WorldWideScience

Sample records for extracellular microbial enzymes

  1. Microbial respiration and extracellular enzyme activity in sediments from the Gulf of Mexico hypoxic zone

    Science.gov (United States)

    This study explores the relationship between sediment chemistry (TC, TN, TP) and microbial respiration (DHA) and extracellular enzyme activity (EEA) across the Gulf of Mexico (GOM) hypoxic zone. TC, TN, and TP were all positively correlated with each other (r=0.19-0.68). DHA was ...

  2. Microbial respiration and extracellular enzyme activity in sediments from the Gulf of Mexico hypoxic zone

    Science.gov (United States)

    This study explores the relationship between sediment chemistry (TC, TN, TP) and microbial respiration (DHA) and extracellular enzyme activity (EEA) across the Gulf of Mexico (GOM) hypoxic zone. TC, TN, and TP were all positively correlated with each other (r=0.19-0.68). DHA was ...

  3. Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soils provide numerous essential ecosystem services such as carbon cycling...... the functional diversity and activity of the microorganisms involved in decomposition processes. Their activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysacharides as cellulose, hemicellulose...

  4. Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    of soil microbial functions is still needed. In soil, enzymes originate from a variety of organisms, notably fungi and bacteria and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity will reflect...... the functional diversity and activity of the microorganisms involved in decomposition processes. Their activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysacharides as cellulose, hemicellulose...... and chitin, while degradation of proteins has been followed by amino-methyl-coumaric substrates (AMC). Based on these fluorogenic substrates the Extracellular Enzyme Activity assay was optimized as a microwell based standardized assay for the activity of enzymes involved in degradation of polysaccharides...

  5. Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soil enzymes originate from a variety of organisms, notably fungi and bacteria...... and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity reflects the functional diversity and activity of the microorganisms involved in decomposition processes which are essential processes for soil functioning......, experimental conditions of extraction of enzymes from soils, buffer and pH, substrate concentration, temperature and the necessary controls were optimized and standardized. This has resulted in an optimized standard operating procedure of EEA, which are being tested as an indicator of soil functional diversity...

  6. Microbial respiration and kinetics of extracellular enzymes activities through rhizosphere and detritusphere at agricultural site

    Science.gov (United States)

    Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    detritivore communities in the soil. The kinetics (Km and Vmax) of four extracellular hydrolytic enzymes responsible for C- and phosphorous-cycle (β-glucosidase, β-xylosidase, β-cellobiohydrolase and acid phosphatase), microbial biomass, basal respiration (BR) and substrate-induced respiration (SIR) were measured in rhizosphere, detritusphere and control from 0 - 10 and 10 - 20 cm. The metabolic quotient (qCO2) was calculated as specific indicator for efficiency of microbial substrate utilization. We observed clear differences in enzymes activities at low and high concentrations of substrate. At substrate saturation enzyme activity rates of were significantly higher in rooted plots compared to litter amended plots, whereas at lower concentration no treatment effect could be found. The BR, SIR and qCO2 values were significantly higher at 0 - 10 cm of the planted treatment compared to litter and control plots, revealing a significantly higher respiration at lower efficiency of microbial substrate utilization in the rhizosphere. The Michaelis-Menten constant (Km) decreased with depth, especially for β-glucosidase, acid phosphatase and β-xylosidase, indicating higher substrate affinity of microorganisms in deeper soil and therefore different enzyme systems functioning. The substrate affinity factor (Vmax/Km) increased 2-fold with depth for various enzymes, reflecting a switch of predominantly occurring microbial strategies. Vmax/Km ratio indicated relative domination of zymogenous microbial communities (r-strategists) in 0 - 10 cm depth as compared with 10 - 20 cm depth where the K-strategists dominated.

  7. High activity and low temperature optima of extracellular enzymes in Arctic sediments: implications for carbon cycling by heterotrophic microbial communities

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2003-01-01

    The rate of the initial step in microbial remineralization of organic carbon, extracellular enzymatic hydrolysis, was investigated as a function of temperature in permanently cold sediments from 2 fjords on the west coast of Svalbard (Arctic Ocean). We used 4 structurally distinct polysaccharides...... with recent studies of psychrophilic sulfate reducers isolated from Svalbard sediments. A calculation of potential carbon flow into the microbial food chain demonstrated that the activity of just one type of polysaccharide-hydrolyzing enzyme could in theory supply 21 to 100% of the carbon consumed via sulfate...... reduction across the temperature range investigated here. These characteristics suggest that these extracellular enzymes are well adapted to permanently cold temperatures....

  8. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  9. Alteration of extracellular enzyme activity and microbial abundance by biochar addition: Implication for carbon sequestration in subtropical mangrove sediment.

    Science.gov (United States)

    Luo, Ling; Gu, Ji-Dong

    2016-11-01

    Biochar has attracted more and more attention due to its essential role in adsorbing pollutants, improving soil fertility, and modifying greenhouse gas emission. However, the influences of biochar on extracellular enzyme activity and microbial abundance are still lack and debatable. Currently, there is no information about the impact of biochar on the function of mangrove ecosystems. Therefore, we explored the effects of biochar on extracellular enzyme activity and microbial abundance in subtropical mangrove sediment, and further estimated the contribution of biochar to C sequestration. In this study, sediments were amended with 0 (control), 0.5, 1.0 and 2.0% of biochar and incubated at 25 °C for 90 days. After incubation, enzyme activities, microbial abundance and the increased percentage of sediment organic C content were determined. Both increase (phenol oxidase and β-glucosidase) and decrease (peroxidase, N-acetyl-glucosaminidase and acid phosphatase) of enzyme activities were observed in biochar treatments, but only peroxidase activity showed statistical significance (at least p biochar addition (at least p biochar treatments were remarkably lower than control (p biochar was found. Additionally, the increased percentage of organic C gradually increased with biochar addition rate, which provided evidence for applying biochar to mitigate climate change. Given the importance of microorganisms and enzyme activities in sediment organic matter decomposition, the increased C sequestration might be explained by the large decrease of microbial abundance and enzyme activity after biochar intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity reflects the functional diversity and activity of the microorganisms involved in decomposition processes which are essential processes for soil functioning...... and soil ecosystem services. The soil enzyme activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysaccharides as cellulose, hemicellulose and chitin, while degradation of proteins has been...... followed by amino-methyl-coumaric substrates (AMC). The already developed Extracellular Enzyme Activity (EEA) assay was further optimized as a microwell based assay for the activity of enzymes involved in degradation of polysaccharides and proteins. Using specific MUF and AMC substrates on European soils...

  11. MICROBIAL LIPASES: PRODUCTION OF EXTRACELLULAR LIPASE ENZYME BY ALCALIGENES VISCOSUS (DOGE-1 STRAIN

    Directory of Open Access Journals (Sweden)

    P.Sekhar

    2012-05-01

    Full Text Available Industrially important extracellular lipase enzyme production was explored by utilizingmicrobial strain isolated from dairy effluents. Alcaligenes viscosus DOGE-1 strain isolated from dairywaste waters proved to produce extracellular lipase. Various growth factors were attempted to maximizethe lipase production by this strain. Growth factors like NH4PO4, Peptone, Urea coupled with peptone,KH2PO4, Olive oil and pH were found to be favored the maximum lipase production. This microbialstrain was found to have a high lipolytic activity.

  12. Characterization and Wash Performance Analysis of Microbial Extracellular Enzymes from East Calcutta Wetland in India

    Directory of Open Access Journals (Sweden)

    Ramesh Malathu

    2008-01-01

    Full Text Available Extracellular protease from a novel bacterial isolate showing maximum similarity of 98.22% with Microbacterium luteolum was obtained from East Calcutta Wetland, India. It showed compatibility with commercial detergents. The enzyme retains more than 60% of its activity between 6.0 to 10.5 pH. The maximum activity is at pH 7.5 with 71% activity at pH 10.0 and 10.5. The protease retained its activity between 4 to 60°C with maximum activity at 30°C and a residual activity of 74.4% at 60°C after overnight incubation. It was completely inhibited by 5mM PMSF pointing towards the presence of serine group of protease. Its inhibition by EDTA indicates the involvement of metal cations in its catalytic activity. It is not effected by Cu+2, partially inhibited by Pb+2 and Ni+2, while completely inhibited by Co+1, Cr+6, Zn+1, Al+3, Ag+3 and Hg+2. Strong reducing agents like β- merceptoethanol and oxidants like bleach and hydrogen peroxide inactivate the enzyme. The enzyme retains 88% of its activity on being mixed with commercially available detergents while it is inactivated by non-ionic Triton X 100. Its efficiency as an additive with detergent in terms of cleaning stains like grease, burnt mobil, vegetable curry and blood was found to be satisfactory. It could enhance the quality of washing as additive in case of all the ten detergents that were tried. The protease alone was also capable of cleaning but the detergent additive mixture could work better. The enzyme was found to work efficiently on different colors as well as on fabric. On mixing with detergent it was found to retain activity up to 2 months and there after, there was a drop in efficiency of washing. The bacterial cells were immobilized in calcium alginate and the released enzyme was found to be equally effective. Market surveys were carried out and the satisfactory result prompted the use of another additive (extracellular lipase obtained from yet another bacterial strain from East

  13. Indication of temperature inverted microbial assimilative capacities (extracellular enzymes activities in the pelagic of Lake Sevan (Armenia

    Directory of Open Access Journals (Sweden)

    Arevik MINASYAN

    2016-06-01

    Full Text Available Pioneering records of extracellular enzymes activities (EEA in Lake Sevan waters highlight dependence of heterotrophic functioning on physicochemical characteristics and bacterial assemblage. Values of EEA, ranged 0.11-30.39 µg C/P L-1h-1, were higher in upper layers compared to the omission in deeper parts. Particles associated (ecto- enzymes mainly predominated over free dissolved (exo- enzymes. In June activities of all studied enzymes followed similar pattern, particularly, decreasing at thermocline and increasing twice/more in cold deeper waters. Regardless higher bacterial density and temperature in June, with no similar records up to now, EEA revealed reverse relationship to temperature and bacteria data and were significantly lesser than in March. Our finding might be suggested as temperature inverted impact to heterotrophic activities in eutrophic conditions. We assume that observed, with temperature raise, declined EEA was due to blocked enzymatic active center from colloids and DOM components interaction, which, in overall, may suppress organic substrate utilization and result in weakening of first and rate limiting step of biological self-purification in Lake Sevan waters. Therefore, since temperature is co-regulator of assimilative/carrying capacity of aquatic ecosystems, climate warming might have unexpected negative feedbacks also through lowering assimilative capacities of water bodies, jeopardizing their quality and ecology.

  14. Microbial short-chain fatty acid production and extracellular enzymes activities during in vitro fermentation of polysaccharides from the seeds of Plantago asiatica L. treated with microwave irradiation.

    Science.gov (United States)

    Hu, Jie-Lun; Nie, Shao-Ping; Li, Chang; Fu, Zhi-Hong; Xie, Ming-Yong

    2013-06-26

    Effects of microwave irradiation on microbial short-chain fatty acid production and the activites of extracellular enzymes during in vitro fermentation of the polysaccharide from Plantago asiatica L. were investigated in this study. It was found that the apparent viscosity, average molecular weight, and particle size of the polysaccharide decreased after microwave irradiation. Reducing sugar amount increased with molecular weight decrease, suggesting the degradation may derive from glycosidic bond rupture. The polysaccharide surface topography was changed from large flakelike structure to smaller chips. FT-IR showed that microwave irradiation did not alter the primary functional groups in the polysaccharide. However, short-chain fatty acid productions of the polysaccharide during in vitro fermentation significantly increased after microwave irradiation. Activities of microbial extracellular enzymes xylanase, arabinofuranosidase, xylosidase, and glucuronidase in fermentation cultures supplemented with microwave irradiation treated polysaccharide were also generally higher than those of untreated polysaccharide. This showed that microwave irradiation could be a promising degradation method for the production of value-added polysaccharides.

  15. Impact of nitrogen pollution/deposition on extracellular enzyme activity, microbial abundance and carbon storage in coastal mangrove sediment.

    Science.gov (United States)

    Luo, Ling; Meng, Han; Wu, Ruo-Nan; Gu, Ji-Dong

    2017-06-01

    This study applied different concentration of NaNO3 solution to simulate the effect of inorganic nitrogen (N) deposition/pollution on carbon (C) storage in coastal mangrove sediment through observing the changes of enzyme activity and microbial abundance. Sediment collected from mangrove forest (MG) and intertidal zone (IZ) were incubated with different N rates (0 (control), 5 (low-N) and 20 (high-N) μg N g(-1) dry sediment, respectively). After incubation, the activities of phenol oxidase (PHO) and acid phosphatase (ACP) were enhanced, but β-glucosidase (GLU) and N-β-acetyl-glucosaminidase (NAG) activities were reduced by N addition. The altered enzymatic stoichiometries by N input implied that microbial phosphorus (P) limitation was increased, whereas C and N limitation were alleviated. Besides, N input decreased the bacterial abundance but increased fungal abundance in both types of sediment. The increased pH and soluble phenolics along with the exacerbated P limitation by N addition might explain these changes. Furthermore, sediment with N addition (except high-N treated MG sediment) showed a trend of C sequestration, which might be largely caused by the decrease of bacterial abundance and GLU activity. However, MG sediment with high-N suggested a trend of C loss, and the possible reason for this discrepancy might be the relatively higher increase of PHO and ACP activity. To better understand the influence of N deposition/pollution on C cycling, the long-term N effect on microorganisms, enzymes, and thus C storage should be paid more attention in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Impact of fire, landscape position, aspect, and soil depth on microbial extracellular enzyme activities in the Jemez River Basin Critical Zone Observatory.

    Science.gov (United States)

    Fairbanks, D.; Murphy, M. A.; Frost, G.; Chorover, J.; Gallery, R. E.; Rich, V. I.

    2014-12-01

    Fire frequency and severity are increasing across the western US, and post-fire recovery and effects on critical zone structure are not fully understood. Resident microbiota (bacteria and fungi) transform the majority of carbon in ecosystems, and the structure of these communities influence seedling establishment and the trajectory of vegetative recovery as well as biogeochemical cycling. We surveyed changes in microbial composition and activity after wildfire to better understand soil microbial resilience and fire ecology. Specifically, we assessed potential extracellular enzyme activities in response to fire severity across landscape position and aspect. We sampled 18 days after containment of the June 2013 Thompson Ridge Fire in the Jemez River Basin Critical Zone Observatory, across a gradient of burn severities in a mixed-conifer zero order basin. We subsampled six depths through the surface soil profile and measured potential activities of seven hydrolytic enzymes using established fluorometric techniques. Four of these enzymes hydrolyze C-rich substrates (β-glucosidase [BG], β-D-cellubiosidase [CB], xylosidase [XYL], and α-glucosidase [AG], two hydrolyze N-rich substrates N-acetyl-β-glucosaminidase [NAG] and leucine aminopeptidase [LAP]), and one hydrolyzes a P-rich substrate (acid phosphatase [PHOS]). Results showed decreased activities with depth for BG, CB, and LAP. Significantly higher potential enzyme activity was observed for convergent sites relative to planar or divergent sites across all depths sampled. Additionally, we looked at shifts in enzyme nutrient acquisition ratios that correspond with resource limitations relative to microbial stoichiometric demands. Higher acquisition potential is interpreted as greater resource allocation towards nutrient acquisition. Results showed a variance in resource acquisition potential with depth for C relative to N, with greater resources being allocated towards acquiring C at shallower depth. Conversely

  17. Response of microbial extracellular enzyme activities and r- vs. K- selected microorganisms to elevated atmospheric CO2 depends on soil aggregate size

    Science.gov (United States)

    Dorodnikov, Maxim; Blagodatskaya, Evgenia; Blagodatskiy, Sergey; Kuzyakov, Yakov

    2014-05-01

    Increased belowground carbon (C) transfer by plant roots under elevated atmospheric CO2 and the contrasting environment in soil macro- and microaggregates could affect properties of the microbial community in the rhizosphere. We evaluated the effect of 5 years of elevated CO2 (550 ppm) on four extracellular enzymes: ß-glucosidase, chitinase, phosphatase, and sulfatase along with the contribution of fast- (r-strategists) and slow-growing microorganisms (K-strategists) in soil aggregates. We fractionated the bulk soil from the ambient and elevated CO2 treatments of FACE-Hohenheim (Stuttgart) into large macro- (>2 mm), small macro- (0.25-2.00 mm), and microaggregates (soil and aggregates amended with glucose and nutrients. In the bulk soil and isolated aggregates before and after activation with glucose, the actual and the potential enzyme activities were measured. Although C-org and C-mic as well as the activities of ß-glucosidase, phosphatase, and sulfatase were unaffected in bulk soil and in aggregate-size classes by elevated CO2, significant changes were observed in potential enzyme production after substrate amendment. After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. In addition, µ values were significantly higher under elevated than ambient CO2 for bulk soil, small macroaggregates, and microaggregates. Based on changes in µ, GMB, and lag-period, we conclude that elevated atmospheric CO2 stimulated the r-selected microorganisms, especially in soil microaggregates. In contrast, significantly higher chitinase activity in bulk soil and in large macroaggregates under elevated CO2 revealed an increased contribution of fungi to turnover processes. We conclude that quantitative and qualitative changes of C input by plants into the soil at elevated CO2 affect microbial community functioning, but not its total content. An increase in r-selected microorganisms could accelerate C turnover in terrestrial

  18. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  19. Patterns of extracellular enzyme activities and microbial metabolism in an Arctic fjord of Svalbard and in the northern Gulf of Mexico: contrasts in carbon processing by pelagic microbial communities

    Directory of Open Access Journals (Sweden)

    Carol eArnosti

    2013-10-01

    Full Text Available The microbial community composition of polar and temperate ocean waters differs substantially, but the potential functional consequences of these differences are largely unexplored. We measured bacterial production, glucose metabolism, and the abilities of microbial communities to hydrolyze a range of polysaccharides in an Arctic fjord of Svalbard (Smeerenburgfjord, and thus to initiate remineralization of high-molecular weight organic matter. We compared these data with similar measurements previously carried out in the northern Gulf of Mexico in order to investigate whether differences in the spectrum of enzyme activities measurable in Arctic and temperate environments are reflected in ‘downstream’ aspects of microbial metabolism (metabolism of monomers and biomass production. Only 4 of 6 polysaccharide substrates were hydrolyzed in Smeerenburgfjord; all were hydrolyzed in the upper water column of the Gulf. These patterns are consistent on an interannual basis. Bacterial protein production was comparable at both locations, but the pathways of glucose utilization differed. Glucose incorporation rate constants were comparatively higher in Svalbard, but glucose respiration rate constants were higher in surface waters of the Gulf. As a result, at the time of sampling ca. 75% of the glucose was incorporated into biomass in Svalbard, but in the northern Gulf of Mexico most of the glucose was respired to CO2. A limited range of enzyme activities is therefore not a sign of a dormant community or one unable to further process substrates resulting from extracellular enzymatic hydrolysis. The ultimate fate of carbohydrates in marine waters, however, is strongly dependent upon the specific capabilities of heterotrophic microbial communities in these disparate environments.

  20. Patterns of extracellular enzyme activities and microbial metabolism in an Arctic fjord of Svalbard and in the northern Gulf of Mexico: contrasts in carbon processing by pelagic microbial communities.

    Science.gov (United States)

    Arnosti, Carol; Steen, Andrew D

    2013-01-01

    The microbial community composition of polar and temperate ocean waters differs substantially, but the potential functional consequences of these differences are largely unexplored. We measured bacterial production, glucose metabolism, and the abilities of microbial communities to hydrolyze a range of polysaccharides in an Arctic fjord of Svalbard (Smeerenburg Fjord), and thus to initiate remineralization of high-molecular weight organic matter. We compared these data with similar measurements previously carried out in the northern Gulf of Mexico in order to investigate whether differences in the spectrum of enzyme activities measurable in Arctic and temperate environments are reflected in "downstream" aspects of microbial metabolism (metabolism of monomers and biomass production). Only four of six polysaccharide substrates were hydrolyzed in Smeerenburg Fjord; all were hydrolyzed in the upper water column of the Gulf. These patterns are consistent on an interannual basis. Bacterial protein production was comparable at both locations, but the pathways of glucose utilization differed. Glucose incorporation rate constants were comparatively higher in Svalbard, but glucose respiration rate constants were higher in surface waters of the Gulf. As a result, at the time of sampling ca. 75% of the glucose was incorporated into biomass in Svalbard, but in the northern Gulf of Mexico most of the glucose was respired to CO2. A limited range of enzyme activities is therefore not a sign of a dormant community or one unable to further process substrates resulting from extracellular enzymatic hydrolysis. The ultimate fate of carbohydrates in marine waters, however, is strongly dependent upon the specific capabilities of heterotrophic microbial communities in these disparate environments.

  1. Extracellular enzyme activity and biogeochemical cycling in restored prairies

    Science.gov (United States)

    Lynch, L.; Hernandez, D.; Schade, J. D.

    2011-12-01

    Winter microbial activity in mid-latitude prairie ecosystems is thermally sensitive and significantly influenced by snow depth. Snow insulates the soil column facilitating microbial processing of complex organic substrates. Previous studies in forests and tundra ecosystems suggest patterns of substrate utilization and limitation are seasonal; above freezing, soil microbes access fresh litter inputs and sugar exudates from plant roots, while under frozen condition they recycle nutrients incorporated in microbial biomass. In order to liberate nutrients required for carbon degradation, soil microbes invest energy in the production of extracellular enzymes that cleave monomers from polymer bonds. The inverse relationship between relative enzyme abundance and substrate availability makes enzyme assays a useful proxy to assess changes in resources over time. Our objective in this study was to assess patterns in microbial biomass, nutrient availability, and extracellular enzyme activity in four snow exclosure sites over a seven-month period. Over the past three years, we have maintained a snow removal experiment on two restored prairies in central Minnesota. In each prairie, snow was continuously removed annually from two 4 x 4 m plots by shoveling after each snow event. Extractable C, N and P, and microbial C, N and P in soil samples were measured in samples collected from these snow removal plots, as well as in adjacent unmanipulated prairie control plots. Pools of C, N, and P were estimated using standard extraction protocols, and microbial pools were estimated using chloroform fumigation direct extraction (CFDE). We conducted fluorometric extracellular enzyme assays (EEA) to assess how the degradation potential of cellulose (cellobiohydrolase, CBH), protein (leucine aminopeptidase, LAP), and phosphate esters (phosphatase, PHOS) changed seasonally. Microbial C and N declined between October and June, while microbial P declined during the fall and winter, but increased

  2. Extracellular DNA in oral microbial biofilms.

    Science.gov (United States)

    Jakubovics, Nicholas S; Burgess, J Grant

    2015-07-01

    The extracellular matrix of microbial biofilms is critical for surface adhesion and nutrient homeostasis. Evidence is accumulating that extracellular DNA plays a number of important roles in biofilm integrity and formation on hard and soft tissues in the oral cavity. Here, we summarise recent developments in the field and consider the potential of targeting DNA for oral biofilm control.

  3. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil.

    Science.gov (United States)

    Kaiser, Christina; Koranda, Marianne; Kitzler, Barbara; Fuchslueger, Lucia; Schnecker, Jörg; Schweiger, Peter; Rasche, Frank; Zechmeister-Boltenstern, Sophie; Sessitsch, Angela; Richter, Andreas

    2010-08-01

    *Plant seasonal cycles alter carbon (C) and nitrogen (N) availability for soil microbes, which may affect microbial community composition and thus feed back on microbial decomposition of soil organic material and plant N availability. The temporal dynamics of these plant-soil interactions are, however, unclear. *Here, we experimentally manipulated the C and N availability in a beech forest through N fertilization or tree girdling and conducted a detailed analysis of the seasonal pattern of microbial community composition and decomposition processes over 2 yr. *We found a strong relationship between microbial community composition and enzyme activities over the seasonal course. Phenoloxidase and peroxidase activities were highest during late summer, whereas cellulase and protease peaked in late autumn. Girdling, and thus loss of mycorrhiza, resulted in an increase in soil organic matter-degrading enzymes and a decrease in cellulase and protease activity. *Temporal changes in enzyme activities suggest a switch of the main substrate for decomposition between summer (soil organic matter) and autumn (plant litter). Our results indicate that ectomycorrhizal fungi are possibly involved in autumn cellulase and protease activity. Our study shows that, through belowground C allocation, trees significantly alter soil microbial communities, which may affect seasonal patterns of decomposition processes.

  4. Seasonal Variation in Soil Microbial Biomass, Bacterial Community Composition and Extracellular Enzyme Activity in Relation to Soil Respiration in a Northern Great Plains Grassland

    Science.gov (United States)

    Wilton, E.; Flanagan, L. B.

    2014-12-01

    Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex

  5. Microbial amylolytic enzymes.

    Science.gov (United States)

    Vihinen, M; Mäntsälä, P

    1989-01-01

    Starch-degrading, amylolytic enzymes are widely distributed among microbes. Several activities are required to hydrolyze starch to its glucose units. These enzymes include alpha-amylase, beta-amylase, glucoamylase, alpha-glucosidase, pullulan-degrading enzymes, exoacting enzymes yielding alpha-type endproducts, and cyclodextrin glycosyltransferase. Properties of these enzymes vary and are somewhat linked to the environmental circumstances of the producing organisms. Features of the enzymes, their action patterns, physicochemical properties, occurrence, genetics, and results obtained from cloning of the genes are described. Among all the amylolytic enzymes, the genetics of alpha-amylase in Bacillus subtilis are best known. Alpha-Amylase production in B. subtilis is regulated by several genetic elements, many of which have synergistic effects. Genes encoding enzymes from all the amylolytic enzyme groups dealt with here have been cloned, and the sequences have been found to contain some highly conserved regions thought to be essential for their action and/or structure. Glucoamylase appears usually in several forms, which seem to be the results of a variety of mechanisms, including heterogeneous glycosylation, limited proteolysis, multiple modes of mRNA splicing, and the presence of several structural genes.

  6. Production of Extracellular Anti-leukaemic Enzyme Lasparaginase ...

    African Journals Online (AJOL)

    Production of Extracellular Anti-leukaemic Enzyme Lasparaginase from Marine Actinomycetes by ... actinomycetes, screen them for Lasparaginase activity and characterise the enzyme. ... The apparent Km value for the substrate was 25 μM.

  7. Microbial Enzymes: Tools for Biotechnological Processes

    Directory of Open Access Journals (Sweden)

    Jose L. Adrio

    2014-01-01

    Full Text Available Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.

  8. Microbial enzymes: tools for biotechnological processes.

    Science.gov (United States)

    Adrio, Jose L; Demain, Arnold L

    2014-01-16

    Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.

  9. A model of extracellular enzymes in free-living microbes: which strategy pays off?

    Science.gov (United States)

    Traving, Sachia J; Thygesen, Uffe H; Riemann, Lasse; Stedmon, Colin A

    2015-11-01

    An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration.

  10. A Model of Extracellular Enzymes in Free-Living Microbes: Which Strategy Pays Off?

    Science.gov (United States)

    Thygesen, Uffe H.; Riemann, Lasse; Stedmon, Colin A.

    2015-01-01

    An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration. PMID:26253668

  11. Microbial extracellular electron transfer and its relevance to iron corrosion.

    Science.gov (United States)

    Kato, Souichiro

    2016-03-01

    Extracellular electron transfer (EET) is a microbial metabolism that enables efficient electron transfer between microbial cells and extracellular solid materials. Microorganisms harbouring EET abilities have received considerable attention for their various biotechnological applications, including bioleaching and bioelectrochemical systems. On the other hand, recent research revealed that microbial EET potentially induces corrosion of iron structures. It has been well known that corrosion of iron occurring under anoxic conditions is mostly caused by microbial activities, which is termed as microbiologically influenced corrosion (MIC). Among diverse MIC mechanisms, microbial EET activity that enhances corrosion via direct uptake of electrons from metallic iron, specifically termed as electrical MIC (EMIC), has been regarded as one of the major causative factors. The EMIC-inducing microorganisms initially identified were certain sulfate-reducing bacteria and methanogenic archaea isolated from marine environments. Subsequently, abilities to induce EMIC were also demonstrated in diverse anaerobic microorganisms in freshwater environments and oil fields, including acetogenic bacteria and nitrate-reducing bacteria. Abilities of EET and EMIC are now regarded as microbial traits more widespread among diverse microbial clades than was thought previously. In this review, basic understandings of microbial EET and recent progresses in the EMIC research are introduced.

  12. Detection of Extracellular Enzyme Activities in Ganoderma neo-japonicum

    OpenAIRE

    Jo, Woo-Sik; Park, Ha-Na; Cho, Doo-Hyun; Yoo, Young-Bok; Park, Seung-Chun

    2011-01-01

    The ability of Ganoderma to produce extracellular enzymes, including β-glucosidase, cellulase, avicelase, pectinase, xylanase, protease, amylase, and ligninase was tested in chromogenic media. β-glucosidase showed the highest activity, among the eight tested enzymes. In particular, Ganoderma neo-japonicum showed significantly stronger activity for β-glucosidase than that of the other enzymes. Two Ganoderma lucidum isolates showed moderate activity for avicelase; however, Ganoderma neo-japonic...

  13. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  14. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  15. Extracellular Ligninolytic Enzymes in Bjerkandera adusta and Lentinus squarrosulus.

    Science.gov (United States)

    Tripathi, Astha; Upadhyay, R C; Singh, Surendra

    2012-09-01

    Extracellular ligninolytic enzyme activities were determined in two white-rot fungi, Bjerkandera adusta and Lentinus squarrosulus. To investigate the activity of extracellular enzymes, cultures were incubated over a period of 20 days in nutrient rich medium (NRM) and nutrient poor medium under static and shaking conditions. Enzymatic activity was varied with media and their incubation conditions. The highest level of Aryl alcohol oxidase (AAO) was detected under shaking condition of both medium while Manganese peroxidase (MnP) activity was best in NRM under both conditions. AAO is the main oxidases enzyme in B. adusta while laccase plays important role in L. squarrosulus. MnP is the main peroxidase enzyme in both varieties.

  16. Extracellular α-Galactosidase from Trichoderma sp. (WF-3: Optimization of Enzyme Production and Biochemical Characterization

    Directory of Open Access Journals (Sweden)

    Aishwarya Singh Chauhan

    2015-01-01

    Full Text Available Trichoderma spp. have been reported earlier for their excellent capacity of secreting extracellular α-galactosidase. This communication focuses on the optimization of culture conditions for optimal production of enzyme and its characterization. The evaluation of the effects of different enzyme assay parameters such as stability, pH, temperature, substrate concentrations, and incubation time on enzyme activity has been made. The most suitable buffer for enzyme assay was found to be citrate phosphate buffer (50 mM, pH 6.0 for optimal enzyme activity. This enzyme was fairly stable at higher temperature as it exhibited 72% activity at 60°C. The enzyme when incubated at room temperature up to two hours did not show any significant loss in activity. It followed Michaelis-Menten curve and showed direct relationship with varying substrate concentrations. Higher substrate concentration was not inhibitory to enzyme activity. The apparent Michaelis-Menten constant (Km, maximum rate of reaction (Vmax, Kcat, and catalytic efficiency values for this enzyme were calculated from the Lineweaver-Burk double reciprocal plot and were found to be 0.5 mM, 10 mM/s, 1.30 U mg−1, and 2.33 U mg−1 mM−1, respectively. This information would be helpful in understanding the biophysical and biochemical characteristics of extracellular α-galactosidase from other microbial sources.

  17. Production of extracellular proteolytic enzymes by Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Józefa Chrzanowska

    2014-08-01

    Full Text Available The production of proteolytic enzymes by two strains of Beauveria bassiana 278, B. bassiana 446 and one strain of Ascosphera apis 496 was analysed. It was demonstrated that the strain of B. bassiana 278 proved to be the best producer of basic and acid proteases. The influence of different environmental factors such as nitrogen and carbon sources on the production of extracellular hydrolytic enzymes was assessed. In addition the acid protease from B. bassiana was partially characterized.

  18. Production of extracellular proteolytic enzymes by Beauveria bassiana

    OpenAIRE

    Józefa Chrzanowska; Maria Kołaczkowska

    2014-01-01

    The production of proteolytic enzymes by two strains of Beauveria bassiana 278, B. bassiana 446 and one strain of Ascosphera apis 496 was analysed. It was demonstrated that the strain of B. bassiana 278 proved to be the best producer of basic and acid proteases. The influence of different environmental factors such as nitrogen and carbon sources on the production of extracellular hydrolytic enzymes was assessed. In addition the acid protease from B. bassiana was partially characterized.

  19. Bacillus subtilis Vegetative Catalase Is an Extracellular Enzyme

    OpenAIRE

    Naclerio, G; Baccigalupi, L; Caruso, C; De Felice, M; Ricca, E

    1995-01-01

    Strong catalase activity was secreted by Bacillus subtilis cells during stationary growth phase in rich medium but not in sporulation-inducing medium. N-terminal sequencing indicated that the secreted activity was due to the vegetative catalase KatA, previously considered an endocellular enzyme. Extracellular catalase protected B. subtilis cells from oxidative assault.

  20. Activity assessment of microbial fibrinolytic enzymes.

    Science.gov (United States)

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  1. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme based decomposition models

    Directory of Open Access Journals (Sweden)

    Daryl L Moorhead

    2013-08-01

    Full Text Available We re-examined data from a recent litter decay study to determine if additional insights could be gained to inform decomposition modeling. Rinkes et al. (2013 conducted 14-day laboratory incubations of sugar maple (Acer saccharum or white oak (Quercus alba leaves, mixed with sand (0.4% organic C content or loam (4.1% organic C. They measured microbial biomass C, carbon dioxide efflux, soil ammonium, nitrate, and phosphate concentrations, and β-glucosidase (BG, β-N-acetyl-glucosaminidase (NAG, and acid phosphatase (AP activities on days 1, 3, and 14. Analyses of relationships among variables yielded different insights than original analyses of individual variables. For example, although respiration rates per g soil were higher for loam than sand, rates per g soil C were actually higher for sand than loam, and rates per g microbial C showed little difference between treatments. Microbial biomass C peaked on day 3 when biomass-specific activities of enzymes were lowest, suggesting uptake of litter C without extracellular hydrolysis. This result refuted a common model assumption that all enzyme production is constitutive and thus proportional to biomass, and/or indicated that part of litter decay is independent of enzyme activity. The length and angle of vectors defined by ratios of enzyme activities (BG/NAG versus BG/AP represent relative microbial investments in C (length, and N and P (angle acquiring enzymes. Shorter lengths on day 3 suggested low C limitation, whereas greater lengths on day 14 suggested an increase in C limitation with decay. The soils and litter in this study generally had stronger P limitation (angles > 45˚. Reductions in vector angles to < 45˚ for sand by day 14 suggested a shift to N limitation. These relational variables inform enzyme-based models, and are usually much less ambiguous when obtained from a single study in which measurements were made on the same samples than when extrapolated from separate studies.

  2. Atmospheric CO2 and soil extracellular enzyme activity: A meta-analysis and CO2 gradient experiment

    Science.gov (United States)

    Rising atmospheric CO2 concentrations may alter carbon and nutrient cycling and microbial processes in terrestrial ecosystems. One of the primary ways that microbes interact with soil organic matter is through the production of extracellular enzymes, which break down large, complex organic molecules...

  3. Effect of solar irradiation on extracellular enzymes of Aeromonas proteolytica

    Science.gov (United States)

    Foster, B. G.

    1973-01-01

    The bacterium Aeromonas proteolytica was selected for studying the effects of solar irradiation on extracellular enzymes because it produces an endopeptidase that is capable of degrading proteins and a hemolysin that is active in lysing human erythrocytes. Possible alterations in the rate of enzyme production in response to the test conditions are currently underway and are not available for this preliminary report. Completed viability studies are indicative that little difference exists among the survival curves derived for cells exposed to various components of ultraviolet irradiation in space.

  4. Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential.

    Science.gov (United States)

    Esteves, Ana Cristina; Saraiva, Márcia; Correia, António; Alves, Artur

    2014-05-01

    Phytopathogenic fungi are known for producing an arsenal of extracellular enzymes whose involvement in the infection mechanism has been suggested. However, these enzymes are largely unknown and their biotechnological potential also remains poorly understood. In this study, the production and thermostability of extracellular enzymes produced by phytopathogenic Botryosphaeriaceae was investigated. Hydrolytic and oxidative activities were detected and quantified at different temperatures. Most strains (70%; 37/53) were able to produce simultaneously cellulases, laccases, xylanases, pectinases, pectin lyases, amylases, lipases, and proteases. Surprisingly for mesophilic filamentous fungi, several enzymes proved to be thermostable: cellulases from Neofusicoccum mediterraneum CAA 001 and from Dothiorella prunicola CBS 124723, lipases from Diplodia pinea (CAA 015 and CBS 109726), and proteases from Melanops tulasnei CBS 116806 were more active at 70 °C than at any of the other temperatures tested. In addition, lipases produced by Diplodia pinea were found to be significantly more active than any other known lipase from Botryosphaeriales. The thermal activity profile and the wide array of activities secreted by these fungi make them optimal producers of biotechnologically relevant enzymes that may be applied in the food and the health industries (proteases), the pulp-and-paper and biofuel industries (cellulases), or even in the detergent industry (lipases, proteases, amylases, and cellulases).

  5. Microbial Enzyme Stoichiometry and Nutrient Limitation in US Streams and Rivers

    Science.gov (United States)

    We analyzed water and sediment chemistry, catchment land cover, and extracellular enzymes (ecoenzymes) activities related to microbial C, N, and P acquisition in more than 2100 1st- 10th order streams. Streams were selected from a probability design to represent the entire popula...

  6. Microbial Enzyme Stoichiometry and Nutrient Limitation in US Streams and Rivers

    Science.gov (United States)

    We analyzed water and sediment chemistry, catchment land cover, and extracellular enzymes (ecoenzymes) activities related to microbial C, N, and P acquisition in more than 2100 1st- 10th order streams. Streams were selected from a probability design to represent the entire popula...

  7. Are Bacteria the Major Producers of Extracellular Glycolytic Enzymes in Aquatic Environments?

    Science.gov (United States)

    Vrba, Jaroslav; Callieri, Cristiana; Bittl, Thomas; Imek, Karel; Bertoni, Roberto; Filandr, Pavel; Hartman, Petr; Hejzlar, Josef; Macek, Miroslav; Nedoma, Jií

    2004-01-01

    In aquatic microbial ecology, it has been considered that most extracellular enzymes except phosphatases are of bacterial origin. We tested this paradigm by evaluating the relationship between bacterial cell number and the activity of three glycolytic enzymes from 17 fresh waters and also from a laboratory experiment. Our large sets of pooled data do not seem to support such a simple explanation, because we found only a weak correlation of bacterial number with activity of -glucosidase (rs = 0.63), -glucosidase (rs = 0.45), and -N-acetylhexosaminidase (rs = 0.44). We also tested relations of the enzymatic activities to potential sources of natural substrates: dissolved organic carbon (DOC) and phytoplankton (as chlorophyll a). Their correlations with the enzymatic activities tested were very weak or insignificant. On the other hand, we found evidence for distinct producers of extracellular enzymes by analysing enzyme kinetics. The kinetics usually did not follow the simple Michaelis-Menten model but a more complex one, indicating a mixture of two enzymes with distinct affinity to a substrate. In combination with size fractionation, we could sometimes even distinguish three or more different enzymes. During diatom blooms, the diatom biomass tightly correlated with β-N-acetylhexosaminidase activity (>4 μm fraction). We also documented very tight relationships between activity of both glucosidases and dry weight of Daphnia longispina (rs = 1.0 and 0.60 for α- and β-glucosidases, respectively) in an alpine clear-water lake. Our data and evidence from other studies indicate that extracellular glycosidic activities in aquatic ecosystems cannot generally be assigned only to bacteria. Also invertebrate animals and other eukaryotes (fungi, diatoms, protozoa etc.) should be considered as potentially very important enzyme producers. (

  8. Extracellular enzyme activity in a willow sewage treatment system.

    Science.gov (United States)

    Brzezinska, Maria Swiontek; Lalke-Porczyk, Elżbieta; Kalwasińska, Agnieszka

    2012-12-01

    This paper presents the results of studies on the activity of extra-cellular enzymes in soil-willow vegetation filter soil which is used in the post-treatment of household sewage in an onsite wastewater treatment system located in central Poland. Wastewater is discharged from the detached house by gravity into the onsite wastewater treatment system. It flows through a connecting pipe into a single-chamber septic tank and is directed by the connecting pipe to a control well to be further channelled in the soil-willow filter by means of a subsurface leaching system. Soil samples for the studies were collected from two depths of 5 cm and 1 m from three plots: close to the wastewater inflow, at mid-length of the plot and close to its terminal part. Soil samples were collected from May to October 2009. The activity of the extra-cellular enzymes was assayed by the fluorometric method using 4-methylumbelliferyl and 7-amido-4-methylcoumarin substrate. The ranking of potential activity of the assayed enzymes was the same at 5 cm and 1 m soil depths, i.e. esterase > phosphmomoesterase > leucine-aminopeptidase > β-glucosidase > α-glucosidase. The highest values of enzymatic activity were recorded in the surface layer of the soil at the wastewater inflow and decreased with increasing distance from that point.

  9. Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species.

    Science.gov (United States)

    Pometto, A L; Lee, B T; Johnson, K E

    1992-01-01

    Extracellular culture concentrates were prepared from Streptomyces viridosporus T7A, Streptomyces badius 252, and Streptomyces setonii 75Vi2 shake flask cultures. Ten-day-heat-treated (70 degrees C) starch-polyethylene degradable plastic films were incubated with shaking with active or inactive enzyme for 3 weeks (37 degrees C). Active enzyme illustrated changes in the films' Fourier transform infrared spectra, mechanical properties, and polyethylene molecular weight distributions. PMID:1610196

  10. Plant-mediated effects on extracellular enzyme activities in distinct soil aggregate size classes in field

    Science.gov (United States)

    Kumar, Amit; Dorodnikov, Maxim; Splettstößer, Thomas; Kuzyakov, Yakov; Pausch, Johanna

    2017-04-01

    Soil aggregation and microbial activities within the aggregates are important factors regulating soil carbon (C) turnover. A reliable and sensitive proxy for microbial activity is activity of extracellular enzymes (EEA). In the present study, effects of soil aggregates on EEA were investigated under three maize plant densities (Low, Normal, and High). Bulk soil was fractionated into three aggregate size classes (>2000 µm large macroaggregates; 2000-250 µm small macroaggregates; moisture sieving. Microbial biomass and EEA (β-1,4-glucosidase (BG), β-1,4-N-acetylglucosaminidase (NAG), L-leucine aminopeptidase (LAP) and acid phosphatase (acP)) catalyzing soil organic matter (SOM) decomposition were measured in rooted soil of maize and soil from bare fallow. Microbial biomass C (Cmic) decreased with decreasing aggregate size classes. Potential and specific EEA (per unit of Cmic) increased from macro- to microaggregates. In comparison with bare fallow soil, specific EEA of microaggregates in rooted soil was higher by up to 73%, 31%, 26%, and 92% for BG, NAG, acP and LAP, respectively. Moreover, high plant density decreased macroaggregates by 9% compared to bare fallow. Enhanced EEA in three aggregate size classes demonstrated activation of microorganisms by roots. Strong EEA in microaggregates can be explained by microaggregates' localization within the soil. Originally adhering to surfaces of macroaggregates, microaggregates were preferentially exposed to C substrates and nutrients, thereby promoting microbial activity.

  11. Potential of extracellular enzymes from Trametes versicolor F21a in Microcystis spp. degradation.

    Science.gov (United States)

    Du, Jingjing; Pu, Gaozhong; Shao, Chen; Cheng, Shujun; Cai, Ji; Zhou, Liang; Jia, Yong; Tian, Xingjun

    2015-03-01

    Studies have shown that microorganisms may be used to eliminate cyanobacteria in aquatic environments. The present study showed that the white-rot fungus Trametes versicolor F21a could degrade Microcystis aeruginosa. After T. versicolor F21a and Microcystis spp. were co-incubated for 60h, >96% of Microcystis spp. cells were degraded by T. versicolor F21a. The activities of extracellular enzymes showed that cellulase, β-glucosidase, protease, and laccase were vital to Microcystis spp. degradation in the early stage (0h to 24h), while β-glucosidase, protease, laccase, and manganese peroxidase in the late stage (24h to 60h). The positive and significant correlation of the degradation rate with these enzyme activities indicated that these enzymes were involved in the degradation rate of Microcystis spp. cells at different phases. It suggested that the extracellular enzymes released by T. versicolor F21a might be vital to Microcystis spp. degradation. The results of this study may be used to develop alternative microbial control agents for cyanobacterial control.

  12. Extracellular proteolytic enzymes produced by human pathogenic Vibrio species

    Directory of Open Access Journals (Sweden)

    Shin-Ichi eMiyoshi

    2013-11-01

    Full Text Available Bacteria in the genus Vibrio produce extracellular proteolytic enzymes to obtain nutrients via digestion of various protein substrates. However, the enzymes secreted by human pathogenic species have been documented to modulate the bacterial virulence. Several species including Vibrio cholerae and V. vulnificus are known to produce thermolysin-like metalloproteases termed vibriolysin. The vibriolysin from V. vulnificus, a causative agent of serious systemic infection, is a major toxic factor eliciting the secondary skin damage characterized by formation of the hemorrhagic brae. The vibriolysin from intestinal pathogens may play indirect roles in pathogenicity because it can activate protein toxins and hemagglutinin by the limited proteolysis and can affect the bacterial attachment to or detachment from the intestinal surface by degradation of the mucus layer. Two species causing wound infections, V. alginolyticus and V. parahaemolyticus, produce another metalloproteases so-called collagenases. Although the detailed pathological roles have not been studied, the collagenase is potent to accelerate the bacterial dissemination through digestion of the protein components of the extracellular matrix. Some species produce cymotrypsin-like serine proteases, which may also affect the bacterial virulence potential. The intestinal pathogens produce sufficient amounts of the metalloprotease at the small intestinal temperature; however, the metalloprotease production by extra-intestinal pathogens is much higher around the body surface temperature. On the other hand, the serine protease is expressed only in the absence of the metalloprotease.

  13. Microbial Extracellular Polymeric Substances (EPSs in Ocean Systems

    Directory of Open Access Journals (Sweden)

    Alan W. Decho

    2017-05-01

    Full Text Available Microbial cells (i.e., bacteria, archaea, microeukaryotes in oceans secrete a diverse array of large molecules, collectively called extracellular polymeric substances (EPSs or simply exopolymers. These secretions facilitate attachment to surfaces that lead to the formation of structured ‘biofilm’ communities. In open-water environments, they also lead to formation of organic colloids, and larger aggregations of cells, called ‘marine snow.’ Secretion of EPS is now recognized as a fundamental microbial adaptation, occurring under many environmental conditions, and one that influences many ocean processes. This relatively recent realization has revolutionized our understanding of microbial impacts on ocean systems. EPS occur in a range of molecular sizes, conformations and physical/chemical properties, and polysaccharides, proteins, lipids, and even nucleic acids are actively secreted components. Interestingly, however, the physical ultrastructure of how individual EPS interact with each other is poorly understood. Together, the EPS matrix molecules form a three-dimensional architecture from which cells may localize extracellular activities and conduct cooperative/antagonistic interactions that cannot be accomplished efficiently by free-living cells. EPS alter optical signatures of sediments and seawater, and are involved in biogeomineral precipitation and the construction of microbial macrostructures, and horizontal-transfers of genetic information. In the water-column, they contribute to the formation of marine snow, transparent exopolymer particles (TEPs, sea-surface microlayer biofilm, and marine oil snow. Excessive production of EPS occurs during later-stages of phytoplankton blooms as an excess metabolic by product and releases a carbon pool that transitions among dissolved-, colloidal-, and gel-states. Some EPS are highly labile carbon forms, while other forms appear quite refractory to degradation. Emerging studies suggest that EPS

  14. Effect of microbial enzyme allocation strategies on stoichiometry of soil organic matter (SOM) decomposition

    Science.gov (United States)

    Wutzler, Thomas

    2014-05-01

    We explored different strategies of soil microbial community to invest resources into extracellular enzymes by conceptual modelling. Similar to the EEZY model by Moorhead et al. (2012), microbial community can invest into two separate pools of enzymes that depolymerize two different SOM pools. We show that with assuming that a fixed fraction of substrate uptake is allocated to enzymes, the microbial dynamics decouples from decomposition dynamics. We propose an alternative formulation where investment into enzymes is proportional to microbial biomass. Next, we show that the strategy of optimizing stoichiometry of decomposition flux according to microbial biomass stoichiometry yield less microbial growth than the strategy of optimizing revenue of the currently limiting element. However, both strategies result in better usage of the resources, i.e. less C overflow or N mineralization, than the strategy of equal allocation to both enzymes. Further, we discuss effects of those strategies on decomposition of SOM and priming at different time scales and discuss several abstractions from the detailed model dynamics for usage in larger scale models.

  15. Ecophysiological Analysis of Microorganisms in Complex Microbial Systems by Combination of Fluorescence In Situ Hybridization with Extracellular Staining Techniques

    Science.gov (United States)

    Nielsen, Jeppe Lund; Kragelund, Caroline; Nielsen, Per Halkjær

    Ecophysiological analysis and functions of single cells in complex microbial systems can be examined by simple combinations of Fluorescence in situ hybridization (FISH) for identification with various staining techniques targeting functional phenotypes. In this chapter, we describe methods and protocols optimized for the study of extracellular enzymes, surface hydrophobicity and specific surface structures. Although primarily applied to the study of microbes in wastewater treatment (activated sludge and biofilms), the methods may also be used with minor modifications in several other ecosystems.

  16. Microbial responses to multi-factor climate change: Effects on soil enzymes

    Directory of Open Access Journals (Sweden)

    J Megan Steinweg

    2013-06-01

    Full Text Available The activities of extracellular enzymes, the proximate agents of decomposition in soils, are known to depend strongly on temperature, but less is known about how they respond to changes in precipitation patterns, and the interaction of these two components of climate change. Both enzyme production and turnover can be affected by changes in temperature and soil moisture, thus it is difficult to predict how enzyme pool size may respond to altered climate. Soils from the Boston-Area Climate Experiment, which is located in an old field (on abandoned farmland, were used to examine how climate variables affect enzyme activities and microbial biomass carbon (MBC in different seasons and in soils exposed to a combination of three levels of precipitation treatments (ambient, 150% of ambient during growing season, and 50% of ambient year-round and four levels of warming treatments (unwarmed to ~4˚C above ambient over the course of a year. Warming, precipitation and season had very little effect on potential enzyme activity. Most models assume that enzyme dynamics follow microbial biomass, because enzyme production should be directly controlled by the size and activity of microbial biomass. We observed differences among seasons and treatments in mass-specific potential enzyme activity, suggesting that this assumption is invalid. In June 2009, mass-specific potential enzyme activity, using chloroform fumigation-extraction MBC, increased with temperature, peaking under medium warming and then declining under the highest warming. This finding suggests that either enzyme production increased with temperature or turnover rates decreased. Increased maintenance costs associated with warming may have resulted in increased mass-specific enzyme activities due to increased nutrient demand. Our research suggests that allocation of resources to enzyme production could be affected by climate-induced changes in microbial efficiency and maintenance costs.

  17. Recent advances in microbial raw starch degrading enzymes.

    Science.gov (United States)

    Sun, Haiyan; Zhao, Pingjuan; Ge, Xiangyang; Xia, Yongjun; Hao, Zhikui; Liu, Jianwen; Peng, Ming

    2010-02-01

    Raw starch degrading enzymes (RSDE) refer to enzymes that can directly degrade raw starch granules below the gelatinization temperature of starch. These promising enzymes can significantly reduce energy and simplify the process in starch industry. RSDE are ubiquitous and produced by plants, animals, and microorganisms. However, microbial sources are the most preferred one for large-scale production. During the past few decades, RSDE have been studied extensively. This paper reviews the recent development in the production, purification, properties, and application of microbial RSDE. This is the first review on microbial RSDE to date.

  18. Extracellular Enzymes Facilitate Electron Uptake in Biocorrosion and Bioelectrosynthesis

    OpenAIRE

    2015-01-01

    ABSTRACT Direct, mediator-free transfer of electrons between a microbial cell and a solid phase in its surrounding environment has been suggested to be a widespread and ecologically significant process. The high rates of microbial electron uptake observed during microbially influenced corrosion of iron [Fe(0)] and during microbial electrosynthesis have been considered support for a direct electron uptake in these microbial processes. However, the underlying molecular mechanisms of direct elec...

  19. Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils

    Science.gov (United States)

    Brzostek, E. R.; Phillips, R.; Dragoni, D.; Drake, J. E.; Finzi, A. C.

    2011-12-01

    The mobilization of nitrogen (N) from soil organic matter in temperate forest soils is controlled by the microbial production and activity of extracellular enzymes. The exudation of carbon (C) by tree roots into the rhizosphere may subsidize the microbial production of extracellular enzymes in the rhizosphere and increase the access of roots to N. The objective of this research was to investigate whether rates of root exudation and the resulting stimulation of extracellular enzyme activity in the rhizosphere (i.e., rhizosphere effect) differs between tree species that form associations with ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. This research was conducted at two temperate forest sites, the Harvard Forest (HF) in Central MA and the Morgan Monroe State Forest (MMSF) in Southern IN. At the HF, we measured rates of root exudation and the rhizosphere effects on enzyme activity, N cycling, and C mineralization in AM and ECM soils. At the MMSF, we recently girdled AM and ECM dominated plots to examine the impact of severing belowground C allocation on rhizosphere processes. At both sites, the rhizosphere effect on proteolytic, chitinolytic and ligninolytic enzyme activities was greater in ECM soils than in AM soils. In particular, higher rates of proteolytic enzyme activity increased the availability of amino acid-N in ECM rhizospheres relative to the bulk soils. Further, this stimulation of enzyme activity was directly correlated with higher rates of C mineralization in the rhizosphere than in the bulk soil. Although not significantly different between species, root exudation of C comprised 3-10% of annual gross primary production at the HF. At the MMSF, experimental girdling led to a larger decline in soil respiration and enzyme activity in ECM plots than in AM plots. In both ECM and AM soils, however, girdling resulted in equivalent rates of enzyme activity in rhizosphere and corresponding bulk soils. The results of this study contribute to the

  20. Research and application of marine microbial enzymes: status and prospects.

    Science.gov (United States)

    Zhang, Chen; Kim, Se-Kwon

    2010-06-23

    Over billions of years, the ocean has been regarded as the origin of life on Earth. The ocean includes the largest range of habitats, hosting the most life-forms. Competition amongst microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to evolution. The evolution prompted the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work investigating the occurrence and bioprocessing of marine microbial enzymes.

  1. Research and Application of Marine Microbial Enzymes: Status and Prospects

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2010-06-01

    Full Text Available Over billions of years, the ocean has been regarded as the origin of life on Earth. The ocean includes the largest range of habitats, hosting the most life-forms. Competition amongst microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to evolution. The evolution prompted the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work investigating the occurrence and bioprocessing of marine microbial enzymes.

  2. Research and Application of Marine Microbial Enzymes: Status and Prospects

    Science.gov (United States)

    Zhang, Chen; Kim, Se-Kwon

    2010-01-01

    Over billions of years, the ocean has been regarded as the origin of life on Earth. The ocean includes the largest range of habitats, hosting the most life-forms. Competition amongst microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to evolution. The evolution prompted the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work investigating the occurrence and bioprocessing of marine microbial enzymes. PMID:20631875

  3. Particle-associated extracellular enzyme activity and bacterial community composition across the Canadian Arctic Ocean.

    Science.gov (United States)

    Kellogg, Colleen T E; Deming, Jody W

    2014-08-01

    Microbial enzymatic hydrolysis of marine-derived particulate organic carbon (POC) can be a dominant mechanism for attenuating carbon flux in cold Arctic waters during spring and summer. Whether this mechanism depends on composition of associated microbial communities and extends into other seasons is not known. Bacterial community composition (BCC) and extracellular enzyme activity (EEA, for leucine aminopeptidases, glucosidases and chitobiases) were measured on small suspended particles and potentially sinking aggregates collected during fall from waters of the biologically productive North Water and river-impacted Beaufort Sea. Although other environmental variables appeared influential, both BCC and EEA varied along a marine productivity gradient in the two regions. Aggregates harbored the most distinctive bacterial communities, with a small number of taxa driving differences between particle-size classes (1.0-60 and > 60 μm) and free-living bacteria (0.2-1.0 μm). Significant relationships between patterns in particle-associated BCC and EEA suggest strong links between these two variables. Calculations indicated that up to 80% of POC in the euphotic zone of the North Water, and 20% in the Beaufort Sea, may be hydrolyzed enzymatically, underscoring the importance of this mechanism in attenuating carbon fluxes in Arctic waters even as winter approaches.

  4. Microbial Decomposition of Extracellular DNA in Clay Soils

    Science.gov (United States)

    Morrissey, E. M.; McHugh, T. A.; Schwartz, E.; Preteska, L.; Hayer, M.; Hungate, B. A.

    2014-12-01

    Genomic analysis of soil communities can only be useful in predicting ecosystem processes if the genetic data gathered is representative of the microbial community. Consequently, extracellular DNA (eDNA) represents a pool of unexpressed genetic information that may skew genomic analyses. To date, our understanding of the representation of eDNA in metagenomic data and its decomposition in soil is very limited. To address this deficit, we performed a laboratory experiment wherein soils were amended with eDNA and/or clay minerals in a full factorial design. Specifically, the decomposition of 13C labeled E. coli DNA was monitored over a 30-day period in control, Kaolinite-amended, and Montmorillonite-amended soils. The amount of added eDNA carbon (C) remaining in the soil declined exponentially over time, with the majority of decomposition occurring in the first two weeks. Kaolinite significantly decreased eDNA decomposition rates and retained a higher fraction of eDNA-C (~70% remaining) than unamended and Montmorillonite-soils (~40% remaining) after 30 days. Phylogenetic (16S rRNA) sequencing of DNA extracted over the course of the incubation period enabled detection of the added eDNA. The relative abundance of added E. coli DNA decreased ~10-100 fold over 30 days. These results indicate that while a significant fraction of eDNA-C remained in the soil, this carbon was likely no longer in the form of intact strands of DNA amenable to sequencing. In addition, the eDNA affected the composition of the bacterial community. Specifically, the relative abundance of Planctomycetes and TM7 were elevated in soils that received eDNA regardless of clay addition, suggesting these phyla may be particularly effective at degrading eDNA and using it for growth. In conclusion these results indicate that the representation of eDNA in metagenomic sequence data declines rapidly, likely due to fragmentation. However, a fraction of eDNA material was resistant to decomposition, suggesting a

  5. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%, Chaetomiaceae (17.6%, Incertae sadis (29.5%, Aureobasidiaceae (17.6%, Nectriaceae (5.9% and Sporomiaceae (17.6% from the phylloplane (leaf and caulosphere (stem of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33% than the stem (0.262%. The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583 than in the stem (0.416. Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL and cellulases (62.11±1.6 μM-1min-1mL, whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL and phosphatases (3.46±0.31μM-1min-1mL compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways. Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  6. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  7. Understanding drivers of peatland extracellular enzyme activity in the PEATcosm experiment: mixed evidence for enzymic latch hypothesis

    Science.gov (United States)

    Karl J. Romanowicz; Evan S. Kane; Lynette R. Potvin; Aleta L. Daniels; Randy Kolka; Erik A. Lilleskov

    2015-01-01

    Aims. Our objective was to assess the impacts of water table position and plant functional groups on peatland extracellular enzyme activity (EEA) framed within the context of the enzymic latch hypothesis. Methods. We utilized a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional...

  8. Extracellular functions of glycolytic enzymes of parasites: unpredicted use of ancient proteins.

    Science.gov (United States)

    Gómez-Arreaza, Amaranta; Acosta, Hector; Quiñones, Wilfredo; Concepción, Juan Luis; Michels, Paul A M; Avilán, Luisana

    2014-02-01

    In addition of their usual intracellular localization where they are involved in catalyzing reactions of carbohydrate and energy metabolism by glycolysis, multiple studies have shown that glycolytic enzymes of many organisms, but notably pathogens, can also be present extracellularly. In the case of parasitic protists and helminths, they can be found either secreted or attached to the surface of the parasites. At these extracellular localizations, these enzymes have been shown to perform additional, very different so-called "moonlighting" functions, such as acting as ligands for a variety of components of the host. Due to this recognition, different extracellular glycolytic enzymes participate in various important parasite-host interactions such as adherence and invasion of parasites, modulation of the host's immune and haemostatic systems, promotion of angiogenesis, and acquisition of specific nutrients by the parasites. Accordingly, extracellular glycolytic enzymes are important for the invasion of the parasites and their establishment in the host, and in determining their virulence.

  9. [Cytochrome P450 enzymes and microbial drug development - A review].

    Science.gov (United States)

    Li, Zhong; Zhang, Wei; Li, Shengying

    2016-03-01

    Cytochrome P450 enzymes broadly exist in animals, plants and microorganisms. This superfamily of monooxygenases holds the greatest diversity of substrate structures and catalytic reaction types among all enzymes. P450 enzymes play important roles in natural product biosynthesis. In particular, P450 enzymes are capable of catalyzing the regio- and stereospecific oxidation of non-activated C-H bonds in complex organic compounds under mild conditions, which overrides many chemical catalysts. This advantage thus warrants their great potential in microbial drug development. In this review, we introduce a variety of P450 enzymes involved in natural product biosynthesis; provide a brief overview on protein engineering, biotransformation and practical application of P450 enzymes; and discuss the limits, challenges and prospects of industrial application of P450 enzymes.

  10. 21 CFR 173.150 - Milk-clotting enzymes, microbial.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Milk-clotting enzymes, microbial. 173.150 Section 173.150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD...

  11. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  12. Ecofunctional enzymes of microbial communities in ground water.

    Science.gov (United States)

    Fliermans, C B; Franck, M M; Hazen, T C; Gorden, R W

    1997-07-01

    Biolog technology was initially developed as a rapid, broad spectrum method for the biochemical identification of clinical microorganisms. Demand and creative application of this technology has resulted in the development of Biolog plates for Gram-negative and Gram-positive bacteria, for yeast and Lactobacillus sp. Microbial ecologists have extended the use of these plates from the identification of pure culture isolates to a tool for quantifying the metabolic patterns of mixed cultures, consortia and entire microbial communities. Patterns that develop on Biolog microplates are a result of the oxidation of the substrates by microorganisms in the inoculum and the subsequent reduction of the tetrazolium dye to form a color in response to detectable reactions. Depending upon the functional enzymes present in the isolate or community one of a possible 4 x 10(28) patterns can be expressed. The patterns were used to distinguish the physiological ecology of various microbial communities present in remediated groundwater. The data indicate that one can observe differences in the microbial community among treatments of bioventing, 1% and 4% methane injection, and pulse injection of air, methane and nutrients both between and among wells. The investigation indicates that Biolog technology is a useful parameter to measure the physiological response of the microbial community to perturbation and allows one to design enhancement techniques to further the degradation of selected recalcitrant and toxic chemicals. Further it allows one to evaluate the recovery of the microbial subsurface ecosystem after the perturbations have ceased. We propose the term 'ecofunctional enzymes' (EFE) as the most descriptive and useful term for the Biolog plate patterns generated by microbial communities. We offer this designation and provide ecological application in an attempt to standardize the terminology for this relatively new and unique technology.

  13. Impact of Microbial Inoculants on Microbial Quantity, Enzyme Activity and Available Nutrient Content in Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-jie; Duan Xue-jiao; Ma Na; Sun Tao; Xu Jing-gang

    2015-01-01

    The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in Heilongjiang Province. The application ofsoil phosphorus activator was able to increase the quantity of bacteria and fungi in soil, but its effect on actinomycetes in soil was not significant. The application of microbial inoculants increased the urease and sucrase activities in soil over the growing season, but only at the maturing stage soil acid phosphatase activity was enhanced with the applying soil phosphorus activator. The application of soil phosphorus activator increased alkali-hydrolyzable nitrogen and available phosphorus contents in soil, but did not increase available potassium content in soil. The optimal microbial inoculant application rate as applied as soil phosphorus activator was 7.5 kg•hm-2.

  14. Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress.

    Science.gov (United States)

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A

    2016-01-01

    Stabilizing extracellular enzymes may maintain enzymatic activity while protecting enzymes from proteolysis and denaturation. A study determined whether a fast pyrolysis hardwood biochar (CQuest™) would reduce evaporative losses, subsequently stabilizing soil extracellular enzymes and prohibiting potential enzymatic activity loss following a denaturing stress (microwaving). Soil was incubated in the presence of biochar (0%, 1%, 2%, 5%, or 10% by wt.) for 36 days and then exposed to microwave energies (0, 400, 800, 1600, or 3200 J g(-1) soil). Soil enzymes (β-glucosidase, β-d-cellobiosidase, N-acetyl-β-glucosaminidase, phosphatase, leucine aminopeptidase, β-xylosidase) were analyzed by fluorescence-based assays. Biochar amendment reduced leucine aminopeptidase and β-xylosidase potential activity after the incubation period and prior to stress exposure. The 10% biochar rate reduced soil water loss at the lowest stress level (400 J microwave energy g(-1) soil). Enzyme stabilization was demonstrated for β-xylosidase; intermediate biochar application rates prevented a complete loss of this enzyme's potential activity after soil was exposed to 400 (1% biochar treatment) or 1600 (5% biochar treatment) J microwave energy g(-1) soil. Remaining enzyme potential activities were not affected by biochar, and activities decreased with increasing stress levels. We concluded that biochar has the potential to reduce evaporative soil water losses and stabilize certain extracellular enzymes where activity is maintained after a denaturing stress; this effect was biochar rate and enzyme dependent. While biochar may reduce the potential activity of certain soil extracellular enzymes, this phenomenon was not universal as the majority of enzymes assayed in this study were unaffected by exposure to biochar.

  15. Extracellular ligninolytic enzymes production by Pleurotus eryngii on agroindustrial wastes.

    Science.gov (United States)

    Akpinar, Merve; Urek, Raziye Ozturk

    2014-01-01

    Pleurotus eryngii (DC.) Gillet (MCC58) was investigated for its ligninolytic ability to produce laccase (Lac), manganese peroxidase (MnP), aryl alcohol oxidase (AAO), and lignin peroxidase (LiP) enzymes through solid-state fermentation using apricot and pomegranate agroindustrial wastes. The reducing sugar, protein, lignin, and cellulose levels in these were studied. Also, the production of these ligninolytic enzymes was researched over the growth of the microorganism throughout 20 days, and the reducing sugar, protein, and nitrogen levels were recorded during the stationary cultivation at 28 ± 0.5°C. The highest Lac activity was obtained as 1618.5 ± 25 U/L on day 12 of cultivation using apricot. The highest MnP activity was attained as 570.82 ± 15 U/L on day 17 in pomegranate culture and about the same as apricot culture. There were low LiP activities in both cultures. The maximum LiP value detected was 16.13 ± 0.8 U/L in apricot cultures. In addition, AAO activities in both cultures showed similar trends up to day 17 of cultivation, with the highest AAO activity determined as 105.99 ± 6.3 U/L on day 10 in apricot cultures. Decolorization of the azo dye methyl orange was also achieved with produced ligninolytic enzymes by P. eryngii using apricot and pomegranate wastes.

  16. A common theme in extracellular fluids of beetles: extracellular superoxide dismutases crucial for balancing ROS in response to microbial challenge

    Science.gov (United States)

    Gretscher, René R.; Streicher, Priska E.; Strauß, Anja S.; Wielsch, Natalie; Stock, Magdalena; Wang, Ding; Boland, Wilhelm; Burse, Antje

    2016-01-01

    Extracellular Cu/Zn superoxide dismutases (SODs) are critical for balancing the level of reactive oxygen species in the extracellular matrix of eukaryotes. In the present study we have detected constitutive SOD activity in the haemolymph and defensive secretions of different leaf beetle species. Exemplarily, we have chosen the mustard leaf beetle, Phaedon cochleariae, as representative model organism to investigate the role of extracellular SODs in antimicrobial defence. Qualitative and quantitative proteome analyses resulted in the identification of two extracellular Cu/Zn SODs in the haemolymph and one in the defensive secretions of juvenile P. cochleariae. Furthermore, quantitative expression studies indicated fat body tissue and defensive glands as the main synthesis sites of these SODs. Silencing of the two SODs revealed one of them, PcSOD3.1, as the only relevant enzyme facilitating SOD activity in haemolymph and defensive secretions in vivo. Upon challenge with the entomopathogenic fungus, Metarhizium anisopliae, PcSOD3.1-deficient larvae exhibited a significantly higher mortality compared to other SOD-silenced groups. Hence, our results serve as a basis for further research on SOD regulated host-pathogen interactions. In defensive secretions PcSOD3.1-silencing affected neither deterrent production nor activity against fungal growth. Instead, we propose another antifungal mechanism based on MRJP/yellow proteins in the defensive exudates. PMID:27068683

  17. Integrating microbial physiology and enzyme traits in the quality model

    Science.gov (United States)

    Sainte-Marie, Julien; Barrandon, Matthieu; Martin, Francis; Saint-André, Laurent; Derrien, Delphine

    2017-04-01

    Microbe activity plays an undisputable role in soil carbon storage and there have been many calls to integrate microbial ecology in soil carbon (C) models. With regard to this challenge, a few trait-based microbial models of C dynamics have emerged during the past decade. They parameterize specific traits related to decomposer physiology (substrate use efficiency, growth and mortality rates...) and enzyme properties (enzyme production rate, catalytic properties of enzymes…). But these models are built on the premise that organic matter (OM) can be represented as one single entity or are divided into a few pools, while organic matter exists as a continuum of many different compounds spanning from intact plant molecules to highly oxidised microbial metabolites. In addition, a given molecule may also exist in different forms, depending on its stage of polymerization or on its interactions with other organic compounds or mineral phases of the soil. Here we develop a general theoretical model relating the evolution of soil organic matter, as a continuum of progressively decomposing compounds, with decomposer activity and enzyme traits. The model is based on the notion of quality developed by Agren and Bosatta (1998), which is a measure of molecule accessibility to degradation. The model integrates three major processes: OM depolymerisation by enzyme action, OM assimilation and OM biotransformation. For any enzyme, the model reports the quality range where this enzyme selectively operates and how the initial quality distribution of the OM subset evolves into another distribution of qualities under the enzyme action. The model also defines the quality range where the OM can be uptaken and assimilated by microbes. It finally describes how the quality of the assimilated molecules is transformed into another quality distribution, corresponding to the decomposer metabolites signature. Upon decomposer death, these metabolites return to the substrate. We explore here the how

  18. Extracellular lipolytic enzyme activity of a newly isolated Debaryomyces hansenii.

    Science.gov (United States)

    Takaç, Serpil; Sengel, Banu S

    2010-01-01

    A strain isolated from waste of a milk products plant and exhibited extracellular lipolytic activity was identified as Debaryomyces hansenii by 5.8S rRNA and 28S rRNA gene sequence analyses. Lipolytic activity was assayed spectrophotometrically by using p-nitrophenylpalmitate. Higher specific lipolytic activities were obtained in the presence of tristearin (0.68 U/mg prot), oleic acid (0.56 U/mg prot), and soybean oil (0.36 U/mg prot) than other triglycerides, fatty acids, and vegetable oils considered as carbon sources. Cheese whey appeared to be a good alternative to lipidic substances for lipolytic activity. Among various organic and inorganic nitrogen sources, soy flour was found to attain the lipolytic activity similar to that provided by universal yeast medium components. This work is the first report on the discussion of lipolytic activity enhancement by D. hansenii through modulating the cultivation medium. It also proposes low cost medium nutrients that could be of industrial value and could serve as basal nutrients for further optimization studies on the lipase production by D. hansenii.

  19. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    Science.gov (United States)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (Pconservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  20. Microbial Enzymes with Special Characteristics for Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Poonam Singh Nigam

    2013-08-01

    Full Text Available This article overviews the enzymes produced by microorganisms, which have been extensively studied worldwide for their isolation, purification and characterization of their specific properties. Researchers have isolated specific microorganisms from extreme sources under extreme culture conditions, with the objective that such isolated microbes would possess the capability to bio-synthesize special enzymes. Various Bio-industries require enzymes possessing special characteristics for their applications in processing of substrates and raw materials. The microbial enzymes act as bio-catalysts to perform reactions in bio-processes in an economical and environmentally-friendly way as opposed to the use of chemical catalysts. The special characteristics of enzymes are exploited for their commercial interest and industrial applications, which include: thermotolerance, thermophilic nature, tolerance to a varied range of pH, stability of enzyme activity over a range of temperature and pH, and other harsh reaction conditions. Such enzymes have proven their utility in bio-industries such as food, leather, textiles, animal feed, and in bio-conversions and bio-remediations.

  1. Recovery of Extracellular Lipolytic Enzymes from Macrophomina phaseolina by Foam Fractionation with Air

    OpenAIRE

    Claudia Schinke; José Carlos Germani

    2013-01-01

    Macrophomina phaseolina was cultivated in complex and simple media for the production of extracellular lipolytic enzymes. Culture supernatants were batch foam fractionated for the recovery of these enzymes, and column design and operation included the use of P 2 frit (porosity 40 to 100  μ m), air as sparging gas at variable flow rates, and Triton X-100 added at the beginning or gradually in aliquots. Samples taken at intervals showed the progress of the kinetic and the efficiency parameters....

  2. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function.

    Science.gov (United States)

    Cheeke, Tanya E; Phillips, Richard P; Brzostek, Edward R; Rosling, Anna; Bever, James D; Fransson, Petra

    2017-04-01

    While it is well established that plants associating with arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi cycle carbon (C) and nutrients in distinct ways, we have a limited understanding of whether varying abundance of ECM and AM plants in a stand can provide integrative proxies for key biogeochemical processes. We explored linkages between the relative abundance of AM and ECM trees and microbial functioning in three hardwood forests in southern Indiana, USA. Across each site's 'mycorrhizal gradient', we measured fungal biomass, fungal : bacterial (F : B) ratios, extracellular enzyme activities, soil carbon : nitrogen ratio, and soil pH over a growing season. We show that the percentage of AM or ECM trees in a plot promotes microbial communities that both reflect and determine the C to nutrient balance in soil. Soils dominated by ECM trees had higher F : B ratios and more standing fungal biomass than AM stands. Enzyme stoichiometry in ECM soils shifted to higher investment in extracellular enzymes needed for nitrogen and phosphorus acquisition than in C-acquisition enzymes, relative to AM soils. Our results suggest that knowledge of mycorrhizal dominance at the stand or landscape scale may provide a unifying framework for linking plant and microbial community dynamics, and predicting their effects on ecological function.

  3. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells.

    Science.gov (United States)

    Zhang, Enren; Cai, Yamin; Luo, Yue; Piao, Zhe

    2014-11-01

    Great attention has been focused on Gram-negative bacteria in the application of microbial fuel cells. In this study, the Gram-positive bacterium Enterococcus faecalis was employed in microbial fuel cells. Bacterial biofilms formed by E. faecalis ZER6 were investigated with respect to electricity production through the riboflavin-shuttled extracellular electron transfer. Trace riboflavin was shown to be essential for transferring electrons derived from the oxidation of glucose outside the peptidoglycan layer in the cell wall of E. faecalis biofilms formed on the surface of electrodes, in the absence of other potential electron mediators (e.g., yeast extract).

  4. Biochemical properties and three-dimensional structures of two extracellular lipolytic enzymes from Bacillus subtilis

    NARCIS (Netherlands)

    Eggert, Thorsten; Pouderoyen, Gertie van; Pencreac’h, Gaëlle; Douchet, Isabelle; Verger, Robert; Dijkstra, Bauke W.; Jaeger, Karl-Erich

    2002-01-01

    This article reviews our present knowledge on the extracellular lipolytic enzymes LipA and LipB from Bacillus subtilis. Growth of B. subtilis to the late logarithmic growth phase results in a total lipolytic activity of 12–18 units per liter of culture supernatant. Immunodetection with LipA- and Lip

  5. Extracellular β-fructofuranosidase from Fusarium graminearum: stability of the spray-dried enzyme in the presence of different carbohydrates.

    Science.gov (United States)

    Gonçalves, Heloísa Bressan; Jorge, João Atílio; Oliveira, Wanderley Pereira; Souza, Claudia Regina Fernandes; Guimarães, Luis Henrique Souza

    2013-01-01

    Microbial enzymes have been used for various biotechnological applications; however, enzyme stabilization remains a challenge for industries and needs to be considered. This study describes the effects of spray-drying conditions on the activity and stability of β-fructofuranosidase from Fusarium graminearum. The extracellular enzyme β-fructofuranosidase was spray dried in the presence of stabilizers, including starch (Capsul) (SC), microcrystalline cellulose (MC), trehalose (TR), lactose (LC) and β-cyclodextrin (CD). In the presence of TR (2% w/v), the enzymatic activity was fully retained. After 1 year of storage, 74% of the enzymatic activity was maintained with the CD stabilizer (10% w/v). The residual activity was maintained as high as 80% for 1 h at 70°C when MC, SC and CD (5% w/v) stabilizers were used. Spray drying with carbohydrates was effective in stabilizing the F. graminearum β-fructofuranosidase, improved enzymatic properties compared to the soluble enzyme and demonstrated a potential use in future biotechnology applications.

  6. Screening and Molecular Identification of New Microbial Strains for Production of Enzymes of Biotechnological Interest

    Directory of Open Access Journals (Sweden)

    Imen Ghazala

    Full Text Available ABSTRACT: This research focused on isolation, identification and characterization of new strains of fungi and bacteria, which were able to produce extracellular xylanase, mannanase, pectinase and α-amylase. Fungi isolates were identified on the basis of analyses of 18S gene sequencing and internal transcribed spacer region. The closest phylogenetic neighbors according to 18S gene sequence and ITS region data for the two isolates M1 and SE were Aspergillus fumigatus and Aspergillus sydowii, respectively. I4 was identified as Bacillus mojavensis on the basis of the 16S rRNA gene sequencing and biochemical properties. The enzyme production was evaluated by cultivating the isolated microorganisms in liquid-state bioprocess using wheat bran as carbon source. Two fungi (M1, and SE and one bacterium (I4 strains were found to be xylanase producer, and several were proven to be outstanding producers of microbial xylanase. The strains producing xylanase secreted variable amounts of starch-debranching enzymes and produced low level β-mannan-degrading enzyme systems. The bacterium strain was found to be capable of producing pectinolytic enzymes on wheat bran at high level. Some of the strains have good potential for use as sources of important industrial enzymes.

  7. [Extracellular hydrolytic enzymes produced by entomopathogenic fungi--role in an infection process].

    Science.gov (United States)

    Włóka, Emilia

    2011-01-01

    Entomopathogenic fungi have a great potential in biological control of insect pest population. Fungal pathogens are promising source of insecticides and notable alterative to chemical pesticides. These fungi possess a unique mechanism of insects paralysis. As natural enemies of insects they attack direct host cuticle via a combination of mechanical pressure and cuticle-degrading enzymes. Entomopathogenic fungi produce several proteo-, chitino- and lipolytic enzymes, which are accepted as key factors in insect mycosis. The role of extracellular enzymes in pathogenesis is still not well understood. Profound understanding the mechanisms of insect paralysis by entomopathogenic fungi will help in the production of safer for environment and more efficiency mycoinsecticides.

  8. Enzymes in Action: An Interactive Activity Designed to Highlight Positive Attributes of Extracellular Enzymes Synthesized by Microbes

    Directory of Open Access Journals (Sweden)

    Rachel M.C. Gillespie

    2014-07-01

    Full Text Available Microbial activities are widely exploited in the manufacture of valuable products. However, the many beneficial uses of microorganisms are often overshadowed by negative associations with disease and decay. This article describes an interactive activity aimed at school-aged children and members of the public, which introduces the concept of microbial enzymes and ultimately illustrates how the industrial uses of microbes have a positive impact on everyday life. Participants are guided through a simple chemical assay which allows them to use a hands-on approach to reveal bacterial enzymes at work. This activity is safe and economical to run and is suitable for use in both the classroom and external learning environments. Also included are supplemental educational resources to support the demonstration and suggestions for extensions to the activity described, which enable further exploration of the topic. This activity has been tested by more than 2000 people at public engagement events and has received much positive feedback.

  9. Selective Targeting of Extracellular Insulin-Degrading Enzyme by Quasi-Irreversible Thiol-Modifying Inhibitors.

    Science.gov (United States)

    Abdul-Hay, Samer O; Bannister, Thomas D; Wang, Hui; Cameron, Michael D; Caulfield, Thomas R; Masson, Amandine; Bertrand, Juliette; Howard, Erin A; McGuire, Michael P; Crisafulli, Umberto; Rosenberry, Terrone R; Topper, Caitlyn L; Thompson, Caroline R; Schürer, Stephan C; Madoux, Franck; Hodder, Peter; Leissring, Malcolm A

    2015-12-18

    Many therapeutically important enzymes are present in multiple cellular compartments, where they can carry out markedly different functions; thus, there is a need for pharmacological strategies to selectively manipulate distinct pools of target enzymes. Insulin-degrading enzyme (IDE) is a thiol-sensitive zinc-metallopeptidase that hydrolyzes diverse peptide substrates in both the cytosol and the extracellular space, but current genetic and pharmacological approaches are incapable of selectively inhibiting the protease in specific subcellular compartments. Here, we describe the discovery, characterization, and kinetics-based optimization of potent benzoisothiazolone-based inhibitors that, by virtue of a unique quasi-irreversible mode of inhibition, exclusively inhibit extracellular IDE. The mechanism of inhibition involves nucleophilic attack by a specific active-site thiol of the enzyme on the inhibitors, which bear an isothiazolone ring that undergoes irreversible ring opening with the formation of a disulfide bond. Notably, binding of the inhibitors is reversible under reducing conditions, thus restricting inhibition to IDE present in the extracellular space. The identified inhibitors are highly potent (IC50(app) = 63 nM), nontoxic at concentrations up to 100 μM, and appear to preferentially target a specific cysteine residue within IDE. These novel inhibitors represent powerful new tools for clarifying the physiological and pathophysiological roles of this poorly understood protease, and their unusual mechanism of action should be applicable to other therapeutic targets.

  10. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting.

    Directory of Open Access Journals (Sweden)

    Elisabeth Pohlon

    Full Text Available Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany. Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes

  11. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications.

    Science.gov (United States)

    Chi, Zhenming; Chi, Zhe; Zhang, Tong; Liu, Guanglei; Li, Jing; Wang, Xianghong

    2009-01-01

    In this review article, the extracellular enzymes production, their properties and cloning of the genes encoding the enzymes from marine yeasts are overviewed. Several yeast strains which could produce different kinds of extracellular enzymes were selected from the culture collection of marine yeasts available in this laboratory. The strains selected belong to different genera such as Yarrowia, Aureobasidium, Pichia, Metschnikowia and Cryptococcus. The extracellular enzymes include cellulase, alkaline protease, aspartic protease, amylase, inulinase, lipase and phytase, as well as killer toxin. The conditions and media for the enzyme production by the marine yeasts have been optimized and the enzymes have been purified and characterized. Some genes encoding the extracellular enzymes from the marine yeast strains have been cloned, sequenced and expressed. It was found that some properties of the enzymes from the marine yeasts are unique compared to those of the homologous enzymes from terrestrial yeasts and the genes encoding the enzymes in marine yeasts are different from those in terrestrial yeasts. Therefore, it is of very importance to further study the enzymes and their genes from the marine yeasts. This is the first review on the extracellular enzymes and their genes from the marine yeasts.

  12. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation

    Science.gov (United States)

    Ziervogel, K.; Steen, A. D.; Arnosti, C.

    2010-03-01

    Marine snow aggregates are heavily colonized by heterotrophic microorganisms that express high levels of hydrolytic activities, making aggregates hotspots for carbon remineralization in the ocean. To assess how aggregate formation influences the ability of seawater microbial communities to access organic carbon, we compared hydrolysis rates of six polysaccharides in coastal seawater after aggregates had been formed (via incubation on a roller table) with hydrolysis rates in seawater from the same site that had not incubated on a roller table (referred to as whole seawater). Hydrolysis rates in the aggregates themselves were up to three orders of magnitude higher on a volume basis than in whole seawater. The enhancement of enzyme activity in aggregates relative to whole seawater differed by substrate, suggesting that the enhancement was under cellular control, rather than due to factors such as lysis or grazing. A comparison of hydrolysis rates in whole seawater with those in aggregate-free seawater, i.e. the fraction of water from the roller bottles that did not contain aggregates, demonstrated a nuanced microbial response to aggregate formation. Activities of laminarinase and xylanase enzymes in aggregate-free seawater were higher than in whole seawater, while activities of chondroitin, fucoidan, and arabinogalactan hydrolyzing enzymes were lower than in whole seawater. These data suggest that aggregate formation enhanced production of laminarinase and xylanase enzymes, and the enhancement also affected the surrounding seawater. Decreased activities of chondroitin, fucoidan, and arabinoglactan-hydrolyzing enzymes in aggregate-free seawaters relative to whole seawater are likely due to shifts in enzyme production by the aggregate-associated community, coupled with the effects of enzyme degradation. Enhanced activities of laminarin- and xylan-hydrolyzing enzymes in aggregate-free seawater were due at least in part to cell-free enzymes. Measurements of enzyme

  13. Extracellular enzyme production by Rhizopus and Mucor species on solid media.

    Science.gov (United States)

    Thompson, D P; Eribo, B E

    1984-01-01

    Solid media were employed to determine the presence and absence of extracellular enzyme production by two genera of fruit-rot fungi, Rhizopus and Mucor. The results of this investigation revealed that phosphatase was released into the cultural medium by all the fungi examined; however, only R. oryzae, R. tritici, M. mucedo, and M. piriformis showed the possibility of being high producers of the enzyme. Protease, urease, ribonuclease, pectate lyase, and polygalacturonase, at varying levels of activity, were detected, in the majority of the fungi, in the cultural medium.

  14. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation

    Directory of Open Access Journals (Sweden)

    K. Ziervogel

    2009-12-01

    Full Text Available Marine snow aggregates are heavily colonized by heterotrophic microorganisms that express high levels of hydrolytic activities, making aggregates hotspots for carbon remineralization in the ocean. To assess how aggregate formation influences the ability of seawater microbial communities to access organic carbon, we compared hydrolysis rates of six polysaccharides in coastal seawater after aggregates had been formed (via incubation on a roller table with hydrolysis rates in seawater from the same site that had not incubated on a roller table (referred to as whole seawater. Hydrolysis rates in the aggregates themselves were up to three orders of magnitude higher on a volume basis than in whole seawater. The enhancement of enzyme activity in aggregates relative to whole seawater differed by substrate, suggesting that the enhancement was under cellular control, rather than due to factors such as lysis or grazing. A comparison of hydrolysis rates in whole seawater with those in aggregate-free seawater, i.e. the fraction of water from the roller bottles that did not contain aggregates, demonstrated a nuanced microbial response to aggregate formation. Activities of laminarinase and xylanase enzymes in aggregate-free seawater were higher than in whole seawater, while activities of chondroitin, fucoidan, and arabinogalactan hydrolyzing enzymes were lower than in whole seawater. These data suggest that aggregate formation enhanced production of laminarinase and xylanase enzymes, and the enhancement also affected the surrounding seawater. Decreased activities of chondroitin, fucoidan, and arabinoglactan-hydrolyzing enzymes in aggregate-free seawater relative to whole seawater are likely due to shifts in enzyme production by the aggregate-associated community, coupled with the effects of enzyme degradation. Enhanced activities of laminarin- and xylan-hydrolyzing enzymes in aggregate-free seawater were due at least in part to cell-free enzymes. Measurements

  15. POTENTIAL USE OF AN EXTRACELLULAR ENZYME OF a-AMYLASE FROM INDIGENOUS INDONESIAN MESOPHILIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Puji Lestari

    2013-04-01

    Full Text Available Amylase enzyme has a great significance for industrial usages in  Indonesia. However, this enzyme is still imported. The use of bacteria in biotechnological process of industrial products such as enzyme production has stimulated the exploration of extracellular amylase producing  bacteria. This study aimed to identify and analyze the potential use of amylolytic bacterial enzymes for hydrolyzing cassava starch. Two bacterial isolates, i.e. MII-10 and DKW-8 originated from Indonesia soil were identified based on their morphological, physiological and biochemical properties according to the standard protocol. The isolates were then  cultivated on fermentation medium and their growth pattern and  enzymatic assays were observed. The acetone-precipitated crude enzyme harvested based on predetermined cultivation time was used for  enzymatic hydrolysis product characterization on cassava starch using thin layer chromatography (TLC. The results showed that the mesophilicbacteria isolates (MII-10 and DKW-8 were belonged to Bacillus licheniformis. The maximum bacterial cell growth and enzyme activity were reached at 48 hours after incubation. The MII-10 isolate was found more stable than DKW-8 in producing amylase enzyme. Amylase produced by the MII-10 and DKW- 8 isolates was identified to be an endo-a-amylase as confirmed by oligosaccharides and dextrin of the random hydrolysisproducts. Relatively high dextrose equivalence (DE value of a-amylase of MII-10 (DE of 9.96 suggests that the enzyme is prospective for  saccharification of starchy material in glucose syrup industry.

  16. Nano-TiO2 affects Cu speciation, extracellular enzyme activity, and bacterial communities in sediments.

    Science.gov (United States)

    Fan, Wenhong; Liu, Tong; Li, Xiaomin; Peng, Ruishuang; Zhang, Yilin

    2016-11-01

    In aquatic ecosystems, titanium dioxide nanoparticles (nano-TiO2) coexist with heavy metals and influence the existing forms and toxicities of the metal in water. However, limited information is available regarding the ecological risk of this coexistence in sediments. In this study, the effect of nano-TiO2 on Cu speciation in sediments was investigated using sequential extraction. The microcosm approach was also employed to analyze the effects of the coexistence of nano-TiO2 and Cu on extracellular enzyme activity and bacterial communities in sediments. Results showed that nano-TiO2 decreased the organic matter-bound fraction of Cu and increased the corresponding residual fraction Cu. As a result, speciation of exogenous Cu in sediments changed. During the course of the 30-day experiment, the presence of nano-TiO2 did not affect Cu-induced changes in bacterial community structure. However, the coexistence of nano-TiO2 and Cu restrained the activity of bacterial extracellular enzymes, such as alkaline phosphatase and β-glucosidase. The degree of inhibition also varied because of the different properties of extracellular enzymes. This research highlighted the importance of understanding and predicting the effects of the coexistence of nanomaterials and other pollutants in sediments.

  17. Microbial keratinases: industrial enzymes with waste management potential.

    Science.gov (United States)

    Verma, Amit; Singh, Hukum; Anwar, Shahbaz; Chattopadhyay, Anirudha; Tiwari, Kapil K; Kaur, Surinder; Dhilon, Gurpreet Singh

    2017-06-01

    Proteases are ubiquitous enzymes that occur in various biological systems ranging from microorganisms to higher organisms. Microbial proteases are largely utilized in various established industrial processes. Despite their numerous industrial applications, they are not efficient in hydrolysis of recalcitrant, protein-rich keratinous wastes which result in environmental pollution and health hazards. This paved the way for the search of keratinolytic microorganisms having the ability to hydrolyze "hard to degrade" keratinous wastes. This new class of proteases is known as "keratinases". Due to their specificity, keratinases have an advantage over normal proteases and have replaced them in many industrial applications, such as nematicidal agents, nitrogenous fertilizer production from keratinous waste, animal feed and biofuel production. Keratinases have also replaced the normal proteases in the leather industry and detergent additive application due to their better performance. They have also been proved efficient in prion protein degradation. Above all, one of the major hurdles of enzyme industrial applications (cost effective production) can be achieved by using keratinous waste biomass, such as chicken feathers and hairs as fermentation substrate. Use of these low cost waste materials serves dual purposes: to reduce the fermentation cost for enzyme production as well as reducing the environmental waste load. The advent of keratinases has given new direction for waste management with industrial applications giving rise to green technology for sustainable development.

  18. Identification of enzymes responsible for extracellular alginate depolymerization and alginate metabolism in Vibrio algivorus.

    Science.gov (United States)

    Doi, Hidetaka; Tokura, Yuriko; Mori, Yukiko; Mori, Kenichi; Asakura, Yoko; Usuda, Yoshihiro; Fukuda, Hiroo; Chinen, Akito

    2017-02-01

    Alginate is a marine non-food-competing polysaccharide that has potential applications in biorefinery. Owing to its large size (molecular weight >300,000 Da), alginate cannot pass through the bacterial cell membrane. Therefore, bacteria that utilize alginate are presumed to have an enzyme that degrades extracellular alginate. Recently, Vibrio algivorus sp. SA2(T) was identified as a novel alginate-decomposing and alginate-utilizing species. However, little is known about the mechanism of alginate degradation and metabolism in this species. To address this issue, we screened the V. algivorus genomic DNA library for genes encoding polysaccharide-decomposing enzymes using a novel double-layer plate screening method and identified alyB as a candidate. Most identified alginate-decomposing enzymes (i.e., alginate lyases) must be concentrated and purified before extracellular alginate depolymerization. AlyB of V. algivorus heterologously expressed in Escherichia coli depolymerized extracellular alginate without requiring concentration or purification. We found seven homologues in the V. algivorus genome (alyB, alyD, oalA, oalB, oalC, dehR, and toaA) that are thought to encode enzymes responsible for alginate transport and metabolism. Introducing these genes into E. coli enabled the cells to assimilate soluble alginate depolymerized by V. algivorus AlyB as the sole carbon source. The alginate was bioconverted into L-lysine (43.3 mg/l) in E. coli strain AJIK01. These findings demonstrate a simple and novel screening method for identifying polysaccharide-degrading enzymes in bacteria and provide a simple alginate biocatalyst and fermentation system with potential applications in industrial biorefinery.

  19. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input

    DEFF Research Database (Denmark)

    Debosz, K.; Rasmussen, Peter Have; Pedersen, A. R.

    1999-01-01

    Temporal variations in soil microbial biomass C concentration and in activity of extracellular enzymes of the cellulolytic complex were investigated in a field experiment after eight years of cultivation with either low organic matter input (low-OM) or high organic matter input (high-OM). The cul......Temporal variations in soil microbial biomass C concentration and in activity of extracellular enzymes of the cellulolytic complex were investigated in a field experiment after eight years of cultivation with either low organic matter input (low-OM) or high organic matter input (high......-OM). The cultivation systems differed in whether their source of fertiliser was mainly mineral or organic, in whether a winter cover crop was grown, and whether straw was mulched or removed. Sampling occurred at approximately monthly intervals, over a period of two years. Distinct temporal variations in microbial......) and an endocellulase activity of 44.2 +/- 1.1 nmol g(-1) h(-1). (C) 1999 Elsevier Science B.V. All rights reserved....

  20. Effect of Pesticides on soil microbial and enzyme activity

    Institute of Scientific and Technical Information of China (English)

    WANG Lan; LI Xiao-hui

    2008-01-01

    Objective Pesticides has gain an increasing awareness because of it is becoming a serious environmental problem and come to threaten the health of humanbeing. The effect of five pesticides (zineb, copforce, the mixture of earbendazim and mancozeb, hymexazol) on soil bacteria, fungi, actinomyces, and Five specific enzymes were chosen for investigation (urease, dehydrogenase, invertase, acid phosphates and protease). Methods The enumeration of the soil micro flora was done by the dilution plate method; The enzyme activity was determined by traditional methods. Shannon-Wiener index as well as 16S rRNA-PCR amplification and DGGE fingerprinting was used for detection of shift in microbial community diversity in pesticides contaminated agricultural soil. Results The outcome showed that the microbial diversity was significantly changed after the application of pesticides, the effect of pesticides on microbe had a order from top to bottom:bacteria-actinomyces-fungi. Conclusions Our results indicate that the use of the pesticides hymexazol resulted in an altered soil community structure, in particular for the actinomyces. Invertase was markedly inhibited by hymexazol, zineb, carbendazim and mancozeb and the inhibiting rates were varied between 30.30 % and 21.21%;Urease activity was also inhibited significantly by hymexazol, the inhibiting rate was 37.67%;Protease activity was markedly inhibited by zineb and hymexazol, the inhibiting rates were 27.27 % and 18.18 % respectively; Phosphates activity was inhibited significantly by hymexazol, zineb, earbendazim and mancozeb, the inhibiting rates were range from 22.12 %-3.54 %; Dehydrogenase activity was not significantly affected by pesticides. Meanwhile, the correlation of all indexes were analyzed, the data suggested that all indexes existed certain correlation.

  1. Production of microbial enzymes using brewers spent grain

    Energy Technology Data Exchange (ETDEWEB)

    Okita, H.; Yamashita, H.; Yabuuchi, S.

    1985-01-01

    Brewers spent grain was used as the raw material for production of three extracellular enzymes, ..cap alpha..-amylase, alkaline protease, and lichenase, by Bacillus licheniformis. The basal medium was composed of wet spent grain (about 80% moisture) and 40 mM phosphate buffer, pH 7.0 (1:5-10, w/v). For ..cap alpha..-amylase production by strain No. 18, 0.5% corn oil was added to the basal medium, and the maximum activity (66 units/ml) was found in the culture solution of the 4th day of incubation at 45 degrees C. Alkaline protease from strain H-9 was produced in the basal medium supplemented with 2 mM CaCL/sub 2/ and 10mM sodium citrate. The maximum activity during incubation at 35 degrees C was 7.2 units/ml on the 4th day. On the other hand, lichenase was produced sufficiently in the basal medium by strain Y-25, and the activity reached the level of 20 units/ml on the 3rd day of incubation at 30 degrees C. This enzyme preparation could also hydrolyze ..beta..-glucans from malt and beer. 15 references.

  2. Recovery of Extracellular Lipolytic Enzymes from Macrophomina phaseolina by Foam Fractionation with Air

    Directory of Open Access Journals (Sweden)

    Claudia Schinke

    2013-01-01

    Full Text Available Macrophomina phaseolina was cultivated in complex and simple media for the production of extracellular lipolytic enzymes. Culture supernatants were batch foam fractionated for the recovery of these enzymes, and column design and operation included the use of P 2 frit (porosity 40 to 100 μm, air as sparging gas at variable flow rates, and Triton X-100 added at the beginning or gradually in aliquots. Samples taken at intervals showed the progress of the kinetic and the efficiency parameters. Best results were obtained with the simple medium supernatant by combining the stepwise addition of small amounts of the surfactant with the variation of the air flow rates along the separation. Inert proteins were foamed out first, and the subsequent foamate was enriched in the enzymes, showing estimated activity recovery (R, enrichment ratio (E, and purification factor (P of 45%, 34.7, and 2.9, respectively. Lipases were present in the enriched foamate.

  3. Recovery of Extracellular Lipolytic Enzymes from Macrophomina phaseolina by Foam Fractionation with Air.

    Science.gov (United States)

    Schinke, Claudia; Germani, José Carlos

    2013-01-01

    Macrophomina phaseolina was cultivated in complex and simple media for the production of extracellular lipolytic enzymes. Culture supernatants were batch foam fractionated for the recovery of these enzymes, and column design and operation included the use of P 2 frit (porosity 40 to 100  μ m), air as sparging gas at variable flow rates, and Triton X-100 added at the beginning or gradually in aliquots. Samples taken at intervals showed the progress of the kinetic and the efficiency parameters. Best results were obtained with the simple medium supernatant by combining the stepwise addition of small amounts of the surfactant with the variation of the air flow rates along the separation. Inert proteins were foamed out first, and the subsequent foamate was enriched in the enzymes, showing estimated activity recovery (R), enrichment ratio (E), and purification factor (P) of 45%, 34.7, and 2.9, respectively. Lipases were present in the enriched foamate.

  4. Screening for Extracellular Lipase Enzymes with Transesterification Capacity in Mucoromycotina Strains

    Directory of Open Access Journals (Sweden)

    Alexandra Kotogán

    2014-01-01

    Full Text Available In this study, 169 zygomycetes fungal strains including some cold-tolerant isolates were screened for their extracellular lipolytic activity towards tributyrin. Nineteen of them were outstanding in their enzyme production as they developed the largest lipolytic halo around the colonies in plate tests. Mortierella alpina, M. echinosphaera, Mucor corticolus, Rhizomucor miehei, Rhizopus oryzae, Rh. stolonifer, Umbelopsis autotrophica, U. isabellina, U. ramanniana var. angulispora and U. versiformis were selected for further studies to characterise their lipolytic enzyme production in detail. In these assays, effect of Tween 80 and palm, soybean, sunflower, olive, extra virgin olive, wheat germ, corn germ, sesame seed, pumpkin seed and cottonseed oils on the enzyme activities was investigated, and wheat bran-based submerged and solid-state fermentations were also tested. Tween 80 and olive oil proved to be efficient inductors for lipolytic enzyme production, which was also enhanced when wheat bran was used as support. Addition of mineral salts and olive oil to the solid fermentation medium resulted in at least 1.5-fold increment in the enzyme activities of the crude extracts. Organic synthesis was also assayed by the selected lipases, in which enzymes from the fungi R. miehei, Rh. stolonifer and M. echinosphaera gave the best yields during transesterification reactions between p-nitrophenyl palmitate and ethanol.

  5. Metal affinity enrichment increases the range and depth of proteome identification for extracellular microbial proteins

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Korin [Lawrence Livermore National Laboratory (LLNL); Erickson, Brian K [ORNL; Mueller, Ryan [University of California, Berkeley; Singer, Steven [Lawrence Livermore National Laboratory (LLNL); Verberkmoes, Nathan C [ORNL; Hwang, Mona [Lawrence Livermore National Laboratory (LLNL); Thelen, Michael P. [University of California, Berkeley; Hettich, Robert {Bob} L [ORNL

    2012-01-01

    Many key proteins, such as those involved in cellular signaling or transcription, are difficult to measure in microbial proteomic experiments due to the interfering presence of more abundant, dominant proteins. In an effort to enhance the identification of previously undetected proteins, as well as provide a methodology for selective enrichment, we evaluated and optimized immobilized metal affinity chromatography (IMAC) coupled with mass spectrometric characterization of extracellular proteins from an extremophilic microbial community. Seven different metals were tested for IMAC enrichment. The combined results added 20% greater proteomic depth to the extracellular proteome. Although this IMAC enrichment could not be conducted at the physiological pH of the environmental system, this approach did yield a reproducible and specific enrichment of groups of proteins with functions potentially vital to the community, thereby providing a more extensive biochemical characterization. Notably, 40 unknown proteins previously annotated as hypothetical were enriched and identified for the first time. Examples of identified proteins includes a predicted TonB signal sensing protein homologous to other known TonB proteins and a protein with a COXG domain previously identified in many chemolithoautotrophic microbes as having a function in the oxidation of CO.

  6. Enzymic synthesis of gastrodin through microbial transformation and purification of gastrodin biosynthesis enzyme.

    Science.gov (United States)

    Zhu, Hongli; Dai, Penggao; Zhang, Wei; Chen, Erfang; Han, Wenxian; Chen, Chao; Cui, Yali

    2010-01-01

    Gastrodin, a major bioactive component of a famous Chinese herb Gastrodia elata B1., has diverse pharmaceutical functions. It is usually obtained by extraction from a plant or through chemical synthesis. However, traditional extraction from Gastrodia elata B1. is time and money consuming, while chemical synthesis is a complicated procedure and always leads to very serious environmental pollution. Thus it is urgent to explore a new gastrodin source which is more economical and environmental. The present study reports a novel approach to the production of gastrodin through biosynthesis and microbial transformation. Rhizopus chinensis SAITO AS3.1165 was screened from about 50 fungal and bacterial strains and found capable of biotransforming p-hydroxybenzaldehyde into gastrodin for use in gastrodin production. A series of purification steps including (NH(4))(2)SO(4) precipitation, ion exchange chromatography and gel filtration column chromatography was successfully used for purification of the gastrodin biosynthesis enzyme (GBE). The purity of GBE was above 95% and its molecular weight was about 63.2 kDa. We further characterized GBE's function condition, and found that the optimal temperature was 50 °C and the optimum pH 6.0. The enzyme was stable at a temperature lower than 50 °C and a pH between 6.0 and 9.0. The result indicated that gastrodin could be successfully synthesized by microbial transformation, providing a new approach for gastrodin production.

  7. Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems.

    Science.gov (United States)

    Yang, Qingxiang; Zhang, Hao; Li, Xueling; Wang, Zhe; Xu, Ying; Ren, Siwei; Chen, Xuanyu; Xu, Yuanyuan; Hao, Hongxin; Wang, Hailei

    2013-02-01

    The abilities of yeasts to produce different extracellular enzymes and their distribution characteristics were studied in municipal, inosine fermentation, papermaking, antibiotic fermentation, and printing and dyeing wastewater treatment systems. The results indicated that of the 257 yeasts, 16, 14, 55, and 11 produced lipase, protease, manganese dependant peroxidase (MnP), and lignin peroxidase (LiP), respectively. They were distributed in 12 identified and four unidentified genera, in which Candida rugosa (AA-M17) and an unidentified Saccharomycetales (AA-Y5), Pseudozyma sp. (PH-M15), Candida sp. (MO-Y11), and Trichosporon montevideense (MO-M16) were shown to have the highest activity of lipase, protease, Mnp, and LiP, respectively. No yeast had amylase, cellulose, phytase, or laccase activity. Although only 60 isolates produced ligninolytic enzymes, 249 of the 257 yeasts could decolorize different dyes through the mechanism of biodegradation (222 isolates) or bio-sorption. The types of extracellular enzymes that the yeasts produced were significantly shaped by the types of wastewater treated.

  8. Polycyclic aromatic hydrocarbon biodegradation and extracellular enzyme secretion in agitated and stationary cultures of Phanerochaete chrysosporium

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The extracellular enzyme secretion and biodegradation of polycyclic aromatic hydrocarbons (PAHs) were studied in agitated and shallow stationary liquid cultures of Phanerochaete chrysosporium. Veratryl alcohol and Tween80 were added to cultures as lignin peroxidase (LiP) and manganese peroxidase (MnP) inducer, respectively. Shallow stationary cultures were suitable for the production of enzyme, whereas agitated cultures enhanced overall biodegradation by facilitating interphase mass transfer of PAH into aqueous phases. The use of a LiP stimulator, veratryl alcohol, did not increase PAH degradation but significantly enhanced LiP activity. In contrast, Tween80 increased both MnP secretion and PAH degradation in shallow stationary cultures. On the other hand, high PAH degradation was observed in agitated cultures in the absence of detectable LiP and MnP activities. The results suggested that extracellular peroxidase activities are not directly related to the PAH degradation, and the increased solubility rather than enzyme activity may be more important in the promotion of PAH degradation.

  9. Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals.

    Science.gov (United States)

    Gnanamani, A; Kavitha, V; Radhakrishnan, N; Suseela Rajakumar, G; Sekaran, G; Mandal, A B

    2010-09-01

    The present study demonstrates hexavalent chromium reduction and trivalent chromium tolerance behavior of marine Bacillus sp., MTCC 5514 through its extracellular enzyme reductase and biosurfactants production. The isolate reduces 10-2000 mg/L of hexavalent chromium to trivalent chromium with in 24-96 h respectively and the release of extracellular chromium reductase, found responsible for the reduction. Upon reduction, the concentration of trivalent chromium in the medium found comparatively less. Experimental results reveal, biosurfactants activity found responsible for the less concentration of Cr(III). Hypothetically, trivalent chromium upon formation get entrapped in the micelle of biosurfactants, prevents microbial cells from exposure towards trivalent chromium. Thus, the chosen isolate exhibit tolerance and growth with the increasing concentration of chromium.

  10. In vitro engineering of microbial enzymes with multifarious applications: prospects and perspectives.

    Science.gov (United States)

    Joshi, Swati; Satyanarayana, Tulasi

    2015-01-01

    The discovery of a novel enzyme from a microbial source takes anywhere between months to years, and therefore, there has been an immense interest in modifying the existing microbial enzymes to suit the present day needs of the industry. The redesigning of industrially useful enzymes for improving their performance has become a challenge because bioinformatics databases have been revealing new facts on a day-to-day basis. Modification of the existing enzymes has become a trend for fine tuning of biocatalysts in the biotech industry. Hydrolases are employed in pharmaceutical, biofuel, detergent, food and feed industries that significantly contribute to the global annual revenue, and therefore, the emphasis has been on engineering them. Although a large data is accumulating on making alterations in microbial enzymes, there is a lack of definite information on redesigning industrial enzymes. This review focuses on the recent developments in improving the characteristics of various biotechnologically important enzymes.

  11. Photobiomodulation on human annulus fibrosus cells during the intervertebral disk degeneration: extracellular matrix-modifying enzymes.

    Science.gov (United States)

    Hwang, Min Ho; Kim, Kyoung Soo; Yoo, Chang Min; Shin, Jae Hee; Nam, Hyo Geun; Jeong, Jin Su; Kim, Joo Han; Lee, Kwang Ho; Choi, Hyuk

    2016-05-01

    Destruction of extracellular matrix (ECM) leads to degeneration of the intervertebral disk (IVD), which is a major contributor to many spine disorders. IVD degeneration is induced by pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), which are secreted by immune cells, including macrophages and neutrophils. The cytokines modulate ECM-modifying enzymes such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in human annulus fibrosus (AF) cells. The resulting imbalance in catabolic and anabolic enzymes can cause generalized back, neck, and low back pain (LBP). Photobiomodulation (PBM) is known to regulate inflammatory responses and wound healing. The aim of this study was to mimic the degenerative IVD microenvironment, and to investigate the effect of a variety of PBM conditions (wavelength: 635, 525, and 470 nm; energy density: 16, 32, and 64 J/cm(2)) on the production of ECM-modifying-enzymes by AF cells under degenerative conditions induced by macrophage-conditioned medium (MCM), which contains pro-inflammatory cytokines such as TNF-α and IL-β secreted by macrophage during the development of intervertebral disk inflammation. We showed that the MCM-stimulated AF cells express imbalanced ratios of TIMPs (TIMP-1 and TIMP-2) and MMPs (MMP-1 and MMP-3). PBM selectively modulated the production of ECM-modifying enzymes in AF cells. These results suggest that PBM can be a therapeutic tool for degenerative IVD disorders.

  12. Variability in the production of extracellular enzymes by entomopathogenic fungi grown on different substrates

    Directory of Open Access Journals (Sweden)

    Elio Gomes Fernandes

    2012-06-01

    Full Text Available Entomopathogenic fungi are important controllers of pest-insects populations in agricultural production systems and in natural environment. These fungi have enzymatic machinery which involve since the recognition and adherence of spores in their hosts culminating with infection and death of these insects. The main objective of this study was to analyzed extracellular enzyme production of the fungi strains Beauveria bassiana, Metarhizium anisopliae and Paecilomyces sp when cultured on substrates. These fungi were grown in minimal media containing specific substrates for the analysis of different enzymes such as amylases, cellulases, esterases, lipases, proteases (gelatin and caseinase, pectinases and cuticles of Musca domestica larvae and adults. All the assays were performed with and without the presence of dextrose in the culture media. The quantification of enzyme activity was performed by the ratio of halo / colony (H/C and the results subjected to variance analysis level of 5% (ANOVA followed by post-Tukey test. All strains were positive for lipase and also they showed a high significant enzyme production for gelatin at concentrations of 4 and 1%. B. bassiana and Paecilomyces sp. were positive for amylase, pectinase and caseinase, and only Paecilomyces sp. showed cellulase activity.

  13. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode.

    Science.gov (United States)

    Yu, Yang-Yang; Guo, Chun Xian; Yong, Yang-Chun; Li, Chang Ming; Song, Hao

    2015-12-01

    Nitrogen doped carbon nanoparticles (NDCN) were applied to modify the carbon cloth anodes of microbial fuel cells (MFCs) inoculated with Shewanella oneidensis MR-1, one of the most well-studied exoelectrogens. Experimental results demonstrated that the use of NDCN increased anodic absorption of flavins (i.e., the soluble electron mediator secreted by S. oneidensis MR-1), facilitating shuttle-mediated extracellular electron transfer. In addition, we also found that NDCN enabled enhanced contact-based direct electron transfer via outer-membrane c-type cytochromes. Taken together, the performance of MFCs with the NDCN-modified anode was enormously enhanced, delivering a maximum power density 3.5 times' higher than that of the MFCs without the modification of carbon cloth anodes.

  14. Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge.

    Science.gov (United States)

    Ramesh, A; Lee, D J; Lai, J Y

    2007-03-01

    This study extracted the soluble microbial products and loosely bound and tightly bound extracellular polymeric substances (EPS) from suspended sludge from a membrane bioreactor, original and aerobically/anaerobically digested, and compared their fouling potentials on a microfiltration membrane. The resistance of cake layer accounts for 95-98% of the total filtration resistances when filtering the whole sludges, with anaerobically digested sludge presenting the highest resistance among the three tested sludges. The tightly bound EPS has the highest potential to foul the membrane; however, the loosely bound EPS contribute most of the filtration resistances of the whole sludges. The foulants corresponding to the irreversible fouling have chemical fingerprints similar to those from loosely bound EPS, which have a greater predilection to proteins and humic substances than to polysaccharides.

  15. Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: a review.

    Science.gov (United States)

    Kunacheva, Chinagarn; Stuckey, David C

    2014-09-15

    Effluents from biological processes contain a wide range of complex organic compounds, including soluble microbial products (SMP) and extracellular polymers (ECP), released during bacteria metabolism in mixed culture in bioreactors. It is important to clearly identify the primary components of SMPs and ECPs in order to understand the fundamental mechanisms of biological activity that create these compounds, and how to reduce these compounds in the effluent. In addition, these compounds constitute the main foulants in membrane bioreactors which are being used more widely around the world. A review on the extraction of ECP, characterization, and identification of SMPs and ECPs is presented, and we summarize up-to-date pretreatments and analytical methods for SMPs. Most researchers have focused more on the overall properties of SMPs and ECPs such as their concentrations, molecular weight distribution, aromaticity, hydrophobic and hydrophilic properties, biodegradability, and toxicity characteristics. Many studies on the identification of effluent SMPs show that most of these compounds were not present in the influent, such as humic acids, polysaccharides, proteins, nucleic acids, organic acids, amino acids, exocellular enzymes, structural components of cells and products of energy metabolism. A few groups of researchers have been working on the identification of compounds in SMPs using advanced analytical techniques such as GC-MS, LC-IT-TOF-MS and MALDI-TOF-MS. However, there is still considerably more work needed to be done analytically to fully understand the chemical characteristics of SMPs and ECPs.

  16. Role of melanin in release of extracellular enzymes and selection of aggressive isolates of Bipolaris sorokiniana in barley.

    Science.gov (United States)

    Chand, Ramesh; Kumar, Manoj; Kushwaha, Chanda; Shah, Kavita; Joshi, Arun K

    2014-08-01

    Eighteen barley isolates of Bipolaris sorokiniana belonging to wild and clonal type of black, mixed and white subpopulations were quantitatively assayed for their melanin content and aggressiveness with respect to production of some of the extracellular enzymes such as cellulase, pectinase, amylase and protease. Cellulase and pectinase constituted major portion of the enzymes recovered from the black, mixed and white isolates. Enzyme production and aggressiveness were relatively higher in melanin devoid or low melanin isolates. The melanin deficient isolates were also differentiated from black and mixed isolates on the basis of variation in internal transcribed spacer region of the ribosomal DNA. Higher enzyme productions positively correlated with area under disease progress curve (AUDPC) and lesion development. Melanin content was negatively correlated with extracellular enzymes and aggressiveness of the isolates. Based on melanin content, lesion size, AUDPC and extracellular enzymes, the isolates were grouped in two major clusters (I and II) with further division of cluster II into two sub-clusters (II-A and II-B). The results appears to indicate a possible role of melanin in release of extracellular enzymes and hence in evolution and selection of aggressive isolates of B. sorokiniana in barley.

  17. Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems

    Directory of Open Access Journals (Sweden)

    Juan Carlos Camacho-Chab

    2016-08-01

    Full Text Available Coastal zones support fisheries that provide food for humans and feed for animals. The decline of fisheries worldwide has fostered the development of aquaculture. Recent research has shown that extracellular polymeric substances (EPS synthesized by microorganisms contribute to sustainable aquaculture production, providing feed to the cultured species, removing waste and contributing to the hygiene of closed systems. As ubiquitous components of coastal microbial habitats at the air–seawater and seawater–sediment interfaces as well as of biofilms and microbial aggregates, EPS mediate deleterious processes that affect the performance and productivity of aquaculture facilities, including biofouling of marine cages, bioaccumulation and transport of pollutants. These biomolecules may also contribute to the persistence of harmful algal blooms (HABs and their impact on cultured species. EPS may also exert a positive influence on aquaculture activity by enhancing the settling of aquaculturally valuable larvae and treating wastes in bioflocculation processes. EPS display properties that may have biotechnological applications in the aquaculture industry as antiviral agents and immunostimulants and as a novel source of antifouling bioproducts.

  18. Partial biochemical characterization of crude extract extracellular chitinase enzyme from Bacillus subtilis B 298

    Science.gov (United States)

    Lestari, P.; Prihatiningsih, N.; Djatmiko, H. A.

    2017-02-01

    Extraction and characterization of extracellular chitinase from Bacillus subtilis B 298 have been done. Growth curve determination of B. subtilis B 298, production curve determination of crude extract chitinase from B. subtilis B 298, and partial biochemical characterization of crude extract chitinase have been achieved in this study. Optimum growth of B. subtilis B 298 was achieved at logarithmic phase within 9 hours incubation time, so it was used as inoculum for enzyme production. According to production curve of the enzyme, it was known that incubation time which gave the highest chitinase activity of 15 hours with activity of 6.937 U/mL respectively. Effect of various temperatures on chitinase activity showed that optimum activity was achieved at 40°C with an activity of 5.764 U/mL respectively. Meanwhile, the optimum pH for chitinase activity was achieved at pH of 5.0 with an activity of 6.813 U/mL respectively. This enzyme was then classified as metalloenzyme due to the decline of the activity by EDTA addition. All divalent cations tested acted as inhibitors.

  19. Effect of herbizid and touchdown herbicides on soil fungi and on production of some extracellular enzymes.

    Science.gov (United States)

    El-Said, A H M; Abdel-Hafez, S I I; Saleem, A

    2005-01-01

    Glucophilic and cellulose-decomposing fungi were significantly reduced in soil samples treated with 0.019-0.152 mg a.i./kg soil of the herbicides Herbizid and Touchdown. The decrease was regularly correlated with the doses of the two herbicides and persisted till the end of the experiment (12 weeks). The isolated fungi were found to be able to produce hydrolytic extracellular enzymes in solid media but with variable capabilities. The ability to produce enzymes was adversily affected by the incorporation of herbicides in culture media. Lower doses of herbicides were occasionally promotive to enzyme production and mycelial growth of some fungi. Incorporation of 50 ppm of Herbizid and Touchdown significantly activated amylase production and mycelial dry weight in cultures of Fusarium oxysporum, Mucor hiemalis and Penicillium chrysogenum. There was a significant increase in C1-cellulase produced by F. oxysporum and P. aurantiogriseum when cultures were treated with 50, 100 and 200 ppm of Herbizid which induced also more Cx-cellulase production by P. chrysogenum. Lipase and protease production was always lower in treated than in control fungal cultures.

  20. Extracellular enzyme activities in a tropical mountain rainforest region of southern Ecuador affected by low soil P status and land-use change

    Science.gov (United States)

    Tischer, Alexander; Blagodatskaya, Evgenia; Ute, Hamer

    2014-05-01

    Little is known about the enzymatic response of microorganisms in soils having a low P status and being subjected to global change phenomena, such as forest disturbance and land-use change. Along a land-use sequence (natural forest - young pasture - old pasture - abandoned pasture - shrubland) in the Andes of southern Ecuador mineral topsoils of Cambisols / Umbrisols were investigated. We tested whether the activities of the six hydrolytic enzymes (cellobiohydrolase, β-glucosidase, N-acetylglucosaminidase, α-glucosidase, xylanase, acid phosphomonoesterase) were affected by nutrient status and land-use induced alterations in soil pH (pHH2O from 3.7 to 5.2), resource quantity and quality (e.g. a SOC:N:P ratio from 182:13:1 to 1050:38:1) and microbial community structure (as monitored by phospholipid fatty acids). Microbial production of acid phosphatase responded to the low P status of the sites by a higher investment in the acquisition of P compared to C. We determined three major drivers of enzyme activities: 1.) Microbial demand for P regulated the production of acid phosphatase, provided that N and C were available. At the natural forest site the two-fold higher specific activity of acid phosphatase pointed to a high microbial P-demand, whereas the production of acid phosphatase was constrained by the availability of N and DOC after pasture abandonment. 2.) Microbial biomass that was controlled by pH and resource availability (total soil N (organic and inorganic N), organic P (Bray-fraction)) was the main driver for cellobiohydrolase, β-glucosidase and N-acetylglucosaminidase activities. 3.) Substrate induction due to increased litter inputs of herbaceous plant species seemed to regulate α-glucosidase and xylanase activities during secondary succession. In contrast, alterations in the abundance of microbial groups affected the variation in extracellular enzyme activities only marginally. At the level of broadly defined microbial groups (PLFA), our results

  1. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere.

    Science.gov (United States)

    Mallikharjuna Rao, K L N; Siva Raju, K; Ravisankar, H

    2016-01-01

    Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30°C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco.

  2. The Effects of Applying Organic Matter in Wind Blown Soil on Microbial Biomass and Enzyme Activity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Field experiment was conducted to study the effect of applying organic matter in wind blown soil on microbial biomass and enzyme activity.The results showed that microbial biomass and enzyme activity keep dynamic changes during wheat growing season in wind blown soil,and reached the peak level in wheat booting stage.Compared with chemical fertilizer,all the other treatments could increase the microbial biomass in different degree,the same as catalsae and alkaline phosphatase activity,But urease activity was slightly difference from them.

  3. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    Science.gov (United States)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse

  4. Hydrogen peroxide induce modifications of human extracellular superoxide dismutase that results in enzyme inhibition

    Directory of Open Access Journals (Sweden)

    Randi H. Gottfredsen

    2013-01-01

    Full Text Available Superoxide dismutase (EC-SOD controls the level of superoxide in the extracellular space by catalyzing the dismutation of superoxide into hydrogen peroxide and molecular oxygen. In addition, the enzyme reacts with hydrogen peroxide in a peroxidase reaction which is known to disrupt enzymatic activity. Here, we show that the peroxidase reaction supports a site-specific bond cleavage. Analyses by peptide mapping and mass spectrometry shows that oxidation of Pro112 supports the cleavage of the Pro112–His113 peptide bond. Substitution of Ala for Pro112 did not inhibit fragmentation, indicating that the oxidative fragmentation at this position is dictated by spatial organization and not by side-chain specificity. The major part of EC-SOD inhibited by the peroxidase reaction was not fragmented but found to encompass oxidations of histidine residues involved in the coordination of copper (His98 and His163. These oxidations are likely to support the dissociation of copper from the active site and thus loss of enzymatic activity. Homologous modifications have also been described for the intracellular isozyme, Cu/Zn-SOD, reflecting the almost identical structures of the active site within these enzymes. We speculate that the inactivation of EC-SOD by peroxidase activity plays a role in regulating SOD activity in vivo, as even low levels of superoxide will allow for the peroxidase reaction to occur.

  5. Bioremediation of Direct Blue 14 and Extracellular Ligninolytic Enzyme Production by White Rot Fungi: Pleurotus Spp.

    Directory of Open Access Journals (Sweden)

    M. P. Singh

    2013-01-01

    Full Text Available In the present investigation, four species of white rot fungi (Pleurotus, that is, P. flabellatus, P. florida, P. ostreatus and P. sajor-caju were used for decolorization of direct blue 14 (DB14. Among all four species of Pleurotus, P. flabellatus showed the fastest decolorization in petri plates on different concentration, that is, 200 mg/L, 400 mg/L, and 600 mg/L. All these four species were also evaluated for extracellular ligninolytic enzymes (laccase and manganese peroxidase production and it was observed that the twelve days old culture of P. flabellatus showed the maximum enzymatic activity, that is, 915.7 U/mL and 769.2 U/mL of laccase and manganese peroxidase, respectively. Other three Pleurotus species took more time for dye decolorization and exhibited less enzymatic activities. The rate of decolorization of DB14 dye solution (20 mg/L by crude enzymes isolated from P. flabellatus was very fast, and it was observed that up to 90.39% dye solution was decolorized in 6 hrs of incubation.

  6. Application of marine microbial enzymes in the food and pharmaceutical industries.

    Science.gov (United States)

    Zhang, Chen; Kim, Se-Kwon

    2012-01-01

    Over billions of years, the ocean is regarded as the origin of life on Earth, and the ocean includes the largest habitats hosting the most life forms. Competition among microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to the evolution. The evolution prompts the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work done on the occurrence and bioprocessing of marine microbial enzymes. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Involvement of extracellular and intracellular enzymes of Ceriporia sp. ZLY-2010 for biodegradation of polychlorinated biphenyls (PCBs).

    Science.gov (United States)

    Hong, Chang-Young; Kim, Ho-Yong; Lee, Su-Yeon; Kim, Seon-Hong; Lee, Soo-Min; Choi, In-Gyu

    2013-01-01

    This study examined the interrelation between the biodegradation of polychlorinated biphenyls (PCBs) by Ceriporia sp. ZLY-2010 and its fungal enzyme systems. The degradation rates of Aroclor 1254 and 1260 were 29.01% on day 5 and 36.80% on day 10, respectively. MnP (Manganese dependent peroxidase) and laccase activities showed the greatest increases in the samples containing Aroclors, indicating that extracellular enzymes of Ceriporia sp. ZLY-2010 were affected by the addition of Aroclors. However, the relationship between the biodegradation rate and extracellular enzymes might be obscured by the complexity of the biodegradation process. Cytochrome P450 monooxygenase was inhibited and the biodegradation rate of the Aroclor decreased by adding the inhibitor 1-aminobenzotriazole. Two-dimensional gel electrophoresis showed that intracellular enzymes play a significant role in the biodegradation of Aroclor. Complex extracellular and intracellular enzyme systems in Ceriporia sp. ZLY-2010 play an important role in degrading PCBs. Physiological changes of Ceriporia sp. ZLY-2010 caused by PCBs appeared to affect biodegradation of PCBs. However, it is necessary to further study the unidentified enzymes related to the biodegradation of Aroclor.

  8. A broader view: microbial enzymes and their relevance in industries, medicine, and beyond.

    Science.gov (United States)

    Gurung, Neelam; Ray, Sumanta; Bose, Sutapa; Rai, Vivek

    2013-01-01

    Enzymes are the large biomolecules that are required for the numerous chemical interconversions that sustain life. They accelerate all the metabolic processes in the body and carry out a specific task. Enzymes are highly efficient, which can increase reaction rates by 100 million to 10 billion times faster than any normal chemical reaction. Due to development in recombinant technology and protein engineering, enzymes have evolved as an important molecule that has been widely used in different industrial and therapeutical purposes. Microbial enzymes are currently acquiring much attention with rapid development of enzyme technology. Microbial enzymes are preferred due to their economic feasibility, high yields, consistency, ease of product modification and optimization, regular supply due to absence of seasonal fluctuations, rapid growth of microbes on inexpensive media, stability, and greater catalytic activity. Microbial enzymes play a major role in the diagnosis, treatment, biochemical investigation, and monitoring of various dreaded diseases. Amylase and lipase are two very important enzymes that have been vastly studied and have great importance in different industries and therapeutic industry. In this review, an approach has been made to highlight the importance of different enzymes with special emphasis on amylase and lipase in the different industrial and medical fields.

  9. A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond

    Directory of Open Access Journals (Sweden)

    Neelam Gurung

    2013-01-01

    Full Text Available Enzymes are the large biomolecules that are required for the numerous chemical interconversions that sustain life. They accelerate all the metabolic processes in the body and carry out a specific task. Enzymes are highly efficient, which can increase reaction rates by 100 million to 10 billion times faster than any normal chemical reaction. Due to development in recombinant technology and protein engineering, enzymes have evolved as an important molecule that has been widely used in different industrial and therapeutical purposes. Microbial enzymes are currently acquiring much attention with rapid development of enzyme technology. Microbial enzymes are preferred due to their economic feasibility, high yields, consistency, ease of product modification and optimization, regular supply due to absence of seasonal fluctuations, rapid growth of microbes on inexpensive media, stability, and greater catalytic activity. Microbial enzymes play a major role in the diagnosis, treatment, biochemical investigation, and monitoring of various dreaded diseases. Amylase and lipase are two very important enzymes that have been vastly studied and have great importance in different industries and therapeutic industry. In this review, an approach has been made to highlight the importance of different enzymes with special emphasis on amylase and lipase in the different industrial and medical fields.

  10. Extracellular cellulolytic enzyme system of Aspergillus japonicus: Pt. 2. Purification and characterization of an inducible extracellular. beta. -glucosidase

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Arunik; Kundu, R.K.; Dube, S.; Dube, D.K.

    1988-02-01

    A high molecular weight ..beta..-glucosidase (mol. wt. > 240 000 daltons) was isolated from the culture filtrate of Aspergillus japonicus and was finally purified to 86-fold by alcohol precipitation, gel filtration and ion exchange chromatography on Whatman DE-52. An apparently homogeneous form of the enzyme appeared in the polyacrylamide gel electrophoresis. It is capable of utilizing cellobiose, salicin, o-nitrophenyl-..beta..-D-glucoside (ONPG), methyl-..beta..-D-glucoside and amygdalin effectively as substrates but not arbutin, esculin hydrate and phloridzin. No metal ion is required for its catalytic activity. Hg/sup ++/ and p-chloromercuricbenzoate (PCMB) are strong inhibitors for the enzyme. Nojirimycin and glucono-delta-lactone are two competitive inhibitors of the same enzyme, and nojirimycin is the more potent of the two.

  11. Virulence determinants and production of extracellular enzymes in Enterococcus spp. from surface water sources.

    Science.gov (United States)

    Molale, Lesego Gertrude; Bezuidenhout, Cornelius Carlos

    2016-01-01

    Virulence factors in Enterococcus may be indicative of potential pathogenicity. The aim of this study was to determine the relationship between the presence of clinically relevant virulence genes, in Enterococcus spp. from environmental water, and their in vitro expression. One hundred and twenty-four Enterococcus isolates (seven species), from five surface water systems in the North West Province, South Africa, were screened for the presence of asa1, cylA, esp, gelE and hyl using polymerase chain reaction. The expression of cylA, hyl and gelE was determined by phenotypic assessments. Sixty-five percent of the isolates were positive for one virulence gene and 13% for two or more. Most frequently detected genes were gelE (32%) and cylA (28%). Enterococcal surface protein was absent in all isolates screened. The presence of virulence genes was correlated with their extracellular enzyme production. The results show that a large percentage of these environmental Enterococcus spp. possess virulence factors that could be expressed in vitro. This is a cause for concern and could have implications for individuals using this water for recreational and cultural purposes. Further investigation is required into the sources of these potential pathogenic Enterococcus isolates and measures to minimize their presence in water sources.

  12. Starch modification with microbial alpha-glucanotransferase enzymes.

    Science.gov (United States)

    van der Maarel, Marc J E C; Leemhuis, Hans

    2013-03-01

    Starch is an agricultural raw material used in many food and industrial products. It is present in granules that vary in shape in the form of amylose and amylopectin. Starch-degrading enzymes are used on a large scale in the production of sweeteners (high fructose corn syrup) and concentrated glucose syrups as substrate for the fermentative production of bioethanol and basic chemicals. Over the last two decades α-glucanotransferases (EC 2.4.1.xx), such as branching enzyme (EC 2.4.1.18) and 4-α-glucanotransferase (EC 2.4.1.25), have received considerable attention. These enzymes do not hydrolyze the starch as amylases do. Instead, α-glucanotransferases remodel parts of the amylose and amylopectin molecules by cleaving and reforming α-1,4- and α-1,6-glycosidic bond. Here we review the properties of α-glucanotransferases and discuss the emerging use of these enzymes in the generation of novel starch derivatives.

  13. Microbial hydantoinases--industrial enzymes from the origin of life?

    Science.gov (United States)

    Syldatk, C; May, O; Altenbuchner, J; Mattes, R; Siemann, M

    1999-03-01

    Hydantoinases are valuable enzymes for the production of optically pure D- and L-amino acids. They catalyse the reversible hydrolytic ring cleavage of hydantoin or 5'-monosubstituted hydantoins and are therefore classified in the EC nomenclature as cyclic amidases (EC 3.5.2.). In the EC nomenclature, four different hydantoin-cleaving enzymes are described: dihydropyrimidinase (3.5.2.2), allantoinase (EC 3.5.2.5), carboxymethylhydantoinase (EC 3.5.2.4), and N-methylhydantoinase (EC 3.5.2.14). Beside these, other hydantoinases with known metabolic functions, such as imidase and carboxyethylhydantoinase and enzymes with unknown metabolic function, are described in the literature and have not yet been classified. An important question is whether the distinct hydantoinases, which are frequently classified as L-, D-, and non-selective hydantoinases depending on their substrate specificity and stereoselectivity, are related to each other. In order to investigate the evolutionary relationship, amino acid sequence data can be used for a phylogenetic analysis. Although most of these enzymes only share limited sequence homology (identity enzymes than was assumed earlier. This protein superfamily probably has its origin in the prebiotic conditions of the primitive earth.

  14. Microbial dextran-hydrolyzing enzymes: fundamentals and applications.

    Science.gov (United States)

    Khalikova, Elvira; Susi, Petri; Korpela, Timo

    2005-06-01

    Dextran is a chemically and physically complex polymer, breakdown of which is carried out by a variety of endo- and exodextranases. Enzymes in many groups can be classified as dextranases according to function: such enzymes include dextranhydrolases, glucodextranases, exoisomaltohydrolases, exoisomaltotriohydrases, and branched-dextran exo-1,2-alpha-glucosidases. Cycloisomalto-oligosaccharide glucanotransferase does not formally belong to the dextranases even though its side reaction produces hydrolyzed dextrans. A new classification system for glycosylhydrolases and glycosyltransferases, which is based on amino acid sequence similarities, divides the dextranases into five families. However, this classification is still incomplete since sequence information is missing for many of the enzymes that have been biochemically characterized as dextranases. Dextran-degrading enzymes have been isolated from a wide range of microorganisms. The major characteristics of these enzymes, the methods for analyzing their activities and biological roles, analysis of primary sequence data, and three-dimensional structures of dextranases have been dealt with in this review. Dextranases are promising for future use in various scientific and biotechnological applications.

  15. Use and improvement of microbial redox enzymes for environmental purposes

    Directory of Open Access Journals (Sweden)

    Ballesteros Antonio

    2004-08-01

    Full Text Available Abstract Industrial development may result in the increase of environmental risks. The enzymatic transformation of polluting compounds to less toxic or even innocuous products is an alternative to their complete removal. In this regard, a number of different redox enzymes are able to transform a wide variety of toxic pollutants, such as polynuclear aromatic hydrocarbons, phenols, azo dyes, heavy metals, etc. Here, novel information on chromate reductases, enzymes that carry out the reduction of highly toxic Cr(VI to the less toxic insoluble Cr(III, is discussed. In addition, the properties and application of bacterial and eukaryotic proteins (lignin-modifying enzymes, peroxidases and cytochromes useful in environmental enzymology is also discussed.

  16. Starch modification with microbial alpha-glucanotransferase enzymes

    NARCIS (Netherlands)

    van der Maarel, Marc J. E. C.; Leemhuis, Hans

    2013-01-01

    Starch is an agricultural raw material used in many food and industrial products. It is present in granules that vary in shape in the form of amylose and amylopectin. Starch-degrading enzymes are used on a large scale in the production of sweeteners (high fructose corn syrup) and concentrated glucos

  17. Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis.

    Science.gov (United States)

    Xing, Mei-Ning; Zhang, Xue-Zhu; Huang, He

    2012-01-01

    Feedstock for biofuel synthesis is transitioning to lignocelluosic biomass to address criticism over competition between first generation biofuels and food production. As microbial catalysis is increasingly applied for the conversion of biomass to biofuels, increased import has been placed on the development of novel enzymes. With revolutionary advances in sequencer technology and metagenomic sequencing, mining enzymes from microbial communities for biofuel synthesis is becoming more and more practical. The present article highlights the latest research progress on the special characteristics of metagenomic sequencing, which has been a powerful tool for new enzyme discovery and gene functional analysis in the biomass energy field. Critical enzymes recently developed for the pretreatment and conversion of lignocellulosic materials are evaluated with respect to their activity and stability, with additional explorations into xylanase, laccase, amylase, chitinase, and lipolytic biocatalysts for other biomass feedstocks.

  18. Fire Effects on Microbial Enzyme Activities in Larch Forests of the Siberian Arctic

    Science.gov (United States)

    Ludwig, S.; Alexander, H. D.; Bulygina, E. B.; Mann, P. J.; Natali, S.

    2012-12-01

    Arctic forest ecosystems are warming at an accelerated rate relative to lower latitudes, with global implications for C cycling within these regions. As climate continues to warm and dry, wildfire frequency and severity are predicted to increase, creating a positive feedback to climate warming. Increased fire activity will also influence the microenvironment experienced by soil microbes in disturbed soils. Because soil microbes regulate carbon (C) and nitrogen (N) cycling between terrestrial ecosystems and the atmosphere, it is important to understand microbial response to fires, particularly in the understudied larch forests in the Siberian Arctic. In this project, we created experimental burn plots in a mature larch forest in the Kolyma River watershed of Northeastern Siberia. Plots were burned at several treatments: control (no burn), low, moderate, and severe. After, 1 and 8 d post-fire, we measured soil organic layer depth, soil organic matter (SOM) content, soil moisture, and CO2 flux from the plots. Additionally, we leached soils and measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NH4, NO3, soluble reactive phosphorus (SRP), and chromophoric dissolved organic matter (CDOM). Furthermore, we measured extracellular activity of four enzymes involved in soil C and nutrient cycling (leucine aminopeptidase (LAP), β-glucosidase, phosphatase, and phenol oxidase). One day post-fire, LAP activity was similarly low in all treatments, but by 8 d post-fire, LAP activity was lower in burned plots compared to control plots, likely due to increased nitrogen content with increasing burn severity. Phosphatase activity decreased with burn severity 1 d post-fire, but after 8 d, moderate and severe burn plots exhibited increased phosphatase activity. Coupled with trends in LAP activity, this suggests a switch in nutrient limitation from N to phosphorus that is more pronounced with burn severity. β-glucosidase activity similarly decreased with burn

  19. Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review

    OpenAIRE

    Karigar, Chandrakant S.; Rao, Shwetha S.

    2011-01-01

    A large number of enzymes from bacteria, fungi, and plants have been reported to be involved in the biodegradation of toxic organic pollutants. Bioremediation is a cost effective and nature friendly biotechnology that is powered by microbial enzymes. The research activity in this area would contribute towards developing advanced bioprocess technology to reduce the toxicity of the pollutants and also to obtain novel useful substances. The information on the mechanisms of bioremediation-related...

  20. [Isolation of protoplasts from vegetable tissues using extracellular lytic enzymes from fusarium oxysporum f.sp. melonis].

    Science.gov (United States)

    Alconada, T M; Martínez, M J

    1995-01-01

    Fusarium oxysporum f.sp. melonis, a pathogen of melon (Cucumis melo L.), was grown in shaken cultures at 26 degrees C in a mineral salts medium containing glucose, xylan and apple pectin as carbon sources. The extracellular enzymic complex obtained from these cultures showed lytic activity on plant tissues, causing maceration of melon fruits, potato tubers and carrot roots. Protoplasts were isolated from melon fruits when the maceration was carried out under appropriate osmotic conditions. This fact suggest a possible relationship between the enzymes produced by Fusarium oxysporum f.sp. melonis and their pathogenicity on melon plants.

  1. Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins.

    Science.gov (United States)

    Glenting, Jacob; Beck, Hans Christian; Vrang, Astrid; Riemann, Holger; Ravn, Peter; Hansen, Anne Maria; Antonsson, Martin; Ahrné, Siv; Israelsen, Hans; Madsen, Søren

    2013-06-12

    An important criterion for the selection of a probiotic bacterial strain is its ability to adhere to the mucosal surface. Adhesion is usually mediated by proteins or other components located on the outer cell surface of the bacterium. In the present study we characterized the adhesive properties of two classical intracellular enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase (ENO) isolated from the outer cell surface of the probiotic bacterium Lactobacillus plantarum 299v. None of the genes encoded signal peptides or cell surface anchoring motifs that could explain their extracellular location on the bacterial surface. The presence of the glycolytic enzymes on the outer surface was verified by western blotting using polyclonal antibodies raised against the specific enzymes. GAPDH and ENO showed a highly specific binding to plasminogen and fibronectin whereas GAPDH but not ENO showed weak binding to mucin. Furthermore, a pH dependent and specific binding of GAPDH and ENO to intestinal epithelial Caco-2 cells at pH 5 but not at pH 7 was demonstrated. The results showed that these glycolytic enzymes could play a role in the adhesion of the probiotic bacterium L. plantarum 299v to the gastrointestinal tract of the host. Finally, a number of probiotic as well non-probiotic Lactobacillus strains were analyzed for the presence of GAPDH and ENO on the outer surface, but no correlation between the extracellular location of these enzymes and the probiotic status of the applied strains was demonstrated.

  2. Effects of butachlor on microbial enzyme activities in paddy soil.

    Science.gov (United States)

    Min, Hang; Ye, Yang-Fang; Chen, Zhong-Yun; Wu, Wei-Xiang; Du, Yu-Feng

    2002-07-01

    This paper reports the influences of the herbicide butachlor (n-butoxymethl-chloro-2', 6'-diethylacetnilide) on microbial respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that after application of butachlor with concentrations of 5.5 micrograms/g dried soil, 11.0 micrograms/g dried soil and 22.0 micrograms/g dried soil, the application of butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 micrograms/g dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed within a period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.

  3. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  4. Effects of butachlor on microbial enzyme activities in paddy soil

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper reports the influences of the herbicide butachlor ( n-butoxymethl-chloro-2 ',6 '-diethylacetnilide ) on microbial respiration,nitrogen fixation and nitrification,and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil.The results showed that after application of butachlor with concentrations of 5.5 μg/g dried soil,11.0,μg/g dried soil and 22.0 μg/g dried soil,the application of butachlor enhanced the activity of dehydrogenase at increasing concentrations.The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 μg/g dried soil of butachlor.The hydrogen peroxidase could be stimulated by butachlor.The soil respiration was depressed within a period from several days to more than 20 days,depending on concentrations of butachlor applied.Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.

  5. Integrative computational approach for genome-based study of microbial lipid-degrading enzymes.

    Science.gov (United States)

    Vorapreeda, Tayvich; Thammarongtham, Chinae; Laoteng, Kobkul

    2016-07-01

    Lipid-degrading or lipolytic enzymes have gained enormous attention in academic and industrial sectors. Several efforts are underway to discover new lipase enzymes from a variety of microorganisms with particular catalytic properties to be used for extensive applications. In addition, various tools and strategies have been implemented to unravel the functional relevance of the versatile lipid-degrading enzymes for special purposes. This review highlights the study of microbial lipid-degrading enzymes through an integrative computational approach. The identification of putative lipase genes from microbial genomes and metagenomic libraries using homology-based mining is discussed, with an emphasis on sequence analysis of conserved motifs and enzyme topology. Molecular modelling of three-dimensional structure on the basis of sequence similarity is shown to be a potential approach for exploring the structural and functional relationships of candidate lipase enzymes. The perspectives on a discriminative framework of cutting-edge tools and technologies, including bioinformatics, computational biology, functional genomics and functional proteomics, intended to facilitate rapid progress in understanding lipolysis mechanism and to discover novel lipid-degrading enzymes of microorganisms are discussed.

  6. Effects of Cu on metabolisms and enzyme activities of microbial communities in the process of composting.

    Science.gov (United States)

    Guo, Xingliang; Gu, Jie; Gao, Hua; Qin, Qingjun; Chen, Zhixue; Shao, Li; Chen, Lin; Li, Hailong; Zhang, Weijuan; Chen, Shengnan; Liu, Jiang

    2012-03-01

    With the compost matrix of pig manure, wheat straw, and spent mushroom substrate, and then inoculated with the Compound Microbe Preparation, the study investigated the effects of the heavy metal Cu on the process of composting. Biolog EcoPlate™ test revealed that at a low content, Cu could improve the capacities of microbial communities to transform and exploit carbon sources in the form of polymer, thus speeding up the decomposition of agricultural wastes, and at a high content, Cu presented inhibiting effect on microbial communities to exploit complex macromolecular carbon sources, thus extending the decomposition of agricultural wastes. Enzyme activity testing showed that at a low content, Cu presented enzyme activity-activating effect at the early period of composting and inhibiting effect in the late period of composting, and at a high content, Cu presented enzyme activity-inhibiting effects through the process of composting.

  7. Soil microbial abundances and enzyme activities in different rhizospheres in an integrated vertical flow constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Ying; Jiang, Yueping; Jiang, Qinsu; Min, Hang; Fan, Haitian; Zeng, Qiang; Chang, Jie [College of Life Sciences, Zhejiang University, Hangzhou (China); Zhang, Chongbang [School of Life Sciences, Taizhou University, Linhai (China); Yue, Chunlei [Zhejiang Forestry Academy, Hangzhou (China)

    2011-03-15

    Rhizosphere microorganism is an important bio-component for wastewater treatment in constructed wetlands (CWs). Microbial abundance and enzyme activities in the rhizospheres of nine plant species were investigated in an integrated vertical-flow CW. The abundance of denitrifiers, as well as urease, acid, and alkaline phosphatase activities were positively correlated to plant root biomass. The abundance of bacteria, fungi, actinomycetes, ammonifiers, denitrifiers, and phosphorus decomposers, related to nutrient removal efficiencies in CWs, greatly varied among rhizospheres of different plant species (p < 0.05). Significant differences in rhizosphere enzyme activity among plant species were also observed (p < 0.05), with the exception of catalase activity. The principal component analysis using the data of microbial abundance and enzyme activity showed that Miscanthus floridulus, Acorus calamus, and Reineckia carnea were candidates to be used in CWs to effectively remove nitrogen and phosphorus from wastewater. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Data on biochemical fluxes generated from biofabricated enzyme complexes assembled through engineered tags and microbial transglutaminase

    Directory of Open Access Journals (Sweden)

    Narendranath Bhokisham

    2016-09-01

    Full Text Available Data presented is related to an article titled “Modular construction of multi-subunit protein complexes using engineered tags and microbial transglutaminase” (Bhokisham et al., 2016 [1]. In this article, we have presented western blot and flux data associated with assembly of Pfs–LuxS enzyme complexes on beads using uni-tagged and bi-tagged LuxS enzymes. We have also presented biochemical flux following changes in enzyme stoichiometries. We covalently coupled a Pfs-LuxS complex with Protein G, an antibody binding non-enzyme component and directed these complexes to the surfaces of bacterial cells via anti-Escherichia coli antibodies. Fluorescence microscopy images represented the altered behavior of bacterial cells in response to the autoinducer-2 that is synthesized by the Protein G-enzyme complexes.

  9. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2012-04-01

    Full Text Available Abstract Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera wood-chips and mown lawn grass clippings (85:15 in dry-weight and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  10. Nitrogen amendment of green waste impacts microbial community, enzyme secretion and potential for lignocellulose decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chaowei [Univ. of California, Davis, CA (United States); Harrold, Duff R. [Univ. of California, Davis, CA (United States); Claypool, Joshua T. [Univ. of California, Davis, CA (United States); Simmons, Blake A. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Steven W. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Simmons, Christopher W. [Univ. of California, Davis, CA (United States); VanderGheynst, Jean S. [Univ. of California, Davis, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States)

    2016-11-09

    Microorganisms involved in biomass deconstruction are an important resource for organic waste recycling and enzymes for lignocellulose bioconversion. The goals of this paper were to examine the impact of nitrogen amendment on microbial community restructuring, secretion of xylanases and endoglucanases, and potential for biomass deconstruction. Communities were cultivated aerobically at 55 °C on green waste (GW) amended with varying levels of NH4Cl. Bacterial and fungal communities were determined using 16S rRNA and ITS region gene sequencing and PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was applied to predict relative abundance of genes involved in lignocellulose hydrolysis. Nitrogen amendment significantly increased secretion of xylanases and endoglucanases, and microbial activity; enzyme activities and cumulative respiration were greatest when nitrogen level in GW was between 4.13–4.56 wt% (g/g), but decreased with higher nitrogen levels. The microbial community shifted to one with increasing potential to decompose complex polymers as nitrogen increased with peak potential occurring between 3.79–4.45 wt% (g/g) nitrogen amendment. Finally, the results will aid in informing the management of nitrogen level to foster microbial communities capable of secreting enzymes that hydrolyze recalcitrant polymers in lignocellulose and yield rapid decomposition of green waste.

  11. Tracking Dynamics of Plant Biomass Composting by Changes in Substrate Structure, Microbial Community, and Enzyme Activity

    Energy Technology Data Exchange (ETDEWEB)

    Wei, H.; Tucker, M. P.; Baker, J. O.; Harris, M.; Luo, Y. H.; Xu, Q.; Himmel, M. E.; Ding, S. Y.

    2012-04-01

    Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  12. Influence of combined pollution of antimony and arsenic on culturable soil microbial populations and enzyme activities.

    Science.gov (United States)

    Wang, Qiongshan; He, Mengchang; Wang, Ying

    2011-01-01

    The effects of both combined and single pollution of antimony (Sb) and arsenic (As) in different concentrations on culturable soil microbial populations and enzyme activities were studied under laboratory conditions. Joint effects of both Sb and As were different from that of Sb or As alone. The inhibition rate of culturable soil microbial populations under Sb and As pollution followed the order: bacterial > fungi > actinomycetes. There existed antagonistic inhibiting effect on urease and acid phophatase and synergistic inhibiting effect on protease under the combined pollution of Sb (III) and As (III). Only urease appeared to be the most sensitive indicator under Sb (V) and As (V) pollution, and there existed antagonistic inhibiting effect on acid phophatase and synergistic inhibiting effect on urease and protease under Sb (V) and As (V) combined pollution at most time. In this study, we also confirmed that the trivalent states of Sb and As were more toxic to all the microbes tested and more inhibitory on microbial enzyme activities then their pentavalent counterparts. The results also suggest that not only the application rate of the two metalloids but also the chemical form of metalloids should be considered while assessing the effect of metalloid on culturable microbial populations and enzyme activities. Urease and acid phosphatase can be used as potential biomarkers to evaluate the intensity of Sb (III) and As (III) stress.

  13. Effect of land use on microbial biomass and enzyme activities in tropical soil

    Science.gov (United States)

    Maharjan, Menuka; Sanaullah, Muhammad; Kuzyakov, Yakov

    2016-04-01

    Land use change especially from forest to intensive agriculture for sustaining livelihood causing severe consequence on soil quality. Soil microbial biomass and enzyme activities are very sensitive to change in environment. The objective was to assess effects of three land uses i.e. forest, organic and conventional farming on microbial biomass C and N and enzymes involved in C-cycle (β-glucosidase), N-cycle (leucine-aminopeptidase), P-cycle (Phosphatase) and S-cycle (Sulphatase) at different depth (0-100 cm with 10 cm in interval) of soil in Chitwan, Nepal. The result showed that both carbon and nitrogen content (%) was significantly higher in organic farming than conventional farming and forest. However, the trend decreased in lower depth. Significantly high microbial biomass C and N (μg C and N g-1 soil) were found in organic farming than conventional farming and forest at 0-10 cm but the trend was inconsistent in lower depth. β-glucosidase, leucine-aminopeptidase and sulphatase (nmol g-1 soil) activities were higher in organic and conventional farming compared to forest at 0-20 cm. Phosphatase activity was higher in conventional farming than forest and organic farming at 0-20cm. The activities were inconsistent below 20 cm. Application of farmyard manure and organic matter from the vegetation contributes the higher microbial biomass and enzyme activities in organic farming.

  14. Assessment of Soil Health in Urban Agriculture: Soil Enzymes and Microbial Properties

    Directory of Open Access Journals (Sweden)

    Avanthi Deshani Igalavithana

    2017-02-01

    Full Text Available Urban agriculture has been recently highlighted with the increased importance for recreation in modern society; however, soil quality and public health may not be guaranteed because of continuous exposure to various pollutants. The objective of this study was to evaluate the soil quality of urban agriculture by soil microbial assessments. Two independent variables, organic and inorganic fertilizers, were considered. The activities of soil enzymes including dehydrogenase, β-glucosidase, arylsulfatase, urease, alkaline and acid phosphatases were used as indicators of important microbial mediated functions and the soil chemical properties were measured in the soils applied with organic or inorganic fertilizer for 10 years. Fatty acid methyl ester analysis was applied to determine the soil microbial community composition. Relatively higher microbial community richness and enzyme activities were found in the organic fertilizers applied soils as compared to the inorganic fertilizers applied soils. Principal component analysis explained the positive influence of organic fertilizers on the microbial community. The application of organic fertilizers can be a better alternative compared to inorganic fertilizers for the long-term health and security of urban agriculture.

  15. Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages

    Directory of Open Access Journals (Sweden)

    Tingting Ning

    2017-02-01

    Full Text Available Objective This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR silage. Methods The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR or Leymus chinensis hay (LTMR, corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Results Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens (B. amyloliquefaciens, B. cereus, B. licheniformis, and B. subtilis in ATMR silage and B. flexus, B. licheniformis, and Paenibacillus xylanexedens (P. xylanexedens in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens, B. licheniformis, and B. subtilis and B. licheniformis, B. pumilus, and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. Conclusion The microbial amylase contributes to starch hydrolysis during the

  16. Extracellular Saccharide-Mediated Reduction of Au(3+) to Gold Nanoparticles: New Insights for Heavy Metals Biomineralization on Microbial Surfaces.

    Science.gov (United States)

    Kang, Fuxing; Qu, Xiaolei; Alvarez, Pedro J J; Zhu, Dongqiang

    2017-02-15

    Biomineralization is a critical process controlling the biogeochemical cycling, fate, and potential environmental impacts of heavy metals. Despite the indispensability of extracellular polymeric substances (EPS) to microbial life and their ubiquity in soil and aquatic environments, the role played by EPS in the transformation and biomineralization of heavy metals is not well understood. Here, we used gold ion (Au(3+)) as a model heavy metal ion to quantitatively assess the role of EPS in biomineralization and discern the responsible functional groups. Integrated spectroscopic analyses showed that Au(3+)was readily reduced to zerovalent gold nanoparticles (AuNPs, 2-15 nm in size) in aqueous suspension of Escherichia coli or dissolved EPS extracted from microbes. The majority of AuNPs (95.2%) was formed outside Escherichia coli cells, and the removal of EPS attached to cells pronouncedly suppressed Au(3+) reduction, reflecting the predominance of the extracellular matrix in Au(3+) reduction. XPS, UV-vis, and FTIR analyses corroborated that Au(3+) reduction was mediated by the hemiacetal groups (aldehyde equivalents) of reducing saccharides of EPS. Consistently, the kinetics of AuNP formation obeyed pseudo-second-order reaction kinetics with respect to the concentrations of Au(3+) and the hemiacetal groups in EPS, with minimal dependency on the source of microbial EPS. Our findings indicate a previously overlooked, universally significant contribution of EPS to the reduction, mineralization, and potential detoxification of metal species with high oxidation state.

  17. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangsheng [ORNL; Post, Wilfred M [ORNL; Mayes, Melanie [ORNL

    2013-01-01

    We developed a Microbial-ENzyme-mediated Decomposition (MEND) model, based on the Michaelis-Menten kinetics, that describes the dynamics of physically defined pools of soil organic matter (SOC). These include particulate, mineral-associated, dissolved organic matter (POC, MOC, and DOC, respectively), microbial biomass, and associated exoenzymes. The ranges and/or distributions of parameters were determined by both analytical steady-state and dynamic analyses with SOC data from the literature. We used an improved multi-objective parameter sensitivity analysis (MOPSA) to identify the most important parameters for the full model: maintenance of microbial biomass, turnover and synthesis of enzymes, and carbon use efficiency (CUE). The model predicted an increase of 2 C (baseline temperature =12 C) caused the pools of POC-Cellulose, MOC, and total SOC to increase with dynamic CUE and decrease with constant CUE, as indicated by the 50% confidence intervals. Regardless of dynamic or constant CUE, the pool sizes of POC, MOC, and total SOC varied from 8% to 8% under +2 C. The scenario analysis using a single parameter set indicates that higher temperature with dynamic CUE might result in greater net increases in both POC-Cellulose and MOC pools. Different dynamics of various SOC pools reflected the catalytic functions of specific enzymes targeting specific substrates and the interactions between microbes, enzymes, and SOC. With the feasible parameter values estimated in this study, models incorporating fundamental principles of microbial-enzyme dynamics can lead to simulation results qualitatively different from traditional models with fast/slow/passive pools.

  18. Response of Nodularia spumigena to pCO2 – Part 2: Exudation and extracellular enzyme activities

    Directory of Open Access Journals (Sweden)

    M. Nausch

    2012-04-01

    Full Text Available The filamentous and diazotrophic cyanobacterium Nodularia spumigena plays a major role in the productivity of the Baltic Sea as it forms extensive blooms regularly. Under phosphorus limiting conditions Nodularia spumigena has a high enzyme affinity for dissolved organic phosphorus (DOP by production and release of alkaline phosphatase. Additionally, it is able to degrade proteinaceous compounds by expressing the extracellular enzyme leucine aminopeptidase. As atmospheric CO2 concentrations are increasing, we expect marine phytoplankton to experience changes in several environmental parameters including pH, temperature, and nutrient availability. The aim of this study was to investigate the combined effect of CO2-induced changes in seawater carbonate chemistry and of phosphate deficiency on the exudation of organic matter, and its subsequent recycling by extracellular enzymes in a Nodularia spumigena culture. Batch cultures of Nodularia spumigena were grown for 15 days aerated with three different pCO2 levels corresponding to values from glacial periods to future values projected for the year 2100. Extracellular enzyme activities as well as changes in organic and inorganic compound concentrations were monitored. CO2 treatment–related effects were identified for cyanobacterial growth, which in turn was influencing exudation and recycling of organic matter by extracellular enzymes. Biomass production was increased by 56.5% and 90.7% in the medium and high pCO2 treatment, respectively, compared to the low pCO2 treatment and simultaneously increasing exudation. During the growth phase significantly more mucinous substances accumulated in the high pCO2 treatment reaching 363 μg Gum Xanthan eq l−1 compared to 269 μg Gum Xanthan eq l−1 in the low pCO2 treatment. However, cell-specific rates did not change. After phosphate depletion, the acquisition of P from DOP by alkaline phosphatase was significantly enhanced. Alkaline phosphatase activities

  19. A model of extracellular enzymes in free-living microbes: Which strategy pays off?

    DEFF Research Database (Denmark)

    Traving, Sachia J; Thygesen, Uffe Høgsbro; Riemann, Lasse

    2015-01-01

    entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has...... must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy...... a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help...

  20. Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp. : a comparative study of wild-type and genetically manipulated strains

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandra, M.; Crawford, D.L.; Pometto, A.L. III

    1987-12-01

    The wild-type ligninolytic actinomycete Streptomyces viridosporus T7A and two genetically manipulated strains with enhanced abilities to produce a water-soluble lignin degradation intermediate, an acid-precipitable polymeric lignin (APPL), were grown on lignocellulose in solid-state fermentation cultures. Culture filtrates were periodically collected, analyzed for APPL, and assayed for extracellular lignocellulose-catabolizing enzyme activities. Two APPL-overproducing strains, UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10, had higher and longer persisting peroxidase, esterase, and endoglucanase activities than did the wild-type strain T7A. Results implicated one or more of these enzymes in lignin solubilization. Only mutant T7A-81 had higher xylanase activity than the wild type. The peroxidase was induced by both lignocellulose and APPL. This extracellular enzyme has some similarities to previously described ligninases in fungi. This is the first report of such an enzyme in Streptomyces spp. Four peroxidase isozymes were present, and all catalyzed the oxidation of 3,4-dihydroxyphenylalanine, while one also catalyzed hydrogen peroxide-dependent oxidation of homoprotocatechuic acid and caffeic acid. Three constitutive esterase isozymes were produced which differed in substrate specificity toward ..cap alpha..-naphthyl acetate and ..cap alpha..-naphthyl butyrate. Three endoglucanase bands, which also exhibited a low level of xylanase activity, were identified on polyacrylamide gels as was one xylanase-specific band. There were no major differences in the isoenzymes produced by the different strains. The probable role of each enzyme in lignocellulose degradation is discussed.

  1. Role of microbial enzymes in the bioremediation of pollutants: a review.

    Science.gov (United States)

    Karigar, Chandrakant S; Rao, Shwetha S

    2011-01-01

    A large number of enzymes from bacteria, fungi, and plants have been reported to be involved in the biodegradation of toxic organic pollutants. Bioremediation is a cost effective and nature friendly biotechnology that is powered by microbial enzymes. The research activity in this area would contribute towards developing advanced bioprocess technology to reduce the toxicity of the pollutants and also to obtain novel useful substances. The information on the mechanisms of bioremediation-related enzymes such as oxido-reductases and hydrolases have been extensively studied. This review attempts to provide descriptive information on the enzymes from various microorganisms involved in the biodegradation of wide range of pollutants, applications, and suggestions required to overcome the limitations of their efficient use.

  2. Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review

    Directory of Open Access Journals (Sweden)

    Chandrakant S. Karigar

    2011-01-01

    Full Text Available A large number of enzymes from bacteria, fungi, and plants have been reported to be involved in the biodegradation of toxic organic pollutants. Bioremediation is a cost effective and nature friendly biotechnology that is powered by microbial enzymes. The research activity in this area would contribute towards developing advanced bioprocess technology to reduce the toxicity of the pollutants and also to obtain novel useful substances. The information on the mechanisms of bioremediation-related enzymes such as oxido-reductases and hydrolases have been extensively studied. This review attempts to provide descriptive information on the enzymes from various microorganisms involved in the biodegradation of wide range of pollutants, applications, and suggestions required to overcome the limitations of their efficient use.

  3. Enzyme disintegration with spatial resolution reveals different distributions of sludge extracellular polymer substances

    National Research Council Canada - National Science Library

    Lü, Fan; Wang, Jingwen; Shao, Liming; He, Pinjing

    2016-01-01

    To understand the intrinsic role of hydrolytic enzymes in sludge treatment, particularly their effect on the digestibility and dewaterability of sludge, activated sludge flocs were disintegrated using...

  4. Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes.

    Science.gov (United States)

    Kim, Kyoung-Rok; Oh, Deok-Kun

    2013-12-01

    Hydroxy fatty acids are widely used in chemical, food, and cosmetic industries as starting materials for the synthesis of polymers and as additives for the manufacture of lubricants, emulsifiers, and stabilizers. They have antibiotic, anti-inflammatory, and anticancer activities and therefore can be applied for medicinal uses. Microbial fatty acid-hydroxylation enzymes, including P450, lipoxygenase, hydratase, 12-hydroxylase, and diol synthase, synthesize regio-specific hydroxy fatty acids. In this article, microbial fatty acid-hydroxylation enzymes, with a focus on region-specificity and diversity, are summarized and the production of mono-, di-, and tri-hydroxy fatty acids is introduced. Finally, the production methods of regio-specific and diverse hydroxy fatty acids, such as gene screening, protein engineering, metabolic engineering, and combinatory biosynthesis, are suggested. © 2013.

  5. Interactions of surface-displayed glycolytic enzymes of Mycoplasma pneumoniae with components of the human extracellular matrix.

    Science.gov (United States)

    Gründel, Anne; Jacobs, Enno; Dumke, Roger

    2016-12-01

    Mycoplasma pneumoniae is a major cause of community-acquired respiratory infections worldwide. Due to the strongly reduced genome, the number of virulence factors expressed by this cell wall-less pathogen is limited. To further understand the processes during host colonization, we investigated the interactions of the previously confirmed surface-located glycolytic enzymes of M. pneumoniae (pyruvate dehydrogenase A-C [PdhA-C], glyceraldehyde-3-phosphate dehydrogenase [GapA], lactate dehydrogenase [Ldh], phosphoglycerate mutase [Pgm], pyruvate kinase [Pyk] and transketolase [Tkt]) to the human extracellular matrix (ECM) proteins fibrinogen (Fn), fibronectin (Fc), lactoferrin (Lf), laminin (Ln) and vitronectin (Vc), respectively. Concentration-dependent interactions between Fn and Vc and all eight recombinant proteins derived from glycolytic enzymes, between Ln and PdhB-C, GapA, Ldh, Pgm, Pyk and Tkt, between Lf and PdhA-C, GapA and Pyk, and between Fc and PdhC and GapA were demonstrated. In most cases, these associations are significantly influenced by ionic forces and by polyclonal sera against recombinant proteins. In immunoblotting, the complex of human plasminogen, activator (tissue-type or urokinase plasminogen activator) and glycolytic enzyme was not able to degrade Fc, Lf and Ln, respectively. In contrast, degradation of Vc was confirmed in the presence of all eight enzymes tested. Our data suggest that the multifaceted associations of surface-localized glycolytic enzymes play a potential role in the adhesion and invasion processes during infection of human respiratory mucosa by M. pneumoniae.

  6. Biodegradation of softwood lignin and guaiacylglycerol-beta-guiacyl ether by extracellular enzyme in shiitake Lentinus edodes (Berk) Sing

    Energy Technology Data Exchange (ETDEWEB)

    Oki, T.; Senba, Y.; Ishikawa, H.

    1982-01-01

    In order to explain the biodegradation of softwood lignin by shiitake (Lentinus edodes Berk. Sing.), akamatsu (Pinus densiflora Sekb. and Zucc.) dioxane lignin (NDL) and guaicylglycerol-beta-guaiacyl ether (I) were degraded by extracellular enzyme from the NDL-contained potato and malt extracts cultures of shiitake TMI-563 and 655 at 25 degrees C for a prolonged period. The main results on the basis of a functional group analysis and gel-filtration of NDL before and after the enzymatic degradation showed that the degraded DL had a higher content of phenolic OH groups than sound lignin, whereas the methoxyl or aromatic aldehyde-yielding group content was lower in the degraded lignin. The main degradation products formed from I in a crude enzyme solution were guaiacol, guaiacylglycerol, guaiacylglycol-beta-guaiacyl ether (II), and guaiacoxyacetoguaiacone (III), although the polymer was formed at pH 4.0, which is the optimum pH of peroxidase and laccase. It also was clarified that the oxidative polymerization of NDL and I occurred preferably in a crude enzyme solution at pH 4.0, and that these compounds were degraded to lower molecular fragments at pH 6.8 under the same conditions. From the above results, it is suggested that softwood lignin is more effectively degraded by the other enzyme than polyphenoloxidase, such as laccase and peroxidase, in a crude enzyme solution of L. edodes. (Refs. 9).

  7. Microbial P450 enzymes in bioremediation and drug discovery: Emerging potentials and challenges.

    Science.gov (United States)

    Bhattacharya, Sukanta S; Yadav, Jagjit S

    2016-11-21

    Cytochrome P450 enzymes are a structurally conserved but functionally diverse group of heme-containing mixed function oxidases found across both prokaryotic and eukaryotic forms of the microbial world. Microbial P450s are known to perform diverse functions ranging from the synthesis of cell wall components to xenobiotic/drug metabolism to biodegradation of environmental chemicals. Conventionally, many microbial systems have been reported to mimic mammalian P450-like activation of drugs and were proposed as the in-vitro models of mammalian drug metabolism. Recent reports suggest that native or engineered forms of specific microbial P450s from these and other microbial systems could be employed for desired specific biotransformation reactions toward natural and synthetic (drug) compounds underscoring their emerging potential in drug improvement and discovery. On the other hand, microorganisms particularly fungi and actinomycetes have been shown to possess catabolic P450s with unusual potential to degrade toxic environmental chemicals including persistent organic pollutants (POPs). Wood-rotting basidiomycete fungi in particular have revealed the presence of exceptionally large P450 repertoire (P450ome) in their genomes, majority of which are however orphan (with no known function). Our pre- and post-genomic studies have led to functional characterization of several fungal P450s inducible in response to exposure to several environmental toxicants and their potential in bioremediation of these chemicals. This review is an attempt to summarize the post-genomic unveiling of this versatile enzyme superfamily in microbial systems and investigation of their potential to synthesize new drugs and degrade persistent pollutants, among other biotechnological applications.

  8. Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution

    Institute of Scientific and Technical Information of China (English)

    Muhammad Akmal; WANG Hai-zhen; WU Jian-jun; XU Jian-ming; XU De-fu

    2005-01-01

    Heavy metal pollution has received increasing attention in recent years mainly because of the public awareness of environmental issues. In this study we have evaluated the effect of cadmium(Cd) on enzymes activity, substrate utilization pattern and diversity of microbial communities in soil spiked with 0, 20, 40, 60, 80, and 100 mg/kg Cd, during 60 d of incubation at 25℃. Enzyme activities determined at 0, 15, 30, 45, and 60 d after heavy metal application(DAA) showed marked declines for various Cd treatments, and up to 60 DAA, 100 mg/kg Cd resulted in 50.1%, 47.4%, and 39.8 % decreases in soil urease, acid phosphatase and dehydrogenase activities,respectively to control. At 60 DAA, substrate utilization pattern of soil microbial communities determined by inoculating Biolog ECO plates indicated that Cd addition had markedly inhibited the functional activity of soil microbial communities and multivariate analysis of sole carbon source utilization showed significantly different utilization patterns for 80 and 100 mg/kg Cd treatments. The structural diversity of soil microbial communities assessed by PCR-DGGE method at 60 DAA, illustrated that DGGE patterns in soil simplified with increasing Cd concentration, and clustering of DGGE profiles for various Cd treatments revealed that they had more than 50% difference with that of control.

  9. [Electricity generation of surplus sludge microbial fuel cells enhanced by additional enzyme].

    Science.gov (United States)

    Yang, Hui; Liu, Zhi-Hu; Li, Xiao-Ming; Yang, Qi; Fang, Li; Huang, Hua-Jun; Zeng, Guang-Ming; Li, Shuo

    2012-01-01

    In this paper the feasibility of enhanced electricity generation of microbial fuel cell fed surplus sludge by additional enzymes (neutral protease and alpha-amylase) was discussed. The effect of dosage of additional enzyme on characteristics of electricity generation of the surplus sludge microbial fuel cell (SSMFC) and the reduction of surplus sludge were investigated. The results indicated that the maximum output power destiny of the group of experiment was higher than that of control under the same condition. Moreover, the maximum output power density, coulomb efficiency, efficiency of reducing TCOD, efficiency of reducing TSS and efficiency of reducing VSS reached up to 507 W x m(-2) (700 mW x m(-2)), 3.98% (5.11%), 88.31% (94.09%), 83.18% (98.02%) and 89.03% (98.80%) respectively for protease (alpha-amylase) at the dosage of 10 mg x g(-1). This study demonstrated that additional enzyme greatly enhanced the electricity generation of MFC with simultaneous accomplishments of sludge treatment, providing a novel approach for the practical application of microbial fuel cell.

  10. Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production

    Directory of Open Access Journals (Sweden)

    Zhou Kang

    2012-11-01

    Full Text Available Abstract Background Recombinant proteins are routinely overexpressed in metabolic engineering. It is well known that some over-expressed heterologous recombinant enzymes are insoluble with little or no enzymatic activity. This study examined the solubility of over-expressed homologous enzymes of the deoxyxylulose phosphate pathway (DXP and the impact of inclusion body formation on metabolic engineering of microbes. Results Four enzymes of this pathway (DXS, ISPG, ISPH and ISPA, but not all, were highly insoluble, regardless of the expression systems used. Insoluble dxs (the committed enzyme of DXP pathway was found to be inactive. Expressions of fusion tags did not significantly improve the solubility of dxs. However, hypertonic media containing sorbitol, an osmolyte, successfully doubled the solubility of dxs, with the concomitant improvement in microbial production of the metabolite, DXP. Similarly, sorbitol significantly improved the production of soluble and functional ERG12, the committed enzyme in the mevalonate pathway. Conclusion This study demonstrated the unanticipated findings that some over-expressed homologous enzymes of the DXP pathway were highly insoluble, forming inclusion bodies, which affected metabolite formation. Sorbitol was found to increase both the solubility and function of some of these over-expressed enzymes, a strategy to increase the production of secondary metabolites.

  11. Soil Rhizosphere Microbial Communities and Enzyme Activities under Organic Farming in Alabama

    Directory of Open Access Journals (Sweden)

    Zachary Senwo

    2011-07-01

    Full Text Available Evaluation of the soil rhizosphere has been limited by the lack of robust assessments that can explore the vast complex structure and diversity of soil microbial communities. Our objective was to combine fatty acid methyl ester (FAME and pyrosequencing techniques to evaluate soil microbial community structure and diversity. In addition, we evaluated biogeochemical functionality of the microbial communities via enzymatic activities of nutrient cycling. Samples were taken from a silt loam at 0–10 and 10–20 cm in an organic farm under lettuce (Lactuca sativa, potato (Solanum tuberosum, onion (Allium cepa L, broccoli (Brassica oleracea var. botrytis and Tall fescue pasture grass (Festuca arundinacea. Several FAMEs (a15:0, i15:0, i15:1, i16:0, a17:0, i17:0, 10Me17:0, cy17:0, 16:1ω5c and 18:1ω9c varied among the crop rhizospheres. FAME profiles of the soil microbial community under pasture showed a higher fungal:bacterial ratio compared to the soil under lettuce, potato, onion, and broccoli. Soil under potato showed higher sum of fungal FAME indicators compared to broccoli, onion and lettuce. Microbial biomass C and enzyme activities associated with pasture and potato were higher than the other rhizospheres. The lowest soil microbial biomass C and enzyme activities were found under onion. Pyrosequencing revealed significant differences regarding the maximum operational taxonomic units (OTU at 3% dissimilarity level (roughly corresponding to the bacterial species level at 0–10 cm (581.7–770.0 compared to 10–20 cm (563.3–727.7 soil depths. The lowest OTUs detected at 0–10 cm were under broccoli (581.7; whereas the lowest OTUs found at 10–20 cm were under potato (563.3. The predominant phyla (85% in this soil at both depths were Bacteroidetes (i.e., Flavobacteria, Sphingobacteria, and Proteobacteria. Flavobacteriaceae and Xanthomonadaceae were predominant under broccoli. Rhizobiaceae, Hyphomicrobiaceae, and Acidobacteriaceae were more

  12. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumyeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates and enzymes activity) rather than total microbial biomass

  13. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids.

  14. Biofouling of reverse osmosis membranes: effects of cleaning on biofilm microbial communities, membrane performance, and adherence of extracellular polymeric substances.

    Science.gov (United States)

    Al Ashhab, Ashraf; Sweity, Amer; Bayramoglu, Bihter; Herzberg, Moshe; Gillor, Osnat

    2017-05-01

    Laboratory-scale reverse osmosis (RO) flat-sheet systems were used with two parallel flow cells, one treated with cleaning agents and a control (ie undisturbed). The cleaning efforts increased the affinity of extracellular polymeric substances (EPS) to the RO membrane and altered the biofilm surface structure. Analysis of the membrane biofilm community composition revealed the dominance of Proteobacteria. However, within the phylum Proteobacteria, γ-Proteobacteria dominated the cleaned membrane biofilm, while β-Proteobacteria dominated the control biofilm. The composition of the fungal phyla was also altered by cleaning, with enhancement of Ascomycota and suppression of Basidiomycota. The results suggest that repeated cleaning cycles select for microbial groups that strongly attach to the RO membrane surface by producing rigid and adhesive EPS that hampers membrane performance.

  15. Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains—OptSwap

    DEFF Research Database (Denmark)

    King, Zachary A.; Feist, Adam

    2013-01-01

    Central oxidoreductase enzymes (eg, dehydrogenases, reductases) in microbial metabolism often have preferential binding specificity for one of the two major currency metabolites NAD(H) and NADP(H). These enzyme specificities result in a division of the metabolic functionality of the currency...... specificities of oxidoreductase enzyme and complementary reaction knockouts. Using the Escherichia coli genome-scale metabolic model iJO1366, OptSwap predicted eight growth-coupled production designs with significantly greater product yields or substrate-specific productivities than designs predicted with gene...... knockouts alone. These designs were identified for the production of L-alanine, succinate, acetate, and D-lactate under modeled conditions. Simulations predicted that production of L-alanine and D-lactate can be strongly coupled to growth by knocking out three reactions and swapping the cofactor specificity...

  16. A novel extracellular protease from Pseudomonas aeruginosa MCM B-327: enzyme production and its partial characterization.

    Science.gov (United States)

    Zambare, Vasudeo; Nilegaonkar, Smita; Kanekar, Pradnya

    2011-02-28

    The focus of this study was on production, purification and characterization of dehairing protease from Pseudomonas aeruginosa MCM B-327, isolated from vermicompost pit soil. Optimum protease activity, 395 U mL(-1), was observed in the medium containing soybean meal and tryptone, at pH 7 and 30 °C. The crude enzyme exhibited dehairing activity. As compared to chemical method, enzymatic method of dehairing showed reduction in COD, TDS and TSS by 34.28%, 37.32% and 51.58%, respectively. Zymogram of crude enzyme on native-PAGE presented two bands with protease activity of molecular weights of 56 and 67 kDa. Both proteases showed dehairing activity. Out of these, 56kDa protease (PA02) was purified 3.05-folds with 2.71% recovery. The enzyme was active in pH range 7-9 and temperature 20-50 °C with optimum pH of 8 and temperature 35°C. Moreover, the enzyme activity of PA02 protease was not strongly inhibited by specific inhibitor showing the novel nature of enzyme compared to serine, cysteine, aspartyl and metalloproteases. Kinetic studies indicated that substrate specificity of PA02 protease was towards various natural and synthetic proteolytic substrates but inactive against collagen and keratin. These findings suggest protease secreted by P. aeruginosa MCM B-327 may have application in dehairing for environment-friendly leather processing.

  17. Phytophthora infestans has a plethora of phospholipase D enzymes including a subclass that has extracellular activity.

    Directory of Open Access Journals (Sweden)

    Harold J G Meijer

    Full Text Available In eukaryotes phospholipase D (PLD is involved in many cellular processes. Currently little is known about PLDs in oomycetes. Here we report that the oomycete plant pathogen Phytophthora infestans has a large repertoire of PLDs divided over six subfamilies: PXPH-PLD, PXTM-PLD, TM-PLD, PLD-likes, and type A and B sPLD-likes. Since the latter have signal peptides we developed a method using metabolically labelled phospholipids to monitor if P. infestans secretes PLD. In extracellular medium of ten P. infestans strains PLD activity was detected as demonstrated by the production of phosphatidic acid and the PLD specific marker phosphatidylalcohol.

  18. Interactions of Marsh Orchid (Dactylorhiza spp.) and Soil Microorganisms in Relation to Extracellular Enzyme Activities in a Peat Soil

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The nature of the interactions between microbes and roots of plants in a peaty soil were studied in a laboratorybased experiment by measuring activities of β-glucosidase, phosphatase, N-acetylglucosaminidase, and arylsulphatase. The experiment was based on control (autoclaved), bacteria-inoculated, and plant (transplanted with Dactylorhiza) treatments,and samples were collected over 4 sampling intervals. Higher enzyme activities were associated with the bacteria-inoculated treatment, suggesting that soil enzyme activities are mainly of microbial origin. For example, β-glucosidase activity varied between 25-30 μmol g-1 min-1 in the bacteria-inoculated samples whilst the activity of the control ranged between 4-12μmol g-1 min-1. A similar pattern was found for all other enzymes.At the end of the incubation, the microcosms were destructively sampled and the enzyme activities determined in bulk soil, rhizospheric soil, and on the root surface. Detailed measurement in different fractions of the peat indicated that higher activities were found in rhizosphere. However, the higher activities ofβ-glucosidase, N-acetylglucosaminidase, and arylsulphatase appeared to be associated with bacterial proliferation on the root surface, whilst a larger proportion of phosphatase appeared to be released from root surface.

  19. Microbial Community Structure and Enzyme Activities in a Sequence of Copper-Polluted Soils

    Institute of Scientific and Technical Information of China (English)

    GE Chao-Rong; ZHANG Qi-Chun

    2011-01-01

    The microbial community structure and enzyme activities of seven paddy soils with different Cu concentrations were investigated in the vicinity of a Cu smelter in Fuyang County, Zhejiang Province in Southeast China. The microbial community structure was analyzed using the phospholipid fatty acid (PLFA) and multiplex-terminal restriction fragment length polymorphism (M-TRFLP)techniques. There was no clear dose-response relationship between Cu pollution and soil enzyme activity except for urease. Both PLFA and M-TRFLP methods showed that Cu contamination had a large effect on the soil microbial community structure. PLFA indicators of Gram-positive bacteria (16:0i, 15:0i) and fungi (18:2w6,9) relatively decreased with increasing Cu concentration, whereas indicators of Gram-negative bacteria (19:0cy, 16:1w7) increased. The M-TRFLP results suggested that there was a dose-dependent response between Cu pollution and bacterial community or fungal community. The fungal community was more sensitive to Cu pollution than the bacterial community. Therewere no significant differences in archaeal community structure between the different Cu pollution plots and archaea might be more tolerant to Cu pollution than both bacteria and fungi.

  20. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?

    Science.gov (United States)

    Wei, Ren; Zimmermann, Wolfgang

    2017-03-28

    Petroleum-based plastics have replaced many natural materials in their former applications. With their excellent properties, they have found widespread uses in almost every area of human life. However, the high recalcitrance of many synthetic plastics results in their long persistence in the environment, and the growing amount of plastic waste ending up in landfills and in the oceans has become a global concern. In recent years, a number of microbial enzymes capable of modifying or degrading recalcitrant synthetic polymers have been identified. They are emerging as candidates for the development of biocatalytic plastic recycling processes, by which valuable raw materials can be recovered in an environmentally sustainable way. This review is focused on microbial biocatalysts involved in the degradation of the synthetic plastics polyethylene, polystyrene, polyurethane and polyethylene terephthalate (PET). Recent progress in the application of polyester hydrolases for the recovery of PET building blocks and challenges for the application of these enzymes in alternative plastic waste recycling processes will be discussed. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Functions of Exosomes and Microbial Extracellular Vesicles in Allergy and Contact and Delayed-Type Hypersensitivity.

    Science.gov (United States)

    Nazimek, Katarzyna; Bryniarski, Krzysztof; Askenase, Philip W

    2016-01-01

    Extracellular vesicles, such as exosomes, are newly recognized intercellular conveyors of functional molecular mechanisms. Notably, they transfer RNAs and proteins between different cells that can then participate in the complex pathogenesis of allergic and related hypersensitivity responses and disease mechanisms, as described herein. This review highlights this important new appreciation of the in vivo participation of such extracellular vesicles in the interactions between allergy-mediating cells. We take into account paracrine epigenetic exchanges mediated by surrounding stromal cells and the endocrine receipt of exosomes from distant cells via the circulation. Exosomes are natural ancient nanoparticles of life. They are made by all cells and in some form by all species down to fungi and bacteria, and are present in all fluids. Besides a new focus on their role in the transmission of genetic regulation, exosome transfer of allergens was recently shown to induce allergic inflammation. Importantly, regulatory and tolerogenic exosomes can potently inhibit allergy and hypersensitivity responses, usually acting nonspecifically, but can also proceed in an antigen-specific manner due to the coating of the exosome surface with antibodies. Deep analysis of processes mediated by exosomes should result in the development of early diagnostic biomarkers, as well as allergen-specific, preventive and therapeutic strategies. These will likely significantly diminish the risks of current allergen-specific parenteral desensitization procedures, and of the use of systemic immunosuppressive drugs. Since extracellular vesicles are physiological, they can be fashioned for the specific delivery of therapeutic molecular instructions through easily tolerated, noninvasive routes, such as oral ingestion, nasal administration, and perhaps even inhalation. © 2016 S. Karger AG, Basel.

  2. Live Cell Discovery of Microbial Vitamin Transport and Enzyme-Cofactor Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lindsey N.; Koech, Phillip K.; Plymale, Andrew E.; Landorf, Elizabeth V.; Konopka, Allan; Collart, Frank; Lipton, Mary S.; Romine, Margaret F.; Wright, Aaron T.

    2016-02-02

    The rapid completion of microbial genomes is inducing a conundrum in functional gene discovery. Novel methods are critically needed to shorten the gap between characterizing a microbial genome and experimentally validating bioinformatically-predicted functions. Of particular importance are transport mechanisms, used to shuttle nutrients and metabolites across cell mem-branes, such as B vitamins, which are indispensable to metabolic reactions crucial to the survival of diverse microbes ranging from members of environmental microbial communities to human pathogens. Methods to accurately assign function and specificity for a wide range of experimentally unidentified and/or predicted membrane-embedded transport proteins, and characterization of intra-cellular enzyme-cofactor/nutrient associations are needed to enable a significantly improved understanding of microbial biochemis-try and physiology, how microbes associate with others, and how they sense and respond to environmental perturbations. Chemical probes derived from B vitamins B1, B2, and B7 have allowed us to experimentally address the aforementioned needs by identifying B vitamin transporters and intracellular protein-cofactor associations through live cell labeling of the filamentous anoxygenic pho-toheterotroph, Chloroflexus aurantiacus J-10-fl, known for both B vitamin biosynthesis and environmental salvage. Our probes provide a unique opportunity to directly link cellular activity and protein function back to ecosystem and/or host dynamics by iden-tifying B vitamin transport and disposition mechanisms required for survival.

  3. Live cell discovery of microbial vitamin transport and enzyme-cofactor interactions by chemoproteomics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lindsey N; Koech, Phillip K; Plymale, Andrew E; Landorf, Elizabeth V; Konopka, Allan; Collart, Frank R.; Lipton, Mary S; Romine, Margaret F; Wright, Aaron T

    2016-02-01

    The rapid completion of microbial genomes is inducing a conundrum in functional gene discovery. Novel methods are critically needed to shorten the gap between characterizing a microbial genome and experimentally validating bioinformatically-predicted functions. Of particular importance are transport mechanisms, used to shuttle nutrients and metabolites across cell mem-branes, such as B vitamins, which are indispensable to metabolic reactions crucial to the survival of diverse microbes ranging from members of environmental microbial communities to human pathogens. Methods to accurately assign function and specificity for a wide range of experimentally unidentified and/or predicted membrane-embedded transport proteins, and characterization of intra-cellular enzyme-cofactor/nutrient associations are needed to enable a significantly improved understanding of microbial biochemis-try and physiology, how microbes associate with others, and how they sense and respond to environmental perturbations. Chemical probes derived from B vitamins B1, B2, and B7 have allowed us to experimentally address the aforementioned needs by identifying B vitamin transporters and intracellular protein-cofactor associations through live cell labeling of the filamentous anoxygenic pho-toheterotroph, Chloroflexus aurantiacus J-10-fl, known for both B vitamin biosynthesis and environmental salvage. Our probes provide a unique opportunity to directly link cellular activity and protein function back to ecosystem and/or host dynamics by iden-tifying B vitamin transport and disposition mechanisms required for survival.

  4. Sponge-associated bacteria of Lakshadweep coral reefs, India: resource for extracellular hydrolytic enzymes

    Digital Repository Service at National Institute of Oceanography (India)

    Feby, A.; Nair, S.

    % of the sponge-associated bacteria expressed multiple enzymatic activities (greater than equal to 4) with variation in the percentage of expression of individ-ual enzymes. More than 65% of the culturable het-erotrophic bacteria associated with sponges were...

  5. Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments.

    Science.gov (United States)

    Adav, Sunil S; Lin, Justin Chun-Te; Yang, Zhen; Whiteley, Chris G; Lee, Duu-Jong; Peng, Xiao-Feng; Zhang, Zhen-Peng

    2010-01-01

    This review addresses the introduction of fluorescent molecular tags into exo-enzymes and extra polymeric substances of bioaggregates and the use of confocal laser scanning microscopy (CLSM) to map their role, purpose and quantitative description of the biological processes they undertake. Multiple color staining coupled with CLSM and fluorescent in situ hybridisation (FISH) and flow cytometry have identified the individual polymeric substances, whether they are proteins, lipids, polysaccharides, nucleic acids or antibodies, as well as the microorganisms in the bioaggregate. Procedures are presented for simultaneous multicolor staining with seven different fluorochromes - SYTOX Blue for nucleic acids; Nile red for lipids; Calcofluor white [CW] for beta-polysaccharides; concanavalin A [Con A] for alpha-poly-saccharides; fluorescein-isothiocyanate [FITC] for proteins; SYTO 63 for live microbial cells and Calcium Green for monitoring calcium levels in the microbial cells. For the distribution of certain microbial strains, metabolic enzymes and extrapolymeric substances to be quantitatively described the generated colored images are converted into digital forms under specific predefined criteria. Procedures and computer software programs (Amira; MATLAB) are presented in order to quantitatively establish grid patterns from the CLSM images. The image is digitized using a threshholding algorithm followed by a reconstruction of the image as a volumetric grid for finite element simulation. The original color image is first converted to a grey followed by resizing, detection and modification of bilevel images and finally a total reversal of the image colors. The grid file is then used by specific computer software (Gambit, Fluent) for further numerical studies incorporating chemical reactions, transport processes and computational fluid dynamics including intra-bioaggregate fluid flow, and heat and mass transfer within the bioaggregate matrix.

  6. Combined effects of cadmium and butachlor on soil enzyme activities and microbial community structure

    Science.gov (United States)

    Wang, Jinhua; Lu, Yitong; Shen, Guoqing

    2007-02-01

    The combined effects of cadmium (Cd, 10 mg/kg of soil) and butachlor (5, 10 and 50 mg/kg of soil) on enzyme activities and microbial community structure were assessed in phaeozem soil. The result showed that phosphatase activities were decreased in soils with Cd (10 mg/kg of soil) alone whereas urease acitivities were unaffected by Cd. Urease and phosphatase activities were significantly reduced by high butachlor concentration (50 mg/kg of soil). When Cd and butachlor concentrations in soils were added at milligram ratio of 2:1 or 1:2, urease and phosphatase activities were decreased, while enzyme activities were greatly improved at the ratio of 1:5. This study indicates that the combined effects of Cd and butachlor on soil urease and phosphatase activities depend largely on the addition concentration ratios to soils. The random amplified polymorphic DNA (RAPD) analysis showed that the changes occurring in RAPD profiles of different treated samples included variation in loss of normal bands and appearance of new bands compared with the control soil. The RAPD fingerprints showed substantial differences between the control and treated soil samples, with apparent changes in the number and size of amplified DNA fragments. The results showed that the addition of high concentration butachlor and the combined applied Cd and butachlor significantly affected the diversity of microbial community. The present results suggest that RAPD analysis in conjunction with other biomarkers such as soil enzyme parameter etc. would prove a powerful ecotoxicological tool.

  7. A complete enzymatic recovery of ferulic acid from corn residues with extracellular enzymes from Neosartorya spinosa NRRL185.

    Science.gov (United States)

    Shin, Hyun-Dong; McClendon, Shara; Le, Tien; Taylor, Frank; Chen, Rachel Ruizhen

    2006-12-20

    An economic ferulic acid recovery from biomass via biological methods is of interest for a number of reasons. Ferulic acid is a precursor to vanillin synthesis. It is also a known antioxidant with potential food and medical applications. Despite its universal presence in all plant cell wall material, the complex structure of the plant cell wall makes ferulic acid recovery from biomass a challenging bioprocess. Previously, without pretreatment, very low (3-13%) recovery of ferulic acid from corn residues was achieved. We report here the discovery of a filamentous fungus Neosartorya spinosa NRRL185 capable of producing a full complement of enzymes to release ferulic acid and the development of an enzymatic process for a complete recovery of ferulic acid from corn bran and corn fibers. A partial characterization of the extracellular proteome of the microbe revealed the presence of at least seven cellulases and hemicellulases activities, including multiple iso-forms of xylanase and ferulic acid esterase. The recovered ferulic acid was bio-converted to vanillin, demonstrating its potential application in natural vanillin synthesis. The enzymatic ferulic acid recovery accompanied a significant release of reducing sugars (76-100%), suggesting much broader applications of the enzymes and enzyme mixtures from this organism.

  8. Azo dye (direct blue 14) decolorization by immobilized extracellular enzymes of Pleurotus species.

    Science.gov (United States)

    Vishwakarma, S K; Singh, M P; Srivastava, A K; Pandey, V K

    2012-12-22

    Four species of Pleurotus i.e., P. florida, P. ostreatus, P. citrinopileatus and P. eryngii were evaluated for laccase and MnP production in submerged condition. Among these P. ostreatus showed highest production of laccase and MnP. Twelve days old culture of P. ostreatus produced 1096 U/ml and 693.5 U/ml of the laccase and MnP, respectively. Crude extracts of enzymes from P. ostreatus were immobilized in Ca— alginate matrix and tested for decolorization activity of the azo dye (Direct blue; CI 23850) in aerobic and microaerophilic condition for 24h. Treatment of dye with the immobilized enzymes decolorized up to 99% in eighteen hour.

  9. Mineralization of mono-nitrophenols by Bjerkandera adusta and Lentinus squarrosulus and their extracellular ligninolytic enzymes.

    Science.gov (United States)

    Tripathi, Astha; Upadhyay, R C; Singh, Surendra

    2011-12-01

    Nitroaromatic compounds constitute a major class of widely distributed environmental contaminants. Fifty fungal strains were screened for their potential to tolerance with 2-nitrophenol, 3-nitrophenol and 4-nitrophenol on solid medium supplemented with 2% malt extract (MEA). Growth rate (mm/day) was determined at three concentrations (0.25, 0.5 and 1 mM) of all the three nitrophenols. From the fifty fungal strains only Bjerkandera adusta and Lentinus squarrosulus were able to tolerate all the three nitrophenols (NPs). These white-rot fungi (WRF) were chosen for liquid medium studies for the mineralization of mono-nitrophenols and ligninolytic enzyme activity at 0.25 mM concentration. Both varieties completely removed 2-NP and 3-NP while 4-NP was hard to mineralize. AAO (Aryl Alcohol Oxidase) is the main oxidase enzyme in B. adusta while laccase plays important role in L. squarrosulus. MnP (Manganese peroxidase) is the main peroxidase enzyme in both varieties. These fungal strains were capable to degrade nitrophenols and could be used for bioremediation applications on large scale.

  10. Contribution of AmyA, an extracellular alpha-glucan degrading enzyme, to group A streptococcal host-pathogen interaction.

    Science.gov (United States)

    Shelburne, Samuel A; Keith, David B; Davenport, Michael T; Beres, Stephen B; Carroll, Ronan K; Musser, James M

    2009-10-01

    alpha-Glucans such as starch and glycogen are abundant in the human oropharynx, the main site of group A Streptococcus (GAS) infection. However, the role in pathogenesis of GAS extracellular alpha-glucan binding and degrading enzymes is unknown. The serotype M1 GAS genome encodes two extracellular proteins putatively involved in alpha-glucan binding and degradation; pulA encodes a cell wall anchored pullulanase and amyA encodes a freely secreted putative cyclomaltodextrin alpha-glucanotransferase. Genetic inactivation of amyA, but not pulA, abolished GAS alpha-glucan degradation. The DeltaamyA strain had a slower rate of translocation across human pharyngeal epithelial cells. Consistent with this finding, the DeltaamyA strain was less virulent following mouse mucosal challenge. Recombinant AmyA degraded alpha-glucans into beta-cyclomaltodextrins that reduced pharyngeal cell transepithelial resistance, providing a physiologic explanation for the observed transepithelial migration phenotype. Higher amyA transcript levels were present in serotype M1 GAS strains causing invasive infection compared with strains causing pharyngitis. GAS proliferation in a defined alpha-glucan-containing medium was dependent on the presence of human salivary alpha-amylase. These data delineate the molecular mechanisms by which alpha-glucan degradation contributes to GAS host-pathogen interaction, including how GAS uses human salivary alpha-amylase for its own metabolic benefit.

  11. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Peters, J.L.; Castillo, F.J.; Heath, R.L. (Univ. of California, Riverside (USA))

    1989-01-01

    Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter {times} hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.

  12. Extracellular matrix mineralization in periodontal tissues: Noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and X-linked hypophosphatemia.

    Science.gov (United States)

    McKee, Marc D; Hoac, Betty; Addison, William N; Barros, Nilana M T; Millán, José L; Chaussain, Catherine

    2013-10-01

    As broadly demonstrated for the formation of a functional skeleton, proper mineralization of periodontal alveolar bone and teeth - where calcium phosphate crystals are deposited and grow within an extracellular matrix - is essential for dental function. Mineralization defects in tooth dentin and cementum of the periodontium invariably lead to a weak (soft or brittle) dentition in which teeth become loose and prone to infection and are lost prematurely. Mineralization of the extremities of periodontal ligament fibers (Sharpey's fibers) where they insert into tooth cementum and alveolar bone is also essential for the function of the tooth-suspensory apparatus in occlusion and mastication. Molecular determinants of mineralization in these tissues include mineral ion concentrations (phosphate and calcium), pyrophosphate, small integrin-binding ligand N-linked glycoproteins and matrix vesicles. Amongst the enzymes important in regulating these mineralization determinants, two are discussed at length here, with clinical examples given, namely tissue-nonspecific alkaline phosphatase and phosphate-regulating gene with homologies to endopeptidases on the X chromosome. Inactivating mutations in these enzymes in humans and in mouse models lead to the soft bones and teeth characteristic of hypophosphatasia and X-linked hypophosphatemia, respectively, where the levels of local and systemic circulating mineralization determinants are perturbed. In X-linked hypophosphatemia, in addition to renal phosphate wasting causing low circulating phosphate levels, phosphorylated mineralization-regulating small integrin-binding ligand N-linked glycoproteins, such as matrix extracellular phosphoglycoprotein and osteopontin, and the phosphorylated peptides proteolytically released from them, such as the acidic serine- and aspartate-rich-motif peptide, may accumulate locally to impair mineralization in this disease.

  13. Potential impacts of CO2 leakage from the CCS sites on seed germination and soil microbial enzyme activities

    Science.gov (United States)

    Wenmei, H.; Yoo, G.; Kim, Y.; Moonis, M.

    2015-12-01

    To ensure the safety of carbon capture and storage (CCS) technology, it is essential to assess the impacts of potential CO2 leakage on the soil and ecosystem. The changes in soil environment due to the CO2 leakage might have an enormous effect on the plant growth. As a preliminary study, we conducted a research focusing on the germination process because it is known to be especially sensitive to the environmental change. The objective of this study is to investigate the impacts of high soil CO2 concentration on the germination of different species. A laboratory experiment was designed to investigate the effect of high soil CO2 concentration on germination rate and soil physicochemical/microbial parameters. Cabbage, corn, bean, and wheat were selected for this study. The concentrations of the injected CO2 treatments were 10%, 30%, 60% and 100%, and the actual soil CO2 concentration ranged from 3.6% to 53.2%. Two types of controls were employed: the one connected with ambient air tank and the other connected with nothing. The final germination rates of four crops were not different between the controls and 10% treatment, but the delay of germination was observed in cabbage, corn, and bean. At 30% treatment, the germination rates of cabbage, corn and bean were 38%, while that of wheat was 78%. No seed was germinated at 60% and 100% treatments. After the incubation, soil pH decreased from 6.0 in the controls to 5.6 in the 100% treatment. The contents of soil total C and total N were not different among treatments. Activities of microbial fluorescein diacetate hydrolysis were not different among treatments for all plants. Five kinds of soil extracellular enzyme activities were not affected by the CO2 treatments. Our results suggest that: 1) Soil CO2 concentration at 3-4% did not inhibit germination of four crops. 2) Wheat is most resistant to high soil CO2 concentration in this study. 3) Soil microbial parameters were more tolerant during the short term injection.

  14. Strategies for enhancing the effectiveness of metagenomic-based enzyme discovery in lignocellulytic microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Gladden, J.G.; Allgaier, M.; D' haeseleer, P.; Fortney, J.L.; Reddy, A.; Hugenholtz, P.; Singer, S.W.; Vander Gheynst, J.; Silver, W.L.; Simmons, B.; Hazen, T.C.

    2010-03-01

    Producing cellulosic biofuels from plant material has recently emerged as a key U.S. Department of Energy goal. For this technology to be commercially viable on a large scale, it is critical to make production cost efficient by streamlining both the deconstruction of lignocellulosic biomass and fuel production. Many natural ecosystems efficiently degrade lignocellulosic biomass and harbor enzymes that, when identified, could be used to increase the efficiency of commercial biomass deconstruction. However, ecosystems most likely to yield relevant enzymes, such as tropical rain forest soil in Puerto Rico, are often too complex for enzyme discovery using current metagenomic sequencing technologies. One potential strategy to overcome this problem is to selectively cultivate the microbial communities from these complex ecosystems on biomass under defined conditions, generating less complex biomass-degrading microbial populations. To test this premise, we cultivated microbes from Puerto Rican soil or green waste compost under precisely defined conditions in the presence dried ground switchgrass (Panicum virgatum L.) or lignin, respectively, as the sole carbon source. Phylogenetic profiling of the two feedstock-adapted communities using SSU rRNA gene amplicon pyrosequencing or phylogenetic microarray analysis revealed that the adapted communities were significantly simplified compared to the natural communities from which they were derived. Several members of the lignin-adapted and switchgrass-adapted consortia are related to organisms previously characterized as biomass degraders, while others were from less well-characterized phyla. The decrease in complexity of these communities make them good candidates for metagenomic sequencing and will likely enable the reconstruction of a greater number of full length genes, leading to the discovery of novel lignocellulose-degrading enzymes adapted to feedstocks and conditions of interest.

  15. Field released transgenic papaya effect on soil microbial communities and enzyme activities

    Institute of Scientific and Technical Information of China (English)

    WEI Xiang-dong; ZOU Hui-ling; CHU Lee-min; LIAO Bin; YE Chang-min; LAN Chong-yu

    2006-01-01

    Soil properties, microbial communities and enzyme activities were studied in soil amended with replicase (RP)-transgenic or non-transgenic papaya under field conditions. Compared with non-transgenic papaya, significant differences (P<0.05) were observed in total nitrogen in soils grown with transgenic papaya. There were also significant differences (P<0.05) in the total number of colony forming units (CFUs) of bacteria, actinomycetes and fungi between soils amended with RP-transgenic plants and non-transgenic plants. Compared with non-transgenic papaya, the total CFUs of bacteria, actinomycetes and fungi in soil with transgenic papaya increased by 0.43-1.1, 0.21-0.80 and 0.46-0.73 times respectively. Significantly higher (P<0.05) CFUs of bacteria, actinomycetes and fungi resistant to kanamycin (Km) were obtained in soils with RP-transgenic papaya than those with non-transgenic papaya in all concentrations of Km. Higher resistance quotients for Kmr (kanam ycin resistant) bacteria, actinomycetes and fungi were found in soil planted with RP-transgenic papaya, and the resistance quotients for KTr bacteria, actinomycetes and fungi in soils with transgenic papaya increased 1.6-4.46, 0.63-2.5 and 0.75-2.30 times. RP-transgenic papaya and non-transgenic papaya produced significantly different enzyme activities in arylsulfatase (5.4-5.9x), polyphenol oxidase (0.7-1.4x), invertase (0.5-0.79x), cellulase (0.23-0.35x) and phosphodiesterase (0.16-0.2x). The former three soil enzymes appeared to be more sensitive to the transgenic papaya than the others, and could be useful parameters in assessing the effects of transgenic papaya.Transgenic papaya could alter soil chemical properties, enzyme activities and microbial communities.

  16. In vitro and comparative study on the extracellular enzyme activity of molds isolated from keratomycosis and soil

    Institute of Scientific and Technical Information of China (English)

    Arumugam; Mythili; Yendranbam; Randhir; Babu; Singh; Ravindran; Priya; Anamangadan; Shafeeq; Hassan; Palanisamy; Manikandan; Kanesan; Panneerselvam; Venkatapathy; Narendran; Coimbatore; Subramanian; Shobana

    2014-01-01

    AIM:To isolate and identify the molds involved in mycotic keratitis; to isolate corresponding species from soil samples; to compare the extracellular enzyme activity indices of the molds isolated from keratitis cases and the corresponding soil isolates.METHODS:The specimens were collected from the target patients attending the microbiology laboratory of tertiary eye hospital in Coimbatore, Tamilnadu state,India. The isolates were subjected for identification based on the growth on solid media, direct microscopy and lacto phenol cotton blue wet mount preparation.Extracellular enzymes such as lipase, deoxyribonuclease(DNase), α-amylase, protease, cellulase and pectinase produced by the fungal isolates were screened on solid media supplemented with the corresponding substrates.Based on growth and zone diameter, the enzyme activity indices were calculated and were compared with that of the soil fungal isolates.RESULTS:A total of 108 clinical samples were collected from a tertiary eye care hospital and out of which 60 fungal isolates were obtained. Among these,Fusarium spp.(n =30), non sporulating molds(n =9),Aspergillus flavus(n =6), Bipolaris spp.(n =6),Exserohilum spp.(n =4), Curvularia spp.(n =3),Alternaria spp.(n =1) and Exophiala spp.(n =1) were identified and designated as FS1-30, NSM1-9, AF1-6,BS1-6, ES1-4, CS1-3, AS1 and EX1, respectively. For comparative analysis, soil samples were also collected from which, one isolate of each Fusarium spp.,Aspergillus flavus, Bipolaris spp., Exserohilum spp., and Curvularia spp., respectively were selected. Highest lipase activity was seen in corneal isolate NSM2(EAI= 2.14).The DNase activity was higher in NSM9(EAI =1.88). In case of protease, Fusarium spp.(FS9) had prominent enzyme activity index of 1.38; α-amylase activity was also superior in corneal isolate FS13 with EAI of 1.63 when compared to other isolates. The enzyme activity index for cellulase was also noted to be higher in corneal isolates i.e. NSM7 with EAI of

  17. Interaction between extracellular matrix molecules and microbial pathogens: the missing link in autoimmunity?

    Directory of Open Access Journals (Sweden)

    Nidhi eSofat

    2015-01-01

    Full Text Available Rheumatoid arthritis (RA is an autoimmune disease characterised by inflammation, tissue rebuilding and fibrosis. Inability by the body to regulate inflammation effectively is one of the hallmarks of RA. Interactions between the external environment and the human host play an important role in the development of autoimmunity. In RA, the observation of anti-cyclic citrullinated peptide antibodies (ACPA to autoantigens is well recognised. Citrullination is a post-translational modification mediated by peptidyl arginine deiminases (PADs, which exist in both mammalian and bacterial forms. Previous studies have shown how proteins expressed in the human extracellular matrix (ECM acquire properties of damage-associated molecular patterns (DAMPs in RA and include collagens, tenascin-C and fibronectin. ECM DAMPs can further potentiate tissue damage in RA. Recent work has shown that citrullination in RA occurs at mucosal sites, including the oral cavity and lung. Mucosal sites have been linked with bacterial infection e.g. periodontal disease, where exogenous pathogens are implicated in the development of autoimmunity via an infectious trigger. Here we explore how mucosal surfaces exposed to bacteria could trigger autoimmunity in RA.

  18. Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Xin; Li, Xiaojun; Sun, Tieheng; Li, Peijun; Zhou, Qixing; Sun, Lina; Hu, Xiaojun

    2009-10-01

    In the process of bioremediation in the soil contaminated by different oil concentrations, the changes in the microbial numbers (bacteria and fungi) and the enzyme (catalase (CAT), polyphenol oxidase (PPO) and lipase) activities were evaluated over a 2-year period. The results showed that the microbial numbers after 2-year bioremediation were one to ten times higher than those in the initial. The changes in the bacterial and the fungal populations were different during the bioremediation, and the highest microbial numbers for bacteria and fungi were 5.51 x 10(9) CFU g(-1) dry soil in treatment 3 (10,000 mg kg(-1)) in the initial and 5.54 x 10(5) CFU g(-1) dry soil in treatment 5 (50,000 mg kg(-1)) after the 2-year bioremediation period, respectively. The CAT and PPO activities in the contaminated soil decreased with increasing oil concentration, while the lipase activity increased. The activities of CAT and PPO improved after the bioremediation, but lipase activity was on the contrary. The CAT activity was more sensible to the oil than others, and could be alternative to monitor the bioremediation process.

  19. Variation of Soil Microbial Biomass and Enzyme Activities at Different Growth Stages of Rice (Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    ZENG Lu-sheng; LIAO Min; CHEN Cheng-li; HUANG Chang-yong

    2005-01-01

    A pot experiment was conducted under submerged conditions with hybrid rice Zhenong 7 to study the variation in the soil microbial biomass carbon (Cmic), soil microbial biomass nitrogen (Nmic), soil respiration rate, soil microbial metabolic quotient, soil enzyme activities, chlorophyll content, proline content and peroxidase activity (POD) in rice leaf at different growth stages. The soil Cmic, Nmic and soii respiration rate significantly increased at the early stage and then declined during rice growth, but ascended slightly at maturity. However, soil metabolic quotient declined at all the stages. Soil urease activity increased at first and then decreased, while acid phosphatase and dehydrogenase activities descended before ascended and then descended again. Soil urease activity and acid phosphatase activity showed a peak value at the tillering stage about 30 days after rice transplanting, but the peak value of dehydrogenase activity emerged at about 50 days after rice transplanting and the three soil enzymatic activities were significantly different at the different developmental stages. As rice growing, chlorophyll content in rice leaf descended at the early stage then ascended and a peak value appeared at about the 70th after rice transplanting, after that declined drastically, while POD activity increased gradually, but proline content declined gradually. There was a slight relation between rice physiological indices and soil biochemical indices, which indicated that soil biochemical characteristics were affected significantly by rice growth in the interactior system of the rice, soil and microorganisms.

  20. A Disaccharide that Inhibits Tumor Necrosis Factor α is Formed from the Extracellular Matrix by the Enzyme Heparanase

    Science.gov (United States)

    Lider, Ofer; Cahalon, Liora; Gilat, Dalia; Hershkoviz, Rami; Siegel, Daniel; Margalit, Raanan; Shoseyov, Oded; Cohen, Irun R.

    1995-05-01

    The activation of T cells by antigens or mitogens leads to the secretion of cytokines and enzymes that shape the inflammatory response. Among these molecular mediators of inflammation is a heparanase enzyme that degrades the heparan sulfate scaffold of the extracellular matrix (ECM). Activated T cells use heparanase to penetrate the ECM and gain access to the tissues. We now report that among the breakdown products of the ECM generated by heparanase is a trisulfated disaccharide that can inhibit delayed-type hypersensitivity (DTH) in mice. This inhibition of T-cell mediated inflammation in vivo was associated with an inhibitory effect of the disaccharide on the production of biologically active tumor necrosis factor α (TNF-α) by activated T cells in vitro; the trisulfated disaccharide did not affect T-cell viability or responsiveness generally. Both the in vivo and in vitro effects of the disaccharide manifested a bell-shaped dose-response curve. The inhibitory effects of the trisulfated disaccharide were lost if the sulfate groups were removed. Thus, the disaccharide, which may be a natural product of inflammation, can regulate the functional nature of the response by the T cell to activation. Such a feedback control mechanism could enable the T cell to assess the extent of tissue degradation and adjust its behavior accordingly.

  1. Microbially produced extracellular poly-saccharidic Pu(IV)- binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.C.; Roberts, K.A.; Schwehr, K.A.; Santschi, P.H. [Texas A and M University at Galveston, 5007 Ave U, Galveston, TX 77551 (United States)

    2005-07-01

    Full text of publication follows: The investigation of the Pu-binding properties of ligands for diverse extracellular polysaccharides (EPS) is of relevance for the quantitative understanding of colloidal barriers to radionuclide migration. The EPS isolated for this study were from four different bacteria species: a) two aerobic soil bacteria: Shewanella putrefaciens CN32 and Pseudomonas fluorescens Biovar II; and b) one anaerobic bacterium, Clostridium sp. BC1. EPS from these bacteria were isolated through repeated ethanol precipitations. The neutral monosaccharides in the EPS from Pseudomonas florescens Biovar II that were determined by GC-MS consisted of rhamnose, fucose, ribose, arabinose, xylose, mannose, galactose and glucose. The potentially Pu(IV) binding EPS ligands were mainly composed of carboxylic acids and other minor poly-anionic groups, e.g., sulphates and phosphates. Up to 70 % of total carbohydrates were hydrophilic uronic acids, and total carbohydrates made up 23-31% of organic carbon for P. florescens Biovar II and 9-17% of organic carbon for S. putrefaciens CN32. Besides the neutral and acidic sugars in the EPS, there were also 2-13 % of more hydrophobic proteins among these bacterial EPS. Pu binding to these exo-polymers showed log Kd values of about 5 - 6, with results strongly dependent on procedural details (e.g., removal of colloids in Pu(IV) tracer and reagent solutions). We hypothesize that the relative hydrophobicity of the EPS ligands affects the outcome in ternary sorption studies with colloidal silica. Experiments with varying relative hydrophobicities of EPS will elucidate the different sorption strengths and/or attachment potentials of the Pu-binding ligands to inorganic surfaces. (authors)

  2. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.

    Science.gov (United States)

    Xu, Yu-Shang; Zheng, Tao; Yong, Xiao-Yu; Zhai, Dan-Dan; Si, Rong-Wei; Li, Bing; Yu, Yang-Yang; Yong, Yang-Chun

    2016-07-01

    Although microbial fuel cells (MFCs) is considered as one of the most promising technology for renewable energy harvesting, low power output still accounts one of the bottlenecks and limits its further development. In this work, it is found that Cu(2+) (0.1μgL(-1)-0.1mgL(-1)) or Cd(2+) (0.1μgL(-1)-1mgL(-1)) significantly improve the electricity generation in MFCs. The maximum power output achieved with trace level of Cu(2+) (∼6nM) or Cd(2+) (∼5nM) is 1.3 times and 1.6 times higher than that of the control, respectively. Further analysis verifies that addition of Cu(2+) or Cd(2+) effectively improves riboflavin production and bacteria attachment on the electrode, which enhances bacterial extracellular electron transfer (EET) in MFCs. These results unveil the mechanism for power output enhancement by Cu(2+) or Cd(2+) addition, and suggest that metal ion addition should be a promising strategy to enhance EET as well as power generation of MFCs.

  3. Two Strategies for Microbial Production of an Industrial Enzyme-Alpha-Amylase

    Science.gov (United States)

    Bernhardsdotter, Eva C. M. J.; Garriott, Owen; Pusey, Marc L.; Ng, Joseph D.

    2003-01-01

    Extremophiles are microorganisms that thrive in, from an anthropocentric view, extreme environments including hot springs, soda lakes and arctic water. This ability of survival at extreme conditions has rendered extremophiles to be of interest in astrobiology, evolutionary biology as well as in industrial applications. Of particular interest to the biotechnology industry are the biological catalysts of the extremophiles, the extremozymes, whose unique stabilities at extreme conditions make them potential sources of novel enzymes in industrial applications. There are two major approaches to microbial enzyme production. This entails enzyme isolation directly from the natural host or creating a recombinant expression system whereby the targeted enzyme can be overexpressed in a mesophilic host. We are employing both methods in the effort to produce alpha-amylases from a hyperthermophilic archaeon (Thermococcus) isolated from a hydrothermal vent in the Atlantic Ocean, as well as from alkaliphilic bacteria (Bacillus) isolated from a soda lake in Tanzania. Alpha-amylases catalyze the hydrolysis of internal alpha-1,4-glycosidic linkages in starch to produce smaller sugars. Thermostable alpha-amylases are used in the liquefaction of starch for production of fructose and glucose syrups, whereas alpha-amylases stable at high pH have potential as detergent additives. The alpha-amylase encoding gene from Thermococcus was PCR amplified using carefully designed primers and analyzed using bioinformatics tools such as BLAST and Multiple Sequence Alignment for cloning and expression in E.coli. Four strains of Bacillus were grown in alkaline starch-enriched medium of which the culture supernatant was used as enzyme source. Amylolytic activity was detected using the starch-iodine method.

  4. Two Strategies for Microbial Production of an Industrial Enzyme-Alpha-Amylase

    Science.gov (United States)

    Bernhardsdotter, Eva C. M. J.; Garriott, Owen; Pusey, Marc L.; Ng, Joseph D.

    2003-01-01

    Extremophiles are microorganisms that thrive in, from an anthropocentric view, extreme environments including hot springs, soda lakes and arctic water. This ability of survival at extreme conditions has rendered extremophiles to be of interest in astrobiology, evolutionary biology as well as in industrial applications. Of particular interest to the biotechnology industry are the biological catalysts of the extremophiles, the extremozymes, whose unique stabilities at extreme conditions make them potential sources of novel enzymes in industrial applications. There are two major approaches to microbial enzyme production. This entails enzyme isolation directly from the natural host or creating a recombinant expression system whereby the targeted enzyme can be overexpressed in a mesophilic host. We are employing both methods in the effort to produce alpha-amylases from a hyperthermophilic archaeon (Thermococcus) isolated from a hydrothermal vent in the Atlantic Ocean, as well as from alkaliphilic bacteria (Bacillus) isolated from a soda lake in Tanzania. Alpha-amylases catalyze the hydrolysis of internal alpha-1,4-glycosidic linkages in starch to produce smaller sugars. Thermostable alpha-amylases are used in the liquefaction of starch for production of fructose and glucose syrups, whereas alpha-amylases stable at high pH have potential as detergent additives. The alpha-amylase encoding gene from Thermococcus was PCR amplified using carefully designed primers and analyzed using bioinformatics tools such as BLAST and Multiple Sequence Alignment for cloning and expression in E.coli. Four strains of Bacillus were grown in alkaline starch-enriched medium of which the culture supernatant was used as enzyme source. Amylolytic activity was detected using the starch-iodine method.

  5. Polyphenols as enzyme inhibitors in different degraded peat soils: Implication for microbial metabolism in rewetted peatlands

    Science.gov (United States)

    Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik

    2015-04-01

    Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or

  6. Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2014-01-01

    Full Text Available Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented.

  7. Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities.

    Science.gov (United States)

    Nayak, Soumya; Mishra, C S K; Guru, B C; Rath, Monalisa

    2011-09-01

    Phosphogypsum (PG) is produced as a solid waste from phosphatic fertilizer plants. The waste slurry is disposed off in settling ponds or in heaps. This solid waste is now increasingly being used as a calcium supplement in agriculture. This study reports the effectof PG amendmenton soil physico chemical properties, bacterial and fungal count and activities of soil enzymes such as invertase, cellulase and amylase over an incubation period of 28 days. The highest mean percent carbon loss (55.98%) was recorded in 15% PG amended soil followed by (55.28%) in 10% PG amended soil and the minimum (1.68%) in control soil. The highest number of bacterial colonies (47.4 CFU g(-1) soil), fungal count (17.8 CFU g(-1) soil), highest amylase activity (38.4 microg g(-1) soil hr(-1)) and cellulase activity (38.37 microg g(-1) soil hr(-1)) were recorded in 10% amended soil. Statistically significant difference (p<0.05) has been recorded in the activities of amylase and cellulase over the period of incubation irrespective of amendments. Considering the bacterial and fungal growth and the activities of the three soil enzymes in the control and amended sets, it appears that 10% PG amendment is optimal for microbial growth and soil enzyme activities.

  8. Microbial tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry.

    Science.gov (United States)

    Zaidi, Kamal Uddin; Ali, Ayesha S; Ali, Sharique A; Naaz, Ishrat

    2014-01-01

    Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented.

  9. Carbon-cycle effects of differences in soil moisture and soil extracellular enzyme activity at sites representing different land-use histories in high-elevation Ecuadorian páramo landscapes

    Science.gov (United States)

    McKnight, J.; Harden, C. P.; Schaeffer, S. M.

    2016-12-01

    Ecuadorian páramo grasslands are important regional soil carbon sinks. In the páramo of the Mazar Wildlife Reserve, differences in soil carbon content among different types of land use may reflect changes in soil carbon-acquisition related microbial enzyme activity after land cover and soil moisture are altered; however, this hypothesis has not been tested explicitly for Ecuadorian páramos. This study used a fluorescence enzyme assay to assess the activities of four different extracellular enzymes representing carbon acquisition: α-glucosidase, β-glucosidase, β-D-cellulobiohydrolase, and β-xylosidase in Andean páramo soils. Acquisition activities were also measured for nitrogen (N-acetyl-β-glucosidase and leucine aminopeptidase) and phosphorus (phosphatase) to assess stoichiometric differences between land-uses, which can affect soil microbial activity related to carbon acquisition. Soils were analyzed from four land uses: native forest, grass páramo, recently burned grass páramo, and non-native pine plantation. Carbon acquisition activity was highest at the pine site (678 nmol h-1 g-1) and lowest at the recently burned páramo site (252 nmol h-1 g-1), indicating the lowest and highest available soil carbon, respectively. Carbon-acquisition EE activity was significantly higher at the grass páramo site (595 nmol h-1 g-1) than at the recently burned páramo and native forest sites. At the grass páramo site, a history of burning as a management strategy and high carbon-acquisition EE activity could indicate the presence of pyrogenic soil organic matter, which is more resistant to microbial decomposition. Soils at the native forest and both grassland sites were phosphorus limited, and soil at the pine site had higher nitrogen-acquisition activity, indicative of a shift to nitrogen-limited soil stoichiometric conditions. To our knowledge these are the first data reported for soil extracellular enzyme activities for Ecuadorian páramos.

  10. Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905.

    Science.gov (United States)

    Wang, Chao; Wang, Xun; Wang, Peifang; Chen, Bin; Hou, Jun; Qian, Jin; Yang, Yangyang

    2016-10-01

    Toxic cyanobacterial blooms have occurred in various water bodies during recent decades and made serious health hazards to plants, animals and humans. Iron is an important micronutrient for algal growth and recently, the concentration of which has increased remarkably in freshwaters. In this paper, the cyanobacterium Microcystis aeruginosa FACHB-905 was cultivated under non-iron (0μM), iron-limited (10μM) and iron-replete (100μM) conditions to investigate the effects of iron on growth, antioxidant enzyme activity, EPS and microcystin production. The results showed that algal cell density and chlorophyll-a content were maximal at the highest iron concentration. Antioxidant enzymes activity increased notably under all three conditions in the early stage of experiment, of which the SOD activity recovered soon from oxidative stress in 10μM group. The productions of some protein-like substances and humic acid-like substances of bound EPS were inhibited in iron-containing groups in the early stage of experiment while promoted after the adaptation period of Microcystis aeruginosa. Iron addition is a factor affecting the formation of cyanobacterial blooms through its impact on the content of LB-EPS and the composition of TB-EPS. The intracellular MC-LR concentration and the productivity potential of MC-LR were the lowest in 0μM group and highest in 10μM group. No obvious extracellular release of MC-LR was observed during the cultivation time. Therefore, iron addition can promote the physiological activities of M. aeruginosa, but a greater harm could be brought into environment under iron-limited (10μM) condition than under iron-replete (100μM) condition.

  11. Biobleaching of Acacia kraft pulp with extracellular enzymes secreted by Irpex lacteus KB-1.1 and Lentinus tigrinus LP-7 using low-cost media.

    Science.gov (United States)

    Afrida, Sitompul; Tamai, Yutaka; Watanabe, Toshihiro; Osaki, Mitsuru

    2014-08-01

    The white-rot fungi Irpex lacteus KB-1.1 and Lentinus tigrinus LP-7 have been shown in previous studies to have high biobleaching activity in vivo. The aim of this study was to investigate the activities and stabilities of extracellular enzymes, prepared from I. lacteus and L. tigrinus culture grown in three types of economical media of agricultural and forestry wastes, for biobleaching of Acacia oxygen-delignified kraft pulp using kappa number reduction as an indicator of delignification. After 3 days of incubation, the extracellular enzymes preparations from I. lacteus and L. tigrinus cultures in media of Acacia mangium wood powder supplemented with rice bran and addition 1 % glucose (WRBG), resulted in significant decrease of 4.4 and 6.7 %, respectively. A slightly higher kappa number reduction (7.4 %) was achieved with the combine extracellular enzymes from I. lacteus and L. tigrinus. One of the strategies for reducing the cost of enzyme production for treatment processes in the pulp and paper industry is the utilization of agricultural and forestry waste. Thus, WRBG has potential as a culture medium for producing stable lignolytic enzymes simply and economically.

  12. Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9.

    Science.gov (United States)

    Jatt, Abdul Nabi; Tang, Kaihao; Liu, Jiwen; Zhang, Zenghu; Zhang, Xiao-Hua

    2015-02-01

    Marine snow is a continuous shower of organic and inorganic detritus, and plays a crucial role in transporting materials from the sea surface to the deep ocean. The aims of the current study were to identify N-acyl homoserine lactone (AHL)-based quorum sensing (QS) signaling molecules directly from marine snow particles and to investigate the possible regulatory link between QS signals and extracellular hydrolytic enzymes produced by marine snow bacteria. The marine snow samples were collected from the surface water of China marginal seas. Two AHLs, i.e. 3OC6-HSL and C8-HSL, were identified directly from marine snow particles, while six different AHL signals, i.e. C4-HSL, 3OC6-HSL, C6-HSL, C10-HSL, C12-HSL and C14-HSL were produced by Pantoea ananatis B9 inhabiting natural marine snow particles. Of the extracellular hydrolytic enzymes produced by P. ananatis B9, alkaline phosphatase activity was highly enhanced in growth medium supplemented with exogenous AHL (C10-HSL), while quorum quenching enzyme (AiiA) drastically reduced the enzyme activity. To our knowledge, this is the first report revealing six different AHL signals produced by P. ananatis B9 and AHL-based QS system enhanced the extracellular hydrolytic enzyme in P. ananatis B9. Furthermore, this study first time revealing 3OC6-HSL production by Paracoccus carotinifaciens affiliated with Alphaproteobacteria. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Degradation of cellulose by the bean-pathogenic fungus Colletotrichum lindemuthianum. Production of extracellular cellulolytic enzymes by cellulose induction.

    Science.gov (United States)

    Acosta-Rodríguez, Ismael; Piñón-Escobedo, Carlos; Zavala-Páramo, Ma Guadalupe; López-Romero, Everardo; Cano-Camacho, Horacio

    2005-05-01

    Colletotrichum lindemuthianum was able to grow and produce extracellular cellulolytic activity in a defined medium containing cellulose as the main carbon substrate. As measured either by the hydrolysis of 4-methylumbelliferyl-beta-D -cellotrioside or the release of glucose from carboxymethylcellulose, activity reached a peak after 13 days of incubation and then declined whereas growth markedly increased afterwards. Detection of glucose in carboxymethylcellulose hydrolysates suggested the concerted operation of endo-1,4-beta-glucanase, cellobiohydrolase (exo-1,4-beta-glucanase) and beta-glucosidase activities. The highest levels of cellulolytic activity were obtained in media supplemented with cellulose and glutamate. Other carbon and nitrogen sources markedly influenced growth and enzyme production. Oligonucleotides homologous to specific regions of the cellobiohydrolase-encoding cbhII gene from Trichoderma reesei were used to isolate a C. lindemuthianum cbhII-DNA fragment whose sequence revealed homologies of 98% and 92% with the nucleotide and the deduced amino acid sequences of the corresponding cbhII-DNA of T. reesei, respectively. RT-PCR and Southern blot analyses of total RNA samples obtained from cellulose-grown but not from glucose-grown mycelium revealed the expression of the corresponding cbhII transcript. The cbhII-cDNA fragment was cloned and sequenced.

  14. Metatranscriptomics Reveals the Functions and Enzyme Profiles of the Microbial Community in Chinese Nong-Flavor Liquor Starter

    Directory of Open Access Journals (Sweden)

    Yuhong Huang

    2017-09-01

    Full Text Available Chinese liquor is one of the world's best-known distilled spirits and is the largest spirit category by sales. The unique and traditional solid-state fermentation technology used to produce Chinese liquor has been in continuous use for several thousand years. The diverse and dynamic microbial community in a liquor starter is the main contributor to liquor brewing. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the liquor starter production process. Fungi were found to be the most abundant and active community members. A total of 932 carbohydrate-active enzymes, including highly expressed auxiliary activity family 9 and 10 proteins, were identified at 62°C under aerobic conditions. Some potential thermostable enzymes were identified at 50, 62, and 25°C (mature stage. Increased content and overexpressed key enzymes involved in glycolysis and starch, pyruvate and ethanol metabolism were detected at 50 and 62°C. The key enzymes of the citrate cycle were up-regulated at 62°C, and their abundant derivatives are crucial for flavor generation. Here, the metabolism and functional enzymes of the active microbial communities in NF liquor starter were studied, which could pave the way to initiate improvements in liquor quality and to discover microbes that produce novel enzymes or high-value added products.

  15. Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial community structure

    Institute of Scientific and Technical Information of China (English)

    Yang GAO; Chiyuan MIAO; Jun XIA; Liang MAO; Yafeng WANG; Pei ZHOU

    2012-01-01

    It is unclear whether certain plant species and plant diversity could reduce the impacts of multiple heavy metal pollution on soil microbial structure and soil enzyme activities. Random amplified polymorphic DNA (RAPD) was used to analyze the genetic diversity and microbial similarity in planted and unplanted soil under combined cadmium (Cd) and lead (Pb) pollution. A metal hyper- accumulator, Brassica juncea, and a common plant, Festuca arundinacea Schreb, were used in this research. The results showed that microorganism quantity in planted soil significantly increased, compared with that in unplanted soil with Cd and Pb pollution. The order of microbial community sensitivity in response to Cd and Pb stress was as follows: actinomycetes 〉 bacteria 〉 fungi. Respiration, phosphatase, urease and dehydrogenase activity were significantly inhibited due to Cd and Pb stress. Compared with unplanted soil, planted soils have frequently been reported to have higher rates of microbial activity due to the presence of additional surfaces for microbial colonization and organic compounds released by the plant roots. Two coexisting plants could increase microbe population and the activity of phosphatases, dehydrogenases and, in particular, ureases. Soil enzyme activity was higher in B. juncea phytoremediated soil than in F. arundinacea planted soil in this study. Heavy metal pollution decreased the richness of the soil microbial community, but plant diversity increased DNA sequence diversity and maintained DNA sequence diversity at highlevels. The genetic polymorphism under heavy metal stress was higher in B. juncea phytoremediated soil than in F. arundinacea planted soil.

  16. Expression of Extracellular Signal-regulated Kinase and Angiotensin-converting Enzyme in Human Atria during Atrial Fibrillation

    Institute of Scientific and Technical Information of China (English)

    戴友平; 王祥; 曹林生; 杨杪; 邬堂春

    2004-01-01

    Summary: In order to investigate the changes in the expression of extracellular signal-regulated kinase (ERK1/ERK2) and angiotensin-converting enzyme (ACE) in the patients with atrial fibrillation (AF), 52 patients with rheumatic heart diseases were examined. Nineteen patients had chronic persistent AF (AF≥6 months, CAF), 12 patients had paroxymal AF (PAF) and 21 patients had no history of AF. The ERK expression was detected at the mRNA level by reverse transcription polymerase chain reaction, at the protein level by Western blotting and at atrial tissue level by immunohistochemistry. ERK-activating kinases (MEK1/2) and ACE were determined by Western blotting techniques. The expression of ERK2-mRNA was increased in the patients with CAF (74±19 U vs sinus rhythm: 32±24 U, P<0.05). Activated ERK1/ERK2 and MEK1/2 were increased to more than 150 % in the patients with AF compared to those with sinus rhythm. No significant difference between CAF and PAF was found. The expression of ACE was three-fold increased in the patients with CAF compared to those with sinus rhythm. Patients with AF showed an increased expression of ERK1/ERK2 in atrial interstitial cells and marked atrial fibrosis. An ACE-dependent increase in the amounts of activated ERK1/ERK2 in atrial interstitial cells may be one of molecular mechanisms for the development of atrial fibrosis in the patients with AF. These findings may have important impact on the treatment of AF.

  17. Effects of Continuous Tomato Monoculture on Soil Microbial Properties and Enzyme Activities in a Solar Greenhouse

    Directory of Open Access Journals (Sweden)

    Hongdan Fu

    2017-02-01

    Full Text Available Soil-related obstacles resulting from continuous monoculture have limited the sustainable development of the tomato industry in China. An experiment on tomatoes with seven continuous monoculture treatments (the 1st, 3rd, 5th, 7th, 9th, 11th, and 13th crops, respectively was conducted in a solar greenhouse, to investigate the influence of monoculture on soil quality. Most soil quality indicators first increased and then decreased with increasing continuous monoculture crops, and significant differences among crops were observed. Indicators at the 13th crop were significantly lower than those at the other crops in terms of average well color development (AWCD, substrate richness (S, the Shannon diversity index (H, and the McIntosh index (U of the soil microbial community (SMC, soil urease (UR, and neutral phosphatase (N-PHO activities, and available nitrogen (AN and potassium (AK. However, fungal abundance (FUN at the 13th crop was significantly higher than that at the other crops. As principal component analysis (PCA revealed, SMC functional diversity at the 1st, 11th, and 13th crops were similar, and were obviously distinguished from those at the other crops. Moreover, the tomato yield was significantly and positively correlated with soil-available potassium and SMC functional diversity indexes. Our findings indicated that short-term continuous monoculture, e.g., for fewer than seven or nine crops, was beneficial for soil quality improvement. However, continuous monoculture for greater than 11 crops had adverse effects on soil enzyme activities, soil microbial abundances, soil chemical properties, soil SMC functional diversity, and the tomato yield, particularly at the 13th crop.

  18. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the Rumen Simulation Technique (Rusitec).

    Science.gov (United States)

    Wang, Y; McAllister, T A; Rode, L M; Beauchemin, K A; Morgavi, D P; Nsereko, V L; Iwaasa, A D; Yang, W

    2001-03-01

    The effects of an exogenous enzyme preparation, the application method and feed type on ruminal fermentation and microbial protein synthesis were investigated using the rumen simulation technique (Rusitec). Steam-rolled barley grain and chopped alfalfa hay were sprayed with water (control, C), an enzyme preparation with a predominant xylanase activity (EF), or autoclaved enzyme (AEF) 24 h prior to feeding, or the enzyme was supplied in the buffer infused into the Rusitec (EI). Microbial N incorporation was measured using (15NH4)2SO4 in the buffer. Spent feed bags were pummelled mechanically in buffer to segregate the feed particle-associated (FPA) and feed particle-bound (FPB) bacterial fractions. Enzymes applied to feed reduced neutral-detergent fibre content, and increased the concentration of reducing sugars in barley grain, but not alfalfa hay. Ruminal cellulolytic bacteria were more numerous with EF than with C. Disappearance of DM from barley grain was higher with EF than with C, but alfalfa was unaffected by EF. Treatment EF increased incorporation of 15N into FPA and FPB fractions at 24 and 48 h. In contrast, AEF reduced the 24 h values, relative to C; AEF and C were similar at 48 h. Infused enzyme (EI) did not affect 15N incorporation. Xylanase activity in effluent was increased by EF and EI, compared to C, but not by AEF. Xylanase activity in FPA was higher at 48 h than at 24 h with all treatments; it was higher with EF than C at 24 and 48 h, but was not altered by AEF or EI. Applying enzymes onto feeds before feeding was more effective than dosing directly into the artificial rumen for increasing ruminal fibrolytic activity.

  19. Soil microbial population and enzyme activity related to grazing pressure in alpine meadows of Nanda Devi Biosphere Reserve.

    Science.gov (United States)

    Singh, Sanjeeva K; Rai, J P N

    2004-01-01

    The present study aims to analyze the interaction of prevailing biotic pressure on soil environment with emphasis on its physicochemical and microbiological characteristics determining soil fertility status and thus supporting plant and animal biodiversity in Nanda Devi Biosphere Reserve (NDBR) which is located in northern part of Uttaranchal hills between 79 degrees 40'E to 80 degrees 05'E longitude and 30 degrees 17'N to 30 degrees 41'E latitude. The experimental results revealed that the physico-chemical characteristics (viz., moisture, pH, EC, C, N, P, K, CEC) of soil were maximum in moderately grazed meadow and minimum in intensively grazed meadow. Soil microbial analysis measured in terms of total viable count (TVC) exhibited grazing sensitivity trend being maximum population of bacteria > fungi > actinomycetes. The soil microbial population was positively correlated with soil respiration, dehydrogenase activity, acid phosphatase and microbial biomass, which exhibited uneven trend with grazing pressure. Soil from moderately grazed meadow showed highest microbial count and enzyme activities, whilst intensively grazed meadow showed lowest microbial count and enzyme activities. This depicts the beneficial role of prescribed grazing up to limited extent in management of soil fertility, which might have supported luxuriant growth of a variety of grasses.

  20. Repeated application of composted tannery sludge affects differently soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms.

    Science.gov (United States)

    Araújo, Ademir Sérgio Ferreira; Lima, Luciano Moura; Santos, Vilma Maria; Schmidt, Radomir

    2016-10-01

    Repeated application of composted tannery sludge (CTS) changes the soil chemical properties and, consequently, can affect the soil microbial properties. The aim of this study was to evaluate the responses of soil microbial biomass and ammonia-oxidizing organisms to repeated application of CTS. CTS was applied repeatedly during 6 years, and, at the sixth year, the soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms were determined in the soil. The treatments consisted of 0 (without CTS application), 2.5, 5, 10, and 20 t ha(-1) of CTS (dry basis). Soil pH, EC, SOC, total N, and Cr concentration increased with the increase in CTS rate. Soil microbial biomass did not change significantly with the amendment of 2.5 Mg ha(-1), while it decreased at the higher rates. Total and specific enzymes activity responded differently after CTS application. The abundance of bacteria did not change with the 2.5-Mg ha(-1) CTS treatment and decreased after this rate, while the abundance of archaea increased significantly with the 2.5-Mg ha(-1) CTS treatment. Repeated application of different CTS rates for 6 years had different effects on the soil microbial biomass and ammonia-oxidizing organisms as a response to changes in soil chemical properties.

  1. Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory

    OpenAIRE

    Charlotte Jean Alster; Peter Baas; Wallenstein, Matthew D.; Nels G. Johnson; von Fischer, Joseph C.

    2016-01-01

    The activity of soil microbial extracellular enzymes is strongly controlled by temperature, yet the degree to which temperature sensitivity varies by microbe and enzyme type is unclear. Such information would allow soil microbial enzymes to be incorporated in a traits-based framework to improve prediction of ecosystem response to global change. If temperature sensitivity varies for specific soil enzymes, then determining the underlying causes of variation in temperature sensitivity of these e...

  2. [Comparisons of Microbial Numbers, Biomasses and Soil Enzyme Activities Between Paddy Field and Drvland Origins in Karst Cave Wetland].

    Science.gov (United States)

    Jin, Zhen-jiang; Zeng, Hong-hu; Li, Qiang; Cheng, Ya-ping; Tang, Hua-feng; Li, Min; Huang, Bing-fu

    2016-01-15

    The purpose of this study is to compare microbial number, microbial biomass as well as soil enzyme activity between paddy field and dryland originated karst wetland ecosystems. The soil samples (0-20 cm) of uncultivated wetland, paddy field and dryland were collected in Huixian karst cave wetland, Guilin, China. Microbial numbers and biomass were detected using dilute plate incubation counting and chloroform fumigation-extraction, respectively. Microbial DNA was extracted according to the manufacturer's instructions of the kit. Microbial activity was examined using soil enzyme assays as well. The result showed that the bacteria number in paddy filed was (4.36 +/- 2.25) x 10(7) CFU x g(-1), which was significantly higher than those in wetland and dryland. Fungi numbers were (6.41 +/- 2.16) x 10(4) CFU x g(-1) in rice paddy and (6.52 +/- 1.55) x 10(4) CFU x g(-1) in wetland, which were higher than that in dryland. Actinomycetes number was (2.65 +/- 0.72) x 10(6) CFU x g(-1) in dryland, which was higher than that in wetland. Microbial DNA concentration in rice paddy was (11.92 +/- 3.69) microg x g(-1), which was higher than that in dryland. Invertase activity was (66.87 +/- 18.61) mg x (g x 24 h)(-1) in rice paddy and alkaline phosphatase activity was (2.07 +/- 0.99) mg x (g x 2 h)(-1) in wetland, both of which were higher than those in dryland. Statistical analysis showed there was a significant positive correlation of microbial DNA content, alkaline phosphatase activity and microbial carbon with soil pH, soil organic carbon (SOC), total nitrogen, alkali-hydrolyzable nitrogen, soil moisture, exchangeable Ca2+ and exchangeable Mg2+, as well as a significant positive correlation of intervase activity with the former three microbial factors. The above results indicated that microbial biomass and function responded much more sensitively to land-use change than microbial number in karst cave wetland system. Soil moisture, SOC and some factors induced by land-use change

  3. The role of microbial-produced extracellular polymeric matrix in the formation and survival of biological soil crusts

    Science.gov (United States)

    Rossi, Federico; Adessi, Alessandra; De Philippis, Roberto

    2016-04-01

    Biological soil crusts (BSCs) are complex communities commonly constituting organo-mineral layers in arid and semiarid environment having a major influence on these ecosystems (Belnap and Lange, 2001). They have high tolerance towards a-biotic stresses and fluctuations in moisture, illumination, salinity and nutrients. The plasticity exhibited by BSCs is hugely contributed by the presence of the extracellular polymeric matrix (EPM) that is synthesized by crustal organisms, notably cyanobacteria and microalgae. This polysaccharidic net plays key roles in biofilm relations with the surrounding constrained environment. Notably, EPM concurs in coping with water scarcity, freezing and salt stress; increases biolayers stability against erosion, and is involved in nutrient provision (Rossi and De Philippis, 2015). We conducted several investigations in a research area located in the Inner Mongolian desert (Inner Mongolia, China) where BSCs were induced over different sites through inoculation-based techniques performed in different years. Our studies were aimed at determining the role of EPM in BSC development and survival in such a hyper-arid system. This presentation will report the results concerning the role of EPM in water capture from non-rainfall sources, water maintenance at the topsoil, and in water infiltrability, the latter being a factor with important ecological implications. In additions we investigated the role of the matrix as a source of carbon for the crustal heterotrophs. Furthermore, EPM was extracted with methods optimized in our lab, aiming at removing tightly bound fractions and loosely bound fractions from BSCs having different ages. The fractions were analyzed in terms of monosaccharidic composition, and molecular weight (MW) distribution. We show how the relative amounts of uronic acids increase in the EPM with the age of the crusts, implying advantages for the community-water relations. In addition, we observed significant differences in MW

  4. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes.

    Science.gov (United States)

    Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C

    2016-04-01

    Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed.

  5. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  6. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland.

    Science.gov (United States)

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Capek, Petr; Kaiser, Christina; Torsvik, Vigdis L; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation ("buried topsoils"), resulting from a decrease in fungal abundance compared to recent ("unburied") topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation.

  7. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste - a compost maturity analysis perspective.

    Science.gov (United States)

    Raut, M P; Prince William, S P M; Bhattacharyya, J K; Chakrabarti, T; Devotta, S

    2008-09-01

    An investigation was carried out in the laboratory to find out the microbial dynamics and enzyme activities during rapid composting of municipal solid waste (MSW). Various treatments such as aeration (A), addition of chemical agents (glucose (G) and acetic acid (AA) and application of cellulolytic microbial (M) inoculum (Phanerochaete chrysosporium and Trichoderma reesei) were used to facilitate the decomposition of MSW. The result of the present investigation revealed that the degradation of organic substrates were quick (within 9-12 days) in case of rapid composting as indicated by the reduction (below 20) in C/N ratio. Whereas, normal composting took more than 20 days to attain C/N ratio of below 20. Estimation of selected enzymes (amylase, protease, phosphatase and cellulase) provided information on the substrate specific degradation profiles of various labile substrates contained in organic waste.

  8. Diversity of Microbial Carbohydrate-Active enZYmes (CAZYmes) Associated with Freshwater and Soil Samples from Caatinga Biome.

    Science.gov (United States)

    Andrade, Ana Camila; Fróes, Adriana; Lopes, Fabyano Álvares Cardoso; Thompson, Fabiano L; Krüger, Ricardo Henrique; Dinsdale, Elizabeth; Bruce, Thiago

    2017-07-01

    Semi-arid and arid areas occupy about 33% of terrestrial ecosystems. However, little information is available about microbial diversity in the semi-arid Caatinga, which represents a unique biome that extends to about 11% of the Brazilian territory and is home to extraordinary diversity and high endemism level of species. In this study, we characterized the diversity of microbial genes associated with biomass conversion (carbohydrate-active enzymes, or so-called CAZYmes) in soil and freshwater of the Caatinga. Our results showed distinct CAZYme profiles in the soil and freshwater samples. Glycoside hydrolases and glycosyltransferases were the most abundant CAZYme families, with glycoside hydrolases more dominant in soil (∼44%) and glycosyltransferases more abundant in freshwater (∼50%). The abundances of individual glycoside hydrolase, glycosyltransferase, and carbohydrate-binding module subfamilies varied widely between soil and water samples. A predominance of glycoside hydrolases was observed in soil, and a higher contribution of enzymes involved in carbohydrate biosynthesis was observed in freshwater. The main taxa associated with the CAZYme sequences were Planctomycetia (relative abundance in soil, 29%) and Alphaproteobacteria (relative abundance in freshwater, 27%). Approximately 5-7% of CAZYme sequences showed low similarity with sequences deposited in non-redundant databases, suggesting putative homologues. Our findings represent a first attempt to describe specific microbial CAZYme profiles for environmental samples. Characterizing these enzyme groups associated with the conversion of carbohydrates in nature will improve our understanding of the significant roles of enzymes in the carbon cycle. We identified a CAZYme signature that can be used to discriminate between soil and freshwater samples, and this signature may be related to the microbial species adapted to the habitat. The data show the potential ecological roles of the CAZYme repertoire and

  9. [Effects of organic fish protein liquid fertilizer on enzyme activities and microbial biomass C and N in a silt soil].

    Science.gov (United States)

    Wei, Xiu-Li; Lei, Ping; Shi, Wei-Yong

    2010-08-01

    By the method of thermostatic culture, this paper studied the effects of different application rates (0.5, 1.5, and 2.5 ml x kg(-1)) of organic fish protein liquid fertilizer on the enzyme activities and microbial biomass C and N in a silt soil, and the relationships between these parameters and soil nutrient contents. Under the application of the liquid fertilizer, soil pH varied in the range of 7.07-7.31, but had no significant difference from the control. With the increasing application rate of the liquid fertilizer, the activities of soil phosphatase, urease, and protease, as well as the soil biomass C and N, all increased significantly, and the increment was 127, 190 and 196%, 39.81, 78.06 and 173.24%, 56.37, 108.29 and 199.98%, 167, 395 and 474%, and 121, 243 and 406%, respectively, compared with the control. The peak time of the soil urease and protease activities and microbial biomass C and N differed with the fertilization treatments. Soil phosphase, urease, and protease activities and microbial biomass C and N were significantly positively correlated with soil nutrient contents, suggesting that applying organic fish protein liquid fertilizer to silt soil could improve soil microbial growth and enzyme activities, and accordingly, promote the decomposition and transformation of soil organic matter and the release of soil available nutrient elements.

  10. Impact of Acidified Sodium Chlorite and Enzyme Treatment on the Microbial Load and Energy Bioavailability of Feedstuffs

    Directory of Open Access Journals (Sweden)

    Thakur R

    2013-03-01

    Full Text Available The presence of microbial load and high fiber content in various non conventional feedstuffs limit their utilization in poultry feed. In the present study, the feedstuffs were treated with acidified sodium chlorite (ASC and its impact on  the microbial load and metabolizable energy availability was assessed in  the chickens. The effect of supplementation of feed grade enzyme was also evaluated either alone or in combination with ASC treatment.  ASC was prepared by adding citric acid to an aqueous solution of sodium chlorite (625 g/liter. The sanitizing effect of ASC was assessed at  0,  100,  250 and  500 ppm levels in  the meat cum bone meal (MBM and sunflower meal (SFM, while its impact on  the energy bioavailability from SFM and de-oiled rice bran (DORB was assessed  at  0, 100 and  250 ppm levels with (0.3  g/kg and without exogenous enzyme supplementation.  The results revealed that  ASC treatment was effective in reducing  the  microbial load in MBM and SFM. Regarding  the metabolizable energy availability, ASC treatment produced appreciable improvement both in SFM and DORB, while enzyme supplementation was effective only with SFM. It may be concluded that ASC treatment has a sanitizing effect and improves the energy bioavailability from feed ingredients like SFM and DORB in the chicken.

  11. Effect of dry mycelium of Penicillium chrysogenum fertilizer on soil microbial community composition, enzyme activities and snap bean growth.

    Science.gov (United States)

    Wang, Bing; Liu, Huiling; Cai, Chen; Thabit, Mohamed; Wang, Pu; Li, Guomin; Duan, Ziheng

    2016-10-01

    The dry mycelium fertilizer (DMF) was produced from penicillin fermentation fungi mycelium (PFFM) following an acid-heating pretreatment to degrade the residual penicillin. In this study, it was applied into soil as fertilizer to investigate its effects on soil properties, phytotoxicity, microbial community composition, enzyme activities, and growth of snap bean in greenhouse. As the results show, pH, total nitrogen, total phosphorus, total potassium, and organic matter of soil with DMF treatments were generally higher than CON treatment. In addition, the applied DMF did not cause heavy metal and residual drug pollution of the modified soil. The lowest GI values (microbial population and enzyme activities illustrated that DMF was rapidly decomposed and the decomposition process significantly affected microbial growth and enzyme activities. The DMF-modified soil phytotoxicity decreased at the late fertilization time. DMF1 was considered as the optimum amount of DMF dose based on principal component analysis scores. Plant height and plant yield of snap bean were remarkably enhanced with the optimum DMF dose.

  12. Biogas production: litter from broilers receiving direct-fed microbials and an enzyme blend

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Ferreira Menegucci Praes

    Full Text Available ABSTRACT The effect of additives used in the feed of broilers on anaerobic bio-digestion of poultry litter was evaluated. Four diets were used: NC: negative control; DFM: NC + 500 ppm direct-fed microbials (DFM containing Bacillus subtilis and Bacillus licheniformis; ENZ: diet formulated with an enzyme blend (20 ppm phytase, 200 ppm protease and 200 ppm xylanase; DFM+E: ENZ + DFM. Substrates for the anaerobic bio-digestion were prepared with litter from each treatment, containing 4 % total solids (TS. These were used in 16 continuous bio-digesters with a 2 kg d−1 load, to determine the production and potential biogas production and composition during an 85-day period. Influent and effluent samples were collected for the amounts of TS and volatile solids (VS, fiber fraction (neutral detergent fiber [NDF], acid detergent fiber [ADF] and lignin, nutrients (N, P and K, and total and thermotolerant coliforms to be determined. For all treatments a reduction in the following effluents was observed as follows: TS (49, 48, 48 and 50 % VS (70, 54, 55 and 62 % NDF (91, 90, 95 and 96 % ADF (89, 88, 93 and 94 % and lignin (80, 76, 89 and 88 %. The efficiency of the treatment for coliforms in bio-digesters was higher than 90 % in the 85-day period in all treatment groups. There was a reduction in biogas and methane production when DFM (5500 and 4000 mL and DFM + E (5800 and 4100 mL were used, compared to treatments NC (6300 mL and 4400 and ENZ (6400 and 4500 mL. The potential production of reduced TS and VS was higher in ENZ (1:00 and 1.74 106 mL kg−1 when compared to NC (0.88 and 1:02 106 mL kg−1, DFM (0.80 and 1:40 106 mL kg−1 and DFM + E (0.88 1:25 and 106 mL kg−1. The additives did not affect the percentage of methane production, and all treatments showed values higher than 70 %. Adding enzymes to the diet of broilers influences the litter characteristics and, as a consequence, increases biogas production. The addition of DFM and DFM + E to

  13. Particle-size fractions-dependent extracellular enzyme activity in sediments and implications for resource allocation in a subtropical mangrove ecosystem

    Directory of Open Access Journals (Sweden)

    L. Luo

    2015-01-01

    Full Text Available The distribution of extracellular enzyme activities in particle-size fractions of sediments was investigated in a subtropical mangrove ecosystem. Five enzymes involved in carbon (C, nitrogen (N, and phosphorus (P cycling were analyzed in the sand, silt, and clay of sediments. Among these fractions, the highest activities of phenol oxidase (PHO, β-D glucosidase (GLU, and N-acetyl-glucosiminidase (NAG were found in sand, and greater than bulk sediments of both intertidal zone (IZ and mangrove forest (MG. This result implied that sand fractions might protect selective enzymes through the adsorption without affecting their activities. Additionally, the enzyme-based resource allocation in various particle-size fractions demonstrated that nutirents availability varied with different particle-size fractions and only sand fraction of MG with highest total C showed high N and P availability among fractions. Besides, the analysis between elemental contents and enzymes activities in particle-size fractions suggested that enzymes could monitor the changes of nutrients availability and be good indicators of ecosystem responses to environmental changes. Thus, these results provided a means to assess the availability of different nutrients (C, N, and P during decomposition of sediment organic matter (SOM, and thus helping to better manage the subtropical mangrove ecosystems to sequester C into SOM.

  14. Coarse Woody Debris Increases Microbial Community Functional Diversity but not Enzyme Activities in Reclaimed Oil Sands Soils

    Science.gov (United States)

    Kwak, Jin-Hyeob; Chang, Scott X.; Naeth, M. Anne; Schaaf, Wolfgang

    2015-01-01

    Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for upland reclamation post open-pit oil sands mining in northern Alberta, Canada. Coarse woody debris (CWD) can be used to regulate soil temperature and water content, to increase organic matter content, and to create microsites for the establishment of microorganisms and vegetation in upland reclamation. We studied the effects of CWD on soil microbial community level physiological profile (CLPP) and soil enzyme activities in FMM and PMM in a reclaimed landscape in the oil sands. This experiment was conducted with a 2 (FMM vs PMM) × 2 (near CWD vs away from CWD) factorial design with 6 replications. The study plots were established with Populus tremuloides (trembling aspen) CWD placed on each plot between November 2007 and February 2008. Soil samples were collected within 5 cm from CWD and more than 100 cm away from CWD in July, August and September 2013 and 2014. Microbial biomass was greater (p<0.05) in FMM than in PMM, in July, and August 2013 and July 2014, and greater (p<0.05) near CWD than away from CWD in FMM in July and August samplings. Soil microbial CLPP differed between FMM and PMM (p<0.01) according to a principal component analysis and CWD changed microbial CLPP in FMM (p<0.05) but not in PMM. Coarse woody debris increased microbial community functional diversity (average well color development in Biolog Ecoplates) in both cover soils (p<0.05) in August and September 2014. Carbon degrading soil enzyme activities were greater in FMM than in PMM (p<0.05) regardless of distance from CWD but were not affected by CWD. Greater microbial biomass and enzyme activities in FMM than in PMM will increase organic matter decomposition and nutrient cycling, improving plant growth. Enhanced microbial community functional diversity by CWD application in upland reclamation has implications for accelerating upland reclamation after oil sands mining. PMID:26618605

  15. Coarse Woody Debris Increases Microbial Community Functional Diversity but not Enzyme Activities in Reclaimed Oil Sands Soils.

    Directory of Open Access Journals (Sweden)

    Jin-Hyeob Kwak

    Full Text Available Forest floor mineral soil mix (FMM and peat mineral soil mix (PMM are cover soils commonly used for upland reclamation post open-pit oil sands mining in northern Alberta, Canada. Coarse woody debris (CWD can be used to regulate soil temperature and water content, to increase organic matter content, and to create microsites for the establishment of microorganisms and vegetation in upland reclamation. We studied the effects of CWD on soil microbial community level physiological profile (CLPP and soil enzyme activities in FMM and PMM in a reclaimed landscape in the oil sands. This experiment was conducted with a 2 (FMM vs PMM × 2 (near CWD vs away from CWD factorial design with 6 replications. The study plots were established with Populus tremuloides (trembling aspen CWD placed on each plot between November 2007 and February 2008. Soil samples were collected within 5 cm from CWD and more than 100 cm away from CWD in July, August and September 2013 and 2014. Microbial biomass was greater (p<0.05 in FMM than in PMM, in July, and August 2013 and July 2014, and greater (p<0.05 near CWD than away from CWD in FMM in July and August samplings. Soil microbial CLPP differed between FMM and PMM (p<0.01 according to a principal component analysis and CWD changed microbial CLPP in FMM (p<0.05 but not in PMM. Coarse woody debris increased microbial community functional diversity (average well color development in Biolog Ecoplates in both cover soils (p<0.05 in August and September 2014. Carbon degrading soil enzyme activities were greater in FMM than in PMM (p<0.05 regardless of distance from CWD but were not affected by CWD. Greater microbial biomass and enzyme activities in FMM than in PMM will increase organic matter decomposition and nutrient cycling, improving plant growth. Enhanced microbial community functional diversity by CWD application in upland reclamation has implications for accelerating upland reclamation after oil sands mining.

  16. On using rational enzyme redesign to improve enzyme-mediated microbial dehalogenation of recalcitrant substances in deep-subsurface environments

    Energy Technology Data Exchange (ETDEWEB)

    Ornstein, R.L.

    1993-06-01

    Heavily halogenated hydrocarbons are one of the most prevalent classes of man-made recalcitrant environmental contaminants and often make their way into subsurface environments. Biodegradation of heavily chlorinated compounds in the deep subsurface often occurs at extremely slow rates because native enzymes of indigenous microbes are unable to efficiently metabolize such synthetic substances. Cost-effective engineering solutions do not exist for dealing with disperse and recalcitrant pollutants in the deep subsurface (i.e., ground water, soils, and sediments). Timely biodegradation of heavily chlorinated compounds in the deep subsurface may be best accomplished by rational redesign of appropriate enzymes that enhance the ability of indigenous microbes to metabolize these substances. The isozyme family cytochromes P450 are catalytically very robust and are found in all aerobic life forms and may be active in may anaerobes as well. The author is attempting to demonstrate proof-of-principle rational enzyme redesign of cytochromes P450 to enhance biodehalogenation.

  17. Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: interaction of the extracellular enzyme with human plasminogen and fibrinogen.

    Science.gov (United States)

    Egea, L; Aguilera, L; Giménez, R; Sorolla, M A; Aguilar, J; Badía, J; Baldoma, L

    2007-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12) is an anchorless, multifunctional protein displayed on the surface of several fungi and Gram-positive pathogens, which contributes to their adhesion and virulence. To date a role for extracellular GAPDH in the pathogenesis of Gram-negative bacteria has not been described. The aim of this study was to analyze the extracellular localization of GAPDH in enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli strains and to examine its interaction with host components that could be related to the infection mechanism. Recombinant E. coli GAPDH was purified and polyclonal antibodies were obtained. Western blotting and immunoelectron microscopy showed that GAPDH is located on the bacterial surface and released to the culture medium of EHEC and EPEC strains. GAPDH export in these Gram-negative pathogens depends on the external medium, is not mediated by vesicles and leads to an extracellular active enzyme. Non-pathogenic E. coli strains do not secrete GAPDH. Two-dimensional electrophoresis analysis showed that in E. coli GAPDH is present at least in two major forms with different isoelectric points. Of these forms, the more basic is secreted. Purified GAPDH was found to bind human plasminogen and fibrinogen in Far-Western blot and ELISA-based assays. In addition, GAPDH remained associated with colonic Caco-2 epithelial cells after adhesion of EHEC or EPEC. These observations indicate that exported GAPDH may act as a virulence factor which could contribute to EHEC and EPEC pathogenesis. This is the first description of an extracellular localization for this enzyme, with a function other than its glycolytic role in Gram-negative pathogens.

  18. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China

    Science.gov (United States)

    Dong, W. Y.; Zhang, X. Y.; Liu, X. Y.; Fu, X. L.; Chen, F. S.; Wang, H. M.; Sun, X. M.; Wen, X. F.

    2015-09-01

    Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the phospholipid fatty acids (PLFAs) abundance especially in the N2P (100 kg ha-1 yr-1 of N +50 kg ha-1 yr-1 of P) treatment; the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK (control). Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. These findings indicate that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil fertility and microbial activity in this kind of plantation.

  19. An Integrated Metagenomics/Metaproteomics Investigation of the Microbial Communities and Enzymes in Solid-state Fermentation of Pu-erh tea

    OpenAIRE

    Ming Zhao; Dong-lian Zhang; Xiao-qin Su; Shuang-mei Duan; Jin-qiong Wan; Wen-xia Yuan; Ben-ying Liu; Yan Ma; Ying-hong Pan

    2015-01-01

    Microbial enzymes during solid-state fermentation (SSF), which play important roles in the food, chemical, pharmaceutical and environmental fields, remain relatively unknown. In this work, the microbial communities and enzymes in SSF of Pu-erh tea, a well-known traditional Chinese tea, were investigated by integrated metagenomics/metaproteomics approach. The dominant bacteria and fungi were identified as Proteobacteria (48.42%) and Aspergillus (94.98%), through pyrosequencing-based analyses o...

  20. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN and its related extracellular matrix degrading enzymes in the endometrium during estrous cycle and early gestation in cattle

    Directory of Open Access Journals (Sweden)

    Hosoe Misa

    2010-06-01

    Full Text Available Abstract Background Extracellular matrix metalloproteinase inducer (EMMPRIN regulates several biological functions involving the modulation of cell behaviors via cell-cell and cell-matrix interactions. According to its diverse functions, we hypothesized that EMMPRIN may play an important role in endometrial remodeling and establishment of pregnancy in cow. Methods In this study, endometrial tissues from the cyclic cows during before ovulation, after ovulation and middle of estrous cycle; and pregnant endometrial tissues from Day 19 to 35 of gestation have been used. Expression of mRNA was analyzed by RT-PCR, qPCR and in situ hybridization whereas protein expression by immunohistochemistry and western blot analysis. Results EMMPRIN mRNA was expressed in both cyclic and pregnant endometrium and significantly higher in the endometrium at Day 35 of gestation than the cyclic endometrium. In Western blot analysis, an approximately 65 kDa band was detected in the endometrium, and approximately 51 kDa in the cultured bovine epithelial cells and BT-1 cells, respectively. Both in situ hybridization and immunohistochemistry data showed that EMMPRIN was primarily expressed in luminal and glandular epithelium with strong staining on Day 19 conceptus. At Day 19 of gestation, expression of EMMPRIN mRNA on luminal epithelium was decreased than that observed at middle of estrous cycle, however, on Day 30 of gestation, slightly increased expression was found at the site of placentation. Expression of matrix metalloproteinase-2 (MMP-2 and MMP-14 mRNA were mainly detected in stroma and their expression also decreased at Day 19 of gestation however it was also expressed at the site of placentation at Day 30 of gestation as observed for EMMPRIN. Expression of MMP-1 or -9 mRNA was very low and was below the detection limit in the cyclic and pregnant endometrium. Conclusion EMMPRIN from the luminal epithelium may regulate the expression of stromal MMP-2 and -14

  1. Kinetic modelling of enzyme inactivation Kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F.

    NARCIS (Netherlands)

    Schokker, E.P.

    1997-01-01

    The kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F was studied. It was established, by making use of kinetic modelling, that heat inactivation in the temperature range 35 - 70 °C was most likely caused by intermolecular autoproteolysis, where unfolded

  2. An improved method for specificity annotation shows a distinct evolutionary divergence among the microbial enzymes of the cholylglycine hydrolase family.

    Science.gov (United States)

    Panigrahi, Priyabrata; Sule, Manas; Sharma, Ranu; Ramasamy, Sureshkumar; Suresh, C G

    2014-06-01

    Bile salt hydrolases (BSHs) are gut microbial enzymes that play a significant role in the bile acid modification pathway. Penicillin V acylases (PVAs) are enzymes produced by environmental microbes, having a possible role in pathogenesis or scavenging of phenolic compounds in their microbial habitats. The correct annotation of such physiologically and industrially important enzymes is thus vital. The current methods relying solely on sequence homology do not always provide accurate annotations for these two members of the cholylglycine hydrolase (CGH) family as BSH/PVA enzymes. Here, we present an improved method [binding site similarity (BSS)-based scoring system] for the correct annotation of the CGH family members as BSH/PVA enzymes, which along with the phylogenetic information incorporates the substrate specificity as well as the binding site information. The BSS scoring system was developed through the analysis of the binding sites and binding modes of the available BSH/PVA structures with substrates glycocholic acid and penicillin V. The 198 sequences in the dataset were then annotated accurately using BSS scores as BSH/PVA enzymes. The dataset presented contained sequences from Gram-positive bacteria, Gram-negative bacteria and archaea. The clustering obtained for the dataset using the method described above showed a clear distinction in annotation of Gram-positive bacteria and Gram-negative bacteria. Based on this clustering and a detailed analysis of the sequences of the CGH family in the dataset, we could infer that the CGH genes might have evolved in accordance with the hypothesis stating the evolution of diderms and archaea from the monoderms.

  3. Single-walled carbon nanotube release affects the microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds in nature.

    Science.gov (United States)

    Chen, Ming; Qin, Xiaosheng; Zeng, Guangming

    2016-11-01

    The question how microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds (LMCs) are affected by the release of single-walled carbon nanotube (SWCNT) into the environment remains to be addressed at the molecular level. We have, therefore concentrated the effects of SWCNT on some important properties associated with enzyme activity and function during microbial oxidation of polycyclic aromatic hydrocarbons (benzo(a)pyrene, acenaphthene and anthracene), LMCs (2,6-dimethoxyphenol, guaiacol and veratryl alcohol) and β-hexachlorocyclohexane, including the behaviour of water molecules, hydrogen bonds (HBs) and hydrophobic interactions (HYs) between ligand and the enzyme, and conformational dynamics in N- and C-terminus. Our study revealed that SWCNT significantly affected the behaviour of water molecules within 5 Å of both these substrates and their respective enzymes during oxidation (p microbial enzyme-catalyzed processes of organic pollutants and LMCs in nature.

  4. Microbial responses to membrane cleaning using sodium hypochlorite in membrane bioreactors: Cell integrity, key enzymes and intracellular reactive oxygen species.

    Science.gov (United States)

    Han, Xiaomeng; Wang, Zhiwei; Wang, Xueye; Zheng, Xiang; Ma, Jinxing; Wu, Zhichao

    2016-01-01

    Sodium hypochlorite (NaClO) is a commonly used reagent for membrane cleaning in membrane bioreactors (MBRs), while it, being a kind of disinfectant (oxidant), may impair viability of microbes or even totally inactivate them upon its diffusion into mixed liquor during membrane cleaning. In this study, we systematically examine the effects of NaClO on microorganisms in terms of microbial cell integrity, metabolism behaviours (key enzymes), and intracellular reactive oxygen species (ROS) under various NaClO concentrations. Different proportions of microbial cells in activated sludge were damaged within several minutes dependent on NaClO dosages (5-50 mg/g-SS), and correspondingly organic matters were released to bulk solution. Inhibition of key enzymes involved in organic matter biodegradation, nitrification and denitrification was observed in the presence of NaClO above 1 mg/g-SS, and thus organic matter and nitrogen removal efficiencies were decreased. It was also demonstrated that intracellular ROS production was increased with the NaClO dosage higher than 1 mg/g-SS, which likely induced further damage to microbial cells.

  5. Impedance Spectroscopy as a Tool for Non-Intrusive Detection of Extracellular Mediators in Microbial Fuel Cells

    Science.gov (United States)

    2009-12-01

    1):78. Heijnen JJ. 1999. Bioenergetics of microbial growth. In: Flickiger MC, Drew SW, editors. Bioprocess technology: Fermentation , biocatalysis and...Bug juice : Harvesting electricity with microorganisms. Nature Rev Microbiol 4:497. Manohar AK, Bretschger O, Nealson KH, Mansfeld F. 2008. The use of

  6. Application of two types of CIM tube column for purification of microbial enzymes.

    Science.gov (United States)

    Isobe, Kimiyasu; Kawakami, Yoshimitsu

    2005-02-11

    Chromatography conditions for two types of convection interaction media (CIM) tube monolithic column, DEAE-8 and C4-8, were investigated using three enzymes from different microorganisms. The enzymes were adsorbed on a CIM DEAE-8 tube column under the same conditions as conventional DEAE columns. The CIM C4-8 tube column required a high concentration of ammonium sulfate compared to the conventional C4 column for adsorbing the enzymes. The separation of enzymes on the CIM tube column chromatography was not affected at flow rates between 0.15 and 1.25 volumes of the column per min. Both columns were successfully applied to the purification of enzymes from crude enzyme solution. Thus, both CIM tube monolithic columns proved useful in greatly reducing the purification time, and could be used at any stage of enzyme purification.

  7. Toxic effects of ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate on soil enzyme activity and soil microbial community diversity.

    Science.gov (United States)

    Sun, Xi; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Su, Benying; Liu, Tong; Zhang, Cheng; Gao, Chong; Shao, Yuting

    2017-01-01

    Ionic liquids (ILs) were considered as "green" solvents and have been used widely because of their excellent properties. But ILs are not as "green" as has been suggested, and the toxic effects of ILs on organisms have been shown in recent years. In the present study, the toxic effects of the IL 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim]BF4) on soil enzyme activity and soil microbial communities at three different concentrations (1.0, 5.0 and 10.0mg/kg) and a control treatment over 40 days of incubation time (sampled on days 10, 20, 30 and 40) were examined under laboratory conditions. The concentrations of [Omim]BF4 in soils were detected by high performance liquid chromatography (HPLC) and the results indicated that [Omim]BF4 were maintained stable in the soil during the exposure period. However, the enzyme activity results showed that urease activity was stimulated on day 20 and then decreased after 30 days of incubation. The activity of β-glucosidase was stimulated after 20 days of incubation in both treatment groups. Moreover, both dehydrogenase and acid phosphatase were inhibited at a high level (10.0mg/kg) only on day 20. The analysis of terminal restriction fragment length polymorphism (T-RFLP) revealed that the soil microbial community structures were altered by [Omim]BF4 and that the soil microbial diversity and evenness of high levels (5.0mg/kg and 10.0mg/kg) treatments were decreased. Moreover, the dominant structure of the microbial communities was not changed by [Omim]BF4. Furthermore, the abundance of the ammonia monooxygenase (amoA) genes of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was examined using real time polymerase chain reaction (RT-PCR). The results revealed that the copy numbers of the amoA-gene were decreased by [Omim]BF4 with the 5.0 and 10.0mg/kg treatments. Based on the experiment, we concluded that high levels (5.0 and 10.0mg/kg) of [Omim]BF4 could have significantly toxic effects on soil

  8. Microbial diversity and digestive enzyme activities in the gut of earthworms found in sawmill industries in Abeokuta, Nigeria

    Directory of Open Access Journals (Sweden)

    Bamidele Julius A.

    2014-09-01

    Full Text Available The growing demand for wood has resulted in large volumes of wood wastes that are daily released to the soil from the activities of sawmills in South-Western Nigeria. In an attempt to setup a bioremediation model for sawdust, this study therefore aimed at evaluating microbial diversity, and the level of digestive enzymes in the gut of earthworms (Eudrilus eugeniae, Libyodrilus violaceous and Hyperiodrilus africanus of sawmill origin. Four major sawmills located in Abeokuta (7o9’12” N - 3o19’35” E, namely Lafenwa, Sapon, Isale-Ake and Kotopo sawmills were used for this study. The arboretum of the Federal University of Agriculture, Abeokuta was used as control. Gut microbial analysis was carried out using the pour-plate method while digestive enzyme activities in the earthworm guts were done by the spectrophotometric method. Higher microbial counts (28.5±0.1x10³-97.0±0.1x10³cfu for bacteria and 7.0±0.1x10³-96.0±0.1x10³cfu for fungi and microbial diversity were recorded in the gut of earthworms of the sawmill locations than those of the control site (17.5±0.1x10³cfu for bacteria and 4.5±0.1x10³cfu for fungi. Streptococcus mutans and Proteus spp.were common in the gut of E. eugeniae, and L. violaceous from the study sawmills, while Streptococcus mutans were also identified in H. africanus, but absent in the gut of E. eugeniae from the control site. Cellulase (48.67±0.02mg/g and lipase (1.81±0.01mg/g activities were significantly higher (p<0.05 in the gut of earthworms from the control site than those of the study sawmills. Furthermore, amylase (α and β activity was highest in the gut of earthworms from the sawmills. Variations observed in the gut microbial and digestive enzyme activities of earthworms from the study sawmills as compared to the control site suggests that earthworms, especially E. eugeniae, could be a better organism for use as bioremediator of wood wastes. Rev. Biol. Trop. 62 (3: 1241-1249. Epub 2014 September

  9. Responses of soil microbial biomass and enzyme activities to tillage and fertilization systems in soybean (Glycine max L. production

    Directory of Open Access Journals (Sweden)

    Gholamreza Heidari

    2016-11-01

    Full Text Available Tillage operation and fertilizer type play important roles in soil properties as far as soil microbial condition is concerned. Information regarding the simultaneous evaluation of the effect of long-term tillage and fertilization on the soil microbial traits of soybean farms is not available. Accordingly, it was hypothesized that, the microbial biomass and enzyme activity, more often than not, respond quickly to changes in soil tillage and fertilization. Therefore, the experiments were aimed at analyzing the responses of soil microbial traits to tillage and fertilization in a soybean field in Kurdistan University, Iran. The field soil is categorized into coarse Loamy, mixed, superactive, calcareous, and mesic Typic Xerorthents. The experiments were arranged in split plot, based on randomized complete block design with three replications. Main plots consisted of long-term (since 2002 tillage systems including conventional tillage (CT, minimum tillage (MT and no-tillage (NT. Eight fertilization methods were employed in the sub-plots, including (F1: farmyard manure (FYM; (F2: compost; (F3: chemical fertilizers; (F4: FYM + compost; (F5: FYM + chemical fertilizers; (F6: compost + chemical fertilizers; (F7: FYM + compost + chemical fertilizers and (F8: Control (without fertilizer. The highest microbial biomass carbon (385.1 μg was observed in NT-F4 treatment. The NT treatment comparatively recorded higher values of acid phosphatase (189.1 μg PNP g-1 h-1, alkaline phosphatase (2879.6 μg PNP g-1 h-1 and dehydrogenase activity (68.1 μg PNP g-1 h-1. The soil treated with a mixture of compost and FYM inputs had the maximum urease activity of all tillage treatments. Organically manured treatment (F4 showed more activity in dehydrogenase (85.7 μg PNP g-1 h-1, acid phosphatase (199.1 µg PNP g-1 h-1 and alkaline phosphatase (3183.6 µg PNP g-1 h-1 compared to those treated with chemical fertilizers. In NT-F4 treatment, using on-farm inputs is most

  10. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    DEFF Research Database (Denmark)

    Gittel, Antje; Barta, Jiri; Kohoutova, Iva;

    2014-01-01

    that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates...... on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen...

  11. [The role of the promoter and leader sequences of extracellular ribonuclease from Bacillus amyloliquefaciens in regulation of enzyme biosynthesis].

    Science.gov (United States)

    Znamenskaia, L V; Kaiumova, A R; Kharitonova, M A; Vershinina, V I

    2005-01-01

    It is shown that in the medium rich with inorganic phosphate there is a stimulation of biosynthesis of ribonuclease from B. amyloliquefaciens (barnase) by actinomycin D, while biosynthesis of ribonucleases from B. intermedius (binase) and B. pumilus (KNase Bpu) in these conditions was suppressed. Features of biosynthesis of binase and RNase Bpu, directed by the barnase promoter, and also expression of chimeric gene of RNase Bpu with leader peptide of barnase were investigated. It was established that stimulation of synthesis of extracellular ribonuclease from B. amyloliquefaciens in the presence of actinomycin D was defined by structure of leader sequences.

  12. Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease.

    Science.gov (United States)

    Yang, Zhao-Hui; Xu, Rui; Zheng, Yue; Chen, Ting; Zhao, Li-Jun; Li, Min

    2016-07-01

    Performance of co-digesters, treated of sewage sludge (SS) with fat, oil and grease (FOG), were conducted semi-continuously in two mesophilic reactors over 180days. Compared with SS mono-digestion, biogas production and TS removal efficiency of co-digestion were significantly enhanced up to 35% and 26% by adding upper limit FOG (60% on VS). Enhancement in co-digestion performance was also stimulated by the release of extracellular polymeric substances (EPS), which was increased 40% in both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) than that of mono-digester. Based on high-throughput sequencing (HTS), analysis of microbial 16S rRNA gene comprehensively revealed the dynamic change of microbial community. Results showed that both bacterial and archaeal undergone an apparent succession with FOG addition, and large amount of consortium like Methanosaeta and N09 were involved in the process. Redundancy analysis showed the acetoclastic genera Methanosaeta distinctly related with biogas production and EPS degradation.

  13. Polymeric and compositional properties of novel extracellular microbial polyglucosamine biopolymer from new strain of citrobacter sp. BL-4.

    Science.gov (United States)

    Kim, Lin-Su; Hong, Soo-Jung; Son, Mi-Kyung; Lee, Yong-Hyun

    2006-02-01

    A novel polyglucosamine polymer, PGB-2, was produced extracellularly from a new strain Citrobacter sp. BL-4 using pH-stat fed batch cultivation. It was composed of 97.3% glucosamine and 2.7% rhamnose; its average molecular weight, solubility in 2% acetic acid and viscosity were 20 kDa, 5 g l(-1) and 2.9 cps, respectively. FT-IR and 1H NMR spectra of PGB-2 revealed a close identity with chitosan from crab shells.

  14. Contrasting extracellular enzyme activities of particle-associated bacteria from distinct provinces of the North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Carol eArnosti

    2012-12-01

    Full Text Available Microbial communities play a key role in the marine carbon cycle, processing much of phytoplankton-derived organic matter. The composition of these communities varies by depth, season, and location in the ocean; the functional consequences of these compositional variations for the carbon cycle are only beginning to be explored. We measured the abilities of microbial communities in the large particle fraction (retained by a 10 μm pore size cartridge filter to enzymatically hydrolyze high molecular weight substrates, and therefore initiate carbon remineralization in four distinct oceanic provinces: the boreal polar (BPLR, the Arctic oceanic (ARCT, the North Atlantic drift (NADR, and the North Atlantic subtropical (NAST provinces. Since we expected the large particle fraction to include phytoplankton cells, we measured the hydrolysis of polysaccharide substrates (laminarin, fucoidan, xylan, and chondroitin sulfate expected to be associated with phytoplankton. Hydrolysis rates and patterns clustered into two groups, the BPLR/ARCT and the NADR/NAST. All four substrates were hydrolyzed by the BPLR/ARCT communities; hydrolysis rates of individual substrate varied by factors of ca. 1 to 4. In contrast, chondroitin was not hydrolyzed in the NADR/NAST, and hydrolytic activity was dominated by laminarinase. FISH (fluorescence in situ hybridization of the large-particle fraction post-incubation showed a substantial contribution (15-26% of CF319a-positive cells (Bacteroidetes to total DAPI-stainable cells. Concurrent studies of microbial community composition and of fosmids from these same stations also demonstrated similarities between BPLR and ARCT stations, which were distinct from the NADR/NAST stations. Together, these data support a picture of compositionally as well as functionally distinct communities across these oceanic provinces.

  15. Influence of Heavy Metals and PCBs Pollution on the Enzyme Activity and Microbial Community of Paddy Soils around an E-Waste Recycling Workshop

    Directory of Open Access Journals (Sweden)

    Xianjin Tang

    2014-03-01

    Full Text Available Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m. The concentration of Cd (2.16 mg·kg−1 and Cu (69.2 mg·kg−1 were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg−1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination.

  16. Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop.

    Science.gov (United States)

    Tang, Xianjin; Hashmi, Muhammad Z; Long, Dongyan; Chen, Litao; Khan, Muhammad I; Shen, Chaofeng

    2014-03-14

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg-1) and Cu (69.2 mg·kg-1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg-1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination.

  17. The hunt for original microbial enzymes: an initiatory review on the construction and functional screening of (metagenomic libraries

    Directory of Open Access Journals (Sweden)

    Martin, M.

    2016-01-01

    Full Text Available Introduction. Discovering novel enzymes is of interest in both applied and basic science. Microbial enzymes, which are incredibly diverse and easy to produce, are increasingly sought by diverse approaches. Literature. This review first distinguishes culture-based from culture-independent methods, detailing within each group the advantages and drawbacks of sequence- and function-based methods. It then discusses the main factors affecting the success of endeavors to identify novel enzymes through construction and functional screening of genomic or metagenomic libraries: the sampled environment, how DNA is extracted and processed, the vector used (plasmid, cosmid, fosmid, BAC, or shuttle vector, the host cell chosen from the available prokaryotic and eukaryotic ones and the main screening steps. Conclusions. Library construction and screening can be tricky and requires expertise. Combining different strategies, such as working with cultivable and non-cultivable organisms, using sequence- and function-based approaches, or performing multihost screenings, is probably the best way to identify novel and diverse enzymes from an environmental sample.

  18. THE INFLUENCE OF KAPOK (Ceiba pentandra SEED OIL SUPPLEMENTATION ON CELLULOLYTIC ENZYME AND RUMEN MICROBIAL FERMENTATION ACTIVITY OF LOCAL SHEEP

    Directory of Open Access Journals (Sweden)

    W. Widiyanto

    2014-10-01

    Full Text Available This research was conducted to study the influence of kapok seed oil (KSO supplementation oncellulolytic enzyme and microbial fermentation activity. Sheep rumen fluid was used as enzyme sourceand inoculant, whereas carboxymethylcellulose (CMC was used as the substrate. There were 4 levels ofKSO supplementation as treatment, i.e. : 0% (T0, 5% (T1, 10% (T2, and 15% (T3. Two measuredvariables were reduced sugar production rate and gas fermentation production. The data were analyzedby analysis of variance in completely randomized design. The result showed that reduced sugarproduction rate in T0, T1, T2 and T3 treatment groups were 2.58; 2.93; 2.08 and 1.58 mg/gCMC/minute, respectively, whereas gas production were : 15.97; 13.26; 10.54 and 7.57 mg/g CMC,respectively. Kapok seed oil supplementation up to 5% DM of cellulose substrate (CMC did notinfluence the ruminal cellulolytic enzyme activity. The KSO supplementation level 10% - 15%decreased the ruminal cellulolytic enzyme activity.

  19. Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams

    Science.gov (United States)

    Brian H. Hill; Frank H. McCormick; Bret C. Harvey; Sherri L. Johnson; Melvin L. Warren; Colleen M. Elonen

    2010-01-01

    The flow of organic matter and nutrients from catchments into the streams draining them and the biogeochemical transformations of organic matter and nutrients along flow paths are fundamental processes instreams (Hynes,1975; Fisher, Sponseller & Heffernan, 2004). Microbial biofilms are often the primary interface for organic matter and nutrient uptake and...

  20. Succession of soil microbial communities and enzyme activities in artificial soils

    NARCIS (Netherlands)

    Ditterich, Franziska; Poll, Christian; Pronk, Geertje Johanna; Heister, Katja; Chandran, Abhirosh; Rennert, Thilo; Kögel-Knabner, Ingrid; Kandeler, Ellen

    2016-01-01

    Soil microorganisms are frequently attached to mineral surfaces or organo-mineral complexes, yet little is known about the microbial colonization of different soil minerals. The use of artificial soils that differ only in their mineral composition (illite, montmorillonite, ferrihydrite, boehmite) an

  1. Solution characterization of the extracellular region of CD147 and its interaction with its enzyme ligand cyclophilin-A

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, Jennifer; Redzic, Jasmina S.; Porter, Christopher; Yurchenko, Vyacheslav; Bukrinsky, Michael; Labeikovsky, Wladimir; Armstrong, Geoffrey S.; Zhang, Fengli; Isern, Nancy G.; Degregori, James; Hodges, Robert; Eisenmesser, Elan Z.

    2009-08-21

    The CD147 receptor plays an integral role in numerous diseases by stimulating the expression of several protein families and serving as the receptor for extracellular cyclophilins, however, neither CD147 nor its interactions with its cyclophilin ligands have been well characterized in solution. CD147 is a unique protein in that it can function both at the cell membrane and after being released from cells where it continues to retain activity. Thus, the CD147 receptor functions through at least two mechanisms that include both cyclophilin-independent and cyclophilin-dependent modes of action. In regard to CD147 cyclophilin-independent activity, CD147 homophilic interactions are thought to underlie its activity. In regard to CD147 cyclophilin-dependent activity, cyclophilin/CD147 interactions may represent a novel means of signaling since cyclophilins are also peptidyl-prolyl isomerases.

  2. Production of multiple extracellular enzyme activities by novel submerged culture of Aspergillus kawachii for ethanol production from raw cassava flour.

    Science.gov (United States)

    Sugimoto, Toshikazu; Makita, Tomohiro; Watanabe, Koutaro; Shoji, Hiroshi

    2012-04-01

    Cassava is a starch-containing root crop that is widely used as a raw material in a variety of industrial applications, most recently in the production of fuel ethanol. In the present study, ethanol production from raw (uncooked) cassava flour by simultaneous saccharification and fermentation (SSF) using a preparation consisting of multiple enzyme activities from Aspergillus kawachii FS005 was investigated. The multi-activity preparation was obtained from a novel submerged fermentation broth of A. kawachii FS005 grown on unmilled crude barley as a carbon source. The preparation was found to consist of glucoamylase, acid-stable α-amylase, acid carboxypeptidase, acid protease, cellulase and xylanase activities, and exhibited glucose and free amino nitrogen (FAN) production rates of 37.7 and 118.7 mg/l/h, respectively, during A. kawachii FS005-mediated saccharification of uncooked raw cassava flour. Ethanol production from 18.2% (w/v) dry uncooked solids of raw cassava flour by SSF with the multi-activity enzyme preparation yielded 9.0% (v/v) of ethanol and 92.3% fermentation efficiency. A feasibility study for ethanol production by SSF with a two-step mash using raw cassava flour and the multi-activity enzyme preparation manufactured on-site was verified on a pilot plant scale. The enzyme preparation obtained from the A. kawachii FS005 culture broth exhibited glucose and FAN production rates of 41.1 and 135.5 mg/l/h, respectively. SSF performed in a mash volume of about 1,612 l containing 20.6% (w/v) dry raw cassava solids and 106 l of on-site manufactured A. kawachii FS005 culture broth yielded 10.3% (v/v) ethanol and a fermentation efficiency of 92.7%.

  3. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis.

    Directory of Open Access Journals (Sweden)

    Devendra H Dusane

    Full Text Available BACKGROUND: Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. METHODOLOGY/PRINCIPAL FINDINGS: B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275 derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. CONCLUSION/SIGNIFICANCE: We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent.

  4. Disruption of Microbial Biofilms by an Extracellular Protein Isolated from Epibiotic Tropical Marine Strain of Bacillus licheniformis

    Science.gov (United States)

    Dusane, Devendra H.; Damare, Samir R.; Nancharaiah, Yarlagadda V.; Ramaiah, N.; Venugopalan, Vayalam P.; Kumar, Ameeta Ravi; Zinjarde, Smita S.

    2013-01-01

    Background Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. Methodology/Principal Findings B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275) derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC) value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. Conclusion/Significance We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent. PMID:23691235

  5. Effects of the microbial secondary metabolite benzothiazole on the nutritional physiology and enzyme activities of Bradysia odoriphaga (Diptera: Sciaridae).

    Science.gov (United States)

    Zhao, Yunhe; Xu, Chunmei; Wang, Qiuhong; Wei, Yan; Liu, Feng; Xu, Shuangyu; Zhang, Zhengqun; Mu, Wei

    2016-05-01

    Bradysia odoriphaga (Diptera: Sciaridae) is the major pest that damages Chinese chive production. As a volatile compound derived from microbial secondary metabolites, benzothiazole has been determined to possess fumigant activity against B. odoriphaga. However, the mechanism of action of benzothiazole is not well understood. In the present study, fourth-instar larvae of B. odoriphaga were exposed to LC10 and LC30 of benzothiazole. Sublethal concentrations (LC10 and LC30) of benzothiazole significantly reduced the food consumption of the larvae on the second day after treatment (2 DAT). However, there were no significant changes in pupal weight among the different treatments. We also measured the protein, lipid, carbohydrate, and trehalose contents and the digestive enzyme activities of the larvae, and the results suggest that benzothiazole reduced the nutrient accumulation and decreased the digestive enzyme activities of B. odoriphaga. In addition, the activity of glutathione S-transferase was significantly decreased at 6h after treatment with benzothiazole, whereas general esterase activities were significantly increased at 6 and 24h after treatment. The results of this study indicate that benzothiazole interferes in the normal food consumption and digestion process by decreasing the activities of digestive enzymes. These results provide valuable information for understanding the toxicity of benzothiazole and for exploring volatile compound for the control of this pest.

  6. Diversity of microbial carbohydrate-active enzymes in Danish anaerobic digesters fed with wastewater treatment sludge

    DEFF Research Database (Denmark)

    Wilkens, Casper; Busk, Peter Kamp; Pilgaard, Bo

    2017-01-01

    , making the ADs a unique niche to look for CAZymes that can potentiate the enzyme blends currently used in industry. Enzymatic assays showed that functional CAZymes were secreted into the AD environments in four full-scale mesophilic Danish ADs fed with primary and surplus sludge from municipal wastewater...... treatment plants. Metagenomes from the ADs were mined for CAZymes with Homology to Peptide Patterns (HotPep). 19,335 CAZymes were identified of which 30% showed 50% or lower identity to known proteins demonstrating that ADs make up a promising pool for discovery of novel CAZymes. A function was assigned......, especially xylanases and β-xylosidase, but also a battery of accessory enzymes, were present in the four ADs. Our findings suggest that the ADs are a good place to look for novel plant biomass degrading and modifying enzymes that can potentiate biological processes and provide basis for production of a range...

  7. Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells

    Science.gov (United States)

    Zou, Long; Qiao, Yan; Wu, Xiao-Shuai; Li, Chang Ming

    2016-10-01

    To overcoming their respective shortcomings of graphene and carbon nanotube, a hierarchically porous multi-walled carbon nanotube@reduced graphene oxide (MWCNT@rGO) hybrid is fabricated through a versatile and scalable solvent method, in which the architecture is tailored by inserting MWCNTs as scaffolds into the rGO skeleton. An appropriate amount of inserted 1-D MWCNTs not only effectively prevent the aggregation of rGO sheets but also act as bridges to increase multidirectional connections between 2-D rGO sheets, resulting in a 3-D hierarchically porous structure with large surface area and excellent biocompatibility for rich bacterial biofilm and high electron transfer rate. The MWCNT@rGO1:2/biofilm anode delivers a maximum power density of 789 mW m-2 in Shewanella putrefaciens CN32 microbial fuel cells, which is much higher than that of individual MWCNT and rGO, in particular, 6-folder higher than that of conventional carbon cloth. The great enhancement is ascribed to a synergistic effect of the integrated biofilm and hierarchically porous structure of MWCNT@rGO1:2/biofilm anode, in which the biofilm provides a large amount of bacterial cells to raise the concentration of local electron shuttles for accelerating the direct electrochemistry on the 3-D hierarchically porous structured anodes.

  8. Metagenomics of an Alkaline Hot Spring in Galicia (Spain): Microbial Diversity Analysis and Screening for Novel Lipolytic Enzymes.

    Science.gov (United States)

    López-López, Olalla; Knapik, Kamila; Cerdán, Maria-Esperanza; González-Siso, María-Isabel

    2015-01-01

    A fosmid library was constructed with the metagenomic DNA from the water of the Lobios hot spring (76°C, pH = 8.2) located in Ourense (Spain). Metagenomic sequencing of the fosmid library allowed the assembly of 9722 contigs ranging in size from 500 to 56,677 bp and spanning ~18 Mbp. 23,207 ORFs (Open Reading Frames) were predicted from the assembly. Biodiversity was explored by taxonomic classification and it revealed that bacteria were predominant, while the archaea were less abundant. The six most abundant bacterial phyla were Deinococcus-Thermus, Proteobacteria, Firmicutes, Acidobacteria, Aquificae, and Chloroflexi. Within the archaeal superkingdom, the phylum Thaumarchaeota was predominant with the dominant species "Candidatus Caldiarchaeum subterraneum." Functional classification revealed the genes associated to one-carbon metabolism as the most abundant. Both taxonomic and functional classifications showed a mixture of different microbial metabolic patterns: aerobic and anaerobic, chemoorganotrophic and chemolithotrophic, autotrophic and heterotrophic. Remarkably, the presence of genes encoding enzymes with potential biotechnological interest, such as xylanases, galactosidases, proteases, and lipases, was also revealed in the metagenomic library. Functional screening of this library was subsequently done looking for genes encoding lipolytic enzymes. Six genes conferring lipolytic activity were identified and one was cloned and characterized. This gene was named LOB4Est and it was expressed in a yeast mesophilic host. LOB4Est codes for a novel esterase of family VIII, with sequence similarity to β-lactamases, but with unusual wide substrate specificity. When the enzyme was purified from the mesophilic host it showed half-life of 1 h and 43 min at 50°C, and maximal activity at 40°C and pH 7.5 with p-nitrophenyl-laurate as substrate. Interestingly, the enzyme retained more than 80% of maximal activity in a broad range of pH from 6.5 to 8.

  9. Metagenomics of an alkaline hot spring in Galicia (Spain: microbial diversity analysis and screening for novel lipolytic enzymes

    Directory of Open Access Journals (Sweden)

    Olalla eLópez-López

    2015-11-01

    Full Text Available A fosmid library was constructed with the metagenomic DNA from the water of the Lobios hot spring (76°C, pH=8.2 located in Ourense (Spain. Metagenomic sequencing of the fosmid library allowed the assembly of 9,722 contigs ranging in size from 500 to 56,677 bp and spanning approximately 18 Mbp. 23,207 ORFs (Open Reading Frames were predicted from the assembly. Biodiversity was explored by taxonomic classification and it revealed that bacteria were predominant, while the archaea were less abundant. The 6 most abundant bacterial phyla were Deinococcus-Thermus, Proteobacteria, Firmicutes, Acidobacteria, Aquificae and Chloroflexi. Within the archaeal superkingdom, the phylum Thaumarchaeota was predominant with the dominant species Candidatus Caldiarchaeum subterraneum. Functional classification revealed the genes associated to one-carbon metabolism as the most abundant. Both taxonomic and functional classifications showed a mixture of different microbial metabolic patterns: aerobic and anaerobic, chemoorganotrophic and chemolithotrophic, autotrophic and heterotrophic. Remarkably, the presence of genes encoding enzymes with potential biotechnological interest, such as xylanases, galactosidases, proteases and lipases, was also revealed in the metagenomic library.Functional screening of this library was subsequently done looking for genes encoding lipolytic enzymes. Six genes conferring lipolytic activity were identified and one was cloned and characterized. This gene was named LOB4Est and it was expressed in a yeast mesophilic host. LOB4Est codes for a novel esterase of family VIII, with sequence similarity to β-lactamases, but with unusual wide substrate specificity. When the enzyme was purified from the mesophilic host it showed half-life of 1 h and 43 minutes at 50°C, and maximal activity at 40°C and pH 7.5 with p-nitrophenyl-laurate as substrate. Interestingly, the enzyme retained more than 80% of maximal activity in a broad range of pH from 6.5-8.

  10. Metagenomics of an Alkaline Hot Spring in Galicia (Spain): Microbial Diversity Analysis and Screening for Novel Lipolytic Enzymes

    Science.gov (United States)

    López-López, Olalla; Knapik, Kamila; Cerdán, Maria-Esperanza; González-Siso, María-Isabel

    2015-01-01

    A fosmid library was constructed with the metagenomic DNA from the water of the Lobios hot spring (76°C, pH = 8.2) located in Ourense (Spain). Metagenomic sequencing of the fosmid library allowed the assembly of 9722 contigs ranging in size from 500 to 56,677 bp and spanning ~18 Mbp. 23,207 ORFs (Open Reading Frames) were predicted from the assembly. Biodiversity was explored by taxonomic classification and it revealed that bacteria were predominant, while the archaea were less abundant. The six most abundant bacterial phyla were Deinococcus-Thermus, Proteobacteria, Firmicutes, Acidobacteria, Aquificae, and Chloroflexi. Within the archaeal superkingdom, the phylum Thaumarchaeota was predominant with the dominant species “Candidatus Caldiarchaeum subterraneum.” Functional classification revealed the genes associated to one-carbon metabolism as the most abundant. Both taxonomic and functional classifications showed a mixture of different microbial metabolic patterns: aerobic and anaerobic, chemoorganotrophic and chemolithotrophic, autotrophic and heterotrophic. Remarkably, the presence of genes encoding enzymes with potential biotechnological interest, such as xylanases, galactosidases, proteases, and lipases, was also revealed in the metagenomic library. Functional screening of this library was subsequently done looking for genes encoding lipolytic enzymes. Six genes conferring lipolytic activity were identified and one was cloned and characterized. This gene was named LOB4Est and it was expressed in a yeast mesophilic host. LOB4Est codes for a novel esterase of family VIII, with sequence similarity to β-lactamases, but with unusual wide substrate specificity. When the enzyme was purified from the mesophilic host it showed half-life of 1 h and 43 min at 50°C, and maximal activity at 40°C and pH 7.5 with p-nitrophenyl-laurate as substrate. Interestingly, the enzyme retained more than 80% of maximal activity in a broad range of pH from 6.5 to 8. PMID:26635759

  11. Sediment enzyme activities and microbial community diversity in an oligotrophic drinking water reservoir, eastern China.

    Science.gov (United States)

    Zhang, Haihan; Huang, Tinglin; Liu, Tingting

    2013-01-01

    Drinking water reservoir plays a vital role in the security of urban water supply, yet little is known about microbial community diversity harbored in the sediment of this oligotrophic freshwater environmental ecosystem. In the present study, integrating community level physiological profiles (CLPPs), nested polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and clone sequence technologies, we examined the sediment urease and protease activities, bacterial community functional diversity, genetic diversity of bacterial and fungal communities in sediments from six sampling sites of Zhou cun drinking water reservoir, eastern China. The results showed that sediment urease activity was markedly distinct along the sites, ranged from 2.48 to 11.81 mg NH₃-N/(g·24 h). The highest average well color development (AWCD) was found in site C, indicating the highest metabolic activity of heterotrophic bacterial community. Principal component analysis (PCA) revealed tremendous differences in the functional (metabolic) diversity patterns of the sediment bacterial communities from different sites. Meanwhile, DGGE fingerprints also indicated spatial changes of genetic diversity of sediment bacterial and fungal communities. The sequence BLAST analysis of all the sediment samples found that Comamonas sp. was the dominant bacterial species harbored in site A. Alternaria alternate, Allomyces macrogynus and Rhizophydium sp. were most commonly detected fungal species in sediments of the Zhou cun drinking water reservoir. The results from this work provide new insights about the heterogeneity of sediment microbial community metabolic activity and genetic diversity in the oligotrophic drinking water reservoir.

  12. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community.

    Science.gov (United States)

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-06-08

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library.

  13. Microbial biomass and enzyme activity of a Cerrado Oxisol under agroecological production system

    Directory of Open Access Journals (Sweden)

    Enderson Petrônio de Brito Ferreira

    2011-01-01

    Full Text Available Aiming to evaluate the effects of soil management and cover crops on microbial indicators of soil quality, an experiment was carried out under field conditions in which common bean and corn were cropped under no-tillage (NT and conventional tillage (CT after sunnhemp, velvet bean, pigeon pea, jack bean, sorghum and fallow (weeds. The basal soil respiration (BSR, C and N of the microbial biomass (Cmic and Nmic, metabolic quotient (qCO2, total enzymatic activity (TEA, β-glycosidase (β-GA activity and acid phosphatase activity (APA were evaluated in samples collected in 0-0.10 m depth. Cmic, qCO2, TEA, β-GA and APA were more sensitive in determining the effects caused by tillage and cover crops. Although the cover crops had not provided a remarkably influence on the studied indicators, in general, the highest values of Cmic, Nmic, BSR, TEA, β-GA and APA and the lowest values of qCO2 were observed under NT compared to CT. Cmic and TEA values were 35% and 13% higher under NT when compared to CT, respectively. In addition, NT showed values closer to those found under "Cerrado" area for the studied parameters, indicating a greater sustainability under this soil management system compared to CT management.

  14. AepA of Pectobacterium is not involved in the regulation of extracellular plant cell wall degrading enzymes production.

    Science.gov (United States)

    Kõiv, Viia; Andresen, Liis; Mäe, Andres

    2010-06-01

    Plant cell wall degrading enzymes (PCWDE) are the major virulence determinants in phytopathogenic Pectobacterium, and their production is controlled by many regulatory factors. In this study, we focus on the role of the AepA protein, which was previously described to be a global regulator of PCWDE production in Pectobacterium carotovorum (Murata et al. in Mol Plant Microbe Interact 4:239-246, 1991). Our results show that neither inactivation nor overexpression of aepA affects PCWDE production in either Pectobacterium atrosepticum SCRI1043 or Pectobacterium carotovorum subsp. carotovorum SCC3193. The previously published observation based on the overexpression of aepA could be explained by the presence of the adjacent regulatory rsmB gene in the constructs used. Our database searches indicated that AepA belongs to the YtcJ subfamily of amidohydrolases. YtcJ-like amidohydrolases are present in bacteria, archaea, plants and some fungi. Although AepA has 28% identity with the formamide deformylase NfdA in Arthrobacter pascens F164, AepA was unable to catalyze the degradation of NdfA-specific N-substituted formamides. We conclude that AepA is a putative aminohydrolase not involved in regulation of PCWDE production.

  15. Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR).

    Science.gov (United States)

    Pathak, Khyati V; Keharia, Hareshkumar

    2014-02-01

    Bacillus subtilis K1 isolated from aerial roots of banyan tree secreted mixture of surfactins, iturins and fengycins with high degree of heterogeneity. The extracellular extract consisting of mixture of these cyclic lipopeptides exhibited very good emulsification activity as well as excellent emulsion stability. The culture accumulated maximum surfactant up to 48 h of growth during batch fermentation in Luria broth. The emulsion of hexane, heptane and octane prepared using 48-h-old culture supernatant of B. subtilis K1 remained stable up to 2 days while emulsion of four stroke engine oil remained stable for more than a year. The critical micelle concentration of crude lipopeptide biosurfactant extracted by acid precipitation from 48-h-old fermentation broth of B. subtilis K1 was found to be 20.5 μg/mL. The biosurfactant activity was found to be stable at 100 °C for 2 h, over a pH range of 6-12 h and over an NaCl concentration up to 10 % (w/v). The application of biosurfactant on laboratory scale sand pack column saturated with four stroke engine oil resulted in ~43 % enhanced oil recovery, suggesting its suitability in microbially enhanced oil recovery.

  16. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme.

    Science.gov (United States)

    Craciun, Smaranda; Balskus, Emily P

    2012-12-26

    Choline and trimethylamine (TMA) are small molecules that play central roles in biological processes throughout all kingdoms of life. These ubiquitous metabolites are linked through a single biochemical transformation, the conversion of choline to TMA by anaerobic microorganisms. This metabolic activity, which contributes to methanogenesis and human disease, has been known for over a century but has eluded genetic and biochemical characterization. We have identified a gene cluster responsible for anaerobic choline degradation within the genome of a sulfate-reducing bacterium and verified its function using both a genetic knockout strategy and heterologous expression in Escherichia coli. Bioinformatics and electron paramagnetic resonance (EPR) spectroscopy revealed the involvement of a C-N bond cleaving glycyl radical enzyme in TMA production, which is unprecedented chemistry for this enzyme family. Our discovery provides the predictive capabilities needed to identify choline utilization clusters in numerous bacterial genomes, underscoring the importance and prevalence of this metabolic activity within the human microbiota and the environment.

  17. Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization.

    Science.gov (United States)

    Bakhshian, Sahar; Kariminia, Hamid-Reza; Roshandel, Ramin

    2011-06-01

    Enzymatic decolorization of reactive blue 221 (RB221) using laccase was investigated in a dual-chamber microbial fuel cell (MFC). Suspended laccase was used in the cathode chamber in the absence of any mediators in order to decolorize RB221 and also improve oxygen reduction reaction in the cathode. Molasses was utilized as low cost and high strength energy source in the anode chamber. The capability of MFC for simultaneous molasses and dye removal was investigated. A decolorization efficiency of 87% was achieved in the cathode chamber and 84% COD removal for molasses was observed in the anode chamber. Laccase could catalyze the removal of RB221 and had positive effect on MFC performance as well. Maximum power density increased about 30% when enzymatic decolorization was performed in the cathode chamber. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Impact of Fungicide Mancozeb at Different Application Rates on Soil Microbial Populations, Soil Biological Processes, and Enzyme Activities in Soil

    Directory of Open Access Journals (Sweden)

    Abhishek Walia

    2014-01-01

    Full Text Available The use of fungicides is the continuous exercise particularly in orchard crops where fungal diseases, such as white root rot, have the potential to destroy horticultural crops rendering them unsaleable. In view of above problem, the present study examines the effect of different concentrations of mancozeb (0–2000 ppm at different incubation periods for their harmful side effects on various microbiological processes, soil microflora, and soil enzymes in alluvial soil (pH 6.8 collected from apple orchards of Shimla in Himachal Pradesh (India. Low concentrations of mancozeb were found to be deleterious towards fungal and actinomycetes population while higher concentrations (1000 and 2000 ppm were found to be detrimental to soil bacteria. Mancozeb impaired the process of ammonification and nitrification. Similar results were observed for nitrifying and ammonifying bacteria. Phosphorus solubilization was increased by higher concentration of mancozeb, that is, 250 ppm and above. In unamended soil, microbial biomass carbon and carbon mineralization were adversely affected by mancozeb. Soil enzymes, that is, amylase, invertase, and phosphatase showed adverse and disruptive effect when mancozeb used was above 10 ppm in unamended soil. These results conclude that, to lessen the harmful effects in soil biological processes caused by this fungicide, addition of higher amount of nitrogen based fertilizers is required.

  19. Activity modulation of microbial enzymes by llama (Lama glama) heavy-chain polyclonal antibodies during in vivo immune responses.

    Science.gov (United States)

    Ferrari, A; Weill, F S; Paz, M L; Cela, E M; González Maglio, D H; Leoni, J

    2012-03-01

    Since they were first described in 1993, it was found that recombinant variable fragments (rVHHs) of heavy-chain antibodies (HCAbs) from Camelidae have unusual biophysical properties, as well as a special ability to interact with epitopes that are cryptic for conventional Abs. It has been assumed that in vivo raised polyclonal HCAbs (pHCAbs) should behave in a similar manner than rVHHs; however, this assumption has not been tested sufficiently. Furthermore, our own preliminary work on a single serum sample from a llama immunized with a β-lactamase, has suggested that pHCAbs have no special ability to down-modulate catalytic activity. In this work, we further explored the interaction of pHCAbs from four llamas raised against two microbial enzymes and analyzed it within a short and a long immunization plan. The relative contribution of pHCAbs to serum titer was found to be low compared with that of the most abundant conventional subisotype (IgG(1)), during the whole immunization schedule. Furthermore, pHCAbs not only failed to inhibit the enzymes, but also activated one of them. Altogether, these results suggest that raising high titer inhibitory HCAbs is not a straightforward strategy - neither as a biotechnological strategy nor in the biological context of an immune response against infection - as raising inhibitory rVHHs.

  20. A novel feruloyl esterase from rumen microbial metagenome: Gene cloning and enzyme characterization in the release of mono- and diferulic acids

    Science.gov (United States)

    A feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae4) was classified as a Type D feruloyl esterase based on its action on synthetic substrates and ability to release diferulates. The RuFae4 alone releas...

  1. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Brandt, Berenice [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Wuensch, Annegret [Institute of Molecular Animal Breeding and Biotechnology, Ludwig Maximilians University, Munich (Germany); Meybohm, Patrick; Bein, Berthold; Steinfath, Markus; Scholz, Jens [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany)

    2010-09-03

    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined

  2. Habitat management affects soil chemistry and allochthonous organic inputs mediating microbial structure and exo-enzyme activity in Wadden Sea salt-marsh soils

    Science.gov (United States)

    Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (∆ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus

  3. Enzymes coimmobilized with microorganisms for the microbial conversion of nonmetabolizable substrates

    Energy Technology Data Exchange (ETDEWEB)

    Haegerdal, B.

    1980-01-01

    EtOH is produced from cellobiose and from lactose by bakers' yeast coimmobilized on Ca alginate with Beta-glucosidase and lactase respectively. The maximum EtOH yield was 2.2%, or 80% of theoretical, when a 5% cellobiose solution was passed through a column containing 2-mm diameter beads with the immobilized enzyme and yeast cells. The EtOH yield was 66% of theoretical when acid whey permeate, containing 4.5% lactose, was passed over the column containing immobilized yeast cells and lactase.

  4. Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry

    OpenAIRE

    Kamal Uddin Zaidi; Ali, Ayesha S; Ali, Sharique A.; Ishrat Naaz

    2014-01-01

    Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial appl...

  5. Production of microbial enzymes by new method of cultivation of microorganisms

    Directory of Open Access Journals (Sweden)

    Blieva Raushan

    2014-10-01

    Full Text Available We have developed efficient methods for long-term culturing and selection of highly active versions of the original cultures of micromycetes – producers of enzymes. We theoretically substantiated and experimentally confirmed an advantage of growing micromycetes in a new filament-spongy immobilized growth structure on the substrate relative to the traditional method of deep cultivation of free cells in the form of pellets. When comparing a traditional with our innovative method of cultivation, many advantages of the latter are revealed, above all being the possibility of the formation of new highly selective cultures in the long process of their growth with modified culturally - morphological properties.

  6. New enzymes for biotransformations: microbial alkyl sulfatases displaying stereo- and enantioselectivity.

    Science.gov (United States)

    Gadler, Petra; Faber, Kurt

    2007-02-01

    The majority of hydrolytic enzymes used in white biotechnology for the production of non-natural compounds--such as carboxyl ester hydrolases, lipases and proteases--show a certain preference for a given enantiomer. However, they are unable to alter the stereochemistry of the substrate during catalysis with respect to inversion or retention of configuration. The latter can be achieved by (alkyl) sulfatases, which can be employed for the enantio-convergent transformation of racemic sulfate esters into a single stereoisomeric secondary alcohol, with a theoretical yield of 100%. This is a major improvement over traditional kinetic resolution processes, which yield both enantiomers, each at 50%.

  7. Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils.

    Science.gov (United States)

    Renella, Giancarlo; Landi, Loretta; Ascher, Judith; Ceccherini, Maria Teresa; Pietramellara, Giacomo; Mench, Michel; Nannipieri, Paolo

    2008-04-01

    We studied the effectiveness of remediation on microbial endpoints, namely microbial biomass and activity, microbial and plant species richness, of an As-contaminated mine spoil, amended with compost (C) alone and in combination with beringite (B) or zerovalent iron grit (Z), to increase organic matter content and reduce trace elements mobility, and to allow Holcus lanatus and Pinus pinaster growth. Untreated spoil showed the lowest microbial biomass and activity and hydrolase activities, and H. lanatus as sole plant species, whereas the presented aided phytostabilisation option, especially CBZ treatment, significantly increased microbial biomass and activity and allowed colonisation by several plant species, comparable to those of an uncontaminated sandy soil. Microbial species richness was only increased in spoils amended with C alone. No clear correlation occurred between trace element mobility and microbial parameters and plant species richness. Our results indicate that the choice of indicators of soil remediation practices is a bottleneck.

  8. Profiling Hyporheic Microbial Community Nitrogen Cycle and Carbohydrate Active Enzyme Gene Abundances across Seasons

    Science.gov (United States)

    Nelson, W. C.; Graham, E.; Stegen, J.

    2016-12-01

    The hyporheic zone (HZ) is the permanently inundated sediment layer between a surface channel and adjacent groundwater-saturated sediments. It has been hypothesized to play a major role in macronutrient (C, N, P) cycling in rivers. The correlation between community taxonomic composition dynamics and functional gene representation is poorly understood for hyporheic communities. To explore how microbial communities respond to temporal changes in environmental conditions, metagenomes were derived from communities captured in sterile sandpacks deployed within the HZ of the Columbia River. HMM databases were used to enumerate protein families present. Functional classification of reads allowed a general assessment of community function over time, while targeted assembly of specific genes enabled investigation of the diversity of organisms encoding these functions. Preliminary analysis of nitrogen cycle pathways shows most gene families examined to have quite steady representation across seasons, with most observed changes being less than an order of magnitude. Analysis of ammonia oxidation genes showed bacterial ammonia oxidizers (AOB) to be stably present across the year, while the archaeal amoA gene increased in late summer, peaking sharply in November, mirroring results from 16S rRNA amplicon analysis which showed an increase in Thaumarcheal OTUs during that same period. Most glycosyl hydrolase GH families had low representation. Highly abundant classes of GH included the GH94 (beta-glucosidase), GH95 (1-2-alpha-L-fucosidase) and GH103 (lytic transglycosylase) families, suggesting activity on plant, fungus and insect polysaccharides and peptidoglycans. Further work is investigating the taxonomy of the sequences identified, to determine how changes in the community composition contribute to the stable gene family profiles observed. These results are intended to work towards a greater understanding of the role of species diversity and functional redundancy in the

  9. Microbial degradation of n-hexadecane in mineral salt medium as mediated by degradative enzymes.

    Science.gov (United States)

    Mishra, Shweta; Singh, S N

    2012-05-01

    In the present study, n-hexadecane degradation in MSM was investigated by three bacteria identified as Pseudomonas aeruginosa PSA5, Rhodococcus sp. NJ2 and Ochrobactrum intermedium P2, isolated from petroleum sludge. During 10 days of incubation, n-hexadecane was degraded to 99% by P. aeruginosa PSA5, 95% by Rhodococcus sp. NJ2 and 92% by O. intermedium P2. During degradation process, the induction of catabolic enzymes alkane hydroxylase, alcohol dehydrogenase and lipase were also examined. Among these enzymes, the highest activities of alkane hydroxylase (185 μmol mg(-1) protein) and alcohol dehydrogenase (75.78 μmol mg(-1) protein) were recorded in Rhodococcus sp. NJ2 while lipase activity was highly induced in P. aeruginosa PSA5 (48.71 μmol mg(-1) protein). Besides, accumulation of n-hexadecane in inclusion bodies was found to be maximum 60.8 g l(-1) in P. aeruginosa PSA5, followed by Rhodococcus sp. NJ2 (56.1 g l(-1)) and the least (51.6 g l(-1)) was found in O. intermedium P2. Biosurfactant production by bacterial strains was indicated by the reduction in surface tension and induction of cell surface hydrophobicity and pseudosolubilization which facilitated n-hexadecane degradation.

  10. Microbial diversity in soil measured as enzyme activities. MDIVE 1997 - 1999 final report; Maan mikrobidiversiteetin mittaus entsyymiaktiivisuuksina. MDIVE 1997 - 1999 loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, M.; Vepsaelaeinen, M.; Erkomaa, K.; Sirvioe, H.

    2000-10-01

    The project 'Microbial diversity in soil measured as enzyme activities' belonged to the Biodiversity programme of the Finnish Academy of Sciences, FIBRE. It was financed by the Finnish Technology Agency and the Finnish Environment Institute. A test kit for the measurement of enzyme activities in soil samples was developed. It was based on fluorescence measurements and microtiter plates. The method was sensitive enough for soil samples in microtiter plate scale. Replicate measurements yielded consistent results enabling observation of differences in enzyme activity patterns reflecting different agricultural practices, impacts of heavy metal pollution in forest soil on enzyme activities and seasonal differences in enzyme activities in soil. The analyses for the measurement of phospholipid fatty adds was taken into use. The aim is to compare the information on microbial diversity obtained by enzyme activity patterns and phospholipid fatty acid patterns. The yield of phospholipid' fatty acids in soil samples was estimated using microbial pure cultures. The yield depended on microbial species and soil type. It varied between different phospholipid fatty acids. Anthropogenic impacts were observed to change the phospholipid fatty acid patterns and composition of dominant microorganisms. Seasonal changes were observed as well. The concentrations of ergosterol, that reflects fungal biomass and of {beta}-sitosterol, that indicates influence of plants, were at the detection limit level in agricultural soil but much higher in forest soil. In forest soil emissions from a copper and nickel smelter decreased concentrations of both the sterols indicating inhibition of both fungi and plants. The impact of heavy metal emissions on bacterial diversity was estimated by amplifying universal bacterial 16S rDNA fragments and by separating amplicons in denaturing gradient gel electrophoresis. Clear differences were observed between sires in dominant bacteria in the

  11. Effects of butachlor on microbial populations and enzyme activities in paddy soil.

    Science.gov (United States)

    Min, H; Ye, Y F; Chen, Z Y; Wu, W X; Yufeng, D

    2001-09-01

    This paper reports the influences of the herbicide butachlor (n-butoxymethlchloro -2', 6'-diethylacetnilide) on microbial populations, respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that the number of actinomycetes declined significantly after the application of butachlor at different concentrations ranging from 5.5 microg g(-1) to 22.0 microg g(-1) dried soil, while that of bacteria and fungi increased. Fungi were easily affected by butachlor compared to the bacteria. The growth of fungi was retarded by butachlor at higher concentrations. Butachlor however, stimulated the growth of anaerobic hydrolytic fermentative bacteria, sulfate-reducing bacteria (SRB) and denitrifying bacteria. The increased concentration of butachlor applied resulted in the higher number of SRB. Butachlor inhibited the growth of hydrogen-producing acetogenic bacteria. The effect of butachlor varied on methane-producing bacteria (MPB) at different concentrations. Butachlor at the concentration of 1.0 microg g(-1) dried soil or less than this concentration accelerated the growth of MPB, while at 22.0 microg g(-1) dried soil showed an inhibition. Butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 microg g(-1) dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed during the period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.

  12. [Application of microbial enzymes in studies of steroid metabolism (author's transl)].

    Science.gov (United States)

    Schlegel, J; Schubert, K

    1975-01-01

    In vitro models are necessary for studying the biotransformation of new steroid drugs and to determine the structure of the metabolites and their biological activity. For that reason microorganisms and their enzymes were used to investigate the anabolic steroid Oral-Turinabol (4-chloro-17alpha-methyl-17beta-hydroxy-1,4-androstadiene-3-one). Clostridium paraputrificum transformed Oral-Turinabol into the hydrogenation products 4beta-chloro-17alpha-methyl-17beta-hydroxy-5beta-1-androstene-3-one (I) and 4beta-chloro-17alpha-methyl-5beta-1-androstene-3alpha,17beta-biol (II); Rhodotorula glutinis to 4alpha-chloro-17alpha-methyl-5alpha-1-androstene-3beta,17beta-hydroxy-5alpha-1-androstene-3-one (III) and 4alpha-chloro-17alpha-methyl-5alpha-1-androstene-3beta,17beta-diol (IV). The hydroxylation products 6beta-hydroxy- (V), 7beta-hydroxy- (VI), 15alpha- (VII) and 15beta-hydroxy-Oral-Turinabol (VIII) resulted from Absidia glauca and Aspergillus flavus. The metabolites II-V were isolated until now from mammals.

  13. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil

    Science.gov (United States)

    Liu, Zhanjun; Rong, Qinlei; Zhou, Wei; Liang, Guoqing

    2017-01-01

    Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK), NPK plus green manure (NPKG), NPK plus pig manure (NPKM), and NPK plus straw (NPKS) on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC), activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI) and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72) was comparable to that of the NPK (0.77), NPKG (0.81) and NPKS (0.79) treatments but significantly lower compared with NPKM (0.85). The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil. PMID:28263999

  14. Effects of nutritional input and diesel contamination on soil enzyme activities and microbial communities in Antarctic soils.

    Science.gov (United States)

    Han, Jiwon; Jung, Jaejoon; Hyun, Seunghun; Park, Hyun; Park, Woojun

    2012-12-01

    Pollution of Antarctic soils may be attributable to increased nutritional input and diesel contamination via anthropogenic activities. To investigate the effect of these environmental changes on the Antarctic terrestrial ecosystem, soil enzyme activities and microbial communities in 3 types of Antarctic soils were evaluated. The activities of alkaline phosphomonoesterase and dehydrogenase were dramatically increased, whereas the activities of β-glucosidase, urease, arylsulfatase, and fluorescein diacetate hydrolysis were negligible. Alkaline phosphomonoesterase and dehydrogenase activities in the 3 types of soils increased 3- to 10-fold in response to nutritional input, but did not increase in the presence of diesel contamination. Consistent with the enzymatic activity data, increased copy numbers of the phoA gene, encoding an alkaline phosphomonoesterase, and the 16S rRNA gene were verified using quantitative real-time polymerase chain reaction. Interestingly, dehydrogenase activity and 16S rRNA gene copy number increased slightly after 30 days, even under diesel contamination, probably because of adaptation of the bacterial population. Intact Antarctic soils showed a predominance of Actinobacteria phylum (mostly Pseudonorcarida species) and other phyla such as Proteobacteria, Chloroflexi, Planctomycetes, Firmicutes, and Verrucomicrobia were present in successively lower proportions. Nutrient addition might act as a selective pressure on the bacterial community, resulting in the prevalence of Actinobacteria phylum (mostly Arthrobacter species). Soils contaminated by diesel showed a predominance of Proteobacteria phylum (mostly Phyllobacterium species), and other phyla such as Actinobacteria, Bacteroidetes, Planctomycetes, and Gemmatimonadetes were present in successively lower proportions. Our data reveal that nutritional input has a dramatic impact on bacterial communities in Antarctic soils and that diesel contamination is likely toxic to enzymes in this

  15. Applying functional metagenomics to search for novel lignocellulosic enzymes in a microbial consortium derived from a thermophilic composting phase of sugarcane bagasse and cow manure.

    Science.gov (United States)

    Colombo, Lívia Tavares; de Oliveira, Marcelo Nagem Valério; Carneiro, Deisy Guimarães; de Souza, Robson Assis; Alvim, Mariana Caroline Tocantins; Dos Santos, Josenilda Carlos; da Silva, Cynthia Canêdo; Vidigal, Pedro Marcus Pereira; da Silveira, Wendel Batista; Passos, Flávia Maria Lopes

    2016-09-01

    Environments where lignocellulosic biomass is naturally decomposed are sources for discovery of new hydrolytic enzymes that can reduce the high cost of enzymatic cocktails for second-generation ethanol production. Metagenomic analysis was applied to discover genes coding carbohydrate-depleting enzymes from a microbial laboratory subculture using a mix of sugarcane bagasse and cow manure in the thermophilic composting phase. From a fosmid library, 182 clones had the ability to hydrolyse carbohydrate. Sequencing of 30 fosmids resulted in 12 contigs encoding 34 putative carbohydrate-active enzymes belonging to 17 glycosyl hydrolase (GH) families. One third of the putative proteins belong to the GH3 family, which includes β-glucosidase enzymes known to be important in the cellulose-deconstruction process but present with low activity in commercial enzyme preparations. Phylogenetic analysis of the amino acid sequences of seven selected proteins, including three β-glucosidases, showed low relatedness with protein sequences deposited in databases. These findings highlight microbial consortia obtained from a mixture of decomposing biomass residues, such as sugar cane bagasse and cow manure, as a rich resource of novel enzymes potentially useful in biotechnology for saccharification of lignocellulosic substrate.

  16. Effects of winter cover crops residue returning on soil enzyme activities and soil microbial community in double-cropping rice fields.

    Science.gov (United States)

    Hai-Ming, Tang; Xiao-Ping, Xiao; Wen-Guang, Tang; Ye-Chun, Lin; Ke, Wang; Guang-Li, Yang

    2014-01-01

    Residue management in cropping systems is useful to improve soil quality. However, the studies on the effects of residue management on the enzyme activities and microbial community of soils in South China are few. Therefore, the effects of incorporating winter cover crop residue with a double-cropping rice (Oryza sativa L.) system on soil enzyme activities and microbial community in Southern China fields were studied. The experiment has conducted at the experimental station of the Institute of Soil and Fertilizer Research, Hunan Academy of Agricultural Science, China since winter 2004. Four winter cropping systems were used: rice-rice-ryegrass (Lolium multiflorum L.) (R-R-Ry), rice-rice-Chinese milk vetch (Astragalus sinicus L.) (R-R-Mv), rice-rice-rape (Brassica napus L.) (R-R-Ra) and rice-rice with winter fallow (R-R-Fa). The result indicated that the enzyme activities in the R-R-Ry, R-R-Mv and R-R-Ra systems were significantly higher (Pwinter cover crops into rotations may increase enzyme activities and microbial community in soil and therefore improve soil quality.

  17. Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw.

    Science.gov (United States)

    Wang, Xuemei; Li, Zifu; Zhou, Xiaoqin; Wang, Qiqi; Wu, Yanga; Saino, Mayiani; Bai, Xue

    2016-11-01

    The use of enzymes to improve anaerobic co-digestion (AcoD) of cow manure and corn straw was explored in this study, including cellulase pretreatment and direct additions of amylase and protease. The effects of enzymes on microbial community structure were investigated though PCR-DGGE method. Results showed that AcoD with amylase achieved the highest methane yield of 377.63ml·CH4/g·VS, which was an increase of 110.79%. The methane increment consumed the amylase of 4.18×10(-5)g/ml·CH4. Enzymes mainly affected the bacteria in the hydrolysis stage rather than the bacteria in the hydrogenesis and acetogenesis stage and the archaea in the methanogenesis stage. However, the experimental results demonstrated that enzymes had no negative influence on microbial communities; the predominant microbial communities were similar. Therefore, AcoD with amylase was an effective way to improve the bio-methane yield of cow manure and corn straw.

  18. Comparative study on the rumen microbial populations, hydrolytic enzyme activities and dry matter degradability between different species of ruminant.

    Science.gov (United States)

    Moon, Yea Hwang; Ok, Ji Un; Lee, Shin Ja; Ha, Jong Kyu; Lee, Sung Sill

    2010-12-01

    A comparative study among Korean native cow (Hanwoo), Holstein dairy cow, Korean native goat and crossbred sheep on the population and marker concentration of ruminal microbes, the activities of carboxymethylcellulase (CMCase), xylanase and amylase, and in situ dry matter (DM) degradability were conducted. Twelve ruminally cannulated animals, three of each species, were used. Animals were fed the same diet containing 40% formula feed and 60% rice straw at the level of 2.5% of body weight. Total viable microbial populations in the rumen fluid were significantly (P < 0.01) greater for bacteria and fungi in goat than those of Holstein. The protozoan population among ruminant species was the reverse from that of bacteria. The concentrations of 2,6-diaminopimelic acid and chitin as markers for bacteria and fungi in the rumen fluid, respectively, were highest in goat, which is in accordance with the above population data. The concentration of aminoethylphosphonic acid as marker of protozoa was highest in Hanwoo and lowest in sheep (P < 0.01). Goat had the highest (P < 0.01) activities of all the enzymes investigated among ruminants. In situ effective degradation of the DM of rice straw was approximately 19% higher in the rumen of goat compared with other animals.

  19. Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism.

    Science.gov (United States)

    Tripathy, Swetaleena; Padhi, Soumesh Kumar; Mohanty, Sriprakash; Samanta, Mrinal; Maiti, Nikhil Kumar

    2016-07-01

    Alkaline sulfur hot springs notable for their specialized and complex ecosystem powered by geothermal energy are abundantly rich in different chemotrophic and phototrophic thermophilic microorganisms. Survival and adaptation of these organisms in the extreme environment is specifically related to energy metabolism. To gain a better understanding of survival mechanism of the organisms in these ecosystems, we determined the different gene encoding enzymes associated with anaerobic pathways of energy metabolism by applying the metatranscriptomics approach. The analysis of the microbial population of hot sulfur spring revealed the presence of both aerobic and anaerobic organisms indicating dual mode of lifestyle of the community members. Proteobacteria (28.1 %) was the most dominant community. A total of 988 reads were associated with energy metabolism, out of which 33.7 % of the reads were assigned to nitrogen, sulfur, and methane metabolism based on KEGG classification. The major lineages of hot spring communities were linked with the anaerobic pathways. Different gene encoding enzymes (hao, nir, nar, cysH, cysI, acs) showed the involvement of microbial members in nitrification, denitrification, dissimilatory sulfate reduction, and methane generation. This study enhances our understanding of important gene encoding enzymes involved in energy metabolism, required for the survival and adaptation of microbial communities in the hot spring.

  20. An Integrated Metagenomics/Metaproteomics Investigation of the Microbial Communities and Enzymes in Solid-state Fermentation of Pu-erh tea.

    Science.gov (United States)

    Zhao, Ming; Zhang, Dong-Lian; Su, Xiao-Qin; Duan, Shuang-Mei; Wan, Jin-Qiong; Yuan, Wen-Xia; Liu, Ben-Ying; Ma, Yan; Pan, Ying-Hong

    2015-05-14

    Microbial enzymes during solid-state fermentation (SSF), which play important roles in the food, chemical, pharmaceutical and environmental fields, remain relatively unknown. In this work, the microbial communities and enzymes in SSF of Pu-erh tea, a well-known traditional Chinese tea, were investigated by integrated metagenomics/metaproteomics approach. The dominant bacteria and fungi were identified as Proteobacteria (48.42%) and Aspergillus (94.98%), through pyrosequencing-based analyses of the bacterial 16S and fungal 18S rRNA genes, respectively. In total, 335 proteins with at least two unique peptides were identified and classified into 28 Biological Processes and 35 Molecular Function categories using a metaproteomics analysis. The integration of metagenomics and metaproteomics data demonstrated that Aspergillus was dominant fungus and major host of identified proteins (50.45%). Enzymes involved in the degradation of the plant cell wall were identified and associated with the soft-rotting of tea leaves. Peroxiredoxins, catalase and peroxidases were associated with the oxidation of catechins. In conclusion, this work greatly advances our understanding of the SSF of Pu-erh tea and provides a powerful tool for studying SSF mechanisms, especially in relation to the microbial communities present.

  1. Early changes in microbial colonization selectively modulate intestinal enzymes, but not inducible heat shock proteins in young adult Swine.

    Directory of Open Access Journals (Sweden)

    Marie-Edith Arnal

    Full Text Available Metabolic diseases and obesity are developing worldwide in a context of plethoric intake of high energy diets. The intestine may play a pivotal role due to diet-induced alterations in microbiota composition and increased permeability to bacterial lipopolysaccharide inducing metabolic inflammation. Early programming of metabolic disorders appearing in later life is also suspected, but data on the intestine are lacking. Therefore, we hypothesized that early disturbances in microbial colonization have short- and long-lasting consequences on selected intestinal components including key digestive enzymes and protective inducible heat shock proteins (HSP. The hypothesis was tested in swine offspring born to control mothers (n = 12 or mothers treated with the antibiotic amoxicillin around parturition (n = 11, and slaughtered serially at 14, 28 and 42 days of age to assess short-term effects. To evaluate long-term consequences, young adult offspring from the same litters were offered a normal or a fat-enriched diet for 4 weeks between 140 and 169 days of age and were then slaughtered. Amoxicillin treatment transiently modified both mother and offspring microbiota. This was associated with early but transient reduction in ileal alkaline phosphatase, HSP70 (but not HSP27 and crypt depth, suggesting a milder or delayed intestinal response to bacteria in offspring born to antibiotic-treated mothers. More importantly, we disclosed long-term consequences of this treatment on jejunal alkaline phosphatase (reduced and jejunal and ileal dipeptidylpeptidase IV (increased and decreased, respectively of offspring born to antibiotic-treated dams. Significant interactions between early antibiotic treatment and later diet were observed for jejunal alkaline phosphatase and sucrase. By contrast, inducible HSPs were not affected. In conclusion, our data suggest that early changes in bacterial colonization not only modulate intestinal architecture and function transiently

  2. The effect of the Falcon 460 EC fungicide on soil microbial communities, enzyme activities and plant growth.

    Science.gov (United States)

    Baćmaga, Małgorzata; Wyszkowska, Jadwiga; Kucharski, Jan

    2016-10-01

    Fungicides are considered to be effective crop protection chemicals in modern agriculture. However, they can also exert toxic effects on non-target organisms, including soil-dwelling microbes. Therefore, the environmental fate of fungicides has to be closely monitored. The aim of this study was to evaluate the influence of the Falcon 460 EC fungicide on microbial diversity, enzyme activity and resistance, and plant growth. Samples of sandy loam with pHKCl 7.0 were collected for laboratory analyses on experimental days 30, 60 and 90. Falcon 460 EC was applied to soil in the following doses: control (soil without the fungicide), dose recommended by the manufacturer, 30-fold higher than the recommended dose, 150-fold higher than the recommended dose and 300-fold higher than the recommended dose. The observed differences in the values of the colony development index and the eco-physiological index indicate that the mixture of spiroxamine, tebuconazole and triadimenol modified the biological diversity of the analyzed groups of soil microorganisms. Bacteria of the genus Bacillus and fungi of the genera Penicillium and Rhizopus were isolated from fungicide-contaminated soil. The tested fungicide inhibited the activity of dehydrogenases, catalase, urease, acid phosphatase and alkaline phosphatase. The greatest changes were induced by the highest fungicide dose 300-fold higher than the recommended dose. Dehydrogenases were most resistant to soil contamination. The Phytotoxkit test revealed that the analyzed fungicide inhibits seed germination capacity and root elongation. The results of this study indicate that excessive doses of the Falcon 460 EC fungicide 30-fold higher than the recommended dose to 300-fold higher than the recommended dose) can induce changes in the biological activity of soil. The analyzed microbiological and biochemical parameters are reliable indicators of the fungicide's toxic effects on soil quality.

  3. Effects of Nitrogen and Water on Soil Enzyme Activity and Soil Microbial Biomass in Stipa baicalensis Steppe,Inner Mongolia of North China

    Directory of Open Access Journals (Sweden)

    WANG Jie

    2014-06-01

    Full Text Available In this paper, eight nitrogen treatments were applied at 0 g·m -2(N0, 1.5 g·m -2(N15, 3.0 g·m -2(N30, 5.0 g·m -2(N50, 10.0 g·m -2(N100, 15.0 g·m -2(N150, 20.0 g·m -2(N200, 30.0 g·m -2(N300 as NH 4 NO 3 and adding water to simulate summer rainfall of 100 mm, the interactive experiment was set to explore the effects of nitrogen and water addition in Stipa baicalensis steppe on soil nutrients, enzyme activities and soil microbial biomass. The results showed that the nitrogen and water addition changed soil physico-chemical factors obviously, the content of soil total organic carbon, total nitrogen, nitrate nitrogen and ammonium nitrogen increased along with the increasing of application rate of nitrogen, on the contrary, the soil pH value had decreasing trend. Appropriate application of nitrogen could enhance the activity of urease and catalase but decreased the activity of polyphenol oxidase. Nitrogen and water addition had significant effect on soil microbial biomass C and N. Higher level of N fertilizer significantly reduced microbial biomass C, and the microbial biomass N was on the rise with the application rate of nitrogen. The addition of water could slow the inhibition of nitrogen to microorganism and increase the microbial biomass C and N. A closed relationship existed in soil nutrient, activities of soil enzyme and soil microbial biomass C and N. The significantly positive correlation existed between total N, organic C, nitrate N and catalase, significantly negative correlation between nitrate N, ammonium N, total N and polyphenol oxidase. Microbial biomass N was significantly positive correlated with total N, nitrate N, ammonium N, catalase, phosphatase, and was negative correlated with polyphenol oxidase. Microbial biomass C was significantly positive correlated with polyphenol oxidase, and was negative correlated with catalase.

  4. Economical evolution: microbes reduce the synthetic cost of extracellular proteins.

    Science.gov (United States)

    Smith, Daniel R; Chapman, Matthew R

    2010-08-24

    Protein evolution is not simply a race toward improved function. Because organisms compete for limited resources, fitness is also affected by the relative economy of an organism's proteome. Indeed, many abundant proteins contain relatively high percentages of amino acids that are metabolically less taxing for the cell to make, thus reducing cellular cost. However, not all abundant proteins are economical, and many economical proteins are not particularly abundant. Here we examined protein composition and found that the relative synthetic cost of amino acids constrains the composition of microbial extracellular proteins. In Escherichia coli, extracellular proteins contain, on average, fewer energetically expensive amino acids independent of their abundance, length, function, or structure. Economic pressures have strategically shaped the amino acid composition of multicomponent surface appendages, such as flagella, curli, and type I pili, and extracellular enzymes, including type III effector proteins and secreted serine proteases. Furthermore, in silico analysis of Pseudomonas syringae, Mycobacterium tuberculosis, Saccharomyces cerevisiae, and over 25 other microbes spanning a wide range of GC content revealed a broad bias toward more economical amino acids in extracellular proteins. The synthesis of any protein, especially those rich in expensive aromatic amino acids, represents a significant investment. Because extracellular proteins are lost to the environment and not recycled like other cellular proteins, they present a greater burden on the cell, as their amino acids cannot be reutilized during translation. We hypothesize that evolution has optimized extracellular proteins to reduce their synthetic burden on the cell.

  5. Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana

    Science.gov (United States)

    Steven D. Allison; Caroline Nielsen; R. Flint. Hughes

    2006-01-01

    Like other N-fixing invasive species in Hawaii, Falcataria moluccana dramatically alters forest structure, litterfall quality and quantity, and nutrient dynamics. We hypothesized that these biogeochemical changes would also affect the soil microbial community and the extracellular enzymes responsible for carbon and nutrient mineralization. Across...

  6. Effects of Long-Term Combined Application of Organic and Mineral Fertilizers on Microbial Biomass, Soil Enzyme Activities and Soil Fertility

    Institute of Scientific and Technical Information of China (English)

    LI Juan; ZHAO Bing-qiang; LI Xiu-ying; JIANG Rui-bo; So Hwat Bing

    2008-01-01

    Soil health is important for the sustainable development of terrestrial ecosystem.In this paper,we studied the relationship between soil quality and soil microbial properties such as soil microbial biomass and soil enzyme activities in order to illustrate the function of soil microbial properties as bio-indicators of soil health.In this study,microbial biomass C and N contents(Cmic&Nmic),soil enzyme activities,and soil fertility with different fertilizer regimes were carried out based on a 15-year long-term fertilizer experiment in Drab Fluvo-aquic soil in Changping County,Beijing,China.At this site,7 different treatments were established in 1991.They were in a wheat-maize rotation receiving either no fertilizer(CK),mineral fertilizers(NPK),mineral fertilizers with wheat straw incorporated(NPKW),mineral fertilizers with incremental wheat straw incorporated(NPKW+),mineral fertilizers plus swine manure(NPKM),mineral fertilizers plus incremental swine manure(NPKM+)or mineral fertilizers with maize straw incorporated(NPKS).In different fertilization treatments Cmic changed from 96.49 to 500.12 mg kg-1,and Nmic changed from 35.89 to 101.82 mg kg-1.Compared with CK,the other treatments increased Cmic&Nmic,Cmic/Corg(organic C)ratios,Cmic/Nmic,urease activity,soil organic matter(SOM),soil total nitrogen(STN),and soil total phosphorus(STP).All these properties in treatment with fertilizers input NPKM+ were the highest.Meantime,long-term combined application of mineral fertilizers with organic manure or crop straw could significantly decrease the soil pH in Fluvo-aquic soil(the pH around 8.00 in this experimental soil).Some of soil microbial properties(Cmic/Nmic,urease activity)were positively correlated with soil nutrients.Cmic/Nmic was significantly correlated with SOM and STN contents.The correlation between catalase activity and soil nutrients was not significant.In addition,except of catalase activity,the soil pH in this experiment was negatively correlated with soil

  7. Effect of Exogenous Fibrolytic Enzyme Application on the Microbial Attachment and Digestion of Barley Straw In vitro

    Science.gov (United States)

    Wang, Y.; Ramirez-Bribiesca, J. E.; Yanke, L. J.; Tsang, A.; McAllister, T. A.

    2012-01-01

    The effects of exogenous fibrolytic enzymes (EFE; a mixture of two preparations from Trichoderma spp., with predominant xylanase and β-glucanase activities, respectively) on colonization and digestion of ground barley straw and alfalfa hay by Fibrobacter succinogenes S85 and Ruminococcus flavefaciens FD1 were studied in vitro. The two levels (28 and 280 μg/ml) of EFE tested and both bacteria were effective at digesting NDF of hay and straw. With both substrates, more NDF hydrolysis (p<0.01) was achieved with EFE alone at 280 than at 28 μg/ml. A synergistic effect (p<0.01) of F. succinogenes S85 and EFE on straw digestion was observed at 28 but not 280 μg/ml of EFE. Strain R. flavefaciens FD1 digested more (p<0.01) hay and straw with higher EFE than with lower or no EFE, but the effect was additive rather than synergistic. Included in the incubation medium, EFE showed potential to improve fibre digestion by cellulolytic ruminal bacteria. In a second batch culture experiment using mixed rumen microbes, DM disappearance (DMD), gas production and incorporation of 15N into particle-associated microbial N (15N-PAMN) were higher (p<0.001) with ammoniated (5% w/w; AS) than with native (S) ground barley straw. Application of EFE to the straws increased (p<0.001) DMD and gas production at 4 and 12 h, but not at 48 h of the incubation. EFE applied onto S increased (p<0.01) 15N-PAMN at 4 h only, but EFE on AS increased (p<0.001) 15N-PAMN at all time points. Prehydrolysis increased (p<0.01) DMD from both S and AS at 4 and 12 h, but reduced (p<0.01) 15N-PAMN in the early stage (4 h) of the incubation, as compared to non-prehydrolyzed samples. Application of EFE to barley straw increased rumen bacterial colonization of the substrate, but excessive hydrolytic action of EFE prior to incubation decreased it. PMID:25049480

  8. Cry1Ac Transgenic Sugarcane Does Not Affect the Diversity of Microbial Communities and Has No Significant Effect on Enzyme Activities in Rhizosphere Soil within One Crop Season

    Directory of Open Access Journals (Sweden)

    Dinggang eZhou

    2016-03-01

    Full Text Available Cry1Ac transgenic sugarcane provides a promising way to control stem-borer pests. Biosafety assessment of soil ecosystem for cry1Ac transgenic sugarcane is urgently needed because of the important role of soil microorganisms in nutrient transformations and element cycling, however little is known. This study aimed to explore the potential impact of cry1Ac transgenic sugarcane on rhizosphere soil enzyme activities and microbial community diversity, and also to investigate whether the gene flow occurs through horizontal gene transfer. We found no horizontal gene flow from cry1Ac sugarcane to soil. No significant difference in the population of culturable microorganisms between the non-GM and cry1Ac transgenic sugarcane was observed, and there were no significant interactions between the sugarcane lines and the growth stages. A relatively consistent trend at community-level, represented by the functional diversity index, was found between the cry1Ac sugarcane and the non-transgenic lines. Most soil samples showed no significant difference in the activities of four soil enzymes: urease, protease, sucrose, and acid phosphate monoester between the non-transgenic and cry1Ac sugarcane lines. We conclude, based on one crop season, that the cry1Ac sugarcane lines may not affect the microbial community structure and functional diversity of the rhizosphere soil and have few negative effects on soil enzymes.

  9. Cry1Ac Transgenic Sugarcane Does Not Affect the Diversity of Microbial Communities and Has No Significant Effect on Enzyme Activities in Rhizosphere Soil within One Crop Season.

    Science.gov (United States)

    Zhou, Dinggang; Xu, Liping; Gao, Shiwu; Guo, Jinlong; Luo, Jun; You, Qian; Que, Youxiong

    2016-01-01

    Cry1Ac transgenic sugarcane provides a promising way to control stem-borer pests. Biosafety assessment of soil ecosystem for cry1Ac transgenic sugarcane is urgently needed because of the important role of soil microorganisms in nutrient transformations and element cycling, however little is known. This study aimed to explore the potential impact of cry1Ac transgenic sugarcane on rhizosphere soil enzyme activities and microbial community diversity, and also to investigate whether the gene flow occurs through horizontal gene transfer. We found no horizontal gene flow from cry1Ac sugarcane to soil. No significant difference in the population of culturable microorganisms between the non-GM and cry1Ac transgenic sugarcane was observed, and there were no significant interactions between the sugarcane lines and the growth stages. A relatively consistent trend at community-level, represented by the functional diversity index, was found between the cry1Ac sugarcane and the non-transgenic lines. Most soil samples showed no significant difference in the activities of four soil enzymes: urease, protease, sucrose, and acid phosphate monoester between the non-transgenic and cry1Ac sugarcane lines. We conclude, based on one crop season, that the cry1Ac sugarcane lines may not affect the microbial community structure and functional diversity of the rhizosphere soil and have few negative effects on soil enzymes.

  10. Microbial cell-free extracts as sources of enzyme activities to be used for enhancement flavor development of ewe milk cheese.

    Science.gov (United States)

    Calasso, Maria; Mancini, Leonardo; Di Cagno, Raffaella; Cardinali, Gianluigi; Gobbetti, Marco

    2015-09-01

    Freeze-dried cell-free extracts (CFE) from Lactobacillus casei LC01, Weissella cibaria 1XF5, Hafnia alvei Moller ATCC 51815, and Debaryomyces hansenii LCF-558 were used as sources of enzyme activities for conditioning the ripening of ewe milk cheese. Compared with control cheese (CC), CFE did not affect the gross composition and the growth of the main microbial groups of the cheeses. As shown through urea-PAGE electrophoresis of the pH 4.6-soluble nitrogen fraction and the analysis of free AA, the secondary proteolysis of the cheeses with CFE added was markedly differed from that of the CC. Compared with CC, several enzyme activities were higher in the water-soluble extracts from cheeses made with CFE. In agreement, the levels of 49 volatile compounds significantly differentiated CC from the cheeses made with CFE. The level of some alcohols, ketones, sulfur compounds, and furans were the lowest in the CC, whereas most aldehydes were the highest. Each CFE seemed to affect a specific class of chemical compounds (e.g., the CFE from H. alvei ATCC 51815 mainly influenced the synthesis of sulfur compounds). Apart from the microbial source used, the cheeses with the addition of CFE showed higher score for acceptability than the control cheese. Cheese ripening was accelerated or conditioned using CFE as sources of tailored enzyme activities. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Comparison of multivariate microbial datasets with the Shannon index: An example using enzyme activity from diverse marine environments

    DEFF Research Database (Denmark)

    Steen, Andrew; Ziervogel, K.; Arnosti, C.

    2010-01-01

    Heterotrophic microbial communities contain substantial functional diversity, so studies of community function often generate multivariate data sets. Techniques for data reduction and analysis can help elucidate qualitative differences among sites from multivariate data sets that may be difficult...

  12. Food-processing enzymes from recombinant microorganisms--a review.

    Science.gov (United States)

    Olempska-Beer, Zofia S; Merker, Robert I; Ditto, Mary D; DiNovi, Michael J

    2006-07-01

    Enzymes are commonly used in food processing and in the production of food ingredients. Enzymes traditionally isolated from culturable microorganisms, plants, and mammalian tissues are often not well-adapted to the conditions used in modern food production methods. The use of recombinant DNA technology has made it possible to manufacture novel enzymes suitable for specific food-processing conditions. Such enzymes may be discovered by screening microorganisms sampled from diverse environments or developed by modification of known enzymes using modern methods of protein engineering or molecular evolution. As a result, several important food-processing enzymes such as amylases and lipases with properties tailored to particular food applications have become available. Another important achievement is improvement of microbial production strains. For example, several microbial strains recently developed for enzyme production have been engineered to increase enzyme yield by deleting native genes encoding extracellular proteases. Moreover, certain fungal production strains have been modified to reduce or eliminate their potential for production of toxic secondary metabolites. In this article, we discuss the safety of microorganisms used as hosts for enzyme-encoding genes, the construction of recombinant production strains, and methods of improving enzyme properties. We also briefly describe the manufacture and safety assessment of enzyme preparations and summarize options for submitting information on enzyme preparations to the US Food and Drug Administration.

  13. Technical Report Department of Energy Grant #SC0004335 “Tracking Down Cheaters. Molecular Analysis of Carbon Consumption by Organisms That Do Not Contribute to Extracellular Enzyme Pools”

    Energy Technology Data Exchange (ETDEWEB)

    Blackwood, Christopher [Kent State Univ., Kent, OH (United States)

    2015-05-31

    The overriding objective of our work is to integrate physiological and community ecology of belowground organisms into understanding of soil carbon dynamics to improve predictions of terrestrial ecosystem models. This includes using metagenomics and metatranscriptomics-based methods to understand microbial interactions affecting decomposition and soil carbon dynamics. The focus of the majority of the work directly related to this project was on “cheating”, a poorly understood microbial interaction with a potentially large effect on decomposition. Model organisms were used to determine the types of organisms that cheat based on their known niche and genomic characteristics. In addition, we study plant and microbial traits and plant-microbe interactions that affect species distributions and soil carbon, and also develop bioinformatics tools to increase the power of ecological inferences that can be obtained from omics-based sequence data.

  14. Digestive enzyme activities in the guts of bonnethead sharks (Sphyrna tiburo) provide insight into their digestive strategy and evidence for microbial digestion in their hindguts.

    Science.gov (United States)

    Jhaveri, Parth; Papastamatiou, Yannis P; German, Donovan P

    2015-11-01

    Few investigations have studied digestive enzyme activities in the alimentary tracts of sharks to gain insight into how these organisms digest their meals. In this study, we examined the activity levels of proteases, carbohydrases, and lipase in the pancreas, and along the anterior intestine, spiral intestine, and colon of the bonnethead shark, Sphyrna tiburo. We then interpreted our data in the context of a rate-yield continuum to discern this shark's digestive strategy. Our data show anticipated decreasing patterns in the activities of pancreatic enzymes moving posteriorly along the gut, but also show mid spiral intestine peaks in aminopeptidase and lipase activities, which support the spiral intestine as the main site of absorption in bonnetheads. Interestingly, we observed spikes in the activity levels of N-acetyl-β-D-glucosaminidase and β-glucosidase in the bonnethead colon, and these chitin- and cellulose-degrading enzymes, respectively, are likely of microbial origin in this distal gut region. Taken in the context of intake and relatively long transit times of food through the gut, the colonic spikes in N-acetyl-β-D-glucosaminidase and β-glucosidase activities suggest that bonnetheads take a yield-maximizing strategy to the digestive process, with some reliance on microbial digestion in their hindguts. This is one of the first studies to examine digestive enzyme activities along the gut of any shark, and importantly, the data match with previous observations that sharks take an extended time to digest their meals (consistent with a yield-maximizing digestive strategy) and that the spiral intestine is the primary site of absorption in sharks.

  15. Measurements of Microbial Community Activities in Individual Soil Macroaggregates

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Vanessa L.; Bilskis, Christina L.; Fansler, Sarah J.; McCue, Lee Ann; Smith, Jeff L.; Konopka, Allan

    2012-05-01

    The functional potential of single soil aggregates may provide insights into the localized distribution of microbial activities better than traditional assays conducted on bulk quantities of soil. Thus, we scaled down enzyme assays for {beta}-glucosidase, N-acetyl-{beta}-D-glucosaminidase, lipase, and leucine aminopeptidase to measure of the enzyme potential of individual aggregates (250-1000 {mu}m diameter). Across all enzymes, the smallest aggregates had the greatest activity and the range of enzyme activities observed in all aggregates supports the hypothesis that functional potential in soil may be distributed in a patchy fashion. Paired analyses of ATP as a surrogate for active microbial biomass and {beta}-glucosidase on the same aggregates suggest the presence of both extracellular {beta}-glucosidase functioning in aggregates with no detectable ATP and also of relatively active microbial communities (high ATP) that have low {beta}-glucosidase potentials. Studying function at a scale more consistent with microbial habitat presents greater opportunity to link microbial community structure to microbial community function.

  16. The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils.

    Science.gov (United States)

    Lin, Zhong; Zhen, Zhen; Wu, Zhihao; Yang, Jiewen; Zhong, Laiyuan; Hu, Hanqiao; Luo, Chunling; Bai, Jing; Li, Yongtao; Zhang, Dayi

    2016-01-15

    The ecological effect of earthworms on the fate of soil pentachlorophenol (PCP) differs with species. This study addressed the roles and mechanisms by which two earthworm species (epigeic Eisenia fetida and endogeic Amynthas robustus E. Perrier) affect the soil microbial community and enzyme activity during the bioremediation of PCP-contaminated soils. A. robustus removed more soil PCP than did E. foetida. A. robustus improved nitrogen utilisation efficiency and soil oxidation more than did E. foetida, whereas the latter promoted the organic matter cycle in the soil. Both earthworm species significantly increased the amount of cultivable bacteria and actinomyces in soils, enhancing the utilisation rate of the carbon source (i.e. carbohydrates, carboxyl acids, and amino acids) and improving the richness and evenness of the soil microbial community. Additionally, earthworm treatment optimized the soil microbial community and increased the amount of the PCP-4-monooxygenase gene. Phylogenic classification revealed stimulation of indigenous PCP bacterial degraders, as assigned to the families Flavobacteriaceae, Pseudomonadaceae and Sphingobacteriacea, by both earthworms. A. robustus and E. foetida specifically promoted Comamonadaceae and Moraxellaceae PCP degraders, respectively.

  17. Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity and biofilm synthesis as direct-fed microbials candidates for poultry

    Directory of Open Access Journals (Sweden)

    Juan D Latorre

    2016-10-01

    Full Text Available Social concern about misuse of antibiotics as growth promoters (AGP and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly-resistant endospores, production of antimicrobial compounds and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity and pathogen-inhibition activity. Thirty one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as B. subtilis (1/3, and B. amyloliquefaciens (2/3 based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31, Escherichia coli (28/31 and Clostridioides difficile (29/31. Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds may contribute to enhanced performance through improving nutrient digestibility

  18. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry

    Science.gov (United States)

    Latorre, Juan D.; Hernandez-Velasco, Xochitl; Wolfenden, Ross E.; Vicente, Jose L.; Wolfenden, Amanda D.; Menconi, Anita; Bielke, Lisa R.; Hargis, Billy M.; Tellez, Guillermo

    2016-01-01

    Social concern about misuse of antibiotics as growth promoters (AGP) and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM) are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly resistant endospores, produce antimicrobial compounds, and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity, and pathogen-inhibition activity. Thirty-one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase, and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as Bacillus subtilis (1/3), and Bacillus amyloliquefaciens (2/3), based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31), Escherichia coli (28/31), and Clostridioides difficile (29/31). Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds, may contribute to enhanced performance through improving nutrient digestibility

  19. ESTIMATION OF EXTRACELLULAR LIPOLYTIC ENZYME ACTIVITY BY THERMOPHILIC BACILLUS SP. ISOLATED FROM ARID AND SEMI-ARID REGION OF RAJASTHAN, INDIA

    Directory of Open Access Journals (Sweden)

    Deeksha Gaur

    2012-10-01

    Full Text Available Thermophilic organisms can be defined as, micro-organisms which are adapted to survive at high temperatures. The enzymes secreted by thermophilic bacteria are capable of catalyzing biochemical reactions at high temperatures. Thermophilic bacteria are able to produce thermostable lipolytic enzymes (capable of degradation of lipid at temperatures higher than mesophilic bacteria. Therefore, the isolation of thermophilic bacteria from natural sources and their identification are quite beneficial in terms of discovering thermostable lipase enzymes. Due to great temperature fluctuation in hot arid and semi-arid region of Rajasthan, this area could serve as a good source for new thermophilic lipase producing bacteria with novel industrially important properties. The main objective of this research is the isolation and estimation of industrially important thermophilic lipase enzyme produced by thermophilic bacteria, isolated from arid and semi-arid region of Rajasthan. For this research purpose soil samples were collected from Churu, Sikar and Jhunjunu regions of Rajasthan. Total 16 bacterial strains were isolated and among only 2 thermostable lipolytic enzyme producing bacteria were charcterized. The thermostable lipolytic enzyme was estimated by qualitative and quantitative experiments. The isolates were identified as Bacillus sp. by microscopic, biochemical and molecular characterization. The optimum enzyme activity was observed at pH 8, temperature 60°C and 6% salt concentrations at 24 hrs time duration. Lipolytic enzyme find useful in a variety of biotechnological fields such as food and dairy (cheese ripening, flavour development, detergent, pharmaceutical (naproxen, ibuprofen, agrochemical (insecticide, pesticide and oleochemical (fat and oil hydrolysis, biosurfactant synthesis industries. Lipolytic enzyme can be further used in many newer areas where they can serve as potential biocatalysts.

  20. Potential of the waste from beer fermentation broth for bio-ethanol production without any additional enzyme, microbial cells and carbohydrates.

    Science.gov (United States)

    Ha, Jung Hwan; Shah, Nasrullah; Ul-Islam, Mazhar; Park, Joong Kon

    2011-08-10

    The potential of the waste from beer fermentation broth (WBFB) for the production of bio-ethanol using a simultaneous saccharification and fermentation process without any extra additions of saccharification enzymes, microbial cells or carbohydrate was tested. The major microbial cells in WBFB were isolated and identified. The variations in compositions of WBFB with stock time were investigated. There was residual activity of starch hydrolyzing enzymes in WBFB. The effects of reaction modes e.g. static and shaking on bio-ethanol production were studied. After 7 days of cultivation using the supernatant of WBFB at 30 °C the ethanol concentration reached 103.8 g/L in shaking culture and 91.5 g/L in static culture. Agitation experiments conducted at a temperature-profile process in which temperature was increased from 25 to 67 °C shortened the simultaneous process time. The original WBFB was more useful than the supernatant of WBFB in getting the higher concentration of ethanol and reducing the fermentation time. From this whole study it was found that WBFB is a cheap and suitable source for bio-ethanol production. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Stabilization of red fruit-based smoothies by high-pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability.

    Science.gov (United States)

    Hurtado, Adriana; Guàrdia, Maria Dolors; Picouet, Pierre; Jofré, Anna; Ros, José María; Bañón, Sancho

    2017-02-01

    Non-thermal pasteurization by high-pressure processing (HPP) is increasingly replacing thermal processing (TP) to maintain the properties of fresh fruit products. However, most of the research on HPP-fruit products only partially addresses fruit-pressure interaction, which limits its practical interest. The objective of this study was to assess the use of a mild HPP treatment to stabilize red fruit-based smoothies (microbial, enzymatic, oxidative and physical stability). HPP (350 MPa/10 °C/5 min) was slightly less effective than TP (85 °C/7 min) in inactivating microbes (mesophilic and psychrophilic bacteria, coliforms, yeasts and moulds) in smoothies kept at 4 °C for up to 28 days. The main limitation of using HPP was its low efficacy in inactivating oxidative (polyphenol oxidase and peroxidase) and hydrolytic (pectin methyl esterase) enzymes. Data on antioxidant status, colour parameters, browning index, transmittance, turbidity and viscosity confirmed that the HPP-smoothies have a greater tendency towards oxidation and clarification, which might lead to undesirable sensory and nutritional changes (see Part B). The microbial quality of smoothies was adequately controlled by mild HPP treatment without affecting their physical-chemical characteristics; however, oxidative and hydrolytic enzymes are highly pressure-resistant, which suggests that additional strategies should be used to stabilize smoothies. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Involvement of a new enzyme, glyoxal oxidase, in extracellular H/sub 2/O/sub 2/ production by Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, P.J.; Kirk, K.

    1987-05-01

    The importance of extracellular H/sub 2/O/sub 2/ in lignin degradation has become increasingly apparent with the recent discovery of H/sub 2/O/sub 2/-requiring ligninases produced by white-rot fungi. Here the authors describe a new H/sub 2/O/sub 2/-producing activity of Phanerochaete chrysosporium that involves extracellular oxidases able to use simple aldehyde, ..cap alpha..-hydroxycarbonyl, or..cap alpha..-dicarbonyl compounds as substrates. The activity is expressed during secondary metabolism, when the ligninases are also expressed. Analytical isoelectric focusing of the extracellular proteins, followed by activity staining, indicated that minor proteins with broad substrate specificities are responsible for the oxidase activity. Two of the oxidase substrates, glyoxal and methylglyoxal, were also identified, as their quinoxaline derivatives, in the culture fluid as secondary metabolites. The significance of these findings is discussed with respect to lignin degradation and other proposed systems for H/sub 2/O/sub 2/ production in P. chrysosporium.

  3. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input

    DEFF Research Database (Denmark)

    Debosz, K.; Rasmussen, Peter Have; Pedersen, A. R.

    1999-01-01

    -OM). The cultivation systems differed in whether their source of fertiliser was mainly mineral or organic, in whether a winter cover crop was grown, and whether straw was mulched or removed. Sampling occurred at approximately monthly intervals, over a period of two years. Distinct temporal variations in microbial...

  4. Effects of winter cover crops residue returning on soil enzyme activities and soil microbial community in double-cropping rice fields.

    Directory of Open Access Journals (Sweden)

    Tang Hai-Ming

    Full Text Available Residue management in cropping systems is useful to improve soil quality. However, the studies on the effects of residue management on the enzyme activities and microbial community of soils in South China are few. Therefore, the effects of incorporating winter cover crop residue with a double-cropping rice (Oryza sativa L. system on soil enzyme activities and microbial community in Southern China fields were studied. The experiment has conducted at the experimental station of the Institute of Soil and Fertilizer Research, Hunan Academy of Agricultural Science, China since winter 2004. Four winter cropping systems were used: rice-rice-ryegrass (Lolium multiflorum L. (R-R-Ry, rice-rice-Chinese milk vetch (Astragalus sinicus L. (R-R-Mv, rice-rice-rape (Brassica napus L. (R-R-Ra and rice-rice with winter fallow (R-R-Fa. The result indicated that the enzyme activities in the R-R-Ry, R-R-Mv and R-R-Ra systems were significantly higher (P<0.05 than in the R-R-Fa system during the early and late rice season. The β-glucosidase activities reached peak values at the tillering stage after residue application, and alkaline phosphatase activities reached peak values at the booting stage after residue application, respectively, the activities of β-glucosidase and alkaline phosphatase gradually decreased after this. Arylsulfatase activities reached peak values at the maturity stage. Arylamidase activities reached peak values at the maturity stage. The numbers of aerobic bacteria, actinomycete and fungus of residue treatments were significantly higher (P<0.05 than that the R-R-Ra system. However, the number of anaerobic bacteria under the R-R-Ry and R-R-Mv systems was significantly lower (P<0.05 than that under the R-R-Fa system during early rice and late rice growth stage. Thus, incorporation of winter cover crops into rotations may increase enzyme activities and microbial community in soil and therefore improve soil quality.

  5. Enzimas hidrolíticas extracelulares de isolados de rizóbia nativos da Amazônia Central, Amazonas, Brasil Extracellular hydrolytic enzymes in indigenous strains of rhizobia in Central Amazonia, Amazonas, Brazil

    Directory of Open Access Journals (Sweden)

    Arlem Nascimento de Oliveira

    2006-12-01

    Full Text Available A associação rizóbia x leguminosa contribui para enriquecer o solo com nitrogênio por meio da fixação biológica. Entretanto, pouco se conhece a respeito do perfil enzimático desses microrganismos. Nesse contexto, a presente investigação propõe avaliar a produção de enzimas hidrolíticas extracelulares por isolados de rizóbia nativos da Amazônia Central. Essa triagem constitui o primeiro passo na seleção de microrganismos nativos que são potencialmente exploráveis como produtores de enzimas. Foram testados 67 isolados nativos de rizóbia para as atividades amilolítica, celulolítica, lactolítica, lipolítica, pectinolítica e proteolítica, em meio YMA modificado. A atividade ureolítica foi detectada em meio ágar-uréia. As bactérias isoladas dos nódulos de feijão caupi mostraram maior capacidade em produzir enzimas do que os isolados bacterianos de soja. De todas as enzimas hidrolíticas avaliadas, apenas a pectinase não foi detectada neste estudo. Amilase (32,8%, protease (28,4%, urease (20,9% e carboximetilcelulase (9,0% foram as enzimas mais freqüentes produzidas pelos isolados. Neste trabalho, apenas as enzimas amilase e protease variaram significativamente entre os isolados de rizóbia. Os isolados INPA R-926 e INPA R-915 exibiram os maiores índices amilolíticos (IE = 3,1 e proteolíticos (IE = 6,6, respectivamente. Este estudo revelou alguns isolados de rizóbia nativos da Amazônia Central como fontes promissoras de enzimas de importância industrial para uso biotecnológico.Legumes enrich the soil by contributing nitrogen through symbiotic biological nitrogen fixation by rhizobia bacteria. However, very little is known about the extracellular enzymatic profile of these microorganisms. In this context, the production of extracellular hydrolytic enzymes by indigenous strains of rhizobia in Central Amazonia was evaluated. This screening constitutes the first step in selecting indigenous microorganisms that are

  6. Hydroxytyrosol induces antioxidant/detoxificant enzymes and Nrf2 translocation via extracellular regulated kinases and phosphatidylinositol-3-kinase/protein kinase B pathways in HepG2 cells.

    Science.gov (United States)

    Martín, María Angeles; Ramos, Sonia; Granado-Serrano, Ana Belén; Rodríguez-Ramiro, Ildefonso; Trujillo, Mariana; Bravo, Laura; Goya, Luis

    2010-07-01

    Hydroxytyrosol (HTy) is a natural polyphenol abundant in olive oil, which possesses multiple biological actions. Particularly, HTy has cytoprotective activity against oxidative-stress-induced cell damage, but the underlying mechanisms of action remain unclear. Here, we have investigated the molecular mechanism involved in the protection exerted by HTy on tert-butyl hydroperoxide-induced damage in human HepG2 liver cells. Treatment of HepG2 cells with HTy increased the expression and the activity of glutathione-related enzymes such as glutathione peroxidase, glutathione reductase and glutathione S-transferase. HTy also induced the nuclear transcription factor erythroid 2p45-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Moreover, two important signalling proteins involved in Nrf2 translocation, the protein kinase B and the extracellular regulated kinases, were also activated by HTy. Further studies with specific inhibitors confirmed that both molecular pathways are critical for the nuclear translocation of Nrf2, the increased enzyme expression and activity and the beneficial effect against oxidative stress induced by HTy. In conclusion, together with the inherent radical scavenging activity of HTy, our results provide an additional mechanism of action to prevent oxidative stress damage through the modulation of signalling pathways involved in antioxidant/detoxifying enzymes regulation.

  7. Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions.

    Science.gov (United States)

    Bastida, Felipe; Kandeler, Ellen; Hernández, Teresa; García, Carlos

    2008-05-01

    Microbial ecology is the key to understanding the function of soil biota for organic matter cycling after a single amendment of organic waste in semiarid soils. Therefore, in this paper, the long-term effect (17 years) of adding different doses of a solid municipal waste to an arid soil on humus-enzyme complexes, a very stable and long-lasting fraction of soil enzymes, as well as on microbial and plant abundance, was studied. Humic substances were extracted by 0.1 M pH 7 sodium pyrophosphate from soil samples collected in experimental plots amended with different doses of a solid municipal waste (0, 65, 130, 195, and 260 t/ha) 17 years before. The activity of different hydrolases related with the C (beta-glucosidase), N (urease), and P (alkaline phosphatase) cycles and with the formation of humic substances (o-diphenol oxidase) were determined in this extract. The density and diversity of plant cover in the plots, as well as the fungal and bacterial biomass (by analyzing phopholipid fatty acids) were also determined. In general, the amended plots showed greater humic substance-related enzymatic activity than the unamended plots. This activity increased with the dose but only up to a certain level, above which it leveled off or even diminished. Plant diversity and cover density followed the same trend. Fungal and bacterial biomass also benefited in a dose-dependent manner. Different signature molecules representing gram+ and gram- bacteria, and those corresponding to monounsaturated and saturated fatty acids showed a similar behavior. The results demonstrate that organic amendment had a noticeable long-term effect on the vegetal development, humic substances-related enzyme activity and on the development of bacteria and fungi in semiarid conditions.

  8. Microbial mannanases: an overview of production and applications.

    Science.gov (United States)

    Dhawan, Samriti; Kaur, Jagdeep

    2007-01-01

    Microbial mannanases have become biotechnologically important since they target the hydrolysis of complex polysaccharides of plant tissues into simple molecules like manno-oligosaccharides and mannoses. The role of mannanases in the paper and pulp industry is well established and recently they have found application in the food and feed technology, coffee extraction, oil drilling and detergent industry. Mannanses are enzymes produced mainly from microorganisms but mannanases produced from plants and animals have also been reported. Bacterial mannanases are mostly extracellular and can act in a wide range of pH and temperature, though acidic and neutral mannanases are more common. This review will focus on complex mannan structure and the microbial enzyme complex involved in its complete breakdown, mannanase sources, production conditions and their applications in the commercial sector. The reference to plant and animal mannanases has been made to complete the overview. However, the major emphasis of the review is on the microbial mannanases.

  9. Evaluation of nutrient removal efficiency and microbial enzyme activity in a baffled subsurface-flow constructed wetland system

    Science.gov (United States)

    Lihua Cui; Ying Ouyang; Wenjie Gu; Weozhi Yang; Qiaoling. Xu

    2013-01-01

    In this study, the enzyme activities and their relationships to domestic wastewater purification are investigated in four different types of subsurface-flow constructed wetlands (CWs), namely the traditional horizontal subsurface-flow, horizontal baffled subsurface-flow, vertical baffled subsurface-flow, and composite baffled subsurface-flow CWs. Results showed that...

  10. Measurement of alpha-amylase activity in white wheat flour, milled malt, and microbial enzyme preparations, using the Ceralpha assay: collaborative study.

    Science.gov (United States)

    McCleary, Barry V; McNally, Marian; Monaghan, Dympna; Mugford, David C

    2002-01-01

    This study was conducted to evaluate the method performance of a rapid procedure for the measurement of alpha-amylase activity in flours and microbial enzyme preparations. Samples were milled (if necessary) to pass a 0.5 mm sieve and then extracted with a buffer/salt solution, and the extracts were clarified and diluted. Aliquots of diluted extract (containing alpha-amylase) were incubated with substrate mixture under defined conditions of pH, temperature, and time. The substrate used was nonreducing end-blocked p-nitrophenyl maltoheptaoside (BPNPG7) in the presence of excess quantities of thermostable alpha-glucosidase. The blocking group in BPNPG7 prevents hydrolysis of this substrate by exo-acting enzymes such as amyloglucosidase, alpha-glucosidase, and beta-amylase. When the substrate is cleaved by endo-acting alpha-amylase, the nitrophenyl oligosaccharide is immediately and completely hydrolyzed to p-nitrophenol and free glucose by the excess quantities of alpha-glucosidase present in the substrate mixture. The reaction is terminated, and the phenolate color developed by the addition of an alkaline solution is measured at 400 nm. Amylase activity is expressed in terms of Ceralpha units; 1 unit is defined as the amount of enzyme required to release 1 micromol p-nitrophenyl (in the presence of excess quantities of alpha-glucosidase) in 1 min at 40 degrees C. In the present study, 15 laboratories analyzed 16 samples as blind duplicates. The analyzed samples were white wheat flour, white wheat flour to which fungal alpha-amylase had been added, milled malt, and fungal and bacterial enzyme preparations. Repeatability relative standard deviations ranged from 1.4 to 14.4%, and reproducibility relative standard deviations ranged from 5.0 to 16.7%.

  11. The Effects of Fungicide, Soil Fumigant, Bio-Organic Fertilizer and Their Combined Application on Chrysanthemum Fusarium Wilt Controlling, Soil Enzyme Activities and Microbial Properties.

    Science.gov (United States)

    Zhao, Shuang; Chen, Xi; Deng, Shiping; Dong, Xuena; Song, Aiping; Yao, Jianjun; Fang, Weimin; Chen, Fadi

    2016-04-21

    Sustained monoculture often leads to a decline in soil quality, in particular to the build-up of pathogen populations, a problem that is conventionally addressed by the use of either fungicide and/or soil fumigation. This practice is no longer considered to be either environmentally sustainable or safe. While the application of organic fertilizer is seen as a means of combating declining soil fertility, it has also been suggested as providing some control over certain soil-borne plant pathogens. Here, a greenhouse comparison was made of the Fusarium wilt control efficacy of various treatments given to a soil in which chrysanthemum had been produced continuously for many years. The treatments comprised the fungicide carbendazim (MBC), the soil fumigant dazomet (DAZ), the incorporation of a Paenibacillus polymyxa SQR21 (P. polymyxa SQR21, fungal antagonist) enhanced bio-organic fertilizer (BOF), and applications of BOF combined with either MBC or DAZ. Data suggest that all the treatments evaluated show good control over Fusarium wilt. The MBC and DAZ treatments were effective in suppressing the disease, but led to significant decrease in urease activity and no enhancement of catalase activity in the rhizosphere soils. BOF including treatments showed significant enhancement in soil enzyme activities and microbial communities compared to the MBC and DAZ, evidenced by differences in bacterial/fungi (B/F) ratios, Shannon-Wiener indexes and urease, catalase and sucrase activities in the rhizosphere soil of chrysanthemum. Of all the treatments evaluated, DAZ/BOF application not only greatly suppressed Fusarium wilt and enhanced soil enzyme activities and microbial communities but also promoted the quality of chrysanthemum obviously. Our findings suggest that combined BOF with DAZ could more effectively control Fusarium wilt disease of chrysanthemum.

  12. Effects of Cu exposure on enzyme activities and selection for microbial tolerances during swine-manure composting.

    Science.gov (United States)

    Li, Yanxia; Liu, Bei; Zhang, Xuelian; Gao, Min; Wang, Jing

    2015-01-01

    A simulated experiment of aerobic composting was conducted on swine manure to evaluate the effects of Cu at two exposure levels (200 and 2000 mg kg(-1), corresponding to low-Cu and high-Cu treatments, respectively) on the activity of microorganisms. In addition, the microbial pollution-induced community tolerance (PICT) to Cu and co-tolerance to selected antibiotics (tylosin and vancomycin) in the composted products were also investigated using the Biolog Ecoplates™ method. It was demonstrated that the enzymatic activities were significantly inhibited by the high-Cu treatment, with maximal inhibition rates of 56.8% and 65.1% for urease and dehydrogenase, respectively. In response to the PICT test, the IC50 (half-maximal inhibition concentrations) values on the microorganisms in the high-Cu-treated composts were clearly higher than those in the low-Cu-treated and control composts, for the toxicity tests on both Cu and antibiotics, including tylosin and vancomycin. The data demonstrated that high-Cu exposure to the microbial community during the composting not only selected for Cu resistance but also co-selected for antibiotic resistance, which was of significance because the tolerance might be transferred to the soil after the land application of composted manure.

  13. Pentosan polysulfate decreases myocardial expression of the extracellular matrix enzyme ADAMTS4 and improves cardiac function in vivo in rats subjected to pressure overload by aortic banding.

    Directory of Open Access Journals (Sweden)

    Maria Vistnes

    Full Text Available BACKGROUND: We hypothesized that cleavage of the extracellular matrix (ECM proteoglycans versican and aggrecan by ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs proteases, which contributes to stress-induced ECM-reorganization in atherogenesis and osteoarthritis, also play a role in heart failure development. OBJECTIVES: The primary objective was to identify alterations in expression of ADAMTS versicanases and aggrecanases during development of heart failure, while evaluation of the effects of in vivo modulation of relevant changes in ADAMTS activity constituted the secondary objective. METHODS: Myocardial levels of versican, aggrecan, and their ADAMTS cleaving proteases were examined in Wistar rats six weeks after aortic banding (AB, and versican and selected ADAMTS versicanases were further analyzed in neonatal cardiomyocytes (NCM and cardiac fibroblasts (NFB after stimulation by inflammatory mediators. Based on the initial findings, ADAMTS4 was selected the most promising therapeutic target. Thus, rats with AB were treated with pentosan polysulfate (PPS, a polysaccharide with known ADAMTS4-inhibitory properties, and effects on versican fragmentation, left ventricular function and geometry were evaluated. RESULTS: We discovered that myocardial mRNA and protein levels of ADAMTS1 and -4, and mRNA levels of versican, aggrecan, and ADAMTS8 increased after AB, and TNF-α and IL-1β synergistically increased mRNA of versican and ADAMTS4 in NCM and NFB and secretion of ADAMTS4 from NCM. Furthermore, PPS-treatment improved systolic function, demonstrated by an improved fractional shortening (vehicle 48±3% versus PPS 60±1%, p<0.01 after AB. Following PPS-treatment, we observed an ∼80% reduction in myocardial ADAMTS4 mRNA (p = 0.03, and ∼50% reduction in the extracellular amount of the p150 versican fragments (p = 0.05, suggesting reduced versicanase activity. CONCLUSIONS: Our findings suggest that AB induces an

  14. CorA, the magnesium/nickel/cobalt transporter, affects virulence and extracellular enzyme production in the soft rot pathogen Pectobacterium carotovorum.

    Science.gov (United States)

    Kersey, Caleb M; Agyemang, Paul A; Dumenyo, C Korsi

    2012-01-01

    Pectobacterium carotovorum (formerly Erwinia carotovora ssp. carotovora) is a phytopathogenic bacterium that causes soft rot disease, characterized by water-soaked soft decay, resulting from the action of cell wall-degrading exoenzymes secreted by the pathogen. Virulence in soft rot bacteria is regulated by environmental factors, host and bacterial chemical signals, and a network of global and gene-specific bacterial regulators. We isolated a mini-Tn5 mutant of P. carotovorum that is reduced in the production of extracellular pectate lyase, protease, polygalacturonase and cellulase. The mutant is also decreased in virulence as it macerates less host tissues than its parent and is severely impaired in multiplication in planta. The inactivated gene responsible for the reduced virulent phenotype was identified as corA. CorA, a magnesium/nickel/cobalt membrane transporter, is the primary magnesium transporter for many bacteria. Compared with the parent, the CorA(-) mutant is cobalt resistant. The mutant phenotype was confirmed in parental strain P. carotovorum by marker exchange inactivation of corA. A functional corA(+) DNA from P. carotovorum restored exoenzyme production and pathogenicity to the mutants. The P. carotovorum corA(+) clone also restored motility and cobalt sensitivity to a CorA(-) mutant of Salmonella enterica. These data indicate that CorA is required for exoenzyme production and virulence in P. carotovorum. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  15. Virus-induced dilated cardiomyopathy is characterized by increased levels of fibrotic extracellular matrix proteins and reduced amounts of energy-producing enzymes.

    Science.gov (United States)

    Nishtala, Krishnatej; Phong, Truong Q; Steil, Leif; Sauter, Martina; Salazar, Manuela G; Kandolf, Reinhard; Kroemer, Heyo K; Felix, Stephan B; Völker, Uwe; Klingel, Karin; Hammer, Elke

    2011-11-01

    The most relevant clinical phenotype resulting from chronic enteroviral myocarditis is dilated cardiomyopathy (DCM). Mice of the susceptible mouse strain A.BY/SnJ mimick well human DCM since they develop as a consequence of persistent infection and chronic inflammation a dilation of the heart ventricle several weeks after coxsackievirus B3 (CVB3) infection. Therefore, this model is well suited for the analysis of changes in the heart proteome associated with DCM. Here, we present a proteomic survey of the dilated hearts based on differential fluorescence gel electrophoresis and liquid chromatography-mass spectrometric centered methods in comparison to age-matched non-infected hearts. In total, 101 distinct proteins, which belong to categories immunity and defense, cell structure and associated proteins, energy metabolism and protein metabolism/modification differed in their levels in both groups. Levels of proteins involved in fatty acid metabolism and electron transport chain were found to be significantly reduced in infected mice suggesting a decrease in energy production in CVB3-induced DCM. Furthermore, proteins associated with muscle contraction (MLRV, MLRc2, MYH6, MyBPC3), were present in significantly altered amounts in infected mice. A significant increase in the level of extracellular matrix proteins in the dilated hearts indicates cardiac remodeling due to fibrosis.

  16. Evaluation of Organic Matter Removal Efficiency and Microbial Enzyme Activity in Vertical-Flow Constructed Wetland Systems

    Directory of Open Access Journals (Sweden)

    Qiaoling Xu

    2016-09-01

    Full Text Available In this study, enzyme activities and their relationships to organics purification were investigated in three different vertical flow constructed wetlands, namely system A (planting Pennisetum sinese Roxb, system B (planting Pennisetum purpureum Schum., and system C (no plant. These three wetland systems were fed with simulation domestic sewage at an influent flow rate of 20 cm/day. The results showed that the final removal efficiency of Chemical Oxygen Demand (COD in these three systems was 87%, 85% and 63%, respectively. Planting Pennisetum sinese Roxb and Pennisetum purpureum Schum. could improve the amount of adsorption and interception for organic matter in the substrate, and the amount of interception of organic matter in planting the Pennisetum sinese Roxb system was higher than that in planting the Pennisetum purpureum Schum. system. The activities of enzymes (urease, phosphatase and cellulase in systems A and B were higher than those in system C, and these enzyme activities in the top layer (0–30 cm were significantly higher than in the other layers. The correlations between the activities of urease, phosphatase, cellulase and the COD removal rates were R = 0.815, 0.961 and 0.973, respectively. It suggests that using Pennisetum sinese Roxb and Pennisetum purpureum Schum. as wetland plants could promote organics removal, and the activities of urease, phosphatase and cellulase in those three systems were important indicators for COD purification from wastewater. In addition, 0–30 cm was the main function layer. This study could provide a theoretical basis for COD removal in the wetland system and supply new plant materials for selection.

  17. Responses of soil enzyme activity and microbial community compositions to nitrogen addition in bulk and microaggregate soil in the temperate steppe of Inner Mongolia

    Science.gov (United States)

    Shi, Yao; Sheng, Lianxi; Wang, Zhongqiang; Zhang, Xinyu; He, Nianpeng; Yu, Qiang

    2016-10-01

    In order to explore the responses of soil enzyme activities and microbial community compositions to long-term nitrogen (N) addition in both bulk soil and microaggregate of chestnut soil, we conducted a 7-year urea addition experiment with N treatments at 6 levels (0, 56, 112, 224, 392 and 560 kg N ha-1 yr-1) in a temperate steppe of Inner Mongolia in China. Soil properties and the activities of four enzymes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were measured in both bulk soil and microaggregate, and phospholipid fatty acids (PLFAs) were measured in bulk soil. The results indicated that: 1) in bulk soil, N addition significantly decreased β-1,4-glucosidase (BG) and leucine aminopeptidase (LAP) activities at the treatment amounts of 224, 392 and 560 kg N ha-1 yr-1, and obviously suppressed β-1,4-N-acetylglucosaminidase (NAG) activity at the treatment amount of 560 kg N ha-1 yr-1. N addition enhanced total PLFAs (totPLFAs) and bacterial PLFAs (bacPLFAs) at the treatment amounts of 392 and 560 kg N ha-1 yr-1, respectively, but fungal PLFAs showed no response to N addition. The activities of BG, NAG and LAP were positively correlated with soil pH, but negatively correlated with the concentration of NH 4 + -N; 2) in microaggregate (53-250 μm), the activities of BG, NAG and AP showed no response to increased addition of N, but the significantly decreased LAP activity was observed at the treatment amount of 392 kg N ha-1 yr-1. These results suggested that enzyme activities were more sensitive to N addition than PLFA biomarkers in soil, and LAP activity in microaggregate may be a good indicator for evaluating N cycle response to long-term N addition.

  18. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation

    Science.gov (United States)

    Guo, Xuan; Wang, Xu; Liu, Junxin

    2016-06-01

    Extracellular polymeric substances (EPS) appear to play a critical role in the formation of bioaggregates, such as sludge flocs, in activated sludge processes. Here, we systematically investigated the composition and chemical structure of various EPS fractions excreted from an activated sludge culture using multi-analysis techniques to examine the ability of the sludge to aggregate. Chemical analysis was used with a three-dimensional excitation emission matrix and Fourier transform infrared spectroscopy, applying inter-particle forces theory. The combined findings revealed that hydrophobic groups, especially protein-related N-H, were present in a greater proportion in tightly bound EPS (TB-EPS). This result, which explained the specificity of TB-EPS in the chemical structure, was consistent with data indicating that TB-EPS contained a large amount of protein-like substances (86.7 mg/g of mixed liquor volatile suspended solids, 39.7% of the total EPS). Subsequently, a novel experimental procedure was developed to pinpoint key inter-particle forces in sludge aggregation. The result revealed that hydrogen bonds are the predominant triggers that promote sludge aggregation. This comprehensive analysis indicated that hydrophobic proteins in TB-EPS are responsible for the critical role played by hydrogen bonds in sludge formation. Our findings highlight the need to elucidate the mechanisms of TB-EPS-mediated flocculation in future efforts.

  19. Data-Driven Microbial Modeling for Soil Carbon Decomposition and Stabilization

    Science.gov (United States)

    Luo, Yiqi; Chen, Ji; Chen, Yizhao; Feng, Wenting

    2017-04-01

    Microorganisms have long been known to catalyze almost all the soil organic carbon (SOC) transformation processes (e.g., decomposition, stabilization, and mineralization). Representing microbial processes in Earth system models (ESMs) has the potential to improve projections of SOC dynamics. We have recently examined (1) relationships of microbial functions with environmental factors and (2) microbial regulations of decomposition and other key soil processes. According to three lines of evidence, we have developed a data-driven enzyme (DENZY) model to simulate soil microbial decomposition and stabilization. First, our meta-analysis of 64 published field studies showed that field experimental warming significantly increased soil microbial communities abundance, which is negatively correlated with the mean annual temperature. The negative correlation indicates that warming had stronger effects in colder than warmer regions. Second, we found that the SOC decomposition, especially the transfer between labile SOC and protected SOC, is nonlinearly regulated by soil texture parameters, such as sand and silt contents. Third, we conducted a global analysis of the C-degrading enzyme activities, soil respiration, and SOC content under N addition. Our results show that N addition has contrasting effects on cellulase (hydrolytic C-degrading enzymes) and ligninase (oxidative C-degrading enzymes) activities. N-enhanced cellulase activity contributes to the minor stimulation of soil respiration whereas N-induced repression on ligninase activity drives soil C sequestration. Our analysis links the microbial extracellular C-degrading enzymes to the SOC dynamics at ecosystem scales across scores of experimental sites around the world. It offers direct evidence that N-induced changes in microbial community and physiology play fundamental roles in controlling the soil C cycle. Built upon those three lines of empirical evidence, the DENZY model includes two enzyme pools and explicitly

  20. Enzymic synthesis of L-lysine from DL-alpha-amino-epsilon-caprolactam by new microbial strains.

    Science.gov (United States)

    Plhácková, K; Vojtísek, V; Plachý, J

    1982-01-01

    The production of L-lysine from DL-alpha-amino-epsilon-caprolactam (DL-ACL) by new strains producing L-alpha-amino-epsilon-caprolactamase and aminocaprolactam racemase is described. Optimal conditions for hydrolysis of L-ACL by Cryptococcus sp. and for racemization of ACL by cells of a strain isolated in nature and identified as Pseudomonas sp. were determined. Synthesis of L-alpha-amino-epsilon-caprolactamase is induced by DL-ACL or L-lysine with the same effectivity. A positive effect of phosphates (potassium salts) on reduction of the induction lag was detected, the synthesis of this enzyme was found to be repressed by glucose and some possibilities of the reversion of this repressive effect were demonstrated. Under conditions optimal for the production of both enzymes a quantitative theoretical conversion of 10% aqueous DL-ACL to L-lysine by a mixture of native cells in a mass ratio of 1 : 2 (producer of ACL-hydrolase to producer of ACL-racemase) occurred in 8 h at 40 degrees C and pH 8.0.

  1. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community.

    Science.gov (United States)

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R

    2016-08-10

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.

  2. Structure/function relationships in cellulolytic enzymes

    Institute of Scientific and Technical Information of China (English)

    Marc Claeyssens

    2004-01-01

    @@ Cellulose and hemicellulose (mostly xylan), together with lignin, are the major polymeric constituents of plant cell walls and from the largest reservoir of fixed carbon in nature. The enzymatic hydrolysis of polymeric substances by extracellular enzymes, such as cellulases, hemicellulases and laccases, is preferred to chemical depolymerisation to avoid the production of toxic by-products and waste that are expensive to treat. The monosaccharides released through enzymatic hydrolysis can subsequently be microbially converted to commercial commodities, such as bio-ethanol (fuel extender) or microbial protein as feed supplements. The individual depolymerisering enzymes used, such as cellulases,xylanases and laccases, also have industrial application in (i) biobleaching in the paper and pulp industry, (ii) improvement of animal feed (poultry and ruminants) digestibility in feed industries, and (iii) dough rheology and bread volume in the baking process, and beer viscosity and filtration velocity during brewing. The cloning of the genes, coding for several xylan degrading enzymes, and their expression in Baker' s yeast (Saccharomyces cerevisiae) and filamentous fungi (Aspergillus species)opened the possibility to study the pure enzymes, without contaminating activity.Trichoderma reesei produces several of these enzymes and detailed information on their specificity,synergies and structure/activity relationships is known. An overview will be presented.

  3. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H

    Science.gov (United States)

    El-Naggar, Noura El-Ahmady; El-Ewasy, Sara M.

    2017-01-01

    In this present study, a newly isolated strain, Streptomyces sp. NEAE-H, capable of producing high amount of black extracellular melanin pigment on peptone-yeast extract iron agar and identified as Streptomyces glaucescens NEAE-H. Plackett–Burman statistical design was conducted for initial screening of 17 independent (assigned) variables for their significances on melanin pigment production by Streptomyces glaucescens NEAE-H. The most significant factors affecting melanin production are incubation period, protease-peptone and ferric ammonium citrate. The levels of these significant variables and their interaction effects were optimized by using face-centered central composite design. The maximum melanin production (31.650 μg/0.1 ml) and tyrosinase activity (6089.10 U/ml) were achieved in the central point runs under the conditions of incubation period (6 days), protease-peptone (5 g/L) and ferric ammonium citrate (0.5 g/L). Melanin pigment was recovered by acid-treatment. Higher absorption of the purified melanin pigment was observed in the UV region at 250 nm. It appeared to have defined small spheres by scanning electron microscopy imaging. The maximum melanin yield was 350 mg dry wt/L of production medium. In vitro anticancer activity of melanin pigment was assayed against skin cancer cell line using MTT assay. The IC50 value was 16.34 ± 1.31 μg/ml for melanin and 8.8 ± 0.5 μg/ml for standard 5-fluorouracil. PMID:28195138

  4. Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: a multiyear study.

    Science.gov (United States)

    Smith, A Peyton; Marín-Spiotta, Erika; Balser, Teri

    2015-09-01

    Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. Understanding how microbial communities respond to changes in vegetation is critical for improving predictions of how land-cover change affects belowground carbon storage and nutrient availability. We measured intra- and interannual variability in soil and forest litter microbial community composition and activity via phospholipid fatty acid analysis (PLFA) and extracellular enzyme activity across a well-replicated, long-term chronosequence of secondary forests growing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Microbial community PLFA structure differed between young secondary forests and older secondary and primary forests, following successional shifts in tree species composition. These successional patterns held across seasons, but the microbial groups driving these patterns differed over time. Microbial community composition from the forest litter differed greatly from those in the soil, but did not show the same successional trends. Extracellular enzyme activity did not differ with forest succession, but varied by season with greater rates of potential activity in the dry seasons. We found few robust significant relationships among microbial community parameters and soil pH, moisture, carbon, and nitrogen concentrations. Observed inter- and intrannual variability in microbial community structure and activity reveal the importance of a multiple, temporal sampling strategy when investigating microbial community dynamics with land-use change. Successional control over microbial composition with forest recovery suggests strong links between above and belowground communities.

  5. 乳源嗜冷菌产胞外耐热酶检测方法的对比分析%Comparing Detection Methods for Extracellular Thermostable Enzymes Secreted by Psychrophile in Milk

    Institute of Scientific and Technical Information of China (English)

    王伟军; 李延华

    2015-01-01

    Extracellular protease and lipase could be secreted by psychrotrophic bacteria in dairy products. These enzymes directly influenced the quality of dairy products. The study described the species of psychrophile isolated from milk, pointing out that pseudomonas fluorescens were the main strains which could metabolize protease and lipase. Thermal stability of these enzymes was elaborated and the methods of detection them were compared. It was expected to provide theoretical thoughts to predict the amount of contaminated psychrophile in dairy and dairy products, online detect and control the activity of thermostable enzyme and improve the quality of dairy products.%乳及乳制品中污染的嗜冷菌可分泌耐热的胞外蛋白酶和脂肪酶,直接影响产品品质。介绍从乳体系中分离鉴定的嗜冷菌种类,指出荧光假单胞菌是产胞外蛋白酶和脂肪酶的主要嗜冷菌菌株;分别阐述乳中污染的嗜冷菌所分泌蛋白酶和脂肪酶的热稳定性,并比较乳体系中耐热酶的测定方法,期望为有效预测乳中嗜冷菌污染程度、在线检测和控制耐热酶活性、提升乳制品的质量提供理论参考。

  6. Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands.

    Directory of Open Access Journals (Sweden)

    Xavier Le Roux

    Full Text Available Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number - namely richness, presence of particular plant functional groups, or particular combinations of these and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities including 1 to 16 plant species with a factorial separation of the effects of richness and functional group composition to analyze how plant diversity components influence soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively, the abundance of nitrifiers (bacterial and archaeal amoA gene number and denitrifiers (nirK, nirS and nosZ gene number, and key soil environmental conditions. Plant diversity effects were largely due to differences in functional group composition between communities of identical richness (number of sown species, though richness also had an effect per se. NEA was positively related to the percentage of legumes in terms of sown species number, the additional effect of richness at any given legume percentage being negative. DEA was higher in plots with legumes, decreased with increasing percentage of grasses, and increased with richness. No correlation was observed between DEA and denitrifier abundance. NEA increased with the abundance of ammonia oxidizing bacteria. The effect of richness on NEA was entirely due to the build-up of nitrifying organisms, while legume effect was partly linked to modified ammonium availability and nitrifier abundance. Richness effect on DEA was entirely due to changes in soil moisture, while the effects of legumes and grasses were partly due to modified nitrate availability, which influenced the specific activity of denitrifiers. These results suggest that plant diversity-induced changes in microbial specific activity are important for facultative activities such as denitrification

  7. Microbial control over carbon cycling in soil

    Directory of Open Access Journals (Sweden)

    Joshua eSchimel

    2012-09-01

    Full Text Available A major thrust of terrestrial microbial ecology is focused on understanding when and how the composition of the microbial community affects the functioning of biogeochemical processes at the ecosystem scale (meters-to-kilometers and days-to-years. While research has demonstrated these linkages for physiologically and phylogenetically narrow processes such as trace gas emissions and nitrification, there is less conclusive evidence that microbial community composition influences the broad processes of decomposition and organic matter turnover in soil. In this paper, we consider how soil microbial community structure influences C-cycling. We consider the phylogenetic level at which microbes form meaningful guilds, based on overall life history strategies, and suggest that these are associated with deep evolutionary divergences, while much of the species-level diversity probably reflects functional redundancy. We then consider under what conditions it is possible for differences among microbes to affect process dynamics, and argue that while microbial community structure may be important in the rate of OM breakdown in the rhizosphere and in detritus, it is likely not important in the mineral soil. In mineral soil, physical access to occluded or sorbed substrates is the rate-limiting process. Microbial community influences on OM turnover in mineral soils are based on how organisms allocate the C they take up—not only do the fates of the molecules differ, but they can affect the soil system differently as well. For example, extracellular enzymes and extracellular polysaccharides can be key controls on soil structure and function. How microbes allocate C may also be particularly important for understanding the long-term fate of C in soil—is it sequestered or not?

  8. Extracellular Electron Transfer from Aerobic Bacteria to Au-Loaded TiO2 Semiconductor without Light: A New Bacteria-Killing Mechanism Other than Localized Surface Plasmon Resonance or Microbial Fuel Cells.

    Science.gov (United States)

    Wang, Guomin; Feng, Hongqing; Gao, Ang; Hao, Qi; Jin, Weihong; Peng, Xiang; Li, Wan; Wu, Guosong; Chu, Paul K

    2016-09-21

    Titania loaded with noble metal nanoparticles exhibits enhanced photocatalytic killing of bacteria under light illumination due to the localized surface plasmon resonance (LSPR) property. It has been shown recently that loading with Au or Ag can also endow TiO2 with the antibacterial ability in the absence of light. In this work, the antibacterial mechanism of Au-loaded TiO2 nanotubes (Au@TiO2-NT) in the dark environment is studied, and a novel type of extracellular electron transfer (EET) between the bacteria and the surface of the materials is observed to cause bacteria death. Although the EET-induced bacteria current is similar to the LSPR-related photocurrent, the former takes place without light, and no reactive oxygen species (ROS) are produced during the process. The EET is also different from that commonly attributed to microbial fuel cells (MFC) because it is dominated mainly by the materials' surface, but not the bacteria, and the environment is aerobic. EET on the Au@TiO2-NT surface kills Staphylococcus aureus, but if it is combined with special MFC bacteria, the efficiency of MFC may be improved significantly.

  9. Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus--production of extracellular enzymes and characterization of the major cellulases.

    Science.gov (United States)

    Valásková, Vendula; Baldrian, Petr

    2006-12-01

    Piptoporus betulinus is a common wood-rotting fungus parasitic for birch (Betula species). It is able to cause fast mass loss of birch wood or other lignocellulose substrates. When grown on wheat straw, P. betulinus caused 65% loss of dry mass within 98 days, and it produced endo-1,4-beta-glucanase (EG), endo-1,4-beta-xylanase, endo-1,4-beta-mannanase, 1,4-beta-glucosidase (BG), 1,4-beta-xylosidase, 1,4-beta-mannosidase and cellobiohydrolase activities. The fungus was not able to efficiently degrade crystalline cellulose. The major glycosyl hydrolases, endoglucanase EG1 and beta-glucosidase BG1, were purified. EG1 was a protein of 62 kDa with a pI of 2.6-2.8. It cleaved cellulose internally, produced cellobiose and glucose from cellulose and cellooligosaccharides, and also showed beta-xylosidase and endoxylanase activities. The K(m) for carboxymethylcellulose was 3.5 g l(-1), with the highest activity at pH 3.5 and 70 degrees C. BG1 was a protein of 36 kDa with a pI around 2.6. It was able to produce glucose from cellobiose and cellooligosaccharides, but also produced galactose, mannose and xylose from the respective oligosaccharides and showed some cellobiohydrolase activity. The K(m) for p-nitrophenyl-1,4-beta-glucoside was 1.8 mM, with the highest activity at pH 4 and 60 degrees C, and the enzyme was competitively inhibited by glucose (K(i)=5.8 mM). The fungus produced mainly beta-glucosidase and beta-mannosidase activity in its fruit bodies, while higher activities of endoglucanase, endoxylanase and beta-xylosidase were found in fungus-colonized wood.

  10. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    Science.gov (United States)

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy.

  11. Studies on Activities of Extracellular Enzymes in Liquid Culture of Trametes pubescens%绒毛栓孔菌液体培养过程中胞外酶活性的研究

    Institute of Scientific and Technical Information of China (English)

    司静; 崔宝凯

    2012-01-01

    In this study,we employed the fungal strain Trametes pubescens Cui7571 as experimental material to analyze the activities of extracellular enzymes in liquid culture,as well as to measure the mycelial biomass and pH values in liquid culture.The results demonstrated that the activities of extracellular enzymes were correlated with the mycelium growth.The increase of mycelial biomass presented S-like curve,which showed logarithmic increase of mycelial growth at the 6th to 8th days after inoculation then reached its peak on the 12th day.The growth peaks for laccase,manganese peroxidase,amylase,carboxymethylcellulose enzyme,pectinase and protease were all observed during the incubation stage.The variations of enzyme activities indicated that the strain (T.pubescens) decomposed lignin firstly,and then used starch and cellulose as carbon sources,protein as nitrogen source.In order to achieve the maximum mycelial biomass and shorten the culture time,it is necessary to provide the sufficient and balancing carbon and nitrogen sources in liquid fermentation.This study indicated that the secreted peaks of different enzymes might be used as criteria of judging the status of mycelial nutrition utilization and fermentation periods to harvest the maximum mycelial biomass for further large scale production.%本研究以绒毛栓孔菌为材料,采用液体培养的方法分析其在发酵过程中胞外酶的活性变化,并对其菌丝体生物量和发酵液pH值进行了测定。结果表明:胞外酶活性与菌丝体生长状况密切相关。菌丝体生物量增长呈"S"型,6~8d增长最快,第12天达到最大值,在此过程中漆酶、锰过氧化物酶、淀粉酶、羧甲基纤维素酶、果胶酶和蛋白酶活性均出现高峰。酶活性的变化表明,在液体培养过程中绒毛栓孔菌首先分解木质素,其次利用淀粉和纤维素作为碳源,蛋白质作为氮源。若要获得最大菌丝体生物量,缩短培养时间,就必须在培养

  12. Studies on Activities of Extracellular Enzymes in Liquid Culture of Trametes pubescens%绒毛栓孔菌液体培养过程中胞外酶活性的研究

    Institute of Scientific and Technical Information of China (English)

    司静; 崔宝凯

    2012-01-01

    本研究以绒毛栓孔菌为材料,采用液体培养的方法分析其在发酵过程中胞外酶的活性变化,并对其菌丝体生物量和发酵液pH值进行了测定.结果表明:胞外酶活性与菌丝体生长状况密切相关.菌丝体生物量增长呈"S"型,6~8 d增长最快,第12天达到最大值,在此过程中漆酶、锰过氧化物酶、淀粉酶、羧甲基纤维素酶、果胶酶和蛋白酶活性均出现高峰.酶活性的变化表明,在液体培养过程中绒毛栓孔菌首先分解木质素,其次利用淀粉和纤维素作为碳源,蛋白质作为氮源.若要获得最大菌丝体生物量,缩短培养时间,就必须在培养过程中保证碳氮源的均衡供给.本试验说明不同的酶其分泌高峰期可以作为判断菌丝体营养利用情况和培养周期的依据,以此获取最大菌丝体生物量,为工业生产利用奠定基础.%In this study, we employed the fungal strain Trametes pubescens Cui7571 as experimental material to analyze the activities of extracellular enzymes in liquid culture, as well as to measure the mycelial biomass and pH values in liquid culture. The results demonstrated that the activities of extracellular enzymes were correlated with the mycelium growth. The increase of mycelial biomass presented S-like curve, which showed logarithmic increase of mycelial growth at the 6th to 8th days after inoculation then reached its peak on the 12th day. The growth peaks for laccase, manganese peroxidase, amylase, carboxymethylcellulose enzyme, pectinase and protease were all observed during the incubation stage. The variations of enzyme activities indicated that the strain (T. Pubescens) decomposed lignin firstly, and then used starch and cellulose as carbon sources, protein as nitrogen source. In order to achieve the maximum mycelial biomass and shorten the culture time, it is necessary to provide the sufficient and balancing carbon and nitrogen sources in liquid fermentation. This study indicated that

  13. Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory

    Directory of Open Access Journals (Sweden)

    Charlotte Jean Alster

    2016-11-01

    Full Text Available The activity of soil microbial extracellular enzymes is strongly controlled by temperature, yet the degree to which temperature sensitivity varies by microbe and enzyme type is unclear. Such information would allow soil microbial enzymes to be incorporated in a traits-based framework to improve prediction of ecosystem response to global change. If temperature sensitivity varies for specific soil enzymes, then determining the underlying causes of variation in temperature sensitivity of these enzymes will provide fundamental insights for predicting nutrient dynamics belowground. In this study, we characterized how both microbial taxonomic variation as well as substrate type affects temperature sensitivity. We measured β-glucosidase, leucine aminopeptidase, and phosphatase activities at six temperatures: 4, 11, 25, 35, 45, and 60°C, for seven different soil microbial isolates. To calculate temperature sensitivity, we employed two models, Arrhenius, which predicts an exponential increase in reaction rate with temperature, and Macromolecular Rate Theory (MMRT, which predicts rate to peak and then decline as temperature increases. We found MMRT provided a more accurate fit and allowed for more nuanced interpretation of temperature sensitivity in all of the enzyme × isolate combinations tested. Our results revealed that both the enzyme type and soil isolate type explain variation in parameters associated with temperature sensitivity. Because we found temperature sensitivity to be an inherent and variable property of an enzyme, we argue that it can be incorporated as a microbial functional trait, but only when using the MMRT definition of temperature sensitivity. We show that the Arrhenius metrics of temperature sensitivity are overly sensitive to test conditions, with activation energy changing depending on the temperature range it was calculated within. Thus, we propose the use of the MMRT definition of temperature sensitivity for accurate

  14. Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory.

    Science.gov (United States)

    Alster, Charlotte J; Baas, Peter; Wallenstein, Matthew D; Johnson, Nels G; von Fischer, Joseph C

    2016-01-01

    The activity of soil microbial extracellular enzymes is strongly controlled by temperature, yet the degree to which temperature sensitivity varies by microbe and enzyme type is unclear. Such information would allow soil microbial enzymes to be incorporated in a traits-based framework to improve prediction of ecosystem response to global change. If temperature sensitivity varies for specific soil enzymes, then determining the underlying causes of variation in temperature sensitivity of these enzymes will provide fundamental insights for predicting nutrient dynamics belowground. In this study, we characterized how both microbial taxonomic variation as well as substrate type affects temperature sensitivity. We measured β-glucosidase, leucine aminopeptidase, and phosphatase activities at six temperatures: 4, 11, 25, 35, 45, and 60°C, for seven different soil microbial isolates. To calculate temperature sensitivity, we employed two models, Arrhenius, which predicts an exponential increase in reaction rate with temperature, and Macromolecular Rate Theory (MMRT), which predicts rate to peak and then decline as temperature increases. We found MMRT provided a more accurate fit and allowed for more nuanced interpretation of temperature sensitivity in all of the enzyme × isolate combinations tested. Our results revealed that both the enzyme type and soil isolate type explain variation in parameters associated with temperature sensitivity. Because we found temperature sensitivity to be an inherent and variable property of an enzyme, we argue that it can be incorporated as a microbial functional trait, but only when using the MMRT definition of temperature sensitivity. We show that the Arrhenius metrics of temperature sensitivity are overly sensitive to test conditions, with activation energy changing depending on the temperature range it was calculated within. Thus, we propose the use of the MMRT definition of temperature sensitivity for accurate interpretation of

  15. and extracellular laccase isoenzymes from Pleurotus ostreatus ...

    African Journals Online (AJOL)

    ZMG

    Colonia Vicentina, Delegación Iztapalapa, 09340 México D.F., México. ... In this study, extracellular laccase enzymes produced by Pleurotus ostreatus was identified in .... the intracellular forms), through the modified zymography method of.

  16. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications.

    Science.gov (United States)

    Kumar, Ajit; Trefault, Nicole; Olaniran, Ademola Olufolahan

    2016-01-01

    A considerable progress has been made to understand the mechanisms of biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D biodegradation pathway has been elucidated in many microorganisms including Cupriavidus necator JMP134 (previously known as Wautersia eutropha, Ralstonia eutropha and Alcaligenes eutrophus) and Pseudomonas strains. It generally involves the side chain removal of 2,4-D by α-ketoglutarate-dependent 2,4-D dioxygenase (tfdA) to form 2,4-dichlorophenol (2,4-DCP); hydroxylation of 2,4-DCP by 2,4-DCP hydroxylase (tfdB) to form dichlorocatechol; ortho or meta cleavage of dichlorocatechol by chlorocatechol 1,2-dioxygenase (tfdC) to form 2,4-dichloro-cis,cis-muconate; conversion of 2,4-dichloro-cis,cis-muconate to 2-chlorodienelactone by chloromuconate cycloisomerase (tfdD); conversion of 2-chlorodienelactone to 2-chloromaleylacetate by chlorodienelactone hydrolase (tfdE) and, finally, conversion of 2-chloromaleylacetate to 3-oxoadepate via maleylacetate by chloromaleylacetate reductase and maleylacetate reductase (tfdF), respectively, which is funnelled to the tricarboxylic acid cycle. The latest review on microbial breakdown of 2,4-D, other halogenated aromatic pesticides, and related compounds was compiled by Haggblom, however, a considerable progress has been made in this area of research since then. Thus, this review focuses on the recent advancement on 2,4-D biodegradation, the enzymes, and genes involved and their biotechlogical implications.

  17. 柳枝稷降解复合系的微生物多样性及酶学特性%Microbial diversity of a microbial community colonizing switchgrass and characteristics of producing enzymes

    Institute of Scientific and Technical Information of China (English)

    杨洪岩; 李玉花; 贾洪柏; 吴昊; 王小芬; 崔宗均

    2012-01-01

    To fasten energy conversion of lignocellulosic biomass,we used the switchgrass as the substrate to screen the microbial community which could produce hydrolysis enzymes.By the continuous enrichment,a community was obtained.The characteristics to produce enzymes and microbial diversity of the community were mainly investigated.During the fourteen-day liquid cultivation the dry weight loss drastically occurred at the first four days and amounted to 70% of the total loss.14 days after liquid cultivation,the degradation rate of the cellulose and hemicellulose amounted to 50% and 60%,respectively,and higher CMCase and xylanase activity were both detected in the liquid cultivation system.The highest values for the CMCase activity and xylanase activity during the cultivation reached 0.21 and 3.75 IU,respectively.The investigations on the enzyme characteristics indicated that the optimal pH for CMCase was 5.0 and that for xylanase was 6.0.The optimal reaction temperature of CMCase and xylanase was 60 ℃.The results from the cloning libraries showed that the relative species of most bacteria was Achromobacter xylosoxidans and the relative species of most fungi was Fusarium sporotrichioides.%为加速木质纤维素类生物质资源的能源转化,本研究以能源作物柳枝稷为基质材料,筛选可以高效产酶的微生物复合系。通过长期的限制性筛选,获得一组有效降解柳枝稷的复合系,进而对复合系的酶学特性及微生物多样性进行了研究。在连续2周的液体培养过程中,柳枝稷的干物质损失主要发生在前4d,且干物质损失率占总损失率的70%。在14d培养过程中,柳枝稷的纤维素及半纤维素的降解率分别达到了50%和60%。整个培养过程中的羧甲基纤维素酶活及木聚糖酶活结果显示,2种酶活的最高值分别达0.21和3.75IU。2种酶的优势作用pH分别为5.0和6.0,优势作用温度为60℃。克隆文库结果显示复合系由真菌和细菌共同组成,86

  18. Extracellular proteins in pea root tip and border cell exudates.

    Science.gov (United States)

    Wen, Fushi; VanEtten, Hans D; Tsaprailis, George; Hawes, Martha C

    2007-02-01

    Newly generated plant tissue is inherently sensitive to infection. Yet, when pea (Pisum sativum) roots are inoculated with the pea pathogen, Nectria haematococca, most newly generated root tips remain uninfected even though most roots develop lesions just behind the tip in the region of elongation. The resistance mechanism is unknown but is correlated spatially with the presence of border cells on the cap periphery. Previously, an array of >100 extracellular proteins was found to be released while border cell separation proceeds. Here we report that protein secretion from pea root caps is induced in correlation with border cell separation. When this root cap secretome was proteolytically degraded during inoculation of pea roots with N. haematococca, the percentage of infected root tips increased from 4% +/- 3% to 100%. In control experiments, protease treatment of conidia or roots had no effect on growth and development of the fungus or the plant. A complex of >100 extracellular proteins was confirmed, by multidimensional protein identification technology, to comprise the root cap secretome. In addition to defense-related and signaling enzymes known to be present in the plant apoplast were ribosomal proteins, 14-3-3 proteins, and others typically associated with intracellular localization but recently shown to be extracellular components of microbial biofilms. We conclude that the root cap, long known to release a high molecular weight polysaccharide mucilage and thousands of living cells into the incipient rhizosphere, also secretes a complex mixture of proteins that appear to function in protection of the root tip from infection.

  19. Technological application of an extracellular cell lytic enzyme in xanthan gum clarification Aplicação tecnológica de uma enzima celulolítica para clarificação de goma xantana

    Directory of Open Access Journals (Sweden)

    Suresh Shastry

    2005-03-01

    Full Text Available An extracellular cell lytic enzyme from Pseudomonas sp. was active on heat killed cells of Xanthomonas campestris. The lytic activity caused enzymatic digestion of X.campestris xanthan gum. Digestion was effective for highly viscous native xanthan 2.0% (w/v and 2.5% (w/v commercial Sigma xanthan. Scanning electron microscopy and SDS-PAGE observations confirmed the cell lytic action on X.campestris cells.Uma enzima extracelular celulolítica produzida por Pseudomonas sp. foi ativa sobre células de Xanthomonas campestris mortas pelo calor. A atividade lítica causou a digestão enzimática de goma xantana de X. campestris. A digestão foi eficiente tanto para xantana nativa altamante viscosa (2,0% w/v como para xantana comercial Sigma (2,5% w/v. Observações por microscopia eletrônica de varredura demonstraram a ação celulolítica sobre células de X. campestris.

  20. Combining Microbial Enzyme Kinetics Models with Light Use Efficiency Models to Predict CO2 and CH4 Ecosystem Exchange from Flooded and Drained Peatland Systems

    Science.gov (United States)

    Oikawa, P. Y.; Jenerette, D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Baldocchi, D. D.

    2014-12-01

    Under California's Cap-and-Trade program, companies are looking to invest in land-use practices that will reduce greenhouse gas (GHG) emissions. The Sacramento-San Joaquin River Delta is a drained cultivated peatland system and a large source of CO2. To slow soil subsidence and reduce CO2 emissions, there is growing interest in converting drained peatlands to wetlands. However, wetlands are large sources of CH4 that could offset CO2-based GHG reductions. The goal of our research is to provide accurate measurements and model predictions of the changes in GHG budgets that occur when drained peatlands are restored to wetland conditions. We have installed a network of eddy covariance towers across multiple land use types in the Delta and have been measuring CO2 and CH4 ecosystem exchange for multiple years. In order to upscale these measurements through space and time we are using these data to parameterize and validate a process-based biogeochemical model. To predict gross primary productivity (GPP), we are using a simple light use efficiency (LUE) model which requires estimates of light, leaf area index and air temperature and can explain 90% of the observed variation in GPP in a mature wetland. To predict ecosystem respiration we have adapted the Dual Arrhenius Michaelis-Menten (DAMM) model. The LUE-DAMM model allows accurate simulation of half-hourly net ecosystem exchange (NEE) in a mature wetland (r2=0.85). We are working to expand the model to pasture, rice and alfalfa systems in the Delta. To predict methanogenesis, we again apply a modified DAMM model, using simple enzyme kinetics. However CH4 exchange is complex and we have thus expanded the model to predict not only microbial CH4 production, but also CH4 oxidation, CH4 storage and the physical processes regulating the release of CH4 to the atmosphere. The CH4-DAMM model allows accurate simulation of daily CH4 ecosystem exchange in a mature wetland (r2=0.55) and robust estimates of annual CH4 budgets. The LUE

  1. Determination of free amino acids in whole-fat Turkish White Brined Cheese produced by animal and microbial milk-clotting enzymes with and without the addition of starter culture

    OpenAIRE

    Ufuk Eren-Vapur; Tulay Ozcan

    2012-01-01

    Coagulating enzymes are essential ingredients for the production of different cheese varieties. The objective of this research was to summarize the effect of rennet type (calf rennet and microbial rennet from Rhizomucor miehei) and starter culture on the sensory properties and free amino acids (FAA) release during the ripening of Turkish White brined cheese. The concentrations of FAA and sensory properties were similar for cheeses made with both types of coagulant and starter culture. Aminoac...

  2. Hydrolytic enzyme activity enhanced by Barium supplementation

    Directory of Open Access Journals (Sweden)

    Camilo Muñoz

    2016-10-01

    Full Text Available Hydrolysis of polymers is a first and often limiting step during the degradation of plant residues. Plant biomass is generally a major component of waste residues and a major renewable resource to obtain a variety of secondary products including biofuels. Improving the performance of enzymatic hydrolysis of plant material with minimum costs and limiting the use of additional microbial biomass or hydrolytic enzymes directly influences competitiveness of these green biotechnological processes. In this study, we cloned and expressed a cellulase and two esterases recovered from environmental thermophilic soil bacterial communities and characterize their optimum activity conditions including the effect of several metal ions. Results showed that supplementing these hydrolytic reactions with Barium increases the activity of these extracellular hydrolytic enzymes. This observation represents a simple but major improvement to enhance the efficiency and competitiveness of this process within an increasingly important biotechnological sector.

  3. Analysis of neofructooligosaccharides production mediated by the extracellular β-fructofuranosidase from Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Linde, Dolores; Rodríguez-Colinas, Barbara; Estévez, Marta; Poveda, Ana; Plou, Francisco J; Fernández Lobato, María

    2012-04-01

    The extracellular β-fructofuranosidase Xd-INV from the yeast Xanthophyllomyces dendrorhous mainly synthesizes the neo-fructooligosaccharides (neo-FOS) neokestose and neonystose. This enzyme is a glycoprotein with a content of 59-67% N-linked carbohydrates and an estimated molecular mass of 160-200 kDa. The extent level of glycosylation affects the thermal behaviour of the enzyme but not its hydrolase and transferase activities, which are optimal at 60-70 °C. The neo-FOS yield of this enzyme was increased from 40 to 168 g/L when the sucrose concentration increased from 420 to 600 g/L and when the reaction was carried out at 60 °C. The neo-FOS levels obtained (168 g/L) in this work are the largest reported for any microbial β-fructofuranosidase.

  4. Effects of Pulp and Na-Bentonite Amendments on the Mobility of Trace Elements, Soil Enzymes Activity and Microbial Parameters under Ex Situ Aided Phytostabilization

    Science.gov (United States)

    Wasilkowski, Daniel; Mrozik, Agnieszka

    2017-01-01

    The objective of this study was to explore the potential use of pulp (by-product) from coffee processing and Na-bentonite (commercial product) for minimizing the environmental risk of Zn, Pb and Cd in soil collected from a former mine and zinc-lead smelter. The effects of soil amendments on the physicochemical properties of soil, the structural and functional diversity of the soil microbiome as well as soil enzymes were investigated. Moreover, biomass of Festuca arundinacea Schreb. (cultivar Asterix) and the uptake of trace elements in plant tissues were studied. The outdoor pot set contained the following soils: control soil (initial), untreated soil (without additives) with grass cultivation and soils treated (with additives) with and without plant development. All of the selected parameters were measured at the beginning of the experiment (t0), after 2 months of chemical stabilization (t2) and at the end of the aided phytostabilization process (t14). The obtained results indicated that both amendments efficiently immobilized the bioavailable fractions of Zn (87–91%) and Cd (70–83%) at t14; however, they were characterized by a lower ability to bind Pb (33–50%). Pulp and Na-bentonite drastically increased the activity of dehydrogenase (70- and 12-fold, respectively) at t14, while the activities of urease, acid and alkaline phosphatases differed significantly depending on the type of material that was added into the soil. Generally, the activities of these enzymes increased; however, the increase was greater for pulp (3.5-6-fold) than for the Na-bentonite treatment (1.3–2.2-fold) as compared to the control. Soil additives significantly influenced the composition and dynamics of the soil microbial biomass over the experiment. At the end, the contribution of microbial groups could be ordered as follows: gram negative bacteria, fungi, gram positive bacteria, actinomycetes regardless of the type of soil enrichment. Conversely, the shift in the functional

  5. Effects of Sodium Tripolyphosphate, Microbial Transglutaminase and Enzyme-hydrolyzed Soy Protein Fraction on the Quality of Cooked Pork Batter by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Xingjian Huang

    2014-11-01

    Full Text Available We investigated the compound effects of sodium tripolyphosphate (STPP, microbial transglutaminase (MTGase and enzyme-hydrolyzed soy protein fraction (denoted as TSF, molecular weight cut-off = 0.5 kDa to 10 kDa on the texture properties (hardness, springiness, cohesiveness and chewiness, cooking yield and sensory attributes (firmness, elasticity and juiciness of cooked pork batter. The hardness and springiness of the cooked pork batter were both significantly affected by the amount of MTGase and TSF added. In the presence of TSF, the textural characteristics of cooked pork batter were not significantly affected by STPP (p>0.05. The amount of TSF elicited negative linear (p<0.001 and positive quadratic effects (p<0.01 on the cohesiveness and chewiness of cooked pork batter. The interaction between MTGase and TSF positively affected (p<0.01 the cohesiveness of cooked pork batter. Furthermore, the amount of MTGase showed positive linear (p<0.01 effects on the chewiness of cooked pork batter. However, the interaction between STPP and TSF significantly weakened (p<0.05 the chewiness of cooked pork batter. Both TSF and MTGase positively affected (p<0.01 and p<0.05, respectively cooking yield. Both hardness versus firmness and springiness versus elasticity presented distinct correlations (p<0.01 and p<0.001, respectively. The cohesiveness and chewiness of cooked pork batter significantly affected cooking yield and sensory attributes (firmness, elasticity and juiciness. Overall acceptability poorly correlated with instrumental attributes and sensory partial attribute. Sensory analysis results indicated that the cooked pork batter with 0.4% MTGase, 4% TSF and 0.4% STPP was the most common sample, which presented the best synthetic mouth feeling.

  6. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Angenent, Largus T.; Zhang, Tian

    2017-01-01

    Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron-transfer mechan......Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron...

  7. Extracellular DNA metabolism in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Scott eChimileski

    2014-02-01

    Full Text Available Extracellular DNA is found in all environments and is a dynamic component of the micro-bial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA con-centrations measured in nature–a potential rich source of carbon, nitrogen and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA sources. Additionally, fluorescence microscopy experiments showed that labeled DNA colocalized with Haloferax volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in extracellular DNA processing at the cell surface, and deletion of Hvo_1477 created an H. volcanii strain deficient in its ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.

  8. Functional soil microbial diversity across Europe estimated by EEA, MicroResp and BIOLOG

    DEFF Research Database (Denmark)

    Winding, Anne; Rutgers, Michiel; Creamer, Rachel

    Soil microorganisms are abundant and essential for the bio-geochemical processes of soil, soil quality and soil ecosystem services. All this is dependent on the actual functions the microbial communities are performing in the soil. Measuring soil respiration has for many years been the basis...... of estimating soil microbial activity. However, today several techniques are in use for determining microbial functional diversity and assessing soil biodiversity: Methods based on CO2 development by the microbes such as substrate induced respiration (SIR) on specific substrates have lead to the development...... of MicroResp and Community Level Physiological Profile (CLPP), while soil enzymatic activity are being assayed by Extracellular Enzyme Activity (EEA) based on MUF-substrates. Here we compared and contrasted the three techniques of assessing soil microbial functional diversity in a European transect...

  9. A SHORT PERIOD STUDY ON VELLORE ENRICHED SOILS - A SOURCE FOR POTENTIAL MICROBIAL ENZYMES WHICH DEGRADES THE WASTE GENERATED FROM VARIOUS INDUSTRIES AND BYPRODUCTS CAN BE USED IN PHARMACEUTICALS

    Directory of Open Access Journals (Sweden)

    Suneetha Vuppu*, Bishwambhar Mishra and Ching Lee

    2012-11-01

    Full Text Available Waste is anything, which is not used by any owner, producer and processor, even though it has always been a part of the earth’s ecosystem. Enriched Soil is a good source for the isolation of power full and potential microorganisms which produces specific enzymes which target the waste and in turn produces pharmacologically viable products; Microbes hold this prominent position because of their diversity and proven ability to produce new enzymes which is capable of degrading the waste from various industries. In this study we have concentrated on Fruit, coconut, leather, poultry, and paper industrial waste. Vellore is a Industrial developing medium city surrounded by three states Andhrapradesh ,Tamilnadu and Karnataka and the soils are highly enriched with industrial waste the studies in this direction is rudimentary and hence this study proves the pivotal role on enriched soils in screening of potential microbial enzymes which are used in various pharmacy applications.

  10. 原料乳嗜冷菌分泌热稳定性酶类检测方法的研究进展%Advancement on Rapid Detection Method for Psychrotrophic Heat Stable Extracellular Enzymes from Raw Milk

    Institute of Scientific and Technical Information of China (English)

    黄丽; 赵玉娟; 李盛钰

    2015-01-01

    嗜冷菌是导致原料乳以及乳制品腐败的主要微生物类群。巴氏杀菌或超高温瞬时(UHT)灭菌后,几乎除去了全部的嗜冷菌,但细菌分泌的热稳定的蛋白酶和脂肪酶却并未完全钝化,进一步影响原料乳风味以及质地。测定原料奶中热稳定蛋白酶和脂肪酶的活性是控制嗜冷菌污染原料奶的前提。本文综述了原料乳中嗜冷菌分泌的热稳定性酶类的快速检测技术,比较了这些方法的优缺点,并对此领域的技术发展方向进行了展望。%Psychrotrophic microorganisms play a leading role in spoilage of raw milk and milk products. Pasteurized and ultra high temperature sterilization is usually used to kill psychrophile, but they are unable to remove the heat stable protease and lipase produced by the psychrophile, ifnally to affect the lfavor and texture of dairy products. Detecting the activities of heat stable protease and lipase is the base of controlling contamination of psychrophile. The present study summarizes and discusses some rapid detection methods of psychrotrophic heat stable extracellular enzymes in raw milk. The advantages and disadvantages in industrial application are also compared, and the development rapid, sensitive, and meaningful directions of those techniques in this ifeld are discussed.

  11. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Microbial ecology of phototrophic biofilms

    NARCIS (Netherlands)

    Roeselers, G.

    2007-01-01

    Biofilms are layered structures of microbial cells and an extracellular matrix of polymeric substances, associated with surfaces and interfaces. Biofilms trap nutrients for growth of the enclosed microbial community and help prevent detachment of cells from surfaces in flowing systems. Phototrophic

  13. Microbial ecology of phototrophic biofilms

    NARCIS (Netherlands)

    Roeselers, G.

    2007-01-01

    Biofilms are layered structures of microbial cells and an extracellular matrix of polymeric substances, associated with surfaces and interfaces. Biofilms trap nutrients for growth of the enclosed microbial community and help prevent detachment of cells from surfaces in flowing systems. Phototrophic

  14. Soil microbial biomass and function are altered by 12 years of crop rotation

    Science.gov (United States)

    McDaniel, Marshall D.; Grandy, A. Stuart

    2016-11-01

    Declines in plant diversity will likely reduce soil microbial biomass, alter microbial functions, and threaten the provisioning of soil ecosystem services. We examined whether increasing temporal plant biodiversity in agroecosystems (by rotating crops) can partially reverse these trends and enhance soil microbial biomass and function. We quantified seasonal patterns in soil microbial biomass, respiration rates, extracellular enzyme activity, and catabolic potential three times over one growing season in a 12-year crop rotation study at the W. K. Kellogg Biological Station LTER. Rotation treatments varied from one to five crops in a 3-year rotation cycle, but all soils were sampled under a corn year. We hypothesized that crop diversity would increase microbial biomass, activity, and catabolic evenness (a measure of functional diversity). Inorganic N, the stoichiometry of microbial biomass and dissolved organic C and N varied seasonally, likely reflecting fluctuations in soil resources during the growing season. Soils from biodiverse cropping systems increased microbial biomass C by 28-112 % and N by 18-58 % compared to low-diversity systems. Rotations increased potential C mineralization by as much as 53 %, and potential N mineralization by 72 %, and both were related to substantially higher hydrolase and lower oxidase enzyme activities. The catabolic potential of the soil microbial community showed no, or slightly lower, catabolic evenness in more diverse rotations. However, the catabolic potential indicated that soil microbial communities were functionally distinct, and microbes from monoculture corn preferentially used simple substrates like carboxylic acids, relative to more diverse cropping systems. By isolating plant biodiversity from differences in fertilization and tillage, our study illustrates that crop biodiversity has overarching effects on soil microbial biomass and function that last throughout the growing season. In simplified agricultural systems

  15. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.

  16. Oxidative and other posttranslational modifications in extracellular vesicle biology.

    Science.gov (United States)

    Szabó-Taylor, Katalin; Ryan, Brent; Osteikoetxea, Xabier; Szabó, Tamás G; Sódar, Barbara; Holub, Marcsilla; Németh, Andrea; Pálóczi, Krisztina; Pállinger, Éva; Winyard, Paul; Buzás, Edit I

    2015-04-01

    Extracellular vesicles including exosomes, microvesicles and apoptotic vesicles, are phospholipid bilayer surrounded structures secreted by cells universally, in an evolutionarily conserved fashion. Posttranslational modifications such as oxidation, citrullination, phosphorylation and glycosylation play diverse roles in extracellular vesicle biology. Posttranslational modifications orchestrate the biogenesis of extracellular vesicles. The signals extracellular vesicles transmit between cells also often function via modulating posttranslational modifications of target molecules, given that extracellular vesicles are carriers of several active enzymes catalysing posttranslational modifications. Posttranslational modifications of extracellular vesicles can also contribute to disease pathology by e.g. amplifying inflammation, generating neoepitopes or carrying neoepitopes themselves.

  17. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  18. Modeling physiological processes in plankton on enzyme kinetic principles

    Directory of Open Access Journals (Sweden)

    Ted Packard

    2004-04-01

    Full Text Available Many ecologically important chemical transformations in the ocean are controlled by biochemical enzyme reactions in plankton. Nitrogenase regulates the transformation of N2 to ammonium in some cyanobacteria and serves as the entryway for N2 into the ocean biosphere. Nitrate reductase controls the reduction of NO3 to NO2 and hence new production in phytoplankton. The respiratory electron transfer system in all organisms links the carbon oxidation reactions of intermediary metabolism with the reduction of oxygen in respiration. Rubisco controls the fixation of CO2 into organic matter in phytoplankton and thus is the major entry point of carbon into the oceanic biosphere. In addition to these, there are the enzymes that control CO2 production, NH4 excretion and the fluxes of phosphate. Some of these enzymes have been recognized and researched by marine scientists in the last thirty years. However, until recently the kinetic principles of enzyme control have not been exploited to formulate accurate mathematical equations of the controlling physiological expressions. Were such expressions available they would increase our power to predict the rates of chemical transformations in the extracellular environment of microbial populations whether this extracellular environment is culture media or the ocean. Here we formulate from the principles of bisubstrate enzyme kinetics, mathematical expressions for the processes of NO3 reduction, O2 consumption, N2 fixation, total nitrogen uptake.

  19. Neutrophils cast extracellular traps in response to protozoan parasites.

    Science.gov (United States)

    Abi Abdallah, Delbert S; Denkers, Eric Y

    2012-01-01

    Release of extracellular traps by neutrophils is a now well-established phenomenon that contributes to the innate response to extracellular bacterial and fungal pathogens. The importance of NETs during protozoan infection has been less explored, but recent findings suggest an emerging role for release of neutrophil-derived extracellular DNA in response to this class of microbial pathogens. The present review summarizes findings to date regarding elicitation of NETs by Toxoplasma gondii, Plasmodium falciparum, Eimeria bovis, and Leishmania spp.

  20. Selection of commercial hydrolytic enzymes with potential antifouling activity in marine environments.

    Science.gov (United States)

    Zanaroli, Giulio; Negroni, Andrea; Calisti, Cecilia; Ruzzi, Maurizio; Fava, Fabio

    2011-12-10

    In this work, the marine antifouling potential of some commercially available hydrolytic enzymes acting on the main constituents of extracellular polymeric substances (EPS) involved in bacterial biofilm formation was determined. The selected protease (i.e., alpha-chymotrypsin from bovine pancreas), carbohydrase (i.e., alpha-amylase from porcine pancreas) and lipase (from porcine pancreas) exhibited remarkable hydrolytic activities towards target macromolecules typically composing EPS under a wide range of pHs (6.5-9.0 for alpha-chymotrysin and alpha-amylase; 7.0-8.5 for the lipase) and temperatures (from 10 °C to 30 °C), as well as relevant half-lives (from about 2 weeks to about 2 months), in a marine synthetic water. The activity displayed by each enzyme was poorly affected by the co-presence of the other enzymes, thus indicating their suitability to be employed in combination. None of the enzymes was able to inhibit the formation of biofilm by an actual site marine microbial community when applied singly. However, a mixture of the same enzymes reduced biofilm formation by about 90% without affecting planktonic growth of the same microbial community. This indicates that multiple hydrolytic activities are required to efficiently prevent biofilm formation by complex microbial communities, and that the mixture of enzymes selected in this study has the potential to be employed as an environmental friendly antifouling agent in marine antifouling coatings.

  1. Developing an Enzyme Mediated Soil Organic Carbon Decomposition Model

    Science.gov (United States)

    Mayes, M. A.; Post, W. M.; Wang, G.; Jagadamma, S.; Steinweg, J. M.; Schadt, C. W.

    2012-12-01

    We developed the Microbial-ENzyme-mediated Decomposition (MEND) model in order to mechanistically model the decomposition of soil organic carbon (C). This presentation is an overview of the concept and development of the model and of the design of complementary lab-scale experiments. The model divides soil C into five pools of particulate, mineral-associated, dissolved, microbial, and enzyme organic C (Wang et al. 2012). There are three input types - cellulose, lignin, and dissolved C. Decomposition is mediated via microbial extracellular enzymes using the Michaelis-Menten equation, resulting in the production of a common pool of dissolved organic C. Parameters for the Michaelis-Menten equation are obtained through a literature review (Wang and Post, 2012a). The dissolved C is taken up by microbial biomass and proportioned according to microbial maintenance and growth, which were recalculated according to Wang and Post (2012b). The model allows dissolved C to undergo adsorption and desorption reactions with the mineral-associated C, which was also parameterized based upon a literature review and complementary laboratory experiments. In the lab, four 14C-labeled substrates (cellulose, fatty acid, glucose, and lignin-like) were incubated with either the particulate C pool, the mineral-associated C pool, or to bulk soils. The rate of decomposition was measured via the production of 14CO2 over time, along with incorporation into microbial biomass, production of dissolved C, and estimation of sorbed C. We performed steady-state and dynamic simulations and sensitivity analyses under temperature increases of 1-5°C for a period of 100 y. Simulations indicated an initial decrease in soil organic C consisting of both cellulose and lignin pools. Over longer time intervals (> 6 y), however, a shrinking microbial population, a concomitant decrease in enzyme production, and a decrease in microbial carbon use efficiency together decreased CO2 production and resulted in greater

  2. The roles of loosely-bound and tightly-bound extracellular polymer substances in enhanced biological phosphorus removal.

    Science.gov (United States)

    Long, Xiangyu; Tang, Ran; Fang, Zhendong; Xie, Chaoxin; Li, Yongqin; Xian, Guang

    2017-09-22

    Extracellular polymeric substances (EPS) have be founded to participate in the process of enhanced biological phosphorus removal (EBPR), but the exact role of EPS in EBPR process is unclear. In this work, the roles of loosely-bound EPS (LB-EPS), tightly-bound EPS (TB-EPS) and microbial cell in EBPR were explored, taking the activated sludge from 4 lab-scale A/O-SBR reactors with different temperatures and organic substrates as objects. It was founded that the P of EBPR activated sludge was mainly stored in TB-EPS, but the P of non-EBPR activated sludge was primarily located in microbial cell. The P release and uptake of EBPR activated sludge was attributed to the combined action of TB-EPS and microbial cell. Furthermore, TB-EPS played an more important role than microbial cell in EBPR process. With the analysis of (31)P NMR spectroscopy, both polyP and orthoP were the main phosphorus species of TB-EPS in EBPR sludge, but only orthoP was the main phosphorus species of LB-EPS and microbial cell. During the anaerobic-aerobic cycle, the roles of LB-EPS, TB-EPS and microbial cell in transfer and transformation of P in EBPR sludge were obviously different. LB-EPS transported and retained orthoP, and microbial cell directly anaerobically released or aerobically absorbed orthoP. Importantly, TB-EPS not only transported and retained orthoP, but also participated in biological phosphorus accumulation. The EBPR performance of sludge was closely related with the polyp in TB-EPS, which might be synthesized and decomposed by extracellular enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Nutrient Limitation of Microbial Mediated Decomposition and Arctic Soil Chronology

    Science.gov (United States)

    Melle, C. J.; Darrouzet-Nardi, A.; Wallenstein, M. D.

    2012-12-01

    Soils of northern permafrost regions currently contain twice as much carbon as the entire Earth's atmosphere. Traditionally, environmental constraints have limited microbial activity resulting in restricted decomposition of soil organic matter in these systems and accumulation of massive amounts of soil organic carbon (SOC), however climate change is reducing the constraints of decomposition in arctic permafrost regions. Carbon cycling in nutrient poor, arctic ecosystems is tightly coupled to other biogeochemical cycles. Several studies have suggested strong nitrogen limitations of primary productivity and potentially warm-season microbial activity in these nutrient deficient soils. Nitrogen is required for microbial extracellular enzyme production which drives the decomposition of soil organic matter (SOM). Nitrogen limited arctic soils may also experience limitation via labile carbon availability despite the SOM rich environment due to low extracellular enzyme production. Few studies have directly addressed nutrient induced microbial limitation in SOC rich arctic tundra soils, and even less is known about the potential for nutrient co-limitation. Additionally, through the process of becoming deglaciated, sites within close proximity to one another may have experienced drastic differences in their effective soil ages due to the varied length of their active histories. Many soil properties and nutrient deficiencies are directly related to soil age, however this chronology has not previously been a focus of research on nutrient limitation of arctic soil microbial activity. Understanding of nutrient limitations, as well as potential co-limitation, on arctic soil microbial activity has important implications for carbon cycling and the ultimate fate of the current arctic SOC reservoir. Analyses of nutrient limitation on soils of a single site are not adequate for fully understanding the controls on soil microbial activity across a vast land mass with large variation in

  4. Determination of free amino acids in whole-fat Turkish White Brined Cheese produced by animal and microbial milk-clotting enzymes with and without the addition of starter culture

    Directory of Open Access Journals (Sweden)

    Ufuk Eren-Vapur

    2012-12-01

    Full Text Available Coagulating enzymes are essential ingredients for the production of different cheese varieties. The objective of this research was to summarize the effect of rennet type (calf rennet and microbial rennet from Rhizomucor miehei and starter culture on the sensory properties and free amino acids (FAA release during the ripening of Turkish White brined cheese. The concentrations of FAA and sensory properties were similar for cheeses made with both types of coagulant and starter culture. Aminoacids Phe, Leu - Ile, Gln, Val, Pro and Ala were the principal FAAs in the White brined cheeses at all stages of ripening.

  5. Extracellular electron transfer mechanisms between microorganisms and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K.

    2016-08-30

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  6. Cooperation, competition, and coalitions in enzyme-producing microbes: Social evolution and nutrient depolymerization rates

    Directory of Open Access Journals (Sweden)

    Henry Joseph Folse

    2012-09-01

    Full Text Available Extracellular enzymes represent a public good for microbial communities, as they break down complex molecules into simple molecules that microbes can take up. These communities are vulnerable to cheating by microbes that do not produce enzymes, but benefit from those produced by others. However, extracellular enzymes are ubiquitous and play an important role in the depolymerization of nutrients. We developed a multi-genotype, multi-nutrient model of a community of exoenzyme-producing microbes, in order to investigate the relationship between diversity, social interactions, and nutrient depolymerization. We focused on coalitions between complementary types of microbes and their implications for spatial pattern formation and nutrient depolymerization. The model included polymers containing carbon, nitrogen, or phosphorus, and eight genotypes of bacteria, which produced different subsets of the three enzymes responsible for hydrolyzing these polymers. We allowed social dynamics to emerge from a mechanistic model of enzyme production, action, and diffusion. We found that diversity was maximized at high rates of either diffusion or enzyme production (but not both. Conditions favoring cheating also favored the emergence of coalitions. We characterized the spatial patterns formed by different interactions, showing that same-type cooperation leads to aggregation, but between-type cooperation leads to an interwoven, filamentous pattern. Contrary to expectations based on niche complementarity, we found that nutrient depolymerization declined with increasing diversity due to a negative competitive effect of coalitions on generalist producers, leading to less overall enzyme production. This decline in depolymerization was stronger for non-limiting nutrients in the system. This study shows that social interactions among microbes foraging for complementary resources can influence microbial diversity, microbial spatial distributions, and rates of nutrient

  7. Cooperation, competition, and coalitions in enzyme-producing microbes: social evolution and nutrient depolymerization rates.

    Science.gov (United States)

    Folse, Henry J; Allison, Steven D

    2012-01-01

    Extracellular enzymes represent a public good for microbial communities, as they break down complex molecules into simple molecules that microbes can take up. These communities are vulnerable to cheating by microbes that do not produce enzymes, but benefit from those produced by others. However, extracellular enzymes are ubiquitous and play an important role in the depolymerization of nutrients. We developed a multi-genotype, multi-nutrient model of a community of exoenzyme-producing microbes, in order to investigate the relationship between diversity, social interactions, and nutrient depolymerization. We focused on coalitions between complementary types of microbes and their implications for spatial pattern formation and nutrient depolymerization. The model included polymers containing carbon, nitrogen, or phosphorus, and eight genotypes of bacteria, which produced different subsets of the three enzymes responsible for hydrolyzing these polymers. We allowed social dynamics to emerge from a mechanistic model of enzyme production, action, and diffusion. We found that diversity was maximized at high rates of either diffusion or enzyme production (but not both). Conditions favoring cheating also favored the emergence of coalitions. We characterized the spatial patterns formed by different interactions, showing that same-type cooperation leads to aggregation, but between-type cooperation leads to an interwoven, filamentous pattern. Contrary to expectations based on niche complementarity, we found that nutrient depolymerization declined with increasing diversity due to a negative competitive effect of coalitions on generalist producers, leading to less overall enzyme production. This decline in depolymerization was stronger for non-limiting nutrients in the system. This study shows that social interactions among microbes foraging for complementary resources can influence microbial diversity, microbial spatial distributions, and rates of nutrient depolymerization.

  8. Using soil enzymes to explain observed differences in the response of soil decomposition to nitrogen fertilization

    Science.gov (United States)

    Stone, M.; Weiss, M.; Goodale, C. L.

    2010-12-01

    Soil microbes produce extracellular enzymes that degrade a variety of carbon-rich polymers contained within soil organic matter (SOM). These enzymes are key regulators of the terrestrial carbon cycle. However, basic information about the kinetics of extracellular enzymes and key environmental variables that regulate their catalytic ability is lacking. This study aims to clarify the mechanisms by which microbial carbon-degrading enzymes drive different responses to nitrogen (N) fertilization in soil decomposition at two sites with long-term N fertilization experiments, the Bear Brook (BB) forest in Maine and Fernow Forest (FF) in West Virginia. We examined a suite of cellulolytic and lignolytic enzymes that break down common SOM constituents. We hypothesized that enzymes derived from the site with a higher mean annual temperature (FF) would be more heat-tolerant, and retain their catalytic efficiency (Km) as temperature rises, relative to enzymes from the colder environment (BB). We further hypothesized that cellulolytic enzyme activity would be unaffected by N, while oxidative enzyme activity would be suppressed in N-fertilized soils. To test these hypotheses and examine the interactive effects of temperature and N, we measured enzyme activity in unfertilized and N-fertilized soils under a range of laboratory temperature manipulations. Preliminary results show a significant decrease in cellulolytic enzyme efficiency with temperature at the colder site (BB), as well as a significant increase in efficiency due to N-fertilization for two cellulolytic enzymes. Oxidative enzyme activity shows a marginally significant reduction due to N-fertilization at BB. These results suggest that soil warming may produce a negative feedback on carbon turnover in certain climates, while N-fertilization may alter the relative decomposition rates of different soil organic matter constituents. FF activity will be analyzed in a similar manner and the two sites will be compared in order to

  9. Signal Inhibitory Receptor on Leukocytes-1 Limits the Formation of Neutrophil Extracellular Traps, but Preserves Intracellular Bacterial Killing

    NARCIS (Netherlands)

    Van Avondt, Kristof; van der Linden, Maarten; Naccache, Paul H; Egan, David A; Meyaard, Linde

    2016-01-01

    In response to microbial invasion, neutrophils release neutrophil extracellular traps (NETs) to trap and kill extracellular microbes. Alternatively, NET formation can result in tissue damage in inflammatory conditions and may perpetuate autoimmune disease. Intervention strategies that are aimed at m

  10. Microbial responses to long-term N deposition in a semiarid grassland.

    Science.gov (United States)

    Stursova, Martina; Crenshaw, Chelsea L; Sinsabaugh, Robert L

    2006-01-01

    Nitrogen (N) enrichment of the biosphere is an expanding problem to which arid ecosystems may be particularly sensitive. In semiarid grasslands, scarce precipitation uncouples plant and microbial activities, and creates within the soil a spatial mosaic of rhizosphere and cyanobacterial crust communities. We investigated the impact of elevated N deposition on these soil microbial communities at a grama-dominated study site located incentral New Mexico (USA). The study plots were established in 1995 and receive 10 kg ha(-1) year(-1) of supplemental N in the form of NH(4)NO(3). Soil samples were collected in July 2004, following 2 years of severe drought, and again in March 2005 following a winter of record high precipitation. Soils were assayed for potential activities of 20 extracellular enzymes and N(2)O production. The rhizosphere and crust-associated soils had peptidase and peroxidase potentials that were extreme in relation to those of temperate soils. N addition enhanced glycosidase and phosphatase activities and depressed peptidase. In contrast to temperate forest soils, oxidative enzyme activity did not respond to N treatment. Across sampling dates, extracellular enzyme activity responses correlated with inorganic N concentrations. N(2)O generation did not vary significantly with soil cover or N treatment. Microbial responses to N deposition in this semiarid grassland were distinct from those of forest ecosystems and appear to be modulated by inorganic N accumulation, which is linked to precipitation patterns.

  11. Entamoeba histolytica Trophozoites and Lipopeptidophosphoglycan Trigger Human Neutrophil Extracellular Traps.

    Science.gov (United States)

    Ávila, Eva E; Salaiza, Norma; Pulido, Julieta; Rodríguez, Mayra C; Díaz-Godínez, César; Laclette, Juan P; Becker, Ingeborg; Carrero, Julio C

    2016-01-01

    Neutrophil defense mechanisms include phagocytosis, degranulation and the formation of extracellular traps (NET). These networks of DNA are triggered by several immune and microbial factors, representing a defense strategy to prevent microbial spread by trapping/killing pathogens. This may be important against Entamoeba histolytica, since its large size hinders its phagocytosis. The aim of this study was to determine whether E. histolytica and their lipopeptidophosphoglycan (EhLPPG) induce the formation of NETs and the outcome of their interaction with the parasite. Our data show that live amoebae and EhLPPG, but not fixed trophozoites, induced NET formation in a time and dose dependent manner, starting at 5 min of co-incubation. Although immunofluorescence studies showed that the NETs contain cathelicidin LL-37 in close proximity to amoebae, the trophozoite growth was only affected when ethylene glycol tetra-acetic acid (EGTA) was present during contact with NETs, suggesting that the activity of enzymes requiring calcium, such as DNases, may be important for amoeba survival. In conclusion, E. histolytica trophozoites and EhLPPG induce in vitro formation of human NETs, which did not affect the parasite growth unless a chelating agent was present. These results suggest that NETs may be an important factor of the innate immune response during infection with E. histolytica.

  12. Entamoeba histolytica Trophozoites and Lipopeptidophosphoglycan Trigger Human Neutrophil Extracellular Traps

    Science.gov (United States)

    Ávila, Eva E.; Rodríguez, Mayra C.; Díaz-Godínez, César; Laclette, Juan P.; Becker, Ingeborg; Carrero, Julio C.

    2016-01-01

    Neutrophil defense mechanisms include phagocytosis, degranulation and the formation of extracellular traps (NET). These networks of DNA are triggered by several immune and microbial factors, representing a defense strategy to prevent microbial spread by trapping/killing pathogens. This may be important against Entamoeba histolytica, since its large size hinders its phagocytosis. The aim of this study was to determine whether E. histolytica and their lipopeptidophosphoglycan (EhLPPG) induce the formation of NETs and the outcome of their interaction with the parasite. Our data show that live amoebae and EhLPPG, but not fixed trophozoites, induced NET formation in a time and dose dependent manner, starting at 5 min of co-incubation. Although immunofluorescence studies showed that the NETs contain cathelicidin LL-37 in close proximity to amoebae, the trophozoite growth was only affected when ethylene glycol tetra-acetic acid (EGTA) was present during contact with NETs, suggesting that the activity of enzymes requiring calcium, such as DNases, may be important for amoeba survival. In conclusion, E. histolytica trophozoites and EhLPPG induce in vitro formation of human NETs, which did not affect the parasite growth unless a chelating agent was present. These results suggest that NETs may be an important factor of the innate immune response during infection with E. histolytica. PMID:27415627

  13. Metaproteome analysis of the microbial community during leaf litter decomposition - the impact of stoichiometry and temperature perturbations

    Science.gov (United States)

    Keiblinger, K. M.; Schneider, T.; Leitner, S.; Hämmerle, I.; Riedel, K.; Zechmeister-Boltenstern, S.

    2012-04-01

    Leaf litter decomposition is the breakdown of dead plant material, a terrestrial ecosystem process of paramount importance. Nutrients released during decomposition play a key role for microbial growth and plant productivity. These processes are controlled by abiotic factors, such as climate, and by biotic factors, such as litter nutrient concentration and stoichiometry (carbon:nutrient ratio) and activity of soil organisms. Future climate change scenarios predict temperature perturbations, therefore following changes of microbial community composition and possible feedbacks on ecosystem processes are of key interest; especially as our knowledge about the microbial regulation of these processes is still scarce. Our aim was to elucidate how temperature perturbations and leaf litter stoichiometry affect the composition of the microbial decomposer community. To this end a terrestrial microcosm experiment using beech (Fagus sylvatica) litter with different stoichiometry was conducted. In a semi-quantitative metaproteomics approach (1D-SDS PAGE combined with liquid chromatography and tandem mass spectrometry; unique spectral counting) we used the intrinsic metabolic function of proteins to relate specific microbial activities to their phylogenetic origin in multispecies communities. Decomposer communities varied on litter with different stoichiometry so that microbial decomposers (fungi and bacteria) were favoured in litter with narrow C:nutrient ratios. The fungal community was dominated by Ascomycota (Eurotiomycetes, Sordariomycetes) and Basidiomycota (Agaricomycetes) and the bacterial community was dominated by Proteobacteria, Actinobacteria and Firmicutes. The extracellular enzymes we detected belonged mainly to classes of xylanases, pectinases, cellulases and proteases and were almost exclusively of fungal origin (particularly Ascomycota). Temperature stress (heat and frost) evoked strong changes in community composition, enzyme activities, dissolved organic

  14. Nonstarch polysaccharide-degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract.

    Science.gov (United States)

    Bindelle, Jérôme; Pieper, Robert; Montoya, Carlos A; Van Kessel, Andrew G; Leterme, Pascal

    2011-06-01

    An in vitro experiment was carried out to assess how nonstarch polysaccharide (NSP)-degrading enzymes influence the fermentation of dietary fiber in the pig large intestine. Seven wheat and barley products and cultivars with differing carbohydrate fractions were hydrolyzed using pepsin and pancreatin in the presence or not of NSP-degrading enzymes (xylanase and β-glucanase) and the filter retentate was subsequently fermented with sow fecal bacteria. Dry matter, starch, crude protein and β-glucan digestibilities during hydrolysis were measured. Fermentation kinetics of the hydrolyzed ingredients were modelled. Short-chain fatty acids (SCFA) production and molar ratio were compared after 12, 24 and 72 h. Microbial communities were analyzed after 72 h of fermentation using terminal restriction fragment length polymorphism. The results showed an increase of nutrient digestibility (Penzyme. SCFA and bacterial community profiles also indicated a shift from propionate to acetate and an increase in cellulolytic Ruminococcus- and xylanolytic Clostridium-like bacteria. This is explained by the increase in slowly fermentable insoluble carbohydrate and the lower proportion of rapidly fermentable β-glucan and starch in the retentate when grains were incubated with NSP-degrading enzymes. Shifts were also different for the four barley varieties investigated, showing that the efficiency of the enzymes depends on the structure of the carbohydrate fractions in cereal products and cultivars.

  15. Potential enzyme activities in cryoturbated organic matter of arctic soils

    Science.gov (United States)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for

  16. Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semi-arid region

    Science.gov (United States)

    This study is part of a larger long-term project to develop and evaluate integrated crop and livestock systems in order to reduce dependence on underground water sources by optimizing cotton (Gossypium hirsutum) production in the Texas High Plains of U.S. Microbial communities and activities were e...

  17. Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest.

    Science.gov (United States)

    Jackson, Colin R; Liew, Kong Cheng; Yule, Catherine M

    2009-04-01

    Tropical peat swamp forests are important and endangered ecosystems, although little is known of their microbial diversity and ecology. We used molecular and enzymatic techniques to examine patterns in prokaryotic community structure and overall microbial activity at 0-, 10-, 20-, and 50-cm depths in sediments in a peat swamp forest in Malaysia. Denaturing gradient gel electrophoresis profiles of amplified 16S ribosomal ribonucleic acid (rRNA) gene fragments showed that different depths harbored different bacterial assemblages and that Archaea appeared to be limited to the deeper samples. Cloning and sequencing of longer 16S rRNA gene fragments suggested reduced microbial diversity in the deeper samples compared to the surface. Bacterial clone libraries were largely dominated by ribotypes affiliated with the Acidobacteria, which accounted for at least 27-54% of the sequences obtained. All of the sequenced representatives from the archaeal clone libraries were Crenarchaeota. Activities of microbial extracellular enzymes involved in carbon, nitrogen, and phosphorus cycling declined appreciably with depth, the only exception being peroxidase. These results show that tropical peat swamp forests are unusual systems with microbial assemblages dominated by members of the Acidobacteria and Crenarchaeota. Microbial communities show clear changes with depth, and most microbial activity is likely confined to populations in the upper few centimeters, the site of new leaf litter fall, rather than the deeper, older, peat layers.

  18. Effects of applying coal ash and fertilizers on soil microbial biomass and enzyme activity%粉煤灰结合施肥对土壤微生物和酶活性的效应

    Institute of Scientific and Technical Information of China (English)

    杜慧玲; 李恋卿; 潘根兴; 王建锁; 姚永平; 张俊珍

    2001-01-01

    在以前对粉煤灰改良石灰性土壤对其理化性质和养分效应研究的基础上,分析了小麦不同生育期土壤中微生物数量和几种重要的土壤酶的活性,旨在探讨石灰性褐土施用粉煤灰配合有机肥对土壤环境生物质量的效应。结果表明,每公顷施用粉煤灰150 t以上显著提高了土壤中各种微生物的数量,对土壤酶活性也有显著的作用,尤其是对小麦灌浆期脲酶的活性有显著的促进作用。因此,施用粉煤灰可以改善土壤的生物活性,从而达到保护和治理土壤环境的效果。%The paper analyzed the soil microbial biomass and soil enzymes activity during wheat growth stages for studying the effects of applying coal ash, chemical fertilizer and green manure on soil biological quality in calcic cinnamon clay soils. The results showed that the soil microbial biomass and enzyme activity were increased especially for urease enzyme in wheat milking stage when the application rate was 150 t/hm2 for coal ash.

  19. Extracellular polymeric substances act as transient media in extracellular electron transfer of Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhang, Jingdong; Ulstrup, Jens

    without extracting EPS or cells collected from log stage or early-steady stage cultures with little EPS. Therefore, microbial cells are believed in contact directly with each other or electrode. Such attempt apparently ignored the role of EPS in microbial EET, even though many components of EPS......It is well known that microorganism is surrounded by extracellular polymeric substances (EPS) which include polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids. However, previous studies on microbial extracellular electron transfer (EET) are conducted on cells......, such as DNA, humic acids and some proteins, are electrochemically active or semiconductive. Herein, we report experimental evidences of EPS role on EET for Shewanella oneidensis MR-1. Atomic force microscopy clearly showed that the cell surface was cleaned and few EPS could be observed on MR-1 after...

  20. Assessment of soil microbial diversity with functional multi-endpoint methods

    DEFF Research Database (Denmark)

    Winding, Anne; Creamer, R. E.; Rutgers, M.

    Soil microbial diversity provides the cornerstone for support of soil ecosystem services by key roles in soil organic matter turnover, carbon sequestration and water infiltration. However, standardized methods to quantify the multitude of microbial functions in soils are lacking. Methods based......-substrates. These methods have been proposed to fill the gap. The techniques vary in how close they are to in situ functions; dependency on growth during incubation; and whether it is only bacteria or also fungi and /or extracellular enzymes. Also they vary in the functions tested and the number of functions. In addition...... techniques of assessing soil microbial functional diversity in a European transect consisting of 81 soil samples covering five Biogeograhical Zones and three land-uses and compare with the vast amount of data delivered in other projects (BISQ, RMQS-bioindicateur). Based on experimental results...

  1. Fragmentation of extracellular matrix by hypochlorous acid

    DEFF Research Database (Denmark)

    Woods, Alan A; Davies, Michael Jonathan

    2003-01-01

    The interaction of extracellular matrix with cells regulates their adhesion, migration and proliferation, and it is believed that damage to vascular matrix components is a factor in the development of atherosclerosis. Evidence has been provided for a role for the haem enzyme MPO (myeloperoxidase)...

  2. GRE Enzymes for Vector Analysis

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme data that were collected during the 2004-2006 EMAP-GRE program. These data were then used by Moorhead et al (2016) in their ecoenzyme vector...

  3. Changes in organic - C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants.

    Science.gov (United States)

    Pramanik, P; Ghosh, G K; Ghosal, P K; Banik, P

    2007-09-01

    The aim of this work was to study the effect of different organic wastes, viz. cow dung, grass, aquatic weeds and municipal solid waste with lime and microbial inoculants on chemical and biochemical properties of vermicompost. Cow dung was the best substrate for vermicomposting. Application of lime (5 g/kg) and inoculation of microorganisms increased the nutrient content in vermicompost and also phosphatases and urease activities. Bacillus polymyxa, the free-living N-fixer, increased N-content of vermicompost significantly (p < or = 0.01) as compared to other inoculants.

  4. Effect of citric acid and microbial phytase enzyme on ileal digestibility of some nutrients in broiler chicks fed corn-soybean meal diets

    Directory of Open Access Journals (Sweden)

    Moslem Bashtani

    2012-01-01

    Full Text Available A total of 270 Ross 308 male broilers were used in a randomized complete block design for a period of five weeks. The experiment included nine treatments, three replicates with 10 birds in each replicate of 3×3 factorial design. Two main factors of citric acid (CA (0, 3 and 6% and a microbial phytase (MP (0, 500 and 1000 IU/kg were used. The results indicated that diets containing 3% CA caused significant increase in P content in tibia ash, ileal digestibility of crude protein, apparent metabolizable energy, total phosphorus and body weight (P

  5. Extracellular polymeric substances play roles in extracellular electron transfer of Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhang, En-Hua; Christensen, Hans Erik Mølager

    It is well known that microorganism is surrounded by extracellular polymeric substances (EPS) which include polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids. However, previous studies on microbial extracellular electron transfer (EET) are conducted on cells...... the extraction (Figure 1.a and 1.b). Comparing to cells in control group, MR-1 treated at 38 °C for EPS extraction showed different electrochemical characterizations as revealed by differential pulse voltammetry (Figure 1.c). EPS extracted from MR-1 also was proved to be electrochemically active. The present...

  6. Effect of Soil Enzymes on Soil Microbial Respiration in Secondary Forest in Mountainous Region of Eastern Liaoning Province%辽东山区次生林土壤酶对土壤微生物呼吸的影响

    Institute of Scientific and Technical Information of China (English)

    范阿南; 刘峰

    2013-01-01

    Taking soil in three kinds of natural secondary forest (Quercus mongolica ,weed trees & Juglans mand-shurica) as researching objects ,through determination of amylase ,invertase ,dehydrogenase &catalase activity ,the relationship between soil enzyme activities and soil microbial respiration in the mountainous regions of eastern Liaon-ing Province were discussed .Result shows that :soil enzyme activity & soil microbial respiration of Quercus mon-golica ,weed trees & Juglans mandshurica have certain seasonal fluctuations ,but the correlation is not significant . Except biological respiration & catalase activity of Juglans m andshurica has significant relationship ,microbial res-piration & four kinds of activity of Quercus mongolica & weed trees has no significant correlation .The result pro-vides a reference for understanding systematically the soil carbon cycle of plant communities for secondary forest in the mountainous regions of Eastern Liaoning Province .%以蒙古栎(Quercus mongolica)林、杂木林和胡桃楸(Juglans mandshurica)林3种天然次生林土壤为研究对象,通过生长季节内表层土壤(0~30 cm )淀粉酶、蔗糖酶、脱氢酶和过氧化氢酶活性以及土壤微生物呼吸速率的测定,探讨了辽东山区土壤酶活性与土壤微生物呼吸之间的关系。结果表明:辽东山区蒙古栎林、杂木林、胡桃楸林土壤酶活性与土壤微生物呼吸具有一定的季节波动,但相关性不显著。除胡桃楸林微生物呼吸与过氧化氢酶活性之间具有显著关系外,蒙古栎林和杂木林微生物呼吸与4种酶活性之间均无显著相关性。研究结果为进一步系统了解辽东山区次生林植物群落土壤碳循环过程提供了参考。

  7. Unusual isotopic composition of C-CO2 from sterilized soil microcosms: a new way to separate intracellular from extracellular respiratory metabolisms.

    Science.gov (United States)

    Kéraval, Benoit; Alvarez, Gaël; Lehours, Anne Catherine; Amblard, Christian; Fontaine, Sebastien

    2015-04-01

    The mineralization of organic C requires two main steps. First, microorganisms secrete exoenzymes in soil in order to depolymerize plant and microbial cell walls and release soluble substrates for microbial assimilation. The second step of mineralization, during which C is released as CO2, implies the absorption and utilization of solubilized substrates by microbial cells with the aim to produce energy (ATP). In cells, soluble substrates are carried out by a cascade of respiratory enzymes, along which protons and electrons are transferred from a substrate to oxygen. Given the complexity of this oxidative metabolism and the typical fragility of respiratory enzymes, it is traditionally considered that respiration (second step of C mineralization process) is strictly an intracellular metabolism process. The recurrent observations of substantial CO2 emissions in soil microcosms where microbial cells have been reduced to extremely low levels challenges this paradigm. In a recent study where some respiratory enzymes have shown to function in an extracellular context in soils, Maire et al. (2013) suggested that an extracellular oxidative metabolism (EXOMET) substantially contributes to CO2 emission from soils. This idea is supported by the recent publication of Blankinship et al., 2014 who showed the presence of active enzymes involved in the Krebs cycle on soil particles. Many controversies subsist in the scientific community due to the presence of non-proliferating but morphologically intact cells after irradiation that could substantially contribute to those soil CO2 emissions. To test whether a purely extracellular oxidative metabolism contribute to soil CO2 emissions, we combined high doses of gamma irradiations to different time of soil autoclaving. The presence of active and non-active cells in soil was checked by DNA and RNA extraction and by electronic microscopy. None active cells (RNA-containing cells) were detectable after irradiation, but some morphological

  8. Effects of fumigation with metam-sodium on soil microbial biomass, respiration, nitrogen transformation, bacterial community diversity and genes encoding key enzymes involved in nitrogen cycling.

    Science.gov (United States)

    Li, Jun; Huang, Bin; Wang, Qiuxia; Li, Yuan; Fang, Wensheng; Han, Dawei; Yan, Dongdong; Guo, Meixia; Cao, Aocheng

    2017-11-15

    Metam-sodium (MS) is widely used as a soil pre-plant fumigant as methyl bromide is phased out of agriculture. However, the information about how fumigation with MS affects the soil microbial community is still limited. In this study, a 66-day-long experiment was conducted to ascertain the effects of MS on soil substrate-induced respiration (SIR), microbial biomass nitrogen (MBN), NH4(+)-N and NO3(-)-N concentrations, as well as the abundance of the total bacteria and fungi and the expression of genes involved in nitrogen cycling. In addition, 16S rRNA amplicon sequencing was used to investigate the effect of MS on the soil bacterial community. The half-lives of high and low doses of methyl isothiocyanate (MITC) are 10.51h and 9.93h, respectively. MS caused a short-term inhibition of SIR, MBN; had an accumulation effect on NH4(+)-N concentration in the short term; reduced the abundance of the total bacteria and fungi; and suppressed the expression of the nifH, AOA-amoA, anammox bacteria, nosZ, nirS, and narG. In addition, under the influence of MS, soil bacterial diversity decreased significantly in the long term, bacterial community structure was affected, and there was a shift in the predominant population; for example, some genera, such as Paenibacillus and Luteimonas, significantly increased in number. These changes in bacterial flora may be closely related to the growth of crops. Our study provides useful information for environmental safety assessments of MS in China. Copyright © 2017. Published by Elsevier B.V.

  9. Enzyme activity and microbial biomass in an Oxisol amended with sewage sludge contaminated with nickel Atividade enzimática e biomassa microbiana num Latossolo tratado com lodo de esgoto contaminado com níquel

    Directory of Open Access Journals (Sweden)

    Marcos Donizeti Revoredo

    2007-02-01

    Full Text Available The role of nickel in soils of tropical areas under the application of sewage sludge is still not very well known. This study was carried out under greenhouse conditions in Jaboticabal, São Paulo State, Brazil, with the objective of evaluating the impact of the application of sewage sludge previously contaminated with rates of nickel (329, 502, 746 and 1119 mg kg-1, dry basis on a soil cropped with sorghum, in relation to soil enzyme activity and soil microbial biomass. Soil samples were collected at the beginning and the end of the experiment. The experimental design was completely randomized, with five treatments (control and four rates of Ni in the sewage sludge and four replications. C and N of the soil microbial biomass and enzyme activities (acid and alkaline phosphatases were sensitive indicators for impact evaluation caused by sewage sludge contaminated with nickel. There were positive correlations between "total" and extractable nickel (Mehlich 1 with C-microbial biomass and negative with the microbial C/N relationship. N-microbial biomass correlated positively with "total" and extractable Ni at the last sampling. At the end of the experiment, the acid phosphatase activity correlated negatively with "total" Ni while the alkaline phosphatase correlated with both forms of the metal.O comportamento do níquel em solos de regiões tropicais, principalmente quando adicionado através de lodos de esgoto, ainda é pouco conhecido. O estudo foi conduzido em casa de vegetação, localizada no município de Jaboticabal, Estado de São Paulo, Brasil, com o objetivo de avaliar o impacto da aplicação de lodo de esgoto contaminado com níquel (329, 502, 746 e 1119 mg kg-1, base seca sobre a atividade enzimática e a biomassa microbiana de um solo cultivado com sorgo. As amostras de solo foram coletadas em duas épocas (início e final do experimento. O delineamento utilizado foi o inteiramente casualizado, com cinco tratamentos (testemunha

  10. Enhanced performance of surplus sludge microbial fuel cells by additional mixed enzymes%混合酶强化剩余污泥微生物燃料电池性能

    Institute of Scientific and Technical Information of China (English)

    张植平; 刘志华; 李小明; 杨麒; 罗琨; 杨慧; 王子龙

    2013-01-01

    In order to improve electricity production and sludge reduction in surplus sludge microbial fuel cells(SMFC),enhanced effect of enzyme on membrane-free single-chamber SMFC was investigated at different temperatures(40,45 and 50℃).The results showed that the power density of SMFC increased with the increase of temperature for both neutral protease and α-amylase addition.The most significant enhanced effect of enzymes was obtained at 40℃.Compared with the control group (added inactivated enzyme),the power density increased 198% and 130%,respectively.Moreover,the effect of different ratio of enzymes (protease/amylase) on electricity production and sludge reduction in SMFC was analyzed at 40℃.The maximum power density of MFC was 776 mW/m2 when the ratio of enzyme was 2/3.The higher the proportion of amylase,the bigger the battery coulomb efficiency was obtained,which could reach 18.3% when the ratio of enzyme was 4/1.Correspondingly,the removal rates of TCOD,TSS and VSS were 70.3%,66.7% and 80.4%,respectively.According to aforementioned,the enhanced effect of enzyme was more obvious when the temperature was relatively low.Compared with the single enzyme,the mix enzyme could strengthen the electrical production and the reduction of sludge in single chamber SMFC.%为了提高剩余污泥为燃料的微生物燃料电池(SMFC)产电性能以及污泥减量化效果,在不同的温度(40、45和50℃)研究单室无膜微生物燃料电池中酶对SMFC产电特性的强化效果.加入单一酶(蛋白酶或α-淀粉酶)的结果表明,随着温度的上升,SMFC功率密度均上升,但40℃时强化效果最明显,与加入失活酶的对照组相比分别增加198%和130%.在40℃下,混合酶比(蛋白酶浓度:淀粉酶浓度)为2∶3时,SMFC最大功率密度为776 mW/m2.随着混合酶中淀粉酶的比例提高,SMFC库伦效率逐渐增加,当混合酶比为4∶1时,CE(库伦效率)可达18.3%,同时TCOD、TSS和VSS去除率分别为70.3

  11. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community

    DEFF Research Database (Denmark)

    Zargar, K.; Saville, R.; Phelan, R. M.;

    2016-01-01

    an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (Csd...... similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding...

  12. Studies on culture condition and extracellular hydrolase of psychrophilic bacteria from Arctic sea ice

    Institute of Scientific and Technical Information of China (English)

    Li Xiaohui; Yu Yong; Li Huirong; Zhang Lin; Jiang Xinyin; Ren Daming

    2008-01-01

    Arctic sea ice in the polar region provides a cold habitat for microbial community.Arctic sea ice microorganisms are revealed to be of considerable importance in basic research and potential in biotechnological application.This paper investigated the culture condition and extracellular hydrolase of 14 strains of different Arctic sea ice bacteria.The results showed that optimal growth temperature of strains is 15 ℃ or 20 ℃.The optimal pH is about 8.0.They hardly grow at acid condition.3% NaCl is necessary for better growth.These strains have different abilities in producing amylase,protease,cellulase and lipase.Pseudoalteronomas sp.Bsi429 and Pseudoalteronomas sp.Bsi539 produced both cellulose,protease and lipase.These results provide a basis for further developing and exploiting the cold adapted marine enzyme resources.

  13. Effects of dietary inclusion of fermented cottonseed meal on growth, cecal microbial population, small intestinal morphology, and digestive enzyme activity of broilers.

    Science.gov (United States)

    Sun, Hong; Tang, Jiang-wu; Yao, Xiao-hong; Wu, Yi-fei; Wang, Xin; Feng, Jie

    2013-04-01

    Two experiments were conducted to test the feeding value of fermented cottonseed meal (FCSM) in broilers. In experiment 1, 480 1-day-old male yellow-feathered broilers were allocated into 4 dietary treatments with 6 replicates (20 birds per replicate) to examine the effects of FCSM on the growth response of chickens. Experimental feeding was performed for 6 weeks in two phases (starter, days 0 to 21; finisher, days 22 to 42). FCSM was used at 0, 40, 80, and 120 g/kg levels to replace soybean meal in the basal diet. The dietary inclusion of 40 and 80 g/kg FCSM increased (quadratic (Q): pmicrobial populations, intestinal morphology, and digestive enzyme activity of broilers. The number of lactobacilli in the cecal digesta increased at day 21 (pamylase and protease at day 21, as well as protease at day 42. In conclusion, the appropriate inclusion of FCSM improves growth, cecal microflora, intestinal morphology, and digestive enzyme activity in yellow-feathered broilers.

  14. Improving enzyme activity by compound microbial agents in compost with mixed fruit tree branches and pig manure during composting%复合菌剂提高果树枝条堆肥过程中酶活性

    Institute of Scientific and Technical Information of China (English)

    史龙翔; 谷洁; 潘洪加; 张凯煜; 殷亚楠; 赵听; 王小娟; 高华

    2015-01-01

    The effects of compound microbial agents in compost with mixed fruit tree branches and pig manure during composting in a thermophilic aerobic state were examined .The research used the inoculants compound microbial agents and control compost. The changes of temperature, enzyme activity, and the microbial community functional diversity in compost materials during composting were determined. The results showed the temperature during the composting period was increased and the high temperature (above 55℃) maintaining period was three days longer. Besides, inoculation treatment and control treatment are all carried out to achieve compost maturity, what was more, when added to the compound microbial agents composting process, we can easily find that the number of the seed germination in inoculants treatment is obviously higher than it is in the control treatment (P<0.05), so we can find that this process caused the decrease of the pH value and the C/N ratio. Of course, they promoted the compost maturity. The activities of the enzymes were improved by adding compound microbial agents. The tested enzymes Cellulose, laccase (Lac), Manganese peroxidase (MnP), and lignin peroxidase (LiP) activities were higher in the treatment with microorganism agent than those in the control treatment by 15.0%-19.8%, 1.0%-11.0%, 4.1%-26.8%, and 4.0%-22.2%, respectively. The research showed that the activity of Cellulose, Laccase (Lac), and the lignin peroxidase (LiP) rose at the beginning of the experiment and then dropped gradually under the inoculants agent processing, and reached the peak value in the seventh day. Their numerical values were 0.96 mg/(g·d) and 72.6 U/g respectively. However, the Manganese peroxidase (MnP) and Lignin peroxidase (LiP) reached their peak in the second day. Their numerical peak values were 927.2 and 726.4 U/g respectively. In addition, the activity of Manganese peroxidase (MnP) which was dealt with the inoculation treatment and control treatment was

  15. Nitrogen amendments have predictable effects on soil microbial communities and processes

    Science.gov (United States)

    Ramirez, K. S.; Craine, J. M.; Fierer, N.

    2011-12-01

    Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) through anthropogenic activities. While there has been much effort devoted to quantifying aboveground impacts of anthropogenic N effects, less work has focused on identifying belowground impacts. Bacteria play critical roles in ecosystem processes and identifying how anthropogenic N impacts bacterial communities may elucidate how critical microbially-mediated ecosystem functions are altered by N additions. In order to connect changes in soil processes to changes in the microbial community, we need to first determine if the changes are consistent across different soil types and ecosystems. We assessed the patterns of N effects across a variety of ecosystems in two ways. First, utilizing long-term experimental N gradients at Cedar Creek LTER, MN and Kellogg Biological Station LTER, MI, we examined the response of microbial communities to anthropogenic N additions. Using high-throughput pyrosequencing techniques we quantified changes in soil microbial communities across the nitrogen gradients. We observed strong directional shifts in community composition at both sites; N fertilization consistently impacted both the phylogenetic and taxonomic structure of soil bacterial community structure in a predictable manner regardless of ecosystem type. For example, at both sites Acidobacteria experienced significant declines as nitrogen increased, while other groups such as Actinobacteria and Bacteroidetes increased in relative abundance. Our results suggest that bacterial communities across these N fertility gradients are structured by either nitrogen and/or soil carbon availability, rather than by shifts in the plant community or soil pH indirectly associated with the elevated nitrogen inputs. Still, this field-work does not incorporate changes in soil processes (e.g. soil respiration) or microbial activity (e.g. microbial biomass and extracellular enzyme activity), or separate N from C effects. To

  16. The Extracellular Matrix in Photosynthetic Mats: A Cyanobacterial Gingerbread House

    Science.gov (United States)

    Stuart, R.; Stannard, W.; Bebout, B.; Pett-Ridge, J.; Mayali, X.; Weber, P. K.; Lipton, M. S.; Lee, J.; Everroad, R. C.; Thelen, M.

    2014-12-01

    Hypersaline laminated cyanobacterial mats are excellent model systems for investigating photoautotrophic contributions to biogeochemical cycling on a millimeter scale. These self-sustaining ecosystems are characterized by steep physiochemical gradients that fluctuate dramatically on hour timescales, providing a dynamic environment to study microbial response. However, elucidating the distribution of energy from light absorption into biomass requires a complete understanding of the various constituents of the mat. Extracellular polymeric substances (EPS), which can be composed of proteins, polysaccharides, lipids and DNA are a major component of these mats and may function in the redistribution of nutrients and metabolites within the community. To test this notion, we established a model mat-building culture for comparison with the phylogenetically diverse natural mat communities. In these two systems we determined how proteins and glycans in the matrix changed as a function of light and tracked nutrient flow from the matrix. Using mass spectrometry metaproteomics analysis, we found homologous proteins in both field and culture extracellular matrix that point to cyanobacterial turnover of amino acids, inorganic nutrients, carbohydrates and nucleic acids from the EPS. Other abundant functions identified included oxidative stress response from both the cyanobacteria and heterotrophs and cyanobacterial structural proteins that may play a role in mat cohesion. Several degradative enzymes also varied in abundance in the EPS in response to light availability, suggesting active secretion. To further test cyanobacterial EPS turnover, we generated isotopically-labeled EPS and used NanoSIMS to trace uptake of this labeled EPS. Our findings suggest Cyanobacteria may facilitate nutrient transfer to other groups, as well as uptake of their own products through degradation of EPS components. This work provides evidence for the essential roles of EPS for storage, structural

  17. Rapid method using two microbial enzymes for detection of L-abrine in food as a marker for the toxic protein abrin.

    Science.gov (United States)

    Dodge, Anthony G; Carrasquillo, Kelvin; Rivera, Luis; Xu, Lei; Wackett, Lawrence P; Sadowsky, Michael J

    2015-03-01

    Abrin is a toxic protein produced by the ornamental plant Abrus precatorius, and it is of concern as a biothreat agent. The small coextracting molecule N-methyl-l-tryptophan (l-abrine) is specific to members of the genus Abrus and thus can be used as a marker for the presence or ingestion of abrin. Current methods for the detection of abrin or l-abrine in foods and other matrices require complex sample preparation and expensive instrumentation. To develop a fast and portable method for the detection of l-abrine in beverages and foods, the Escherichia coli proteins N-methyltryptophan oxidase (MTOX) and tryptophanase were expressed and purified. The two enzymes jointly degraded l-abrine to products that included ammonia and indole, and colorimetric assays for the detection of those analytes in beverage and food samples were evaluated. An indole assay using a modified version of Ehrlich's/Kovac's reagent was more sensitive and less subject to negative interferences from components in the samples than the Berthelot ammonia assay. The two enzymes were added into food and beverage samples spiked with l-abrine, and indole was detected as a degradation product, with the visual lower detection limit being 2.5 to 10.0 μM (∼0.6 to 2.2 ppm) l-abrine in the samples tested. Results could be obtained in as little as 15 min. Sample preparation was limited to pH adjustment of some samples. Visual detection was found to be about as sensitive as detection with a spectrophotometer, especially in milk-based matrices.

  18. DNA is an antimicrobial component of neutrophil extracellular traps.

    Directory of Open Access Journals (Sweden)

    Tyler W R Halverson

    2015-01-01

    Full Text Available Neutrophil extracellular traps (NETs comprise an ejected lattice of chromatin enmeshed with granular and nuclear proteins that are capable of capturing and killing microbial invaders. Although widely employed to combat infection, the antimicrobial mechanism of NETs remains enigmatic. Efforts to elucidate the bactericidal component of NETs have focused on the role of NET-bound proteins including histones, calprotectin and cathepsin G protease; however, exogenous and microbial derived deoxyribonuclease (DNase remains the most potent inhibitor of NET function. DNA possesses a rapid bactericidal activity due to its ability to sequester surface bound cations, disrupt membrane integrity and lyse bacterial cells. Here we demonstrate that direct contact and the phosphodiester backbone are required for the cation chelating, antimicrobial property of DNA. By treating NETs with excess cations or phosphatase enzyme, the antimicrobial activity of NETs is neutralized, but NET structure, including the localization and function of NET-bound proteins, is maintained. Using intravital microscopy, we visualized NET-like structures in the skin of a mouse during infection with Pseudomonas aeruginosa. Relative to other bacteria, P. aeruginosa is a weak inducer of NETosis and is more resistant to NETs. During NET exposure, we demonstrate that P. aeruginosa responds by inducing the expression of surface modifications to defend against DNA-induced membrane destabilization and NET-mediated killing. Further, we show induction of this bacterial response to NETs is largely due to the bacterial detection of DNA. Therefore, we conclude that the DNA backbone contributes both to the antibacterial nature of NETs and as a signal perceived by microbes to elicit host-resistance strategies.

  19. Electricity Generation of Surplus Sludge Microbial Fuel Cells Enhanced by Additional Enzyme%外加酶强化剩余污泥微生物燃料电池产电特性的研究

    Institute of Scientific and Technical Information of China (English)

    杨慧; 刘志华; 李小明; 杨麒; 方丽; 黄华军; 曾光明; 李硕

    2012-01-01

    以剩余污泥作为接种液和基质,探讨了外加酶(中性蛋白酶、α-淀粉酶)强化单室型剩余污泥微生物燃料电池产电效率的可行性,研究了酶投加量对微生物燃料电池的产电特性及剩余污泥减量的影响.结果表明,在相同条件下,实验组产生的最大功率密度远远高于对照组; 当酶的总投加量为10 mg·g-1时,最大输出功率密度及污泥水解效率达到最大,即中性蛋白酶组的最大功率密度、库仑效率、TCOD去除率、TSS去除率、VSS去除率分别为507 mW·m-2、3.98%、88.31%、83.18%、89.03%,而α-淀粉酶组则分别为700 mW·m-2、5.11%、94.09%、98.02%、98.80%.本实验采用向剩余污泥中投加酶的方法,成功增强了微生物燃料电池的产电效率,同时对剩余污泥有效地进行了处理,为微生物燃料电池的实际应用提供了新途径.%In this paper the feasibility of enhanced electricity generation of microbial fuel cell fed surplus sludge by additional enzymes (neutral protease and α-amylase) was discussed. The effect of dosage of additional enzyme on characteristics of electricity generation of the surplus sludge microbial fuel cell(SSMFC)and the reduction of surplus sludge were investigated. The results indicated that the maximum output power destiny of the group of experiment was higher than that of control under the same condition. Moreover, the maximum output power density, coulomb efficiency, efficiency of reducing TCOD, efficiency of reducing TSS and efficiency of reducing VSS reached up to 507 W·m-2(700 mW·m-2),3.98%(5.11%),88.31%(94.09%),83.18%(98.02%) and 89.03%(98.80%) respectively for protease(α-amylase) at the dosage of 10 mg·g-1. This study demonstrated that additional enzyme greatly enhanced the electricity generation of MFC with simultaneous accomplishments of sludge treatment, providing a novel approach for the practical application of microbial fuel cell.

  20. Effects of different forest stand improvement models on soil enzyme activities and microbial population%不同林分改造模式对土壤酶活性及微生物数量的影响

    Institute of Scientific and Technical Information of China (English)

    郭雄飞; 陈璇; 黎华寿; 冼丽铧; 董奇妤; 陈红跃

    2015-01-01

    以广东省佛山市南海区的4种宫胁法改造林地、传统法改造林地和不进行林分改造的对照样地为研究对象,对不同样地的土壤酶活性和土壤微生物数量进行研究,以探讨不同林分改造类型的土壤生物学特性。结果显示:不同林分改造类型的林地土壤酶活性差异显著,其中宫胁法2和传统法林地土壤酶活性显著高于其它改造类型,宫胁法2改造林地土壤脲酶、磷酸酶和过氧化氢酶活性均居最高水平,宫胁法3和宫胁法4最低;不同的林分改造措施土壤微生物各生理类群的数量差异显著,但均表现为细菌数量最多,放线菌次之,真菌最少;各改造类型中,宫胁法2在土壤细菌、真菌、放线菌数量和微生物总量中均表现最高,宫胁法1在细菌、真菌和微生物总量均表现最低,说明宫胁法2在增加土壤微生物数量上表现最为显著。因此,宫胁法2最有利于改善土壤生物学特性,从而能创造植被恢复过程中良好的微生态环境。%In order to investigate the improvement effects of soil biological characteristics in different types of forest stand in Nanhai District, Foshan city, Guangdong province (with 4 kinds of Miyawaki methods, traditional transforming method and no improved), the soil enzyme activities and microbial population of the sample plots were studied toifnd out the soil biological properties with different forest transforming types. The results show that soil enzyme activities under different stand improvement models was different, of them Miyawaki method No.2 and traditional method had signiifcantly higher soil enzyme activities than those of other improvement models; The activities of soil urease, phosphatase and catalase in the lands transformed with Miyawaki method No.2 were the highest of all, those of Miyawaki method No.3 and Miyawaki method No.4were the lowest; The soil microbial quantity of different physiological

  1. [Soil soluble organic matter, microbial biomass, and enzyme activities in forest plantations in degraded red soil region of Jiangxi Province, China].

    Science.gov (United States)

    Jiang, Yu-mei; Chen, Cheng-long; Xu, Zhi-hong; Liu, Yuan-qiu; Ouyang, Jing; Wang, Fang

    2010-09-01

    Taking the adjacent 18-year-old pure Pinus massoniana pure forest (I), P. massoniana, Liquidamber fomosana, and Schima superba mixed forest (II), S. superba pure forest (III), L. fomosana (IV) pure forest, and natural restoration fallow land (CK) in Taihe County of Jiangxi Province as test sites, a comparative study was made on their soil soluble organic carbon (SOC) and nitrogen (SON), soil microbial biomass C (MBC) and N (MBN), and soil urease and asparaginase activities. In 0-10 cm soil layer, the pool sizes of SOC, SON, MBC, and MBN at test sites ranged in 354-1007 mg x kg(-1), 24-73 mg x kg(-1), 203-488 mg x kg(-1), and 24-65 mg x kg(-1), and the soil urease and asparaginase activities were 95-133 mg x kg(-1) x d(-1) and 58-113 mg x kg(-1) x d(-1), respectively. There were significant differences in the pool sizes of SOC, SON, MBC, and MBN and the asparaginase activity among the test sites, but no significant difference was observed in the urease activity. The pool sizes of SOC and SON were in the order of IV > CK > III > I > II, those of MBC and MBN were in the order of CK > IV > III > I > II, and asparaginase activity followed the order of IV > CK > III > II > I. With the increase of soil depth, the pool sizes of SOC, SON, MBC, and MBN and the activities of soil asparaginase and urease decreased. In 0-20 cm soil layer, the SOC, SON, MBC, MBN, total C, and total N were highly correlated with each other, soil asparaginase activity was highly correlated with SOC, SON, TSN, total C, total N, MBC, and MBN, and soil urease activity was highly correlated with SON, TSN, total C, MBC and MBN.

  2. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium.

    Science.gov (United States)

    Satyamurthy, P; Vigneshwaran, N

    2013-01-10

    Degradation of cellulose by anaerobic microbial consortium is brought about either by an exocellular process or by secretion of extracellular enzymes. In this work, a novel route for synthesis of nanocellulose is described where in an anaerobic microbial consortium enriched for cellulase producers is used for hydrolysis. Microcrystalline cellulose derived from cotton fibers was subjected to controlled hydrolysis by the anaerobic microbial consortium and the resultant nanocellulose was purified by differential centrifugation technique. The nanocellulose had a bimodal size distribution (43±13 and 119±9 nm) as revealed by atomic force microscopy. A maximum nanocellulose yield of 12.3% was achieved in a span of 7 days. While the conventional process of nanocellulose preparation using 63.5% (w/w) sulfuric acid resulted in the formation of whisker shaped nanocellulose with surface modified by sulfation, controlled hydrolysis by anaerobic microbial consortium yielded spherical nanocellulose also referred to as nano crystalline cellulose (NCC) without any surface modification as evidenced from Fourier transform infrared spectroscopy. Also, it scores over chemo-mechanical production of nanofibrillated cellulose by consuming less energy due to enzyme (cellulase) assisted catalysis. This implies the scope for use of microbial prepared nanocellulose in drug delivery and bio-medical applications requiring bio-compatibility. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The Biodiversity of the Microbiota Producing Heat-Resistant Enzymes Responsible for Spoilage in Processed Bovine Milk and Dairy Products

    Science.gov (United States)

    Machado, Solimar G.; Baglinière, François; Marchand, Sophie; Van Coillie, Els; Vanetti, Maria C. D.; De Block, Jan; Heyndrickx, Marc

    2017-01-01

    Raw bovine milk is highly nutritious as well as pH-neutral, providing the ideal conditions for microbial growth. The microbiota of raw milk is diverse and originates from several sources of contamination including the external udder surface, milking equipment, air, water, feed, grass, feces, and soil. Many bacterial and fungal species can be found in raw milk. The autochthonous microbiota of raw milk immediately after milking generally comprises lactic acid bacteria such as Lactococcus, Lactobacillus, Streptococcus, and Leuconostoc species, which are technologically important for the dairy industry, although they do occasionally cause spoilage of dairy products. Differences in milking practices and storage conditions on each continent, country and region result in variable microbial population structures in raw milk. Raw milk is usually stored at cold temperatures, e.g., about 4°C before processing to reduce the growth of most bacteria. However, psychrotrophic bacteria can proliferate and contribute to spoilage of ultra-high temperature (UHT) treated and sterilized milk and other dairy products with a long shelf life due to their ability to produce extracellular heat resistant enzymes such as peptidases and lipases. Worldwide, species of Pseudomonas, with the ability to produce these spoilage enzymes, are the most common contaminants isolated from cold raw milk although other genera such as Serratia are also reported as important milk spoilers, while for others more research is needed on the heat resistance of the spoilage enzymes produced. The residual activity of extracellular enzymes after high heat treatment may lead to technological problems (off flavors, physico-chemical instability) during the shelf life of milk and dairy products. This review covers the contamination patterns of cold raw milk in several parts of the world, the growth potential of psychrotrophic bacteria, their ability to produce extracellular heat-resistant enzymes and the consequences for

  4. The Biodiversity of the Microbiota Producing Heat-Resistant Enzymes Responsible for Spoilage in Processed Bovine Milk and Dairy Products.

    Science.gov (United States)

    Machado, Solimar G; Baglinière, François; Marchand, Sophie; Van Coillie, Els; Vanetti, Maria C D; De Block, Jan; Heyndrickx, Marc

    2017-01-01

    Raw bovine milk is highly nutritious as well as pH-neutral, providing the ideal conditions for microbial growth. The microbiota of raw milk is diverse and originates from several sources of contamination including the external udder surface, milking equipment, air, water, feed, grass, feces, and soil. Many bacterial and fungal species can be found in raw milk. The autochthonous microbiota of raw milk immediately after milking generally comprises lactic acid bacteria such as Lactococcus, Lactobacillus, Streptococcus, and Leuconostoc species, which are technologically important for the dairy industry, although they do occasionally cause spoilage of dairy products. Differences in milking practices and storage conditions on each continent, country and region result in variable microbial population structures in raw milk. Raw milk is usually stored at cold temperatures, e.g., about 4°C before processing to reduce the growth of most bacteria. However, psychrotrophic bacteria can proliferate and contribute to spoilage of ultra-high temperature (UHT) treated and sterilized milk and other dairy products with a long shelf life due to their ability to produce extracellular heat resistant enzymes such as peptidases and lipases. Worldwide, species of Pseudomonas, with the ability to produce these spoilage enzymes, are the most common contaminants isolated from cold raw milk although other genera such as Serratia are also reported as important milk spoilers, while for others more research is needed on the heat resistance of the spoilage enzymes produced. The residual activity of extracellular enzymes after high heat treatment may lead to technological problems (off flavors, physico-chemical instability) during the shelf life of milk and dairy products. This review covers the contamination patterns of cold raw milk in several parts of the world, the growth potential of psychrotrophic bacteria, their ability to produce extracellular heat-resistant enzymes and the consequences for

  5. Extracellular Protease Activity of Enteropathogenic Escherechia coli on Mucin Substrate

    Directory of Open Access Journals (Sweden)

    SRI BUDIARTI

    2007-03-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC causes gastrointestinal infections in human. EPEC invasion was initiated by attachment and aggressive colonization on intestinal surface. Attachment of EPEC alter the intestine mucosal cells. Despite this, the pathogenic mechanism of EPEC infectior has not been fully understood. This research hypothesizes that extracellular proteolytic enzymes is necessary for EPEC colonization. The enzyme is secreted into gastrointestinal milieu and presumably destroy mucus layer cover the gastrointestinal tract. The objective of this study was to assay EPEC extracellular protease enzyme by using mucin substrate. The activity of EPEC extracellular proteolytic enzyme on 1% mucin substrate was investigated. Non-pathogenic E. coli was used as a negative control. Positive and tentative controls were Yersinia enterocolitica and Salmonella. Ten EPEC strains were assayed, seven of them were able to degrade mucin, and the highest activity was produced by K1.1 strain. Both positive and tentative controls also showed the ability to digest 0.20% mucin.

  6. 钒对土壤微生物生物量和酶活性的影响%Impact of Vanadium on Enzyme Activity and Microbial Biomass in Soils

    Institute of Scientific and Technical Information of China (English)

    田丽燕; 黄仁豪

    2013-01-01

    This study aimed to investigate the impact of vanadium at different concentration on enzyme activity and microbial biomass in soils.[Method] Using pot experiments in the growth cabinet,we would like to investigate the changes of the soil enzyme activity and microbial biomass at different growing stages of rape (Brassica juncea L.) at different soil vanadium concentrations (soil background value was 147 mg/kg,spiked with 0,50,100,150,250 and 500 mg/kg of exogenous vanadium).[Result] Among all enzymes examined,polyphenol oxidase was most sensitive to soil vanadium.Addition of 50 mg/kg vanadium decreased its activity up to 56% of the control probably due to the vanadium toxicity.In comparison,the activities of sucrase,urease and catalase was less affected by soil vanadium.Surprisingly,the activity of sucrase,urease and catalase at the rape seedling stage differed significantly from at the maturity stage,highlighting the potential impact of plant growth on the vanadium-soil enzyme interaction.Different soil vanadium concentrations led to increases of microbial biomass to different extents.However,the correlation between soil microbial biomass carbon and phosphorus with vanadium concentrations was insignificant.This revealed that the presence of additional factors (eg.plant) affected soil microbial biomass carbon and phosphorus aside from soil vanadium.[Conclusion] Polyphenol oxidase may be considered as an indicator of soil vanadium contamination.Due to the highly complicated interaction between vanadium and soil biological activities during plant growth,more investigations are required to reveal the mechanisms beyond our findings here.%[目的]研究钒对土壤微生物生物量和酶活性的影响.[方法]采用盆栽试验,设置6个水平的外源钒添加处理(0、50、100、150、250,、500 mg/kg),测定不同钒浓度在油菜(Brassica juncea L.)生长的不同阶段对土壤微生物生物量和酶活性的影响.[结果]多酚氧化酶活性随钒浓度

  7. 控释肥膜壳对土壤酶活性及微生物量碳氮磷的影响%Effects of Controlled-Release Fertilizer Residual Coating on Enzyme and Microbial Biomass Carbon Nitrogen Phosphorus

    Institute of Scientific and Technical Information of China (English)

    孔静; 刘双; 徐林林; 董元杰; 王艳华

    2012-01-01

    选用硫膜和树脂膜两种肥料膜壳,每种设置3个浓度梯度,研究了控释肥膜壳对土壤酶活性及微生物量碳氮磷的影响。结果表明,施用硫膜和树脂膜一定程度上对土壤生物学性质产生了影响。膜壳对土壤酶活性的影响主要表现在对脲酶和过氧化氢酶活性上,而对土壤磷酸酶活性影响不大。成熟期施用硫膜和树脂膜处理显著提高了土壤脲酶活性,这与结荚期有所不同,说明硫膜能提高花生成熟期土壤脲酶活性。树脂膜和硫膜处理均以中等量(2g/kg)处理时微生物量碳和氮含量最大,施用控释肥残膜处理显著降低了微生物量磷含量。%Sulfur film and resin film were used in this study, and each membrane shell was set by three concent.ration gradients. We studied the effects of the membrane shell on soil enzyme activities and microbial biomass carbon nitrogen and phosphorus. The results showed that application of sulfur film and resin film caused a certain extent effect on soil biological properties and the membrane shell caused a significantly effect on the urease and catalase activities, and little effect on soil phosphatase activity. At maturity stage, the sulfur mem- brane treatments significantly increased soil urease activity, which was different from the podding stage. was biggest of microbial biomass carbon and nitrogen content when the aoplication rate was moderate There (2g/kg). In addition, application of sulfur film and resin film significantly reduced the microbial biomass phosphorus content.

  8. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources

    Directory of Open Access Journals (Sweden)

    Maria eMooshammer

    2014-02-01

    Full Text Available Terrestrial microbial decomposer communities thrive on a wide range of organic matter types that rarely ever meet their elemental demands. In this review we synthesize the current state-of-the-art of microbial adaptations to resource stoichiometry, in order to gain a deeper understanding of the interactions between heterotrophic microbial communities and their chemical environment. The stoichiometric imbalance between microbial communities and their organic substrates generally decreases from wood to leaf litter and further to topsoil and subsoil organic matter. Microbial communities can respond to these imbalances in four ways: first, they adapt their biomass composition towards their resource in a non-homeostatic behaviour. Such changes are, however, only moderate, and occur mainly because of changes in microbial community structure and less so due to cellular storage of elements in excess. Second, microbial communities can mobilize resources that meet their elemental demand by producing specific extracellular enzymes, which, in turn, is restricted by the C and N requirement for enzyme production itself. Third, microbes can regulate their element use efficiencies (ratio of element invested in growth over total element uptake, such that they release elements in excess depending on their demand (e.g., respiration and N mineralization. Fourth, diazotrophic bacteria and saprotrophic fungi may trigger the input of external N and P to decomposer communities. Theoretical considerations show that adjustments in element use efficiencies may be the most important mechanism by which microbes regulate their biomass stoichiometry. This review summarizes different views on how microbes cope with imbalanced supply of C, N and P, thereby providing a framework for integrating and linking microbial adaptation to resource imbalances to ecosystem scale fluxes across scales and ecosystems.

  9. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  10. Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity

    Directory of Open Access Journals (Sweden)

    Abdullah A Gharamah

    2014-01-01

    Full Text Available Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2, sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin. Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.

  11. Bacterial and fungal keratitis in Upper Egypt: in vitro screening of enzymes, toxins and antifungal activity.

    Science.gov (United States)

    Gharamah, Abdullah A; Moharram, Ahmed M; Ismail, Mady A; Al-Hussaini, Ashraf K

    2014-02-01

    This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2), sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin). Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.

  12. Soil microbial responses to forest floor litter manipulation and nitrogen addition in a mixed-wood forest of northern China.

    Science.gov (United States)

    Sun, Xiao-Lu; Zhao, Jing; You, Ye-Ming; Jianxin Sun, Osbert

    2016-01-14

    Changes in litterfall dynamics and soil properties due to anthropogenic or natural perturbations have important implications to soil carbon (C) and nutrient cycling via microbial pathway. Here we determine soil microbial responses to contrasting types of litter inputs (leaf vs. fine woody litter) and nitrogen (N) deposition by conducting a multi-year litter manipulation and N addition experiment in a mixed-wood forest. We found significantly higher soil organic C, total N, microbial biomass C (MBC) and N (MBN), microbial activity (MR), and activities of four soil extracellular enzymes, including β-glucosidase (BG), N-acetyl-β-glucosaminidase (NAG), phenol oxidase (PO), and peroxidase (PER), as well as greater total bacteria biomass and relative abundance of gram-negative bacteria (G-) community, in top soils of plots with presence of leaf litter than of those without litter or with presence of only fine woody litter. No apparent additive or interactive effects of N addition were observed in this study. The occurrence of more labile leaf litter stimulated G-, which may facilitate microbial community growth and soil C stabilization as inferred by findings in literature. A continued treatment with contrasting types of litter inputs is likely to result in divergence in soil microbial community structure and function.

  13. The Isolation,Identification and Extracellular Enzyme Analysis of a Pathogen from Diseased Giant Salamander%大鲵源弗氏柠檬酸杆菌的分离鉴定及胞外酶活性研究

    Institute of Scientific and Technical Information of China (English)

    曹朕娇; 丁诗华; 凌空; 金娟; 吴兴镇

    2016-01-01

    To isolate the pathogen of diseased giant salamander A ndrias davidianus ,identify the bacteria species ,and determined its several extracellular enzymatic activities ,a bacteria stain (TNL12) was separa‐ted from the liver of diseased individuals .The morphological ,physiological and biochemical characteris‐tics ,and 16S rDNA sequence were analyzed for species identification .Its pathogenicity was tested by artifi‐cial infection .The extracellular enzymatic activities were detected by plate method .The results showed that the bacteria strain was Gram‐negative short bacillus without spores ,and the physiological and bio‐chemical characteristics were consistent with Citrobacter freundii .Its 16S rDNA sequence shared high ho‐mology of 99% with Citrobacter freundii ,and was in the same cluster as Citrobacter freundii on the phy‐logenetic tree .Artificial infection with the bacteria to healthy frog and giant salamander induced the same diseased symptoms as occurred naturally .The pathogen produced lecithinase and amylase ,but no activity of lipases ,proteases ,gelatinase ,and urease were detected .In conclusion ,the bacteria stain isolated from diseased giant salamander was Citrobacter freundii ,which showed strong pathogenicity to giant salaman‐der .%为了确定重庆武隆大鲵养殖场患病大鲵的病原菌,并进行菌种鉴定及胞外酶活性研究,从具有典型症状的病鲵肝脏分离出一株菌株 TNL12,根据形态学特征、生理生化特性及16S rDNA 分析对菌株进行种类鉴定,通过人工感染试验确定病原菌株的致病性,利用平板法检测胞外酶活性.结果显示,所获菌株为革兰氏阴性短杆菌,无芽孢,其生理生化特性与弗氏柠檬酸杆菌一致.16S rDNA 分析表明,TNL12与弗氏柠檬酸杆菌的同源性为99%,在系统发育树上与弗氏柠檬酸杆菌聚为一支.该病原菌可引起健康青蛙、大鲵出现感染症状,且感染症状与自然发

  14. Microbial transformation of synthetic estrogen 17alpha-ethinylestradiol.

    Science.gov (United States)

    Cajthaml, Tomás; Kresinová, Zdena; Svobodová, Katerina; Sigler, Karel; Rezanka, Tomás

    2009-12-01

    Natural estrogens such as estrone, 17beta-estradiol, estriol, and the particularly recalcitrant synthetic estrogen 17alpha-ethinylestradiol used as oral contraceptive, accumulate in the environment and may give rise to health problems. The processes participating in their removal from soil, wastewater, water-sediments, groundwater-aquifer material, and wastewater or sewage treatment plant effluents may involve the action of bacterial and microbial consortia, and in some cases fungi and algae. This review discusses the different efficiencies of bacterial degradation of 17alpha-ethinylestradiol under aerobic and anaerobic conditions, the role of sulfate-, nitrate-, and iron-reducing conditions in anaerobic degradation, and the role of sorption. The participation of autotrophic ammonia oxidizing bacteria and heterotrophic bacteria in cometabolic degradation of estrogens, the estrogen-degrading action of ligninolytic fungi and their extracellular enzymes (lignin peroxidase, manganese-dependent peroxidase, versatile peroxidase, laccase), and of algae are discussed in detail.

  15. Extracellular Lipase and Protease Production from a Model Drinking Water Bacterial Community Is Functionally Robust to Absence of Individual Members.

    Directory of Open Access Journals (Sweden)

    Graham G Willsey

    Full Text Available Bacteria secrete enzymes into the extracellular space to hydrolyze macromolecules into constituents that can be imported for microbial nutrition. In bacterial communities, these enzymes and their resultant products can be modeled as community property. Our goal was to investigate the impact of individual community member absence on the resulting community production of exoenzymes (extracellular enzymes involved in lipid and protein hydrolysis. Our model community contained nine bacteria isolated from the potable water system of the International Space Station. Bacteria were grown in static conditions individually, all together, or in all combinations of eight species and exoproduct production was measured by colorimetric or fluorometric reagents to assess short chain and long chain lipases, choline-specific phospholipases C, and proteases. The exoenzyme production of each species grown alone varied widely, however, the enzyme activity levels of the mixed communities were functionally robust to absence of any single species, with the exception of phospholipase C production in one community. For phospholipase C, absence of Chryseobacterium gleum led to increased choline-specific phospholipase C production, correlated with increased growth of Burkholderia cepacia and Sphingomonas sanguinis. Because each individual species produced different enzyme activity levels in isolation, we calculated an expected activity value for each bacterial mixture using input levels or known final composition. This analysis suggested that robustness of each exoenzyme activity is not solely mediated by community composition, but possibly influenced by bacterial communication, which is known to regulate such pathways in many bacteria. We conclude that in this simplified model of a drinking water bacterial community, community structure imposes constraints on production and/or secretion of exoenzymes to generate a level appropriate to exploit a given nutrient environment.

  16. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  17. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  18. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  19. Enzyme assays.

    Science.gov (United States)

    Reymond, Jean-Louis; Fluxà, Viviana S; Maillard, Noélie

    2009-01-07

    Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest.

  20. An Advance in the Research on Bioremediation of Heavy Metal Pollution by Microbial Extracellular Polymeric Substances%微生物胞外聚合物修复重金属污染研究进展

    Institute of Scientific and Technical Information of China (English)

    张广柱; 董鹏; 王繁业

    2009-01-01

    Extracellular polymeric substances (EPS) of mlcroblal origin are a complex mixture of biopoly-mers comprising polysaccharides, proteins, nucleic acids, uronic acids, humics, lipids, and etc. Functionally, EPS aid in cell-to-cell aggregation, adhesion to substratum, formation of floes, protection from desiccation and resistance to harmful exogenous materials. In addition, the exopolymers serve as bio-sorbing agents by accumulating nutrients from the surrounding environment and also play a crucial role in bio-sorption of heavy metals. Being poly-anionic in nature, EPS form complexes with metal cations resulting in metal immobilization. Moreover, enzymatic activities in EPS also assist detoxification of heavy metals by transformation and subsequent precipitation. Structures and functions of EPS were summarised focusing on their formation, separation and composition. Cationic bonding behaviour of EPS from various origins as well as the mechanism of remedying heavy metal pollution were presented.%微生物胞外聚合物(EPS)是由多糖、蛋白质、核酸、糖羧酸,腐殖质和脂类等生物聚合体组成的复杂混合物.EPS具有聚合细胞、固定基质、形成絮凝、保持水分及阻止有害外源物质等功能.此外,EPS还可作为生物吸附剂来吸附周围环境中营养物质,并且在重金属生物吸附中发挥关键作用.EPS为天然的聚阴离子物质.可固定金属离子形成复合物.EPS中的酶可通过转换和沉淀作用来加速重金属的去毒.文章综述了EPS的结构和功能,重点是其生成、分离、组成,介绍各种来源EPS的阳离子键合性能,及其重金属修复机理.

  1. Extracellular Gd-CA

    DEFF Research Database (Denmark)

    Thomsen, Henrik S; Marckmann, Peter

    2008-01-01

    Until recently it was believed that extracellular gadolinium-based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium-based contrast agents may trig the development of ...

  2. Isolation of Microsporum gypseum in soil samples from different geographical regions of brazil, evaluation of the extracellular proteolytic enzymes activities (keratinase and elastase) and molecular sequencing of selected strains

    Science.gov (United States)

    Giudice, Mauro Cintra; Reis-Menezes, Adriana Araújo; Rittner, Glauce Mary Gomes; Mota, Adolfo José; Gambale, Walderez

    2012-01-01

    A survey of Microsporum gypseum was conducted in soil samples in different geographical regions of Brazil. The isolation of dermatophyte from soil samples was performed by hair baiting technique and the species were identified by morphology studies. We analyzed 692 soil samples and the recuperating rate was 19.2%. The activities of keratinase and elastase were quantitatively performed in 138 samples. The sequencing of the ITS region of rDNA was performed in representatives samples. M. gypseum isolates showed significant quantitative differences in the expression of both keratinase and elastase, but no significant correlation was observed between these enzymes. The sequencing of the representative samples revealed the presence of two teleomorphic species of M. gypseum (Arthroderma gypseum and A. incurvatum). The enzymatic activities may play an important role in the pathogenicity and a probable adaptation of this fungus to the animal parasitism. Using the phenotypical and molecular analysis, the Microsporum identification and their teleomorphic states will provide a useful and reliable identification system. PMID:24031904

  3. Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources.

    Science.gov (United States)

    Resat, Haluk; Bailey, Vanessa; McCue, Lee Ann; Konopka, Allan

    2012-05-01

    We have developed a new kinetic model to study how microbial dynamics are affected by the heterogeneity in the physical structure of the environment and by different strategies for hydrolysis of polymeric carbon. The hybrid model represented the dynamics of substrates and enzymes using a continuum representation and the dynamics of the cells were modeled individually. Individual-based biological model allowed us to explicitly simulate microbial diversity, and to model cell physiology as regulated via optimal allocation of cellular resources to enzyme synthesis, control of growth rate by protein synthesis capacity, and shifts to dormancy. This model was developed to study how microbial community functioning is influenced by local environmental conditions in heterogeneous media such as soil and by the functional attributes of individual microbes. Microbial community dynamics were simulated at two spatial scales: micro-pores that resemble 6-20-μm size portions of the soil physical structure and in 111-μm size soil aggregates with a random pore structure. Different strategies for acquisition of carbon from polymeric cellulose were investigated. Bacteria that express membrane-associated hydrolase had different growth and survival dynamics in soil pores than bacteria that release extracellular hydrolases. The kinetic differences suggested different functional niches for these two microbe types in cellulose utilization. Our model predicted an emergent behavior in which co-existence of membrane-associated hydrolase and extracellular hydrolases releasing organisms led to higher cellulose utilization efficiency and reduced stochasticity. Our analysis indicated that their co-existence mutually benefits these organisms, where basal cellulose degradation activity by membrane-associated hydrolase-expressing cells shortened the soluble hydrolase buildup time and, when enzyme buildup allowed for cellulose degradation to be fast enough to sustain exponential growth, all the

  4. Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation

    DEFF Research Database (Denmark)

    Iversen, Marie B; Gottfredsen, Randi H; Larsen, Ulrike G

    2016-01-01

    Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages and polymor......Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages......), the protein was released into the extracellular space and found to associate with DNA released from stimulated cells. The functional consequences were evaluated by the use of neutrophils isolated from wild-type and EC-SOD KO mice, and showed that EC-SOD release significantly reduce the level of superoxide...

  5. A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity.

    Science.gov (United States)

    Meddeb-Mouelhi, Fatma; Moisan, Jessica Kelly; Beauregard, Marc

    2014-11-01

    Identification of microorganisms for the production of carbohydrolytic enzymes is extremely important given the increased demand for these enzymes in many industries. To this end, dye-polysaccharide interactions which provide a visual indication of polymer hydrolysis (clear zones or halos) have been used for decades. For the detection of extracellular cellulase or xylanase activity many laboratories use Gram's iodine as the chromogenic dye, as it is a more rapid initial screening method compared to the use of other dyes. Here, we compared Gram's iodine and Congo red as indicators of polysaccharide hydrolysis. We attempted to detect cellulase activity using carboxymethylcellulose, and xylanase activity using birchwood xylan, in fourteen uncharacterized bacteria isolated from wood chips. Our results indicate that Gram's iodine may lead to identification of false positives in a typical screening protocol and that Congo red allows for avoidance of such pitfall. Congo red allowed detection of cellulase activity from live microbial colonies but not Gram's iodine. To confirm this, detection of enzymatic activity was also assessed using cell-free enzyme preparations. Congo red was found to be reliable in detecting cellulase activity with isolated enzymes preparations. Under the same conditions, neither of these dyes detected xylanase activity, despite independent evidence of xylanase activity for one of the preparations. We detected xylanase activity for this particular enzyme preparation using a coloured derivative of xylan (Remazol Brillant Blue R-xylan adduct) that respond to xylan hydrolysis. Our results suggest that methods that rely on interactions between a dye (Congo red or Gram's iodine) and a polymeric substrate (carboxymethylcellulose or birchwood xylan) for indirect detection of hydrolysis may require the use of relevant controls and independent confirmation of enzymatic activities.

  6. Characterization of novel extracellular protease produced by marine bacterial isolate from the Indian Ocean

    Directory of Open Access Journals (Sweden)

    Rachana Fulzele

    2011-12-01

    Full Text Available Out of the vast pool of enzymes, proteolytic enzymes from microorganisms are the most widely used in different industries such as detergent, food, peptide production etc. Several marine microorganisms are known to produce proteases with commercially desirable characteristics. We have isolated nine different cultures from marine samples of the Indian Ocean. All of them were i motile ii rod shaped iii non spore forming iv catalase and amylase positive v able to grow in presence of 10 % NaCl. They produced acid from glucose, fructose and maltose and grew optimally at 30 0C temperature and pH 7.0-8.0. None of them could grow above 45 0C and below 15 0C. Only one of them (MBRI 7 exhibited extracellular protease activity on skim milk agar plates. Based on 16S rDNA sequencing, it belonged to the genus Marinobacter (98% sequence similarity, 1201 bp. The cell free extract was used to study effects of temperature and pH on protease activity. The optimum temperature and pH for activity were found to be 40 0C and 7.0 respectively. The crude enzyme was stable at temperature range of 30-80 0C and pH 5.0-9.0. It retained 60 % activity at 80 0C after 4 h and more than 70 % activity at 70 0C after 1 h. D value was found to be 342 minutes and 78 minutes for 40 0C and 80 0C respectively. Interestingly the enzyme remained 50 % active at pH 9.0 after 1 h. Comparison with other proteases from different microbial sources indicated that the neutral protease from the halotolerant marine isolate MBRI 7 is a novel enzyme with high thermostability.

  7. Enzyme recovery using reversed micelles.

    NARCIS (Netherlands)

    Dekker, M.

    1990-01-01

    The objective of this study was to develop a liquid-liquid extraction process for the recovery of extracellular enzymes. The potentials of reaching this goal by using reversed micelles in an organic solvent have been investigated.Reversed micelles are aggregates of surfactant molecules containing an

  8. Effects of Microbial Agents on Enzyme Activities in Soil After Continuous Cropping of Flue-cured Tobacco%微生物菌剂对植烟连作土壤酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    刘红杰; 习向银; 刘朝科; 熊淑萍; 罗维; 谢小波; 张重义

    2011-01-01

    采用盆栽试验,研究了微生物复合肥、摩西球囊霉、幼套球囊霉、根内球囊霉对烤烟连作土壤酶活性的影响.结果表明:1)微生物复合肥、摩西球囊霉和根内球囊霉处理的脲酶、磷酸酶、蔗糖酶和过氧化氢酶活性,幼套球囊霉处理的脲酶和磷酸酶活性,CK的脲酶、蔗糖酶和过氧化氢酶活性均在烤烟整个生育期中呈"升-降-升-降"的双峰变化趋势,且它们均在移栽后65 d和98 d时出现活性高峰.2)与CK相比,微生物复合肥、摩西球囊霉、幼套球囊霉均能不同程度地提高连作土壤中蔗糖酶、脲酶、磷酸酶和过氧化氢酶活性,而根内球囊霉只对连作土壤中蔗糖酶、磷酸酶和过氧化氢酶活性有明显的提高作用.综合评价不同微生物菌剂处理对烤烟连作土壤中4种酶活性的影响,认为微生物复合肥、摩西球囊霉改善烤烟连作土壤酶活性的效果较好,其次为幼套球囊霉和根内球囊霉.3)4种酶的相关分析显示,蔗糖酶与磷酸酶和过氧化氢酶与脲酶呈极显著正相关,脲酶与磷酸酶、蔗糖酶呈显著正相关,表明4种酶之间在酶促反应时存在着相互促进的作用.%The response of enzyme activities in the soil after continuous cropping of flue-cured tobacco, brought about by microbial agents, including microbe-manure, Glomus mosseae, Glomus etunicatum and Glomus intraradices, was studied with pot experiments.The results showed that: 1) The urease, phosphatase, invertase and catalase activities of microbe-manure, Glomus mosseae and Glomus intraradices treatments, the urease and phosphatase activities of Glomus etunicatum treatment , and the urease , invertase and catalaseactivities of the control displayed the same double-peak profiles throughout the growth Mage of tobacco plants, and the two peaks appeared respectively at 65d and 98d after transplanting.2) Comparing with the control, the activities of the mentioned enzymes in the soil

  9. Advances in microbial amylases.

    Science.gov (United States)

    Pandey, A; Nigam, P; Soccol, C R; Soccol, V T; Singh, D; Mohan, R

    2000-04-01

    This review makes a comprehensive survey of microbial amylases, i.e. alpha-amylase, beta-amylase and glucoamylase. Amylases are among the most important enzymes and are of great significance in present-day biotechnology. Although they can be derived from several sources, such as plants, animals and micro-organisms, the enzymes from microbial sources generally meet industrial demands. Microbial amylases could be potentially useful in the pharmaceutical and fine-chemical industries if enzymes with suitable properties could be prepared. With the advent of new frontiers in biotechnology, the spectrum of amylase application has widened in many other fields, such as clinical, medicinal and analytical chemistries, as well as their widespread application in starch saccharification and in the textile, food, brewing and distilling industries. In this review, after a brief description of the sources of amylases, we discuss the molecular biology of amylases, describing structures, cloning, sequences, and protoplast fusion and mutagenesis. This is followed by sections on their production and finally the properties of various amylases.

  10. Effects of Aluminum Phosphide on Soil Microbial Population and Enzyme Activities%磷化铝对土壤微生物数量和酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    仉欢; 朱玉坤; 乔康; 王开运

    2012-01-01

    Effects of aluminum phosphide (0.1, 1 mg·g-1 and 10 mg·g-1) on soil microbial population and enzyme activities were studied under laboratory control condition. The results indicated that, all concentrations of aluminum phosphide had inhibitory effect on soil bacteria, fungi and actinomyces and the inhibitory effect was more obvious with concentration increased. However, the effect caused by low concentration (0.1 mg·g-1) returned to the control level after a period of treatment. Aluminum phosphide had inhibitory effect on soil urease, and the inhibitory effect increased with the increasing concentration. Low concentration of aluminum phosphide had no significant inhibitory effect on soil invertase, while the treatment with the highest concentration (10 mg·g-1) had the greatest inhibition all the time. All concentrations of aluminum phosphide had inhibitory or stimulatory effect on soil hydrogen peroxidase in the early stage, while the effect returned to the control level on 30 days after treatment. The present data supported the conclusion that aluminum phosphide at the routine dose had certain effect on soil microbial population and enzyme activities, but the effect disappeared and recovered to the control level after a period.%为明确磷化铝对土壤微生物数量和酶活性的影响,采用室内培养的方法,研究了经0.1、1 mg? g4和10 mg?g-1 3个浓度磷化铝熏蒸处理后,供试土壤中微生物数量和土壤酶活性的变化.结果表明,磷化铝处理土壤后,各个浓度的磷化铝对土壤细菌、真菌和放线菌数量具有抑制作用,浓度越高,抑制作用越强,但一段时间后低浓度(0.1 mg?g-1)处理对土壤微生物数量的影响恢复至对照水平.磷化铝对土壤脲酶表现为抑制作用,并随浓度升高而增强;低浓度处理对土壤中的蔗糖酶活性抑制作用不明显,而高浓度(10mg?g-1)处理表现为强烈的抑制作用;各浓度处理初期对土壤过氧化氢酶表现为

  11. Effects of controlled-release fertilizer coating residual on soil microbial quantity and enzyme activity%控释肥残膜对小麦各生育期土壤微生物和酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    刘明; 张民; 杨越超; 程冬冬

    2011-01-01

    为了探明控释肥树脂残膜对土壤环境可能造成的影响,采用小麦池栽试验研究了控释肥树脂残膜对土壤有关微生物数量和酶活性的影响。结果表明,控释肥树脂残膜使土壤细菌和放线菌数量分别相对增加了19.01%~62.87%和17.03%~132.39%,土壤脲酶、转化酶、中性磷酸酶活性分别提高了17.39%~85.71%、31.77%~158.40%、35.14%~189.47%,但对过氧化氢酶活性无明显影响。施肥处理(施肥不施残膜和施肥施残膜处理)显著增加了土壤转化酶和中性磷酸酶活性;但对土壤细菌和放线菌数量、过氧化氢%Effects of controlled-release fertilizer(CRF) resin coating residual on microbial quantity and enzyme activity in soil were investigated in winter wheat experiment.The results indicated that with application of CRF resin coating residual,the numbers of bacteria and actinomyces were increased by 19.01%-62.87% and 17.03%-132.39%,respectively.The activities of soil urease,invertase,neutral phosphatase were significantly increased by 17.39%-85.71%,31.77%-158.40%,35.14%-189.47%,respectively,while the soil catalase activity was not affected.The activities of invertase,neutral phosphatase were improved by applying fertilizer to the soil(fertilizer with and without CRF resin coating residual treatments),however,the amounts of bacteria and actinomyces and the activities of catalase,urease were not changed.The amounts of bacteria and actinomyces and the activities of some enzymes could not be restrained under the condition of applying CRF resin coating residual at the range of 90~360 g/m2 in soil.

  12. Assessment of Production of Extracellular Enzymes by Trichoderma spp. For Control of Soybean Root Rot Pathogens (Fusarium oxysporum,Rhizoctonia solani)%木霉菌(胞外水解酶)拮抗大豆根腐病病原菌的机制研究

    Institute of Scientific and Technical Information of China (English)

    邵红涛; 许艳丽

    2006-01-01

    The role of extracellular enzymes by Trichoderma MM35 for control of soybean root rot pathogens(Fusarium oxysporum , Rhizoctonia solani) was assessed in vitro and in vivo. Detective levels of hydrolytic extracellular enzymes were recorded by Trichoderma MM35 using dried F. oxysporum mycelium as C-source in vitro or fresh F. oxysporum mycelium or fresh R.solani mycelium in vivo was found that there were significant increases in chitinase activities by Trichoderma MM35 in soil with inoculation of F. oxysporum. Soil infested with Trichoderma MM35 had significantly elevated chitinase and β-1,3-glueanase activities in presence of R. solani as compared to R. solani control.%通过室内试验与温室试验研究了具有生防能力的木霉菌株Trichoderma MM35所分泌的胞外水解酶在拮抗大豆根腐病病原菌(F.oxysporum、R.solani)中的作用.试验结果表明:以病原菌F.oxysporum烘干的菌丝体作唯一碳源,可以诱导Trichoderma MM35分泌几丁质酶、β-1,3-葡聚糖酶.β-1,3-葡聚糖酶高水平诱导表达在前,几丁质酶诱导表达在后.土壤中接种Trichoderma MM35、F.oxysporum和R.solani之后都能够检测到几丁质酶、β1,3-葡聚糖酶活性.向有病原菌F.oxysporum的土壤中接种Trichoderma MM35,土壤中几丁质酶活性能够显著升高.向有病原菌R.solani的土壤中接种Trichoderma MM35,土壤中的几丁质酶、β-1,3-葡聚糖酶活性都显著升高.

  13. [Detection of enzyme activity in decontaminated spices in industrial use].

    Science.gov (United States)

    Müller, R; Theobald, R

    1995-03-01

    A range of decontaminated species of industrial use have been examined for their enzymes (catalase, peroxidase, amylase, lipase activity). The genuine enzymes remain fully active in irradiated spices, whereas the microbial load is clearly reduced. In contrast steam treated spices no longer demonstrate enzyme activities. Steam treatment offers e.g. black pepper without lipase activity, which can no longer cause fat deterioration. Low microbial load in combination with clearly detectable enzyme activity in spices is an indication for irradiation, whereas, reduced microbial contamination combined with enzyme inactivation indicate steam treatment of raw material.

  14. When directed evolution met ancestral enzyme resurrection.

    Science.gov (United States)

    Alcalde, Miguel

    2017-01-01

    The directed evolution of ancestral -resurrected- enzymes can give a new twist in protein engineering approaches towards more versatile and robust biocatalysts. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Extracellular DNA: the tip of root defenses?

    Science.gov (United States)

    Hawes, Martha C; Curlango-Rivera, Gilberto; Wen, Fushi; White, Gerard J; Vanetten, Hans D; Xiong, Zhongguo

    2011-06-01

    This review discusses how extracellular DNA (exDNA) might function in plant defense, and at what level(s) of innate immunity this process might operate. A new role for extracellular factors in mammalian defense has been described in a series of studies. These studies reveal that cells including neutrophils, eosinophils, and mast cells produce 'extracellular traps' (ETs) consisting of histone-linked exDNA. When pathogens are attracted to such ETs, they are trapped and killed. When the exDNA component of ETs is degraded, trapping is impaired and resistance against invasion is reduced. Conversely, mutation of microbial genes encoding exDNases that degrade exDNA results in loss of virulence. This discovery that exDNases are virulence factors opens new avenues for disease control. In plants, exDNA is required for defense of the root tip. Innate immunity-related proteins are among a group of >100 proteins secreted from the root cap and root border cell populations. Direct tests revealed that exDNA also is rapidly synthesized and exported from the root tip. When this exDNA is degraded by the endonuclease DNase 1, root tip resistance to fungal infection is lost; when the polymeric structure is degraded more slowly, by the exonuclease BAL31, loss of resistance to fungal infection is delayed accordingly. The results suggest that root border cells may function in a manner analogous to that which occurs in mammalian cells.

  16. Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities.

    Science.gov (United States)

    Lee, Myung Hwan; Lee, Seon-Woo

    2013-09-01

    The microbial diversity in soil ecosystems is higher than in any other microbial ecosystem. The majority of soil microorganisms has not been characterized, because the dominant members have not been readily culturable on standard cultivation media; therefore, the soil ecosystem is a great reservoir for the discover