in EPS from S. marcescens. Extensive homology between EPS samples in the presence and absence of bismuth was observed with proteins, polysaccharides, and nucleic acids varying predominantly only in the total amount expressed. Second derivative analysis of the amide I region of FTIR spectra revealed decreases in protein secondary structures in the presence of bismuth thiols. Hence, anti-fouling properties of bismuth thiols appear to originate in their ability to suppress O-acetylation and protein secondary structures in addition to total EPS secretion.

  6. Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schlekat, C.E.; Decho, A.W.; Chandler, G.T. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Environmental Health Sciences

    1998-09-01

    Microbial extracellular polymeric substances (EPS) are ubiquitous features in aquatic environments. Produced by surface-adherent bacteria and microalgae, EPS are often present as coatings on surfaces of sediment particles and exhibit high affinities for divalent cationic metals. Thus, EPS sediment coatings may participate in the fate of potentially toxic metals. The authors coated particulate silica with EPS produced by NISC1, a bacterium isolated from estuarine sediments, in order to measure the metal binding characteristics of these coatings. They used the radioisotope {sup 109}Cd to measure effects of salinity, Cd concentration, and pH on Cd sorption to EPS-coated (EPS-silica) silica and to noncoated silica (NC-silica). Also, Cd sorption by NISC1 EPS coatings was compared to coatings of polymers formed by the bacterium, Alteromonas atlantica and the alga, Macrocystis porifera. Under all circumstances, EPS coatings increased the affinity of silica for Cd. Extracellular polymeric substance-particulate aggregates rapidly sorbed up to 90% of Cd from aqueous solution. Extracellular polymeric substance sediment coatings exhibited a maximum log distribution coefficient (K{sub d}) of 6.5 at 2.5%. Sorption of Cd to NC-silica was affected by salinity and metal concentration, whereas sorption of Cd to EPS-silica was only affected by salinity under high metal concentrations. Changes in pH had a dramatic effect on Cd sorption, with the proportion of free Cd to sorbed Cd changing from approximately 90% at pH 5 to 5% at pH 9. Desorption of Cd from EPS-silica was enhanced with increasing salinity. These experiments suggest that EPS coatings actively participate in binding dissolved overlying and pore-water metals in estuarine sediments.

  7. Structure of the Minor Pseudopilin EpsH From the Type 2 Secretion System of Vibrio Cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Yanez, M.E.; Korotkov, K.V.; Abendroth, J.; Hol, W.G.J.

    2009-05-28

    Many Gram-negative bacteria use the multi-protein type II secretion system (T2SS) to selectively translocate virulence factors from the periplasmic space into the extracellular environment. In Vibrio cholerae the T2SS is called the extracellular protein secretion (Eps) system, which translocates cholera toxin and several enzymes in their folded state across the outer membrane. Five proteins of the T2SS, the pseudopilins, are thought to assemble into a pseudopilus, which may control the outer membrane pore EpsD, and participate in the active export of proteins in a 'piston-like' manner. We report here the 2.0 {angstrom} resolution crystal structure of an N-terminally truncated variant of EpsH, a minor pseudopilin from Vibrio cholerae. While EpsH maintains an N-terminal {alpha}-helix and C-terminal {beta}-sheet consistent with the type 4a pilin fold, structural comparisons reveal major differences between the minor pseudopilin EpsH and the major pseudopilin GspG from Klebsiella oxytoca: EpsH contains a large {beta}-sheet in the variable domain, where GspG contains an {alpha}-helix. Most importantly, EpsH contains at its surface a hydrophobic crevice between its variable and conserved {beta}-sheets, wherein a majority of the conserved residues within the EpsH family are clustered. In a tentative model of a T2SS pseudopilus with EpsH at its tip, the conserved crevice faces away from the helix axis. This conserved surface region may be critical for interacting with other proteins from the T2SS machinery.

  8. Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method

    OpenAIRE

    2014-01-01

    A series of polyvinyl alcohol (PVA), PVA/chitosan (CS) and PVA/cyanobacterial extracellular polymeric substances (EPS) blended nanofibrous membranes were produced by electrospinning using a microfiltration poly(vinylidene fluoride) (PVDF) basal membrane, for potential applications in water filtration. Nanofibres were obtained from solutions of 20% (w/w) PVA with 1% (w/w) CS or EPS, using a weight ratio of 60/40. Blended nanofibres have shown a smooth morphology, no beads formation and diamete...

  9. An Ep-ICD based index is a marker of aggressiveness and poor prognosis in thyroid carcinoma.

    Directory of Open Access Journals (Sweden)

    Helen C-H He

    Full Text Available BACKGROUND: Nuclear accumulation of the intracellular domain of epithelial cell adhesion molecule (Ep-ICD in tumor cells was demonstrated to predict poor prognosis in thyroid carcinoma patients in our earlier study. Here, we investigated the clinical significance of Ep-ICD subcellular localization index (ESLI in distinguishing aggressive papillary thyroid carcinoma (PTC from non-aggressive cases. METHODS: Using domain specific antibodies against the intracellular (Ep-ICD and extracellular (EpEx domains of epithelial cell adhesion molecule, 200 archived tissues from a new cohort of patients with benign thyroid disease as well as malignant aggressive and non aggressive PTC were analyzed by immunohistochemistry (IHC. ESLI was defined as sum of the IHC scores for accumulation of nuclear and cytoplasmic Ep-ICD and loss of membranous EpEx; ESLI = [Ep-ICD(nuc + Ep-ICD(cyt + loss of membranous EpEx]. RESULTS: For the benign thyroid tissues, non-aggressive PTC and aggressive PTC, the mean ESLI scores were 4.5, 6.7 and 11 respectively. Immunofluorescence double staining confirmed increased nuclear Ep-ICD accumulation and decreased membrane EpEx expression in aggressive PTC. Receiver-operating characteristic (ROC curve analysis showed an area under the curve (AUC of 0.841, 70.2% sensitivity and 83.9% specificity for nuclear Ep-ICD for differentiating aggressive PTC from non-aggressive PTC. ESLI distinguished aggressive PTC from non-aggressive cases with improved AUC of 0.924, 88.4% sensitivity and 85.5% specificity. Our study confirms nuclear accumulation of Ep-ICD and loss of membranous EpEx occurs in aggressive PTC underscoring the potential of Ep-ICD and ESLI to serve as diagnostic markers for aggressive PTC. Kaplan Meier survival analysis revealed significantly reduced disease free survival (DFS for ESLI positive (cutoff >10 PTC (p<0.05, mean DFS=133 months as compared to 210 months for patients who did not show positive ESLI. CONCLUSION: ESLI

  10. EPS solubilization treatment by applying the biosurfactant rhamnolipid to reduce clogging in constructed wetlands.

    Science.gov (United States)

    Du, Mingpu; Xu, Dong; Trinh, Xuantung; Liu, Shuangyuan; Wang, Mei; Zhang, Yi; Wu, Junmei; Zhou, Qiaohong; Wu, Zhenbin

    2016-10-01

    Application of extracellular polymeric substances (EPS) solubilization treatment with biosurfactant rhamnolipid (RL) to reduce clogging in constructed wetlands was first conducted in this study. The results showed significant improvement in the solubilization and dispersion of clogging matter following the treatment. And RL dosage of 0.09-0.15g/L altered microbial group make-up and had an overall positive effect on the growth of microorganisms. Moreover, RL was found to enhance EPS dissolution and dispersion, which was beneficial for the release of enzymes embedded in the EPS, and resulted in enhanced pollutant removal. The treatment had no apparent detrimental effect on wetland plants. Our results indicate that the optimum dosage of RL is 0.12g/L, and that the approach provides a promising and moderate option to reverse wetland clogging through RL-mediated solubilization treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sulfation patterns determine cellular internalization of heparin-like polysaccharides

    OpenAIRE

    Raman, Karthik; Mencio, Caitlin; Desai, Umesh R.; Kuberan, Balagurunathan

    2013-01-01

    Heparin is a highly sulfated polysaccharide which serves biologically relevant roles as an anticoagulant and anti-cancer agent. While it is well known that modification of heparin’s sulfation pattern can drastically influence its ability to bind growth factors and other extracellular molecules, very little is known about the cellular uptake of heparin and the role sulfation patterns serve in affecting its internalization. In this study, we chemically synthesized several fluorescently-labeled ...

  12. Effect of medium pH and cultivation period on mycelial biomass, polysaccharide, and ligninolytic enzyme production by Ganoderma lucidum from Montenegro

    Directory of Open Access Journals (Sweden)

    Vukojević Jelena

    2006-01-01

    Full Text Available The effect of initial medium pH on biomass, extracellular and intracellular polysaccharide, and ligninolytic enzyme production by Ganoderma lucidum was investigated at different pH values after 7 and 14 days of cultivation. Maximal production of biomass was recorded at pH 4.5 and 5.0; maximal production of extracellular polysaccharides at pH 7.0 and 3.0; and maximal production of intracellular polysaccharides at pH 7.0 and 5.5. Ligninolytic enzymes were not produced at any pH of the medium. Maximal biomass production was obtained on the 11th day of cultivation; maximal extracellular polysaccharide production on the 7th day; and maximal intracellular polysaccharide production on the 6th and 10th day of cultivation. .

  13. Extracellular Polymeric Substances Govern the Surface Charge of Biogenic Elemental Selenium Nanoparticles

    KAUST Repository

    Jain, Rohan

    2015-02-03

    © 2014 American Chemical Society. The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  14. NF-κB-dependent IL-8 induction by prostaglandin E2 receptors EP1 and EP4

    Science.gov (United States)

    Neuschäfer-Rube, F; Pathe-Neuschäfer-Rube, A; Hippenstiel, S; Kracht, M; Püschel, GP

    2013-01-01

    Background and Purpose Recent studies suggested a role for PGE2 in the expression of the chemokine IL-8. PGE2 signals via four different GPCRs, EP1-EP4. The role of EP1 and EP4 receptors for IL-8 induction was studied in HEK293 cells, overexpressing EP1 (HEK-EP1), EP4 (HEK-EP4) or both receptors (HEK-EP1 + EP4). Experimental Approach IL-8 mRNA and protein induction and IL-8 promoter and NF-κB activation were assessed in EP expressing HEK cells. Key Results In HEK-EP1 and HEK-EP1 + EP4 but not HEK or HEK-EP4 cells, PGE2 activated the IL-8 promoter and induced IL-8 mRNA and protein synthesis. Stimulation of HEK-EP1 + EP4 cells with an EP1-specific agonist activated IL-8 promoter and induced IL-8 mRNA and protein, whereas a specific EP4 agonist neither activated the IL-8 promoter nor induced IL-8 mRNA and protein synthesis. Simultaneous stimulation of HEK- EP1 + EP4 cells with both agonists activated IL-8 promoter and induced IL-8 mRNA to the same extent as PGE2. In HEK-EP1 + EP4 cells, PGE2-mediated IL-8 promoter activation and IL-8 mRNA induction were blunted by inhibition of IκB kinase. PGE2 activated NF-κB in HEK-EP1, HEK-EP4 and HEK-EP1 + EP4 cells. In HEK-EP1 + EP4 cells, simultaneous activation of both receptors was needed for maximal PGE2-induced NF-κB activation. PGE2-stimulated NF-κB activation by EP1 was blocked by inhibitors of PLC, calcium-signalling and Src-kinase, whereas that induced by EP4 was only blunted by Src-kinase inhibition. Conclusions and Implications These findings suggest that PGE2-mediated NF-κB activation by simultaneous stimulation of EP1 and EP4 receptors induces maximal IL-8 promoter activation and IL-8 mRNA and protein induction. PMID:22924768

  15. PGE2 Regulates Pancreatic Stellate Cell Activity Via The EP4 Receptor

    Science.gov (United States)

    Charo, Chantale; Holla, Vijaykumar; Arumugam, Thiruvengadam; Hwang, Rosa; Yang, Peiying; Dubois, Raymond N.; Menter, David G.; Logsdon, Craig D.; Ramachandran, Vijaya

    2013-01-01

    Objectives Pancreatic stellate cells are source of dense fibrotic stroma, a constant pathological feature of chronic pancreatitis (CP) and pancreatic adenocarcinoma (PDAC). We observed correlation between levels of cyclooxygenase-2 (COX-2) and its product prostaglandin E2 (PGE2) and the extent of pancreatic fibrosis. Aim of this study was to delineate the effects of PGE2 on immortalized human pancreatic stellate cells (HPSC) and to identify the receptor involved. Methods IHC, RT-PCR and Q-RT-PCR were used to assess COX-2, extracellular matrix (ECM) and matrix metalloproteinases (MMP) gene expression. Eicosanoid profile was determined by LC/MS/MS. HPSC proliferation was assessed by MTS assay; migration by Boyden chamber assay and invasion using an invasion chamber. Transient silencing was obtained by siRNA. Results HPSC express COX-2 and synthesize PGE2. PGE2 stimulated HPSC proliferation, migration and invasion; stimulated expression of both ECM and MMP genes. HPSC expressed all four EP receptors. Only blocking the EP4 receptor resulted in abrogation of PGE2 mediated HPSC activation. Specificity of EP4 for the effects of PGE2 on stellate cells was confirmed using specific antagonists. Conclusion Our data indicate that PGE2 regulates PSC profibrotic activities via EP4 receptor thus suggesting EP4 receptor as useful therapeutic target for pancreatic cancer to reduce desmoplasia. PMID:23090667

  16. Temporal Changes in Extracellular Polymeric Substances on Hydrophobic and Hydrophilic Membrane Surfaces in a Submerged Membrane Bioreactor

    KAUST Repository

    Matar, Gerald Kamil

    2016-03-02

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m2.h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m2.h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be considered

  17. Role of extracellular exopolymers on biological phosphorus removal

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-nan; XUE Gang; YU Shui-li; ZHAO Fang-bo

    2006-01-01

    Three sequencing batch reactors supplied with different carbon sources were investigated. The system supplied with glucose gained the best enhanced biological phosphorus removal although all of the three reactors were seeded from the same sludge. With the measurement of poly-β-hydroxyalkanoate (PHA) concentration, phosphorus content in sludge and extracellular exopolymers (EPS) with scanning electron microscopy (SEM) combined with energy dispersive spectrometry (EDS), it was found that the biosorption effect of EPS played an important role in phosphorus removal and that the amount of PHA at the end of anaerobic phase was not the only key factor to determine the following phosphorus removal efficiency.

  18. The gpsX gene encoding a glycosyltransferase is important for polysaccharide production and required for full virulence in Xanthomonas citri subsp. citri

    Directory of Open Access Journals (Sweden)

    Li Jinyun

    2012-03-01

    Full Text Available Abstract Background The Gram-negative bacterium Xanthomonas citri subsp. citri (Xac causes citrus canker, one of the most destructive diseases of citrus worldwide. In our previous work, a transposon mutant of Xac strain 306 with an insertion in the XAC3110 locus was isolated in a screening that aimed at identifying genes related to biofilm formation. The XAC3110 locus was named as bdp24 for biofilm-defective phenotype and the mutant was observed to be affected in extracellular polysaccharide (EPS and lipopolysaccharide (LPS biosynthesis and cell motility. In this study, we further characterized the bdp24 (XAC3110 gene (designated as gpsX using genetic complementation assays and expanded the knowledge about the function of the gpsX gene in Xac pathogenesis by investigating the roles of gpsX in EPS and LPS production, cell motility, biofilm formation on host leaves, stress tolerance, growth in planta, and host virulence of the citrus canker bacterium. Results The gpsX gene encodes a putative glycosyltransferase, which is highly conserved in the sequenced strains of Xanthomonas. Mutation of gpsX resulted in a significant reduction of the amount of EPS and loss of two LPS bands visualized on sodium dodecylsulphate- polyacrylamide gels. Biofilm assays revealed that the gpsX mutation affected biofilm formation by Xac on abiotic and biotic surfaces. The gpsX mutant showed delayed bacterial growth and caused reduced development of disease symptoms in susceptible citrus leaves. The gpsX mutant was more sensitive than the wild-type strain to various stresses, including the H2O2 oxidative stress. The mutant also showed attenuated ability in cell motility but not in flagellar formation. Quantitative reverse transcription-PCR assays indicated that mutation of gpsX did not affect the expression of virulence genes such as pthA in Xac strain 306. The affected phenotypes of the gpsX mutant could be complemented to wild-type levels by the intact gpsX gene

  19. PrEP: controversy, agency and ownership

    National Research Council Canada - National Science Library

    Cairns, Gus P; Race, Kane; Goicochea, Pedro

    2016-01-01

    Pre‐exposure prophylaxis (PrEP) has been and continues to be an intervention that causes controversy and debate between stakeholders involved in providing or advocating for it, and within communities in need...

  20. Pre-Exposure Prophylaxis (PrEP)

    Science.gov (United States)

    ... Sites Podcasts QR Codes RSS Feeds Social Bookmarking Social Network Sites Text Messaging Twitter Video Games Video Sharing ... PrEP be considered for people who are HIV-negative and at very high risk for HIV infection . ...

  1. PGE2 decreases reactivity of human platelets by activating EP2 and EP4.

    Science.gov (United States)

    Smith, James P; Haddad, Elias V; Downey, Jason D; Breyer, Richard M; Boutaud, Olivier

    2010-07-01

    Platelet hyperreactivity associates with cardiovascular events in humans. Studies in mice and humans suggest that prostaglandin E2 (PGE2) regulates platelet activation. In mice, activation of the PGE2 receptor subtype 3 (EP3) promotes thrombosis, but the significance of EP3 in humans is less well understood. To characterize the regulation of thromboxane-dependent human platelet activation by PGE2. Platelets collected from nineteen healthy adults were studied using an agonist of the thromboxane receptor (U46,619), PGE2, and selective agonists and/or antagonists of the EP receptor subtypes. Platelet activation was assayed by (1) optical aggregometry, (2) measurement of dense granule release, and (3) single-platelet counting. Healthy volunteers demonstrated significant interindividual variation in platelet response to PGE2. PGE2 completely inhibited U46,619-induced platelet aggregation and ATP release in 26% of subjects; the remaining 74% had partial or no response to PGE2. Antagonism of EP4 abolished the inhibitory effect of PGE2. In all volunteers, a selective EP2 agonist inhibited U46,619-induced aggregation. Furthermore, the selective EP3 antagonist DG-041 converted all PGE2 nonresponders to full responders. There is significant interindividual variation of platelet response to PGE2 in humans. The balance between EP2, EP3, and EP4 activation determines its net effect. PGE2 can prevent thromboxane-induced platelet aggregation in an EP4-dependent manner. EP3 antagonism converts platelets of nonresponders to a PGE2-responsive phenotype. These data suggest that therapeutic targeting of EP pathways may have cardiovascular benefit by decreasing platelet reactivity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. NS/EP Implications of Electronic Commerce

    Science.gov (United States)

    1999-06-01

    THE PRESIDENT’S NATIONAL SECURITY TELECOMMUNICATIONS ADVISORY COMMITTEE NS/EP IMPLICATIONS OF ELECTRONIC COMMERCE JUNE 1999 Form SF298 Citation Data... Electronic Commerce Procedures Contract or Grant Number Program Element Number Authors Project Number Task Number Work Unit Number Performing Organization...99 3. REPORT TYPE AND DATES COVERED Report 4. TITLE AND SUBTITLE NS/EP Implications of Electronic Commerce 5. FUNDING NUMBERS 6. AUTHOR(S) President’s

  3. PrEP: controversy, agency and ownership

    OpenAIRE

    Cairns, Gus P; Kane Race; Pedro Goicochea

    2016-01-01

    Pre-exposure prophylaxis (PrEP) has been and continues to be an intervention that causes controversy and debate between stakeholders involved in providing or advocating for it, and within communities in need of it. These controversies extend beyond the intrinsically complex issues of making it available. In this commentary, some of the possible roots of the air of dissent and drama that accompanies PrEP are explored. The similarities between the controversies that dogged the earliest human tr...

  4. Polysaccharide extract of Mimosa tenuiflora stem barks stimulates acute inflammatory response via nitric oxide

    Directory of Open Access Journals (Sweden)

    Kaira Emanuella Sales da Silva-Leite

    2016-12-01

    Full Text Available Mimosa tenuiflora (Mimosaceae or “jurema-preta” is well distributed in the northeast Brazil, being popularly used to treat skin lesions, burns and inflammation. The healing effect of the alcoholic extract prepared with its barks corroborates the popular use. This study aimed to evaluate the inflammatory response of polysaccharides extracted from M. tenuiflora barks (EP-Mt by methanol/NaOH and ethanol precipitation. Inflammatory activity was assessed in rat models of acute inflammation (paw edema and peritonitis, by the following parameters: edema, vascular permeability, leukocyte migration, myeloperoxidase activity and pharmacological modulation of nitric oxide and prostaglandins. EP-Mt presented 3.8% yield, 41% carbohydrate and 0.34% protein. EP-Mt (0.01, 0.1, 1.0 mg kg-1 injected by subcutaneous route elicited paw edema that lasted from 30-420 min, with maximal effect at 1 mg kg-1 (40x vs. saline, and was inhibited by L-NAME (52% and dexamethasone (26%. EP-Mt (1 mg kg-1, via intraperitoneal stimulated leukocytes migration (2.2x, mainly neutrophils (6.5x and MPO activity (96%. The leukocyte migration elicited by EP-Mt was inhibited by dexamethasone (39% and L-NAME (38%. EP-Mt containing high carbohydrate content induces acute inflammation via nitric oxide, which open perspectives of application in pathological conditions of immunosuppression.

  5. Fluid flow shear stress upregulates prostanoid receptor EP2 but not EP4 in murine podocytes.

    Science.gov (United States)

    Srivastava, Tarak; McCarthy, Ellen T; Sharma, Ram; Kats, Alexander; Carlton, Carol G; Alon, Uri S; Cudmore, Patricia A; El-Meanawy, Ashraf; Sharma, Mukut

    2013-01-01

    Podocytes in the glomerular filtration barrier regulate the passage of plasma proteins into urine. Capillary pressure and ultrafiltration impact the structure and function of podocytes. The mechanism of podocyte injury by fluid flow shear stress (FFSS) from hyperfiltration in chronic kidney disease (CKD) is not completely understood. Recently, we demonstrated increased synthesis of prostaglandin E2 in podocytes exposed to FFSS. Here, we determine the effect of FFSS on prostanoid receptors EP1-EP4 in cultured podocytes and in Os/+ mouse kidney, a model of hyperfiltration. Results of RT-PCR, qRT-PCR, immunoblotting and immunofluorescence studies indicate that cultured podocytes express EP1, EP2 and EP4 but not EP3. FFSS resulted in upregulated expression of only EP2 in podocytes. Kidney immunostaining showed significantly increased expression of EP2 in Os/+ mice compared with littermate controls. These novel results suggest that EP2 may be responsible for mediating podocyte injury from hyperfiltration-induced augmented FFSS in CKD.

  6. Up-regulation of prostaglandin E receptor EP2 and EP4 subtypes in rat synovial tissues with adjuvant arthritis.

    Science.gov (United States)

    Kurihara, Y; Endo, H; Akahoshi, T; Kondo, H

    2001-02-01

    To evaluate the role of the prostaglandin E receptor (EP) subtypes in the development of inflammatory synovitis, we examined EP subtype mRNA distribution in the synovial tissue of rats with adjuvant arthritis and the effect of selective EP agonists on cytokine production by cultured rat synovial cells. We used reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization to measure the level of EP subtype (EP1, EP2, EP3, and EP4) mRNA expression in synovial tissues and cultured synovial cells from the arthritic joints of rats. RT-PCR and ELISA were used to analyse the effects of two selective EP agonists on IL-6 production by cultured rat synovial cells. EP2 and EP4 mRNA expression in inflamed synovial tissues was up-regulated. EP2 and EP4 mRNA were co-expressed in synovial macrophages and fibroblasts in inflamed tissues. EP4 and EP2 agonists both inhibited IL-1-induced IL-6 production. Our results suggest that prostaglandin E2 regulates the functions of synovial macrophages and fibroblasts through EP2 and EP4, which are induced by inflammatory stimuli in rats with adjuvant arthritis.

  7. Influence of bacterial extracellular polymeric substances on the formation of carbonaceous and nitrogenous disinfection byproducts.

    Science.gov (United States)

    Wang, Zhikang; Kim, Junsung; Seo, Youngwoo

    2012-10-16

    Considering the regulatory presence of residual chlorine in water distribution systems, untreated organic matter may not be the sole contributor to disinfection byproduct (DBP) formation, given the presence of microbial biofilm with extracellular polymeric substances (EPS). This study investigated the influence of bacterial EPS on the formation of carbonaceous DBPs (C-DBPs) and nitrogenous DBPs (N-DBPs), reacting chlorine with Pseudomonas strains that produce different quantities and composition of EPS. When biomass is reacted in excess to chlorine, both C-DBPs and N-DBPs were produced without preference for speciation. However, under an excess of chlorine compared to biomass, increased EPS content led to enhanced formation of DBPs. The DBP yield of haloacetic acids (HAAs) was higher than that of trihalomethanes where dichloroacetic acid was dominant in HAA species. Additionally, chemical composition of EPS influenced the yields of DBPs. The N-DBP yield from P. putida EPS was two times higher than that of P. aeruginosa EPS, which suggested that higher organic nitrogen content in EPS contributes to higher N-DBP yield. Moreover, time-based experiments revealed that DBP formation from biomass occurs rapidly, reaching a maximum in less than four hours. Combined results suggest that bacterial EPS have significant roles in both the formation and fate of DBPs.

  8. Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus.

    Science.gov (United States)

    Pen, Yu; Zhang, Zhenyu J; Morales-García, Ana L; Mears, Matthew; Tarmey, Drew S; Edyvean, Robert G; Banwart, Steven A; Geoghegan, Mark

    2015-02-01

    The mechanical properties of Rhodococcus RC291 were measured using force spectroscopy equipped with a bacterial cell probe. Rhodococcal cells in the late growth stage of development were found to have greater adhesion to a silicon oxide surface than those in the early growth stage. This is because there are more extracellular polymeric substances (EPS) that contain nonspecific binding sites available on the cells of late growth stage. It is found that EPS in the late exponential phase are less densely bound but consist of chains able to extend further into their local environment, while the denser EPS at the late stationary phase act more to sheath the cell. Contraction and extension of the EPS could change the density of the binding sites, and therefore affect the magnitude of the adhesion force between the EPS and the silicon oxide surface. By treating rhodococcal EPS as a surface-grafted polyelectrolyte layer and using scaling theory, the interaction between EPS and a solid substrate was modelled for the cell approaching the surface which revealed that EPS possess a large capacity to store charge. Changing the pH of the surrounding medium acts to change the conformation of EPS chains.

  9. A semi-continuous process based on an ePBR for the production of EPS using Trichocoleus sociatus.

    Science.gov (United States)

    Strieth, Dorina; Schwing, Julia; Kuhne, Stephan; Lakatos, Michael; Muffler, Kai; Ulber, Roland

    2017-08-20

    Biodiversity forms the basis for a large pool of potential products and productive organisms offered by terrestrial cyanobacteria. They are stuck together by EPS (extracellular polymeric substances) that can obtain antiviral, antibacterial or anti-inflammatory substances. Most stress conditions, e.g. drought, induce the production of protective EPS or biotechnological-products for pharmaceutical application. However, the growth of a phototrophic biofilm is limited under submerged conditions. Therefore, a semi-continuous process to produce EPS by cyanobacteria was developed in an aerosol-based ePBR (emerse photobioreactor) that imitates the natural habitat of terrestrial cyanobacteria. The process consists of a growth-phase (biomass production), followed by a dry-phase (EPS-production) and a consecutive extraction. The EPS-productivities of Trichocoleus sociatus (ranging from 0.03 to 0.04gL(-1)d(-1)) were 32 times higher than described in topic-related literature. In comparison to submerge cultivations in shaking flasks, the EPS-productivities were sevenfold higher. To ensure that the extraction solvent has no influence on cell viability, a cell-vitality-test was performed. However, no statistically significant difference between the amount of living and dead cells before and after the extraction was detected. A bioactivity assay was then performed to identify antimicrobial activity within EPS extracts from emerse and submerge cultivations. The EPS revealed an antibacterial effect against gram-negative bacteria (E. coli) which was two times higher than EPS from a submerged cultivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Rostral Ventrolateral Medulla EP3 Receptor Mediates the Sympathoexcitatory and Pressor Effects of Prostaglandin E2 in Conscious Rats.

    Science.gov (United States)

    Rezq, Samar; Abdel-Rahman, Abdel A

    2016-11-01

    Whereas few studies have dealt with the central sympathoexcitatory action of the inflammatory prostanoid prostaglandin E2 (PGE2), there is no information on the expression and cardiovascular function of different PGE2 (EP) receptors in one of the major cardiovascular-regulating nuclei, the rostral ventrolateral medulla (RVLM). The current study aimed at filling this knowledge gap as well as elucidating the implicated molecular mechanisms. To achieve these goals, we showed the expression of EP2, EP3, and EP4 receptors in the RVLM and investigated their cardiovascular roles in conscious rats, ex vivo as well as in cultured PC12 cells. Intra-RVLM PGE2 significantly increased blood pressure and sympathetic dominance (spectral analysis). Studies with selective EP receptor subtype agonists and antagonists showed that these PGE2-evoked responses were only replicated by intra-RVLM activation of the EP3 receptor with its agonist sulprostone. The RVLM of PGE2-treated rats exhibited increases in c-Fos expression and extracellular signal-regulated kinase 1/2 and neuronal nitric oxide synthase phosphorylation along with oxidative stress, and PGE2 increased l-glutamate release in PC12 cells (surrogates of RVLM neurons). Abrogation of the PGE2-evoked pressor and biochemical responses only occurred following EP3 receptor blockade (N-[(5-Bromo-2-methoxyphenyl)sulfonyl]-3-[2-(2-naphthalenylmethyl)phenyl]-2-propenamide, L-798106). These findings suggest the dependence of RVLM PGE2-mediated sympathoexcitation/pressor response on local EP3 receptor signaling in conscious rats, and highlight central EP3 receptor blockade as a potential therapeutic modality for hypertension management. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Extracellular Saccharide-Mediated Reduction of Au(3+) to Gold Nanoparticles: New Insights for Heavy Metals Biomineralization on Microbial Surfaces.

    Science.gov (United States)

    Kang, Fuxing; Qu, Xiaolei; Alvarez, Pedro J J; Zhu, Dongqiang

    2017-02-15

    Biomineralization is a critical process controlling the biogeochemical cycling, fate, and potential environmental impacts of heavy metals. Despite the indispensability of extracellular polymeric substances (EPS) to microbial life and their ubiquity in soil and aquatic environments, the role played by EPS in the transformation and biomineralization of heavy metals is not well understood. Here, we used gold ion (Au(3+)) as a model heavy metal ion to quantitatively assess the role of EPS in biomineralization and discern the responsible functional groups. Integrated spectroscopic analyses showed that Au(3+)was readily reduced to zerovalent gold nanoparticles (AuNPs, 2-15 nm in size) in aqueous suspension of Escherichia coli or dissolved EPS extracted from microbes. The majority of AuNPs (95.2%) was formed outside Escherichia coli cells, and the removal of EPS attached to cells pronouncedly suppressed Au(3+) reduction, reflecting the predominance of the extracellular matrix in Au(3+) reduction. XPS, UV-vis, and FTIR analyses corroborated that Au(3+) reduction was mediated by the hemiacetal groups (aldehyde equivalents) of reducing saccharides of EPS. Consistently, the kinetics of AuNP formation obeyed pseudo-second-order reaction kinetics with respect to the concentrations of Au(3+) and the hemiacetal groups in EPS, with minimal dependency on the source of microbial EPS. Our findings indicate a previously overlooked, universally significant contribution of EPS to the reduction, mineralization, and potential detoxification of metal species with high oxidation state.

  12. Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus

    OpenAIRE

    2015-01-01

    The mechanical properties of Rhodococcus RC291 were measured using force spectroscopy equipped with a bacterial cell probe. Rhodococcal cells in the late growth stage of development were found to have greater adhesion to a silicon oxide surface than those in the early growth stage. This is because there are more extracellular polymeric substances (EPS) that contain nonspecific binding sites available on the cells of late growth stage. It is found that EPS in the late exponential phase are les...

  13. 铜绿假单胞菌 Psl 多糖转运蛋白 PslD 的表达与纯化研究%Expression and Purification of Extracellular Polysaccharides Psl Transporter PslD from Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    唐玮蔚; 马旅雁; 吴更

    2015-01-01

    The opportunistic Pseudomonas aeruginosa is a model organism for biofilm research. Its excreted extracel-lular polysaccharide Psl is a key component of biofilm matrix in P. aeruginosa. The Psl transporter PslD is composed of 256 amino acids,bio-informatics analysis has revealed that it comprised of one transmembrane protein having N ter-minal signal peptide. Detergents are required to isolate and purify transmembrane protein. However,detergents are various in kinds with different properties,in this study a set of scenario was designed for screening detergent to dis-solve Ps1D. Through anti-histidine labeled western blot analysis n-Decyl-β-D-maltopyranoside(DM),n-Decyl-N, Ndimethylamine-N-oxide( DDAO)and n-Dodecyl-N,N-dimethylamine-N-oxide( LDAO)were considered to have high extracting efficiency. By altering the ratio of total protein to the detergent,further optimal solubilization condition was determined as 8 mg/ mL total protein:1%(w/ v)LDAO. Under this soluble condition,over 80% purity can be achieved only through the first step of Ni column affinity chromatography to purify the goal protein,this had laid a foundation for study on its further crystallization attempt and its structural biology.%条件性致病菌铜绿假单胞菌是细菌生物被膜研究的模式菌,其分泌的胞外多糖 Psl 在生物被膜形成中起关键作用。PslD 为 Psl 多糖的转运蛋白,由256个氨基酸构成,生物信息学分析揭示其有 N 端信号肽且为一次跨膜蛋白。分离纯化完整跨膜蛋白需要去垢剂的作用,去垢剂种类繁多且性质不一,研究设计了一套筛选溶解 PslD 的去垢剂的方案。通过抗组氨酸标签的 Western blot 分析,n-Decyl-β-D-maltopyranoside(DM), n-Decyl-N,N-dimethylamine-N-oxide(DDAO)及 n-Dodecyl-N,N-dimethylamine-N-oxide(LDAO)被认为溶解 PslD的效率较高。通过改变总蛋白与去垢剂比例,进一步优化了去垢剂的溶解条件,即8 mg/ mL

  14. Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus

    Science.gov (United States)

    Korotkov, Konstantin V.; Hol, Wim G.J.; Steyaert, Jan

    2014-01-01

    Pseudopilins form the central pseudopilus of the sophisticated bacterial type 2 secretion systems. The crystallization of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus was greatly accelerated by the use of nanobodies, which are the smallest antigen-binding fragments derived from heavy-chain only camelid antibodies. Seven anti-EpsI:EpsJ nanobodies were generated and co-crystallization of EpsI:EpsJ nano-body complexes yielded several crystal forms very rapidly. In the structure solved, the nanobodies are arranged in planes throughout the crystal lattice, linking layers of EpsI:EpsJ heterodimers. The EpsI:EpsJ dimer observed confirms a right-handed architecture of the pseudopilus, but, compared to a previous structure of the EpsI:EpsJ heterodimer, EpsI differs 6° in orientation with respect to EpsJ; one loop of EpsJ is shifted by ~5 Å due to interactions with the nanobody; and a second loop of EpsJ underwent a major change of 17 Å without contacts with the nanobody. Clearly, nanobodies accelerate dramatically the crystallization of recalcitrant protein complexes and can reveal conformational flexibility not observed before. PMID:19118632

  15. Evolutionary adaptations of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide production.

    Science.gov (United States)

    Kovach, Kristin; Davis-Fields, Megan; Irie, Yasuhiko; Jain, Kanishk; Doorwar, Shashvat; Vuong, Katherine; Dhamani, Numa; Mohanty, Kishore; Touhami, Ahmed; Gordon, Vernita D

    2017-01-01

    Biofilms are communities of microbes embedded in a matrix of extracellular polymeric substances, largely polysaccharides. Multiple types of extracellular polymeric substances can be produced by a single bacterial strain. The distinct polymer components of biofilms are known to provide chemical protection, but little is known about how distinct extracellular polysaccharides may also protect biofilms against mechanical stresses such as shear or phagocytic engulfment. Decades-long infections of Pseudomonas. aeruginosa biofilms in the lungs of cystic fibrosis patients are natural models for studies of biofilm fitness under pressure from antibiotics and the immune system. In cystic fibrosis infections, production of the extracellular polysaccharide alginate has long been known to increase with time and to chemically protect biofilms. More recently, it is being recognized that chronic cystic fibrosis infections also evolve to increase production of another extracellular polysaccharide, Psl; much less is known about Psl's protective benefits to biofilms. We use oscillatory bulk rheology, on biofilms grown from longitudinal clinical isolates and from genetically-manipulated lab strains, to show that increased Psl stiffens biofilms and increases biofilm toughness, which is the energy cost to cause the biofilm to yield mechanically. Further, atomic force microscopy measurements reveal greater intercellular cohesion for higher Psl expression. Of the three types of extracellular polysaccharides produced by P. aeruginosa, only Psl increases the stiffness. Stiffening by Psl requires CdrA, a protein that binds to mannose groups on Psl and is a likely cross-linker for the Psl components of the biofilm matrix. We compare the elastic moduli of biofilms to the estimated stresses exerted by neutrophils during phagocytosis, and infer that increased Psl could confer a mechanical protection against phagocytic clearance.

  16. Localization of prostaglandin E(2) EP2 and EP4 receptors in the rat kidney

    DEFF Research Database (Denmark)

    Jensen, B L; Stubbe, J; Hansen, P B

    2001-01-01

    -selective agonist, dose dependently raised cAMP levels in microdissected DTL and outer medullary vasa recta specimens but had no effect in EP2-negative outer medullary collecting duct segments. Dietary salt intake did not alter EP2 expression in the kidney medulla. These results suggest that PGE(2) may act...

  17. Paparan zat besi pada ekspresi protein spesifik extracellular polymeric substance biofilm Aggregatibacter actinomycetemcomitans

    Directory of Open Access Journals (Sweden)

    Marchella Hendrayanti W

    2014-06-01

    Full Text Available Background: The study of biofilms bacteria could be an alternative of preventive treatment in reducing prevalence of aggressive periodontitis in the community, because biofilm protects the bacteria from environmental conditions, including the attack of immune system and antimicrobial. Aggregatibacter actinomycetemcomitans is a major cause of bacterial aggressive periodontitis. Purpose: This study aims to examine the iron exposure to specific protein expression of extracellular polymeric substance (EPS of Aggregatibacter actinomycetemcomitans biofilm. Methods: Protein containing EPS biofilm was isolated from cultures of A.actinomycetemcomitans. The protein was processed through several procedures: electrophoresis , electroelution , immunization of rabbits , serum isolation , and purification of antibodies. After the Western blotting procedure the antibody was used. Protein containing EPS biofilms exposed to iron, then once again isolated from cultures of A. actinomycetemcomitans. The electrophoresis and Western blotting were done on the isolated protein. Results: The result showed that the the expression of specific proteins in EPS biofilm decreased in response to iron exposure. Conclusions: Iron exposure could influenced the specific protein expression in EPS biofilm of Aggregatibacter actinomycetemcomitans.Latar belakang: Penelitian terhadap bakteri biofilm dapat menjadi alternatif perawatan preventif dalam menurunkan prevalensi periodontitis agresif di masyarakat, karena biofilm melindungi bakteri terhadap kondisi lingkungan, termasuk serangan sistem imun dan antimikroba. Aggregatibacter actinomycetemcomitans merupakan bakteri penyebab utama periodontitis agresif. Tujuan: Studi ini bertujuan meneliti paparan zat besi terhadap ekspresi protein spesifik extracellular polymeric substance (EPS Aggregatibacter actinomycetemcomitans. Metode: Protein yang mengandung EPS biofilm diisolasi dari kultur A. actinomycetemcomitans. Protein yang diisolasi

  18. 不同pH值下胞外聚合物对污泥脱水性能及束缚水含量的影响%Influence of extracellular polymeric substances on sludge dewaterability and bound water content at various pH values

    Institute of Scientific and Technical Information of China (English)

    邢奕; 王志强; 洪晨; 司艳晓; 张坤; 刘敏; 田星强; 李洋

    2015-01-01

    The changes of sludge dewaterability and bound water content at various pH values were investigated in this study. The protein and polysaccharide contents in each layer of extracellular polymeric substances ( S-EPS、LB-EPS and TB-EPS) and the organic acid and organic functional group contents in S-EPS were determined in an attempt to explain the influence of EPS on the sludge dewa-terability and bound water content. The results indicate that the sludge dewaterability under acidic conditions is obviously better than that under neutral conditions, and the water content of dewatered sludge ( WC) and the capillary suction time ( CST) can be decreased to 60. 8% and 25. 4 s at pH 3. 03, respectively. Under alkaline conditions, the bound water content in dewatered sludge, the WC and CST significantly increase, and the sludge dewaterability deteriorates. The addition of acid or alkali reduces TB-EPS, on the contrary, increases LB-EPS and S-EPS. Each layer of extracellular polymeric substances has significant correlation with the WC, CST and the bound water content, and S-EPS has most significant correlation with the sludge dewaterability and bound water content. In the process of acid-alkali conditioning, the amount and type of organic-functional groups improve obviously and hydrolysis of partly EPS generates organic acids and other small molecules.%研究了不同pH值下污泥脱水性能和束缚水含量的变化,通过测定污泥调理过程中各层胞外聚合物( S-EPS、LB-EPS和TB-EPS)中蛋白质和多糖的含量、S-EPS中有机官能团以及有机酸的含量,探讨了胞外聚合物对污泥脱水性能及束缚水含量的影响.酸性条件下,污泥的脱水性能明显好于中性条件,并且pH值为3.03时,污泥滤饼含水率( WC)和毛细吸水时间( CST)均降至最低,分别为60.8%和25.4 s;碱性条件下,污泥中束缚水的含量明显增加,WC和CST均大幅升高,污泥脱水性能恶化.酸碱的加入导致污泥中TB-EPS含量降

  19. Polysaccharides of the red algae.

    Science.gov (United States)

    Usov, Anatolii I

    2011-01-01

    Red algae (Rhodophyta) are known as the source of unique sulfated galactans, such as agar, agarose, and carrageenans. The wide practical uses of these polysaccharides are based on their ability to form strong gels in aqueous solutions. Gelling polysaccharides usually have molecules built up of repeating disaccharide units with a regular distribution of sulfate groups, but most of the red algal species contain more complex galactans devoid of gelling ability because of various deviations from the regular structure. Moreover, several red algae may contain sulfated mannans or neutral xylans instead of sulfated galactans as the main structural polysaccharides. This chapter is devoted to a description of the structural diversity of polysaccharides found in the red algae, with special emphasis on the methods of structural analysis of sulfated galactans. In addition to the structural information, some data on the possible use of red algal polysaccharides as biologically active polymers or as taxonomic markers are briefly discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Highlights from e-EPS: EPS and EuChems are joining forces

    CERN Multimedia

    2013-01-01

    e-EPS News is an addition to the CERN Bulletin line-up, showcasing articles from e-EPS – the European Physical Society newsletter – as part of a collaboration between the two publications.   On the occasion of the EPS Council 2013 in Strasbourg, a memorandum of understanding was signed between the European Association for Chemical and Molecular Societies (EuCheMS) and the European Physical Society (EPS) by presidents Ulrich Schubert and Luisa Cifarelli. EuCheMS and EPS share many objectives, such as community building, scientific excellence, communication and representation of their respective members to European policy makers. The two societies recognise that issues in many fields such as education, publication, support for basic sciences and frontier research are similar in their respective disciplines. They wish to combine efforts in developing and presenting common standpoints to their mutual benefit as European representatives in chemistry ...

  1. Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites.

    Science.gov (United States)

    Mota, Rita; Rossi, Federico; Andrenelli, Luisa; Pereira, Sara Bernardes; De Philippis, Roberto; Tamagnini, Paula

    2016-09-01

    Bioremediation of heavy metals using microorganisms can be advantageous compared to conventional physicochemical methods due to the use of renewable resources and efficiencies of removal particularly cations at low concentrations. In this context, cyanobacteria/cyanobacterial extracellular polymeric substances (EPS) emerge as a valid alternative due to the anionic nature and particular composition of these polymers. In this work, various culture fractions of the unicellular cyanobacterium Cyanothece sp. CCY 0110 were employed in bioremoval assays using three of the most common heavy metal pollutants in water bodies-copper, cadmium, and lead-separately or in combined systems. Our study showed that the released polysaccharides (RPS) were the most efficient fraction, removing the metal(s) by biosorption. Therefore, this polymer was subsequently used to evaluate the interactions between the metals/RPS binding sites using SEM-EDX, ICP-OES, and FTIR. Acid and basic pretreatments applied to the polymer further improve the process efficiency, and the exposure to an alkaline solution seems to alter the RPS conformation. The differences observed in the specific metal bioremoval seem to be mainly due to the RPS organic functional groups available, mainly carboxyl and hydroxyl, than to an ion exchange mechanism. Considering that Cyanothece is a highly efficient RPS-producer and that RPS can be easily separated from the culture, immobilized or confined, this polymer can be advantageous for the establishment/improvement of heavy metal removal systems.

  2. The effects of three commonly used extraction methods on the redox properties of extracellular polymeric substances from activated sludge.

    Science.gov (United States)

    Lu, Qin; Chang, Ming; Yu, Zhen; Zhou, Shungui

    2015-01-01

    Recently, the redox properties of extracellular polymeric substances (EPS) have attracted the attention of scientists due to their associated environmental significance, such as organic pollutant (e.g. nitroaromatics and substituted nitrobenzenes) degradation and heavy metal (e.g. Cr(VI) and U(VI)) detoxification. Although the separation of EPS from bacterial cells is more often the first step in studies on EPS, and studies have demonstrated that extraction procedures can influence the sorption properties of EPS, few attempts have been made to investigate how separation methods affect the redox properties of the obtained EPS. In this study, three common extraction approaches, that is, centrifugation, formaldehyde+NaOH and ethylene diamine tetra-acetic acid (EDTA), were employed to extract EPS from activated sludge, and the obtained EPS were evaluated for their redox properties using electrochemical means, including cyclic voltammetry and chronoamperometry. In addition, spectroscopic techniques were utilized to explore the structural characteristics and composition of EPS. The results indicated that EPS extracted by EDTA clearly displayed reversible oxidation-reduction peaks in cyclic voltammograms and significantly higher electron-accepting capacity compared with EPS extracted using the other two approaches. Fourier transform infrared spectra and three-dimensional excitation-emission matrix spectra suggested that the EPS extracted with EDTA presented better redox properties because of the effective and efficient extraction of the humic substances, which are important components of the EPS of activated sludge. Therefore, extraction method has an impact on the composition and redox properties of EPS and should be chosen according to research purpose and EPS source.

  3. Why Were Polysaccharides Necessary?

    Science.gov (United States)

    Tolstoguzov, Vladimir

    2004-12-01

    The main idea of this paper is that the primordial soup may be modelled by food systems whose structure-property relationship is based on non-specific interactions between denatured biopolymers. According to the proposed hypothesis, polysaccharides were the first biopolymers that decreased concentration of salts in the primordial soup, `compatibilised' and drove the joint evolution of proto-biopolymers. Synthesis of macromolecules within the polysaccharide-rich medium could have resulted in phase separation of the primordial soup and concentration of the polypeptides and nucleic acids in the dispersed phase particles. The concentration of proto-biopolymer mixtures favoured their cross-linking in hybrid supermacromolecules of conjugates. The cross-linking of proto-biopolymers could occur by hydrophobic, electrostatic interactions, H-bonds due to freezing aqueous mixed biopolymer dispersions and/or by covalent bonds due to the Maillard reaction. Cross-linking could have increased the local concentration of chemically different proto-biopolymers, fixed their relative positions and made their interactions reproducible. Attractive-repulsive interactions between cross-linked proto-biopolymer chains could develop pairing of the monomer units, improved chemical stability (against hydrolysis) and led to their mutual catalytic activity and coding. Conjugates could probably evolve to the first self-reproduced entities and then to specialized cellular organelles. Phase separation of the primordial soup with concentration of conjugates in the dispersed particles has probably resulted in proto-cells.

  4. eP physics at the CBA

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, J.E.; White, D.H.; Morse, W.M.

    1982-01-01

    In this report we have tried to demonstrate how a 20 x 400 GeV eP facility at the CBA will complement the future physics of high energy e+e/sup -/ and hadron-hadron colliders. By offering the first glimpse of the physics of 17 TeV muon and neutrino beams, an eP collider will extend tests of the standard model by about an order of magnitude in spacelike momentum transfer, and thus close the final kinematic gap of knowledge about electro-weak processes. It will be especially interesting to test whether the lefthanded nature of the charged current observed at low spacelike momentum transfers persists to large, spacelike momentum transfers. A high energy eP collider also enables unique tests of QCD such as a study of high Q/sup 2/ scale breaking and the high P/sub t/ QCD Compton process. In addition to probing small distance behavior in kinematic regions orthogonal to other collider facilities, an eP facility will generate data useful to understanding the physics of e+e/sup -/ and hadron-hadron collisions. The current jet produced in the high energy eP neutral current process is produced against a single electron which can be used to predict the momentum of the quark which gives rise to the jet. Hence the central problem in jet physics of deducing the kinematics of a quark by measurement of its hadronization jet can be studied under uniquely controlled circumstances. Finally the high Q/sup 2/ structure functions of the proton which are essential in understanding hard process in hadron-hadron scattering can only be cleanly measured in an eP collider.

  5. eP physics at the CBA

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, J.E.; White, D.H.; Morse, W.M.

    1982-01-01

    In this report we have tried to demonstrate how a 20 x 400 GeV ep facility at the CBA will complement the physics of high energy e/sup -/e/sup +/ and hadron-hadron colliders. An ep collider will extend tests of the standard model by about an order of magnitude in spacelike momentum transfer, and extend our knowledge of electro-weak processes to a remarkable degree. It will be especially interesting to see if the lefthanded nature of the charged current observed at low spacelike momentum transfers persists to large, space momentum transfers. A high energy ep collider is unique in the opportunity to investigate QCD through the scale breaking at high Q/sup 2/ the high P/sub t/ QCD Compton process. In addition to probing small distance behavior in kinematic regions orthogonal to other collider facilities, an ep facility will generate data ultimately crucial to the understanding of the physics of e/sup +/e/sup -/ and hadron-hadron collisions. The current jet that is produced in the high energy ep neutral current process recoils against a single electron which can be used to predict the momentum of the quark which gives rise to the jet. The central problem in jet physics of deducing the kinematics of a quark by measurement of its hadronization jet can be studied under uniquely controlled circumstances. Finally the high Q/sup 2/ structure functions of the proton which are essential in understanding hard processes in hadron-hadron scattering can only be cleanly measured in an ep collider.

  6. Immunohistochemical analysis based Ep-ICD subcellular localization index (ESLI is a novel marker for metastatic papillary thyroid microcarcinoma

    Directory of Open Access Journals (Sweden)

    Kunavisarut Tada

    2012-11-01

    Full Text Available Abstract Background Thyroid cancer is among the fastest growing malignancies; almost fifty-percent of these rapidly increasing incidence tumors are less than or equal to 1cm in size, termed papillary thyroid microcarcinoma (PTMC. The management of PTMC remains a controversy due to differing natural history of these patients. Epithelial cell adhesion molecule (EpCAM is comprised of an extracellular domain (EpEx, a single transmembrane domain and an intracellular domain (Ep-ICD. Our group reported nuclear Ep-ICD correlated with poor prognosis in thyroid cancer (Ralhan et al., BMC Cancer 2010,10:331. Here in, we hypothesized nuclear and cytoplasmic accumulation of Ep-ICD and loss of membranous EpEx may aid in distinguishing metastatic from non-metastatic PTMC, which is an important current clinical challenge. To test our hypothesis, Ep-ICD and EpEx expression levels were analyzed in PTMC and the staining was correlated with metastatic potential of these carcinomas. Methods Thirty-six PTMC patients (tumor size 0.5 - 1cm; metastatic 8 cases and non-metastatic 28 cases who underwent total thyroidectomy were selected. The metastatic group consisted of patients who developed lymph node or distant metastasis at diagnosis or during follow up. The patients’ tissues were stained for Ep-ICD and EpEx using domain specific antibodies by immunohistochemistry and evaluated. Results PTMC patients with metastasis had higher scores for nuclear and cytoplasmic Ep-ICD immunostaining than the patients without metastasis (1.96 ± 0.86 vs. 1.22 ± 0.45; p = 0.007 and 5.37 ± 0.33 vs. 4.72 ± 1.07; p = 0.016, respectively. Concomitantly, the former had lower scores for membrane EpEx than the non-metastatic group (4.64 ± 1.08 vs. 5.64 ± 1.51; p = 0.026. An index of aggressiveness, Ep-ICD subcellular localization index (ESLI, was defined as sum of the IHC scores for accumulation of nuclear and cytoplasmic Ep-ICD and loss of

  7. Polysaccharides: Molecular and Supramolecular Structures. Terminology.

    NARCIS (Netherlands)

    Heinze, Thomas; Petzold-Welcke, Katrin; Dam, van J.E.G.

    2012-01-01

    This chapter summarises important issues
    about the molecular and supramolecular structure
    of polysaccharides. It describes the terminology
    of polysaccharides systematically. The
    polysaccharides are divided regarding the
    molecular structures in glucans, polyoses,
    polysaccharid

  8. Static adsorptive fouling of extracellular polymeric substances with different membrane materials.

    Science.gov (United States)

    Su, Xinying; Tian, Yu; Zuo, Wei; Zhang, Jun; Li, Hui; Pan, Xiaoyue

    2014-03-01

    Adsorptive fouling of microbial extracellular polymeric substances (EPS) greatly influences the fouling behavior and membrane characteristics in a membrane bioreactor (MBR). In this study, adsorptive fouling of the EPS on different membrane materials was compared and adsorptive mechanism between membranes and EPS was investigated by thermodynamic analysis. The results suggested that both the absolute and relative changes of hydraulic resistances should be considered to evaluate fouling of membranes with different materials, and Sips isotherm was the most suitable model to describe the EPS carbohydrate and protein adsorptions on membranes. Thermodynamic analysis showed that both EPS carbohydrate and protein adsorptions were spontaneous (ΔrG(θ)  0), and entropy driven (ΔrS(θ) > 0). Decreasing ΔrG(θ) values with temperature suggested that EPS adsorptive fouling can be limited by reducing temperature. In addition, physisorption processes and hydrogen bonding interactions between EPS and membranes might play a relatively major role in the adsorption mechanism of EPS on the membrane surface. Atomic force microscopy (AFM) and contact angle analysis confirmed that the adsorptive fouling modified the membrane surface, making the membrane surface more heterogeneous and more hydrophobic.

  9. In vivo intra-luteal implants of prostaglandin (PG) E1 or E2 (PGE1, PGE2) prevent luteolysis in cows. II: mRNA for PGF2α, EP1, EP2, EP3 (A-D), EP3A, EP3B, EP3C, EP3D, and EP4 prostanoid receptors in luteal tissue.

    Science.gov (United States)

    Weems, Yoshie S; Bridges, Phillip J; Jeoung, Myoungkun; Arreguin-Arevalo, J Alejandro; Nett, Torrance M; Vann, Rhonda C; Ford, Stephen P; Lewis, Andrew W; Neuendorff, Don A; Welsh, Thomas H; Randel, Ronald D; Weems, Charles W

    2012-01-01

    Previously, it was reported that chronic intra-uterine infusion of PGE(1) or PGE(2) every 4h inhibited luteolysis in ewes by altering luteal mRNA for luteinizing hormone (LH) receptors and unoccupied and occupied luteal LH receptors. However, estradiol-17β or PGE(2) given intra-uterine every 8h did not inhibit luteolysis in cows, but infusion of estradiol+PGE(2) inhibited luteolysis. In contrast, intra-luteal implants containing PGE(1) or PGE(2) in Angus or Brahman cows also inhibited the decline in circulating progesterone, mRNA for LH receptors, and loss of unoccupied and occupied receptors for LH to prevent luteolysis. The objective of this experiment was to determine how intra-luteal implants of PGE(1) or PGE(2) alter mRNA for prostanoid receptors and how this could influence luteolysis in Brahman or Angus cows. On day-13 Angus cows received no intra-luteal implant and corpora lutea were retrieved or Angus and Brahman cows received intra-luteal silastic implants containing Vehicle, PGE(1), or PGE(2) and corpora lutea were retrieved on day-19. Corpora lutea slices were analyzed for mRNA for prostanoid receptors (FP, EP1, EP2, EP3 (A-D), EP3A, EP3B, EP3C, EP3D, and EP4) by RT-PCR. Day-13 Angus cow luteal tissue served as pre-luteolytic controls. mRNA for FP receptors decreased in day-19 Vehicle controls compared to day-13 Vehicle controls regardless of breed. PGE(1) and PGE(2) up-regulated FP gene expression on day-19 compared to day-19 Vehicle controls regardless of breed. EP1 mRNA was not altered by any treatment. PGE(1) and PGE(2) down-regulated EP2 and EP4 mRNA compared to day-19 Vehicle controls regardless of breed. PGE(1) or PGE(2) up-regulated mRNA EP3B receptor subtype compared to day-19 Vehicle control cows regardless of breed. The similarities in relative gene expression profiles induced by PGE(1) and PGE(2) support their agonistic effects. We conclude that both PGE(1) and PGE(2) may prevent luteolysis by altering expression of mRNA for prostanoid

  10. The role of EPS in fouling and foaming phenomena for a membrane bioreactor.

    Science.gov (United States)

    Cosenza, Alida; Di Bella, Gaetano; Mannina, Giorgio; Torregrossa, Michele

    2013-11-01

    In contraposition to conventional activated sludge processes, the foaming phenomenon in membrane bioreactor (MBR) is still in its infancy. On the other hand, although several studies have been carried out for better understanding the fouling phenomenon in MBR there are still some gaps in the up-to-date knowledge. The extracellular polymeric substances (EPSs) may have a primary role in fouling and foaming phenomena which in turn can be crucial for MBRs. The aim of this study is to detect a possible relationship that EPSs may have with fouling and foaming in an MBR for wastewater treatment. Foaming phenomenon is monitored by performing specific foam-tests: Foam Power, Scum Index, Foam Rating and filamentous abundance. Results show a high correlation between fouling vs EPS and foaming vs bound EPSs. A relationship between foaming and fouling was also found: in general, when foaming occurred the fouling rate decreases because the EPS bound remained trapped in the floating scum.

  11. EpCAM-targeted induction of apoptosis

    NARCIS (Netherlands)

    Bremer, Edwin; Helfrich, Wijnand

    2008-01-01

    EpCAM is a well-established pancarcinoma-associated target antigen that has been used in a variety of therapeutic approaches. Of particular appeal are those strategies that aim to retarget and locally activate immune effector mechanisms involving apoptosis. Cancer cells typically employ various stra

  12. Isolation of extracellular polymeric substances from biofilms of the thermoacidophilic archaeon Sulfolobus acidocaldarius

    Directory of Open Access Journals (Sweden)

    Silke eJachlewski

    2015-08-01

    Full Text Available Extracellular polymeric substances (EPS are the major structural and functional components of microbial biofilms. The aim of this study was to establish a method for EPS isolation from biofilms of the thermoacidophilic archaeon Sulfolobus acidocaldarius as a basis for EPS analysis. Biofilms of S. acidocaldarius were cultivated on the surface of gellan gum-solidified Brock medium at 78 °C for 4 days. Five EPS extraction methods were compared, including shaking of biofilm suspensions in phosphate buffer, cation-exchange resin (CER extraction and stirring with addition of EDTA, crown ether or NaOH. With respect to EPS yield, impact on cell viability and compatibility with subsequent biochemical analysis, the CER extraction method was found to be the best suited isolation procedure resulting in the detection of carbohydrates and proteins as the major constituents and DNA as a minor component of the EPS. Culturability of CER-treated cells was not impaired. Analysis of the extracellular proteome using two-dimensional gel electrophoresis resulted in the detection of several hundredshundred of protein spots, mainly with molecular masses of 25 kDa to 116 kDa and pI values of 5 to 8. Identification of proteins suggested a cytoplasmic origin for many of these proteins, possibly released via membrane vesicles or biofilm-inherent cell lysis during biofilm maturation. Functional analysis of EPS proteins, using fluorogenic substrates as well as zymography, demonstrated the activity of diverse groups of enzymes such as proteases, lipases, esterases, phosphatases and glucosidases. In conclusion, the CER extraction method, as previously applied to bacterial biofilms, also represents a suitable method for isolation of water soluble EPS from the archaeal biofilms of S. acidocaldarius, allowing the investigation of composition and function of EPS components in these types of biofilms.

  13. Isolation of Extracellular Polymeric Substances from Biofilms of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Jachlewski, Silke; Jachlewski, Witold D; Linne, Uwe; Bräsen, Christopher; Wingender, Jost; Siebers, Bettina

    2015-01-01

    Extracellular polymeric substances (EPS) are the major structural and functional components of microbial biofilms. The aim of this study was to establish a method for EPS isolation from biofilms of the thermoacidophilic archaeon, Sulfolobus acidocaldarius, as a basis for EPS analysis. Biofilms of S. acidocaldarius were cultivated on the surface of gellan gum-solidified Brock medium at 78°C for 4 days. Five EPS extraction methods were compared, including shaking of biofilm suspensions in phosphate buffer, cation-exchange resin (CER) extraction, and stirring with addition of EDTA, crown ether, or NaOH. With respect to EPS yield, impact on cell viability, and compatibility with subsequent biochemical analysis, the CER extraction method was found to be the best suited isolation procedure resulting in the detection of carbohydrates and proteins as the major constituents and DNA as a minor component of the EPS. Culturability of CER-treated cells was not impaired. Analysis of the extracellular proteome using two-dimensional gel electrophoresis resulted in the detection of several hundreds of protein spots, mainly with molecular masses of 25-116 kDa and pI values of 5-8. Identification of proteins suggested a cytoplasmic origin for many of these proteins, possibly released via membrane vesicles or biofilm-inherent cell lysis during biofilm maturation. Functional analysis of EPS proteins, using fluorogenic substrates as well as zymography, demonstrated the activity of diverse enzyme classes, such as proteases, lipases, esterases, phosphatases, and glucosidases. In conclusion, the CER extraction method, as previously applied to bacterial biofilms, also represents a suitable method for isolation of water soluble EPS from the archaeal biofilms of S. acidocaldarius, allowing the investigation of composition and function of EPS components in these types of biofilms.

  14. Computer simulation and experimental study of the polysaccharide-polysaccharide interaction in the bacteria Azospirillum brasilense Sp245

    Science.gov (United States)

    Arefeva, Oksana A.; Kuznetsov, Pavel E.; Tolmachev, Sergey A.; Kupadze, Machammad S.; Khlebtsov, Boris N.; Rogacheva, Svetlana M.

    2003-09-01

    We have studied the conformational properties and molecular dynamics of polysaccharides by using molecular modeling methods. Theoretical and experimental results of polysaccharide-polysaccharide interactions are described.

  15. Submerged cultivation of Ganoderma lucidum biomass and immunostimulatory effects of fungal polysaccharides.

    Science.gov (United States)

    Berovic, Marin; Habijanic, Jozica; Zore, Irena; Wraber, Branka; Hodzar, Damjan; Boh, Bojana; Pohleven, Franc

    2003-06-12

    Original Ganoderma lucidum strain MZKI G97 isolated from Slovenian forests was cultivated in a liquid substrate based on potato dextrose and olive oil. The influences of inoculum and oxygen partial pressure in batch and fed batch cultivation in a 10-l laboratory stirred tank reactor were studied. Fungal biomass was found to be oxygen and shear sensible. Using a 17% (wet weight) 6 days old vegetative inoculum, 9.6 g l(-1) of dry biomass in batch cultivation and 15.2 g l(-1) in fed batch process were obtained. Extracellular (9.6 g l(-1)) and intracellular (6.3 g l(-1)) polysaccharide fractions were isolated. Extracellular polysaccharide fraction and four intracellular polysaccharide fractions were obtained. Polysaccharides were further separated by ion-exchange, gel and affinity chromatography. The isolated polysaccharides were mainly beta-D-glucanes. Immunostimulatory effects of isolates were tested on induction of cytokine (tumour necrosis factor alpha (TNF-alpha) and interferon gamma (IFN-gamma)) synthesis in primary cultures of human peripheral blood mononuclear cells (PBMC) isolated from a buffy coat. The TNF-alpha inducing activity is comparable with romurtide, which has been used as a supporting therapy in cancer patients treated with radiotherapy and/or chemotherapy.

  16. Characterization of Cell Surface and EPS Remodeling of Azospirillum brasilense Chemotaxis-like 1 Signal Transduction Pathway mutants by Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Billings, Amanda N [ORNL; Siuti, Piro [ORNL; Bible, Amber [University of Tennessee, Knoxville (UTK); Alexandre, Gladys [University of Tennessee, Knoxville (UTK); Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain. Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.

  17. PrEP (Pre-Exposure Prophylaxis) 101

    Science.gov (United States)

    ... than 70%. Your risk of getting HIV from sex can be even lower if you combine PrEP with condoms and other prevention methods. Expand All Collapse All Video Introductions to PrEP What is PrEP? A Brief ...

  18. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation.

    Science.gov (United States)

    Zhang, Yinping; Wang, Fang; Zhu, Xiaoshu; Zeng, Jun; Zhao, Qiguo; Jiang, Xin

    2015-10-01

    The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation.

  19. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme

    DEFF Research Database (Denmark)

    Cannella, David; Möllers, K. Benedikt; Frigaard, Niels-Ulrik;

    2016-01-01

    Oxidative processes are essential for the degradation of plant biomass. A class of powerful and widely distributed oxidative enzymes, the lytic polysaccharide monooxygenases (LPMOs), oxidize the most recalcitrant polysaccharides and require extracellular electron donors. Here we investigated...... and hemicellulose. LPMO enzymes and pigment derivatives common in the environment of plant-degrading organisms thus form a highly reactive and stable light-driven system increasing the turnover rate and versatility of LPMOs. This light-driven system may find applications in biotechnology and chemical processing....

  20. Production of Extracellular Polymeric Substances by Halophilic Bacteria of Solar Salterns

    Directory of Open Access Journals (Sweden)

    Jhuma Biswas

    2014-01-01

    Full Text Available Moderately halophilic aerobic bacteria were isolated from 31 soil and 18 water samples collected from multipond solar salterns of Gujarat, Orissa, and West Bengal, India. A total of 587 bacterial isolates with distinct morphological features were obtained from these samples following dilution and plating on MH agar medium supplemented with NaCl. The isolates were screened for growth associated extracellular polymeric substances (EPS production in MY medium under batch culture. In all, 20 isolates were selected as potent ones producing more than 1 g/L of EPS. These EPS producing isolates were characterized in detail for their morphological, physiological, and biochemical features and tentatively identified as members belonging to the genera Halomonas, Salinicoccus, Bacillus, Aidingimonas, Alteromonas, and Chromohalobacter. Apart from EPS production, these isolates also hold promise towards the production of various biomolecules of industrial importance.

  1. e-EPS News: Light for Development

    CERN Multimedia

    e-EPS

    2011-01-01

    e-EPS News is a monthly addition to the CERN Bulletin line-up, showcasing articles by the e-EPS – the European Physical Society newsletter – as part of a collaboration between the two publications.   A central goal of the EPS International Year of Light project will be to promote optical technologies and optics education to improve the quality of life in the developing world – under the theme of ‘Light for Development’. Light plays a central role in human activities in science, technology and culture. On a fundamental scientific level, light is necessary for the existence of life itself, whilst on a more technical level, light-based technologies will underpin the future development of human society. The systematic study of the physics of light and electromagnetic waves has been central to the evolution of modern science and – in the 20th century alone – there have been many fundamental ...

  2. EpCAM-targeted induction of apoptosis.

    Science.gov (United States)

    Bremer, Edwin; Helfrich, Wijnand

    2008-05-01

    EpCAM is a well-established pancarcinoma-associated target antigen that has been used in a variety of therapeutic approaches. Of particular appeal are those strategies that aim to retarget and locally activate immune effector mechanisms involving apoptosis. Cancer cells typically employ various strategies to evade recognition and elimination by immune effector cells, including low or absent expression of MHCI molecules and active elimination of tumor infiltrating immune cells. In addition, cancer cells show an increased resistance towards endogenous pro-apoptotic stimuli due to aberrancies in their apoptotic machinery. However, compelling evidence indicates that cancer cells are often reliant on these molecular aberrations for continued cell survival. This pivotal role of immune evasion and apoptosis resistance has fueled the quest for therapeutic strategies that can selectively retarget and reactivate immune effector cells or molecules, whereby the balance of cellular fate of cancer cells is selectively tipped towards apoptosis. Here we review and discuss the perspectives for EpCAM-targeted apoptosis induction in cancer by EpCAM-selective bispecific antibodies and TRAIL fusion proteins.

  3. Production of bioactive polysaccharides by Inonotus obliquus under submerged fermentation supplemented with lignocellulosic biomass and their antioxidant activity.

    Science.gov (United States)

    Xu, Xiangqun; Hu, Yan; Quan, Lili

    2014-12-01

    The effect of lignocellulose degradation in wheat straw, rice straw, and sugarcane bagasse on the accumulation and antioxidant activity of extra- (EPS) and intracellular polysaccharides (IPS) of Inonotus obliquus under submerged fermentation were first evaluated. The wheat straw, rice straw, and sugarcane bagasse increased the EPS accumulation by 91.4, 78.6, and 74.3 % compared with control, respectively. The EPS and IPS extracts from the three lignocellulose media had significantly higher hydroxyl radical- and 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity than those from the control medium. Of the three materials, wheat straw was the most effective lignocellulose in enhancing the mycelia growth, accumulation and antioxidant activity of I. obliquus polysaccharides (PS). The carbohydrate and protein content, as well as the monosaccharide compositions of the EPS and IPS extracts, were correlated with sugar compositions and dynamic contents during fermentation of individual lignocellulosic materials. The enhanced accumulation of bioactive PS of cultured I. obliquus supplemented with rice straw, wheat straw, and bagasse was evident.

  4. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system.

    Science.gov (United States)

    Wang, Randeng; Peng, Yongzhen; Cheng, Zhanli; Ren, Nanqi

    2014-10-01

    The role of extracellular polymeric substances (EPS) in the enhanced biological phosphorus removal (EBPR) process was investigated in a P-accumulating granular sludge system by analyzing the distribution and transfer of P, K(+), Mg(2+) and Ca(2+) in the sludge phase, EPS, and the bulk liquid. In the sludge phase, about 30% P, 44.7% K(+), 27.7% Mg(2+), 28% Ca(2+) accumulated in the EPS at the end of aeration. The rate of P, K(+), Mg(2+) and Ca(2+) released from the EPS matrix into the bulk liquid in the anaerobic phase was faster than the rate they were adsorbed from the bulk liquid into the EPS in the aerobic phase. P, K(+), Mg(2+) and Ca(2+) were retained in EPS before transferring into the phosphorus accumulating organisms (PAOs). These results suggest that EPS play a critical role in facilitating the accumulation and transfer of P, K(+), Ca(2+) and Mg(2+) between PAO cells and bulk liquid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. EP2 and EP4 receptors mediate PGE2 induced relaxation in murine colonic circular muscle: pharmacological characterization.

    Science.gov (United States)

    Martinez-Cutillas, M; Mañé, N; Gallego, D; Jimenez, M; Martin, M T

    2014-12-01

    Prostaglandin E2 (PGE2) is a regulator of gastrointestinal motility that might be involved in impaired motor function associated to gut inflammation. The aim of the present work is to pharmacologically characterize responses to exogenous and endogenous PGE2 in the mouse colon targeting EP2 and EP4 receptors. Wild type (WT) and EP2 receptor knockout (EP2-KO) mice were used to characterize PGE2 and butaprost (EP2 receptor agonist) effects on smooth muscle resting membrane potential and myogenic contractility in circularly oriented colonic preparations. In WT animals, PGE2 and butaprost concentration-dependently inhibited spontaneous contractions and hyperpolarized smooth muscle cells. Combination of both EP2 (PF-04418948 0.1μM) and EP4 receptor antagonists (L-161,982 10μM) was needed to block both electrical and mechanical PGE2 responses. Butaprost inhibitory responses (both electrical and mechanical) were totally abolished by PF-04418948 0.1μM. In EP2-KO mice, PGE2 (but not butaprost) concentration-dependently inhibited spontaneous contractions and hyperpolarized smooth muscle cells. In EP2-KO mice, PGE2 inhibition of spontaneous contractility and hyperpolarization was fully antagonized by L-161,982 10μM. In WT animals, EP2 and EP4 receptor antagonists caused a smooth muscle depolarization and an increase in spontaneous mechanical activity. PGE2 responses in murine circular colonic layer are mediated by post-junctional EP2 and EP4 receptors. PF-04418948 and L-161,982 are selective EP2 and EP4 receptor antagonists that inhibit PGE2 responses. These antagonists might be useful pharmacological tools to limit prostaglandin effects associated to dismotility in gut inflammatory processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Lead optimization studies of cinnamic amide EP2 antagonists.

    Science.gov (United States)

    Ganesh, Thota; Jiang, Jianxiong; Yang, Myung-Soon; Dingledine, Ray

    2014-05-22

    Prostanoid receptor EP2 can play a proinflammatory role, exacerbating disease pathology in a variety of central nervous system and peripheral diseases. A highly selective EP2 antagonist could be useful as a drug to mitigate the inflammatory consequences of EP2 activation. We recently identified a cinnamic amide class of EP2 antagonists. The lead compound in this class (5d) displays anti-inflammatory and neuroprotective actions. However, this compound exhibited moderate selectivity to EP2 over the DP1 prostanoid receptor (∼10-fold) and low aqueous solubility. We now report compounds that display up to 180-fold selectivity against DP1 and up to 9-fold higher aqueous solubility than our previous lead. The newly developed compounds also display higher selectivity against EP4 and IP receptors and a comparable plasma pharmacokinetics. Thus, these compounds are useful for proof of concept studies in a variety of models where EP2 activation is playing a deleterious role.

  7. Analysis list: EP300 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available tem cell,Prostate,Uterus + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/EP300.1.tsv http://db...archive.biosciencedbc.jp/kyushu-u/hg19/target/EP300.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/EP300.10.tsv http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/EP300.Blood.tsv,http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/EP300.Bone.tsv,http://dbarchive.biosciencedbc.jp/...kyushu-u/hg19/colo/EP300.Breast.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/EP300.Digestive_tract.tsv,http:

  8. Analysis list: Ep300 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available g,Muscle,Neural,Pluripotent stem cell + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Ep300.1.tsv http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Ep300.5.tsv http://dbarchive.biosciencedbc.jp/kyushu...-u/mm9/target/Ep300.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Ep300.Blood.tsv,http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Ep300.Bone.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Ep300.Breast.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Ep300.Cardiovascular.tsv,http:

  9. Controls of Polysaccharide Chemistry on the Kinetics and Thermodynamics of Heterogeneous Calcium Carbonate Nucleation

    Science.gov (United States)

    Giuffre, A. J.; Han, N.; Dove, P. M.

    2011-12-01

    Polysaccharide fibrils control the orientation of calcium carbonate (CaCO3) biominerals. Good examples are found in the multilayered extracellular mucilaginous sheath of green algae and cyanobacteria and in specialized vesicles inside coccolithophorids. More complex organisms such as arthropods and mollusks form biomineralized exoskeletons and shells that consist of insoluble polysaccharides and soluble acid-rich proteins. In these structures, CaCO3 mineral orientation occurs along fibers of the polysaccharide chitin. This raises the question of whether polysaccharide chemistry has specific roles in directing biomineralization. The last three decades of research show that acidic proteins influence CaCO3 polymorph selection, crystallographic orientation, and nucleation and growth rates but little is known about the function of polysaccharides. In fact, polysaccharides are long considered an inert component of organic frameworks. In this experimental investigation, we test the hypothesis that polysaccharides have chemistry-specific influences on calcification by measuring the kinetics of calcite nucleation onto three types of polysaccharide films under controlled solution compositions. Characterized polysaccharides of simple repeating monomer sequences were chosen as model compounds to represent the major carbohydrates seen in microbial and calcifying environments: 1) alginic acid with carboxyl groups, 2) hyaluronic acid with alternating carboxyl and acetylamine groups, and 3) chitosan with amine and acetylamine groups. Biosubstrates were prepared by electrodeposition of these compounds as thin gel-like films onto gold-coated silicon wafers. Using a flow-through cell, heterogeneous nucleation rates of calcite were measured for a suite of supersaturation conditions. These rate data were compared to similar measurements for carboxyl- and hydroxyl-terminated self-assembled monolayers. Calcite nucleation rates onto the three polysaccharides vary by a factor of 400x

  10. The Expression of Lactoferrin in BPH-EPS, BPH-free EPS and Prostate Cancer Secretion

    Institute of Scientific and Technical Information of China (English)

    Xu Kexin; Wang Xiaofeng; Hou Shukun; Wang Yunchun

    2003-01-01

    To examine the expression of lactoferrin(Lf) in both the expressed prostatic secretion(EPS)of BPHpatients,normal males and the secretion of prostate cancer cell lines PC-3 and DU145.The potential correlation of Lf with prostaticcarcinogenesis was also investigated.Methods:Forty EPS samples obtained from 20 BPH patients and 20 normal males as well as thesecretions of prostate cancer cell lines PC-3 and DU145 were subjected to two-dimensional gel electrophoresis(2-DE).Massspectrometry was performed to confirm the nature of the expressed proteins in EPS and prostatic cancer secretion. Results:Based on theresulting electrophoretograms and the followed mass spectrometry analysis,several differentially expressed proteins were detected andthe up-regulation of Lf (MW 35KDa,pI 7-7.5)in BPH-EPS,compared with BPH-free EPS,was also observed. More importantly, Lf wasabsent in prostate cancer cell lines PC-3 and DU145.Conclusion:The results indicate Lf may be produced specifically by benignprostatic epithelium and prostate lost its Lf secretion during the process of carcinogenesis.

  11. Prostaglandin E2 Reduces Cardiac Contractility via EP3 Receptor.

    Science.gov (United States)

    Gu, Xiaosong; Xu, Jiang; Zhu, Liping; Bryson, Timothy; Yang, Xiao-Ping; Peterson, Edward; Harding, Pamela

    2016-08-01

    Prostaglandin E2 (PGE2) EP receptors EP3 and EP4 signal via decreased and increased cAMP production, respectively. Previously, we reported that cardiomyocyte-specific EP4 knockout mice develop dilated cardiomyopathy with reduced ejection fraction. Thus, we hypothesized that PGE2 increases contractility via EP4 but decreases contractility via EP3. The effects of PGE2 and the EP1/EP3 agonist sulprostone on contractility were examined in the mouse Langendorff preparation and in adult mouse cardiomyocytes. Isolated hearts of adult male C57Bl/6 mice were perfused with PGE2 (10(-6) M) or sulprostone (10(-6) M) and compared with vehicle. Both PGE2 and sulprostone decreased +dp/dt (PEP3 antagonist. In contrast, the EP4 agonist had the opposite effect. Adult mouse cardiomyocytes contractility was also reduced after treatment with either PGE2 or sulprostone for 10 minutes. We then examined the acute effects of PGE2, sulprostone, and the EP4 agonist on expression of phosphorylated phospholamban and sarcoendoplasmic reticulum Ca(2+)-ATPase 2a in adult mouse cardiomyocytes using Western blot. Treatment with either PGE2 or sulprostone decreased expression of phosphorylated phospholamban corrected to total phospholamban, whereas treatment with the EP4 agonist had the opposite effect. Sarcoendoplasmic reticulum Ca(2+)-ATPase 2a expression was unaffected. Finally, we examined the effect of these compounds in vivo using pressure-volume loops. Both PGE2 and sulprostone decreased +dp/dt, whereas the EP4 agonist increased +dp/dt. Contractility is reduced via the EP3 receptor but increased via EP4. These effects may be mediated through changes in phospholamban phosphorylation and has relevance to detrimental effects of inflammation. © 2016 American Heart Association, Inc.

  12. EPS profiles: the atypical antipsychotics are not all the same.

    Science.gov (United States)

    Weiden, Peter J

    2007-01-01

    Within the first few years after chlorpromazine began to be used to treat psychosis, it was observed that it could cause many kinds of neurologic reactions that resembled those seen in idiopathic Parkinson's disease. These reactions were termed "extrapyramidal side effects" (EPS) because of their resemblance to the signs of Parkinson's disease, which were associated with degeneration of the dopamine nerve tracks located in the extrapyramidal region of the central nervous system. Eventually this association of dopamine loss, antipsychotics, and parkinsonism became a central part of the dopamine hypothesis of schizophrenia. Unfortunately, this association was also used to support the hypothesis that EPS were absolutely necessary for antipsychotic efficacy--hence the term "neuroleptic" rather than "antipsychotic." This theory, now discredited, was used to justify the practice of inducing EPS as a means to gauge whether an antipsychotic would be effective. The demonstration that clozapine, an antipsychotic virtually devoid of EPS, has better efficacy for psychosis than any other "neuroleptic" disproved the theory that EPS were fundamentally linked to efficacy. Because the idea of a relationship between EPS and efficacy was so ingrained in clinical practice, clozapine was called "atypical." Our understanding of the relationship between EPS and antipsychotic response has come full circle. With the introduction of clozapine and other newer antipsychotics, it has become clear that EPS are harmful and serve no beneficial purpose. The availability of newer antipsychotics with a lower EPS burden means that, at least in theory, it is now possible to treat psychosis without EPS in the vast majority of patients. In practice, however, EPS remain a significant problem even in the era of atypical or second generation antipsychotics (SGAs). One limitation is that the concept of "atypicality," when used to denote antipsychotic efficacy without EPS, is a relative not an absolute

  13. Sulfation patterns determine cellular internalization of heparin-like polysaccharides.

    Science.gov (United States)

    Raman, Karthik; Mencio, Caitlin; Desai, Umesh R; Kuberan, Balagurunathan

    2013-04-01

    Heparin is a highly sulfated polysaccharide that serves biologically relevant roles as an anticoagulant and anticancer agent. While it is well-known that modification of heparin's sulfation pattern can drastically influence its ability to bind growth factors and other extracellular molecules, very little is known about the cellular uptake of heparin and the role sulfation patterns serve in affecting its internalization. In this study, we chemically synthesized several fluorescently labeled heparins consisting of a variety of sulfation patterns. These polysaccharides were thoroughly characterized using anion exchange chromatography and size exclusion chromatography. Subsequently, we utilized flow cytometry and confocal imaging to show that sulfation patterns differentially affect the amount of heparin uptake in multiple cell types. This study provides the first comprehensive analysis of the effect of sulfation pattern on the cellular internalization of heparin or heparan sulfate like polysaccharides. The results of this study expand current knowledge regarding heparin internalization and provide insights into developing more effective heparin-based drug conjugates for applications in intracellular drug delivery.

  14. Sulfur activation-related extracellular proteins of Acidithiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng-gui; ZHANG Rui-yong; XIA Jin-lan; ZHANG Qian; NIE Zhen-yuan

    2008-01-01

    The fractions of the extracellular proteins of Acidithiobacillus ferrooxidans grown on two different energy substrates,elemental sulfur and ferrous sulfate,were selectively prepared with hot water treatment and distinctly shown by two-dimensional gel electrophoresis.Some protein spots with apparently higher abundance in sulfur energy substrate than in ferrous sulfate energy substrate were identified by using MALDI-TOF/TOF.Based on peptide mass fingerprints and bioinformatical analysis,the extracellular proteins were classified according to their functions as conjugal transfer protein,pilin,vacJ lipoprotein,polysaccharide deacetylase family protein,Ser/Thr protein phosphatase family protein and hypothetical proteins.Several extracellular proteins were found abundant in thiol groups and with CXXC functional motif,these proteins may be directly involved in the sulfur activation by use of their thiol group (Pr-SH) to bond the elemental sulfur.

  15. Structural characterization of an acidic Epimedium polysaccharide and its immune-enhancement activity.

    Science.gov (United States)

    Wu, Yi; Li, Youying; Liu, Chang; Li, Entao; Gao, Zhenzhen; Liu, Cui; Gu, Wei; Huang, Yee; Liu, Jiaguo; Wang, Deyun; Hu, Yuanliang

    2016-03-15

    One acidic polysaccharide named EPS-1 was isolated from the aqueous extract of the leaves of Epimedium acuminatum Franch. It may be composed of 1,4-linked α-d-GalpA, 1,3,4-linked α-d-GalpA, 1,6-linked β-d-Galp and terminal α-l-Rhap residues in a molar ratio of 11.0:1.0:1.0:1.0 by chemical and spectroscopic analysis. EPS-1 possessed immune modulation effects on peripheral T lymphocyte and immature chBM-DCs such as promoting the proliferation and cytokine secretion of these cells and increasing the phagocytosis ability of immature chBM-DCs.

  16. PREPARATION AND PROPERTIES OF EXTRACELLULAR BIOPOLYMER FLOCCULANT

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The biopolymer flocculant (named PS-2) producing by Pseudomonas fluorescens was investigated. The PS-2 had high efficiency with small dosage, when dealing with kaolin suspension, formed larger floc, with big sedimentation rate, over a wide range of temperatures. Distributing of flocculating activity test showed that the biopolymer flocculant was an extracellular product. The composition analysis of purified biopolymer flocculant showed that it composed mainly of polysaccharide and nucleic acid. The content of polysaccharide was 86.7%, which determined by using phenol-vitriol method, and the content of nucleic acid was 7.8%, which determined by UV absorption method. The biopolymer flocculant as a powder form showed much better stability than that as a supernatant. The character of biopolymer flocculant was stable even it was heated to 100℃ when it in acidic condition. The optimal conditions to flocculate kaolin suspension were as follows: pH 8~12, flocculant dosage 1mL/L, and Ca2+ as the optimal cation.

  17. PREPARATION AND PROPERTIES OF EXTRACELLULAR BIOPOLYMER FLOCCULANT

    Institute of Scientific and Technical Information of China (English)

    LI Chunxiang; LIU Binbin; XIONG Jinshui; YAN Jingchun

    2007-01-01

    The biopolymer flocculant (named PS-2) producing by Pseudomonas fluorescens was investigated. The PS-2 had high efficiency with small dosage, when dealing with kaolin suspension,formed larger floc, with big sedimentation rate, over a wide range of temperatures. Distributing of flocculating activity test showed that the biopolymer flocculant was an extracellular product. The composition analysis of purified biopolymer flocculant showed that it composed mainly of polysaccharide and nucleic acid. The content of polysaccharide was 86.7%, which determined by using phenol-vitriol method, and the content of nucleic acid was 7.8%, which determined by UV absorption method. The biopolymer flocculant as a powder form showed much better stability than that as a supernatant. The character of biopolymer flocculant was stable even it was heated to 100 ℃ when it in acidic condition. The optimal conditions to flocculate kaolin suspension were as follows:pH 8~12, flocculant dosage 1mL/L, and Ca2+ as the optimal cation.

  18. Rooting gene trees without outgroups: EP rooting.

    Science.gov (United States)

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  19. Extracellular DNA contributes to dental biofilm formation: an ex vivo study

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise; Dige, Irene;

    The extracellular matrix of dental biofilms plays an important role during caries development. It increases the mechanical stability of the biofilm, it prevents desiccation, it serves as a reservoir for nutrients and it contributes to the long-term preservation of acidic microenvironments. Research...... on the biofilm matrix in the field of dentistry has focused mainly on the synthesis, structure and function of extracellular polysaccharides. In recent years, studies conducted on biofilms from other habitats have shown that the presence of extracellular DNA contributes to biofilm formation and stability...

  20. Extracellular Polymers in Granular Sludge from Different Upflow Anaerobic Sludge Blanket (UASB) Reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1994-01-01

    Thermal extraction was used to quantify extracellular polymers (ECP) in granules from anaerobic upflow reactors. The optimal time for extraction was determined as the time needed before the intracellular material gives a significant contribution to the extracted extracellular material due to cell...... of an upflow anaerobic sludge blanket reactor from a sugar-containing waste-water to a synthetic waste-water containing acetate, propionate and butyrate resulted in a decrease in both the protein and polysaccharide content and an increase in the lipid content of the extracellular material. Furthermore...

  1. Extraction and characterization of bound extracellular polymeric substances from cultured pure cyanobacterium (Microcystis wesenbergii).

    Science.gov (United States)

    Liu, Lizhen; Qin, Boqiang; Zhang, Yunlin; Zhu, Guangwei; Gao, Guang; Huang, Qi; Yao, Xin

    2014-08-01

    Preliminary characterization of bound extracellular polymeric substances (bEPS) of cyanobacteria is crucial to obtain a better understanding of the formation mechanism of cyanobacterial bloom. However, the characterization of bEPS can be affected by extraction methods. Five sets (including the control) of bEPS from Microcystis extracted by different methods were characterized using three-dimensional excitation and emission matrix (3DEEM) fluorescence spectroscopy combined chemical spectrophotometry; and the characterization results of bEPS samples were further compared. The agents used for extraction were NaOH, pure water and phosphate buffered saline (PBS) containing cationic exchange resins, and hot water. Extraction methods affected the fluorescence signals and intensities in the bEPS. Five fluorescence peaks were observed in the excitation and emission matrix fluorescence spectra of bEPS samples. Two peaks (peaks T₁ and T₂) present in all extractions were identified as protein-like fluorophores, two (peaks A and C) as humic-like fluorophores, and one (peak E) as a fulvic-like substance. Among these substances, the humic-like and fulvic-like fluorescences were only seen in the bEPS extracted with hot water. Also, NaOH solution extraction could result in strong fluorescence intensities compared to the other extraction methods. It was suggested that NaOH at pH10.0 was the most appropriate method to extract bEPS from Microcystis. In addition, dialysis could affect the yields and characteristics of extracted bEPS during the determination process. These results will help us to explore the issues of cyanobacterial blooms.

  2. Effects of Polysaccharide Elicitors from Endophytic Fusarium oxysporium Dzf17 on Growth and Diosgenin Production in Cell Suspension Culture of Dioscorea zingiberensis

    Directory of Open Access Journals (Sweden)

    Ligang Zhou

    2011-10-01

    Full Text Available Three polysaccharides, namely exopolysaccharide (EPS, water-extracted mycelial polysaccharide (WPS and sodium hydroxide-extracted mycelial polysaccharide (SPS, were prepared from the endophytic fungus Fusarium oxysporium Dzf17 isolated from the rhizomes of Dioscorea zingiberensis. The effects of the time of addition and polysaccharide concentration on the growth and diosgenin accumulation in cell suspension culture of D. zingiberensis were studied. Among them, WPS was found to be the most effective polysaccharide. When WPS was added to the medium at 20 mg/L on the 25th day of culture, the cell dry weight was increased 1.34-fold, diosgenin content 2.85-fold, and diosgenin yield 3.83-fold in comparison to those of control. EPS and SPS showed moderate and relatively weak enhancement effects on cell growth and diosgenin accumulation, respectively. The dynamics of cell growth and diosgenin accumulation when WPS was added to the medium at 20 mg/L on the 25th day of culture were investigated, and results showed that dry weight of cells reached a maximum value on day 30 but the maximum diosgenin content was achieved on day 31.

  3. Effects of polysaccharide elicitors from endophytic Fusarium oxysporium Dzf17 on growth and diosgenin production in cell suspension culture of Dioscorea zingiberensis.

    Science.gov (United States)

    Li, Peiqin; Mou, Yan; Shan, Tijiang; Xu, Jianmei; Li, Yan; Lu, Shiqiong; Zhou, Ligang

    2011-10-26

    Three polysaccharides, namely exopolysaccharide (EPS), water-extracted mycelial polysaccharide (WPS) and sodium hydroxide-extracted mycelial polysaccharide (SPS), were prepared from the endophytic fungus Fusarium oxysporium Dzf17 isolated from the rhizomes of Dioscorea zingiberensis. The effects of the time of addition and polysaccharide concentration on the growth and diosgenin accumulation in cell suspension culture of D. zingiberensis were studied. Among them, WPS was found to be the most effective polysaccharide. When WPS was added to the medium at 20 mg/L on the 25th day of culture, the cell dry weight was increased 1.34-fold, diosgenin content 2.85-fold, and diosgenin yield 3.83-fold in comparison to those of control. EPS and SPS showed moderate and relatively weak enhancement effects on cell growth and diosgenin accumulation, respectively. The dynamics of cell growth and diosgenin accumulation when WPS was added to the medium at 20 mg/L on the 25th day of culture were investigated, and results showed that dry weight of cells reached a maximum value on day 30 but the maximum diosgenin content was achieved on day 31.

  4. High activity and low temperature optima of extracellular enzymes in Arctic sediments: implications for carbon cycling by heterotrophic microbial communities

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2003-01-01

    The rate of the initial step in microbial remineralization of organic carbon, extracellular enzymatic hydrolysis, was investigated as a function of temperature in permanently cold sediments from 2 fjords on the west coast of Svalbard (Arctic Ocean). We used 4 structurally distinct polysaccharides...... with recent studies of psychrophilic sulfate reducers isolated from Svalbard sediments. A calculation of potential carbon flow into the microbial food chain demonstrated that the activity of just one type of polysaccharide-hydrolyzing enzyme could in theory supply 21 to 100% of the carbon consumed via sulfate...... reduction across the temperature range investigated here. These characteristics suggest that these extracellular enzymes are well adapted to permanently cold temperatures....

  5. Extracellular polymeric substances (EPS) production in sulfobacillus thermosulfidooxidans and its relevance on attachment to metal sulfides

    OpenAIRE

    Aguirre Morales, Mauricio

    2012-01-01

    La extracción de metales a partir de minerales azufrados ha sido un paso importante para la industria minera a través de los años. Hay microorganismos capaces de crecer en zonas mineras y depósitos de menas, utilizando compuestos presentes en la menas para obtener energía, precipitando de esta forma otros compuestos presentes en las mismas. El Uso de microorganismos biolixiviadores acidofilos en un proceso llamado biohydrometalurgia, se ha convertido en una alternativa a la minería convencion...

  6. Polysaccharide-modified synthetic polymeric biomaterials.

    Science.gov (United States)

    Baldwin, Aaron D; Kiick, Kristi L

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. (c) 2010 Wiley Periodicals, Inc.

  7. EP4 and EP2 receptor subtypes involved in colonic secretion in rat

    DEFF Research Database (Denmark)

    Mosa, A.S.; Hansen, M.B.; Tilotta, C.M.

    2008-01-01

    The study was designed to determine the prostaglandin EP receptor subtypes functionally involved in electrogenic ion secretion in rat colon. With 30 rats, measurements of short circuit current (SCC) and slope conductance were obtained by Ussing chamber technique. Prostaglandin E2 (PGE(2)) and other...

  8. Immunolocalization of Prostaglandin E2 Receptor Subtype 4 (EP4 in the Cervix of Cyclic Bitches and Those with Pyometra

    Directory of Open Access Journals (Sweden)

    P Linharattanaruksa1, K Chatdarong1, S Ponglowhapan1, M Khalid3 and S Srisuwatanasagul2*

    2013-07-01

    Full Text Available Cervix is an important part of the reproductive tract; in non-pregnant animals it remains closed during anestrus and diestrus and is open only during estrus. In pathological conditions like pyometra, the cervix may be open or closed but the control mechanism is not clearly known. Prostaglandin E2 (PGE2 is considered to be involved in changes of extracellular matrix via coupling to prostaglandin E receptor subtype 4 (EP4. This study investigated the expression of EP4 in the cervices of bitches during different stages of estrous cycle and those with pyometra. After ovariohysterectomy, cervices were collected from anestrus (n=6, estrus (n=12 and diestrus (n=6, open- (n=10 and closed-cervix pyometra (n=10 bitches. Cervical EP4 expression was observed at all the layers and the stages but the differences in EP4 expression either among bitches in different stages of the estrous cycle and between open- and closed-cervix pyometra were limited to only surface epithelium (SE. In cyclic bitches during estrus and in open-cervix pyometra bitches, significantly higher (P<0.05 EP4 expression was found in SE of uterine part than vaginal part. In SE of the uterine part, the expression was higher in the bitches during estrus than in anestrus and diestrus, and in the bitches affected by open-cervix than those with closed-cervix pyometra. The results suggest that regulation of cervical dilation appeared in the uterine part of the cervix. Moreover, EP4 may be involved in stimulating dilation of the cervix in both estrus and open-cervix pyometra bitches.

  9. Preliminary Study on the Liquid Fermentation and Polysaccharide Production of Ganoderma%灵芝液体发酵及产多糖的初步研究

    Institute of Scientific and Technical Information of China (English)

    王新民; 李宇伟; 连瑞丽; 边传周; 王慧杰

    2007-01-01

    Strain of Ganoderma japonicum with higher mycelial growth rate and higher levels of polysaccharide production was selected from seven tested strains of Canoderma.The effects of nitrogen source ,carbon sourloe and metal ions on the polysaccharide production of selected Ganoderma japonicum were studied.The results showed that the optimum nitrogen source and carbon source were 2%and 0.2%,respoctively.And the existence of 0.2%Fe2+ could improve the polysaccharide yield significantly.The result of fermentor enlargement test indicated that extracellular crude polysaccharide content per 100 mL fermentation liquor and mycelium content yielded highest amount of 181.7 mg and 151.0 mg,respectively,with relatively mild change of pH value.It was concluded that fermentation in fermentor was more suitable for the secretion of Ganoderma polysaccharide.

  10. AKTIVITAS ANTITUMOR DARI EKSOPOLISAKARIDA (EPS) Lactobacillus bulgaricus SECARAN IN VITRO

    OpenAIRE

    2007-01-01

    Nama eksopolisakarida (EPS) adalah nama umum untuk semua bentuk polisakarida bakteri yang ditemukan di luar dinding sel dan merupakan salah satu produk bioaktif yang dihasilkan oleh mikroorganisme. Salah satu mikrooorganisme yang menghasilkan EPS adalah bakteri asam laknat, diantaranya Lactobacillus bulgaricus strain ropy yang diisolasi dari susu fermentasi secara in vitro. EPS yang telah diektrasksi dengan berbagai konsentrasi mmenggunakan sel tumor K-562 (sel leukemia) ( jumlah sel x 10 4)....

  11. Detection of EpCAM-positive microparticles in pleural fluid: A new approach to mini-invasively identify patients with malignant pleural effusions

    Science.gov (United States)

    Roca, Elisa; Lacroix, Romaric; Judicone, Coralie; Laroumagne, Sophie; Robert, Stéphane; Cointe, Sylvie; Muller, Alexandre; Kaspi, Elise; Roll, Patrice; Brisson, Alain R.; Tantucci, Claudio

    2016-01-01

    Pleural biomarkers allowing to mini-invasively discriminate benign from malignant pleural effusions are needed. Among potential candidates, microparticles (MPs) are extracellular vesicles that vectorize antigen derived from the parent cell. We hypothesized that tumor-derived MPs could be present in the pleural liquid and help to identify patients with malignant pleural effusions. Using highly sensitive flow cytometry and cryo-electron microscopy, we showed that large amounts of MPs from hematopoïetic and vascular origin could be detectable in pleural fluids. Their level did not differ between benign (n = 14) and malignant (n = 71) pleural effusions. Analysis of selected tumoral associated antigens (podoplanin, mucin 1 and EpCAM, epithelial-cell-adhesion-molecule) evidenced for the first time the presence of tumor-derived MPs expressing EpCAM in malignant pleural fluids only (Specificity = 93%, Sensitivity = 49% and 45% for flow cytometry and ELISA, respectively). The detection of EpCAM-positive-MPs (EpCAM + MPs) by flow cytometry showed a better specificity and sensitivity than ELISA to distinguish between pleural carcinoma and the others malignant pleural effusions (MPE; Sp: 96% vs 89%; Se: 79% vs 66%). Combining EpCAM+ MPs and cytology improved the diagnosis of MPE compared to cytology alone. This study establishes the basis for using EpCAM+ MPs as a promising new biomarker that could be added to the armamentarium to mini-invasively identify patients with malignant pleural effusions. PMID:26689993

  12. Effect of Deletion of the Prostaglandin EP2 Receptor on the Anabolic Response to Prostaglandin E2 and a Selective EP2 Receptor Agonist

    OpenAIRE

    Choudhary, Shilpa; Alander, Cynthia; Zhan, Peili; Gao, Qi; Pilbeam, Carol; Raisz, Lawrence

    2008-01-01

    Studies using prostaglandin E receptor (EP) agonists indicate that prostaglandin (PG) E2 can have anabolic effects through both EP4 and EP2 receptors. We previously found that the anabolic response to a selective EP4 receptor agonist (EP4A, Ono Pharmaceutical) was substantially greater than to a selective EP2 receptor agonist (EP2A) in cultured murine calvarial osteoblastic cells. To further define the role of the EP2 receptor in PG-mediated effects on bone cells, we examined the effects of E...

  13. Submerged cultivation of Ganoderma lucidum and the effects of its polysaccharides on the production of human cytokines TNF-α, IL-12, IFN-γ, IL-2, IL-4, IL-10 and IL-17.

    Science.gov (United States)

    Habijanic, Jožica; Berovic, Marin; Boh, Bojana; Plankl, Mojca; Wraber, Branka

    2015-01-25

    An original strain of Ganoderma lucidum (W.Curt.:Fr.) Lloyd, MZKI G97 isolated from Slovenian habitats was grown by a submerged liquid substrate cultivation in a laboratory stirred tank reactor. Five fractions of extracellular and cell-wall polysaccharides were obtained by extraction, ethanol precipitation, and purification by ion-exchange, gel and affinity chromatography. The capacity of isolated polysaccharide fractions to induce innate inflammatory cytokines, and to modulate cytokine responses of activated lymphocytes was investigated. Human peripheral blood mononuclear cells (PBMC) were activated in vitro with polysaccharide fractions, in order to induce innate inflammatory cytokines: tumor necrosis factor alpha (TNF-α), interleukin (IL) 12 and interferon gamma (IFN-γ). For the immunomodulation capacity, polysaccharide fractions were cultured with ionomycine and phorbol myristate acetate (IONO+PMA) activated PBMC, and the concentrations of induced IL-2, IL-4, IFN-γ, IL-10 and IL-17 were measured. The results showed that polysaccharides from G. lucidum induced moderate to high amounts of innate inflammatory cytokines. Fungal cell-wall polysaccharides were stronger innate inflammatory cytokines inducers, while extracellular polysaccharides demonstrated a higher capacity to modulate cytokine responses of IONO+PMA induced production of IL-17. The results indicate that G. lucidum polysaccharides enhance Th1 response with high levels of IFN-γ and IL-2, and display low to no impact on IL-4 production. A similar pattern was observed at regulatory cytokine IL-10. All of the polysaccharide fractions tested induced IL-17 production at different concentration levels.

  14. Cloning and expression of the rabbit prostaglandin EP2 receptor

    OpenAIRE

    Guan, Youfei; Stillman, Brett A.; Zhang, Yahua; Schneider, André; Saito, Osamu; Davis, Linda S.; Redha, Reyadh; Breyer, Richard M.; Breyer, Matthew D.

    2002-01-01

    Background Prostaglandin E2 (PGE2) has multiple physiologic roles mediated by G protein coupled receptors designated E-prostanoid, or "EP" receptors. Evidence supports an important role for the EP2 receptor in regulating fertility, vascular tone and renal function. Results The full-length rabbit EP2 receptor cDNA was cloned. The encoded polypeptide contains 361 amino acid residues with seven hydrophobic domains. COS-1 cells expressing the cloned rabbit EP2 exhibited specific [3H]PGE2 binding ...

  15. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  16. Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration.

    Science.gov (United States)

    Fish, K; Osborn, A M; Boxall, J B

    2017-03-27

    High-quality drinking water from treatment works is degraded during transport to customer taps through the Drinking Water Distribution System (DWDS). Interactions occurring at the pipe wall-water interface are central to this degradation and are often dominated by complex microbial biofilms that are not well understood. This study uses novel application of confocal microscopy techniques to quantify the composition of extracellular polymeric substances (EPS) and cells of DWDS biofilms together with concurrent evaluation of the bacterial community. An internationally unique, full-scale, experimental DWDS facility was used to investigate the impact of three different hydraulic patterns upon biofilms and subsequently assess their response to increases in shear stress, linking biofilms to water quality impacts such as discolouration. Greater flow variation during growth was associated with increased cell quantity but was inversely related to EPS-to-cell volume ratios and bacterial diversity. Discolouration was caused and EPS was mobilised during flushing of all conditions. Ultimately, biofilms developed under low-varied flow conditions had lowest amounts of biomass, the greatest EPS volumes per cell and the lowest discolouration response. This research shows that the interactions between hydraulics and biofilm physical and community structures are complex but critical to managing biofilms within ageing DWDS infrastructure to limit water quality degradation and protect public health.

  17. Polysaccharide matrices used in 3D in vitro cell culture systems.

    Science.gov (United States)

    Diekjürgen, Dorina; Grainger, David W

    2017-10-01

    Polysaccharides comprise a diverse class of polymeric materials with a history of proven biocompatibility and continual use as biomaterials. Recent focus on new matrices appropriate for three-dimensional (3D) cell culture offers new opportunities to apply polysaccharides as extracellular matrix mimics. However, chemical and structural bases for specific cell-polysaccharide interactions essential for their utility as 3-D cell matrices are not well defined. This review describes how these naturally sourced biomaterials satisfy several key properties for current 3D cell culture needs and can also be synthetically modified or blended with additional components to tailor their cell engagement properties. Beyond their benign interactions with many cell types in cultures, their economical and high quality sourcing, optical clarity for ex situ analytical interrogation and in situ gelation represent important properties of these polymers for 3D cell culture applications. Continued diversification of their versatile glycan chemistry, new bio-synthetic sourcing strategies and elucidation of new cell-specific properties are attractive to expand the polysaccharide polymer utility for cell culture needs. Many 3D cell culture priorities are addressed with the portfolio of polysaccharide materials available and under development. This review provides a critical analysis of their properties, capabilities and challenges in 3D cell culture applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of Extracellular Polymeric Substances on CuO Nanoparticle Dissolution and Colloidal Stability

    Science.gov (United States)

    Adeleye, A. S.; Keller, A. A.

    2013-12-01

    Extracellular polymeric substances (EPS) are high molecular weight polymers produced by microorganisms growing in natural as well as artificial environments. EPS may interact with engineered nanomaterials (ENMs) in aquatic systems via electrostatic and/or hydrophobic associations, therefore, influencing the fate and transport of ENMs. In this study the effect of soluble EPS isolated from Isochrysis galbana, a marine phytoplankton, on the dissolution kinetics and colloidal stability of CuO nanoparticles was investigated. EPS was characterized by measuring hydrodynamic diameter, total organic carbon, carbohydrate, and protein concentrations. CuO nanoparticles were more stable in the presence of EPS in aqueous media as indicated by hydrodynamic size and average count rate measurements. The effect of pH and ionic strength on dissolution was also studied. [Cu2+] and [Cu]total detected after a week were 5.70 mg L-1 and 7.08 mg L-1 respectively when 10 mg L-1 CuO nanoparticles was kept in 10 mM NaCl at pH 4. In the presence of 5 mg-C EPS L-1, [Cu2+] and [Cu]total were slightly lower at 5.0 mg L-1 and 5.53 mg L-1 respectively. Although observed [Cu2+] and [Cu]total were significantly lower at neutral and alkaline pH conditions, a similar pattern was observed.

  19. Isolation and chemical characterization of dissolved and particulate polysaccharides in Mikawa Bay

    Science.gov (United States)

    Sakugawa, Hiroshi; Handa, Nobuhiko

    1985-05-01

    Isolation and chemical elucidation of dissolved and particulate polysaccharides in seawater were conducted. The water samples were collected in Mikawa Bay, Japan during a red tide bloom of the dinoflagellate, Prorocentrum minimum. Dissolved polysaccharides were concentrated from 5-101 of seawater with dialysis followed by separation by gel flitration, and isolation by ethanol precipitation. A heteropolysaccharide consisting of glucose, galactose, mannose, xylose, arabinose, fucose and rhamnose and a glucan were isolated from the polysaccharide component having a molecular weight more than 4,000 Dalton and were characterized by several chemical analyses. The heteropolysaccharide is a mucilaginous polysaccharide having a highly branched structure and a molecular weight of 10 4-5 × 10 6 Daltons and probably contains a sulfate half ester: the glucan is a polysaccharide with β-1,3- and 1,6-linkages (chrysolaminaran type). Concentrations of these were respectively ca. 20 and 67 μg l -1 at 1 m, and 2 and 26 μg l -1 at 6 m. A similar heteropolysaccharide was found in the boiling water extract of the particulate matter, while β-glucan was isolated in a much less purified form than the seawater β-glucan. In addition, a large amount of β-1,4 glucan was found in the strong alkali extract of the particulate matter, indicating that this glucan must be a cell wall polysaccharide derived from phytoplankton. These results strongly suggest that the heteropolysaccharide and chrysolaminaran type polysaccharide dissolved in seawater were derived from water soluble carbohydrates of phytoplankton through extracellular release or cell lysis.

  20. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation

    Science.gov (United States)

    Guo, Xuan; Wang, Xu; Liu, Junxin

    2016-06-01

    Extracellular polymeric substances (EPS) appear to play a critical role in the formation of bioaggregates, such as sludge flocs, in activated sludge processes. Here, we systematically investigated the composition and chemical structure of various EPS fractions excreted from an activated sludge culture using multi-analysis techniques to examine the ability of the sludge to aggregate. Chemical analysis was used with a three-dimensional excitation emission matrix and Fourier transform infrared spectroscopy, applying inter-particle forces theory. The combined findings revealed that hydrophobic groups, especially protein-related N-H, were present in a greater proportion in tightly bound EPS (TB-EPS). This result, which explained the specificity of TB-EPS in the chemical structure, was consistent with data indicating that TB-EPS contained a large amount of protein-like substances (86.7 mg/g of mixed liquor volatile suspended solids, 39.7% of the total EPS). Subsequently, a novel experimental procedure was developed to pinpoint key inter-particle forces in sludge aggregation. The result revealed that hydrogen bonds are the predominant triggers that promote sludge aggregation. This comprehensive analysis indicated that hydrophobic proteins in TB-EPS are responsible for the critical role played by hydrogen bonds in sludge formation. Our findings highlight the need to elucidate the mechanisms of TB-EPS-mediated flocculation in future efforts.

  1. Sucrose release from polysaccharide gels.

    Science.gov (United States)

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed.

  2. Preon Model and a Possible New Physics in ep Collisions

    Science.gov (United States)

    Senju, H.

    1993-03-01

    The properties of predicted new particles in a preon-subpreon model are discussed. The model contains several new particles which could be detected in the near future. It is shown that ep colliders are especially adequate to study properties of a few of them. Production cross sections and signatures in ep collisions are discussed.

  3. Preon model and a possible new physics in ep collisions

    Energy Technology Data Exchange (ETDEWEB)

    Senju, Hirofumi (Nagoya Municipal Women' s Coll. (Japan))

    1993-03-01

    The properties of predicted new particles in a preon-subpreon model are discussed. The model contains several new particles which could be detected in the near future. It is shown that ep colliders are especially adequate to study properties of a few of them. Production cross sections and signatures in ep collisions are discussed. (author).

  4. Spacecraft Electrical Power System (EPS) generic analysis tools and techniques

    Science.gov (United States)

    Morris, Gladys M.; Sheppard, Mark A.

    1992-01-01

    An overview is provided of the analysis tools and techiques used in modeling the Space Station Freedom electrical power system, as well as future space vehicle power systems. The analysis capabilities of the Electrical Power System (EPS) are described and the EPS analysis tools are surveyed.

  5. EpCAM : Structure and function in health and disease

    NARCIS (Netherlands)

    Schnell, Ulrike; Cirulli, Vincenzo; Giepmans, Ben N. G.

    2013-01-01

    Injection of tumor cells in mice more than 30 years ago resulted in the discovery of an epithelial antigen, later defined as a cell adhesion molecule (EpCAM). Although EpCAM has since evoked significant interest as a target in cancer therapy, mechanistic insights on the functions of this glycoprotei

  6. Editorial Statement of the Economic and Political Studies (EPS)

    Institute of Scientific and Technical Information of China (English)

    Yulu; Chen

    2013-01-01

    <正>The Economic and Political Studies(EPS)was founded in 2012 by Renmin University of China and is published by the Renmin University of China Press.The very first issue of this journal appears now in January 2013.The EPS focuses on academic research explicitly or implicitly related to China

  7. Highlights from e-EPS: the 2015 EPS High Energy Physics Prize winners

    CERN Multimedia

    Thomas Lohse, e-EPS News

    2015-01-01

    The EPS High Energy Physics Division announces the winners of its 2015 prizes, which will be awarded at the Europhysics Conference on High-Energy Physics (EPS-HEP 2015), Vienna (Austria) 22−29 July. Many people from CERN were among the winners.   The 2015 High Energy and Particle Physics Prize, for an outstanding contribution to High Energy Physics, is awarded to James D. Bjorken “for his prediction of scaling behaviour in the structure of the proton that led to a new understanding of the b interaction”, and to Guido Altarelli, Yuri L. Dokshitzer, Lev Lipatov, and Giorgio Parisi “for developing a probabilistic field theory framework for the dynamics of quarks and gluons, enabling a quantitative understanding of high-energy collisions involving hadrons”. The 2015 Giuseppe and Vanna Cocconi Prize, for an outstanding contribution to Particle Astrophysics and Cosmology in the past 15 years, is awarded to Francis Halzen “for his visiona...

  8. Extracellular polymers of acid streamers from pyritic mines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.B.; Kelso, W.I.

    1981-01-01

    Extracellular polymers (slimes) extracted from acid streamers found in three disused North Wales mines were found to be a mixture of polysaccharides and RNA. The polymers exist as microfibrils synthesised by viable members of the acid streamer microbial community. Acid streamers from three mines, and from different zones in one of the mines, were shown to contain similar polymers, although the ratio of monomers varied from site to site. Monosaccharides identified in acid hydrolysates of slimes were glucose, galactose, mannose, ribose, xylose, arabinose, rhamnose and fucose.

  9. Polysaccharide-Based Micelles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2013-05-01

    Full Text Available Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date.

  10. Characterization of glycoconjugates of extracellular polymeric substances in tufa-associated biofilms by using fluorescence lectin-binding analysis.

    Science.gov (United States)

    Zippel, B; Neu, T R

    2011-01-01

    Freshwater tufa deposits are the result of calcification associated with biofilms dominated by cyanobacteria. Recent investigations highlighted the fact that the formation of microbial calcium carbonates is mainly dependent on the saturation index, which is determined by pH, the ion activity of Ca(2+) and CO(3)(2-), and the occurrence of extracellular polymeric substances (EPS) produced by microorganisms. EPS, which contain carboxyl and/or hydroxyl groups, can strongly bind cations. This may result in inhibition of CaCO(3) precipitation. In contrast, the formation of templates for crystal nucleation was reported by many previous investigations. The purposes of this study were (i) to characterize the in situ distribution of EPS glycoconjugates in tufa-associated biofilms of two German hard-water creeks by employing fluorescence lectin-binding analysis (FLBA), (ii) to verify the specific lectin-binding pattern by competitive-inhibition assays, and (iii) to assess whether carbonates are associated with structural EPS domains. Three major in situ EPS domains (cyanobacterial, network-like, and cloud-like structures) were detected by FLBA in combination with laser scanning microscopy (LSM). Based on lectin specificity, the EPS glycoconjugates produced by cyanobacteria contained mainly fucose, amino sugars (N-acetyl-glucosamine and N-acetyl-galactosamine), and sialic acid. Tufa deposits were irregularly covered by network-like EPS structures, which may originate from cyanobacterial EPS secretions. Cloud-like EPS glycoconjugates were dominated by sialic acid, amino sugars, and galactose. In some cases calcium carbonate crystals were associated with cyanobacterial EPS glycoconjugates. The detection of amino sugars and calcium carbonate in close association with decaying sheath material indicated that microbially mediated processes might be important for calcium carbonate precipitation in freshwater tufa systems.

  11. Discovery and characterization of carbamothioylacrylamides as EP2 selective antagonists.

    Science.gov (United States)

    Ganesh, Thota; Jiang, Jianxiong; Shashidharamurthy, Rangaiah; Dingledine, Ray

    2013-07-11

    Prostanoid receptor EP2 is emerging as a novel target for development of anti-inflammatory drugs for the treatment of chronic neurodegenerative and peripheral diseases; however, the availability of EP2 antagonist probes for exploration of peripheral disease models is very limited. We now report identification and characterization of a novel chemical class of compounds that show nanomolar potency and competitive antagonism of the EP2 receptor. A compound in this class, TG6-129, showed prolonged plasma half-life and did not cross the blood brain barrier. This compound also suppressed the induction of inflammatory mRNA markers in a macrophage cell line upon activation of EP2. Thus, this compound could be useful as a probe for a variety of peripheral chronic inflammatory diseases such as rheumatoid arthritis and chronic obstructive pulmonary disease, in which EP2 appears to play a pathogenic role.

  12. Uniaxial tension and tensile creep behaviors of EPS

    Institute of Scientific and Technical Information of China (English)

    康颖安; 李显方; 谭加才

    2008-01-01

    The mechanical behavior of EPS(Expanded polystyrene) with three densities at room temperature and under tension loading was studied.The results show that EPS material is characterized by brittle behavior in the tension tests,and tensile properties of EPS increase with the increase of density.Volume fraction has no a significant effect on the modulus of these foams.The tensile creep strain increases with stress for EPS with same density,indicating that the creep behavior is of the stress dependency.And the creep behavior of EPS exhibits density dependency,which the creep strain decreases with densities for a fixed stress value.Moreover the creep behavior under the constant tension load is well in coincidence with the three-parameter solid model.

  13. Highlights from e-EPS: Hetland to receive EPS-PED Award for Secondary School Teaching

    CERN Multimedia

    Urbaan Titulaer

    2013-01-01

    e-EPS News is an addition to the CERN Bulletin line-up, showcasing articles from e-EPS – the European Physical Society newsletter – as part of a collaboration between the two publications.   The EPS Physics Education Division selected Karl Thorstein Hetland, West Telemark Secondary School, Norway, as this year’s recipient of its Secondary School Teaching Award. K.T. Hetland developed the Energy Network, which aims to make students energy conscious and focus on renewable energy. The Energy Network, created in 2005, consists of 15 local networks, each involving an upper secondary school and several lower secondary schools, 55 schools in all. Material from the Network is used in physics classes in a large number of schools at national level and plays a major role in recruiting university physics students. K.T. Hetland will receive his award at the International Physics Education Conference, held together with the European Physics Educati...

  14. Highlights from e-EPS: Jean-Michel Raimond wins EPS Edison-Volta Prize 2014

    CERN Multimedia

    Martina Knoop, e-EPS News

    2014-01-01

    e-EPS News is a monthly addition to the CERN Bulletin line-up, showcasing articles from e-EPS – the European Physical Society newsletter – as part of a collaboration between the two publications.   The European Physical Society has the pleasure to announce that the 2014 EPS Edison-Volta Prize is awarded to Jean-Michel Raimond for “seminal contribution to physics (that) have paved the way for novel explorations of quantum mechanics and have opened new routes in quantum information processing”. J.-M. Raimond’s PhD thesis was supervised by Serge Haroche at the École Normale Supérieure in Paris, France, in the early 1980′s, and together S. Haroche, M. Brune and J.-M. Raimond have built an extremely successful research group since then. J.-M. Raimond has made seminal contributions to the development of cavity QED experiments, in particular involving circular Rydberg atoms interacting with very high-Q superc...

  15. Activation of prostaglandin E2-receptor EP2 and EP4 pathways induces growth inhibition in human gastric carcinoma cell lines.

    Science.gov (United States)

    Okuyama, T; Ishihara, S; Sato, H; Rumi, M A K; Kawashima, K; Miyaoka, Y; Suetsugu, H; Kazumori, H; Cava, C F Ortega; Kadowaki, Y; Fukuda, R; Kinoshita, Y

    2002-08-01

    The effect of prostaglandin E2 (PGE2) on the proliferation of gastric cancer cells is still unclear. PGE2 receptors are divided into four subtypes - EP1, EP2, EP3, and EP4 - which are coupled to three different intracellular signal-transduction systems. Stimulation of EP2 and EP4 is linked with cyclic adenosine 3', 5'-monophosphate (cAMP)-dependent protein kinase A (PKA). In some human gastric cancer cells, PGE2 has been suggested to have an antiproliferative effect by way of increased cAMP production. Expression of EP2 and EP4 in human gastric carcinoma cells, however, has not been examined. We examined the expression of EP2 and EP4 and the antiproliferative effects of specific EP2 and EP4 agonists on four different human gastric cancer cell lines. Our data clarified that all the cell lines investigated in this study expressed EP2 and EP4 and that the specific agonists of these receptors induced growth inhibition with an accompanying increase in cAMP production. In summary, gastric cancer cells have EP2 and EP4 receptors, and their selective activation is linked with the decreased cell proliferation.

  16. Anorexia and cachexia in prostaglandin EP1 and EP3 subtype receptor knockout mice bearing a tumor with high intrinsic PGE2 production and prostaglandin related cachexia.

    Science.gov (United States)

    Wang, W; Andersson, M; Lönnroth, C; Svanberg, E; Lundholm, K

    2005-03-01

    Previous studies in our laboratory have suggested that prostaglandin (PG) E2 is involved in anorexia/cachexia development in MCG 101 tumor-bearing mice. However, the role of COX pathways in the pathogenesis of cancer anorexia/cachexia is not fully resolved. In the present study, we investigated the role of PGE receptors subtype EP1 and EP3 on the development of anorexia in MCG 101-bearing mice. Our results show that the absence of host EP1 or EP3 receptors did not alter the magnitude of anorexia in tumor-bearers. However, anorexia in tumor-bearing EP1 and EP3 knockouts was not improved by indomethacin treatment as observed in wild type tumor-bearers. By contrast, indomethacin improved body composition similar in EP1 and EP3 knockouts as well as in wild type tumor-bearing animals and tumor growth was retarded in EP1 and promoted in EP3 knock outs. Our results demonstrate that host EP1 and EP3 receptors are involved in the control of local tumor growth, which translates into anorexia, this being the main cause of metabolic adaptive alterations to explain weight loss in this model. Brain EP1 and EP3 subtype receptors do not seem to directly control anorexia, which leaves EP2 and EP4 as potential candidates.

  17. Polysaccharides As Safer Release Systems For Agrochemicals

    OpenAIRE

    Campos E.V.R.; de Oliveira J.L.; Fraceto L.F.; Singh B

    2014-01-01

    International audience; Agrochemicals are used to improve the production of crops. Conventional formulations of agrochemicals can contaminate the environment, in particular in the case of intensive cropping. Hence, there is a need for controlled-release formulations of agrochemicals such as polysaccharides to reduce pollution and health hazards. Natural polysaccharides are hydrophilic, biodegradable polymers. This article reviews the use of polysaccharides in the form of micro- and nanopartic...

  18. Characterization and structure of the polysaccharide produced by Pseudomonas fluorescens strain TF7 isolated from an arid region of Algeria.

    Science.gov (United States)

    Taguett, Farida; Boisset, Claire; Heyraud, Alain; Buon, Laurine; Kaci, Yahia

    2015-05-01

    Many bacteria possess a natural ability to synthesize and excrete exopolysaccharides which are widely varied in structure and function. These bacteria have the ability to solubilize inorganic phosphorus, which is important to promote growth and increase crop yields. The objective of this study is to select an adaptive strain to the constraints of erratic rainfall and large temperature variations and to determine the possible synergistic effects of its EPS and organic acid on tricalcium phosphate (TCP) solubilization. The strain TF7 isolated from an arid region of Algeria was characterized on the basis of its morphological and physiological traits. Polysaccharide production and the phosphate-solubilizing activity of the strain were evaluated using sucrose and tricalcium phosphate. This EPS was studied by sugar analysis as well as proton NMR spectra. The 16S rRNA gene sequence of this strain shared a similarity of more than 96% with Pseudomonas fluorescens. The maximum polysaccharide productivity was estimated at 4.5g·L(-1) after 5 days. The analyzed sugar was comprised of fructose, glucose, and mannose in a ratio of 4:1:0.6. NMR spectra indicated that the polysaccharide produced by the strain was levan with β-(2→6)-linked fructose units in accordance with the generally accepted structure. The strain TF7 solubilizes phosphate and forms a clear halo around the colony. The phosphate-solubilizing index is 2.33.

  19. Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods.

    Science.gov (United States)

    Nouha, Klai; Kumar, Ram Saurabh; Tyagi, R D

    2016-07-01

    Extracellular polymeric substances synthesis by Cloacibacterium was affected by different concentrations of glycerol in the medium. The concentration of EPS in 72h fermentation was increased from 13g/L with no external carbon supplementation to 21.3±0.7g/L with 2% (w/v) crude glycerol addition. Physical and chemical extraction methods (heating, centrifugation and ethylene diamine tetra-acetic acid (EDTA)) were used in this study and their performance to extract EPS was compared. A significant variation in concentration of extracted B-EPS (broth-EPS) by heating (20.8±0.5g/L) and centrifugation (21.3±0.7g/L) extraction methods was not observed. However, in case of extraction with EDTA (5g/L), the B-EPS concentration extracted was 25.5±0.9g/L, which exhibited high flocculation activity of 95.3±0.5% at optimum dose of 23.1mgB-EPS/gkaolin. Moreover, Ni removal efficiency of 80% from primary treated wastewater was achieved using 35mg/L of B-EPS extracted by centrifugation method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Retention Behaviors of Uronic Acid-containing Polysaccharides and Neutral Polysaccharides in HPGPC

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The chromatographic behaviors of several uronic acid-containing polysaccharides and neutral polysaccharides were investigated in HPGPC for the first time. The effects of sample concentration and ionic strength of mobile phase on retention time were studied. The mechanism for the effects on Mw determination results of polysaccharides by HPGPC was also discussed.

  1. Assessing the potential of surrogate EPS to mimic natural biofilm mechanical properties

    Science.gov (United States)

    Thom, Moritz; Schimmels, Stefan

    2017-04-01

    Biofilms growing on benthic sediments may increase the resistance towards erosion considerably by the sticky nature of extracellular polymeric substances (EPS). The EPS is a biopolymer which is secreted by the microorganisms inhabiting the biofilm matrix and may be regarded as natural glue. However, laboratory studies on the biostabilization effect mediated by biofilms are often hampered by the unavailability of "environmental" flumes in which light intensities, water temperature and nutrient content can be controlled. To allow investigations on biostabilization in "traditional" flume settings the use of surrogate materials is studied. Another advantage of using appropriate surrogates is the potential to reduce the experimental time, as compared to cultivating natural biofilms, the surrogates can readily be designed to mimic biofilms at different growth stages. Furthermore, the use of surrogates which are expected to have more homogeneous mechanical properties could facilitate fundamental studies to improve our knowledge on biostabilization. Even though a number of studies have already utilized EPS surrogates it is not clear how to mix them to correctly mimic natural EPS mechanical properties. In this study the adhesiveness (a measure of stickiness) on the surface of several EPS surrogates (e.g. Xanthan Gum, sodium alginate) is measured. These surrogates which are originally used in the food industry as rheology modifiers are mixed by adding water to a powder at a desired concentration (C). The measured surface adhesion of different surrogates at different concentrations ranged from 0.5 to 6.7 N/m2, which is well in line with values found for laboratory cultured biofilms. We found that the surrogate characteristics differed largely especially in regard to a) the response of the adhesiveness to increased concentrations (powder to water) and b) in their rheological characteristics. A seemingly promising surrogate for the use in biostabilization studies is Xanthan Gum

  2. Sorption of ferrous iron by EPS from the acidophilic bacterium Acidiphilium Sp.: A mechanism proposal

    Directory of Open Access Journals (Sweden)

    Tapia, Jaime M.

    2016-09-01

    Full Text Available The aim of this work was to assess the uptake of Fe(II by extracellular polymeric substances (EPS from the acidophilic bacterium Acidiphillium 3.2Sup(5. These EPS were extracted using EDTA. EPS of A. 3.2Sup(5 loaded in sorption tests with Fe(II, were characterized using the following experimental techniques: scanning electron microscopy (SEM with energy dispersive X-ray microanalysis (EDX, X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR. The experimental results indicate that EPS adsorb ferrous iron according to Freundlich model with a metal sorption uptake of K = 1.14 mg1-1/n L1/n g-1 and a sorption intensity of 1/n = 1.26. In addition, ferrous iron sorption by EPS took place by preferential interaction with the carboxyl group which promotes the formation of ferrous iron oxalates (FeC2O4. Since the interaction reaction was reversible (Log K = 0.77 ± 0.33, that means that the cation sorption can be reversed at convenience.El objetivo de este trabajo fue estudiar la absorción de Fe(II por Sustancias Poliméricas Extracelulares (SPE provenientes de la bacteria acidófila Acidiphilium 3.2Sup(5. Las SPE fueron extraídas usando EDTA. SPE de A. 3.2Sup(5 cargadas con Fe(II fueron caracterizadas usando las siguientes técnicas experimentales: microscopia electrónica de barrido (MEB con microanálisis de energía dispersiva de rayos X (EDX, difracción de rayos X (DRX, y espectroscopía infrarojo (IR con transformada de Fourier (EIRTF. Los resultados muestran que las SPE absorben Fe(II según el modelo de Freundlich con un coeficiente de sorción K = 1,14 mg1-1/n g-1 e intensidad 1/n = 1,26. La captación de Fe(II por las SPE ocurre a través de la formación de oxalatos de hierro (FeC2O4, a través de una reacción reversible (Log K = 0,77 ± 0,33, lo cual implica que el hierro captado podría recuperarse si fuera de interés.

  3. Advances on Bioactive Polysaccharides from Medicinal Plants.

    Science.gov (United States)

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  4. Review of HIV Pre exposure prophylaxis (PrEP) and example of HIV PrEP Toolkit

    Science.gov (United States)

    2017-08-28

    Interventions Aim: to reduce the efficiency of transmission or to shorten the duration of infectiousness Usexual Partners U Sharing Needles Older Age...Program HIV PrEP Portfolio - DoD-wide PrEP experience to date (Beckett, Okulicz, Blaylock/Garges, MHRP/WRAIR*) • Analysis of all DoD beneficiaries

  5. Extracellular Gd-CA

    DEFF Research Database (Denmark)

    Thomsen, Henrik S; Marckmann, Peter

    2008-01-01

    Until recently it was believed that extracellular gadolinium-based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium-based contrast agents may trig the development of ...

  6. Sea Ice Microorganisms: Environmental Constraints and Extracellular Responses

    Directory of Open Access Journals (Sweden)

    Jody W. Deming

    2013-03-01

    Full Text Available Inherent to sea ice, like other high latitude environments, is the strong seasonality driven by changes in insolation throughout the year. Sea-ice organisms are exposed to shifting, sometimes limiting, conditions of temperature and salinity. An array of adaptations to survive these and other challenges has been acquired by those organisms that inhabit the ice. One key adaptive response is the production of extracellular polymeric substances (EPS, which play multiple roles in the entrapment, retention and survival of microorganisms in sea ice. In this concept paper we consider two main areas of sea-ice microbiology: the physico-chemical properties that define sea ice as a microbial habitat, imparting particular advantages and limits; and extracellular responses elicited in microbial inhabitants as they exploit or survive these conditions. Emphasis is placed on protective strategies used in the face of fluctuating and extreme environmental conditions in sea ice. Gaps in knowledge and testable hypotheses are identified for future research.

  7. Inhibition of EP4 signaling attenuates aortic aneurysm formation.

    Directory of Open Access Journals (Sweden)

    Utako Yokoyama

    Full Text Available BACKGROUND: Aortic aneurysm is a common but life-threatening disease among the elderly, for which no effective medical therapy is currently available. Activation of prostaglandin E(2 (PGE(2 is known to increase the expression of matrix metalloproteinase (MMP and the release of inflammatory cytokines, and may thus exacerbate abdominal aortic aneurysm (AAA formation. We hypothesized that selective blocking of PGE(2, in particular, EP4 prostanoid receptor signaling, would attenuate the development of AAA. METHODS AND FINDINGS: Immunohistochemical analysis of human AAA tissues demonstrated that EP4 expression was greater in AAA areas than that in non-diseased areas. Interestingly, EP4 expression was proportional to the degree of elastic fiber degradation. In cultured human aortic smooth muscle cells (ASMCs, PGE(2 stimulation increased EP4 protein expression (1.4 ± 0.08-fold, and EP4 stimulation with ONO-AE1-329 increased MMP-2 activity and interleukin-6 (IL-6 production (1.4 ± 0.03- and 1.7 ± 0.14-fold, respectively, P<0.05. Accordingly, we examined the effect of EP4 inhibition in an ApoE(-/- mouse model of AAA infused with angiotensin II. Oral administration of ONO-AE3-208 (0.01-0.5 mg/kg/day, an EP4 antagonist, for 4 weeks significantly decreased the formation of AAA (45-87% reduction, P<0.05. Similarly, EP4(+/-/ApoE(-/- mice exhibited significantly less AAA formation than EP4(+/+/ApoE(-/- mice (76% reduction, P<0.01. AAA formation induced by periaortic CaCl(2 application was also reduced in EP4(+/- mice compared with wild-type mice (73% reduction, P<0.001. Furthermore, in human AAA tissue organ cultures containing SMCs and macrophages, doses of the EP4 antagonist at 10-100 nM decreased MMP-2 activation and IL-6 production (0.6 ± 0.06- and 0.7 ± 0.06-fold, respectively, P<0.05 without increasing MMP-9 activity or MCP-1 secretion. Thus, either pharmacological or genetic EP4 inhibition attenuated AAA formation in multiple mouse and human models

  8. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    Science.gov (United States)

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production.

  9. Modulation of host natural killer cell functions in breast cancer via prostaglandin E2 receptors EP2 and EP4

    Science.gov (United States)

    Holt, Dawn; Ma, Xinrong; Kundu, Namita; Collin, Peter D; Fulton, Amy M

    2013-01-01

    Breast malignancies often have high levels of COX-2. The COX-2 product prostaglandin E2 (PGE2) contributes to the high metastatic capacity of breast tumors. Our published data indicates that inhibiting either PGE2 production or PGE2-mediated signaling through the PGE2 receptor EP4 (one of four EP expressed on the malignant cell) reduces metastasis by a mechanism that requires Natural Killer (NK) cells. Tumor derived PGE2 and exogenous PGE2 are known to have direct inhibitory effects on NK cell functions, but less is known regarding which EP receptors mediate these effects. We now show that several NK functions (lysis, migration, cytokine production) are compromised in tumor-bearing mice and that tumor produced PGE2 interferes with NK cell functions. PGE2 inhibits the potential of NK cells to migrate, exert cytotoxic effects, and secrete IFNγ. The ability of PGE2 to inhibit NK cells from tumor bearing mice is by acting on EP2 and EP4 receptors. NK cells from tumor-bearing mice were more sensitive to inhibition by EP4 and EP2 agonists compared to endogenous NK cells from healthy mice. PGE2 was inhibitory to most NK functions of either normal or tumor-bearing mice. In contrast, there was a trend for enhanced TNFα production in response to PGE2 by NK cells from tumor-bearing mice. We also report that a recently described EP4 antagonist, frondoside A, inhibits breast tumor metastasis in an NK-dependent manner and protects IFNγ production by NK cells from PGE2 mediated suppression. Taken together these data show that NK functions are depressed in tumor-bearing hosts relative to normal NK cells and that PGE2 suppresses NK functions by acting on EP2 and EP4 receptors. PMID:22306906

  10. EpCAM expression in normal, non-pathological tissues.

    Science.gov (United States)

    Schmelzer, Eva; Reid, Lola M

    2008-01-01

    Epithelial Cell Adhesion Molecule (EpCAM) is a transmembrane glycoprotein that is associated with various cancers. Most normal, non-pathological epithelial tissue is EpCAM positive with the exception of epidermal keratinocytes, gastric parietal cells, myoepithelial cells, thymic cortical epithelial, and hepatocytes. However, during early liver development EpCAM expression is also observed. In our studies, we have demonstrated that EpCAM is expressed in non-pathological human livers on hepatic progenitors in livers of all donor ages, from 16 weeks gestation fetal livers to adult. Hepatic progenitors of the liver consist of the stem cells and their descendants, the hepatoblasts, that give rise to the hepatocytic and biliary lineages. Both hepatic stem cells and most hepatoblasts express EpCAM, but only hepatoblasts are alpha-fetoprotein positive. The percentage of EpCAM positive progenitors in human livers varies with donor age and is about 2.5% in the adult and 12.1% in fetuses. In vivo, hepatic stem cells have been found associated with the canals of Hering. Xeno-transplantation experiments with EpCAM positive human liver cells have revealed their potential for proliferation and differentiation to mature liver parenchymal cells.

  11. Effects of bacterial cells and two types of extracellular polymers on bioclogging of sand columns

    Science.gov (United States)

    Xia, Lu; Zheng, Xilai; Shao, Haibing; Xin, Jia; Sun, Zhaoyue; Wang, Leyun

    2016-04-01

    Microbially induced reductions in the saturated hydraulic conductivity, Ks, of natural porous media, conventionally called bioclogging, occurs frequently in natural and engineered subsurface systems. Bioclogging can affect artificial groundwater recharge, in situ bioremediation of contaminated aquifers, or permeable reactive barriers. In this study, we designed a series of percolation experiments to simulate the growth and metabolism of bacteria in sand columns. The experimental results showed that the bacterial cell amount gradually increased to a maximum of 8.91 log10 CFU/g sand at 144 h during the bioclogging process, followed by a decrease to 7.89 log10 CFU/g sand until 336 h. The same variation pattern was found for the concentration of tightly bound extracellular polymeric substances (TB-EPS), which had a peak value of 220.76 μg/g sand at 144 h. In the same experiments, the concentration of loosely bound extracellular polymeric substances (LB-EPS) increased sharply from 54.45 to 575.57 μg/g sand in 192 h, followed by a slight decline to 505.04 μg/g sand. The increase of the bacterial cell amount along with the other two concentrations could reduce the Ks of porous media, but their relative contributions varied to a large degree during different percolation stages. At the beginning of the tests (e.g., 48 h before), bacterial cells were likely responsible for the Ks reduction of porous media because no increase was found for the other two concentrations. With the accumulation of cells and EPS production from 48 to 144 h, both were important for the reduction of Ks. However, in the late period of percolation tests from 144 to 192 h, LB-EPS was probably responsible for the further reduction of Ks, as the bacterial cell amount and TB-EPS concentration decreased. Quantitative contributions of bacterial cell amount and the two types of extracellular polymers to Ks reductions were also evaluated.

  12. Effects of epimedium polysaccharide-propolis flavone oral liquid on mucosal immunity in chickens.

    Science.gov (United States)

    Chen, Xiaolan; Chen, Xingying; Qiu, Shulei; Hu, Yuanliang; Jiang, Chunmao; Wang, Deyun; Fan, Qiang; Zhang, Cunshuai; Huang, Yee; Yu, Yun; Yang, Haifeng; Liu, Cui; Gao, Zhenzhen; Hou, Ranran; Li, Xiuping

    2014-03-01

    A previous study found that epimedium polysaccharide (EP)-propolis flavonoid (PF) injection (EPI) produced reliable immunoenhancement. In this study, we investigate the effects of EP-PF oral liquid (EFO) on mucosal immunity in the chicken small intestine while using EPI, EP and PF as controls. Groups of fourteen-day-old chickens were given EFO orally at one of the three doses when they were vaccinated with ND vaccine. On days 7, 21 and 35 after the first vaccination, six chickens were selected randomly from each group for measurements of the sIgA and IL-17 contents of the washing liquors of the duodenum and jejunum, counts of the lymphocytes in the duodenal endothelium and counts of the IgA(+) cells in the jejunal endothelium and cecum tonsil. The results indicated that EFO significantly promoted the secretion of sIgA and IL-17 and increased the numbers of lymphocyte and IgA(+) cells. Furthermore, EFO was more efficient than EPI at the high and medium doses. These findings indicate that EPO may enhance intestinal mucosal immunity and may be exploited as an oral immunopotentiator.

  13. At last, a truly selective EP2 receptor antagonist

    OpenAIRE

    Birrell, Mark A.; Nials, Anthony T.

    2011-01-01

    Ever since the discovery of prostaglandin E2 (PGE2), this lipid mediator has been the focus of intense research. The diverse biological effects of PGE2 are due, at least in part, to the existence of four distinct receptors (EP1–4). This can complicate the analysis of the biological effects produced by PGE2. While there are currently selective pharmacological tools to explore the roles of the EP1,3,4 receptors in cellular and tissue responses, analysis of EP2 receptor-induced responses has bee...

  14. Starch-degrading polysaccharide monooxygenases.

    Science.gov (United States)

    Vu, Van V; Marletta, Michael A

    2016-07-01

    Polysaccharide degradation by hydrolytic enzymes glycoside hydrolases (GHs) is well known. More recently, polysaccharide monooxygenases (PMOs, also known as lytic PMOs or LPMOs) were found to oxidatively degrade various polysaccharides via a copper-dependent hydroxylation. PMOs were previously thought to be either GHs or carbohydrate binding modules (CBMs), and have been re-classified in carbohydrate active enzymes (CAZY) database as auxiliary activity (AA) families. These enzymes include cellulose-active fungal PMOs (AA9, formerly GH61), chitin- and cellulose-active bacterial PMOs (AA10, formerly CBM33), and chitin-active fungal PMOs (AA11). These PMOs significantly boost the activity of GHs under industrially relevant conditions, and thus have great potential in the biomass-based biofuel industry. PMOs that act on starch are the latest PMOs discovered (AA13), which has expanded our perspectives in PMOs studies and starch degradation. Starch-active PMOs have many common structural features and biochemical properties of the PMO superfamily, yet differ from other PMO families in several important aspects. These differences likely correlate, at least in part, to the differences in primary and higher order structures of starch and cellulose, and chitin. In this review we will discuss the discovery, structural features, biochemical and biophysical properties, and possible biological functions of starch-active PMOs, as well as their potential application in the biofuel, food, and other starch-based industries. Important questions regarding various aspects of starch-active PMOs and possible economical driving force for their future studies will also be highlighted.

  15. Thermal studies on natural polysaccharide

    Institute of Scientific and Technical Information of China (English)

    Sunil B Bothara; Sudarshan Singh

    2012-01-01

    Objective: To characterize thermal property of natural gums obtained from the seeds of Diospyros melonoxylon(D. melonoxylon) Roxb, Buchanania lanzan (B. lanzan) spreng and Manilkara zapota (M. zapota) (Linn.) P. Royen syn. Methods: Natural gums were thermally characterized using differential scanning calorimetry (DSC), differential thermal analysis (DTA) and thermo-gravimetric analysis (TGA) under nitrogen atmosphere. Major thermal transitions as well as activation energies of the major decomposition stages were determined. Elemental analysis was performed in order to determine the composition of carbon, hydrogen, nitrogen and sulfur. Results: DSC traces indicated a major intense exothermic transition (around 200℃) followed by weaker exotherm(s). Thermogravimetric analysis showed two phase of weight loss. The first phase has minor weight loss in samples is attributed to the loss of adsorbed and structural water of biopolymers or due to desorption of moisture as hydrogen bound water to the saccharide structure. The second weight loss event may be attributed to the polysaccharide decomposition. The initial decomposition temperature (IDT) was calculated from thermograms obtained of TGA, seed Polysaccharide of D. melonoxylon (IDT 221.21℃), B. lanzan (IPDT 170.4℃) and M. zapota (IPDT 178.6℃) were obtained. According to the integral procedural decomposition temperature (IPDT) values calculated based on the TGA thermograms; D. melonoxylon (IPDT 563.3℃), B. lanzan (IPDT 598.1℃) and M. zapota (IPDT 600.6℃) were obtained respectively. The elemental analysis study shows that the isolated natural Polysaccharides consist of certain percentage of carbon, nitrogen, sulphur and hydrogen in all the gums. Conclusions: The results of the present investigation reveal that the natural gums are thermally stable and these gums can be used as release modifiers in various dosage forms.

  16. Pharmacological Action of Adenophora Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    李泱; 李春红; 唐富天; 李新芳

    2004-01-01

    Adenophora polysaccharides (AP), is an active principle extracted from the root of Adenophorae Potaninii Korsh originated in Gansu Province and isolated with boiling water. AP is isolated and purified from the crude drug by DEAE-cellulose and Sephadex G-200 column, with a white powder and mean molecular weight of 8.3×104 , and [α]D20 of AP is + 68. AP is only composed of glucose judging from the analysis of it with patina chromatography (PC) and gas chromatography-mass spectrometer (GC-MS) methods.

  17. Bioactive polysaccharides and gut microbiome (abstract)

    Science.gov (United States)

    Many polysaccharides have shown the ability to reduce plasma cholesterol or postprandial glycemia. Viscosity in the small intestine seems to be required to slow glucose uptake. Cereal mixed linkage beta-glucans, psyllium, glucomannans, and other polysaccharides also seem to require higher molecula...

  18. Polysaccharides in colon-specific drug delivery.

    Science.gov (United States)

    Sinha, V R; Kumria, R

    2001-08-14

    Natural polysaccharides are now extensively used for the development of solid dosage forms for delivery of drug to the colon. The rationale for the development of a polysaccharide based delivery system for colon is the presence of large amounts of polysaccharidases in the human colon as the colon is inhabited by a large number and variety of bacteria which secrete many enzymes e.g. beta-D-glucosidase, beta-D-galactosidase, amylase, pectinase, xylanase, beta-D-xylosidase, dextranase, etc. Various major approaches utilizing polysaccharides for colon-specific delivery are fermentable coating of the drug core, embedding of the drug in biodegradable matrix, formulation of drug-saccharide conjugate (prodrugs). A large number of polysaccharides have already been studied for their potential as colon-specific drug carrier systems, such as chitosan, pectin, chondroitin sulphate, cyclodextrin, dextrans, guar gum, inulin, amylose and locust bean gum. Recent efforts and approaches exploiting these polysaccharides in colon-specific drug delivery are discussed.

  19. Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity reflects the functional diversity and activity of the microorganisms involved in decomposition processes which are essential processes for soil functioning...... and soil ecosystem services. The soil enzyme activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysaccharides as cellulose, hemicellulose and chitin, while degradation of proteins has been...... followed by amino-methyl-coumaric substrates (AMC). The already developed Extracellular Enzyme Activity (EEA) assay was further optimized as a microwell based assay for the activity of enzymes involved in degradation of polysaccharides and proteins. Using specific MUF and AMC substrates on European soils...

  20. 前列腺素E2受体亚型EP2和EP4的最新研究进展%The Latest Progress in E-Prostanoid (EP) Receptor Subtypes EP2 and EP4

    Institute of Scientific and Technical Information of China (English)

    朱森; 杨吉春; 管又飞

    2009-01-01

    Prostaglandin(PG)E2 exerts its physiological actions via four functionally antagonistic E-prostanoid (EP) receptors, which are designated as subtypes EP1, EP2, EP3 and EP4 respectively. The subtype EP3 has multiple mRNA splicing isoforms. All of these receptors are G-protein coupled receptors (GPCRs). The EP receptor subtypes exhibit different tissue distribution and expressional regulation, and mediate various signaling pathway and physiological functions. Among the 4 EP receptors, EP2 and EP4 are coupled to the same Goprotein (stimulate G-protein, Gs), and increase cellular cAMP level upon activation. EP2 and EP4 function redundantly in some physiological processes, while they play distinct roles in some other processes. In the current paper, the latest advances in study of EP2 and EP4 receptors will be summarized and discussed.%前列腺素E2(PGE2)通过作用于4种功能相互拮抗的受体广泛地参与了机体及细胞代谢过程.这4种PGE2受体分别被命名为EP1、EP2、EP3和E4,其中EP3又因mRNA的不同剪切方式分为多种亚型.所有的这些PGE2受体均是G-蛋白偶联受体,但具有不同的组织定位和表达调控方式,并介导不同的信号传导通路和生理学作用.在这4种受体中,EP2和EP4与同一种类型的G蛋白(激活型G蛋白,Gs)偶联,激活后都能增加细胞内的cAMP,因此它们的功能具有一定的重叠性,但在某些生理过程中它们又发挥着截然不同的作用.本文将就这两型受体及其生理学功能进行分析和总结,并重点讨论有关其研究的最新进展.

  1. Epidermal growth factor pathway substrate 15, Eps15

    DEFF Research Database (Denmark)

    Salcini, A E; Chen, H; Iannolo, G

    1999-01-01

    Eps15 was originally identified as a substrate for the kinase activity of the epidermal growth factor receptor (EGFR). Eps15 has a tripartite structure comprising a NH2-terminal portion, which contains three EH domains, a central putative coiled-coil region, and a COOH-terminal domain containing...... of EGF and transferrin, demonstrating that both proteins are components of the endocytic machinery. Since the family of EH-containing proteins is implicated in various aspects of intracellular sorting, biomolecular strategies aimed at interfering with these processes can now be envisioned....... These strategies have potentially far reaching implications extending to the control of cell proliferation. In this regard, it is of note that Eps15 has the potential of transforming NIH-3T3 cells and that the eps15 gene is rearranged with the HRX/ALL/MLL gene in acute myelogeneous leukemias, thus implicating...

  2. Improved PVDF membrane performance by doping extracellular polymeric substances of activated sludge.

    Science.gov (United States)

    Guan, Yan-Fang; Huang, Bao-Cheng; Qian, Chen; Wang, Long-Fei; Yu, Han-Qing

    2017-04-15

    Polyvinylidene fluoride (PVDF) membrane has been widely applied in water and wastewater treatment because of its high mechanical strength, thermal stability and chemical resistance. However, the hydrophobic nature of PVDF membrane makes it readily fouled, substantially reducing water flux and overall membrane rejection ability. In this work, an in-situ blending modifier, i.e., extracellular polymeric substances (EPS) from activated sludge, was used to enhance the anti-fouling ability of PVDF membrane. Results indicate that the pure water flux of the membrane and its anti-fouling performance were substantially improved by blending 8% EPS into the membrane. By introducing EPS, the membrane hydrophilicity was increased and the cross section morphology was changed when it interacted with polyvinl pyrrolidone, resulting in the formation of large cavities below the finger-like pores. In addition, the fraction of pores with a size of 100-500 nm increased, which was also beneficial to improving membrane performance. Surface thermodynamic calculations indicate the EPS-functionalized membrane had a higher cohesion free energy, implying its good pollutant rejection and anti-fouling ability. This work provides a simple, efficient and cost-effective method to improve membrane performance and also extends the applications of EPS.

  3. Effect of Extracellular Polymeric Substances on Surface Properties and Attachment Behavior of Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Qian Li

    2016-09-01

    Full Text Available Bacterial contact leaching of ores is more effective than non-contact leaching. Adhesion is the first step for leaching bacteria to form a biofilm on a mineral surface. Extracellular polymeric substances (EPS are pivotal for mediating bacterial adhesion to a substratum. In order to clarify the role of EPS, we measured the adhesion forces between chalcopyrite-, sulfur- or FeSO4·7H2O-grown cells of Acidithiobacillus ferrooxidans and chalcopyrite by an atomic force microscope (AFM before and after EPS removal. Surface properties of these cells were assessed by measurements of the contact angle, zeta potential, Fourier transform infrared spectroscopy (FTIR and acid-base titration. Bacterial attachment to chalcopyrite was monitored for 140 min. The results indicate that the EPS control the surface properties of the cells. In addition, the surface properties are decisive for adhesion. The adhesion forces and the amounts of attached cells decreased dramatically after removing EPS, which was not dependent on the preculture.

  4. PrEP implementation research in Africa: what is new?

    Directory of Open Access Journals (Sweden)

    Frances M Cowan

    2016-10-01

    Full Text Available Introduction: Of the two million new HIV infections in adults in 2014, 70% occurred in sub-Saharan Africa. Several African countries have already approved guidelines for pre-exposure prophylaxis (PrEP for individuals at substantial risk of HIV as part of combination HIV prevention but key questions remain about how to identify and deliver PrEP to those at greatest need. Throughout the continent, individuals in sero-discordant relationships, and members of key populations (sex workers, men who have sex with men (MSM, transgender women and injection drug users are likely to benefit from the availability of PrEP. In addition, adolescent girls and young women (AGYW are at substantial risk in some parts of the continent. It has been estimated that at least three million individuals in Africa are likely to be eligible for PrEP according to WHO's criteria. Tens of demonstration projects are planned or underway across the continent among a range of countries, populations and delivery settings. Discussion: In each of the target populations, there are overarching issues related to (i creating demand for PrEP, (ii addressing supply-side issues and (iii providing appropriate and tailored adherence support. Critical for creating demand for PrEP is the normalization of HIV prevention. Community-level interventions which engage opinion leaders as well as empowerment interventions for those at highest risk will be key. Critical to supply of PrEP is that services are accessible for all, including for stigmatized populations. Establishing accessible integrated services provides the opportunity to address other public health priorities including the unmet need for HIV testing, contraception and sexually transmitted infections treatment. National policies need to include minimum standards for training and quality assurance for PrEP implementation and to address supply chain issues. Adherence support needs to recognize that social and structural factors are likely

  5. Design issues of an IPM motor for EPS

    OpenAIRE

    Wang, C-F; Shen, Jian-Xin; Luk, Patrick Chi-Kwong; Fei, Wei-Zhong; Jin, Meng-Jia

    2011-01-01

    In electric power steering (EPS), permanent magnet (PM) brushless ac (BLAC) motors offer distinct advantages over other electric motor types in terms torque smoothness, reliability and efficiency. The design procedure of an interior permanent magnet (IPM) motor used in EPS is presented in this paper. The requirements of the steering system are first introduced, and the machine's specifications are then derived. Critical issues which have considerable impacts on the machine's...

  6. Immunomodulatory and Anti-IBDV Activities of the Polysaccharide AEX from Coccomyxa gloeobotrydiformis

    Science.gov (United States)

    Guo, Qiang; Shao, Qiang; Xu, Wenping; Rui, Lei; Sumi, Ryo; Eguchi, Fumio; Li, Zandong

    2017-01-01

    A number of polysaccharides have been reported to show immunomodulatory and antiviral activities against various animal viruses. AEX is a polysaccharide extracted from the green algae, Coccomyxa gloeobotrydiformis. The aim of this study was to examine the function of AEX in regulating the immune response in chickens and its capacity to inhibit the infectious bursal disease virus (IBDV), to gain an understanding of its immunomodulatory and antiviral ability. Here, preliminary immunological tests in vitro showed that the polysaccharide AEX can activate the chicken peripheral blood molecular cells’ (PBMCs) response by inducing the production of cytokines and NO, promote extracellular antigen presentation but negatively regulate intracellular antigen presentation in chicken splenic lymphocytes, and promote the proliferation of splenic lymphocytes and DT40 cells. An antiviral analysis showed that AEX repressed IBDV replication by the deactivation of viral particles or by interfering with adsorption in vitro and reduced the IBDV viral titer in the chicken bursa of Fabricius. Finally, in this study, when AEX was used as an adjuvant for the IBDV vaccine, specific anti-IBDV antibody (IgY, IgM, and IgA) titers were significantly decreased. These results indicate that the polysaccharide AEX may be a potential alternative approach for anti-IBDV therapy and an immunomodulator for the poultry industry. However, more experimentation is needed to find suitable conditions for it to be used as an adjuvant for the IBDV vaccine. PMID:28208594

  7. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.

    Science.gov (United States)

    Hou, Ruixia; Nie, Lei; Du, Gaolai; Xiong, Xiaopeng; Fu, Jun

    2015-08-01

    This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications.

  8. Structures and Logic of EP Implementation and Administration in China

    Directory of Open Access Journals (Sweden)

    Dieter Grunow

    2011-01-01

    Full Text Available This paper describes empirical observations gathered during a research project on the implementation of environmental protection (EP policies in China. The project focused on local EP in both urban and rural areas. Policy field analysis was used as a conceptual framework for structuring the observations. The paper develops in three main steps discussing the following topics: 1 Collective problems within the policy field of EP show that EP issues in general are unlike those of other policy fields. Official EP policies in China today resemble those of other countries – but they are separating issues and responsibilities, making local implementation very demanding. 2 China lags behind in its willingness and ability to implement these policies – leading to implementation gaps. To explore the causes and consequences, specific sites in China are described in an extended look at local implementation structures. It was found that although policies in China are basically the same everywhere, the structures for implementing them and the quality of their implementation vary widely with regard to resources, organization, coordination, staff qualifications, personnel placement, and other aspects. 3 Not all of the challenges hampering local implementation of environmental policies were China-specific; however, some of those which are can be described as the macro-context: an ineffective rule of law, insufficient involvement of civil society, and complicated macro-structures of public administration prevent a generally high level of successful EP implementation in China.

  9. [The extraction, purification and assaying of Gynostemma pentaphyllum polysaccharides].

    Science.gov (United States)

    Song, Shu-liang; Tang, Jin-bao; Ji, Ai-guo; Liang, Hao; Zhu, Peng; Wang, Wei-li

    2006-06-01

    By orthogonal design, and considering extracting efficiency and cost, optimizing the extract method of Gynostemma pentaphyllum polysaccharides. We purified the crude Gynostemma pentaphyllum polysaccharides initially, and assayed the polysaccharides content of Gynostemma pentaphyllum polysccharides. The content of Gynostemma pentaphyllum polysaccharides was sigificantly higher than the predecessor. It would provide conditions for the deep exploitation of Gynostemma pentaphyllum.

  10. An exocellular polysaccharide and its interactions with proteins

    NARCIS (Netherlands)

    Tuinier, R.

    1999-01-01

    In the food industry polysaccharides are used as thickening or gelling agents. Polysaccharides are usually extracted from plants. Micro-organisms are also capable of excreting polysaccharides: exocellular polysaccharides (EPSs). In some cases EPSs are produced in-situ in food products, notably in ac

  11. Epimedium polysaccharide and propolis flavone can synergistically inhibit the cellular infectivity of NDV and improve the curative effect of ND in chicken.

    Science.gov (United States)

    Fan, Yunpeng; Liu, Jiaguo; Wang, Deyun; Hu, Yuanliang; Yang, Shujuan; Wang, Junmin; Guo, Liwei; Zhao, Xiaona; Wang, Huali; Jiang, Yu

    2011-04-01

    Four prescriptions, epimedium flavone plus propolis flavone (EF-PF), epimedium flavone plus propolis extracts (EF-PE), epimedium polysaccharide plus propolis flavone (EP-PF) and epimedium polysaccharide plus propolis extracts (EP-PE), were prepared and their antiviral effects were compared. In test in vitro, the four prescriptions within safety concentration scope and Newcastle disease virus (NDV) were added into cultured chick embryo fibroblast (CEF) in three modes, pre-, post-adding drug and simultaneous-adding drug and virus after being mixed, the cellular A(570) values were determined by MTT method and the highest virus inhibitory rates were calculated to compare the antiviral activity of four prescriptions. In test in vivo, three hundred 21-day-old chickens were randomly divided into 6 groups and challenged with NDV except for blank control group. After 24h the chickens in four prescription groups were injected with corresponding drugs respectively, in virus control and blank control groups, with physiological saline, once a day for three successive days. On days 3, 7 and 14 after challenge, the serum antibody titer was determined. On day 15 after challenge, the mortality, morbidity and cure rate in every group were counted. The results showed that the most of A(570) values in EP-PF group were numberly or significantly larger than those of the corresponding virus control group and the highest virus inhibitory rates of EP-PF at optimal concentration group were the highest among four prescription groups in three drug-adding modes, which confirmed that EP-PF could significantly inhibit the infectivity of NDV to CEF, its action was stronger than those of other three prescriptions; in EP-PF group, the antibody titers and cure rate were the highest and the mortality and morbidity were lowest presenting numberly or significantly differences in comparison with other three prescription groups. These results indicated that epimedium polysaccharide and propolis flavone

  12. Effect of starvation stress on morphological changes and production of adhesive exopolysaccharide (EPS by Proteus vulgaris

    Directory of Open Access Journals (Sweden)

    Kamila Myszka

    2011-09-01

    Full Text Available   Background. Proteus vulgaris attach to available surfaces in industrial environments, can develop into extensive biofilm. Such bacterial layer is a potential source of contamination of foods that may lead to spoilage or transmission foodborne pathogens. The purpose of these investigations was to evaluate the influence of limited nutrients availability in the medium on the morphological changes and biosynthesis of bacterial surface-associated EPS by P. vulgaris. The relationship between the dimension of cells, EPS production and P. vulgaris biofilm development process on stainless steel surfaces (type 316L was also examined. Material and methods. P. vulgaris ATCC 6380 was used in this study. The cultures were incubated at 37°C on the Enterobacteriaceae enrichment broth according to Mossel [1962]. During the investigations the medium with optimal and 10 times diluted optimal of nutrient availability were used. For cells dimension analysis a Carl-Zeiss Axiovert 200 inverted microscope and a scanning electron microscope (LEO 435VP was applied. Isolation of exopolysaccharides was based on the procedure employed by Forde and Fitzgerald [1999]. To determine the level of P. vulgaris adhesion to the surface of stainless steel, the method described by Le Thi et al. [2001] was used. Results. In all experimental variants the area of P. vulgaris cells was changed upon long-term starvation. Altering of physical dimension of bacteria was effected by the decreasing value of the cell length. The change of P. vulgaris morphology promoted the beginning stages of biofilm formation process on the surface of stainless steel. Under starvation conditions P. vulgaris produced more EPS. It was observed with an increase of incubation period. These extracellular molecules initiated more advanced stages of P. vulgaris biofilm formation on examined surfaces. Conclusion. The data support the notion thatcellular factors influencing P. vulgaris adhesion process to abiotic

  13. Role of EP2 and EP4 receptors in airway microvascular leak induced by prostaglandin E2.

    Science.gov (United States)

    Jones, Victoria C; Birrell, Mark A; Maher, Sarah A; Griffiths, Mark; Grace, Megan; O'Donnell, Valerie B; Clark, Stephen R; Belvisi, Maria G

    2016-03-01

    Airway microvascular leak (MVL) involves the extravasation of proteins from post-capillary venules into surrounding tissue. MVL is a cardinal sign of inflammation and an important feature of airway inflammatory diseases such as asthma. PGE2, a product of COX-mediated metabolism of arachidonic acid, binds to four receptors, termed EP1–4. PGE2 has a wide variety of effects within the airway, including modulation of inflammation, sensory nerve activation and airway tone. However, the effect of PGE2 on airway MVL and the receptor/s that mediate this have not been described. Evans Blue dye was used as a marker of airway MVL, and selective EP receptor agonists and antagonists were used alongside EP receptor-deficient mice to define the receptor subtype involved. PGE2 induced significant airway MVL in mice and guinea pigs. A significant reduction in PGE2-induced MVL was demonstrated in Ptger2−/− and Ptger4−/− mice and in wild-type mice pretreated simultaneously with EP2 (PF-04418948) and EP4 (ER-819762) receptor antagonists. In a model of allergic asthma, an increase in airway levels of PGE2 was associated with a rise in MVL; this change was absent in Ptger2−/− and Ptger4−/− mice. PGE2 is a key mediator produced by the lung and has widespread effects according to the EP receptor activated. Airway MVL represents a response to injury and under ‘disease’ conditions is a prominent feature of airway inflammation. The data presented highlight a key role for EP2 and EP4 receptors in MVL induced by PGE2.

  14. Up-regulation of EP2 and EP3 receptors in human tolerogenic dendritic cells boosts the immunosuppressive activity of PGE2.

    Science.gov (United States)

    Flórez-Grau, Georgina; Cabezón, Raquel; Borgman, Kyra J E; España, Carolina; Lozano, Juan Jose; Garcia-Parajo, Maria F; Benítez-Ribas, Daniel

    2017-09-01

    Dendritic cells (DCs) are APCs essential in regulating the immune response. PGE2, produced during inflammation, has a pivotal role in the maturation of DCs and, therefore, is vital for the immune response. The large variety of biologic functions governed by PGE2 is mediated by its signaling through 4 distinct E-type prostanoid (EP) receptors. Immunogenic DCs express EP2 and EP4, which mediate the PGE2 signaling. However, the expression and function of EP receptors in human tolerogenic DCs (tol-DCs), which present an inhibitory phenotype, have not yet, to our knowledge, been assessed. To clarify the role of EP receptors in tol-DCs, we examined the expression of different EP receptors and their effect using selective agonists in human cells. We find that EP2 and EP3 expression are up-regulated in in vitro-generated tol-DCs compared with mature DCs (mDCs). Activation of EP2-EP4 has a direct effect on the surface expression of costimulatory molecules and maturation receptors, such as CD80, CD83, and CD86 or MHCII and CCR7 in tol-DCs, the latter being exclusively modulated by PGE2-EP4 signaling. Importantly, we find that EP2 and EP3 receptors are involved in tolerance induction through IL-10 production by tol-DCs. These results are in sharp contrast with the inflammatory role of EP4 Moreover, we show that DCs generated in the presence of agonists for EP receptors, induce naive T cell differentiation toward polarized Th1/Th17 cells. Given the differential effects of EP receptors, our results suggest that EP receptor agonist/antagonists might become relevant novel drug templates to modulate immune response. © Society for Leukocyte Biology.

  15. "Support Your Client at the Space That They're in": HIV Pre-Exposure Prophylaxis (PrEP) Prescribers' Perspectives on PrEP-Related Risk Compensation.

    Science.gov (United States)

    Calabrese, Sarah K; Magnus, Manya; Mayer, Kenneth H; Krakower, Douglas S; Eldahan, Adam I; Hawkins, Lauren A Gaston; Underhill, Kristen; Hansen, Nathan B; Kershaw, Trace S; Betancourt, Joseph R; Dovidio, John F

    2017-04-01

    Despite the demonstrated effectiveness of HIV pre-exposure prophylaxis (PrEP) and evidence that most PrEP users do not engage in risk compensation (i.e., increased risk behavior due to a perceived decrease in HIV susceptibility), some healthcare providers report patient risk compensation to be a deterrent to prescribing PrEP. Overcoming this barrier is essential to supporting PrEP access and uptake among people at risk for HIV. To inform such efforts, this qualitative study explored PrEP-related risk compensation attitudes among providers with firsthand experience prescribing PrEP. US-based PrEP providers (n = 18), most of whom were HIV specialists, were recruited through direct outreach and referral from colleagues and other participants. Individual 90-min semistructured interviews were conducted by phone or in person from September 2014 through February 2015, transcribed, and thematically analyzed. Three attitudinal themes emerged: (1) providers' role is to support patients in making informed decisions, (2) risk behavior while taking PrEP does not fully offset PrEP's protective benefit (i.e., PrEP confers net protection, even with added behavioral risk), and (3) PrEP-related risk compensation is unduly stigmatized within and beyond the healthcare community. Participants were critical of other healthcare providers' negative judgment of patients and reluctance to prescribe PrEP due to anticipated risk compensation. Several providers also acknowledged an evolution in their thinking from initial ambivalence toward greater acceptance of PrEP and PrEP-related behavior change. PrEP providers' insights about risk compensation may help to address unsubstantiated concerns about PrEP-related risk compensation and challenge the acceptability of withholding PrEP on these grounds.

  16. EPS8 inhibition increases cisplatin sensitivity in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Lidija K Gorsic

    Full Text Available Cisplatin, a commonly used chemotherapeutic, is associated with ototoxicity, renal toxicity and neurotoxicity, thus identifying means to increase the therapeutic index of cisplatin may allow for improved outcomes. A SNP (rs4343077 within EPS8, discovered through a genome wide association study of cisplatin-induced cytotoxicity and apoptosis in lymphoblastoid cell lines (LCLs, provided impetus to further study this gene. The purpose of this work was to evaluate the role of EPS8 in cellular susceptibility to cisplatin in cancerous and non-cancerous cells. We used EPS8 RNA interference to determine the effect of decreased EPS8 expression on LCL and A549 lung cancer cell sensitivity to cisplatin. EPS8 knockdown in LCLs resulted in a 7.9% increase in cisplatin-induced survival (P = 1.98 × 10(-7 and an 8.7% decrease in apoptosis (P = 0.004 compared to control. In contrast, reduced EPS8 expression in lung cancer cells resulted in a 20.6% decrease in cisplatin-induced survival (P = 5.08 × 10(-5. We then investigated an EPS8 inhibitor, mithramycin A, as a potential agent to increase the therapeutic index of cisplatin. Mithramycin A decreased EPS8 expression in LCLs resulting in decreased cellular sensitivity to cisplatin as evidenced by lower caspase 3/7 activation following cisplatin treatment (42.7% ± 6.8% relative to control P = 0.0002. In 5 non-small-cell lung carcinoma (NSCLC cell lines, mithramycin A also resulted in decreased EPS8 expression. Adding mithramycin to 4 NSCLC cell lines and a bladder cancer cell line, resulted in increased sensitivity to cisplatin that was significantly more pronounced in tumor cell lines than in LCL lines (p<0.0001. An EGFR mutant NSCLC cell line (H1975 showed no significant change in sensitivity to cisplatin with the addition of mithramycin treatment. Therefore, an inhibitor of EPS8, such as mithramycin A, could improve cisplatin treatment by increasing sensitivity of tumor relative to normal cells.

  17. Influence of O polysaccharides on biofilm development and outer membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Murphy, Kathleen; Park, Amber J; Hao, Youai; Brewer, Dyanne; Lam, Joseph S; Khursigara, Cezar M

    2014-04-01

    Pseudomonas aeruginosa is a common opportunistic human pathogen known for its ability to adapt to changes in its environment during the course of infection. These adaptations include changes in the expression of cell surface lipopolysaccharide (LPS), biofilm development, and the production of a protective extracellular exopolysaccharide matrix. Outer membrane vesicles (OMVs) have been identified as an important component of the extracellular matrix of P. aeruginosa biofilms and are thought to contribute to the development and fitness of these bacterial communities. The goal of this study was to examine the relationships between changes in the cell surface expression of LPS O polysaccharides, biofilm development, and OMV biogenesis in P. aeruginosa. We compared wild-type P. aeruginosa PAO1 with three chromosomal knockouts. These knockouts have deletions in the rmd, wbpM, and wbpL genes that produce changes in the expression of common polysaccharide antigen (CPA), O-specific antigen (OSA), or both. Our results demonstrate that changes in O polysaccharide expression do not significantly influence OMV production but do affect the size and protein content of OMVs derived from both CPA(-) and OSA(-) cells; these mutant cells also exhibited different physical properties from wild-type cells. We further examined biofilm growth of the mutants and determined that CPA(-) cells could not develop into robust biofilms and exhibit changes in cell morphology and biofilm matrix production. Together these results demonstrate the importance of O polysaccharide expression on P. aeruginosa OMV composition and highlight the significance of CPA expression in biofilm development.

  18. GEL PERMEATION CHROMATOGRAPHIC ANALYSIS OF LACQUER POLYSACCHARIDE

    Institute of Scientific and Technical Information of China (English)

    QIU Xingping; ZHANG Lina; DU Yumin; QIAN Baogong; LU Zaimin

    1992-01-01

    Ten fractionated samples of Chinese lacquer polysaccharide in aqueous 0.1M NaCl solution were studied by aqueous-phase gel permeation chromatography (GPC). The universal calibration, broad MWD calibration and corrected column dispersion were adopted to the analysis of GPC chromatograms of the polysaccharide. The molecular weights Mw, Mn and polydispersity index Mw/Mn obtained from GPC are in good agreement with the results of light scattering and membrane osmometry. It is verified that the universal calibration concept is applicable to the lacquer polysaccharide having a number of side chains.

  19. Polysaccharides: The “Click” Chemistry Impact

    Directory of Open Access Journals (Sweden)

    Romain Lucas

    2011-09-01

    Full Text Available Polysaccharides are complex but essential compounds utilized in many areas such as biomaterials, drug delivery, cosmetics, food chemistry or renewable energy. Modifications and functionalizations of such polymers are often necessary to achieve molecular structures of interest. In this area, the emergence of the “click” chemistry concept, and particularly the copper-catalyzed version of the Huisgen 1,3-dipolar cycloaddition reaction between terminal acetylenes and azides, had an impact on the polysaccharides chemistry. The present review summarizes the contribution of “click” chemistry in the world of polysaccharides.

  20. Nanocoating of titanium implant surfaces with organic molecules. Polysaccharides including glycosaminoglycans

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Svava, Rikke; Jørgensen, Niklas Rye;

    2012-01-01

    Long-term stability of titanium implants are dependent on a variety of factors. Nanocoating with organic molecules is one of the method used to improve osseointegration. Nanoscale modification of titanium implants affects surface properties, such as hydrophilicity, biochemical bonding capacity...... and roughness. This influences cell behaviour on the surface such as adhesion, proliferation and differentiation of cells as well as the mineralization of the extracellular matrix at the implant surfaces. The aim of the present systematic review was to describe organic molecules used for surface nanocoating...... nanocoatings. The included in vivo studies, showed improvement of bone interface reactions measured as increased Bone-to-Implant Contact length and Bone Mineral Density adjacent to the polysaccharide coated surfaces. Based on existing literature, surface modification with polysaccharide and glycosaminoglycans...

  1. Cryptococcus neoformans capsular polysaccharides form branched and complex filamentous networks viewed by high-resolution microscopy.

    Science.gov (United States)

    Araújo, Glauber R de S; Fontes, Giselle N; Leão, Daniela; Rocha, Gustavo Miranda; Pontes, Bruno; Sant'Anna, Celso; de Souza, Wanderley; Frases, Susana

    2016-01-01

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals. Its main virulence factor is an extracellular polysaccharide capsule whose structure, assembly and dynamics remain poorly understood. In this study, we apply improved protocols for sample preparation and recently-developed scanning microscopy techniques to visualize the ultrastructure of the C. neoformans capsule at high-resolution (up to 1 nm) and improved structural preservation. Although most capsule structures in nature consist of linear polymers, we show here that the C. neoformans capsule is a 'microgel-like' structure composed of branched polysaccharides. Moreover, we imaged the capsule-to-cell wall link, which is formed by thin fibers that branch out of thicker capsule filaments, and have one end firmly embedded in the cell wall structure. Together, our findings provide compelling ultrastructural evidence for a branched and complex capsule conformation, which may have important implications for the biological activity of the capsule as a virulence factor.

  2. Getting to know the extracellular vesicle glycome.

    Science.gov (United States)

    Gerlach, Jared Q; Griffin, Matthew D

    2016-04-01

    Extracellular vesicles (EVs) are a diverse population of complex biological particles with diameters ranging from approximately 20 to 1000 nm. Tremendous interest in EVs has been generated following a number of recent, high-profile reports describing their potential utility in diagnostic, prognostic, drug delivery, and therapeutic roles. Subpopulations, such as exosomes, are now known to directly participate in cell-cell communication and direct material transfer. Glycomics, the 'omic' portion of the glycobiology field, has only begun to catalog the surface oligosaccharide and polysaccharide structures and also the carbohydrate-binding proteins found on and inside EVs. The EV glycome undoubtedly contains vital clues essential to better understanding the function, biogenesis, release and transfer of vesicles, however getting at this information is technically challenging and made even more so because of the small physical size of the vesicles and the typically minute yield from physiological-scale biological samples. Vesicle micro-heterogeneity which may be related to specific vesicle origins and functions presents a further challenge. A number of primary studies carried out over the past decade have turned up specific and valuable clues regarding the composition and roles of glycan structures and also glycan binding proteins involved EV biogenesis and transfer. This review explores some of the major EV glycobiological research carried out to date and discusses the potential implications of these findings across the life sciences.

  3. Extracellular Matrix Proteins

    Directory of Open Access Journals (Sweden)

    Linda Christian Carrijo-Carvalho

    2012-01-01

    Full Text Available Lipocalin family members have been implicated in development, regeneration, and pathological processes, but their roles are unclear. Interestingly, these proteins are found abundant in the venom of the Lonomia obliqua caterpillar. Lipocalins are β-barrel proteins, which have three conserved motifs in their amino acid sequence. One of these motifs was shown to be a sequence signature involved in cell modulation. The aim of this study is to investigate the effects of a synthetic peptide comprising the lipocalin sequence motif in fibroblasts. This peptide suppressed caspase 3 activity and upregulated Bcl-2 and Ki-67, but did not interfere with GPCR calcium mobilization. Fibroblast responses also involved increased expression of proinflammatory mediators. Increase of extracellular matrix proteins, such as collagen, fibronectin, and tenascin, was observed. Increase in collagen content was also observed in vivo. Results indicate that modulation effects displayed by lipocalins through this sequence motif involve cell survival, extracellular matrix remodeling, and cytokine signaling. Such effects can be related to the lipocalin roles in disease, development, and tissue repair.

  4. Pharmacological Action of Adenophora Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    李泱; 李春红; 唐富天; 李新芳

    2004-01-01

    @@ Adenophora polysaccharides (AP), is an active principle extracted from the root of Adenophorae Potaninii Korsh originated in Gansu Province and isolated with boiling water(1). AP is isolated and purified from the crude drug by DEAE-cellulose and Sephadex G-200 column, with a white powder and mean molecular weight of 8.3 × 104 , and [α]D20of AP is + 68(1). AP is only composed of glucose judging from the analysis of it with patina chromatography (PC) and gas chromatography-mass spectrometer (GC-MS) methods.The methylation analysis showed that AP is composed of (1→6) linked glucose residues. The measure of nuclear magnetic resonance imaging (NMR) 1H NMR and 14C NMR techniques further proved that AP is α(l→6) linked by Dglucose. The structure of AP is as follows: -[→6]α-D-Glu(1-)n→ (2).

  5. Interaction of Pb(II) and biofilm associated extracellular polymeric substances of a marine bacterium Pseudomonas pseudoalcaligenes NP103

    Science.gov (United States)

    Kumari, Supriya; Mangwani, Neelam; Das, Surajit

    2017-02-01

    Three-dimensional excitation-emission matrix (3D EEM) fluorescence spectroscopy and attenuated total reflectance fourier-transformed infrared spectroscopy (ATR-FTIR) was used to evaluate the interaction of biofilm associated extracellular polymeric substances (EPS) of a marine bacterium Pseudomonas pseudoalcaligenes NP103 with lead [Pb(II)]. EEM fluorescence spectroscopic analysis revealed the presence of one protein-like fluorophore in the EPS of P. pseudoalcaligenes NP103. Stern-Volmer equation indicated the existence of only one binding site (n = 0.789) in the EPS of P. pseudoalcaligenes NP103. The interaction of Pb(II) with EPS was spontaneous at room temperature (∆ G = - 2.78 kJ/K/mol) having binding constant (Kb) of 2.59 M- 1. ATR-FTIR analysis asserted the involvement of various functional groups such as sulphydryl, phosphate and hydroxyl and amide groups of protein in Pb(II) binding. Scanning electron microscopy (SEM) and fluorescence microscopy analysis displayed reduced growth of biofilm with altered surface topology in Pb(II) supplemented medium. Energy dispersive X-ray spectroscopy (EDX) analysis revealed the entrapment of Pb in the EPS. Uronic acid, a characteristic functional group of biofilm, was observed in 1H NMR spectroscopy. The findings suggest that biofilm associated EPS are perfect organic ligands for Pb(II) complexation and may significantly augment the bioavailability of Pb(II) in the metal contaminated environment for subsequent sequestration.

  6. Application Research on Urban Rail Transit EP2002 Brake System%城市轨道交通 EP2002制动系统应用研究

    Institute of Scientific and Technical Information of China (English)

    陶敏; 张帆; 杨颖; 高亮彰

    2015-01-01

    In this paper,the EP2002 brake control logic and pneumatic principle were analyzed by intro-duced EP2002 brake system structure and the type and function of EP2002 valve.The advantages of EP2002 brake control system in urban rail vehicle applications were given.%介绍 EP2002制动系统构成和 EP2002阀的种类及作用,分析 EP2002制动控制逻辑及其气动原理,说明EP2002制动控制系统在城轨车辆中应用的优势。

  7. Serogroup quantitation of multivalent polysaccharide and polysaccharide-conjugate meningococcal vaccines from China.

    Science.gov (United States)

    Cook, Matthew C; Gibeault, Sabrina; Filippenko, Vasilisa; Ye, Qiang; Wang, Junzhi; Kunkel, Jeremy P

    2013-07-01

    The active components of most meningococcal vaccines are four antigenic serogroup capsular polysaccharides (A, C, Y, W135). The vaccines, monovalent or multivalent mixtures of either free polysaccharides or polysaccharides conjugated to antigenic carrier proteins, may be in liquid or lyophilised formulations, with or without excipients. Acid hydrolysis and chromatographic methods for serogroup quantitation, which were previously optimised and qualified using polysaccharide-based standards and a narrow range of real vaccines, are here challenged with multiple lots of a broad assortment of additional multivalent polysaccharide-based meningococcal vaccine products. Centrifugal filtration successfully removed all interfering lactose excipient without loss of polysaccharides to allow for the determination of Y and W135 serogroups. Replicate operations by three different analysts indicated high method reproducibility. Results indicated some lot-to-lot and product-to-product variations. However, all vaccines were within general specifications for each serogroup polysaccharide, with the exception of all lots of one polysaccharide vaccine - which by these methods were found to be deficient in the serogroup A component only. These robust techniques are very useful for the evaluation of antigen content and consistency of manufacture. The deformulation, hydrolysis and chromatographic methods may be adaptable for the evaluation of other types of polysaccharide-based vaccines.

  8. The prostaglandin receptor EP2 activates multiple signaling pathways and beta-arrestin1 complex formation during mouse skin papilloma development.

    Science.gov (United States)

    Chun, Kyung-Soo; Lao, Huei-Chen; Trempus, Carol S; Okada, Manabu; Langenbach, Robert

    2009-09-01

    Prostaglandin E(2) (PGE(2)) is elevated in many tumor types, but PGE(2)'s contributions to tumor growth are largely unknown. To investigate PGE(2)'s roles, the contributions of one of its receptors, EP2, were studied using the mouse skin initiation/promotion model. Initial studies indicated that protein kinase A (PKA), epidermal growth factor receptor (EGFR) and several effectors-cyclic adenosine 3',5'-monophosphate response element-binding protein (CREB), H-Ras, Src, protein kinase B (AKT) and extracellular signal-regulated kinase (ERK)1/2-were activated in 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted papillomas and that PKA and EGFR inhibition (H89 and AG1478, respectively) decreased papilloma formation. EP2's contributions to the activation of these pathways and papilloma development were determined by inhibiting endogenous TPA-induced PGE(2) production with indomethacin (Indo) and concomitantly treating with the EP2 agonist, CAY10399 (CAY). CAY treatment restored papilloma formation in TPA/Indo-treated mice and increased cyclic adenosine 3',5'-monophosphate and PKA activation as measured by p-CREB formation. CAY treatment also increased EGFR and Src activation and their inhibition by AG1478 and PP2 indicated that Src was upstream of EGFR. CAY also increased H-Ras, ERK1/2 and AKT activation, and AG1478 decreased their activation indicating EGFR being upstream. Supporting EP2's contribution, EP2-/- mice exhibited 65% fewer papillomas and reduced Src, EGFR, H-Ras, AKT and ERK1/2 activation. G protein-coupled receptor (GPCR) activation of EGFR has been reported to involve Src's activation via a GPCR-beta-arrestin-Src complex. Indeed, immunoprecipitation of beta-arrestin1 or p-Src indicated the presence of an EP2-beta-arrestin1-p-Src complex in papillomas. The data indicated that EP2 contributed to tumor formation via activation of PKA and EGFR and that EP2 formed a complex with beta-arrestin1 and Src that contributed to signaling and/or EP2 desensitization.

  9. The prostaglandin receptor EP2 activates multiple signaling pathways and β-arrestin1 complex formation during mouse skin papilloma development

    Science.gov (United States)

    Chun, Kyung-Soo; Lao, Huei-Chen; Trempus, Carol S.; Okada, Manabu; Langenbach, Robert

    2009-01-01

    Prostaglandin E2 (PGE2) is elevated in many tumor types, but PGE2's contributions to tumor growth are largely unknown. To investigate PGE2's roles, the contributions of one of its receptors, EP2, were studied using the mouse skin initiation/promotion model. Initial studies indicated that protein kinase A (PKA), epidermal growth factor receptor (EGFR) and several effectors—cyclic adenosine 3′,5′-monophosphate response element-binding protein (CREB), H-Ras, Src, protein kinase B (AKT) and extracellular signal-regulated kinase (ERK)1/2—were activated in 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted papillomas and that PKA and EGFR inhibition (H89 and AG1478, respectively) decreased papilloma formation. EP2's contributions to the activation of these pathways and papilloma development were determined by inhibiting endogenous TPA-induced PGE2 production with indomethacin (Indo) and concomitantly treating with the EP2 agonist, CAY10399 (CAY). CAY treatment restored papilloma formation in TPA/Indo-treated mice and increased cyclic adenosine 3′,5′-monophosphate and PKA activation as measured by p-CREB formation. CAY treatment also increased EGFR and Src activation and their inhibition by AG1478 and PP2 indicated that Src was upstream of EGFR. CAY also increased H-Ras, ERK1/2 and AKT activation, and AG1478 decreased their activation indicating EGFR being upstream. Supporting EP2's contribution, EP2−/− mice exhibited 65% fewer papillomas and reduced Src, EGFR, H-Ras, AKT and ERK1/2 activation. G protein-coupled receptor (GPCR) activation of EGFR has been reported to involve Src's activation via a GPCR–β-arrestin–Src complex. Indeed, immunoprecipitation of β-arrestin1 or p-Src indicated the presence of an EP2–β-arrestin1–p-Src complex in papillomas. The data indicated that EP2 contributed to tumor formation via activation of PKA and EGFR and that EP2 formed a complex with β-arrestin1 and Src that contributed to signaling and/or EP2

  10. PGE2 differentially regulates monocyte-derived dendritic cell cytokine responses depending on receptor usage (EP2/EP4).

    Science.gov (United States)

    Poloso, Neil J; Urquhart, Paula; Nicolaou, Anna; Wang, Jenny; Woodward, David F

    2013-07-01

    Dendritic cells (DCs) are central players in coordinating immune responses, both innate and adaptive. While the role of lipid mediators in the immune response has been the subject of many investigations, the precise role of prostaglandins has often been plagued by contradictory studies. In this study, we examined the role of PGE(2) on human DC function. Although studies have suggested that PGE(2) specifically plays a role in DC motility and cytokine release profile, the precise receptor usage and signaling pathways involved remain unclear. In this report we found that irrespective of the human donor, monocyte-derived dendritic cells (MoDCs) express three of the four PGE(2) receptor subtypes (EP(2-4)), although only EP(2) and EP(4) were active with respect to cytokine production. Using selective EP receptor antagonists and agonists, we demonstrate that PGE(2) coordinates control of IL-23 release (a promoter of Th17, an autoimmune associated T cell subset) in a dose-dependent manner by differential use of EP(2) and EP(4) receptors in LPS-activated MoDCs. This is in contrast to IL-12, which is dose dependently inhibited by PGE(2) through both receptor subtypes. Low concentrations (∼1-10nM) of PGE(2) promoted IL-23 production via EP(4) receptors, while at higher (>50 nM), but still physiologically relevant concentrations, IL-23 is suppressed by an EP(2) dependent mechanism. These results can be explained by differential regulation of the common subunit, IL-12p40, and IL-23p19, by EP(2) and EP(4). By these means, PGE(2) can act as a regulatory switch of immune responses depending on its concentration in the microenvironment. In addition, we believe these results may also explain why seemingly conflicting biological functions assigned to PGE(2) have been reported in the literature, as the concentration of ligand (PGE(2)) fundamentally alters the nature of the response. This finding also highlights the potential of designing therapeutics which differentially target

  11. Activation of calcitonin gene-related peptide signaling through the prostaglandin E2-EP1/EP2/EP4 receptor pathway in synovium of knee osteoarthritis patients.

    Science.gov (United States)

    Minatani, Atsushi; Uchida, Kentaro; Inoue, Gen; Takano, Shotaro; Aikawa, Jun; Miyagi, Masayuki; Fujimaki, Hisako; Iwase, Dai; Onuma, Kenji; Matsumoto, Toshihide; Takaso, Masashi

    2016-10-17

    Calcitonin gene-related peptide (CGRP) is a 37-amino-acid vasodilatory neuropeptide that binds to receptor activity-modifying protein 1 (RAMP1) and the calcitonin receptor-like receptor (CLR). Clinical and preclinical evidence suggests that CGRP is associated with hip and knee joint pain; however, the regulation mechanisms of CGRP/CGRP receptor signaling in synovial tissue are not fully understood. Synovial tissues were harvested from 43 participants with radiographic knee osteoarthritis (OA; unilateral Kellgren/Lawrence (K/L) grades 3-4) during total knee arthroplasty. Correlationships between the mRNA expression levels of CGRP and those of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and cycloxygenase-2 (COX-2) were evaluated using real-time PCR analysis of total RNA extracted from the collected synovial tissues. To investigate the factors controlling the regulation of CGRP and CGRP receptor expression, cultured synovial cells were stimulated with TNF-α, IL-1β, IL-6, and prostaglandin E2 (PGE2) and were also treated with PGE2 receptor (EP) agonist. CGRP and COX-2 localized in the synovial lining layer. Expression of COX-2 positively correlated with CGRP mRNA expression in the synovial tissue of OA patients. The gene expression of CGRP and RAMP1 increased significantly in synovial cells exogenously treated with PGE2 compared to untreated control cells. In cultured synovial cells, CGRP gene expression increased significantly following EP4 agonist treatment, whereas RAMP1 gene expression increased significantly in the presence of exogenously added EP1 and EP2 agonists. PGE2 appears to regulate CGRP/CGRP receptor signaling through the EP receptor in the synovium of knee OA patients.

  12. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Kelly M Colvin

    2011-01-01

    Full Text Available Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms.

  13. The sinR ortholog PGN_0088 encodes a transcriptional regulator that inhibits polysaccharide synthesis in Porphyromonas gingivalis ATCC 33277 biofilms.

    Directory of Open Access Journals (Sweden)

    Reiko Yamamoto

    Full Text Available Biofilm-forming cells are distinct from well characterized planktonic cells and aggregate in the extracellular matrix, the so-called extracellular polymeric substances (EPS. The sinR gene of Bacillus subtilis encodes a transcriptional regulator that is known to be involved in the biosynthesis of EPS in biofilms. Porphyromonas gingivalis inhabits the subgingival and extraradicular biofilm of humans and is one of the primary pathogens that cause progressive marginal and refractory apical periodontitis. Furthermore, P. gingivalis possesses PGN_0088, which encodes a putative ortholog of B. subtilis sinR. Here, we investigated the role of PGN_0088 (sinR on biofilm formation. P. gingivalis strains formed biofilms on saliva-coated glass surfaces in phosphate buffered saline. Quantitative analysis indicated that the biofilm of the sinR null mutant consisted of dense exopolysaccharide. Microscopic observations showed that the increased levels of exopolysaccharide produced by the sinR mutant changed the morphology of the EPS to a mesh-liked structure. Furthermore, physical analyses suggested that the enrichment of exopolysaccharide in the EPS enhanced the resistance of the biofilm to hydrodynamic shear force. The results presented here demonstrate sinR plays important roles in the ability of P. gingivalis strain ATCC 33277 to act as a negative mediator of exopolysaccharide accumulation and is indirectly associated with the structure of the EPS and the force of its adhesion to surfaces.

  14. Biochemical Aspects of Non-Starch Polysaccharides

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2010-05-01

    Full Text Available Polysaccharides are macromolecules of monosaccharides linked by glycosidic bonds. Non-starch polysaccharides (NSP are principally non-α-glucan polysaccharides of the plant cell wall. They are a heterogeneous group of polysaccharides with varying degrees of water solubility, size, and structure. The water insoluble fiber fraction include cellulose, galactomannans, xylans, xyloglucans, and lignin, while the water-soluble fibers are the pectins, arabinogalactans, arabinoxylans, and β-(1,3(1,4-D-glucans (β-glucans. Knowledge of the chemical structure of NSP has permitted the development of enzyme technology to overcome their antinutritional effects. The physiological effects of NSP on the digestion and absorption of nutrients in human and monogastric animals have been attributed to their physicochemical properties: hydration properties, viscosity, cation exchange capacity and organic compound absorptive properties. This paper reviews and presents information on NSPs chemistry, physicochemical properties and physiological effects on the nutrient entrapment.

  15. NMR analysis of compositional heterogeneity in polysaccharides

    Science.gov (United States)

    Many copolysaccharides are compositionally heterogeneous, and the composition determined by the usual analytical or spectroscopic methods provides only an average value. For some polysaccharides, the NMR data contain copolymer sequence information, such as diad, triad, and tetrad sequence intensiti...

  16. Extraction Optimization of Polysaccharides from Pitaya Stems

    Institute of Scientific and Technical Information of China (English)

    HE Cong-fen; LI Peng; ZHAO Hua; SONG Li-ya; ZHU Jun; DONG Yin-mao

    2011-01-01

    [Objective] The aim was to describe the extraction of polysaccharides from pitaya stems.[Method] The hot water,enzyme-assisted and microwave-assisted methods were used,with the microwave-assisted extraction being deemed optimal by general evaluation.[Result] The main factors affecting the yield of polysaccharides in the microwave-assisted extraction,by order of magnitude,were as follows:timemicrowave powertemperature;additionally,optimal conditions included a 10 min extraction time,an 80 ℃ extraction temperature and a microwave setting of 200 W.Using these optimal conditions,the yield of PSPS(Polysaccharides from Pitaya Stems) was 1.42%.After purification,the yield of PSPS was 0.74%.[Conclusion] The PSPS was analyzed by IR,MALDI-TOF-MS and an element analysis technique.It was shown to be a polysaccharide mixture,and the molecular weight was between 3 900 and 4 300 Da.

  17. Electrospinning of polysaccharides for regenerative medicine.

    Science.gov (United States)

    Lee, Kuen Yong; Jeong, Lim; Kang, Yun Ok; Lee, Seung Jin; Park, Won Ho

    2009-10-05

    Electrospinning techniques enable the production of continuous fibers with dimensions on the scale of nanometers from a wide range of natural and synthetic polymers. The number of recent studies regarding electrospun polysaccharides and their derivatives, which are potentially useful for regenerative medicine, is increasing dramatically. However, difficulties regarding the processibility of the polysaccharides (e.g., poor solubility and high surface tension) have limited their application. In this review, we summarize the characteristics of various polysaccharides such as alginate, cellulose, chitin, chitosan, hyaluronic acid, starch, dextran, and heparin, which are either currently being used or have potential to be used for electrospinning. The recent progress of nanofiber matrices electrospun from polysaccharides and their biomedical applications in tissue engineering, wound dressings, drug delivery, and enzyme immobilization are discussed.

  18. NEXT GENERATION ORAL PrEP: BEYOND TENOFOVIR

    Science.gov (United States)

    Abraham, Bisrat K.; Gulick, Roy

    2013-01-01

    Purpose Clinical trials of oral pre-exposure prophylaxis (PrEP) have focused testing on regimens of tenofovir (TDF) with or without emtricitabine (FTC). However, TDF may be associated with toxicities (renal, bone) and FTC may select for drug resistance. In this review, we discuss agents that might serve as alternatives to TDF/FTC for HIV prevention. Recent Findings Several drug characteristics are important to consider when selecting agents for PrEP with the most critical being safety, tolerability, adequate penetration into target tissues, prevention of HIV infection, and long lasting activity with convenient dosing. With these factors in mind, we review several potentially useful agents for PrEP. The first group includes drugs that are already FDA-approved (maraviroc, raltegravir) with attributes that make them attractive for PrEP. The second groups of drugs include investigational agents with long-lasting activities that are being developed in parenteral form (rilpivirine-long acting, S/GSK 1265744, ibalizumab). Summary Current research suggests there will be a broader array of PrEP drugs to choose from in the near future, thereby giving clinicians the flexibility to select agents that best suit the needs of their patient population. PMID:23032733

  19. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.

  20. Prostaglandin E2 receptor EP3 regulates both adipogenesis and lipolysis in mouse white adipose tissue.

    Science.gov (United States)

    Xu, Hu; Fu, Jia-Lin; Miao, Yi-Fei; Wang, Chun-Jiong; Han, Qi-Fei; Li, Sha; Huang, Shi-Zheng; Du, Sheng-Nan; Qiu, Yu-Xiang; Yang, Ji-Chun; Gustafsson, Jan-Åke; Breyer, Richard M; Zheng, Feng; Wang, Nan-Ping; Zhang, Xiao-Yan; Guan, You-Fei

    2016-12-01

    Among the four prostaglandin E2 receptors, EP3 receptor is the one most abundantly expressed in white adipose tissue (WAT). The mouse EP3 gene gives rise to three isoforms, namely EP3α, EP3β, and EP3γ, which differ only at their C-terminal tails. To date, functions of EP3 receptor and its isoforms in WAT remain incompletely characterized. In this study, we found that the expression of all EP3 isoforms were downregulated in WAT of both db/db and high-fat diet-induced obese mice. Genetic ablation of three EP3 receptor isoforms (EP3(-/-) mice) or EP3α and EP3γ isoforms with EP3β intact (EP3β mice) led to an obese phenotype with increased food intake, decreased motor activity, reduced insulin sensitivity, and elevated serum triglycerides. Since the differentiation of preadipocytes and mouse embryonic fibroblasts to adipocytes was markedly facilitated by either pharmacological blockade or genetic deletion/inhibition of EP3 receptor via the cAMP/PKA/PPARγ pathway, increased adipogenesis may contribute to obesity in EP3(-/-) and EP3β mice. Moreover, both EP3(-/-) and EP3β mice had increased lipolysis in WAT mainly due to the activated cAMP/PKA/hormone-sensitive lipase pathway. Taken together, our findings suggest that EP3 receptor and its α and γ isoforms are involved in both adipogenesis and lipolysis and influence food intake, serum lipid levels, and insulin sensitivity. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  1. Polysaccharides for the Delivery of Antitumor Drugs

    Directory of Open Access Journals (Sweden)

    Bianca Posocco

    2015-05-01

    Full Text Available Among the several delivery materials available so far, polysaccharides represent very attractive molecules as they can undergo a wide range of chemical modifications, are biocompatible, biodegradable, and have low immunogenic properties. Thus, polysaccharides can contribute to significantly overcome the limitation in the use of many types of drugs, including anti-cancer drugs. The use of conventional anti-cancer drugs is hampered by their high toxicity, mostly depending on the indiscriminate targeting of both cancer and normal cells. Additionally, for nucleic acid based drugs (NABDs, an emerging class of drugs with potential anti-cancer value, the practical use is problematic. This mostly depends on their fast degradation in biological fluids and the difficulties to cross cell membranes. Thus, for both classes of drugs, the development of optimal delivery materials is crucial. Here we discuss the possibility of using different kinds of polysaccharides, such as chitosan, hyaluronic acid, dextran, and pullulan, as smart drug delivery materials. We first describe the main features of polysaccharides, then a general overview about the aspects ruling drug release mechanisms and the pharmacokinetic are reported. Finally, notable examples of polysaccharide-based delivery of conventional anti-cancer drugs and NABDs are reported. Whereas additional research is required, the promising results obtained so far, fully justify further efforts, both in terms of economic support and investigations in the field of polysaccharides as drug delivery materials.

  2. The EP1/EP3 receptor agonist 17-pt-PGE2 acts as an EP4 receptor agonist on endothelial barrier function and in a model of LPS-induced pulmonary inflammation.

    Science.gov (United States)

    Theiler, Anna; Konya, Viktoria; Pasterk, Lisa; Maric, Jovana; Bärnthaler, Thomas; Lanz, Ilse; Platzer, Wolfgang; Schuligoi, Rufina; Heinemann, Akos

    2016-12-01

    Endothelial dysfunction is a hallmark of inflammatory conditions. We recently demonstrated that prostaglandin (PG)E2 enhances the resistance of pulmonary endothelium in vitro and counteracts lipopolysaccharide (LPS)-induced pulmonary inflammation in vivo via EP4 receptors. The aim of this study was to investigate the role of the EP1/EP3 receptor agonist 17-phenyl-trinor-(pt)-PGE2 on acute lung inflammation in a mouse model. In LPS-induced pulmonary inflammation in mice, 17-pt-PGE2 reduced neutrophil infiltration and inhibited vascular leakage. These effects were unaltered by an EP1 antagonist, but reversed by EP4 receptor antagonists. 17-pt-PGE2 increased the resistance of pulmonary microvascular endothelial cells and prevented thrombin-induced disruption of endothelial junctions. Again, these effects were not mediated via EP1 or EP3 but through activation of the EP4 receptor, as demonstrated by the lack of effect of more selective EP1 and EP3 receptor agonists, prevention of these effects by EP4 antagonists and EP4 receptor knock-down by siRNA. In contrast, the aggregation enhancing effect of 17-pt-PGE2 in human platelets was mediated via EP3 receptors. Our results demonstrate that 17-pt-PGE2 enhances the endothelial barrier in vitro on pulmonary microvascular endothelial cells, and accordingly ameliorates the recruitment of neutrophils, via EP4 receptors in vivo. This suggests a beneficial effect of 17-pt-PGE2 on pulmonary inflammatory diseases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Optimization, Composition, and Antioxidant Activities of Exo- and Intracellular Polysaccharides in Submerged Culture of Cordyceps gracilis (Grev. Durieu & Mont.

    Directory of Open Access Journals (Sweden)

    Sapan Kumar Sharma

    2015-01-01

    Full Text Available Under present experiments, EPS and IPS production, monosaccharide composition, and antioxidant activities of C. gracilis were studied for the first time under submerged culture conditions. Effect of different factors on polysaccharides production was studied by orthogonal experiments using one-factor-at-a-time method. Incubation of culture in the medium with capacity 200 mL (675.12 ± 5.01 and 385.20 ± 5.01 mg/L, rotation speed 150 rpm (324.62 ± 3.32 and 254.62 ± 4.62 mg/L, 6-day culture incubation time (445.24 ± 1.11, 216.60 ± 1.71 mg/L, pH 6.0 (374.81 ± 2.52 and 219.45 ± 2.59 mg/L, and temperature 23°C (405.24 ± 1.11 and 215.60 ± 1.71 mg/L produced higher EPS and IPS, respectively. Maximum EPS and IPS production was observed in the medium supplemented with glucose as a carbon source (464.82 ± 2.12 and 264.42 ± 2.62 mg/L and yeast extract as a nitrogen source (465.21 ± 3.11 and 245.17 ± 3.24 mg/L, respectively. Carbon to nitrogen ratio for maximum EPS and IPS production was observed as 10 : 1 (395.29 ± 2.15 and 235.62 ± 1.40 mg/L, respectively. Glucose was found to be the major monosaccharide (62.15 ± 7.33%. Both EPS and IPS of C. gracilis showed significant DPPH radical scavenging activity, ABTS radical scavenging activity, reducing power, and iron chelating activity.

  4. Optimization, Composition, and Antioxidant Activities of Exo- and Intracellular Polysaccharides in Submerged Culture of Cordyceps gracilis (Grev.) Durieu & Mont.

    Science.gov (United States)

    Sharma, Sapan Kumar; Atri, Narender Singh

    2015-01-01

    Under present experiments, EPS and IPS production, monosaccharide composition, and antioxidant activities of C. gracilis were studied for the first time under submerged culture conditions. Effect of different factors on polysaccharides production was studied by orthogonal experiments using one-factor-at-a-time method. Incubation of culture in the medium with capacity 200 mL (675.12 ± 5.01 and 385.20 ± 5.01 mg/L), rotation speed 150 rpm (324.62 ± 3.32 and 254.62 ± 4.62 mg/L), 6-day culture incubation time (445.24 ± 1.11, 216.60 ± 1.71 mg/L), pH 6.0 (374.81 ± 2.52 and 219.45 ± 2.59 mg/L), and temperature 23°C (405.24 ± 1.11 and 215.60 ± 1.71 mg/L) produced higher EPS and IPS, respectively. Maximum EPS and IPS production was observed in the medium supplemented with glucose as a carbon source (464.82 ± 2.12 and 264.42 ± 2.62 mg/L) and yeast extract as a nitrogen source (465.21 ± 3.11 and 245.17 ± 3.24 mg/L), respectively. Carbon to nitrogen ratio for maximum EPS and IPS production was observed as 10 : 1 (395.29 ± 2.15 and 235.62 ± 1.40 mg/L), respectively. Glucose was found to be the major monosaccharide (62.15 ± 7.33%). Both EPS and IPS of C. gracilis showed significant DPPH radical scavenging activity, ABTS radical scavenging activity, reducing power, and iron chelating activity. PMID:25878715

  5. Design Method for EPS Control System Based on KANSEI Structure

    Science.gov (United States)

    Saitoh, Yumi; Itoh, Hideaki; Ozaki, Fuminori; Nakamura, Takenobu; Kawaji, Shigeyasu

    Recently, it has been identified that a KANSEI engineering plays an important role in functional design developing for realizing highly sophisticated products. However, in practical development methods, we design products and optimise the design trial and error, which indecates that we depend on the skill set of experts. In this paper, we focus on an automobile electric power steering (EPS) for which a functional design is required. First, the KANSEI structure is determined on the basis of the steering feeling of an experienced driver, and an EPS control design based on this KANSEI structure is proposed. Then, the EPS control parameters are adjusted in accordance with the KANSEI index. Finally, by assessing the experimental results obtained from the driver, the effectiveness of the proposed design method is verified.

  6. CERN's LHC is awarded the 2012 EPS Edison Volta Prize

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The European Physical Society (EPS), the Centro di Cultura Scientifica “Alessandro Volta” and Edison S.p.A. have awarded the 2012 EPS Edison Volta Prize for outstanding contributions to physics to three CERN physicists.   The award was given to: • Rolf-Dieter Heuer, CERN Director-General, • Sergio Bertolucci, CERN Director for Research and Computing, • Stephen Myers, CERN Director for Accelerators and Technology, for having led - building on decades of dedicated work by their predecessors - the culminating efforts in the direction, research and operation of the CERN Large Hadron Collider (LHC), which resulted in many significant advances in high energy particle physics, in particular, the first evidence of a Higgs-like boson in July 2012. To learn more, check out e-EPS News.

  7. Searches for excited fermions in ep collisions at HERA

    CERN Document Server

    Abe, T; Adamczyk, L; Adamus, M; Aghuzumtsyan, G; Ahn, S H; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bodmann, B; Bokel, C; Boogert, S; Boos, E G; Borras, K; Boscherini, D; Breitweg, J; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Cartiglia, N; Catterall, C D; Chapin, D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Coldewey, C; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Costa, M; Crittenden, J; Cross, R; D'Agostini, Giulio; Dagan, S; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Desler, K; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Engelen, J; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fox-Murphy, A; Fricke, U; Fusayasu, T; Gabareen, A; Galea, R; Gallo, E; García, G; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Göbel, F; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Graciani, R; Grijpink, S; Grzelak, G; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G F; Hayes, M E; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Hughes, V W; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jelen, K; Jeoung, H Y; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Katkov, I I; Katz, U F; Kcira, D; Kerger, R; Khein, L A; Kim, C L; Kim, J Y; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korotkova, N A; Korzhavina, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D; Kreisel, A; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lammers, S; Lane, J B; Lee, J H; Lee, S B; Lee, S W; Lelas, D; Levchenko, B B; Levi, G; Levman, G M; Levy, A; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Long, K R; Longhin, A; Lopez-Duran Viani, A; Lukina, O Yu; Lupi, A; Ma, K J; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Markun, P; Martens, J; Martin, J F; Martínez, M; Maselli, S; Massam, Thomas; Mastroberardino, A; Matsushita, T; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Menary, S R; Metlica, F; Meyer, A; Milite, M; Miller, D B; Mindur, B; Mirea, A; Monaco, V; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Ochs, A; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Park, S K; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Peroni, C; Pesci, A; Petrucci, M C; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Raach, H; Rautenberg, J; Redondo, I; Reeder, D D; Renner, R; Repond, J; Rigby, M; Robins, S; Rodrigues, E; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Salehi, H; Sar, G; Saull, P R B; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Sciulli, F; Scott, J; Selonke, F; Shche-, L M; Skillicorn, I O; Slominski, W; Smalska, B; Smith, W H; Soares, M; Solano, A; Solomin, A N; Son, D; Sosnovtsev, V V; Saint-Laurent, M G; Staiano, A; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Surrow, B; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Tuning, N; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Umemori, K; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walker, R; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wichmann, R; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Wölfle, S; Yamada, S; Yamashita, T; Yamazaki, Y; Yoshida, R; Youngman, C; Za, L; Zakrzewski, J A; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J

    2002-01-01

    Searches in ep collisions for heavy excited fermions have been performed with the ZEUS detector at HERA. Excited states of electrons and quarks have been searched for in e^+p collisions at a centre-of-mass energy of 300 GeV using an integrated luminosity of 47.7 pb^-1. Excited electrons have been sought via the decays e*->egamma, e*->eZ and e*->nuW. Excited quarks have been sought via the decays q*->qgamma and q*->qW. A search for excited neutrinos decaying via nu*->nugamma, nu*->nuZ and nu*->eW is presented using e^-p collisions at 318 GeV centre-of-mass energy, corresponding to an integrated luminosity of 16.7 pb^-1. No evidence for any excited fermion is found, and limits on the characteristic couplings are derived for masses below 250 GeV.

  8. Polysaccharides serve as scaffold of biofilms formed by mucoid Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Hengzhuang, Wang; Wu, Hong

    2012-01-01

    Chronic lung infection by mucoid Pseudomonas aeruginosa is one of the major pathologic features in patients with cystic fibrosis. Mucoid P. aeruginosa is notorious for its biofilm forming capability and resistance to immune attacks. In this study, the roles of extracellular polymeric substances...... from biofilms formed by mucoid P. aeruginosa were investigated. Alginate is not an essential structure component for mucoid P. aeruginosa biofilms. Genetic studies revealed that Pel and Psl polysaccharides serve as essential scaffold and mediate macrocolony formation in mucoid P. aeruginosa biofilms...

  9. Extracellular proteins in pea root tip and border cell exudates.

    Science.gov (United States)

    Wen, Fushi; VanEtten, Hans D; Tsaprailis, George; Hawes, Martha C

    2007-02-01

    Newly generated plant tissue is inherently sensitive to infection. Yet, when pea (Pisum sativum) roots are inoculated with the pea pathogen, Nectria haematococca, most newly generated root tips remain uninfected even though most roots develop lesions just behind the tip in the region of elongation. The resistance mechanism is unknown but is correlated spatially with the presence of border cells on the cap periphery. Previously, an array of >100 extracellular proteins was found to be released while border cell separation proceeds. Here we report that protein secretion from pea root caps is induced in correlation with border cell separation. When this root cap secretome was proteolytically degraded during inoculation of pea roots with N. haematococca, the percentage of infected root tips increased from 4% +/- 3% to 100%. In control experiments, protease treatment of conidia or roots had no effect on growth and development of the fungus or the plant. A complex of >100 extracellular proteins was confirmed, by multidimensional protein identification technology, to comprise the root cap secretome. In addition to defense-related and signaling enzymes known to be present in the plant apoplast were ribosomal proteins, 14-3-3 proteins, and others typically associated with intracellular localization but recently shown to be extracellular components of microbial biofilms. We conclude that the root cap, long known to release a high molecular weight polysaccharide mucilage and thousands of living cells into the incipient rhizosphere, also secretes a complex mixture of proteins that appear to function in protection of the root tip from infection.

  10. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum.

    Science.gov (United States)

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-06-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.

  11. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum.

    Directory of Open Access Journals (Sweden)

    Tuan Minh Tran

    2016-06-01

    Full Text Available Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.

  12. ANALISIS PENGARUH ROA, EPS, FINANCIAL LEVERAGE, PROCEED TERHADAP INITIAL RETURN

    Directory of Open Access Journals (Sweden)

    Andhi Wijayanto

    2010-03-01

    Full Text Available Riset ini bertujuan untuk mengetahui pengaruh ROA, EPS, Financial Leverage dan Proceed terhadap initial return. Initial return diperoleh dengan mengukur perbedaan harga pada hari pertama perdangangan di pasar sekunder dengan harga saat IPO. Penelitian ini menduga bahwa ROA, EPS, Proceed mempunyai pengaruh negatif dengan initial return, disisi lain, Financial Leverage diduga mempunyai pengaruh yang positif terhadap initial return. Data pada penelitian ini terdapat dalam prospectus perusahaan. Sampel diambil dengan menggunakan metode purposive sampling dengan dua kriteria yaitu terdiri dari perusahaan yang IPO selama periode tahun 2000-2006 dan underpriced. Dengan kriteria tersebut, 67 perusahaan dijadikan sebagai sampel. Metode analisis menggunakan regresi berganda. Hasil penelitian ini adalah Earning Per-Share (EPS, dan Proceed mempunyai pengaruh negatif dan signifikan terhadap initial return, sedangkan Return on Assets Ratio (ROA, dan Financial Leverage tidak berpengaruh signifikan terhadap initial return. This research aimed to examine the influence of ROA, EPS, Financial Leverage, and Proceed on initial return. Initial return was measured by the difference between the firm’s stock price on the first day in the secondary market and it’s IPO. This research expected that return on assets ratio (ROA, earning per-share (EPS, and proceed negatively associated with initial return. On other hand, financial leverage ratio expected to positively associate with initial return. Data in this study were obtained from company prospectus, ICMD. Sample had been taken by using purposive sampling method with two criterions such as conducted IPO during period 2000-2006 and underpriced. With criterions, 67 companies obtains as sample. The analytical methods used multiple regressions, the empirical result of this research indicate that EPS, and proceed significantly associated with initial returns. Whereas ROA, and financial leverage ratio not

  13. Interactions between extracellular polymeric substances and clay minerals affect soil aggregation

    Science.gov (United States)

    Vogel, Cordula; Rehschuh, Stephanie; Kemi Olagoke, Folasade; Redmile Gordon, Marc; Kalbiltz, Karsten

    2017-04-01

    Soil aggregation is crucial for carbon (C) sequestration and microbial processes have been recognised as important control of aggregate turnover (formation, stability, and destruction). However, how microorganisms contribute to these processes is still a matter of debate. An enthralling mechanism determining aggregate turnover and therefore C sequestration may be the excretion of extracellular polymeric substances (EPS) as microbial glue, but effects of EPS on aggregation is largely unknown. Moreover, interdependencies between important aggregation factors like the amount of fine-sized particles (clay content), the decomposability of organic matter and the microbial community (size and composition, as well as the excretion of EPS) are still poorly understood. Therefore, we studied the complex interactions between these factors and their role in aggregate turnover. It was hypothesized that an increase in microbial activity, induced by the input of organic substrates, will stimulate EPS production and therefore the formation and stability of aggregates. To test this hypothesis, an incubation experiment has been conducted across a gradient of clay content (montmorillonite) and substrate decomposability (starch and glucose) as main drivers of the microbial activity. A combination of aggregate separation and stability tests were applied. This results will be examined with respect to the obtained microbial parameters (amount and composition of EPS, CO2 emission, microbial biomass, phospholipid fatty acid), to disentangle the mechanisms and factors controlling aggregate turnover affected by soil microorganisms. This study is expected to provide insights on the role of EPS in the stability of aggregates. Thus, the results of this study will provide an improved understanding of the underlying processes of aggregate turnover in soils, which is necessary to implement strategies for enhanced C sequestration in agricultural soils.

  14. Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides

    NARCIS (Netherlands)

    Geel-Schutten, G.H. van; Flesch, F.; Brink, B. ten; Smith, M.R.; Dijkhuizen, L.

    1998-01-01

    A total of 182 Lactobacillus strains were screened for production of extracellular polysaccharides (EPS) by a new method: growth in liquid media with high sugar concentrations. Sixty EPS-positive strains were identified; 17 strains produced more than 100 mg/l soluble EPS. Sucrose was an excellent

  15. Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides

    NARCIS (Netherlands)

    Geel-Schutten, G.H. van; Flesch, F.; Brink, B. ten; Smith, M.R.; Dijkhuizen, L.

    1998-01-01

    A total of 182 Lactobacillus strains were screened for production of extracellular polysaccharides (EPS) by a new method: growth in liquid media with high sugar concentrations. Sixty EPS-positive strains were identified; 17 strains produced more than 100 mg/l soluble EPS. Sucrose was an excellent su

  16. Sample EP Flow Analysis of Severely Damaged Networks

    Energy Technology Data Exchange (ETDEWEB)

    Werley, Kenneth Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCown, Andrew William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-12

    These are slides for a presentation at the working group meeting of the WESC SREMP Software Product Integration Team on sample EP flow analysis of severely damaged networks. The following topics are covered: ERCOT EP Transmission Model; Zoomed in to Houston and Overlaying StreetAtlas; EMPACT Solve/Dispatch/Shedding Options; QACS BaseCase Power Flow Solution; 3 Substation Contingency; Gen. & Load/100 Optimal Dispatch; Dispatch Results; Shed Load for Low V; Network Damage Summary; Estimated Service Areas (Potential); Estimated Outage Areas (potential).

  17. Polyadenylation site prediction using PolyA-iEP method.

    Science.gov (United States)

    Kavakiotis, Ioannis; Tzanis, George; Vlahavas, Ioannis

    2014-01-01

    This chapter presents a method called PolyA-iEP that has been developed for the prediction of polyadenylation sites. More precisely, PolyA-iEP is a method that recognizes mRNA 3'ends which contain polyadenylation sites. It is a modular system which consists of two main components. The first exploits the advantages of emerging patterns and the second is a distance-based scoring method. The outputs of the two components are finally combined by a classifier. The final results reach very high scores of sensitivity and specificity.

  18. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    Science.gov (United States)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose

  19. EP3 receptors mediate PGE2-induced hypothalamic paraventricular nucleus excitation and sympathetic activation

    Science.gov (United States)

    Zhang, Zhi-Hua; Yu, Yang; Wei, Shun-Guang; Nakamura, Yoshiko; Nakamura, Kazuhiro

    2011-01-01

    Prostaglandin E2 (PGE2), an important mediator of the inflammatory response, acts centrally to elicit sympathetic excitation. PGE2 acts on at least four E-class prostanoid (EP) receptors known as EP1, EP2, EP3, and EP4. Since PGE2 production within the brain is ubiquitous, the different functions of PGE2 depend on the expression of these prostanoid receptors in specific brain areas. The type(s) and location(s) of the EP receptors that mediate sympathetic responses to central PGE2 remain unknown. We examined this question using PGE2, the relatively selective EP receptor agonists misoprostol and sulprostone, and the available selective antagonists for EP1, EP3, and EP4. In urethane-anesthetized rats, intracerebroventricular (ICV) administration of PGE2, sulprostone or misoprostol increased renal sympathetic nerve activity, blood pressure, and heart rate. These responses were significantly reduced by ICV pretreatment with the EP3 receptor antagonist; the EP1 and EP4 receptor antagonists had little or no effect. ICV PGE2 or misoprostol increased the discharge of neurons in the hypothalamic paraventricular nucleus (PVN). ICV misoprostol increased the c-Fos immunoreactivity of PVN neurons, an effect that was substantially reduced by the EP3 receptor antagonist. Real-time PCR detected EP3 receptor mRNA in PVN, and immunohistochemical studies revealed sparsely distributed EP3 receptors localized in GABAergic terminals and on a few PVN neurons. Direct bilateral PVN microinjections of PGE2 or sulprostone elicited sympathoexcitatory responses that were significantly reduced by the EP3 receptor antagonist. These data suggest that EP3 receptors mediate the central excitatory effects of PGE2 on PVN neurons and sympathetic discharge. PMID:21803943

  20. Structural analysis of cell wall polysaccharides using PACE

    Energy Technology Data Exchange (ETDEWEB)

    Mortimer, Jennifer C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint BioEnergy Institute

    2017-01-01

    The plant cell wall is composed of many complex polysaccharides. The composition and structure of the polysaccharides affect various cell properties including cell shape, cell function and cell adhesion. Many techniques to characterize polysaccharide structure are complicated, requiring expensive equipment and specialized operators e.g. NMR, MALDI-MS. PACE (Polysaccharide Analysis using Carbohydrate gel Electrophoresis) uses a simple, rapid technique to analyze polysaccharide quantity and structure (Goubet et al. 2002). Whilst the method here describes xylan analysis, it can be applied (by use of the appropriate glycosyl hydrolase) to any cell wall polysaccharide.

  1. Prostaglandin EP2 and EP4 receptors modulate expression of the chemokine CCL2 (MCP-1) in response to LPS-induced renal glomerular inflammation.

    Science.gov (United States)

    Zahner, Gunther; Schaper, Melanie; Panzer, Ulf; Kluger, Malte; Stahl, Rolf A K; Thaiss, Friedrich; Schneider, André

    2009-08-27

    The pro-inflammatory chemokine CCL2 [chemokine (Cys-Cys motif) ligand 2; also known as MCP-1 (monocyte chemotactic protein-1)] is up-regulated in the glomerular compartment during the early phase of LPS (lipopolysaccharide)-induced nephritis. This up-regulation also occurs in cultured MCs (mesangial cells) and is more pronounced in MCs lacking the PGE2 (prostaglandin E2) receptor EP2 or in MCs treated with a prostaglandin EP4 receptor antagonist. To examine a possible feedback mechanism of EP receptor stimulation on CCL2 expression, we used an in vitro model of MCs with down-regulated EP receptor expression. Selectively overexpressing the various EP receptors in these cells then allows the effects on the LPS-induced CCL2 expression to be examined. Cells were stimulated with LPS and CCL2 gene expression was examined and compared with LPS-stimulated, mock-transfected PTGS2 [prostaglandin-endoperoxide synthase 2, also known as COX-2 (cyclo-oxygenase-2)]-positive cells. Overexpression of EP1, as well as EP3, had no effect on LPS-induced Ccl2 mRNA expression. In contrast, overexpression of EP2, as well as EP4, significantly decreased LPS-induced CCL2 expression. These results support the hypothesis that PTGS2-derived prostaglandins, when strongly induced, counter-balance inflammatory processes through the EP2 and EP4 receptors in MCs.

  2. Proteins dominate in the surface layers formed on materials exposed to extracellular polymeric substances from bacterial cultures.

    Science.gov (United States)

    Yang, Yi; Wikieł, Agata J; Dall'Agnol, Leonardo T; Eloy, Pierre; Genet, Michel J; Moura, José J G; Sand, Wolfgang; Dupont-Gillain, Christine C; Rouxhet, Paul G

    2016-01-01

    The chemical compositions of the surface conditioning layers formed by different types of solutions (from isolated EPS to whole culture media), involving different bacterial strains relevant for biocorrosion were compared, as they may influence the initial step in biofilm formation. Different substrata (polystyrene, glass, steel) were conditioned and analyzed by X-ray photoelectron spectroscopy. Peak decomposition and assignment were validated by correlations between independent spectral data and the ubiquitous presence of organic contaminants on inorganic substrata was taken into account. Proteins or peptides were found to be a major constituent of all conditioning layers and polysaccharides were not present in appreciable concentrations; the proportion of nitrogen which may be due to DNA was lower than 15%. There was no significant difference between the compositions of the adlayers formed from different conditioning solutions, except for the adlayers produced with tightly bound EPS extracted from D. alaskensis.

  3. EpCAM Aptamer-siRNA Chimera Targets and Regress Epithelial Cancer.

    Directory of Open Access Journals (Sweden)

    Nithya Subramanian

    Full Text Available Epithelial cell adhesion molecule (EpCAM, a cancer stem cell (CSC marker is over expressed in epithelial cancers and in retinoblastoma (RB. We fabricated an EpCAM targeting aptamer-siRNA chimera and investigated its anti-tumor property and EpCAM intracellular domain (EpICD mediated signaling in epithelial cancer. The anti-tumor efficacy of EpCAM aptamer-siEpCAM chimera (EpApt-siEp was evaluated by qPCR, northern and Western blotting in WERI-Rb1- RB cell line, primary RB tumor cells and in MCF7- breast cancer cell line. Anti-tumor activity of EpApt-siEp was studied in vivo using epithelial cancer (MCF7 mice xenograft model. The mechanism and pathways involved in the anti-tumor activity was further studied using protein arrays and qPCR. EpApt-siEp chimera was processed in vitro by dicer enzyme. Treatment of the WERI-Rb1 and MCF7 cells with EpApt-siEp revealed statistically significant down regulation of EpCAM expression (P<0.005 and concomitant reduction in cellular proliferation. In primary RB cells cultured from RB tumors, EpApt-siEp silenced EpCAM, significantly inhibited (P<0.01 cell proliferation and induced cytotoxicity. Knockdown of EpICD expressed in RB primary tumors led to repression of pluripotency markers, SOX2, OCT4, NANOG, and CD133. In vivo studies showed complete tumor growth regression without any toxicity in animals (P<0.001 and tumor tissues showed significant downregulation (P<0.05 of EpCAM, MRP1, ABCG2, stathmin, survivin and upregulation of ATM (P<0.05 leading to apoptosis by intrinsic pathway with minor alteration in cytokines. Our results revealed that EpApt-siEp potentially eradicated EpCAM positive cancer cells through CSC marker suppression and apoptosis, while sparing normal EpCAM negative adjacent cells.

  4. 虫草多糖的分离纯化及结构鉴定%Isolation, Purification and Structural Identification of Polysaccharide from Cordyceps Sinensis

    Institute of Scientific and Technical Information of China (English)

    李蓉; 孙书娟; 江晓路

    2015-01-01

    目的::分离纯化冬虫夏草菌发酵液多糖,并对虫草多糖的结构进行分析。方法:采用液体发酵法培养冬虫夏草菌,水提醇沉法提取虫草发酵液多糖EPS和菌丝体多糖IPS,联合使用葡聚糖凝胶柱色谱对虫草多糖进行分离纯化,采用凝胶过滤法测定其纯度和相对分子质量,气相色谱法分析其单糖组成,再通过硫酸咔唑法分析糖醛酸含量。结果:经分离纯化得到多糖EPS的相对分子质量(Mr)为78 kDa,多糖含量为94.8%,单糖组成为甘露糖、葡萄糖和半乳糖,摩尔比为4.5∶8.0∶1.0;糖醛酸含量为6.0%。多糖IPS 的Mr为42 kDa,多糖含量为92.5%,单糖组成为甘露糖、葡萄糖、半乳糖,摩尔比为2.8∶3.0∶1.0;糖醛酸含量为4.5%。结论:虫草多糖EPS和IPS均是杂多糖。%Objective: To isolate and purify the polysaccharide from Cordyceps sinensis, and analyze its structure. Methods:Cordyceps sinensis was cultured by a liquid fermentation method. A water-extraction and alcohol-precipitation method was applied to ex-tract polysaccharide from Cordyceps sinensis fermentation liquor (EPS) and polysaccharide from Cordyceps sinensis mycelium (IPS). Sephadex gel chromatography was applied to isolate and purify the polysaccharide. The purity and relative molecular weight of the poly-saccharide were determined by a gel filtration method. The monosaccharide composition of the polysaccharide was identified by GC. The content of uronic acid was analyzed by sulfuric acid carbazole method. Results: The analysis results showed that the molecular weight of EPS was 78kDa. The content of polysaccharide and uronic acid was 94. 8% and 6. 0%, respectively. EPS was composed of mannose,glucose and galactose with the molar ratio of 4. 5∶8. 0∶1. 0. The molecular weight of IPS was 42kDa. The content of polysac-charide and uronic acid was 92. 5% and 4. 5%, respectively. IPS was composed of mannose,glucose and galactose with the molar ratio of 2

  5. Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2.

    Science.gov (United States)

    Fujino, Hiromichi; West, Kimberly A; Regan, John W

    2002-01-25

    Recently we have shown that the FP(B) prostanoid receptor, a G-protein-coupled receptor that couples to Galpha(q), activates T-cell factor (Tcf)/lymphoid enhancer factor (Lef)-mediated transcriptional activation (Fujino, H., and Regan, J. W. (2001) J. Biol. Chem. 276, 12489-12492). We now report that the EP(2) and EP(4) prostanoid receptors, which couple to Galpha(s), also activate Tcf/Lef signaling. By using a Tcf/Lef-responsive luciferase reporter gene, transcriptional activity was stimulated approximately 10-fold over basal by 1 h of treatment with prostaglandin E(2) (PGE(2)) in HEK cells that were stably transfected with the human EP(2) and EP(4) receptors. This stimulation of reporter gene activity was accompanied by a PGE(2)-dependent increase in the phosphorylation of both glycogen synthase kinase-3 (GSK-3) and Akt kinase. H-89, an inhibitor of protein kinase A (PKA), completely blocked the agonist-dependent phosphorylation of GSK-3 in both EP(2)- and EP(4)-expressing cells. However, H-89 pretreatment only blocked PGE(2)-stimulated Lef/Tcf reporter gene activity by 20% in EP(4)-expressing cells compared with 65% inhibition in EP(2)-expressing cells. On the other hand wortmannin, an inhibitor of phosphatidylinositol 3-kinase, had the opposite effect and inhibited PGE(2)-stimulated reporter gene activity to a much greater extent in EP(4)-expressing cells as compared with EP(2)-expressing cells. These findings indicate that the activation of Tcf/Lef signaling by EP(2) receptors occurs primarily through a PKA-dependent pathway, whereas EP(4) receptors activate Tcf/Lef signaling mainly through a phosphatidylinositol 3-kinase-dependent pathway. This is the first indication of a fundamental difference in the signaling potential of EP(2) and EP(4) prostanoid receptors.

  6. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: II. Binding of Cr(III) in EPS/soil system.

    Science.gov (United States)

    Kantar, Cetin; Demiray, Hilal; Dogan, Nazime Mercan

    2011-03-01

    Laboratory batch sorption and column experiments were performed to investigate the effects of microbial EPSs isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 on Cr(III) mobility in heterogeneous subsurface soils. Our batch and column results indicate that microbial EPS may have a pronounced effect on Cr(III) sorption and transport behavior depending on system conditions (e.g., pH, type of EPS). While EPS had no effect on Cr(III) sorption at pH<5, it led to a significant decrease in Cr(III) sorption under slightly acidic to alkaline pH range. Column experiments performed at pH 7.9 suggest that, in the presence of EPS, chromium(III) was significantly mobilized relative to non-EPS containing system due to the formation less sorbing and highly soluble Cr-EPS complexes and competition of EPS against Cr for surface sites. A two-site non-electrostatic surface chemical model incorporating a discrete ligand approach for the description of Cr-EPS interactions accurately predicted Cr(III) sorption and transport behavior in the presence of EPS under variable chemical conditions. Our simulations show that an accurate description of Cr(III) transport in the presence of EPS requires incorporation of proton and Cr(III) binding by EPS, EPS binding by soil minerals, Cr(III) binding by soil minerals, and ternary Cr(III)-EPS surface complexes into the transport equations. Although this approach may not accurately describe the actual mechanisms at the molecular level, it can improve our ability to accurately describe the effects of EPS on Cr(III) mobility in subsurface environment relative to the use of distribution coefficients (K(d)).