WorldWideScience

Sample records for extracellular metabolite profiling

  1. Metabolic effects of influenza virus infection in cultured animal cells: Intra- and extracellular metabolite profiling

    Directory of Open Access Journals (Sweden)

    Genzel Yvonne

    2010-05-01

    Full Text Available Abstract Background Many details in cell culture-derived influenza vaccine production are still poorly understood and approaches for process optimization mainly remain empirical. More insights on mammalian cell metabolism after a viral infection could give hints on limitations and cell-specific virus production capacities. A detailed metabolic characterization of an influenza infected adherent cell line (MDCK was carried out based on extracellular and intracellular measurements of metabolite concentrations. Results For most metabolites the comparison of infected (human influenza A/PR/8/34 and mock-infected cells showed a very similar behavior during the first 10-12 h post infection (pi. Significant changes were observed after about 12 h pi: (1 uptake of extracellular glucose and lactate release into the cell culture supernatant were clearly increased in infected cells compared to mock-infected cells. At the same time (12 h pi intracellular metabolite concentrations of the upper part of glycolysis were significantly increased. On the contrary, nucleoside triphosphate concentrations of infected cells dropped clearly after 12 h pi. This behaviour was observed for two different human influenza A/PR/8/34 strains at slightly different time points. Conclusions Comparing these results with literature values for the time course of infection with same influenza strains, underline the hypothesis that influenza infection only represents a minor additional burden for host cell metabolism. The metabolic changes observed after12 h pi are most probably caused by the onset of apoptosis in infected cells. The comparison of experimental data from two variants of the A/PR/8/34 virus strain (RKI versus NIBSC with different productivities and infection dynamics showed comparable metabolic patterns but a clearly different timely behavior. Thus, infection dynamics are obviously reflected in host cell metabolism.

  2. Metabolomic Profiling of Extracellular Vesicles and Alternative Normalization Methods Reveal Enriched Metabolites and Strategies to Study Prostate Cancer-Related Changes.

    Science.gov (United States)

    Puhka, Maija; Takatalo, Maarit; Nordberg, Maria-Elisa; Valkonen, Sami; Nandania, Jatin; Aatonen, Maria; Yliperttula, Marjo; Laitinen, Saara; Velagapudi, Vidya; Mirtti, Tuomas; Kallioniemi, Olli; Rannikko, Antti; Siljander, Pia R-M; Af Hällström, Taija Maria

    2017-01-01

    Body fluids are a rich source of extracellular vesicles (EVs), which carry cargo derived from the secreting cells. So far, biomarkers for pathological conditions have been mainly searched from their protein, (mi)RNA, DNA and lipid cargo. Here, we explored the small molecule metabolites from urinary and platelet EVs relative to their matched source samples. As a proof-of-concept study of intra-EV metabolites, we compared alternative normalization methods to profile urinary EVs from prostate cancer patients before and after prostatectomy and from healthy controls. We employed targeted ultra-performance liquid chromatography-tandem mass spectrometry to profile over 100 metabolites in the isolated EVs, original urine samples and platelets. We determined the enrichment of the metabolites in the EVs and analyzed their subcellular origin, pathways and relevant enzymes or transporters through data base searches. EV- and urine-derived factors and ratios between metabolites were tested for normalization of the metabolomics data. Approximately 1 x 1010 EVs were sufficient for detection of metabolite profiles from EVs. The profiles of the urinary and platelet EVs overlapped with each other and with those of the source materials, but they also contained unique metabolites. The EVs enriched a selection of cytosolic metabolites including members from the nucleotide and spermidine pathways, which linked to a number of EV-resident enzymes or transporters. Analysis of the urinary EVs from the patients indicated that the levels of glucuronate, D-ribose 5-phosphate and isobutyryl-L-carnitine were 2-26-fold lower in all pre-prostatectomy samples compared to the healthy control and post-prostatectomy samples (p < 0.05). These changes were only detected from EVs by normalization to EV-derived factors or with metabolite ratios, and not from the original urine samples. Our results suggest that metabolite analysis of EVs from different samples is feasible using a high-throughput platform

  3. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential.

    Science.gov (United States)

    Liu, Lu; Pohnert, Georg; Wei, Dong

    2016-10-20

    Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  4. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-10-01

    Full Text Available Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  5. Suppression of plant defense responses by extracellular metabolites from Pseudomonas syringae pv. tabaci in Nicotiana benthamiana.

    Science.gov (United States)

    Lee, Seonghee; Yang, Dong Sik; Uppalapati, Srinivasa Rao; Sumner, Lloyd W; Mysore, Kirankumar S

    2013-04-18

    Pseudomonas syringae pv. tabaci (Pstab) is the causal agent of wildfire disease in tobacco plants. Several pathovars of Pseudomonas syringae produce a phytotoxic extracellular metabolite called coronatine (COR). COR has been shown to suppress plant defense responses. Interestingly, Pstab does not produce COR but still actively suppresses early plant defense responses. It is not clear if Pstab produces any extracellular metabolites that actively suppress early defense during bacterial pathogenesis. We found that the Pstab extracellular metabolite extracts (Pstab extracts) remarkably suppressed stomatal closure and nonhost hypersensitive response (HR) cell death induced by a nonhost pathogen, P. syringae pv. tomato T1 (Pst T1), in Nicotiana benthamiana. We also found that the accumulation of nonhost pathogens, Pst T1 and P. syringae pv. glycinea (Psgly), was increased in N. benthamiana plants upon treatment with Pstab extracts . The HR cell death induced by Pathogen-Associated Molecular Pattern (INF1), gene-for-gene interaction (Pto/AvrPto and Cf-9/AvrCf-9) and ethanol was not delayed or suppressed by Pstab extracts. We performed metabolite profiling to investigate the extracellular metabolites from Pstab using UPLC-qTOF-MS and identified 49 extracellular metabolites from the Pstab supernatant culture. The results from gene expression profiling of PR-1, PR-2, PR-5, PDF1.2, ABA1, COI1, and HSR203J suggest that Pstab extracellular metabolites may interfere with SA-mediated defense pathways. In this study, we found that Pstab extracts suppress plant defense responses such as stomatal closure and nonhost HR cell death induced by the nonhost bacterial pathogen Pst T1 in N. benthamiana.

  6. Larvicidal activity of extracellular secondary metabolites from a ...

    African Journals Online (AJOL)

    The main objective of this investigation was to find mosquito larvicidal secondary metabolites from a basidiomycete – Stereum species (JO5289) – against Aedes aegypti. The Stereum species (JO5289) was collected in July 2005 from undisturbed habitat in Londiani forest in Rift Valley province, Kenya. Extracellular crude ...

  7. Metabolite Profiling of Red Sea Corals

    KAUST Repository

    Ortega, Jovhana Alejandra

    2016-12-01

    Looking at the metabolite profile of an organism provides insights into the metabolomic state of a cell and hence also into pathways employed. Little is known about the metabolites produced by corals and their algal symbionts. In particular, corals from the central Red Sea are understudied, but interesting study objects, as they live in one of the warmest and most saline environments and can provide clues as to the adjustment of corals to environmental change. In this study, we applied gas chromatography – mass spectrometry (GC–MS) metabolite profiling to analyze the metabolic profile of four coral species and their associated symbionts: Fungia granulosa, Acropora hemprichii, Porites lutea, and Pocillopora verrucosa. We identified and quantified 102 compounds among primary and secondary metabolites across all samples. F. granulosa and its symbiont showed a total of 59 metabolites which were similar to the 51 displayed by P. verrucosa. P. lutea and A. hemprichii both harbored 40 compounds in conjunction with their respective isolated algae. Comparing across species, 28 metabolites were exclusively present in algae, while 38 were exclusive to corals. A principal component and cluster analyses revealed that metabolite profiles clustered between corals and algae, but each species harbored a distinct catalog of metabolites. The major classes of compounds were carbohydrates and amino acids. Taken together, this study provides a first description of metabolites of Red Sea corals and their associated symbionts. As expected, the metabolites of coral hosts differ from their algal symbionts, but each host and algal species harbor a unique set of metabolites. This corroborates that host-symbiont species pairs display a fine-tuned complementary metabolism that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing

  8. Metabolite profiles of common Stemphylium species

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Solfrizzo, Michelle; Visconti, Angelo

    1995-01-01

    Thirty-three isolates of Stemphylium spp. have been analysed for their metabolite profiles. Five metabolites, stemphylin, stemphyloxin II, stemphyperylenol, stemphol and a stemphol related compound, have been detected by high-performance liquid chromatography and thin-layer chromatography and ide...

  9. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  10. Towards Controlling the Glycoform: A Model Framework Linking Extracellular Metabolites to Antibody Glycosylation

    Directory of Open Access Journals (Sweden)

    Philip M. Jedrzejewski

    2014-03-01

    Full Text Available Glycoproteins represent the largest group of the growing number of biologically-derived medicines. The associated glycan structures and their distribution are known to have a large impact on pharmacokinetics. A modelling framework was developed to provide a link from the extracellular environment and its effect on intracellular metabolites to the distribution of glycans on the constant region of an antibody product. The main focus of this work is the mechanistic in silico reconstruction of the nucleotide sugar donor (NSD metabolic network by means of 34 species mass balances and the saturation kinetics rates of the 60 metabolic reactions involved. NSDs are the co-substrates of the glycosylation process in the Golgi apparatus and their simulated dynamic intracellular concentration profiles were linked to an existing model describing the distribution of N-linked glycan structures of the antibody constant region. The modelling framework also describes the growth dynamics of the cell population by means of modified Monod kinetics. Simulation results match well to experimental data from a murine hybridoma cell line. The result is a modelling platform which is able to describe the product glycoform based on extracellular conditions. It represents a first step towards the in silico prediction of the glycoform of a biotherapeutic and provides a platform for the optimisation of bioprocess conditions with respect to product quality.

  11. The Prognostic Value of Brain Extracellular Fluid Nitric Oxide Metabolites After Traumatic Brain Injury

    NARCIS (Netherlands)

    Tisdall, M.M.; Rejdak, K.; Kitchen, N.D.; Smith, M.; Petzold, A.

    2013-01-01

    Background: Nitric oxide (NO) is a compound with both protective and damaging effects on neurons. Quantification of NO metabolites in humans is limited by sample contamination with blood. In vivo cerebral microdialysis may offer an alternative approach as sampling of extracellular fluid (ECF)

  12. Strategies for metabolite profiling based on liquid chromatography.

    Science.gov (United States)

    Saurina, Javier; Sentellas, Sonia

    2017-02-15

    This paper aims at covering the principal strategies based on liquid chromatography (LC) for metabolite profiling in the field of drug discovery and development. The identification of metabolites generated in the organism is an important task during the early stages of preclinical research to define the most proper strategy for optimizing, adjusting metabolic clearance and minimizing bioactivation. An early assessment of the metabolite profile may be critical since metabolites can contribute to pharmacological and/or toxicological effects. The study of metabolites first involves their synthesis/generation and their further characterization and structural elucidation. For such a purpose, both in vitro and in vivo methods are commonly used for the generation of the corresponding metabolites. Next, analytical methods are used to tackle identification and characterization studies. Among the arsenal of techniques available in our labs, we will focus on LC, especially coupled to mass spectrometry (LC-MS), as one of the most powerful approaches for metabolite identification, characterization and quantification. Here, the topic of metabolite profiling based on LC will be addressed and representative examples of different possibilities will be discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. MPINet: Metabolite Pathway Identification via Coupling of Global Metabolite Network Structure and Metabolomic Profile

    Directory of Open Access Journals (Sweden)

    Feng Li

    2014-01-01

    Full Text Available High-throughput metabolomics technology, such as gas chromatography mass spectrometry, allows the analysis of hundreds of metabolites. Understanding that these metabolites dominate the study condition from biological pathway perspective is still a significant challenge. Pathway identification is an invaluable aid to address this issue and, thus, is urgently needed. In this study, we developed a network-based metabolite pathway identification method, MPINet, which considers the global importance of metabolites and the unique character of metabolomic profile. Through integrating the global metabolite functional network structure and the character of metabolomic profile, MPINet provides a more accurate metabolomic pathway analysis. This integrative strategy simultaneously captures the global nonequivalence of metabolites in a pathway and the bias from metabolomic experimental technology. We then applied MPINet to four different types of metabolite datasets. In the analysis of metastatic prostate cancer dataset, we demonstrated the effectiveness of MPINet. With the analysis of the two type 2 diabetes datasets, we show that MPINet has the potentiality for identifying novel pathways related with disease and is reliable for analyzing metabolomic data. Finally, we extensively applied MPINet to identify drug sensitivity related pathways. These results suggest MPINet’s effectiveness and reliability for analyzing metabolomic data across multiple different application fields.

  14. Association between Metabolite Profiles, Metabolic Syndrome and Obesity Status

    Directory of Open Access Journals (Sweden)

    Bénédicte Allam-Ndoul

    2016-05-01

    Full Text Available Underlying mechanisms associated with the development of abnormal metabolic phenotypes among obese individuals are not yet clear. Our aim is to investigate differences in plasma metabolomics profiles between normal weight (NW and overweight/obese (Ov/Ob individuals, with or without metabolic syndrome (MetS. Mass spectrometry-based metabolite profiling was used to compare metabolite levels between each group. Three main principal components factors explaining a maximum of variance were retained. Factor 1’s (long chain glycerophospholipids metabolite profile score was higher among Ov/Ob with MetS than among Ov/Ob and NW participants without MetS. This factor was positively correlated to plasma total cholesterol (total-C and triglyceride levels in the three groups, to high density lipoprotein -cholesterol (HDL-C among participants without MetS. Factor 2 (amino acids and short to long chain acylcarnitine was positively correlated to HDL-C and negatively correlated with insulin levels among NW participants. Factor 3’s (medium chain acylcarnitines metabolite profile scores were higher among NW participants than among Ov/Ob with or without MetS. Factor 3 was negatively associated with glucose levels among the Ov/Ob with MetS. Factor 1 seems to be associated with a deteriorated metabolic profile that corresponds to obesity, whereas Factors 2 and 3 seem to be rather associated with a healthy metabolic profile.

  15. NMR metabolite profiling of Greek grape marc spirits.

    Science.gov (United States)

    Fotakis, Charalambos; Christodouleas, Dionysis; Kokkotou, Katerina; Zervou, Maria; Zoumpoulakis, Panagiotis; Moulos, Panagiotis; Liouni, Maria; Calokerinos, Antony

    2013-06-01

    This (1)H NMR based study profiles metabolites in Greek grape marc distillates, tsipouro and tsikoudia. Eightysix samples of indigenous and international varieties, stemming from major vine growing regions of Greece were investigated. The monitoring protocol addressed the global metabolic profile of untreated samples and accomplished the unambiguous assignment of 35 metabolites. NMR spectra were acquired by applying the robust, sensitive and rapid WET1D NMR pulse sequence, which succeeded to unveil the presence of minor compounds in a high ethanol matrix. PCA classified the samples according to their provenance, incorporating also information related to the variety, vintage year and production process within each formed regional assembly. Metabolites such as fusel alcohols, polyols, ethyl esters, mono- and di-saccharides were associated with the classification of samples. OPLS-DA ascribed to samples of common regional entity characteristic genotypic metabolites and probed to the potential influence of the vintage effect. Finally, metabolite profiling underlined the influence of the fermentation and distillation procedures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Metabolite profiling of CHO cells: Molecular reflections of bioprocessing effectiveness

    NARCIS (Netherlands)

    Sellick, C.A.; Croxford, A.S.; Maqsood, A.R.; Stephens, G.M.; Westerhoff, H.V.; Goodacre, R.; Dickson, A.J.

    2015-01-01

    Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC-MS) analytics to define the molecular loci by which two yield-enhancing feeds

  17. Metabolite profiles of Populus in response to pathogen stress.

    Science.gov (United States)

    Wu, Qiuming; Chen, Min; Zhou, Hailong; Zhou, Xianqing; Wang, Yanwei

    2015-09-25

    Populus canker is a widespread disease that seriously affects the growth and productivity of trees, and may even cause tree death. To assess the metabolic changes in Populus in response to pathogen stress, Populus stems infected or not with Dothiorella gregaria were analyzed by GC-MS. A total of 4, 051 features were detected and 44 metabolites were identified to be changed significantly in Populus upon infection. The identified responsive metabolites include saccharides, alcohols, organic acids, and amino acids and some secondary metabolites and most of the metabolites were detected at increased levels. Responsive metabolites were investigated about their metabolism pathway and the corresponding metabolic networks were further constructed. To our knowledge, this is the first study to identify the metabolite profiles of Populus in response to pathogen stress. The results extend our understanding of the mechanisms involved in the defense of Populus against pathogens and provide a basis for further research on plant defenses. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Differentiating Hepatocellular Carcinoma from Hepatitis C Using Metabolite Profiling

    Directory of Open Access Journals (Sweden)

    Siwei Wei

    2012-10-01

    Full Text Available Hepatocellular carcinoma (HCC accounts for most liver cancer cases worldwide. Contraction of the hepatitis C virus (HCV is considered a major risk factor for liver cancer. In order to identify the risk of cancer, metabolic profiling of serum samples from patients with HCC (n=40 and HCV (n=22 was performed by 1H nuclear magnetic resonance spectroscopy. Multivariate statistical analysis showed a distinct separation of the two patient cohorts, indicating a distinct metabolic difference between HCC and HCV patient groups based on signals from lipids and other individual metabolites. Univariate analysis showed that three metabolites (choline, valine and creatinine were significantly altered in HCC. A PLS-DA model based on these three metabolites showed a sensitivity of 80%, specificity of 71% and an area under the receiver operating curve of 0.83, outperforming the clinical marker alpha-fetoprotein (AFP. The robustness of the model was tested using Monte-Carlo cross validation (MCCV. This study showed that metabolite profiling could provide an alternative approach for HCC screening in HCV patients, many of whom have high risk for developing liver cancer.

  19. Time resolved and label free monitoring of extracellular metabolites by surface enhanced Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Victoria Shalabaeva

    Full Text Available Metabolomics is an emerging field of cell biology that aims at the comprehensive identification of metabolite levels in biological fluids or cells in a specific functional state. Currently, the major tools for determining metabolite concentrations are mass spectrometry coupled with chromatographic techniques and nuclear magnetic resonance, which are expensive, time consuming and destructive for the samples. Here, we report a time resolved approach to monitor metabolite dynamics in cell cultures, based on Surface Enhanced Raman Scattering (SERS. This method is label-free, easy to use and provides the opportunity to simultaneously study a broad range of molecules, without the need to process the biological samples. As proof of concept, NIH/3T3 cells were cultured in vitro, and the extracellular medium was collected at different time points to be analyzed with our engineered SERS substrates. By identifying individual peaks of the Raman spectra, we showed the simultaneous detection of several components of the conditioned medium, such as L-tyrosine, L-tryptophan, glycine, L-phenylalanine, L-histidine and fetal bovine serum proteins, as well as their intensity changes during time. Furthermore, analyzing the whole Raman data set with the Principal Component Analysis (PCA, we demonstrated that the Raman spectra collected at different days of culture and clustered by similarity, described a well-defined trajectory in the principal component plot. This approach was then utilized to determine indirectly the functional state of the macrophage cell line Raw 264.7, stimulated with the lipopolysaccharide (LPS for 24 hours. The collected spectra at different time points, clustered by the PCA analysis, followed a well-defined trajectory, corresponding to the functional change of cells toward the activated pro-inflammatory state induced by the LPS. This study suggests that our engineered SERS surfaces can be used as a versatile tool both for the characterization

  20. Comprehensive metabolite profiling in distinct chemotypes of Commiphora wightii.

    Science.gov (United States)

    Bhatia, Anil; Tripathi, Tusha; Singh, Suruchi; Bisht, Hema; Behl, Hari M; Roy, Raja; Sidhu, Om P

    2018-02-02

    Commiphora wightii (Arn.) Bhandari, known as guggul, produces a medicinally important gum resin which is used extensively by Ayurvedic physicians to treat various ailments. However, most of the studies on C. wightii have been limited to its gum resin. Comprehensive metabolic profiling of leaves, stem and gum resin samples was undertaken to analyse aqueous and non-aqueous metabolites from three distinct chemotypes (NBRI-101, NBRI-102 and NBRI-103) shortlisted from different agro-climatic zones. GC-MS, HPLC and NMR spectroscopy were used for comprehensive metabolomics. Multivariate analysis showed characteristic variation in quinic and citric acids, myo-inositol and glycine (aqueous metabolites) and 2,6-di-tert-butyl-phenol, trans-farnesol and guggulsterones (non-aqueous metabolites) amongst the three chemotypes. Quinic acid, citric acid and myo-ionositol were detected in substantial quantities from leaves and stem samples which provide opportunities for novel nutraceutical and pharmaceutical formulations. Quinic acid, from the leaves, was identified as a marker metabolite for early selection of high guggulsterones-yielding cultivars.

  1. Metabolite Profiles of Male and Female Humboldt Penguins

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Levengood

    2015-10-01

    Full Text Available We examined 185 metabolites in 30 adult Humboldt Penguins (Spheniscus humboldti nesting at the Punta San Juan Marine Protected Area, Peru, in order to examine gender differences in metabolome profiles, particularly those involved in metabolism and energetics. The majority of the compounds identified were fatty (26% of total identified compounds, organic (19%, and amino (16% acids. We were able to differentiate male and female penguins with 96.6% accuracy on the basis of 12 metabolites, most of which are involved in lipid and carbohydrate metabolism. These included 2-oxoglutarate, erythronic acid, GABA, mannitol, sedoheptulose 7-phosphate, and serine and six metabolites present in higher concentrations in females compared to males (2-aminoadipic acid, O-phosphorylethanolamine, glycerol 2-phosphate, glycerol 3-phosphate, pantothenic acid, and creatinine. Of these, 2-oxoglutarate and glycerol 3-phosphate were key metabolites distinguishing gender. Our results indicated that male and female Humboldt Penguins were characterized by differing metabolic states. Such differences could be important to individual and brood survival in times of environmental stress.

  2. A systematic review of metabolite profiling in gestational diabetes mellitus.

    Science.gov (United States)

    Huynh, Jennifer; Xiong, Grace; Bentley-Lewis, Rhonda

    2014-12-01

    Gestational diabetes mellitus is associated with adverse maternal and fetal outcomes during, as well as subsequent to, pregnancy, including increased risk of type 2 diabetes and cardiovascular disease. Because of the importance of early risk stratification in preventing these complications, improved first-trimester biomarker determination for diagnosing gestational diabetes would enhance our ability to optimise both maternal and fetal health. Metabolomic profiling, the systematic study of small molecule products of biochemical pathways, has shown promise in the identification of key metabolites associated with the pathogenesis of several metabolic diseases, including gestational diabetes. This article provides a systematic review of the current state of research on biomarkers and gestational diabetes and discusses the clinical relevance of metabolomics in the prediction, diagnosis and management of gestational diabetes. We conducted a systematic search of MEDLINE (PubMed) up to the end of February 2014 using the key term combinations of 'metabolomics,' 'metabonomics,' 'nuclear magnetic spectroscopy,' 'mass spectrometry,' 'metabolic profiling' and 'amino acid profile' combined (AND) with 'gestational diabetes'. Additional articles were identified through searching the reference lists from included studies. Quality assessment of included articles was conducted through the use of QUADOMICS. This systematic review included 17 articles. The biomarkers most consistently associated with gestational diabetes were asymmetric dimethylarginine and NEFAs. After QUADOMICS analysis, 13 of the 17 included studies were classified as 'high quality'. Existing metabolomic studies of gestational diabetes present inconsistent findings regarding metabolite profile characteristics. Further studies are needed in larger, more racially/ethnically diverse populations.

  3. Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Dongo, Anita; Pryor, Barry M.

    2008-01-01

    Chemotaxonomy (secondary metabolite profiling) has been shown to be of great value in the classification and differentiation in Ascomycota. However, few studies have investigated the use of metabolite production for classification and identification purposes of plant pathogenic Alternaria species...

  4. Alterations of urinary metabolite profile in model diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Stec, Donald F. [Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Wang, Suwan; Stothers, Cody [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Avance, Josh [Berea College, 1916 CPO, Berea, KY 40404 (United States); Denson, Deon [Choctaw Central High School, Philadelphia, MS 39350 (United States); Harris, Raymond [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Voziyan, Paul, E-mail: paul.voziyan@vanderbilt.edu [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2015-01-09

    Highlights: • {sup 1}H NMR spectroscopy was employed to study urinary metabolite profile in diabetic mouse models. • Mouse urinary metabolome showed major changes that are also found in human diabetic nephropathy. • These models can be new tools to study urinary biomarkers that are relevant to human disease. - Abstract: Countering the diabetes pandemic and consequent complications, such as nephropathy, will require better understanding of disease mechanisms and development of new diagnostic methods. Animal models can be versatile tools in studies of diabetic renal disease when model pathology is relevant to human diabetic nephropathy (DN). Diabetic models using endothelial nitric oxide synthase (eNOS) knock-out mice develop major renal lesions characteristic of human disease. However, it is unknown whether they can also reproduce changes in urinary metabolites found in human DN. We employed Type 1 and Type 2 diabetic mouse models of DN, i.e. STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db, with the goal of determining changes in urinary metabolite profile using proton nuclear magnetic resonance (NMR). Six urinary metabolites with significantly lower levels in diabetic compared to control mice have been identified. Specifically, major changes were found in metabolites from tricarboxylic acid (TCA) cycle and aromatic amino acid catabolism including 3-indoxyl sulfate, cis-aconitate, 2-oxoisocaproate, N-phenyl-acetylglycine, 4-hydroxyphenyl acetate, and hippurate. Levels of 4-hydroxyphenyl acetic acid and hippuric acid showed the strongest reverse correlation to albumin-to-creatinine ratio (ACR), which is an indicator of renal damage. Importantly, similar changes in urinary hydroxyphenyl acetate and hippurate were previously reported in human renal disease. We demonstrated that STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db mouse models can recapitulate changes in urinary metabolome found in human DN and therefore can be

  5. Alterations of urinary metabolite profile in model diabetic nephropathy.

    Science.gov (United States)

    Stec, Donald F; Wang, Suwan; Stothers, Cody; Avance, Josh; Denson, Deon; Harris, Raymond; Voziyan, Paul

    2015-01-09

    Countering the diabetes pandemic and consequent complications, such as nephropathy, will require better understanding of disease mechanisms and development of new diagnostic methods. Animal models can be versatile tools in studies of diabetic renal disease when model pathology is relevant to human diabetic nephropathy (DN). Diabetic models using endothelial nitric oxide synthase (eNOS) knock-out mice develop major renal lesions characteristic of human disease. However, it is unknown whether they can also reproduce changes in urinary metabolites found in human DN. We employed Type 1 and Type 2 diabetic mouse models of DN, i.e. STZ-eNOS(-/-) C57BLKS and eNOS(-/-) C57BLKS db/db, with the goal of determining changes in urinary metabolite profile using proton nuclear magnetic resonance (NMR). Six urinary metabolites with significantly lower levels in diabetic compared to control mice have been identified. Specifically, major changes were found in metabolites from tricarboxylic acid (TCA) cycle and aromatic amino acid catabolism including 3-indoxyl sulfate, cis-aconitate, 2-oxoisocaproate, N-phenyl-acetylglycine, 4-hydroxyphenyl acetate, and hippurate. Levels of 4-hydroxyphenyl acetic acid and hippuric acid showed the strongest reverse correlation to albumin-to-creatinine ratio (ACR), which is an indicator of renal damage. Importantly, similar changes in urinary hydroxyphenyl acetate and hippurate were previously reported in human renal disease. We demonstrated that STZ-eNOS(-/-) C57BLKS and eNOS(-/-) C57BLKS db/db mouse models can recapitulate changes in urinary metabolome found in human DN and therefore can be useful new tools in metabolomic studies relevant to human pathology. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana.

    Science.gov (United States)

    Strehmel, Nadine; Böttcher, Christoph; Schmidt, Stephan; Scheel, Dierk

    2014-12-01

    To explore the chemical composition of root exudates of the model plant Arabidopsis thaliana a workflow for nontargeted metabolite profiling of the semipolar fraction of root exudates was developed. It comprises hydroponic plant cultivation and sampling of root exudates under sterile conditions, sample preparation by solid-phase extraction and analysis by reversed-phase UPLC/ESI-QTOFMS. Following the established workflow, root exudates of six-week-old plants were profiled and a set of reproducibly occurring molecular features was compiled. To structurally elucidate the corresponding metabolites, accurate mass tandem mass spectrometry and on-line hydrogen/deuterium exchange were applied. Currently, a total of 103 compounds were detected and annotated by elemental composition of which more than 90 were structurally characterized or classified. Among them, 42 compounds were rigorously identified using an authenticated standard. The compounds identified so far include nucleosides, deoxynucleosides, aromatic amino acids, anabolites and catabolites of glucosinolates, dipeptides, indolics, salicylic and jasmonic acid catabolites, coumarins, mono-, di- and trilignols, hydroxycinnamic acid derivatives and oxylipins and exemplify the high chemical diversity of plant root exudates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Pharmacokinetic profiles of the active metamizole metabolites in healthy horses.

    Science.gov (United States)

    Giorgi, M; Aupanun, S; Lee, H-K; Poapolathep, A; Rychshanova, R; Vullo, C; Faillace, V; Laus, F

    2017-04-01

    Metamizole (MT) is an analgesic and antipyretic drug labelled for use in humans, horses, cattle, swine and dogs. MT is rapidly hydrolysed to the active primary metabolite 4-methylaminoantipyrine (MAA). MAA is formed in much larger amounts compared with other minor metabolites. Among the other secondary metabolites, 4-aminoantipyrine (AA) is also relatively active. The aim of this research was to evaluate the pharmacokinetic profiles of MAA and AA after dose of 25 mg/kg MT by intravenous (i.v.) and intramuscular (i.m.) routes in healthy horses. Six horses were randomly allocated to two equally sized treatment groups according to a 2 × 2 crossover study design. Blood was collected at predetermined times within 24 h, and plasma was analysed by a validated HPLC-UV method. No behavioural changes or alterations in health parameters were observed in the i.v. or i.m. groups of animals during or after (up to 7 days) drug administration. Plasma concentrations of MAA after i.v. and i.m. administrations of MT were detectable from 5 min to 10 h in all the horses. Plasma concentrations of AA were detectable in the same range of time, but in smaller amounts. Maximum concentration (Cmax ), time to maximum concentration (Tmax ) and AUMC0-last of MAA were statistically different between the i.v. and i.m. groups. The AUCIM /AUCIV ratio of MAA was 1.06. In contrast, AUC0-last of AA was statistically different between the groups (P < 0.05) with an AUCIM /AUCIV ratio of 0.54. This study suggested that the differences in the MAA and AA plasma concentrations found after i.m. and i.v. administrations of MT might have minor consequences on the pharmacodynamics of the drug. © 2016 John Wiley & Sons Ltd.

  8. Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia.

    Directory of Open Access Journals (Sweden)

    Hannu Hotti

    Full Text Available Sarraceniaceae is a New World carnivorous plant family comprising three genera: Darlingtonia, Heliamphora, and Sarracenia. The plants occur in nutrient-poor environments and have developed insectivorous capability in order to supplement their nutrient uptake. Sarracenia flava contains the alkaloid coniine, otherwise only found in Conium maculatum, in which its biosynthesis has been studied, and several Aloe species. Its ecological role and biosynthetic origin in S. flava is speculative. The aim of the current research was to investigate the occurrence of coniine in Sarracenia and Darlingtonia and to identify common constituents of both genera, unique compounds for individual variants and floral scent chemicals. In this comprehensive metabolic profiling study, we looked for compound patterns that are associated with the taxonomy of Sarracenia species. In total, 57 different Sarracenia and D. californica accessions were used for metabolite content screening by gas chromatography-mass spectrometry. The resulting high-dimensional data were studied using a data mining approach. The two genera are characterized by a large number of metabolites and huge chemical diversity between different species. By applying feature selection for clustering and by integrating new biochemical data with existing phylogenetic data, we were able to demonstrate that the chemical composition of the species can be explained by their known classification. Although transcriptome analysis did not reveal a candidate gene for coniine biosynthesis, the use of a sensitive selected ion monitoring method enabled the detection of coniine in eight Sarracenia species, showing that it is more widespread in this genus than previously believed.

  9. Metabolite Profiling of Justicia gendarussa Burm. f. Leaves Using UPLC-UHR-QTOF-MS.

    Science.gov (United States)

    Ningsih, Indah Yulia; Purwanti, Diah Intan; Wongso, Suwidji; Prajogo, Bambang E W; Indrayanto, Gunawan

    2015-01-01

    An ultra-performance liquid chromatography ultra-high-resolution quadrupole-time-of-flight-mass spectrometry (UPLC-UHR-QTOF-MS) metabolite profiling ofxs Justicia gendarussa Burm. f. leaves was performed. PCA and HCA analyses were applied to observe the clustering patterns and inter-sample relationships. It seemed that the concentrations of Ca, P, and Cu in the soil could affect the metabolite profiles of Justicia gendarussa. Six significant metabolites were proposed.

  10. Quantitative NMR Metabolite Profiling of Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Discriminates between Biofilm and Planktonic Phenotypes

    Science.gov (United States)

    2015-01-01

    Wound bioburden in the form of colonizing biofilms is a major contributor to nonhealing wounds. Staphylococcus aureus is a Gram-positive, facultative anaerobe commonly found in chronic wounds; however, much remains unknown about the basic physiology of this opportunistic pathogen, especially with regard to the biofilm phenotype. Transcriptomic and proteomic analysis of S. aureus biofilms have suggested that S. aureus biofilms exhibit an altered metabolic state relative to the planktonic phenotype. Herein, comparisons of extracellular and intracellular metabolite profiles detected by 1H NMR were conducted for methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) S. aureus strains grown as biofilm and planktonic cultures. Principal component analysis distinguished the biofilm phenotype from the planktonic phenotype, and factor loadings analysis identified metabolites that contributed to the statistical separation of the biofilm from the planktonic phenotype, suggesting that key features distinguishing biofilm from planktonic growth include selective amino acid uptake, lipid catabolism, butanediol fermentation, and a shift in metabolism from energy production to assembly of cell-wall components and matrix deposition. These metabolite profiles provide a basis for the development of metabolite biomarkers that distinguish between biofilm and planktonic phenotypes in S. aureus and have the potential for improved diagnostic and therapeutic use in chronic wounds. PMID:24809402

  11. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage▿

    OpenAIRE

    Broberg, Anders; Jacobsson, Karin; Ström, Katrin; Schnürer, Johan

    2007-01-01

    The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydro...

  12. Monitoring the Modifications of the Vitreous Humor Metabolite Profile after Death: An Animal Model

    OpenAIRE

    Rosa, Maria Francesca; Scano, Paola; Noto, Antonio; Nioi, Matteo; Sanna, Roberta; Paribello, Francesco; De-Giorgio, Fabio; Locci, Emanuela; d’Aloja, Ernesto

    2015-01-01

    We applied a metabolomic approach to monitor the modifications occurring in goat vitreous humor (VH) metabolite composition at different times (0, 6, 12, 18, and 24 hours) after death. The 1H-NMR analysis of the VH samples was performed for the simultaneous determination of several metabolites (i.e., the metabolite profile) representative of the VH status at different times. Spectral data were analyzed by Principal Component Analysis (PCA) and by Orthogonal Projection to Latent Structures (OP...

  13. Pharmacokinetic and pharmacodynamic profile of bendamustine and its metabolites.

    Science.gov (United States)

    Darwish, Mona; Bond, Mary; Hellriegel, Edward; Robertson, Philmore; Chovan, James P

    2015-06-01

    Bendamustine is a unique alkylating agent indicated for the treatment of chronic lymphocytic leukemia and rituximab-refractory, indolent B cell non-Hodgkin's lymphoma. Despite the extensive experience with bendamustine, its pharmacokinetic profile has only recently been described. This overview summarizes the pharmacokinetics, pharmacokinetic/pharmacodynamic relationships, and drug-drug interactions of bendamustine in adult and pediatric patients with hematologic malignancies. A literature search and data on file (including a human mass balance study, pharmacokinetic population analyses in adult and pediatric patients, and modeling analyses) were evaluated for inclusion. Bendamustine concentrations peak at end of intravenous infusion (~1 h). Subsequent elimination is triphasic, with the intermediate t 1/2 (~40 min) as the effective t 1/2 since the final phase represents <1 % of the area under the curve. Bendamustine is rapidly hydrolyzed to monohydroxy-bendamustine and dihydroxy-bendamustine, which have little or no activity. Cytochrome P450 (CYP) 1A2 oxidation yields the active metabolites γ-hydroxybendamustine and N-desmethyl-bendamustine, at low concentrations, which contribute minimally to cytotoxicity. Minor involvement of CYP1A2 in bendamustine elimination suggests a low likelihood of drug-drug interactions with CYP1A2 inhibitors. Systemic exposure to bendamustine 120 mg/m(2) is comparable between adult and pediatric patients; age, race, and sex have been shown to have no significant effect on systemic exposure in either population. The effect of hepatic/renal impairment on bendamustine pharmacokinetics remains to be elucidated. Higher bendamustine concentrations may be associated with increased probability of nausea or infection. No clear exposure-efficacy response relationship has been observed. Altogether, the findings support dosing based on body surface area for most patient populations.

  14. Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans

    Science.gov (United States)

    Orrú, Marco; Guitart, Xavier; Karcz-Kubicha, Marzena; Solinas, Marcello; Justinova, Zuzana; Barodia, Sandeep Kumar; Zanoveli, Janaina; Cortes, Antoni; Lluis, Carme; Casado, Vicent; Moeller, F. Gerard; Ferré, Sergi

    2013-01-01

    Caffeine induces locomotor activation by its ability to block adenosine receptors. Caffeine is metabolized to several methylxanthines, with paraxanthine being the main metabolite in humans. In this study we show that in rats paraxanthine has a stronger locomotor activating effect than caffeine or the two other main metabolites of caffeine, theophylline and theobromine. As previously described for caffeine, the locomotor activating doses of paraxanthine more efficiently counteract the locomotor depressant effects of an adenosine A1 than an adenosine A2A receptor agonist. In drug discrimination experiments in rats trained to discriminate a maximal locomotor activating dose of caffeine, paraxanthine, unlike theophylline, generalized poorly to caffeine suggesting the existence of additional mechanisms other than adenosine antagonism in the behavioral effects of paraxanthine. Pretreatment with the nitric oxide inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) reduced the locomotor activating effects of paraxanthine, but not caffeine. On the other hand, pretreatment with the selective cGMP-preferring phosphodiesterase PDE9 inhibitor BAY 73-6691, increased locomotor activity induced by caffeine, but not paraxanthine. Ex vivo experiments demonstrated that paraxanthine, but not caffeine, can induce cGMP accumulation in the rat striatum. Finally, in vivo microdialysis experiments showed that paraxanthine, but not caffeine, significantly increases extracellular levels of dopamine in the dorsolateral striatum, which was blocked by L-NAME. These findings indicate that inhibition of cGMP-preferring PDE is involved in the locomotor activating effects of the acute administration of paraxanthine. The present results demonstrate a unique psychostimulant profile of paraxanthine, which might contribute to the reinforcing effects of caffeine in humans. PMID:23261866

  15. Concurrent profiling of polar metabolites and lipids in human plasma using HILIC-FTMS

    Science.gov (United States)

    Cai, Xiaoming; Li, Ruibin

    2016-11-01

    Blood plasma is the most popularly used sample matrix for metabolite profiling studies, which aim to achieve global metabolite profiling and biomarker discovery. However, most of the current studies on plasma metabolite profiling focused on either the polar metabolites or lipids. In this study, a comprehensive analysis approach based on HILIC-FTMS was developed to concurrently examine polar metabolites and lipids. The HILIC-FTMS method was developed using mixed standards of polar metabolites and lipids, the separation efficiency of which is better in HILIC mode than in C5 and C18 reversed phase (RP) chromatography. This method exhibits good reproducibility in retention times (CVs profiling and smoking-related biomarker discovery in human plasma samples. Heavy smokers could be successfully distinguished from non smokers by univariate and multivariate statistical analysis of the profiling data, and 62 biomarkers for cigarette smoke were found. These results indicate that our concurrent analysis approach could be potentially used for clinical biomarker discovery, metabolite-based diagnosis, etc.

  16. Metabolite profiling of recombinant CHO cells: designing tailored feeding regimes that enhance recombinant antibody production.

    NARCIS (Netherlands)

    Sellick, C.A.; Croxford, A.S.; Maqsood, A.R.; Stephens, G.; Westerhoff, H.V.; Goodacre, R.; Dickson, A.J.

    2011-01-01

    Chinese hamster ovary (CHO) cells are the primary platform for commercial expression of recombinant therapeutic proteins. Obtaining maximum production from the expression platform requires optimal cell culture medium (and associated nutrient feeds). We have used metabolite profiling to define the

  17. Metabolite profiling of recombinant CHO cells: Designing tailored feeding regimes that enhance recombinant antibody production.

    NARCIS (Netherlands)

    Sellick, C.A.; Croxford, A.S.; Maqsood, A.R.; Stephens, G.; Westerhoff, H.V.; Goodacre, R.; Dickson, A.J.

    2011-01-01

    Chinese hamster ovary (CHO) cells are the primary platform for commercial expression of recombinant therapeutic proteins. Obtaining maximum production from the expression platform requires optimal cell culture medium (and associated nutrient feeds). We have used metabolite profiling to define the

  18. Metabolic Profiling and Antioxidant Assay of Metabolites from Three Radish Cultivars (Raphanus sativus).

    Science.gov (United States)

    Park, Chang Ha; Baskar, Thanislas Bastin; Park, Soo-Yun; Kim, Sun-Ju; Valan Arasu, Mariadhas; Al-Dhabi, Naif Abdullah; Kim, Jae Kwang; Park, Sang Un

    2016-01-28

    A total of 13 anthocyanins and 33 metabolites; including organic acids, phenolic acids, amino acids, organic compounds, sugar acids, sugar alcohols, and sugars, were profiled in three radish cultivars by using high-performance liquid chromatography (HPLC) and gas chromatography time-of-flight mass spectrometry (GC-TOFMS)-based metabolite profiling. Total phenolics and flavonoids and their in vitro antioxidant activities were assessed. Pelargonidins were found to be the major anthocyanin in the cultivars studied. The cultivar Man Tang Hong showed the highest level of anthocyanins (1.89 ± 0.07 mg/g), phenolics (0.0664 ± 0.0033 mg/g) and flavonoids (0.0096 ± 0.0004 mg/g). Here; the variation of secondary metabolites in the radishes is described, as well as their association with primary metabolites. The low-molecular-weight hydrophilic metabolite profiles were subjected to principal component analysis (PCA), hierarchical clustering analysis (HCA), Pearson's correlation analysis. PCA fully distinguished the three radish cultivars tested. The polar metabolites were strongly correlated between metabolites that participate in the TCA cycle. The chemometrics results revealed that TCA cycle intermediates and free phenolic acids as well as anthocyanins were higher in the cultivar Man Tang Hong than in the others. Furthermore; superoxide radical scavenging activities and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging were investigated to elucidate the antioxidant activity of secondary metabolites in the cultivars. Man Tang Hong showed the highest superoxide radical scavenging activity (68.87%) at 1000 μg/mL, and DPPH activity (20.78%), followed by Seo Ho and then Hong Feng No. 1. The results demonstrate that GC-TOFMS-based metabolite profiling, integrated with chemometrics, is an applicable method for distinguishing phenotypic variation and determining biochemical reactions connecting primary and secondary metabolism. Therefore; this study might provide

  19. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    Science.gov (United States)

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  20. The metabolite profiling of coastal coccolithophorid species Pleurochrysis carterae (Haptophyta)

    Science.gov (United States)

    Zhou, Chengxu; Luo, Jie; Ye, Yangfang; Yan, Xiaojun; Liu, Baoning; Wen, Xin

    2016-07-01

    Pleurochrysis carterae is a calcified coccolithophorid species that usually blooms in the coastal area and causes aquaculture losses. The cellular calcification, blooming and many other critical species specific eco-physiological processes are closely related to various metabolic pathways. The purpose of this study is to apply the unbiased and non-destructive method of nuclear magnetic resonance (NMR) to detect the unknown holistic metabolite of P. carterae. The results show that NMR spectroscopic method is practical in the analysis of metabolites of phytoplankton. The metabolome of P. carterae was dominated by 26 metabolites involved in a number of different primary and secondary metabolic pathways. Organic acids and their derivatives, amino acids, sugars, nucleic aides were mainly detected. The abundant metabolites are that closely related to the process of cellular osmotic adjustment, which possibly reflect the active ability of P. carterae to adapt to the versatile coastal niche. DMSP (dimethylsulphoniopropionate) was the most dominant metabolite in P. carterae, up to 2.065±0.278 mg/g lyophilized cells, followed by glutamate and lactose, the contents were 0.349±0.035 and 0.301±0.073 mg/g lyophilized cells respectively. Other metabolites that had the content ranged between 0.1-0.2 mg/g lyophilized cells were alanine, isethionate and arabinose. Amino acid (valine, phenylalanine, isoleucine, tyrosine), organic acid salts (lactate, succinate), scyllitol and uracil had content ranged from 0.01 to below 0.1 mg/g lyophilized cells. Trigonelline, fumarate and formate were detected in very low content (only thousandths of 1 mg per gram of lyophilized cells or below). Our results of the holistic metabolites of P. carterae are the basic references for the further studies when multiple problems will be addressed to this notorious blooming calcifying species.

  1. Unbiased Metabolite Profiling of Schizophrenia Fibroblasts under Stressful Perturbations Reveals Dysregulation of Plasmalogens and Phosphatidylcholines.

    Science.gov (United States)

    Huang, Joanne H; Park, Hyoungjun; Iaconelli, Jonathan; Berkovitch, Shaunna S; Watmuff, Bradley; McPhie, Donna; Öngür, Dost; Cohen, Bruce M; Clish, Clary B; Karmacharya, Rakesh

    2017-02-03

    We undertook an unbiased metabolite profiling of fibroblasts from schizophrenia patients and healthy controls to identify metabolites and pathways that are dysregulated in disease, seeking to gain new insights into the disease biology of schizophrenia and to discover potential disease-related biomarkers. We measured polar and nonpolar metabolites in the fibroblasts under normal conditions and under two stressful physiological perturbations: growth in low-glucose media and exposure to the steroid hormone dexamethasone. We found that metabolites that were significantly different between schizophrenia and control subjects showed separation of the two groups by partial least-squares discriminant analysis methods. This separation between schizophrenia and healthy controls was more robust with metabolites identified under the perturbation conditions. The most significant individual metabolite differences were also found in the perturbation experiments. Metabolites that were significantly different between schizophrenia and healthy controls included a number of plasmalogens and phosphatidylcholines. We present these results in the context of previous reports of metabolic profiling of brain tissue and plasma in schizophrenia. These results show the applicability of metabolite profiling under stressful perturbations to reveal cellular pathways that may be involved in disease biology.

  2. Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis.

    Science.gov (United States)

    Jung, Sung-Min; Hur, Youn-Young; Preece, John E; Fiehn, Oliver; Kim, Young-Ho

    2016-12-01

    Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine.

  3. Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis

    Directory of Open Access Journals (Sweden)

    Sung-Min Jung

    2016-12-01

    Full Text Available Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS evaluated by gall incidence (GI and gall diameter (GD, which were classified into three response types as RR (low GI and small GD, SR (high GI and small GD, and SS (high GI and large GD, corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites at two days after inoculation than other stages, and more related to SS (7 metabolites than RR (3 metabolites or SR (one metabolite. This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine.

  4. Biomarker Research in Parkinson's Disease Using Metabolite Profiling

    DEFF Research Database (Denmark)

    Havelund, Jesper F; Heegaard, Niels H H; Færgeman, Nils J K

    2017-01-01

    Biomarker research in Parkinson's disease (PD) has long been dominated by measuring dopamine metabolites or alpha-synuclein in cerebrospinal fluid. However, these markers do not allow early detection, precise prognosis or monitoring of disease progression. Moreover, PD is now considered a multifa......Biomarker research in Parkinson's disease (PD) has long been dominated by measuring dopamine metabolites or alpha-synuclein in cerebrospinal fluid. However, these markers do not allow early detection, precise prognosis or monitoring of disease progression. Moreover, PD is now considered...

  5. Volatile metabolites profiling of a Chinese mangrove endophytic ...

    African Journals Online (AJOL)

    Pestalotiopsis JCM2A4, an endophytic fungus originally isolated from leaves of the Chinese mangrove plant Rhizophora mucronata, produces a mixture of volatile metabolites. As determined by gas chromatography and gas chromatography/mass spectrometry (GC/GC-MS), 18 compounds representing all of the hexane ...

  6. Temporal profiles of intra- and extracellular laccase isoenzymes ...

    African Journals Online (AJOL)

    The same three isoenzymes were observed in the three kinds of cultures. The main differences among the laccase profiles reside in the time when they appeared in each culture and only an additional form of lower molecular weight was observed in SSF. The laccase enzymes in the intracellular extracts were equal to those ...

  7. Profiling and Distribution of Metabolites of Procyanidin B2 in Mice by UPLC-DAD-ESI-IT-TOF-MSn Technique

    Directory of Open Access Journals (Sweden)

    Ying Xiao

    2017-05-01

    Full Text Available The metabolite profiles and distributions of procyanidin B2 were qualitatively described using UPLC-DAD-ESI-IT-TOF-MSn without help of reference standards, and a possible metabolic pathway was proposed in the present study. Summarily, 53 metabolites (24 new metabolites were detected as metabolites of procyanidin B2, and 45 of them were tentatively identified. Twenty seven metabolites were assigned as similar metabolites of (−-epicatechin by scission of the flavanol interflavanic bond C4–C8, including 16 aromatic metabolites, 5 conjugated metabolites, 3 ring-cleavage metabolites, and 2 phenylvalerolactone metabolites. Additionally, 14 metabolites were conjugates of free procyanidin B2, comprising 9 methylation metabolites, 8 sulfation metabolites, 5 hydration metabolites, 2 hydroxylation metabolites, 1 hydrogenation metabolites, and 1 glucuronidation metabolites. The results of metabolite distributions in organs indicated that the conjugated reaction of free procyanidin B2 mainly occurred in liver and diversified metabolites forms were observed in small intestine. The metabolic components of procyanidin B2 identified in mice provided useful information for further study of the bioactivity and mechanism of its action.

  8. Simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell cultures and in sub-regions of guinea pig brain

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie Voigt; Hansen, Stine Normann; Tveden-Nyborg, Pernille

    2016-01-01

    of intracellular and extracellular amounts of monoamine neurotransmitters and their metabolites in guinea pig frontal cortex and hippocampal primary neuronal cell cultures. Noradrenaline, dopamine and serotonin were found to be in a range from 0.31 to 1.7 pmol per 2 million cells intracellularly, but only...... the biogenic metabolites could be detected extracellularly. Distinct differences in monoamine concentrations were observed when comparing concentrations in guinea pig frontal cortex and cerebellum tissue with higher amounts of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid...... in frontal cortex, as compared to cerebellum. The chemical turnover in frontal cortex tissue of guinea pig was for serotonin successfully predicted from the turnover observed in the frontal cortex cell culture. In conclusion, the present analytical method shows high precision, accuracy and sensitivity...

  9. Temperament Type Specific Metabolite Profiles of the Prefrontal Cortex and Serum in Cattle

    Science.gov (United States)

    Brand, Bodo; Hadlich, Frieder; Brandt, Bettina; Schauer, Nicolas; Graunke, Katharina L.; Langbein, Jan; Repsilber, Dirk; Ponsuksili, Siriluk; Schwerin, Manfred

    2015-01-01

    In the past decade the number of studies investigating temperament in farm animals has increased greatly because temperament has been shown not only to affect handling but also reproduction, health and economically important production traits. However, molecular pathways underlying temperament and molecular pathways linking temperament to production traits, health and reproduction have yet to be studied in full detail. Here we report the results of metabolite profiling of the prefrontal cortex and serum of cattle with distinct temperament types that were performed to further explore their molecular divergence in the response to the slaughter procedure and to identify new targets for further research of cattle temperament. By performing an untargeted comprehensive metabolite profiling, 627 and 1097 metabolite features comprising 235 and 328 metabolites could be detected in the prefrontal cortex and serum, respectively. In total, 54 prefrontal cortex and 51 serum metabolite features were indicated to have a high relevance in the classification of temperament types by a sparse partial least square discriminant analysis. A clear discrimination between fearful/neophobic-alert, interested-stressed, subdued/uninterested-calm and outgoing/neophilic-alert temperament types could be observed based on the abundance of the identified relevant prefrontal cortex and serum metabolites. Metabolites with high relevance in the classification of temperament types revealed that the main differences between temperament types in the response to the slaughter procedure were related to the abundance of glycerophospholipids, fatty acyls and sterol lipids. Differences in the abundance of metabolites related to C21 steroid metabolism and oxidative stress indicated that the differences in the metabolite profiles of the four extreme temperament types could be the result of a temperament type specific regulation of molecular pathways that are known to be involved in the stress and fear response

  10. Transcriptomic profiling of platelet senescence and platelet extracellular vesicles.

    Science.gov (United States)

    Pienimaeki-Roemer, Annika; Konovalova, Tatiana; Musri, Melina M; Sigruener, Alexander; Boettcher, Alfred; Meister, Gunter; Schmitz, Gerd

    2017-01-01

    Platelets (PLTs) are derived from megakaryocytes during PLT shedding. Senescent or activated PLTs are expanded in vascular and neurological diseases and release PLT extracellular vesicles (PL-EVs). A systematic analysis of regular messenger RNA (mRNA) and small RNA composition in PLTs and PL-EVs during in vitro PLT senescence has not yet been published. We isolated PLTs, total PL-EVs, and PL-EV subsets on Days 0 and 5 from human stored donor platelet concentrates. Isolated mRNA species and microRNA (miRNA) species were analyzed by microarrays and deep sequencing. Correlation of mRNA and miRNA species (miR) and miRNA target analyses were performed using bioinformatics. During in vitro PLT senescence, residual PLT mRNA species were decreased and partially converted to miRNA species. Residual mRNAs included encoded genes relevant for atherosclerosis, inflammation (matrix metallopeptidase 14 [MMP-14], granulin [GRN], angiopoietin like 2 [ANGPTL2]), and neurotransmission (dopamine receptor 2 [DRD2], γ-aminobutyric acid type A receptor ρ3 [GABRR3]). Compared with senescent PLTs, PL-EVs have up-regulated their miRNA species involved in "diabesity" and in vascular and metabolic disease (miR-144-3p, miR-486-5p, miR-142-5p, miR-451a, miR-25-3p, miR-145-5p, and let-7f-5p). The 100 highest expressed PL-EV miRNA species determined by microarrays were compared with the 100 highest expressed PL-EV miRNA species detected by deep sequencing. This approach resulted in 66 overlaps. The regulated miRNAs (assessed by both methods) were related to neurological disorders, including targets for Alzheimer's disease (e.g., β-site amyloid precursor protein APP-cleaving enzyme 1 [BACE1], translocase of outer mitochondrial membrane 40 homolog [TOMM40], neuron navigator 3 [NAV3]). During in vitro senescence, PLTs degrade large RNA species. Concomitantly, they up-regulate a distinct set of known small RNA species involved in atherosclerosis, inflammation, and neurodegeneration. PL-EVs enrich

  11. Metabolite profiling of 14C-omacetaxine mepesuccinate in plasma and excreta of cancer patients.

    Science.gov (United States)

    Nijenhuis, Cynthia M; Lucas, Luc; Rosing, Hilde; Robertson, Philmore; Hellriegel, Edward T; Schellens, Jan H M; Beijnen, And Jos H

    2016-12-01

    Omacetaxine mepesuccinate (hereafter referred to as omacetaxine) is a protein translation inhibitor approved by the US Food and Drug Administration for adult patients with chronic myeloid leukemia with resistance and/or intolerance to two or more tyrosine kinase inhibitors. The objective was to investigate the metabolite profile of omacetaxine in plasma, urine and faeces samples collected up to 72 h after a single 1.25-mg/m2 subcutaneous dose of 14C-omacetaxine in cancer patients. High-performance liquid chromatography mass spectrometry (MS) (high resolution) in combination with off-line radioactivity detection was used for metabolite identification. In total, six metabolites of omacetaxine were detected. The reactions represented were mepesuccinate ester hydrolysis, methyl ester hydrolysis, pyrocatechol conversion from the 1,3-dioxole ring. Unchanged omacetaxine was the most prominent omacetaxine-related compound in plasma. In urine, unchanged omacetaxine was also dominant, together with 4'-DMHHT. In feces very little unchanged omacetaxine was found and the pyrocatechol metabolite of omacetaxine, M534 and 4'-desmethyl homoharringtonine (4'-DMHHT) was the most abundant metabolites. Omacetaxine was extensively metabolized, with subsequent renal and hepatic elimination of the metabolites. The low levels of the metabolites found in plasma indicate that the metabolites are unlikely to contribute materially to the efficacy and/or toxicity of omacetaxine.

  12. [Determination of the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato].

    Science.gov (United States)

    Benavidez Rozo, Martha Elizabeth; Patriarca, Andrea; Cabrera, Gabriela; Fernández Pinto, Virginia E

    2014-01-01

    Many Alternaria species have been studied for their ability to produce bioactive secondary metabolites, such as tentoxin (TEN), some of which have toxic properties. The main food contaminant toxins are tenuazonic acid, alternariol (AOH), alternariol monomethyl ether (AME), altenuene, and altertoxins i, ii and iii. To determine the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato for their chemotaxonomic classification. The profiles of secondary metabolites were determined by HPLC MS. The Alternaria isolates obtained from spoiled tomatoes belong, according to their morphological characteristics, to the species groups Alternaria alternata, Alternaria tenuissima and Alternaria arborescens, with A. tenuissima being the most frequent. The most frequent profiles of secondary metabolites belonging to the species groups A. alternata (AOH, AME, TEN), A. tenuissima (AOH, AME, TEN, tenuazonic acid) and A. arborescens (AOH, AME, TEN, tenuazonic acid) were determined, with some isolates of the latter being able to synthesize AAL toxins. Secondary metabolite profiles are a useful tool for the differentiation of small spored Alternaria isolates not easily identifiable by their morphological characteristics. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  13. Metabolite Profiling of Italian Tomato Landraces with Different Fruit Types

    Directory of Open Access Journals (Sweden)

    Svetlana eBaldina

    2016-05-01

    Full Text Available Increased interest towards traditional tomato varieties is fueled by the need to rescue desirable organoleptic traits and to improve the quality of fresh and processed tomatoes in the market. In addition, the phenotypic and genetic variation preserved in tomato landraces represents a means to understand the genetic basis of traits related to health and organoleptic aspects and improve them in modern varieties. To establish a framework for this approach, we studied the content of several metabolites in a panel of Italian tomato landraces categorized into three broad fruit type classes (flattened/ribbed, pear/oxheart, round/elongate. Three modern hybrids, corresponding to the three fruit shape typologies, were included as reference. Red ripe fruits were morphologically characterized and biochemically analyzed for their content in glycoalkaloids, phenols, amino acids and Amadori products. The round/elongate types showed a higher content in glycoalkaloids, whereas flattened types had higher levels of phenolic compounds. Flattened tomatoes were also rich in total amino acids and in particular in glutamic acid. Multivariate analysis of amino acid content clearly separated the three classes of fruit types. Making allowance of the very low number of genotypes, phenotype-marker relationships were analyzed after retrieving single nucleotide polymorphisms (SNPs among the landraces available in the literature. Sixty-six markers were significantly associated with the studied traits. The positions of several of these SNPs showed correspondence with already described genomic regions and QTLs supporting the reliability of the association. Overall the data indicated that significant changes in quality-related metabolites occur depending on the genetic background in traditional tomato germplasm, frequently according to specific fruit shape categories. Such a variability is suitable to harness association mapping for metabolic quality traits using this germplasm

  14. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance.

    Science.gov (United States)

    Tai, Helen H; Worrall, Kraig; Pelletier, Yvan; De Koeyer, David; Calhoun, Larry A

    2014-09-10

    The Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB) is a coleopteran herbivore that feeds on the foliage on Solanum species, in particular, potato. Six resistant wild Solanum species were identified, and two of these species had low levels of glycoalkaloids. Comparative analysis of the untargeted metabolite profiles of the foliage using UPLC-qTOF-MS was done to find metabolites shared between the wild species but not with Solanum tuberosum (L.) to identify resistance-related metabolites. It was found that only S. tuberosum produced the triose glycoalkaloids solanine and chaconine. Instead, the six wild species produced glycoalkaloids that shared in common tetrose sugar side chains. Additionally, there were non-glycoalkaloid metabolites associated with resistance including hydroxycoumarin and a phenylpropanoid, which were produced in all wild species but not in S. tuberosum.

  15. Consumption of pasteurized human lysozyme transgenic goats' milk alters serum metabolite profile in young pigs.

    Science.gov (United States)

    Brundige, Dottie R; Maga, Elizabeth A; Klasing, Kirk C; Murray, James D

    2010-08-01

    Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats' milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats' milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health.

  16. Semiautomated Alignment of High-Throughput Metabolite Profiles with Chemometric Tools

    Directory of Open Access Journals (Sweden)

    Ze-ying Wu

    2017-01-01

    Full Text Available The rapid increase in the use of metabolite profiling/fingerprinting techniques to resolve complicated issues in metabolomics has stimulated demand for data processing techniques, such as alignment, to extract detailed information. In this study, a new and automated method was developed to correct the retention time shift of high-dimensional and high-throughput data sets. Information from the target chromatographic profiles was used to determine the standard profile as a reference for alignment. A novel, piecewise data partition strategy was applied for the determination of the target components in the standard profile as markers for alignment. An automated target search (ATS method was proposed to find the exact retention times of the selected targets in other profiles for alignment. The linear interpolation technique (LIT was employed to align the profiles prior to pattern recognition, comprehensive comparison analysis, and other data processing steps. In total, 94 metabolite profiles of ginseng were studied, including the most volatile secondary metabolites. The method used in this article could be an essential step in the extraction of information from high-throughput data acquired in the study of systems biology, metabolomics, and biomarker discovery.

  17. Metabolite profiling, antioxidant and antibacterial activities of Brazilian propolis

    NARCIS (Netherlands)

    Bittencourt, M.L.F.; Ribeiro, Paulo R.; Franco, R.L.P.; Hilhorst, H.W.M.; Castro, de R.D.; Fernandez, L.G.

    2015-01-01

    The production of propolis by honeybees results from a selective collection of exudates from various plant species and present many potentialities in the pharmaceutical industry. The objective of this study was to investigate the chemical profile of Brazilian propolis, as well as their in vitro

  18. Effects of Different Salt Treatments on the Fermentation Metabolites and Bacterial Profiles of Kimchi.

    Science.gov (United States)

    Kim, Dong Wook; Kim, Bo-Min; Lee, Hyeon-Jeong; Jang, Gwang-Ju; Song, Seong Hwa; Lee, Jae-In; Lee, Sang Bong; Shim, Jae Min; Lee, Kang Wook; Kim, Jeong Hwan; Ham, Kyung-Sik; Chen, Feng; Kim, Hyun-Jin

    2017-05-01

    The effects of purified salt (PS) and mineral-rich sea salt (MRS), both with different mineral profiles, on kimchi fermentation were studied using a culture-dependent 16S rRNA sequencing technique and mass-based metabolomic analysis. The different mineral profiles in the fermentation medium caused changes in the bacterial profiles of the 2 kimchi products. An increase of Leuconostoc species in MRS-kimchi decreased the Lactobacillus/Leuconostoc ratio, which led to changes in metabolites (including sugars, amino acids, organic acids, lipids, sulfur compounds, and terpenoids) associated with kimchi quality. Although further studies on the relationship between these salt types and kimchi fermentation are needed, these results suggested that the MRS treatment had positively affected the changes of the kimchi mineral contents, bacterial growth, and metabolite profiles, which are linked to kimchi quality. © 2017 Institute of Food Technologists®.

  19. Nontargeted metabolite profiles and sensory properties of strawberry cultivars grown both organically and conventionally.

    Science.gov (United States)

    Kårlund, Anna; Hanhineva, Kati; Lehtonen, Marko; Karjalainen, Reijo O; Sandell, Mari

    2015-01-28

    Strawberry (Fragaria × ananassa Duch.) contains many secondary metabolites potentially beneficial for human health, and several of these compounds contribute to strawberry sensory properties, as well. In this study, three strawberry cultivars grown both conventionally and organically were subjected to nontargeted metabolite profiling analysis with LC-qTOF-ESI-MS and to descriptive sensory evaluation by a trained panel. Combined metabolome and sensory data (PLS model) revealed that 79% variation in the metabolome explained 88% variation in the sensory profiles. Flavonoids and condensed and hydrolyzable tannins determined the orosensory properties, and fatty acids contributed to the odor attributes of strawberry. Overall, the results indicated that the chemical composition and sensory quality of strawberries grown in different cultivation systems vary mostly according to cultivar. Organic farming practices may enhance the accumulation of some plant metabolites in specific strawberry genotypes. Careful cultivar selection is a key factor for the improvement of nutritional quality and marketing value of organic strawberries.

  20. The Uses and Future Prospects of Metabolomics and Targeted Metabolite Profiling in Cell Factory Development

    DEFF Research Database (Denmark)

    Harrison, Scott James; Herrgard, Markus

    2013-01-01

    , these broader measurements of the cellular metabolic state are now becoming part of the toolbox used to characterize cell factories. In this review we briefly summarize the benefits and challenges of global metabolomics and targeted metabolite profiling methods and discuss the application of these methods......The development of cell factories for the production of chemicals has traditionally relied on measurements of product metabolite titers to assess the performance of genetically manipulated strains. With the development of improved metabolomics and targeted metabolite profiling methods...... in both pathway discovery and cell factory engineering. We focus particularly on exploring the potential of global metabolomics to complement more traditional targeted methods. We conclude the review by discussing emerging trends in metabolomics and how these developments can aid the engineering of better...

  1. A comprehensive metabolite profiling of "Isatis tinctoria" leaf extracts

    OpenAIRE

    Mohn, Tobias

    2009-01-01

    Woad (Isatis tinctoria L., Brassicaceae) is an ancient indigo dye and anti-inflammatory medicinal plant, which has been used and cultivated in Europe since antiquity. The antiinflammatory potential of lipophilic leaf extracts was recently confirmed in a broad-based pharmacological profiling, in various animal models and in a clinical pilot study. Tryptanthrin, an indolin-2-one derivative, and γ-linoleic acid were identified as pharmacologically active compounds inhibiting cyclooxygenase-2 (CO...

  2. Prediction of Clinically Relevant Safety Signals of Nephrotoxicity through Plasma Metabolite Profiling

    Directory of Open Access Journals (Sweden)

    W. B. Mattes

    2013-01-01

    Full Text Available Addressing safety concerns such as drug-induced kidney injury (DIKI early in the drug pharmaceutical development process ensures both patient safety and efficient clinical development. We describe a unique adjunct to standard safety assessment wherein the metabolite profile of treated animals is compared with the MetaMap Tox metabolomics database in order to predict the potential for a wide variety of adverse events, including DIKI. To examine this approach, a study of five compounds (phenytoin, cyclosporin A, doxorubicin, captopril, and lisinopril was initiated by the Technology Evaluation Consortium under the auspices of the Drug Safety Executive Council (DSEC. The metabolite profiles for rats treated with these compounds matched established reference patterns in the MetaMap Tox metabolomics database indicative of each compound’s well-described clinical toxicities. For example, the DIKI associated with cyclosporine A and doxorubicin was correctly predicted by metabolite profiling, while no evidence for DIKI was found for phenytoin, consistent with its clinical picture. In some cases the clinical toxicity (hepatotoxicity, not generally seen in animal studies, was detected with MetaMap Tox. Thus metabolite profiling coupled with the MetaMap Tox metabolomics database offers a unique and powerful approach for augmenting safety assessment and avoiding clinical adverse events such as DIKI.

  3. Human Ozone (O3) Exposure Alters Serum Profile of Lipid Metabolites

    Science.gov (United States)

    HUMAN OZONE (O3) EXPOSURE ALTERS SERUM PROFILE OF LIPID METABOLITES Miller, D B.1; Kodavanti, U P.2 Karoly, E D.3; Cascio W.E2, Ghio, A J. 21. UNC-Chapel Hill, Chapel Hill, N.C., United States. 2. NHEERL, U.S. EPA, RTP, N.C., United States. 3. METABOLON INC., Durham, N.C., United...

  4. An ultrasonication-assisted extraction and derivatization protocol for GC/TOFMS-based metabolite profiling.

    Science.gov (United States)

    Liu, Yumin; Chen, Tianlu; Qiu, Yunpin; Cheng, Yu; Cao, Yu; Zhao, Aihua; Jia, Wei

    2011-05-01

    Conventional chemical derivatization of metabolites in biological specimens is time-consuming, which limits the throughput and efficiency of metabolite profiling using a gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) platform. We report an ultrasonication-assisted protocol which reduces the derivatization time from hours to about 30 min and significantly enhances the derivatization efficiency prior to a GC/TOFMS analysis. The protocol was evaluated using 40 compounds representing different classes of human metabolites, and demonstrated good analytical precision and accuracy. In comparison with the conventional method, the new protocol was able to increase the intensity of most of the identified peaks (71.0%) in the GC/TOFMS chromatograms of human serum samples. The detected compounds with increased intensity include most amino acids, keto-containing organic acids, carbonyl-containing carbohydrates, and unsaturated fatty acids. We applied this protocol in a metabolomic study of human serum samples obtained from 34 patients diagnosed with hypertension and 29 age- and gender-matched healthy subjects. Metabolite markers associated with hypertension, including glucosamine, D-sorbitol, 1-stearoylglycerol, and homocysteine, were identified and validated by statistical methods and use of reference standards. Our work highlights the potential of this novel approach for the large-scale metabolite profiling of samples generated from plant, animal, and clinical and epidemiological studies.

  5. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture.

    Science.gov (United States)

    Zörb, Christian; Langenkämper, Georg; Betsche, Thomas; Niehaus, Karsten; Barsch, Aiko

    2006-10-18

    In some European community countries up to 8% of the agricultural area is managed organically. The aim was to obtain a metabolite profile for wheat (Triticum aestivum L.) grains grown under comparable organic and conventional conditions. These conditions cannot be found in plant material originating from different farms or from products purchased in supermarkets. Wheat grains from a long-term biodynamic, bioorganic, and conventional farming system from the harvest 2003 from Switzerland were analyzed. The presented data show that using a high throughput GC-MS technique, it was possible to determine relative levels of a set of 52 different metabolites including amino acids, organic acids, sugars, sugar alcohols, sugar phosphates, and nucleotides from wheat grains. Within the metabolites from all field trials, there was at the most a 50% reduction comparing highest and lowest mean values. The statistical analysis of the data shows that the metabolite status of the wheat grain from organic and mineralic farming did not differ in concentrations of 44 metabolites. This result indicates no impact or a small impact of the different farming systems. In consequence, we did not detect extreme differences in metabolite composition and quality of wheat grains.

  6. Metabolite Profiling and Cardiovascular Event Risk: A Prospective Study of Three Population-Based Cohorts

    Science.gov (United States)

    Würtz, Peter; Havulinna, Aki S; Soininen, Pasi; Tynkkynen, Tuulia; Prieto-Merino, David; Tillin, Therese; Ghorbani, Anahita; Artati, Anna; Wang, Qin; Tiainen, Mika; Kangas, Antti J; Kettunen, Johannes; Kaikkonen, Jari; Mikkilä, Vera; Jula, Antti; Kähönen, Mika; Lehtimäki, Terho; Lawlor, Debbie A; Gaunt, Tom R; Hughes, Alun D; Sattar, Naveed; Illig, Thomas; Adamski, Jerzy; Wang, Thomas J; Perola, Markus; Ripatti, Samuli; Vasan, Ramachandran S; Raitakari, Olli T; Gerszten, Robert E; Casas, Juan-Pablo; Chaturvedi, Nish; Ala-Korpela, Mika; Salomaa, Veikko

    2015-01-01

    Background High-throughput profiling of circulating metabolites may improve cardiovascular risk prediction over established risk factors. Methods and Results We applied quantitative NMR metabolomics to identify biomarkers for incident cardiovascular disease during long-term follow-up. Biomarker discovery was conducted in the FINRISK study (n=7256; 800 events). Replication and incremental risk prediction was assessed in the SABRE study (n=2622; 573 events) and British Women’s Health and Heart Study (n=3563; 368 events). In targeted analyses of 68 lipids and metabolites, 33 measures were associated with incident cardiovascular events at Pmetabolomics for biomarker discovery and improved risk assessment. PMID:25573147

  7. Proteomic profiling of extracellular vesicles released from vascular smooth muscle cells during initiation of phosphate-induced mineralization.

    Science.gov (United States)

    Chaudhary, Sandeep C; Khalid, Sana; Smethurst, Victoria; Monier, Daisy; Mobley, James; Huet, Alexis; Conway, James F; Napierala, Dobrawa

    2018-02-22

    Elevated serum phosphate is one of the major factors contributing to vascular calcification. Studies suggested that extracellular vesicles released from vascular smooth muscle cells significantly contribute to the initiation and progression of this pathology. Recently, we have demonstrated that elevated phosphate stimulates release of extracellular vesicles from osteogenic cells at the initiation of the mineralization process. Here, we used MOVAS cell line as an in vitro model of vascular calcification to examine whether vascular smooth muscle cells respond to high phosphate levels in a similar way and increase formation of extracellular vesicles. Vesicles residing in extracellular matrix as well as vesicles released to culture medium were evaluated by nanoparticle tracking analyses. In addition, using mass spectrometry and protein profiling, protein composition of extracellular vesicles released by MOVAS cells under standard growth conditions and upon exposure to high phosphate was compared. Significant increase of the number of extracellular vesicles was detected after 72 hours of exposure of cells to high phosphate. Elevated phosphate levels also affected protein composition of extracellular vesicles released from MOVAS cells. Finally, the comparative analyses of proteins in extracellular vesicles isolated from extracellular matrix and from conditioned medium identified significant differences in protein composition in these two groups of extracellular vesicles. In conclusion, results of this study demonstrate that exposure of MOVAS cells to high phosphate levels stimulates the release of extracellular vesicles and changes their protein composition.

  8. Metabolite profiling of microfluidic cell culture conditions for droplet based screening

    DEFF Research Database (Denmark)

    Björk, Sara M.; Sjoström, Staffan L.; Svahn, Helene Andersson

    2015-01-01

    We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets......, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast...... limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format....

  9. Differential Metabolite Profiles during Fruit Development in High-Yielding Oil Palm Mesocarp

    Science.gov (United States)

    Teh, Huey Fang; Neoh, Bee Keat; Hong, May Ping Li; Low, Jaime Yoke Sum; Ng, Theresa Lee Mei; Ithnin, Nalisha; Thang, Yin Mee; Mohamed, Mohaimi; Chew, Fook Tim; Yusof, Hirzun Mohd.; Kulaveerasingam, Harikrishna; Appleton, David R.

    2013-01-01

    To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes. PMID:23593468

  10. Correlation between species-specific metabolite profiles and bioactivities of blueberries (Vaccinium spp.).

    Science.gov (United States)

    Lee, Sarah; Jung, Eun Sung; Do, Seon-Gil; Jung, Ga-Young; Song, Gwanpil; Song, Jung-Min; Lee, Choong Hwan

    2014-03-05

    Metabolite profiling of three blueberry species (Vaccinium bracteatum Thunb., V. oldhamii Miquel., and V. corymbosum L.) was performed using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) combined multivariate analysis. Partial least-squares discriminant analysis clearly showed metabolic differences among species. GC-TOF-MS analysis revealed significant differences in amino acids, organic acids, fatty acids, sugars, and phenolic acids among the three blueberry species. UPLC-Q-TOF-MS analysis indicated that anthocyanins were the major metabolites distinguishing V. bracteatum from V. oldhamii. The contents of anthocyanins such as glycosides of cyanidin were high in V. bracteatum, while glycosides of delphinidin, petunidin, and malvidin were high in V. oldhamii. Antioxidant activities assessed using ABTS and DPPH assays showed the greatest activity in V. oldhamii and revealed the highest correlation with total phenolic, total flavonoid, and total anthocyanin contents and their metabolites.

  11. Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp.

    Directory of Open Access Journals (Sweden)

    Huey Fang Teh

    Full Text Available To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.

  12. Metabolite Profiles in Various Plant Organs of Justicia gendarussa Burm.f. and Its in Vitro Cultures.

    Science.gov (United States)

    Indrayoni, Putu; Purwanti, Diah Intan; Wongso, Suwidji; Prajogo, Bambang E W; Indrayanto, Gunawan

    2016-04-13

    Metabolite profiles of plant organs and their in vitro cultures of Justicia gendarussa have been studied by using Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight-Mass Spectrometry (UPLC-Qtof-MS). Samples of leaves, stems, roots, and shoot cultures showed similar patterns of metabolites, while samples of root cultures gave very different profiles. Concentrations of secondary metabolites in shoot cultures were relatively low compared to those in the leaves and roots of the plants. The results suggested that secondary metabolites in J. gendarussa were biosynthetized in the leaves, then transported to the roots.

  13. Gene Expression Profile of Extracellular Matrix and Adhesion Molecules in the Human Normal Corneal Stroma.

    Science.gov (United States)

    Liu, Ying; Huang, Hu; Sun, Guoying; Alwadani, Saeed; Semba, Richard D; Lutty, Gerard A; Yiu, Samuel; Edward, Deepak P

    2017-04-01

    There is limited information on region-specific gene expression in the human corneal stroma. In this study, we aimed to investigate the expression profile of the extracellular matrix and adhesion molecules in the normal corneal stroma using laser capture microdissection (LCM) and molecular techniques. Frozen sections of human cornea without ocular disease were used to isolate the central and peripheral corneal stromal keratocytes by LCM. RNA was extracted from LCM-captured tissues and the RT2 Profiler PCR Arrays were used to examine the expression profile of extracellular matrix and adhesion molecules in the central and peripheral stroma. Real-time quantitative PCR was used to quantify gene expression. Proteomic and western blotting (WB) analyses were performed to confirm gene expression at protein level. Function association network was generated via the web tools String and Cytoscape. The gene expression profiling demonstrated that 35 out of the 84 extracellular matrix and adhesion molecules represented in the array were expressed in stromal keratocytes. Among them, 24 genes were not previously described in the corneal stroma. Two genes were found more abundantly expressed in the central stroma than in the periphery: TGFBI, COL6A2 (p < 0.05). ADAMTS13 was detected only in the central stroma. Proteomics and WB analysis confirmed the expression of 10 genes. Functional analysis revealed that most identified genes were presented in a core cluster that had multiple and strong associations with other genes. This study identified genes not previously described in the corneal stroma, revealed regional differences in gene expression between central and peripheral stroma, and also detected some interesting candidate genes that may play important roles in corneal function. These observations serve as the foundation to further investigate the molecular and cellular mechanisms regulating the pathogenesis of regional corneal stromal disorders such as keratoconus.

  14. Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging.

    Directory of Open Access Journals (Sweden)

    Karin Gorzolka

    Full Text Available MALDI mass spectrometry imaging was performed to localize metabolites during the first seven days of the barley germination. Up to 100 mass signals were detected of which 85 signals were identified as 48 different metabolites with highly tissue-specific localizations. Oligosaccharides were observed in the endosperm and in parts of the developed embryo. Lipids in the endosperm co-localized in dependency on their fatty acid compositions with changes in the distributions of diacyl phosphatidylcholines during germination. 26 potentially antifungal hordatines were detected in the embryo with tissue-specific localizations of their glycosylated, hydroxylated, and O-methylated derivates. In order to reveal spatio-temporal patterns in local metabolite compositions, multiple MSI data sets from a time series were analyzed in one batch. This requires a new preprocessing strategy to achieve comparability between data sets as well as a new strategy for unsupervised clustering. The resulting spatial segmentation for each time point sample is visualized in an interactive cluster map and enables simultaneous interactive exploration of all time points. Using this new analysis approach and visualization tool germination-dependent developments of metabolite patterns with single MS position accuracy were discovered. This is the first study that presents metabolite profiling of a cereals' germination process over time by MALDI MSI with the identification of a large number of peaks of agronomically and industrially important compounds such as oligosaccharides, lipids and antifungal agents. Their detailed localization as well as the MS cluster analyses for on-tissue metabolite profile mapping revealed important information for the understanding of the germination process, which is of high scientific interest.

  15. Simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell cultures and in sub-regions of guinea pig brain.

    Science.gov (United States)

    Schou-Pedersen, Anne Marie V; Hansen, Stine N; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2016-08-15

    In the present paper, we describe a validated chromatographic method for the simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell culture and in sub-regions of the guinea pig brain. Electrochemical detection provided limits of quantifications (LOQs) between 3.6 and 12nM. Within the linear range, obtained recoveries were from 90.9±9.9 to 120±14% and intra-day and inter-day precisions found to be less than 5.5% and 12%, respectively. The analytical method was applicable for quantification of intracellular and extracellular amounts of monoamine neurotransmitters and their metabolites in guinea pig frontal cortex and hippocampal primary neuronal cell cultures. Noradrenaline, dopamine and serotonin were found to be in a range from 0.31 to 1.7pmol per 2 million cells intracellularly, but only the biogenic metabolites could be detected extracellularly. Distinct differences in monoamine concentrations were observed when comparing concentrations in guinea pig frontal cortex and cerebellum tissue with higher amounts of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid in frontal cortex, as compared to cerebellum. The chemical turnover in frontal cortex tissue of guinea pig was for serotonin successfully predicted from the turnover observed in the frontal cortex cell culture. In conclusion, the present analytical method shows high precision, accuracy and sensitivity and is broadly applicable to monoamine measurements in cell cultures as well as brain biopsies from animal models used in preclinical neurochemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Comparative metabolite profiling of two rice genotypes with contrasting salt stress tolerance at the seedling stage.

    Directory of Open Access Journals (Sweden)

    Xiuqin Zhao

    Full Text Available BACKGROUND: Rice is sensitive to salt stress, especially at the seedling stage, with rice varieties differing remarkably in salt tolerance (ST. To understand the physiological mechanisms of ST, we investigated salt stress responses at the metabolite level. METHODS: Gas chromatography-mass spectrometry was used to profile metabolite changes in the salt-tolerant line FL478 and the sensitive variety IR64 under a salt-stress time series. Additionally, several physiological traits related to ST were investigated. RESULTS: We characterized 92 primary metabolites in the leaves and roots of the two genotypes under stress and control conditions. The metabolites were temporally, tissue-specifically and genotype-dependently regulated under salt stress. Sugars and amino acids (AAs increased significantly in the leaves and roots of both genotypes, while organic acids (OAs increased in roots and decreased in leaves. Compared with IR64, FL478 experienced greater increases in sugars and AAs and more pronounced decreases in OAs in both tissues; additionally, the maximum change in sugars and AAs occurred later, while OAs changed earlier. Moreover, less Na+ and higher relative water content were observed in FL478. Eleven metabolites, including AAs and sugars, were specifically increased in FL478 over the course of the treatment. CONCLUSIONS: Metabolic responses of rice to salt stress are dynamic and involve many metabolites. The greater ST of FL478 is due to different adaptive reactions at different stress times. At early salt-stress stages, FL478 adapts to stress by decreasing OA levels or by quickly depressing growth; during later stages, more metabolites are accumulated, thereby serving as compatible solutes against osmotic challenge induced by salt stress.

  17. Comparative Metabolite Profiling of Two Rice Genotypes with Contrasting Salt Stress Tolerance at the Seedling Stage

    Science.gov (United States)

    Zhang, Fan; Deng, Jianli; Li, Zhikang; Fu, Binying

    2014-01-01

    Background Rice is sensitive to salt stress, especially at the seedling stage, with rice varieties differing remarkably in salt tolerance (ST). To understand the physiological mechanisms of ST, we investigated salt stress responses at the metabolite level. Methods Gas chromatography-mass spectrometry was used to profile metabolite changes in the salt-tolerant line FL478 and the sensitive variety IR64 under a salt-stress time series. Additionally, several physiological traits related to ST were investigated. Results We characterized 92 primary metabolites in the leaves and roots of the two genotypes under stress and control conditions. The metabolites were temporally, tissue-specifically and genotype-dependently regulated under salt stress. Sugars and amino acids (AAs) increased significantly in the leaves and roots of both genotypes, while organic acids (OAs) increased in roots and decreased in leaves. Compared with IR64, FL478 experienced greater increases in sugars and AAs and more pronounced decreases in OAs in both tissues; additionally, the maximum change in sugars and AAs occurred later, while OAs changed earlier. Moreover, less Na+ and higher relative water content were observed in FL478. Eleven metabolites, including AAs and sugars, were specifically increased in FL478 over the course of the treatment. Conclusions Metabolic responses of rice to salt stress are dynamic and involve many metabolites. The greater ST of FL478 is due to different adaptive reactions at different stress times. At early salt-stress stages, FL478 adapts to stress by decreasing OA levels or by quickly depressing growth; during later stages, more metabolites are accumulated, thereby serving as compatible solutes against osmotic challenge induced by salt stress. PMID:25265195

  18. Monitoring the Modifications of the Vitreous Humor Metabolite Profile after Death: An Animal Model

    Directory of Open Access Journals (Sweden)

    Maria Francesca Rosa

    2015-01-01

    Full Text Available We applied a metabolomic approach to monitor the modifications occurring in goat vitreous humor (VH metabolite composition at different times (0, 6, 12, 18, and 24 hours after death. The 1H-NMR analysis of the VH samples was performed for the simultaneous determination of several metabolites (i.e., the metabolite profile representative of the VH status at different times. Spectral data were analyzed by Principal Component Analysis (PCA and by Orthogonal Projection to Latent Structures (OPLS regression technique. PCA and OPLS suggested that different spectral regions were involved in time-related changes. The major time-related compositional changes, here detected, were the increase of lactate, hypoxanthine, alanine, total glutathione, choline/phosphocholine, creatine, and myo-inositol and the decrease of glucose and 3-hydroxybutyrate. We attempted a speculative interpretation of the biological mechanisms underlying these changes. These results show that multivariate statistical approach, based on 1H NMR metabolite profiling, is a powerful tool for detecting ongoing differences in VH composition and may be applied to investigate several physiological and pathological conditions.

  19. Monitoring the modifications of the vitreous humor metabolite profile after death: an animal model.

    Science.gov (United States)

    Rosa, Maria Francesca; Scano, Paola; Noto, Antonio; Nioi, Matteo; Sanna, Roberta; Paribello, Francesco; De-Giorgio, Fabio; Locci, Emanuela; d'Aloja, Ernesto

    2015-01-01

    We applied a metabolomic approach to monitor the modifications occurring in goat vitreous humor (VH) metabolite composition at different times (0, 6, 12, 18, and 24 hours) after death. The (1)H-NMR analysis of the VH samples was performed for the simultaneous determination of several metabolites (i.e., the metabolite profile) representative of the VH status at different times. Spectral data were analyzed by Principal Component Analysis (PCA) and by Orthogonal Projection to Latent Structures (OPLS) regression technique. PCA and OPLS suggested that different spectral regions were involved in time-related changes. The major time-related compositional changes, here detected, were the increase of lactate, hypoxanthine, alanine, total glutathione, choline/phosphocholine, creatine, and myo-inositol and the decrease of glucose and 3-hydroxybutyrate. We attempted a speculative interpretation of the biological mechanisms underlying these changes. These results show that multivariate statistical approach, based on (1)H NMR metabolite profiling, is a powerful tool for detecting ongoing differences in VH composition and may be applied to investigate several physiological and pathological conditions.

  20. Effect of fertilizers on galanthamine and metabolite profiles in Narcissus bulbs by 1H NMR.

    Science.gov (United States)

    Lubbe, Andrea; Choi, Young Hae; Vreeburg, Peter; Verpoorte, Robert

    2011-04-13

    Narcissus bulbs contain the biologically active alkaloid galanthamine, and Narcissus is being developed as a natural source of the molecule for the pharmaceutical industry. The effect of fertilizer on galanthamine production was investigated in a field study using a (1)H nuclear magnetic resonance (NMR) metabolite profiling approach. Galanthamine was quantitated and major metabolites in the bulbs were identified. The application of standard fertilization levels of nitrogen and potassium caused a significant increase in galanthamine as compared to a control. Multivariate data analysis of the (1)H NMR data revealed that applying double the standard level of nitrogen fertilizer resulted in production of more amino acids and citric acid cycle intermediates, but not more galanthamine. The results indicated that standard levels of fertilizer currently applied in The Netherlands are sufficient for optimal galanthamine accumulation in the bulbs. This study shows how (1)H NMR-based metabolic profiling can provide insight into the response of plant metabolism to agricultural practices.

  1. Metabolite profiling on wheat grain to enable a distinction of samples from organic and conventional farming systems.

    Science.gov (United States)

    Bonte, Anja; Neuweger, Heiko; Goesmann, Alexander; Thonar, Cécile; Mäder, Paul; Langenkämper, Georg; Niehaus, Karsten

    2014-10-01

    Identification of biomarkers capable of distinguishing organic and conventional products would be highly welcome to improve the strength of food quality assurance. Metabolite profiling was used for biomarker search in organic and conventional wheat grain (Triticum aestivum L.) of 11 different old and new bread wheat cultivars grown in the DOK system comparison trial. Metabolites were extracted using methanol and analysed by gas chromatography-mass spectrometry. Altogether 48 metabolites and 245 non-identified metabolites (TAGs) were detected in the cultivar Runal. Principal component analysis showed a sample clustering according to farming systems and significant differences in peak areas between the farming systems for 10 Runal metabolites. Results obtained from all 11 cultivars indicated a greater influence of the cultivar than the farming system on metabolite concentrations. Nevertheless, a t-test on data of all cultivars still detected 5 metabolites and 11 TAGs with significant differences between the farming systems. Based on individual cultivars, metabolite profiling showed promising results for the categorization of organic and conventional wheat. Further investigations are necessary with wheat from more growing seasons and locations before definite conclusions can be drawn concerning the feasibility to evolve a combined set of biomarkers for organically grown wheat using metabolite profiles. © 2014 Society of Chemical Industry.

  2. Fully Automated Trimethylsilyl (TMS Derivatisation Protocol for Metabolite Profiling by GC-MS

    Directory of Open Access Journals (Sweden)

    Erica Zarate

    2016-12-01

    Full Text Available Gas Chromatography-Mass Spectrometry (GC-MS has long been used for metabolite profiling of a wide range of biological samples. Many derivatisation protocols are already available and among these, trimethylsilyl (TMS derivatisation is one of the most widely used in metabolomics. However, most TMS methods rely on off-line derivatisation prior to GC-MS analysis. In the case of manual off-line TMS derivatisation, the derivative created is unstable, so reduction in recoveries occurs over time. Thus, derivatisation is carried out in small batches. Here, we present a fully automated TMS derivatisation protocol using robotic autosamplers and we also evaluate a commercial software, Maestro available from Gerstel GmbH. Because of automation, there was no waiting time of derivatised samples on the autosamplers, thus reducing degradation of unstable metabolites. Moreover, this method allowed us to overlap samples and improved throughputs. We compared data obtained from both manual and automated TMS methods performed on three different matrices, including standard mix, wine, and plasma samples. The automated TMS method showed better reproducibility and higher peak intensity for most of the identified metabolites than the manual derivatisation method. We also validated the automated method using 114 quality control plasma samples. Additionally, we showed that this online method was highly reproducible for most of the metabolites detected and identified (RSD < 20 and specifically achieved excellent results for sugars, sugar alcohols, and some organic acids. To the very best of our knowledge, this is the first time that the automated TMS method has been applied to analyse a large number of complex plasma samples. Furthermore, we found that this method was highly applicable for routine metabolite profiling (both targeted and untargeted in any metabolomics laboratory.

  3. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease.

    Science.gov (United States)

    Minamoto, Yasushi; Otoni, Cristiane C; Steelman, Samantha M; Büyükleblebici, Olga; Steiner, Jörg M; Jergens, Albert E; Suchodolski, Jan S

    2015-01-01

    Idiopathic inflammatory bowel disease (IBD) is a common cause of chronic gastrointestinal (GI) disease in dogs. The combination of an underlying host genetic susceptibility, an intestinal dysbiosis, and dietary/environmental factors are suspected as main contributing factors in the pathogenesis of canine IBD. However, actual mechanisms of the host-microbe interactions remain elusive. The aim of this study was to compare the fecal microbiota and serum metabolite profiles between healthy dogs (n = 10) and dogs with IBD before and after 3 weeks of medical therapy (n = 12). Fecal microbiota and metabolite profiles were characterized by 454-pyrosequencing of 16 S rRNA genes and by an untargeted metabolomics approach, respectively. Significantly lower bacterial diversity and distinct microbial communities were observed in dogs with IBD compared to the healthy control dogs. While Gammaproteobacteria were overrepresented, Erysipelotrichia, Clostridia, and Bacteroidia were underrepresented in dogs with IBD. The functional gene content was predicted from the 16 S rRNA gene data using PICRUSt, and revealed overrepresented bacterial secretion system and transcription factors, and underrepresented amino acid metabolism in dogs with IBD. The serum metabolites 3-hydroxybutyrate, hexuronic acid, ribose, and gluconic acid lactone were significantly more abundant in dogs with IBD. Although a clinical improvement was observed after medical therapy in all dogs with IBD, this was not accompanied by significant changes in the fecal microbiota or in serum metabolite profiles. These results suggest the presence of oxidative stress and a functional alteration of the GI microbiota in dogs with IBD, which persisted even in the face of a clinical response to medical therapy.

  4. Metabolite profiles correlate closely with neurobehavioral function in experimental spinal cord injury in rats.

    Directory of Open Access Journals (Sweden)

    Yusuke Fujieda

    Full Text Available Traumatic spinal cord injury (SCI results in direct physical damage and the generation of local factors contributing to secondary pathogenesis. Untargeted metabolomic profiling was used to uncover metabolic changes and to identify relationships between metabolites and neurobehavioral functions in the spinal cord after injury in rats. In the early metabolic phase, neuronal signaling, stress, and inflammation-associated metabolites were strongly altered. A dynamic inflammatory response consisting of elevated levels of prostaglandin E2 and palmitoyl ethanolamide as well as pro- and anti-inflammatory polyunsaturated fatty acids was observed. N-acetyl-aspartyl-glutamate (NAAG and N-acetyl-aspartate (NAA were significantly decreased possibly reflecting neuronal cell death. A second metabolic phase was also seen, consistent with membrane remodeling and antioxidant defense response. These metabolomic changes were consistent with the pathology and progression of SCI. Several metabolites, including NAA, NAAG, and the ω-3 fatty acids docosapentaenoate and docosahexaenoate correlated greatly with the established Basso, Beattie and Bresnahan locomotive score (BBB score. Our findings suggest the possibility of a biochemical basis for BBB score and illustrate that metabolites may correlate with neurobehavior. In particular the NAA level in the spinal cord might provide a meaningful biomarker that could help to determine the degree of injury severity and prognosticate neurologic recovery.

  5. Profile of urinary and fecal proanthocyanidin metabolites from common cinnamon (Cinnamomum zeylanicum L.) in rats.

    Science.gov (United States)

    Mateos-Martín, María Luisa; Pérez-Jiménez, Jara; Fuguet, Elisabet; Torres, Josep Lluís

    2012-04-01

    Cinnamon (Cinnamomum zeylanicum L.) bark is widely used as a spice and in traditional medicine. Its oligomeric and polymeric proanthocyanidins are believed to be partly responsible for the beneficial properties of the plant. We describe here the metabolic fate of cinnamon proanthocyanidins in the urine and feces of rats fed a suspension of the whole bark. The metabolites include ten mono-, di-, and tri- conjugated (epi)catechin phase II metabolites and more than 20 small phenolic acids from intestinal microbial fermentation. Some of these are sulfated conjugates. Feces contain intact (epi)catechin and dimers. This suggests that free radical scavenging species are in contact with the intestinal walls for hours after ingestion of cinnamon. The phenolic metabolite profile of cinnamon bark in urine is consistent with a mixture of proanthocyanidins that are depolymerized into their constitutive (epi)catechin units as well as cleaved into smaller phenolic acids during their transit along the intestinal tract, with subsequent absorption and conjugation into bioavailable metabolites. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera

    Science.gov (United States)

    Hillyer, Katie E.; Dias, Daniel A.; Lutz, Adrian; Wilkinson, Shaun P.; Roessner, Ute; Davy, Simon K.

    2017-03-01

    Rising seawater temperatures pose a significant threat to the persistence of coral reefs. Despite the importance of these systems, major gaps remain in our understanding of how thermal stress and bleaching affect the metabolic networks that underpin holobiont function. We applied gas chromatography-mass spectrometry (GC-MS) metabolomics to detect changes in the intracellular free metabolite pools (polar and semi-polar compounds) of in hospite dinoflagellate symbionts and their coral hosts (and any associated microorganisms) during early- and late-stage thermal bleaching (a reduction of approximately 50 and 70% in symbiont density, respectively). We detected characteristic changes to the metabolite profiles of each symbiotic partner associated with individual cellular responses to thermal, oxidative and osmotic stress, which progressed with the severity of bleaching. Alterations were also indicative of changes to energy-generating and biosynthesis pathways in both partners, with a shift to the increased catabolism of lipid stores. Specifically, in symbiont intracellular metabolite pools, we observed accumulations of multiple free fatty acids, plus the chloroplast-associated antioxidant alpha-tocopherol. In the host, we detected a decline in the abundance of pools of multiple carbohydrates, amino acids and intermediates, in addition to the antioxidant ascorbate. These findings further our understanding of the metabolic changes that occur to symbiont and host (and its associated microorganisms) during thermal bleaching. These findings also provide further insight into the largely undescribed roles of free metabolite pools in cellular homeostasis, signalling and acclimation to thermal stress in the cnidarian-dinoflagellate symbiosis.

  7. Metabolite profiling of leek (Allium porrum L) cultivars by (1) H NMR and HPLC-MS.

    Science.gov (United States)

    Soininen, Tuula H; Jukarainen, Niko; Soininen, Pasi; Auriola, Seppo O K; Julkunen-Tiitto, Riitta; Oleszek, Wieslaw; Stochmal, Anna; Karjalainen, Reijo O; Vepsäläinen, Jouko J

    2014-01-01

    Leek (Allium ampeloprasum var. porrum) is consumed as a vegetable throughout the world. However, little is known about the metabolites of leek cultivars, especially those with potentially important beneficial properties for human health. We provide new information for the overall metabolite composition of several leek cultivars grown in Europe by using HPLC-MS and (1) H NMR. The use of a novel CTLS/NMR (constrained total-line-shape nuclear magnetic resonance) approach was found to be capable of reliable quantification, even with overlapping metabolite signals in the (1) H NMR of plant metabolites. Additionally, a new application for leek flavonoids was optimised for HPLC-MS. The total concentration of carbohydrates (glucose, fructose, kestose/nystose and sucrose) and nine amino acids varied by fourfold in leek juice from different cultivars, while the total concentrations of four organic acids were similar in all cultivars. All the quantified flavonols were kaempferol derivatives or quercetin derivatives and threefold differences in flavonol concentrations were detected between cultivars. In this study, various phytochemical profiles were determined for several leek cultivars by (1) H NMR spectroscopy with CTLS combined with HPLC-MS. The wide variation in bioactive compounds among commercial leek cultivars offers promising opportunities for breeders to raise the levels of important biochemical compounds in leek breeding lines, and also provides some objective measure for quality assurance for the leek industry. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Secondary Metabolite Profiling of Species of the Genus Usnea by UHPLC-ESI-OT-MS-MS

    Directory of Open Access Journals (Sweden)

    Francisco Salgado

    2017-12-01

    Full Text Available Lichens are symbiotic associations of fungi with microalgae and/or cyanobacteria, which are considered among the slowest growing organisms, with strong tolerance to adverse environmental conditions. There are about 400 genera and 1600 species of lichens and those belonging to the Usnea genus comprise about 360 of these species. Usnea lichens have been used since ancient times as dyes, cosmetics, preservatives, deodorants and folk medicines. The phytochemistry of the Usnea genus includes more than 60 compounds which belong to the following classes: depsides, depsidones, depsones, lactones, quinones, phenolics, polysaccharides, fatty acids and dibenzofurans. Due to scarce knowledge of metabolomic profiles of Usnea species (U. barbata, U. antarctica, U. rubicunda and U. subfloridana, a study based on UHPLC-ESI-OT-MS-MS was performed for a comprehensive characterization of their secondary metabolites. From the methanolic extracts of these species a total of 73 metabolites were identified for the first time using this hyphenated technique, including 34 compounds in U. barbata, 21 in U. antarctica, 38 in U. rubicunda and 37 in U. subfloridana. Besides, a total of 13 metabolites were not identified and reported so far, and could be new according to our data analysis. This study showed that this hyphenated technique is rapid, effective and accurate for phytochemical identification of lichen metabolites and the data collected could be useful for chemotaxonomic studies.

  9. Effect of high pressure treatment on metabolite profile of marinated meat in soy sauce.

    Science.gov (United States)

    Yang, Yang; Ye, Yangfang; Wang, Ying; Sun, Yangying; Pan, Daodong; Cao, Jinxuan

    2018-02-01

    Marinated meat in soy sauce was produced using hind leg by washing, rubbing salt, marinating with soy sauce and spices, and air dry-ripening for 15d. The effect of high pressure (HP) (150 and 300MPa for 15min) on the metabolite profiles of products was characterized using (1)H NMR and multivariate data analysis. The results showed that the metabonome was dominated by 26 metabolites, including amino acids, sugars, organic acids, nucleic aides and their derivatives. PC1 and PC2 explained a total of 75.4 and 11.9% of variables, respectively. HP treatments increased most of the metabolites, especially PC1, glutamate, sugars, nucleotides, anserine, lactate and creatine compared to the control. The increase of metabolites under HP was not dependent on pressure level except for alanine, lactate, acetate, formate, fumarate, glucose and 5'-IMP. These findings demonstrated that HP treatment at 150MPa was economical to improve the taste of marinated meat in soy sauce. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    Directory of Open Access Journals (Sweden)

    Horia Todor

    Full Text Available Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  11. Metabolic effects of influenza virus infection in cultured animal cells : Intra- and extracellular metabolite profiling

    NARCIS (Netherlands)

    Ritter, J.B.; Wahl, A.S.; Freund, S.; Genzel, Y.; Reichl, U.

    2010-01-01

    Background: Many details in cell culture-derived influenza vaccine production are still poorly understood and approaches for process optimization mainly remain empirical. More insights on mammalian cell metabolism after a viral infection could give hints on limitations and cell-specific virus

  12. Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism

    OpenAIRE

    Nemenman, Ilya; Escola, G. Sean; Hlavacek, William S.; Unkefer, Pat J.; Unkefer, Clifford J.; Wall, Michael E.

    2007-01-01

    We investigate the ability of algorithms developed for reverse engineering of transcriptional regulatory networks to reconstruct metabolic networks from high-throughput metabolite profiling data. For this, we generate synthetic metabolic profiles for benchmarking purposes based on a well-established model for red blood cell metabolism. A variety of data sets is generated, accounting for different properties of real metabolic networks, such as experimental noise, metabolite correlations, and t...

  13. Prediction of future risk of insulin resistance and metabolic syndrome based on Korean boy's metabolite profiling.

    Science.gov (United States)

    Lee, AeJin; Jang, Han Byul; Ra, Moonjin; Choi, Youngshim; Lee, Hye-Ja; Park, Ju Yeon; Kang, Jae Heon; Park, Kyung-Hee; Park, Sang Ick; Song, Jihyun

    2015-01-01

    Childhood obesity is strongly related to future insulin resistance and metabolic syndrome. Thus, identifying early biomarkers of obesity-related diseases based on metabolic profiling is useful to control future metabolic disorders. We compared metabolic profiles between obese and normal-weight children and investigated specific biomarkers of future insulin resistance and metabolic syndrome. In all, 186 plasma metabolites were analysed at baseline and after 2 years in 109 Korean boys (age 10.5±0.4 years) from the Korean Child Obesity Cohort Study using the AbsoluteIDQ™ p180 Kit. We observed that levels of 41 metabolites at baseline and 40 metabolites at follow-up were significantly altered in obese children (pObese children showed significantly higher levels of branched-chain amino acids (BCAAs) and several acylcarnitines and lower levels of acyl-alkyl phosphatidylcholines. Also, baseline BCAAs were significantly positively correlated with both homeostasis model assessment for insulin resistance (HOMA-IR) and continuous metabolic risk score at the 2-year follow-up. In logistic regression analyses with adjustments for degree of obesity at baseline, baseline BCAA concentration, greater than the median value, was identified as a predictor of future risk of insulin resistance and metabolic syndrome. High BCAA concentration could be "early" biomarkers for predicting future metabolic diseases. Copyright © 2014 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  14. Urinary Metabolite Profiles in Premature Infants Show Early Postnatal Metabolic Adaptation and Maturation

    Directory of Open Access Journals (Sweden)

    Sissel J. Moltu

    2014-05-01

    Full Text Available Objectives: Early nutrition influences metabolic programming and long-term health. We explored the urinary metabolite profiles of 48 premature infants (birth weight < 1500 g randomized to an enhanced or a standard diet during neonatal hospitalization. Methods: Metabolomics using nuclear magnetic resonance spectroscopy (NMR was conducted on urine samples obtained during the first week of life and thereafter fortnightly. Results: The intervention group received significantly higher amounts of energy, protein, lipids, vitamin A, arachidonic acid and docosahexaenoic acid as compared to the control group. Enhanced nutrition did not appear to affect the urine profiles to an extent exceeding individual variation. However, in all infants the glucogenic amino acids glycine, threonine, hydroxyproline and tyrosine increased substantially during the early postnatal period, along with metabolites of the tricarboxylic acid cycle (succinate, oxoglutarate, fumarate and citrate. The metabolite changes correlated with postmenstrual age. Moreover, we observed elevated threonine and glycine levels in first-week urine samples of the small for gestational age (SGA; birth weight < 10th percentile for gestational age as compared to the appropriate for gestational age infants. Conclusion: This first nutri-metabolomics study in premature infants demonstrates that the physiological adaptation during the fetal-postnatal transition as well as maturation influences metabolism during the breastfeeding period. Elevated glycine and threonine levels were found in the first week urine samples of the SGA infants and emerged as potential biomarkers of an altered metabolic phenotype.

  15. Taxonomic Characterization and Secondary Metabolite Profiling of Aspergillus Section Aspergillus Contaminating Feeds and Feedstuffs

    Directory of Open Access Journals (Sweden)

    Mariana Greco

    2015-09-01

    Full Text Available Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for the presence of xerophilic Aspergillus section Aspergillus species. High isolation frequencies (>60% were detected in all the studied rabbit and chinchilla feeds, while the rainbow trout feeds showed lower fungal charge (25%. These section Aspergillus contaminations comprised predominantly five taxa. Twenty isolates were subjected to taxonomic characterization using both ascospore SEM micromorphology and two independent DNA loci sequencing. The secondary metabolite profiles of the isolates were determined qualitatively by HPLC-MS. All the isolates produced neoechinulin A, 17 isolates were positive for cladosporin and echinulin, and 18 were positive for neoechinulin B. Physcion and preechinulin were detected in a minor proportion of the isolates. This is the first report describing the detailed species composition and the secondary metabolite profiles of Aspergillus section Aspergillus contaminating animal feeds.

  16. Plasma, urine and ligament tissue metabolite profiling reveals potential biomarkers of ankylosing spondylitis using NMR-based metabolic profiles.

    Science.gov (United States)

    Wang, Wei; Yang, Gen-Jin; Zhang, Ju; Chen, Chen; Jia, Zhen-Yu; Li, Jia; Xu, Wei-Dong

    2016-10-22

    Ankylosing spondylitis (AS) is an autoimmune rheumatic disease mostly affecting the axial skeleton. Currently, anti-tumour necrosis factor α (anti-TNF-α) represents an effective treatment for AS that may delay the progression of the disease and alleviate the symptoms if the diagnosis can be made early. Unfortunately, effective diagnostic biomarkers for AS are still lacking; therefore, most patients with AS do not receive timely and effective treatment. The intent of this study was to determine several key metabolites as potential biomarkers of AS using metabolomic methods to facilitate the early diagnosis of AS. First, we collected samples of plasma, urine, and ligament tissue around the hip joint from AS and control groups. The samples were examined by nuclear magnetic resonance spectrometry, and multivariate data analysis was performed to find metabolites that differed between the groups. Subsequently, according to the correlation coefficients, variable importance for the projection (VIP) and P values of the metabolites obtained in the multivariate data analysis, the most crucial metabolites were selected as potential biomarkers of AS. Finally, metabolic pathways involving the potential biomarkers were determined using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the metabolic pathway map was drawn. Forty-four patients with AS agreed to provide plasma and urine samples, and 30 provided ligament tissue samples. An equal number of volunteers were recruited for the control group. Multidimensional statistical analysis suggested significant differences between the patients with AS and control subjects, and the models exhibited good discrimination and predictive ability. A total of 20 different metabolites ultimately met the requirements for potential biomarkers. According to KEGG analysis, these marker metabolites were primarily related to fat metabolism, intestinal microbial metabolism, glucose metabolism and choline metabolism pathways, and

  17. Analysis of Phenolic and Cyclic Compounds in Plants Using Derivatization Techniques in Combination with GC-MS-Based Metabolite Profiling

    Directory of Open Access Journals (Sweden)

    Jens Rohloff

    2015-02-01

    Full Text Available Metabolite profiling has been established as a modern technology platform for the description of complex chemical matrices and compound identification in biological samples. Gas chromatography coupled with mass spectrometry (GC-MS in particular is a fast and accurate method widely applied in diagnostics, functional genomics and for screening purposes. Following solvent extraction and derivatization, hundreds of metabolites from different chemical groups can be characterized in one analytical run. Besides sugars, acids, and polyols, diverse phenolic and other cyclic metabolites can be efficiently detected by metabolite profiling. The review describes own results from plant research to exemplify the applicability of GC-MS profiling and concurrent detection and identification of phenolics and other cyclic structures.

  18. Profiling of small RNA cargo of extracellular vesicles shed by Trypanosoma cruzi reveals a specific extracellular signature.

    Science.gov (United States)

    Fernandez-Calero, Tamara; Garcia-Silva, Rosa; Pena, Alvaro; Robello, Carlos; Persson, Helena; Rovira, Carlos; Naya, Hugo; Cayota, Alfonso

    2015-01-01

    Over the last years, an expanding family of small regulatory RNAs (e.g. microRNAs, siRNAs and piRNAs) was recognized as key players in novel forms of post-transcriptional gene regulation in most eukaryotes. However, the machinery associated with Ago/Dicer-dependent small RNA biogenesis was thought to be either entirely lost or extensively simplified in some unicellular organisms including Trypanosoma cruzi, Saccharomyces cerevisiae, Leishmania major and Plasmodium falciparum. Although the biogenesis of small RNAs from non-coding RNAs represent a minor fraction of the normal small RNA transcriptome in eukaryotic cells, they represent the unique small RNA pathways in Trypanosoma cruzi which produce different populations of small RNAs derived from tRNAs, rRNAs, sn/snoRNAs and mRNAs. These small RNAs are secreted included in extracellular vesicles and transferred to other parasites and susceptible mammalian cells. This process represents a novel form of cross-kingdom transfer of genetic material suggesting that secreted vesicles could represent new relevant pieces in life cycle transitions, infectivity and cell-to-cell communication. Here, we provide for the first time a detailed analysis of the small RNA cargo of extracellular vesicles from T. cruzi epimastigotes under nutritional stress conditions compared to the respective intracellular compartment using deep sequencing. Compared with the intracellular compartment, shed extracellular vesicles showed a specific extracellular signature conformed by distinctive patterns of small RNAs derived from rRNA, tRNA, sno/snRNAs and protein coding sequences which evidenced specific secretory small RNA processing pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Nutrient Intake Is Associated with Longevity Characterization by Metabolites and Element Profiles of Healthy Centenarians

    Directory of Open Access Journals (Sweden)

    Da Cai

    2016-09-01

    Full Text Available The relationships between diet and metabolites as well as element profiles in healthy centenarians are important but remain inconclusive. Therefore, to test the interesting hypothesis that there would be distinctive features of metabolites and element profiles in healthy centenarians, and that these would be associated with nutrient intake; the short chain fatty acids (SCFAs, total bile acids and ammonia in feces, phenol, p-cresol, uric acid, urea, creatinine and ammonia in urine, and element profiles in fingernails were determined in 90 healthy elderly people, including centenarians from Bama county (China—a famous longevous region—and elderly people aged 80–99 from the longevous region and a non-longevous region. The partial least squares-discriminant analysis was used for pattern recognition. As a result, the centenarians showed a distinct metabolic pattern. Seven characteristic components closely related to the centenarians were identified, including acetic acid, total SCFA, Mn, Co, propionic acid, butyric acid and valeric acid. Their concentrations were significantly higher in the centenarians group (p < 0.05. Additionally, the dietary fiber intake was positively associated with butyric acid contents in feces (r = 0.896, p < 0.01, and negatively associated with phenol in urine (r = −0.326, p < 0.01. The results suggest that the specific metabolic pattern of centenarians may have an important and positive influence on the formation of the longevity phenomenon. Elevated dietary fiber intake should be a path toward health and longevity.

  20. Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene

    DEFF Research Database (Denmark)

    Le Gall, G.; Metzdorff, Stine Broeng; Pedersen, Jan W.

    2005-01-01

    A metabolite profiling study has been carried out on Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija and a series of transgenic lines of the ecotype transformed with a CHS (chalcone synthase) antisense construct. Compound identifications by LC/MS and H-1 NMR are discussed. The glucosinolate...... composition in rosette leaves was shown to vary naturally within this ecotype. Relatively modest environmental changes had a strong effect on the wild type level of flavonoids and some sinapate esters but much less effect on the glucosinolates. Potentially a reduction in the level of flavonoids could...

  1. MS-Based Metabolite Profiling of Aboveground and Root Components of Zingiber mioga and Officinale

    Directory of Open Access Journals (Sweden)

    Ji Soo Han

    2015-09-01

    Full Text Available Zingiber species are members of the Zingiberaceae family, and are widely used for medicinal and food purposes. In this study aboveground and root parts of Zingiber mioga and Zingiber officinale were subjected to metabolite profiling by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS in order to characterize them by species and parts and also to measure bioactivities. Both primary and secondary metabolites showed clear discrimination in the PCA score plot and PLS-DA by species and parts. Tetrahydrocurcumin, diarylheptanoid, 8-gingerol, and 8-paradol were discriminating metabolites between Z. mioga and Z. officinale that were present in different quantities. Eleven flavonoids, six amino acids, six organic acids, four fatty acids, and gingerenone A were higher in the aboveground parts than the root parts. Antioxidant activities were measured and were highest in the root part of Z. officinale. The relatively high contents of tetrahydrocurcumin, diarylheptanoid, and galanganol C in the root part of Z. officinale showed highly positive correlation with bioactivities based on correlation assay. On the basis of these results, we can suggest different usages of structurally different parts of Zingiber species as food plants.

  2. MS-Based Metabolite Profiling of Aboveground and Root Components of Zingiber mioga and Officinale.

    Science.gov (United States)

    Han, Ji Soo; Lee, Sunmin; Kim, Hyang Yeon; Lee, Choong Hwan

    2015-09-03

    Zingiber species are members of the Zingiberaceae family, and are widely used for medicinal and food purposes. In this study aboveground and root parts of Zingiber mioga and Zingiber officinale were subjected to metabolite profiling by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) in order to characterize them by species and parts and also to measure bioactivities. Both primary and secondary metabolites showed clear discrimination in the PCA score plot and PLS-DA by species and parts. Tetrahydrocurcumin, diarylheptanoid, 8-gingerol, and 8-paradol were discriminating metabolites between Z. mioga and Z. officinale that were present in different quantities. Eleven flavonoids, six amino acids, six organic acids, four fatty acids, and gingerenone A were higher in the aboveground parts than the root parts. Antioxidant activities were measured and were highest in the root part of Z. officinale. The relatively high contents of tetrahydrocurcumin, diarylheptanoid, and galanganol C in the root part of Z. officinale showed highly positive correlation with bioactivities based on correlation assay. On the basis of these results, we can suggest different usages of structurally different parts of Zingiber species as food plants.

  3. Body fat free mass is associated with the serum metabolite profile in a population-based study.

    Directory of Open Access Journals (Sweden)

    Carolin Jourdan

    Full Text Available OBJECTIVE: To characterise the influence of the fat free mass on the metabolite profile in serum samples from participants of the population-based KORA (Cooperative Health Research in the Region of Augsburg S4 study. SUBJECTS AND METHODS: Analyses were based on metabolite profile from 965 participants of the S4 and 890 weight-stable subjects of its seven-year follow-up study (KORA F4. 190 different serum metabolites were quantified in a targeted approach including amino acids, acylcarnitines, phosphatidylcholines (PCs, sphingomyelins and hexose. Associations between metabolite concentrations and the fat free mass index (FFMI were analysed using adjusted linear regression models. To draw conclusions on enzymatic reactions, intra-metabolite class ratios were explored. Pairwise relationships among metabolites were investigated and illustrated by means of Gaussian graphical models (GGMs. RESULTS: We found 339 significant associations between FFMI and various metabolites in KORA S4. Among the most prominent associations (p-values 4.75 × 10(-16-8.95 × 10(-06 with higher FFMI were increasing concentrations of the branched chained amino acids (BCAAs, ratios of BCAAs to glucogenic amino acids, and carnitine concentrations. For various PCs, a decrease in chain length or in saturation of the fatty acid moieties could be observed with increasing FFMI, as well as an overall shift from acyl-alkyl PCs to diacyl PCs. These findings were reproduced in KORA F4. The established GGMs supported the regression results and provided a comprehensive picture of the relationships between metabolites. In a sub-analysis, most of the discovered associations did not exist in obese subjects in contrast to non-obese subjects, possibly indicating derangements in skeletal muscle metabolism. CONCLUSION: A set of serum metabolites strongly associated with FFMI was identified and a network explaining the relationships among metabolites was established. These results offer a novel

  4. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm and testa

    Directory of Open Access Journals (Sweden)

    Traud eWinkelmann

    2015-08-01

    Full Text Available Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified.Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos.

  5. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa

    Science.gov (United States)

    Winkelmann, Traud; Ratjens, Svenja; Bartsch, Melanie; Rode, Christina; Niehaus, Karsten; Bednarz, Hanna

    2015-01-01

    Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos. PMID:26300898

  6. Metabolite profiling of bendamustine in urine of cancer patients after administration of [14C]bendamustine.

    Science.gov (United States)

    Dubbelman, Anne-Charlotte; Jansen, Robert S; Rosing, Hilde; Darwish, Mona; Hellriegel, Edward; Robertson, Philmore; Schellens, Jan H M; Beijnen, Jos H

    2012-07-01

    Bendamustine is an alkylating agent consisting of a mechlorethamine derivative, a benzimidazole group, and a butyric acid substituent. A human mass balance study showed that bendamustine is extensively metabolized and subsequently excreted in urine. However, limited information is available on the metabolite profile of bendamustine in human urine. The objective of this study was to elucidate the metabolic pathways of bendamustine in humans by identification of its metabolites excreted in urine. Human urine samples were collected up to 168 h after an intravenous infusion of 120 mg/m(2) (80-95 μCi) [(14)C]bendamustine. Metabolites of [(14)C]bendamustine were identified using liquid chromatography (high-resolution)-tandem mass spectrometry with off-line radioactivity detection. Bendamustine and a total of 25 bendamustine-related compounds were detected. Observed metabolic conversions at the benzimidazole and butyric acid moiety were N-demethylation and γ-hydroxylation. In addition, various other combinations of these conversions with modifications at the mechlorethamine moiety were observed, including hydrolysis (the primary metabolic pathway), cysteine conjugation, and subsequent biotransformation to mercapturic acid and thiol derivatives, N-dealkylation, oxidation, and conjugation with phosphate, creatinine, and uric acid. Bendamustine-derived products containing phosphate, creatinine, and uric acid conjugates were also detected in control urine incubated with bendamustine. Metabolites that were excreted up to 168 h after the infusion included products of dihydrolysis and cysteine conjugation of bendamustine and γ-hydroxybendamustine. The range of metabolic reactions is generally consistent with those reported for rat urine and bile, suggesting that the overall processes involved in metabolic elimination are qualitatively the same in rats and humans.

  7. Sequential enzymatic derivatization coupled with online microdialysis sampling for simultaneous profiling of mouse tumor extracellular hydrogen peroxide, lactate, and glucose.

    Science.gov (United States)

    Su, Cheng-Kuan; Tseng, Po-Jen; Chiu, Hsien-Ting; Del Vall, Andrea; Huang, Yu-Fen; Sun, Yuh-Chang

    2017-03-01

    Probing tumor extracellular metabolites is a vitally important issue in current cancer biology. In this study an analytical system was constructed for the in vivo monitoring of mouse tumor extracellular hydrogen peroxide (H2O2), lactate, and glucose by means of microdialysis (MD) sampling and fluorescence determination in conjunction with a smart sequential enzymatic derivatization scheme-involving a loading sequence of fluorogenic reagent/horseradish peroxidase, microdialysate, lactate oxidase, pyruvate, and glucose oxidase-for step-by-step determination of sampled H2O2, lactate, and glucose in mouse tumor microdialysate. After optimization of the overall experimental parameters, the system's detection limit reached as low as 0.002 mM for H2O2, 0.058 mM for lactate, and 0.055 mM for glucose, based on 3 μL of microdialysate, suggesting great potential for determining tumor extracellular concentrations of lactate and glucose. Spike analyses of offline-collected mouse tumor microdialysate and monitoring of the basal concentrations of mouse tumor extracellular H2O2, lactate, and glucose, as well as those after imparting metabolic disturbance through intra-tumor administration of a glucose solution through a prior-implanted cannula, were conducted to demonstrate the system's applicability. Our results evidently indicate that hyphenation of an MD sampling device with an optimized sequential enzymatic derivatization scheme and a fluorescence spectrometer can be used successfully for multi-analyte monitoring of tumor extracellular metabolites in living animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Untargeted metabolite profiling of murine embryos to reveal metabolic perturbations associated with neural tube closure defects.

    Science.gov (United States)

    Hansler, Alex; Chen, Qiuying; Gray, Jason D; Ross, M Elizabeth; Finnell, Richard H; Gross, Steven S

    2014-08-01

    Neural tube closure defects (NTDs) are among the most common congenital malformation in human, typically presenting in liveborns as spina bifida. At least 240 gene mutations in mouse are known to increase the risk of NTD. There is a growing appreciation that environmental factors significantly contribute to NTD expression, and that NTDs likely arise from complex gene-environment interactions. Because maternal folic acid supplementation reduces human NTD risk in some populations by 60 to 70%, it is likely that NTD predisposition is often associated with a defect in folate-dependent one-carbon metabolism. A comprehensive, untargeted metabolic survey of NTD-associated changes in embryo metabolism would provide a valuable test of this assumption. We sought to establish a metabolic profiling platform that is capable of broadly assessing metabolic aberrations associated with NTD-promoting gene mutations in early-stage mouse embryos. A liquid chromatography/mass spectrometry-based untargeted metabolite profiling platform was used to broadly identify significant differences in small molecule levels (50-1000 Da) in NTD-affected embryonic day (E) 9.5 mouse embryos (Lrp6(-) (/) (-) ) versus unaffected (Lrp6(+/+) ) control embryos. Results provide proof-of-principal feasibility for the broad survey of the metabolome of individual E9.5 mouse embryos and identification of metabolic changes associated with NTDs and gene mutations. Levels of 30 different metabolites were altered in association with Lrp6 gene deletion. Some metabolites link to folate-dependent one-carbon transfer reactions, as anticipated, while others await structure elucidation and pathway integration. Whole-embryo metabolomics offers the potential to identify metabolic changes in genetically determined NTD-prone embryos. © 2014 Wiley Periodicals, Inc.

  9. Comparative Metabolite Profiling of Triterpenoid Saponins and Flavonoids in Flower Color Mutations of Primula veris L.

    Science.gov (United States)

    Apel, Lysanne; Kammerer, Dietmar R; Stintzing, Florian C; Spring, Otmar

    2017-01-13

    Primula veris L. is an important medicinal plant with documented use for the treatment of gout, headache and migraine reaching back to the Middle Ages. Triterpenoid saponins from roots and flowers are used in up-to-date phytotherapeutic treatment of bronchitis and colds due to their expectorant and secretolytic effects. In addition to the wild type plants with yellow petals, a red variant and an intermediate orange form of Primula veris L. have recently been found in a natural habitat. The secondary metabolite profiles of roots, leaves and flowers of these rare variants were investigated and compared with the wild type metabolome. Two flavonoids, six flavonoid glycosides, four novel methylated flavonoid glycosides, five anthocyanins and three triterpenoid saponins were identified in alcoholic extracts from the petals, leaves and roots of the three variants by high performance liquid chromatography (HPLC)-diode array detection (DAD)/mass spectrometry (MS n ) analyses. Anthocyanins were detected in the petals of the red and orange variety, but not in the wild type. No other effects on the metabolite profiles of the three varieties have been observed. The possibility is discussed that a regulatory step of the anthocyanin biosynthetic pathway may have been affected by mutation thus triggering color polymorphism in the petals.

  10. Multicomponent Analysis of the Differential Induction of Secondary Metabolite Profiles in Fungal Endophytes

    Directory of Open Access Journals (Sweden)

    Víctor González-Menéndez

    2016-02-01

    Full Text Available Small molecule histone deacetylase (HDAC and DNA methyltransferase (DNMT inhibitors are commonly used to perturb the production of fungal metabolites leading to the induction of the expression of silent biosynthetic pathways. Several reports have described the variable effects observed in natural product profiles in fungi treated with HDAC and DNMT inhibitors, such as enhanced chemical diversity and/or the induction of new molecules previously unknown to be produced by the strain. Fungal endophytes are known to produce a wide variety of secondary metabolites (SMs involved in their adaptation and survival within higher plants. The plant-microbe interaction may influence the expression of some biosynthetic pathways, otherwise cryptic in these fungi when grown in vitro. The aim of this study was to setup a systematic approach to evaluate and identify the possible effects of HDAC and DNMT inhibitors on the metabolic profiles of wild type fungal endophytes, including the chemical identification and characterization of the most significant SMs induced by these epigenetic modifiers.

  11. Comparative Metabolite Profiling of Triterpenoid Saponins and Flavonoids in Flower Color Mutations of Primula veris L.

    Science.gov (United States)

    Apel, Lysanne; Kammerer, Dietmar R.; Stintzing, Florian C.; Spring, Otmar

    2017-01-01

    Primula veris L. is an important medicinal plant with documented use for the treatment of gout, headache and migraine reaching back to the Middle Ages. Triterpenoid saponins from roots and flowers are used in up-to-date phytotherapeutic treatment of bronchitis and colds due to their expectorant and secretolytic effects. In addition to the wild type plants with yellow petals, a red variant and an intermediate orange form of Primula veris L. have recently been found in a natural habitat. The secondary metabolite profiles of roots, leaves and flowers of these rare variants were investigated and compared with the wild type metabolome. Two flavonoids, six flavonoid glycosides, four novel methylated flavonoid glycosides, five anthocyanins and three triterpenoid saponins were identified in alcoholic extracts from the petals, leaves and roots of the three variants by high performance liquid chromatography (HPLC)-diode array detection (DAD)/mass spectrometry (MSn) analyses. Anthocyanins were detected in the petals of the red and orange variety, but not in the wild type. No other effects on the metabolite profiles of the three varieties have been observed. The possibility is discussed that a regulatory step of the anthocyanin biosynthetic pathway may have been affected by mutation thus triggering color polymorphism in the petals. PMID:28098796

  12. Secondary Metabolite Profiling of Curcuma Species Grown at Different Locations Using GC/TOF and UPLC/Q-TOF MS

    Directory of Open Access Journals (Sweden)

    Jueun Lee

    2014-07-01

    Full Text Available Curcuma, a genus of rhizomatous herbaceous species, has been used as a spice, traditional medicine, and natural dye. In this study, the metabolite profile of Curcuma extracts was determined using gas chromatography-time of flight mass spectrometry (GC/TOF MS and ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS to characterize differences between Curcuma aromatica and Curcuma longa grown on the Jeju-do or Jin-do islands, South Korea. Previous studies have performed primary metabolite profiling of Curcuma species grown in different regions using NMR-based metabolomics. This study focused on profiling of secondary metabolites from the hexane extract of Curcuma species. Principal component analysis (PCA and partial least-squares discriminant analysis (PLS-DA plots showed significant differences between the C. aromatica and C. longa metabolite profiles, whereas geographical location had little effect. A t-test was performed to identify statistically significant metabolites, such as terpenoids. Additionally, targeted profiling using UPLC/Q-TOF MS showed that the concentration of curcuminoids differed depending on the plant origin. Based on these results, a combination of GC- and LC-MS allowed us to analyze curcuminoids and terpenoids, the typical bioactive compounds of Curcuma, which can be used to discriminate Curcuma samples according to species or geographical origin.

  13. Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS.

    Science.gov (United States)

    Lee, Jueun; Jung, Youngae; Shin, Jeoung-Hwa; Kim, Ho Kyoung; Moon, Byeong Cheol; Ryu, Do Hyun; Hwang, Geum-Sook

    2014-07-04

    Curcuma, a genus of rhizomatous herbaceous species, has been used as a spice, traditional medicine, and natural dye. In this study, the metabolite profile of Curcuma extracts was determined using gas chromatography-time of flight mass spectrometry (GC/TOF MS) and ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) to characterize differences between Curcuma aromatica and Curcuma longa grown on the Jeju-do or Jin-do islands, South Korea. Previous studies have performed primary metabolite profiling of Curcuma species grown in different regions using NMR-based metabolomics. This study focused on profiling of secondary metabolites from the hexane extract of Curcuma species. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) plots showed significant differences between the C. aromatica and C. longa metabolite profiles, whereas geographical location had little effect. A t-test was performed to identify statistically significant metabolites, such as terpenoids. Additionally, targeted profiling using UPLC/Q-TOF MS showed that the concentration of curcuminoids differed depending on the plant origin. Based on these results, a combination of GC- and LC-MS allowed us to analyze curcuminoids and terpenoids, the typical bioactive compounds of Curcuma, which can be used to discriminate Curcuma samples according to species or geographical origin.

  14. Symposium 2: Modern approaches to nutritional research challenges Targeted and non-targeted approaches for metabolite profiling in nutritional research

    OpenAIRE

    Lodge, John

    2010-01-01

    The present report discusses targeted and non-targeted approaches to monitor single nutrients and global metabolite profiles in nutritional research. Non- targeted approaches such as metabolomics allow for the global description of metabolites in a biological sample and combine an analytical platform with multivariate data analysis to visualise patterns between sample groups. In nutritional research metabolomics has generated much interest as it has the potential to identify...

  15. Metabolite profiling on wheat grain to enable a distinction of samples from organic and conventional farming systems

    OpenAIRE

    Bonte, Anja; Neuweger, Heiko; Goesmann, Alexander; Thonar, Cécile; Mäder, Paul; Langenkämper, Georg; Niehaus, Karsten

    2014-01-01

    Identification of biomarkers capable of distinguishing organic and conventional products would be highly welcome to improve the strength of food quality assurance. Metabolite profiling was used for biomarker search in organic and conventional wheat grain (Triticum aestivum L.) of 11 different old and new bread wheat cultivars grown in the DOK system comparison trial. Metabolites were extracted usingmethanol and analysed by gas chromatography–mass spectrometry.

  16. Proteomic profiling of fibroblasts reveals a modulating effect of extracellular calumenin on the organization of the actin cytoskeleton

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Hansen, Gry Aune; Vorum, Henrik

    2006-01-01

    but not in normal vasculature. In order to study the possible effects of calumenin extracellularly we used proteomic profiling of fibroblasts cultured in absence as well as in presence of calumenin. Using two-dimensional gel electrophoresis (2-DE) and tandem mass spectrometry (MS/MS) we show that normal fibroblasts...

  17. Changes in antioxidant and metabolite profiles during production of tomato paste.

    Science.gov (United States)

    Capanoglu, Esra; Beekwilder, Jules; Boyacioglu, Dilek; Hall, Robert; de Vos, Ric

    2008-02-13

    Tomato products and especially concentrated tomato paste are important sources of antioxidants in the Mediterranean diet. Tomato fruit contain well-known antioxidants such as vitamin C, carotenoids, flavonoids, and hydroxycinnamic acids. The industrial processing of this fruit into tomato paste involves several treatments that potentially affect the final profile of antioxidants and other metabolites in the commercial product. Here we have used both biochemical and metabolomic techniques to assess the effect of each separate step in the industrial production chain starting from fresh fruit to the final tomato paste. Material was collected from five independent tomato paste production events spread over two successive years. Samples comprised the intact ripe fruits and semifinished products after fruit-breaking, separation of the pulp from skin and seeds, evaporation, and finally after canning and pasteurization. The effect of each processing step was determined by different types of analysis. First, the total antioxidant capacity and total phenolic content were determined by commonly used spectrophotometric methods. Second, individual antioxidants in the extracts were identified and compared using an HPLC with online antioxidant detection. Third, in each sample the levels of the major individual antioxidants present, i.e., vitamin C, phenolic compounds (such as rutin and chlorogenic acid), tocopherols, and carotenoids, were quantified. Fourth, an untargeted metabolomic approach using LC-QTOF-MS was used to identify those production steps that have the largest impact on the overall metabolic profile in the final paste as compared to the original fruits. This multifaceted approach has revealed that each processing step induces specific alterations in the metabolic profile, as determined by the different analysis procedures, and that in particular the fruit-breaking step and the removal of seed and skin significantly affect the levels of antioxidants and many other

  18. Influence of the RelA Activity on E. coli Metabolism by Metabolite Profiling of Glucose-Limited Chemostat Cultures

    Directory of Open Access Journals (Sweden)

    Sónia Carneiro

    2012-10-01

    Full Text Available Metabolite profiling of E. coli W3110 and the isogenic DrelA mutant cells was used to characterize the RelA-dependent stringent control of metabolism under different growth conditions. Metabolic profiles were obtained by gas chromatography–mass spectrometry (GC-MS analysis and revealed significant differences between E. coli strains grown at different conditions. Major differences between the two strains were assessed in the levels of amino acids and fatty acids and their precursor metabolites, especially when growing at the lower dilution rates, demonstrating differences in their metabolic behavior. Despite the fatty acid biosynthesis being the most affected due to the lack of the RelA activity, other metabolic pathways involving succinate, lactate and threonine were also affected. Overall, metabolite profiles indicate that under nutrient-limiting conditions the RelA-dependent stringent response may be elicited and promotes key changes in the E. coli metabolism.

  19. Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry.

    Science.gov (United States)

    Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko

    2013-01-01

    Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human

  20. Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Kumiko Taira

    Full Text Available Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS. Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin, as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanylthiazole-5-carboxyl-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in

  1. Metabolite Profile of Cervicovaginal Fluids from Early Pregnancy Is Not Predictive of Spontaneous Preterm Birth

    Directory of Open Access Journals (Sweden)

    Melinda M. Thomas

    2015-11-01

    Full Text Available In our study, we used a mass spectrometry-based metabolomic approach to search for biomarkers that may act as early indicators of spontaneous preterm birth (sPTB. Samples were selected as a nested case-control study from the Screening for Pregnancy Endpoints (SCOPE biobank in Auckland, New Zealand. Cervicovaginal swabs were collected at 20 weeks from women who were originally assessed as being at low risk of sPTB. Samples were analysed using gas chromatography-mass spectrometry (GC-MS. Despite the low amount of biomass (16–23 mg, 112 compounds were detected. Statistical analysis showed no significant correlations with sPTB. Comparison of reported infection and plasma inflammatory markers from early pregnancy showed two inflammatory markers were correlated with reported infection, but no correlation with any compounds in the metabolite profile was observed. We hypothesise that the lack of biomarkers of sPTB in the cervicovaginal fluid metabolome is simply because it lacks such markers in early pregnancy. We propose alternative biofluids be investigated for markers of sPTB. Our results lead us to call for greater scrutiny of previously published metabolomic data relating to biomarkers of sPTB in cervicovaginal fluids, as the use of small, high risk, or late pregnancy cohorts may identify metabolite biomarkers that are irrelevant for predicting risk in normal populations.

  2. Hormone and Metabolite Profiles in Nesting Green and Flatback Turtles: Turtle Species with Different Life Histories

    Directory of Open Access Journals (Sweden)

    Maria P. Ikonomopoulou

    2014-01-01

    Full Text Available Herbivorous turtle, Chelonia mydas, inhabiting the south China Sea and breeding in Peninsular Malaysia, and Natator depressus, a carnivorous turtle inhabiting the Great Barrier Reef and breeding at Curtis Island in Queensland, Australia, differ both in diet and life history. Analysis of plasma metabolites levels and six sex steroid hormones during the peak of their nesting season in both species showed hormonal and metabolite variations. When compared with results from other studies progesterone levels were the highest whereas dihydrotestosterone was the plasma steroid hormone present at the lowest concentration in both C. mydas and N. depressus plasma. Interestingly, oestrone was observed at relatively high concentrations in comparison to oestradiol levels recorded in previous studies suggesting that it plays a significant role in nesting turtles. Also, hormonal correlations between the studied species indicate unique physiological interactions during nesting. Pearson correlation analysis showed that in N. depressus the time of oviposition was associated with elevations in both plasma corticosterone and oestrone levels. Therefore, we conclude that corticosterone and oestrone may influence nesting behaviour and physiology in N. depressus. To summarise, these two nesting turtle species can be distinguished based on the hormonal profile of oestrone, progesterone, and testosterone using discriminant analysis.

  3. GC-MS based metabolite profiling of five Bulgarian Fumaria species

    Directory of Open Access Journals (Sweden)

    Radka Z. Vrancheva

    2014-12-01

    Full Text Available The aim of this study was profiling of primary metabolites of five Bulgarian Fumaria species (F. officinalis L., F. thuretii Boiss., F. kralikii Jord., F. rostellata Knaf. and F. schrammii Velen. by GC-MS analyses. In polar fractions ten carbohydrates, one polyol, ten amino acids and six organic acids were identified. Apolar (lipid fractions showed the presence of four free fatty acids, two esters of fatty acids with glycerol and two fatty alcohols. Sucrose and fructose were in the highest relative concentrations of identified carbohydrates. Citric acid was the dominant organic acid in polar fractions of five Fumaria species. Predominant compounds in lipid fractions were palmitic acid and 1-stearoyl-glycerol. Principal component analysis (PCA of GC-MS data of polar and apolar fractions of five Bulgarian Fumaria species differentiates them in two groups (F. officinalis and F. thuretii; F. rostellata and F. schrammii, respectively, while F. kralikii had phythochemical similarity with plants of both distinguished groups. The obtained results of PCA of primary metabolites could be proposed as chemotaxonomic markers for plants of the genus Fumaria.

  4. Authentication of Zanthoxylum Species Based on Integrated Analysis of Complete Chloroplast Genome Sequences and Metabolite Profiles.

    Science.gov (United States)

    Lee, Hyeon Ju; Koo, Hyun Jo; Lee, Jonghoon; Lee, Sang-Choon; Lee, Dong Young; Giang, Vo Ngoc Linh; Kim, Minjung; Shim, Hyeonah; Park, Jee Young; Yoo, Ki-Oug; Sung, Sang Hyun; Yang, Tae-Jin

    2017-11-29

    We performed chloroplast genome sequencing and comparative analysis of two Rutaceae species, Zanthoxylum schinifolium (Korean pepper tree) and Z. piperitum (Japanese pepper tree), which are medicinal and culinary crops in Asia. We identified more than 837 single nucleotide polymorphisms and 103 insertions/deletions (InDels) based on a comparison of the two chloroplast genomes and developed seven DNA markers derived from five tandem repeats and two InDel variations that discriminated between Korean Zanthoxylum species. Metabolite profile analysis pointed to three metabolic groups, one with Korean Z. piperitum samples, one with Korean Z. schinifolium samples, and the last containing all the tested Chinese Zanthoxylum species samples, which are considered to be Z. bungeanum based on our results. Two markers were capable of distinguishing among these three groups. The chloroplast genome sequences identified in this study represent a valuable genomics resource for exploring diversity in Rutaceae, and the molecular markers will be useful for authenticating dried Zanthoxylum berries in the marketplace.

  5. Metabolite profiling of yam (Dioscorea spp.) accessions for use in crop improvement programmes.

    Science.gov (United States)

    Price, Elliott J; Bhattacharjee, Ranjana; Lopez-Montes, Antonio; Fraser, Paul D

    2017-01-01

    Ninety-seven percent of yam (Dioscorea spp.) production takes place in low income food deficit countries (LIFDCs) and the crop provides 200 calories a day to approximately 300 million people. Therefore, yams are vital for food security. Yams have high-yield potential and high market value potential yet current breeding of yam is hindered by a lack of genomic information and genetic resources. New tools are needed to modernise breeding strategies and unlock the potential of yam to improve livelihood in LIFDCs. Metabolomic screening has been undertaken on a diverse panel of Dioscorea accessions to assess the utility of the approach for advancing breeding strategies in this understudied crop. Polar and lipophilic extracts from tubers of accessions from the global yam breeding program have been comprehensively profiled via gas chromatography-mass spectrometry. A visual pathway representation of the measured yam tuber metabolome has been delivered as a resource for biochemical evaluation of yam germplasm. Over 200 compounds were routinely measured in tubers, providing a major advance for the chemo-typing of this crop. Core biochemical redundancy concealed trends that were only elucidated following detailed mining of global metabolomics data. Combined analysis on leaf and tuber material identified a subset of metabolites which allow accurate species classification and highlighted the potential of predicting tuber composition from leaf profiles. Metabolic variation was accession-specific and often localised to compound classes, which will aid trait-targeting for metabolite markers. Metabolomics provides a standalone platform with potential to deliver near-future crop gains for yam. The approach compliments the genetic advancements currently underway and integration with other '-omics' studies will deliver a significant advancement to yam breeding strategies.

  6. Metabolite Analysis and Histology on the Exact Same Tissue: Comprehensive Metabolomic Profiling and Metabolic Classification of Prostate Cancer

    Science.gov (United States)

    Huan, Tao; Troyer, Dean A.; Li, Liang

    2016-08-01

    We report a method of metabolomic profiling of intact tissue based on molecular preservation by extraction and fixation (mPREF) and high-performance chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). mPREF extracts metabolites by aqueous methanol from tissue biopsies without altering tissue architecture and thus conventional histology can be performed on the same tissue. In a proof-of-principle study, we applied dansylation LC-MS to profile the amine/phenol submetabolome of prostate needle biopsies from 25 patient samples derived from 16 subjects. 2900 metabolites were consistently detected in more than 50% of the samples. This unprecedented coverage allowed us to identify significant metabolites for differentiating tumor and normal tissues. The panel of significant metabolites was refined using 36 additional samples from 18 subjects. Receiver Operating Characteristic (ROC) analysis showed area-under-the-curve (AUC) of 0.896 with sensitivity of 84.6% and specificity of 83.3% using 7 metabolites. A blind study of 24 additional validation samples gave a specificity of 90.9% at the same sensitivity of 84.6%. The mPREF extraction can be readily implemented into the existing clinical workflow. Our method of combining mPREF with CIL LC-MS offers a powerful and convenient means of performing histopathology and discovering or detecting metabolite biomarkers in the same tissue biopsy.

  7. Extracellular Matrix Proteins Expression Profiling in Chemoresistant Variants of the A2780 Ovarian Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Radosław Januchowski

    2014-01-01

    Full Text Available Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly—over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.

  8. A total transcriptome profiling method for plasma-derived extracellular vesicles: applications for liquid biopsies.

    Science.gov (United States)

    Amorim, Maria G; Valieris, Renan; Drummond, Rodrigo D; Pizzi, Melissa P; Freitas, Vanessa M; Sinigaglia-Coimbra, Rita; Calin, George A; Pasqualini, Renata; Arap, Wadih; Silva, Israel T; Dias-Neto, Emmanuel; Nunes, Diana N

    2017-10-31

    Extracellular vesicles (EVs) are key mediators of intercellular communication. Part of their biological effects can be attributed to the transfer of cargos of diverse types of RNAs, which are promising diagnostic and prognostic biomarkers. EVs found in human biofluids are a valuable source for the development of minimally invasive assays. However, the total transcriptional landscape of EVs is still largely unknown. Here we develop a new method for total transcriptome profiling of plasma-derived EVs by next generation sequencing (NGS) from limited quantities of patient-derived clinical samples, which enables the unbiased characterization of the complete RNA cargo, including both small- and long-RNAs, in a single library preparation step. This approach was applied to RNA extracted from EVs isolated by ultracentrifugation from the plasma of five healthy volunteers. Among the most abundant RNAs identified we found small RNAs such as tRNAs, miRNAs and miscellaneous RNAs, which have largely unknown functions. We also identified protein-coding and long noncoding transcripts, as well as circular RNA species that were also experimentally validated. This method enables, for the first time, the full spectrum of transcriptome data to be obtained from minute patient-derived samples, and will therefore potentially allow the identification of cell-to-cell communication mechanisms and biomarkers.

  9. HPLC-ICP-MS compared with radiochemical detection for metabolite profiling of H-3-bromohexine in rat urine and faeces

    DEFF Research Database (Denmark)

    Jensen, B.P.; Gammelgaard, B.; Hansen, S.H.

    2005-01-01

    H-3-Bromohexine was dosed to rats as a model compound to allow comparison of HPLC-ICP-MS detection on bromine to radiochemical detection in an in vivo drug metabolism study. Metabolite profiles were obtained in urine and faeces extracts. No influence of the methanol gradient on the bromine response...... was observed in the range of 18 - 75% methanol. The sensitivity obtained by HPLC- ICP-MS was almost two orders of magnitude better than on-line H-3 radiochemical detection. For ICP- MS, the limit of detection was calculated to be 69 nM Br ( injection volume 100 mu l), corresponding to an absolute limit...... of detection of 1.3 ng of bromohexine on-column. This allowed ICP- MS detection of several minor metabolites that were not detected using radiochemical detection. Furthermore, metabolites that had lost the radioactive label were detected due to the bromine in the metabolites. As ICP- MS is also more selective...

  10. Untargeted metabolomic profiling plasma samples of patients with lung cancer for searching significant metabolites by HPLC-MS method

    Science.gov (United States)

    Dementeva, N.; Ivanova, K.; Kokova, D.; Kurzina, I.; Ponomaryova, A.; Kzhyshkowska, J.

    2017-09-01

    Lung cancer is one of the most common types of cancer leading to death. Consequently, the search and the identification of the metabolites associated with the risk of developing cancer are very valuable. For the purpose, untargeted metabolic profiling of the plasma samples collected from the patients with lung cancer (n = 100) and the control group (n = 100) was conducted. After sample preparation, the plasma samples were analyzed using LC-MS method. Biostatistics methods were applied to pre-process the data for elicitation of dominating metabolites which responded to the difference between the case and the control groups. At least seven significant metabolites were evaluated and annotated. The most part of identified metabolites are connected with lipid metabolism and their combination could be useful for follow-up studies of lung cancer pathogenesis.

  11. Arsenate impact on the metabolite profile, production and arsenic loading of xylem sap in cucumbers (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Kalle eUroic

    2012-04-01

    Full Text Available Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analysed including a metabolite profiling under arsenate stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure has a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up regulated, one compound down regulated by arsenate exposure. The compound down regulated was identified to be isoleucine. Furthermore, arsenate has a significant influence on sap production, leading to a reduction of up to 96 % sap production when plants are exposed to 1000 μg kg-1 arsenate. No difference to control plants was observed when plants were exposed to 1000 μg kg-1 DMA. Absolute arsenic amount in xylem sap was the lowest at high arsenate exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention.

  12. Arsenate Impact on the Metabolite Profile, Production, and Arsenic Loading of Xylem Sap in Cucumbers (Cucumis sativus L.).

    Science.gov (United States)

    Uroic, M Kalle; Salaün, Pascal; Raab, Andrea; Feldmann, Jörg

    2012-01-01

    Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (As(V)) and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analyzed including a metabolite profiling under As(V) stress. Produced xylem sap was quantified and absolute arsenic transported was determined. As(V) exposure had a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up-regulated, one compound down-regulated by As(V) exposure. The compound down-regulated was identified to be isoleucine. Furthermore, As(V) exposure had a significant influence on sap production, leading to a reduction of up to 96% sap production when plants were exposed to 1000 μg kg(-1) As(V). No difference to control plants was observed when plants were exposed to 1000 μg kg(-1) DMA. Absolute arsenic amount in xylem sap was the lowest at high As(V) exposure. These results show that As(V) has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention.

  13. Efficient recovery of electrophoretic profiles of nucleoside metabolites from urine samples by multivariate curve resolution.

    Science.gov (United States)

    Szymańska, Ewa; Markuszewski, Michał J; Vander Heyden, Yvan; Kaliszan, Roman

    2009-10-01

    Chemometric techniques usually employed in purity assessment and resolution of multicomponent peaks have been applied to analytical data from complex biological samples obtained with CE-DAD. In the assessment of the purity of the electrophoretic peaks, the orthogonal projection approach, the orthogonal projection approach with Durbin-Watson criterion, and the simple-to-use interactive self-modeling mixture analysis method have been employed. Multivariate curve resolution with alternating least squares has been successfully implemented to resolve co-migrating peaks of metabolites in CE-DAD and to recover qualitative and quantitative information about co-migrating components of urine extract. The main challenge consisted of developing high-quality multivariate curve resolution with alternating least squares models of multicomponent peaks acquired during the CE analysis of nucleoside patterns in 18 urine samples. The recovered ultraviolet visible (UV-Vis) spectra have been employed to identify additional nucleosides, such as 1-methylinosine, 2-methylguanosine, and 1-methylguanosine, whose presence in the metabolic profile produced by the applied CE-DAD method has not yet been recognized. Concentration profiles of these compounds can be used in metabonomic studies.

  14. Isolation, identification, optimization, and metabolite profiling of Streptomyces sparsus VSM-30.

    Science.gov (United States)

    Managamuri, Ushakiranmayi; Vijayalakshmi, Muvva; Ganduri, V S Rama Krishna; Rajulapati, Satish Babu; Bonigala, Bodaiah; Kalyani, B S; Poda, Sudhakar

    2017-07-01

    Deep sea sediment samples of Bay of Bengal (Visakhapatnam) have been analyzed for actinomycetes as an elite source to screen for the production of bioactive metabolites. The actinomycetes strain VSM-30 has an exciting bioactivity profile and was isolated during our systemic screening of marine actinomycetes. It was identified as Streptomyces sparsus based on morphological, physiological, biochemical, and molecular approaches. Response surface methodology regression analysis was carried out to fit the experimental data of each response by the second-order polynomial. The results have proven right interaction among process variables at optimized values of incubation time at 12 days, pH at 8, temperature at 30 °C, concentrations of starch at 1%, and tryptone at 1% and the data have been adequately fitted into the second-order polynomial models. Under these conditions, the responses (zones of inhibition) of plant pathogenic fungi Aspergillus niger, Aspergillus flavus, Fusarium oxysporum, Fusarium solani, and Penicillium citrinum were also matched with experimental and predicted results. Chemotypic analysis of ethyl acetate extract of the strain was done using LC-Q-TOF-MS revealed the presence of bioactive compounds including tryptophan dehydrobutyrine diketopiperazine, maculosin, 7-o-demethyl albocycline, albocycline M-2, and 7-o-demethoxy-7-oxo albocycline in a negative ion mode. The ethyl acetate extract of actinobacterium has been subjected to gas chromatography and mass spectroscopy (GC-MS) revealed the presence of diverse compounds such as dotriacontane, tetracosane 11-decyl-, diheptyl phthalate, 1-hexadecanesulfonyl chloride, L-alanyl-L-tryptophan, phthalic acid ethyl pentyl ester, 4-trifluoroacetoxyhexadecane, and 1H-imidazole 4,5-dihydro-2,4-dimethyl. Hence, the ethyl acetate extract of Streptomyces sparsus VSM-30 may have antibacterial, antifungal, and antioxidant activities due to the presence of secondary metabolites in ethyl acetate extract. The study

  15. Comparison of trapping profiles between d-peptides and glutathione in the identification of reactive metabolites

    Directory of Open Access Journals (Sweden)

    Jaana E. Laine

    2015-01-01

    Full Text Available Qualitative trapping profile of reactive metabolites arising from six structurally different compounds was tested with three different d-peptide isomers (Peptide 1, gly–tyr–pro–cys–pro–his-pro; Peptide 2, gly–tyr–pro–ala–pro–his–pro; Peptide 3, gly–tyr–arg–pro–cys–pro–his–lys–pro and glutathione (GSH using mouse and human liver microsomes as the biocatalyst. The test compounds were classified either as clinically “safe” (amlodipine, caffeine, ibuprofen, or clinically as “risky” (clozapine, nimesulide, ticlopidine; i.e., associated with severe clinical toxicity outcomes. Our working hypothesis was as follows: could the use of short different amino acid sequence containing d-peptides in adduct detection confer any add-on value to that obtained with GSH? All “risky” agents’ resulted in the formation of several GSH adducts in the incubation mixture and with at least one peptide adduct with both microsomal preparations. Amlodipine did not form any adducts with any of the trapping agents. No GSH and peptide 2 and 3 adducts were found with caffeine, but with peptide 1 one adduct with human liver microsomes was detected. Ibuprofen produced one Peptide 1-adduct with human and mouse liver microsomes but not with GSH. In conclusion, GSH still remains the gold trapping standard for reactive metabolites. However, targeted d-peptides could provide additional information about protein binding potential of electrophilic agents, but their clinical significance needs to be clarified using a wider spectrum of chemicals together with other safety estimates.

  16. miRNA profiling of circulating EpCAM(+) extracellular vesicles: promising biomarkers of colorectal cancer.

    Science.gov (United States)

    Ostenfeld, Marie Stampe; Jensen, Steffen Grann; Jeppesen, Dennis Kjølhede; Christensen, Lise-Lotte; Thorsen, Stine Buch; Stenvang, Jan; Hvam, Michael Lykke; Thomsen, Anni; Mouritzen, Peter; Rasmussen, Mads Heilskov; Nielsen, Hans Jørgen; Ørntoft, Torben Falck; Andersen, Claus Lindbjerg

    2016-01-01

    Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. These contain biomolecules, including proteins and microRNAs (miRNAs). Both circulating EVs and miRNAs have received much attention as biomarker candidates for non-invasive diagnostics. Here we describe a sensitive analytical method for isolation and subsequent miRNA profiling of epithelial-derived EVs from blood samples of patients with colorectal cancer (CRC). The epithelial-derived EVs were isolated by immunoaffinity-capture using the epithelial cell adhesion molecule (EpCAM) as marker. This approach mitigates some of the specificity issues observed in earlier studies of circulating miRNAs, in particular the negative influence of miRNAs released by erythrocytes, platelets and non-epithelial cells. By applying this method to 2 small-scale patient cohorts, we showed that blood plasma isolated from CRC patients prior to surgery contained elevated levels of 13 EpCAM(+)-EV miRNAs compared with healthy individuals. Upon surgical tumour removal, the plasma levels of 8 of these were reduced (miR-16-5p, miR-23a-3p, miR-23b-3p, miR-27a-3p, miR-27b-3p, miR-30b-5p, miR-30c-5p and miR-222-3p). These findings indicate that the miRNAs are of tumour origin and may have potential as non-invasive biomarkers for detection of CRC. This work describes a non-invasive blood-based method for sensitive detection of cancer with potential for clinical use in relation to diagnosis and screening. We used the method to study CRC; however, it is not restricted to this disease. It may in principle be used to study any cancer that release epithelial-derived EVs into circulation.

  17. UV-B radiation modulates physiology and lipophilic metabolite profile in Olea europaea.

    Science.gov (United States)

    Celeste Dias, Maria; Pinto, Diana C G A; Correia, Carlos; Moutinho-Pereira, José; Oliveira, Helena; Freitas, Helena; Silva, Artur M S; Santos, Conceição

    2018-03-01

    Ultraviolet-B (UV-B) radiation plays an important role in plant photomorphogenesis. Whilst the morpho-functional disorders induced by excessive UV irradiation are well-known, it remains unclear how this irradiation modulates the metabolome, and which metabolic shifts improve plants' tolerance to UV-B. In this study, we use an important Mediterranean crop, Olea europaea, to decipher the impacts of enhanced UV-B radiation on the physiological performance and lipophilic metabolite profile. Young olive plants (cv. 'Galega Vulgar') were exposed for five days to UV-B biologically effective doses of 6.5 kJ m -2  d -1 and 12.4 kJ m -2 d -1 . Cell cycle/ploidy, photosynthesis and oxidative stress, as well as GC-MS metabolites were assessed. Both UV-B treatments impaired net CO 2 assimilation rate, transpiration rate, photosynthetic pigments, and RuBisCO activity, but 12.4 kJ m -2  d -1 also decreased the photochemical quenching (qP) and the effective efficiency of PSII (Φ PSII ). UV-B treatments promoted mono/triperpene pathways, while only 12.4 kJ m -2  d -1 increased fatty acids and alkanes, and decreased geranylgeranyl-diphosphate. The interplay between physiology and metabolomics suggests some innate ability of these plants to tolerate moderate UV-B doses (6.5 kJ m -2  d -1 ). Also their tolerance to higher doses (12.4 kJ m -2  d -1 ) relies on plants' metabolic adjustments, where the accumulation of specific compounds such as long-chain alkanes, palmitic acid, oleic acid and particularly oleamide (which is described for the first time in olive leaves) play an important protective role. This is the first study demonstrating photosynthetic changes and lipophilic metabolite adjustments in olive leaves under moderate and high UV-B doses. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Metabolite profiling identifies candidate markers reflecting the clinical adaptations associated with Roux-en-Y gastric bypass surgery.

    Directory of Open Access Journals (Sweden)

    David M Mutch

    Full Text Available BACKGROUND: Roux-en-Y gastric bypass (RYGB surgery is associated with weight loss, improved insulin sensitivity and glucose homeostasis, and a reduction in co-morbidities such as diabetes and coronary heart disease. To generate further insight into the numerous metabolic adaptations associated with RYGB surgery, we profiled serum metabolites before and after gastric bypass surgery and integrated metabolite changes with clinical data. METHODOLOGY AND PRINCIPAL FINDINGS: Serum metabolites were detected by gas and liquid chromatography-coupled mass spectrometry before, and 3 and 6 months after RYGB in morbidly obese female subjects (n = 14; BMI = 46.2+/-1.7. Subjects showed decreases in weight-related parameters and improvements in insulin sensitivity post surgery. The abundance of 48% (83 of 172 of the measured metabolites changed significantly within the first 3 months post RYGB (p<0.05, including sphingosines, unsaturated fatty acids, and branched chain amino acids. Dividing subjects into obese (n = 9 and obese/diabetic (n = 5 groups identified 8 metabolites that differed consistently at all time points and whose serum levels changed following RYGB: asparagine, lysophosphatidylcholine (C18:2, nervonic (C24:1 acid, p-Cresol sulfate, lactate, lycopene, glucose, and mannose. Changes in the aforementioned metabolites were integrated with clinical data for body mass index (BMI and estimates for insulin resistance (HOMA-IR. Of these, nervonic acid was significantly and negatively correlated with HOMA-IR (p = 0.001, R = -0.55. CONCLUSIONS: Global metabolite profiling in morbidly obese subjects after RYGB has provided new information regarding the considerable metabolic alterations associated with this surgical procedure. Integrating clinical measurements with metabolomics data is capable of identifying markers that reflect the metabolic adaptations following RYGB.

  19. Differences in the metabolite profiles of spinach (Spinacia oleracea L.) leaf in different concentrations of nitrate in the culture solution.

    Science.gov (United States)

    Okazaki, Keiki; Oka, Norikuni; Shinano, Takuro; Osaki, Mitsuru; Takebe, Masako

    2008-02-01

    The nitrogen (N) status of a plant determines the composition of its major components (amino acids, proteins, carbohydrates and organic acids) and, directly or indirectly, affects the quality of agricultural products in terms of their calorific value and taste. Although these effects are guided by changes in metabolic pathways, no overall metabolic analysis has previously been conducted to demonstrate such effects. Here, metabolite profiling using gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of N levels on spinach tissue, comparing two cultivars that differed in their ability to use N. Wide variation in N content was observed without any distinct inhibition of growth in either cultivar. Principal component analysis (PCA) and self-organizing mapping (SOM) were undertaken to describe changes in the metabolites of mature spinach leaves. In PCA, the first component accounted for 44.5% of the total variance, the scores of which was positively correlated with the plant's N content, and a close relationship between metabolite profiles and N status was observed. Both PCA and SOM revealed that metabolites could be broadly divided into two types, correlating either positively or negatively with plant N content. The simple and co-coordinated metabolic stream, containing both general and spinach-specific aspects of plant N content, will be useful in future research on such topics as the detection of environmental effects on spinach through comprehensive metabolic profiling.

  20. Release of urinary extracellular vesicles in prostate cancer is associated with altered urinary N-glycosylation profile.

    Science.gov (United States)

    Vermassen, Tijl; D'Herde, Katharina; Jacobus, Dominique; Van Praet, Charles; Poelaert, Filip; Lumen, Nicolaas; Callewaert, Nico; Decaestecker, Karel; Villeirs, Geert; Hoebeke, Piet; Van Belle, Simon; Rottey, Sylvie; Delanghe, Joris

    2017-10-01

    Nowadays, extracellular vesicles are of great interest in prostate cancer (PCa) research. Asparagine (N)-linked glycosylation could play a significant role in the pathological mechanism of these vesicles. We investigated if prostatic protein N-glycosylation profiles were related to urinary vesicle-associated prostate-specific antigen (PSA) extractability and if this parameter showed diagnostic potential for PCa. Urinary extracellular vesicles were visualised using transmission electron microscopy. Urinary extracellular vesicles extraction by means of n -butanol allowed determination of urinary vesicle-associated PSA extractability. Diagnostic value was assessed between benign prostate hyperplasia (BPH; n=122) and patients with PCa (n=85). Additionally, correlation with urine N-glycosylation was assessed. Urinary extracellular vesicles with a diameter of approximately 100 nm were more abundantly present in urine of patients with PCa versus patients with BPH resulting in a higher vesicle-associated PSA extraction ratio (pvesicle-associated PSA extraction ratio was correlated to biantennary core-fucosylation (p=0.003). Finally, vesicle-associated PSA extraction ratio proved beneficial in PCa diagnosis, next to serum PSA and the urinary glycosylation marker (p=0.021). The urinary vesicle-associated PSA extraction ratio is increased in PCa which is a direct result of the abundant presence of extracellular vesicles in urine of patients with PCa. The urinary vesicle-associated PSA extraction ratio was associated with changes in N-glycoforms and showed diagnostic potential. Further research is warranted to unravel the pathological link between N-glycosylation and extracellular vesicles in cancer, as well as to assess the prognostic value of this biomarker. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Genetic engineering and metabolite profiling for overproduction of polyhydroxybutyrate in cyanobacteria.

    Science.gov (United States)

    Hondo, Sayaka; Takahashi, Masatoshi; Osanai, Takashi; Matsuda, Mami; Hasunuma, Tomohisa; Tazuke, Akio; Nakahira, Yoichi; Chohnan, Shigeru; Hasegawa, Morifumi; Asayama, Munehiko

    2015-11-01

    Genetic engineering and metabolite profiling for the overproduction of polyhydroxybutyrate (PHB), which is a carbon material in biodegradable plastics, were examined in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Transconjugants harboring cyanobacterial expression vectors that carried the pha genes for PHB biosynthesis were constructed. The overproduction of PHB by the engineering cells was confirmed through microscopic observations using Nile red, transmission electron microscopy (TEM), or nuclear magnetic resonance (NMR). We successfully recovered PHB from transconjugants prepared from nitrogen-depleted medium without sugar supplementation in which PHB reached approximately 7% (w/w) of the dry cell weight, showing a value of 12-fold higher productivity in the transconjugant than that in the control strain. We also measured the intracellular levels of acetyl-CoA, acetoacetyl-CoA, and 3-hydroxybutyryl-CoA (3HB-CoA), which are intermediate products for PHB. The results obtained indicated that these products were absent or at markedly low levels when cells were subjected to the steady-state growth phase of cultivation under nitrogen depletion for the overproduction of bioplastics. Based on these results, efficient factors were discussed for the overproduction of PHB in recombinant cyanobacteria. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling during ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Lili Li

    2017-03-01

    Full Text Available Objectives: To improve ethanolic fermentation performance of self-flocculating yeast, difference between a flocculating yeast strain and a regular industrial yeast strain was analyzed by transcriptional and metabolic approaches. Results: The number of down-regulated (industrial yeast YIC10 vs. flocculating yeast GIM2.71 and up-regulated genes were 4503 and 228, respectively. It is the economic regulation for YIC10 that non-essential genes were down-regulated, and cells put more “energy” into growth and ethanol production. Hexose transport and phosphorylation were not the limiting-steps in ethanol fermentation for GIM2.71 compared to YIC10, whereas the reaction of 1,3-disphosphoglycerate to 3-phosphoglycerate, the decarboxylation of pyruvate to acetaldehyde and its subsequent reduction to ethanol were the most limiting steps. GIM2.71 had stronger stress response than non-flocculating yeast and much more carbohydrate was distributed to other bypass, such as glycerol, acetate and trehalose synthesis. Conclusions: Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling will provide clues for improving the fermentation performance of GIM2.71.

  3. In Vivo Profiling and Distribution of Known and Novel Phase I and Phase II Metabolites of Efavirenz in Plasma, Urine, and Cerebrospinal Fluid

    OpenAIRE

    Aouri, Manel; Barcelo, Catalina; Ternon, Béatrice; Cavassini, Matthias; Anagnostopoulos, Alexia; Yerly Ferrillo, Sabine; Hugues, Henry; Vernazza, Pietro; Günthard, Huldrych F.; Buclin, Thierry; Telenti, Amalio; Rotger, Margalida; Decosterd, Laurent A.

    2016-01-01

    Efavirenz (EFV) is principally metabolized by CYP2B6 to 8-hydroxy-efavirenz (8OH-EFV) and to a lesser extent by CYP2A6 to 7-hydroxy-efavirenz (7OH-EFV). So far, most metabolite profile analyses have been restricted to 8OH-EFV, 7OH-EFV, and EFV-N-glucuronide, even though these metabolites represent a minor percentage of EFV metabolites present in vivo. We have performed a quantitative phase I and II metabolite profile analysis by tandem mass spectrometry of plasma, cerebrospinal fluid (CSF), a...

  4. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).

    Science.gov (United States)

    Li, Chun-Fang; Xu, Yan-Xia; Ma, Jian-Qiang; Jin, Ji-Qiang; Huang, Dan-Juan; Yao, Ming-Zhe; Ma, Chun-Lei; Chen, Liang

    2016-09-08

    The new shoots of the albino tea cultivar 'Anji Baicha' are yellow or white at low temperatures and turn green as the environmental temperatures increase during the early spring. 'Anji Baicha' metabolite profiles exhibit considerable variability over three color and developmental stages, especially regarding the carotenoid, chlorophyll, and theanine concentrations. Previous studies focused on physiological characteristics, gene expression differences, and variations in metabolite abundances in albino tea plant leaves at specific growth stages. However, the molecular mechanisms regulating metabolite biosynthesis in various color and developmental stages in albino tea leaves have not been fully characterized. We used RNA-sequencing to analyze 'Anji Baicha' leaves at the yellow-green, albescent, and re-greening stages. The leaf transcriptomes differed considerably among the three stages. Functional classifications based on Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed unigenes were mainly related to metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and carbon fixation in photosynthetic organisms. Chemical analyses revealed higher β-carotene and theanine levels, but lower chlorophyll a levels, in the albescent stage than in the green stage. Furthermore, unigenes involved in carotenoid, chlorophyll, and theanine biosyntheses were identified, and the expression patterns of the differentially expressed unigenes in these biosynthesis pathways were characterized. Through co-expression analyses, we identified the key genes in these pathways. These genes may be responsible for the metabolite biosynthesis differences among the different leaf color and developmental stages of 'Anji Baicha' tea plants. Our study presents the results of transcriptomic and biochemical analyses of 'Anji Baicha' tea plants at various stages. The distinct transcriptome profiles

  5. Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants.

    Science.gov (United States)

    van Dongen, Joost T; Fröhlich, Anja; Ramírez-Aguilar, Santiago J; Schauer, Nicolas; Fernie, Alisdair R; Erban, Alexander; Kopka, Joachim; Clark, Jeremy; Langer, Anke; Geigenberger, Peter

    2009-01-01

    Oxygen can fall to low concentrations within plant tissues, either because of environmental factors that decrease the external oxygen concentration or because the movement of oxygen through the plant tissues cannot keep pace with the rate of oxygen consumption. Recent studies document that plants can decrease their oxygen consumption in response to relatively small changes in oxygen concentrations to avoid internal anoxia. The molecular mechanisms underlying this response have not been identified yet. The aim of this study was to use transcript and metabolite profiling to investigate the genomic response of arabidopsis roots to a mild decrease in oxygen concentrations. Arabidopsis seedlings were grown on vertical agar plates at 21, 8, 4 and 1 % (v/v) external oxygen for 0.5, 2 and 48 h. Roots were analysed for changes in transcript levels using Affymetrix whole genome DNA microarrays, and for changes in metabolite levels using routine GC-MS based metabolite profiling. Root extension rates were monitored in parallel to investigate adaptive changes in growth. The results show that root growth was inhibited and transcript and metabolite profiles were significantly altered in response to a moderate decrease in oxygen concentrations. Low oxygen leads to a preferential up-regulation of genes that might be important to trigger adaptive responses in the plant. A small but highly specific set of genes is induced very early in response to a moderate decrease in oxygen concentrations. Genes that were down-regulated mainly encoded proteins involved in energy-consuming processes. In line with this, root extension growth was significantly decreased which will ultimately save ATP and decrease oxygen consumption. This was accompanied by a differential regulation of metabolite levels at short- and long-term incubation at low oxygen. The results show that there are adaptive changes in root extension involving large-scale reprogramming of gene expression and metabolism when oxygen

  6. Non-targeted metabolite profiling highlights the potential of strawberry leaves as a resource for specific bioactive compounds.

    Science.gov (United States)

    Kårlund, Anna; Hanhineva, Kati; Lehtonen, Marko; McDougall, Gordon J; Stewart, Derek; Karjalainen, Reijo O

    2017-05-01

    The non-edible parts of horticultural crops, such as leaves, contain substantial amounts of valuable bioactive compounds which are currently only little exploited. For example, strawberry (Fragaria × ananassa) leaves may be a promising bioresource for diverse health-related applications. However, product standardization sets a real challenge, especially when the leaf material comes from varying cultivars. The first step towards better quality control of berry fruit leaf-based ingredients and supplements is to understand metabolites present and their stability in different plant cultivars, so this study surveyed the distribution of potentially bioactive strawberry leaf metabolites in six different strawberry cultivars. Non-targeted metabolite profiling analysis using LC/qTOF-ESI-MS with data processing via principal component analysis and k-means clustering analysis was utilized to examine differences and commonalities between the leaf metabolite profiles. Quercetin and kaempferol derivatives were the dominant flavonol groups in strawberry leaves. Previously described and novel caffeic and chlorogenic acid derivatives were among the major phenolic acids. In addition, ellagitannins were one of the distinguishing compound classes in strawberry leaves. In general, strawberry leaves also contained high levels of octadecatrienoic acid derivatives, precursors of valuable odour compounds. The specific bioactive compounds found in the leaves of different strawberry cultivars offer the potential for the selection of optimized leaf materials for added-value food and non-food applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Effect of high-pressure treatment on taste and metabolite profiles of ducks with two different vinasse-curing processes.

    Science.gov (United States)

    Lou, Xiaowei; Ye, Yangfang; Wang, Ying; Sun, Yangying; Pan, Daodong; Cao, Jinxuan

    2018-03-01

    The effect of high-pressure (HP) (0.1, 150 and 300MPa, 15min) on taste profiles of vinasse-cured ducks was investigated; the metabolite profiles were determined using 1 H NMR. HP at 150MPa increased the taste intensity of products compared with the controls, while HP at 300MPa did not further improve their taste compared with 150MPa treated samples. The metabonome of vinasse-cured ducks was dominated by 27 metabolites. HP increased amino acids, glucose, alkaloids and organic acids, but decreased inosine monophosphate and its derivatives, compared with the controls. The increments of metabolites in vinasse-dry-cured duck were higher than those in vinasse-wet-cured duck. The change of metabolites could be related to the enzyme activity, the degradations of proteins, sugars and nucleotides, and the permeation from vinasse-curing agents to duck meat. These findings suggest that 150MPa treatment was effective to improve the taste of vinasse-cured duck. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Distribution of Penicillium commune isolates in cheese dairies mapped using secondary metabolite profiles, morphotypes, RAPD and AFLP fingerprinting

    DEFF Research Database (Denmark)

    Lund, Flemming; Nielsen, A.B.; Skouboe, P.

    2003-01-01

    In an 8-year study of the diversity and distribution of Penicillium commune contaminants in two different cheese dairies, swab and air samples were taken from the production plants, the processing environment and contaminated cheeses. A total of 321 Penicillium commune isolates were characterized...... using morphotypes (colony morphology and colours) and secondary metabolite profiles. Based on production of secondary metabolites the P. commune isolates were classified into 6 groups. The genetic diversity of the P. commune isolates was assessed using randomly amplified polymorphic DNA (RAPD...... morphotyping, P. commune isolates with identical profiles using all four typing techniques were interpreted as closely related isolates with a common origin and the distribution of these isolates in the processing environment indicated possible contamination points in the cheese dairies. The coating process...

  9. Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism.

    Science.gov (United States)

    Nemenman, Ilya; Escola, G Sean; Hlavacek, William S; Unkefer, Pat J; Unkefer, Clifford J; Wall, Michael E

    2007-12-01

    We investigate the ability of algorithms developed for reverse engineering of transcriptional regulatory networks to reconstruct metabolic networks from high-throughput metabolite profiling data. For benchmarking purposes, we generate synthetic metabolic profiles based on a well-established model for red blood cell metabolism. A variety of data sets are generated, accounting for different properties of real metabolic networks, such as experimental noise, metabolite correlations, and temporal dynamics. These data sets are made available online. We use ARACNE, a mainstream algorithm for reverse engineering of transcriptional regulatory networks from gene expression data, to predict metabolic interactions from these data sets. We find that the performance of ARACNE on metabolic data is comparable to that on gene expression data.

  10. Validation of a multiwell gamma-counter for measuring high-pressure liquid chromatography metabolite profiles

    NARCIS (Netherlands)

    Greuter, Henri J. N. M.; van Ophemert, Patricia L B; Luurtsema, Gert; Franssen, Eric J F; Boellaard, Ronald; Lammertsma, Adriaan A.

    2004-01-01

    OBJECTIVES: The purpose of this study was to verify the accuracy and reproducibility of a multiwell counter to assess its suitability for use within human PET studies in which metabolizing (11)C tracers are used. Such tracers often require metabolite analysis for deriving plasma metabolite-corrected

  11. Metabolite profiling of obese individuals before and after a one year weight loss program

    DEFF Research Database (Denmark)

    Geidenstam, N; Al-Majdoub, M; Ekman, M

    2017-01-01

    (BMI) and metabolic risk traits. METHODS: Serum metabolites were analyzed with gas and liquid chromatography/mass spectrometry in 91 obese individuals at baseline and after participating in a 1 year non-surgical weight loss program.ResultsA total of 137 metabolites were identified and semi...

  12. Influence of surfactants and humic acids on Artemia Franciscana's embryonic phospho-metabolite profile as measured by 31P NMR.

    Science.gov (United States)

    Deese, Rachel D; Weldeghiorghis, Thomas K; Haywood, Benjamin J; Cook, Robert L

    2017-05-01

    Surfactants, such as triton X-100 (Tx-100), cetylpyridinium chloride (CPC), and sodium dodecyl sulfate (SDS) are known to be toxic to Artemia Franciscana (Artemia) - an organism, frequently used to monitor the health of the aquatic environment. The phospho-metabolite profile of a living organism is often indicative of imbalances that may have been caused by environmental stressors, such as surfactants. This study utilizes in vivo31P NMR to monitor temporal changes in the phospho-metabolite profile of Artemia caused by Tx-100, CPC, and SDS and the ability of humic acid (HA) to mitigate the toxicity of these surfactants. It was found that, while Tx-100 does not have any effect on the phospho-metabolite profile, both CPC and SDS cause a complete retardation in growth of the phosphodiester (PDE) peak in the 31P NMR spectrum, which is indicative of the inhibited cell replication. This growth inhibition was independently verified by the decreased guanosine triphosphate (GTP) concentration in the CPC and SDS-exposed Artemia. In addition, upon introduction of HA to the CPC and SDS-exposed Artemia, an increase of PDE peak over time is indicative of HA mitigating toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. miRNA profiling of circulating EpCAM(+) extracellular vesicles: promising biomarkers of colorectal cancer

    DEFF Research Database (Denmark)

    Ostenfeld, Marie Stampe; Jensen, Steffen Grann; Jeppesen, Dennis Kjølhede

    2016-01-01

    Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. These contain biomolecules, including proteins and microRNAs (miRNAs). Both circulating EVs and miRNAs have received much attention as biomarker candidates for non-invasive diagnostics...

  14. miRNA profiling of circulating EpCAM(+) extracellular vesicles

    DEFF Research Database (Denmark)

    Ostenfeld, Marie Stampe; Jensen, Steffen Grann; Jeppesen, Dennis Kjølhede

    2016-01-01

    Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. These contain biomolecules, including proteins and microRNAs (miRNAs). Both circulating EVs and miRNAs have received much attention as biomarker candidates for non-invasive diagnostics...

  15. NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin

    Science.gov (United States)

    Jupin, M.; Michiels, P. J.; Girard, F. C.; Spraul, M.; Wijmenga, S. S.

    2014-02-01

    Metabolite profiling by NMR of body fluids is increasingly used to successfully differentiate patients from healthy individuals. Metabolites and their concentrations are direct reporters of body biochemistry. However, in blood plasma the NMR-detected free-metabolite concentrations are also strongly affected by interactions with the abundant plasma proteins, which have as of yet not been considered much in metabolic profiling. We previously reported that many of the common NMR-detected metabolites in blood plasma bind to human serum albumin (HSA) and many are released by fatty acids present in fatted HSA. HSA is the most abundant plasma protein and main transporter of endogenous and exogenous metabolites. Here, we show by NMR how the two most common fatty acids (FAs) in blood plasma - the long-chain FA, stearate (C18:0) and medium-chain FA, myristate (C14:0) - affect metabolite-HSA interaction. Of the set of 18 common NMR-detected metabolites, many are released by stearate and/or myristate, lactate appearing the most strongly affected. Myristate, but not stearate, reduces HSA-binding of phenylalanine and pyruvate. Citrate signals were NMR invisible in the presence of HSA. Only at high myristate-HSA mole ratios 11:1, is citrate sufficiently released to be detected. Finally, we find that limited dilution of blood-plasma mimics releases HSA-bound metabolites, a finding confirmed in real blood plasma samples. Based on these findings, we provide recommendations for NMR experiments for quantitative metabolite profiling.

  16. Comparative profiling of extractable proteins in extracellular matrices of porcine cholecyst and jejunum intended for preparation of tissue engineering scaffolds.

    Science.gov (United States)

    Muhamed, Jaseer; Rajan, Akhila; Surendran, Arun; Jaleel, Abdul; Anilkumar, Thapasimuthu V

    2017-04-01

    Scaffolds prepared from cholecyst and jejunum have differential immunological potential, despite similar biocompatibility, when used as subcutaneous grafts. The reason for differential immunogenicity is probably due to differences in the nature of protein composition and biomolecules in the extracellular matrices (ECMs) of source organs that are used for preparation of the scaffolds. Against this background, the present study aims to identify the extractable proteins of ECMs derived from porcine cholecyst and jejunum. The proteins were extracted and identified through a conventional database search following sodium dodecyl sulfate-polyacrylamide gel-electrophoresis separation and mass spectroscopy. The resultant protein profile was analyzed and at least 154 proteins in cholecyst-derived extracellular matrix (CDE) and 186 proteins in jejunum-derived extracellular matrix (JDE) were identified. Both the matrices contained several extracelluar proteins including fibronectin, nidogen, decorin, and lumican that are known to participate in wound healing responses. However, the CDE had fewer cellular proteins than JDE, especially the latter contained class-I and class-II histocompatibility antigens which are incriminated as potent immunogens responsible for graft rejection. The results of the study suggested that the ECMs used for the scaffold preparation need not be "acellular" and differences in the protein composition of the ECMs might have caused the differential wound healing responses. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 489-496, 2017. © 2015 Wiley Periodicals, Inc.

  17. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Andersen, Birgitte; Thrane, Ulf

    2008-01-01

    have been analysed for a wide array of terpenes, polyketides, non-ribosomal peptides, and combinations of these. Fungal chemotaxonomy based on secondary metabolites has been used successfully in large ascomycete genera such as Alternaria, Aspergillus, Fusarium, Hypoxylon, Penicillium, Stachybotrys...

  18. Volatile Metabolite Profiling of Durum Wheat Kernels Contaminated by Fusarium poae

    National Research Council Canada - National Science Library

    Laddomada, Barbara; Del Coco, Laura; Durante, Miriana; Presicce, Dominique S; Siciliano, Pietro A; Fanizzi, Francesco P; Logrieco, Antonio F

    2014-01-01

    Volatile metabolites from mold contamination have been proposed for the early identification of toxigenic fungi to prevent toxicological risks, but there are no such data available for Fusarium poae. F...

  19. Relationship between the metabolite profile and technological properties of bovine milk from two dairy breeds elucidated by NMR-based metabolomics.

    Science.gov (United States)

    Sundekilde, Ulrik Kræmer; Frederiksen, Pernille Dorthea; Clausen, Morten Rahr; Larsen, Lotte Bach; Bertram, Hanne Christine

    2011-07-13

    The aim of the present study was to investigate the relationship between the metabolite profile of milk and important technological properties by using nuclear magnetic resonance (NMR)-based metabolomics. The metabolomics approach was introduced for the metabolic profiling of a set of milk samples from two dairy breeds representing a wide span in coagulation properties. The milk metabolite profiles obtained by proton and carbon NMR spectroscopy could be correlated to breed and, more interestingly, also with the coagulation profile, as established by traditional methods by using principal component analysis (PCA). The metabolites responsible for the separation into breed could mainly be ascribed to carnitine and lactose, whereas the metabolites varying in the samples with respect to coagulation properties included citrate, choline, carnitine, and lactose. The results found in the present study demonstrated a promising potential of NMR-based metabolomics for a rapid analysis and classification of milk samples, both of which are useful for the dairy industry.

  20. Hormone and Metabolite Profiles in Nesting Green and Flatback Turtles: Turtle Species with Different Life Histories

    OpenAIRE

    Ikonomopoulou, Maria P.; Bradley, Adrian J.; Kammarudin Ibrahim; Limpus, Colin J.; Fernandez-Rojo, Manuel A.; Dimitrios Vagenas; Whittier, Joan M.

    2014-01-01

    Herbivorous turtle, Chelonia mydas, inhabiting the south China Sea and breeding in Peninsular Malaysia, and Natator depressus, a carnivorous turtle inhabiting the Great Barrier Reef and breeding at Curtis Island in Queensland, Australia, differ both in diet and life history. Analysis of plasma metabolites levels and six sex steroid hormones during the peak of their nesting season in both species showed hormonal and metabolite variations. When compared with results from other studies progester...

  1. Mass-spectrometric profiling of cerebrospinal fluid reveals metabolite biomarkers for CNS involvement in varicella zoster virus reactivation.

    Science.gov (United States)

    Kuhn, Maike; Sühs, Kurt-Wolfram; Akmatov, Manas K; Klawonn, Frank; Wang, Junxi; Skripuletz, Thomas; Kaever, Volkhard; Stangel, Martin; Pessler, Frank

    2018-01-17

    Varicella zoster virus (VZV) reactivation spans the spectrum from uncomplicated segmental herpes zoster to life-threatening disseminated CNS infection. Moreover, in the absence of a small animal model for this human pathogen, studies of pathogenesis at the organismal level depend on analysis of human biosamples. Changes in cerebrospinal fluid (CSF) metabolites may reflect critical aspects of host responses and end-organ damage in neuroinfection and neuroinflammation. We therefore applied a targeted metabolomics screen of CSF to three clinically distinct forms of VZV reactivation and infectious and non-infectious disease controls in order to identify biomarkers for CNS involvement in VZV reactivation. Metabolite profiles were determined by targeted liquid chromatography-mass spectrometry in CSF from patients with segmental zoster (shingles, n = 14), facial nerve zoster (n = 16), VZV meningitis/encephalitis (n = 15), enteroviral meningitis (n = 10), idiopathic Bell's palsy (n = 11), and normal pressure hydrocephalus (n = 15). Concentrations of 88 metabolites passing quality assessment clearly separated the three VZV reactivation forms from each other and from the non-infected samples. Internal cross-validation identified four metabolites (SM C16:1, glycine, lysoPC a C26:1, PC ae C34:0) that were particularly associated with VZV meningoencephalitis. SM(OH) C14:1 accurately distinguished facial nerve zoster from Bell's palsy. Random forest construction revealed even more accurate classifiers (signatures comprising 2-4 metabolites) for most comparisons. Some of the most accurate biomarkers correlated only weakly with CSF leukocyte count, indicating that they do not merely reflect recruitment of inflammatory cells but, rather, specific pathophysiological mechanisms. Across all samples, only the sum of hexoses and the amino acids arginine, serine, and tryptophan correlated negatively with leukocyte count. Increased expression of the metabolites

  2. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    Science.gov (United States)

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Influence of Different Drying Treatments and Extraction Solvents on the Metabolite Profile and Nitric Oxide Inhibitory Activity of Ajwa Dates.

    Science.gov (United States)

    Abdul-Hamid, Nur Ashikin; Abas, Faridah; Ismail, Intan Safinar; Shaari, Khozirah; Lajis, Nordin H

    2015-11-01

    This study aimed to examine the variation in the metabolite profiles and nitric oxide (NO) inhibitory activity of Ajwa dates that were subjected to 2 drying treatments and different extraction solvents. (1)H NMR coupled with multivariate data analysis was employed. A Griess assay was used to determine the inhibition of the production of NO in RAW 264.7 cells treated with LPS and interferon-γ. The oven dried (OD) samples demonstrated the absence of asparagine and ascorbic acid as compared to the freeze dried (FD) dates. The principal component analysis showed distinct clusters between the OD and FD dates by the second principal component. In respect of extraction solvents, chloroform extracts can be distinguished by the absence of arginine, glycine and asparagine compared to the methanol and 50% methanol extracts. The chloroform extracts can be clearly distinguished from the methanol and 50% methanol extracts by first principal component. Meanwhile, the loading score plot of partial least squares analysis suggested that beta glucose, alpha glucose, choline, ascorbic acid and glycine were among the metabolites that were contributing to higher biological activity displayed by FD and methanol extracts of Ajwa. The results highlight an alternative method of metabolomics approach for determination of the metabolites that contribute to NO inhibitory activity. The association between metabolite profiles and nitric oxide (NO) inhibitory activity of the various extracts of Ajwa dates was evaluated by utilizing partial least squares (PLS) model. The validated PLS model can be employed to predict the NO inhibitory activity of new samples of date fruits based on their NMR spectra which was important for assessing fruit quality. The information gained might be used as guidance for quality control, nutritional values and as a basis for the preparation of any food supplements for human health that employs date palm fruit as the raw material. © 2015 Institute of Food

  4. miRNA profiling of circulating EpCAM(+) extracellular vesicles: promising biomarkers of colorectal cancer

    DEFF Research Database (Denmark)

    Ostenfeld, Marie Stampe; Jensen, Steffen Grann; Jeppesen, Dennis Kjølhede

    2016-01-01

    Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. These contain biomolecules, including proteins and microRNAs (miRNAs). Both circulating EVs and miRNAs have received much attention as biomarker candidates for non-invasive diagnostics......CAM) as marker. This approach mitigates some of the specificity issues observed in earlier studies of circulating miRNAs, in particular the negative influence of miRNAs released by erythrocytes, platelets and non-epithelial cells. By applying this method to 2 small-scale patient cohorts, we showed that blood...

  5. Gene expression profiling of sesaminol triglucoside and its tetrahydrofuranoid metabolites in primary rat hepatocytes.

    Science.gov (United States)

    Jan, Kuo-Ching; Yang, Binghuei-Barry; Liu, Tristan C

    2014-12-01

    Sesaminol triglucoside is a major lignin in sesame meal and has a methylenedioxyphenyl group and multiple functions in vivo. As a tetrahydrofurofuran type lignan, sesaminol triglucoside is metabolized to mammalian lignans. This investigation studies the effect of sesaminol triglucoside and its tetrahydrofuranoid metabolites (sesaminol, 2-episesaminol, hydroxymethyl sesaminol-tetrahydrofuran, enterolactone, and enterodiol) on gene expression in primary rat hepatocytes using a DNA microarray. Sesame lignans significantly affected the expression of xenobiotic-induced transcripts of cytochrome P450, solute carrier (SLC), and ATP-binding cassette (ABC) transporters. Changes in gene expression were generally greater in response to metabolites with methylenedioxyphenyl moieties (sesaminol triglucoside, sesaminol, and 2-episesaminol) than to the tetrahydrofuranoid metabolites (hydroxymethyl sesaminol-tetrahydrofuran, enterolactone, and enterodiol). Tetrahydrofuran lignans, such as sesaminol triglucoside, sesamin, hydroxymethyl sesaminol-tetrahydrofuran, and sesaminol changed the expression of ABC transporters.

  6. Metabolites profiling of Chrysanthemum pacificum Nakai parts using UPLC-PDA-MS coupled to chemometrics.

    Science.gov (United States)

    Farag, Nermeen F; Farag, Mohamed A; Abdelrahman, Enas H; Azzam, Shadia M; El-Kashoury, El-Sayeda A

    2015-01-01

    Methanol-soluble constituents from the flowers, non-flowering aerial parts and roots of Chrysanthemum pacificum Nakai were analysed via high resolution UPLC-PDA-qTOF-MS followed by chemometrics. Forty-seven chromatographic peaks belonging to various metabolite classes were detected. Most metabolite classes showed qualitative and quantitative differences across parts, with luteolin conjugates being mostly enriched in flowers whereas non-flowering aerial parts contained mostly quercetin and methoxylated flavone conjugates. Root sample ranked the lowest for all flavones and dicaffeoylquinic acids. In contrast, 1,5-di-caffeoylquinic acid levels were found at high levels in flowers and aerial parts reaching 3145 and 1390 μg/g, respectively, suggesting that C. pacificum could serve as a natural resource of this well-recognised anti-hepatotoxic phenolic. Principal component analysis was further used for organs classification in an untargeted manner. This study provides the first map of secondary metabolites distribution in C. pacificum Nakai organs.

  7. Association between plasma metabolites and gene expression profiles in five porcine endocrine tissues

    Directory of Open Access Journals (Sweden)

    Bassols Anna

    2011-07-01

    Full Text Available Abstract Background Endocrine tissues play a fundamental role in maintaining homeostasis of plasma metabolites such as non-esterified fatty acids and glucose, the levels of which reflect the energy balance or the health status of animals. However, the relationship between the transcriptome of endocrine tissues and plasma metabolites has been poorly studied. Methods We determined the blood levels of 12 plasma metabolites in 27 pigs belonging to five breeds, each breed consisting of both females and males. The transcriptome of five endocrine tissues i.e. hypothalamus, adenohypophysis, thyroid gland, gonads and backfat tissues from 16 out of the 27 pigs was also determined. Sex and breed effects on the 12 plasma metabolites were investigated and associations between genes expressed in the five endocrine tissues and the 12 plasma metabolites measured were analyzed. A probeset was defined as a quantitative trait transcript (QTT when its association with a particular metabolic trait achieved a nominal P value Results A larger than expected number of QTT was found for non-esterified fatty acids and alanine aminotransferase in at least two tissues. The associations were highly tissue-specific. The QTT within the tissues were divided into co-expression network modules enriched for genes in Kyoto Encyclopedia of Genes and Genomes or gene ontology categories that are related to the physiological functions of the corresponding tissues. We also explored a multi-tissue co-expression network using QTT for non-esterified fatty acids from the five tissues and found that a module, enriched in hypothalamus QTT, was positioned at the centre of the entire multi-tissue network. Conclusions These results emphasize the relationships between endocrine tissues and plasma metabolites in terms of gene expression. Highly tissue-specific association patterns suggest that candidate genes or gene pathways should be investigated in the context of specific tissues.

  8. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Carroll

    Full Text Available The HTT CAG expansion mutation causes Huntington's Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue, using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219 in the striatum to 12% (25/212 in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219 of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224 in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and

  9. 1H NMR-based metabolite profiling of plasma in a rat model of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Ju-Ae Kim

    Full Text Available Chronic kidney disease (CKD is characterized by the gradual loss of the kidney function to excrete wastes and fluids from the blood. (1H NMR-based metabolomics was exploited to investigate the altered metabolic pattern in rats with CKD induced by surgical reduction of the renal mass (i.e., 5/6 nephrectomy (5/6 Nx, particularly for identifying specific metabolic biomarkers associated with early of CKD. Plasma metabolite profiling was performed in CKD rats (at 4- or 8-weeks after 5/6 Nx compared to sham-operated rats. Principle components analysis (PCA, partial least squares-discriminant analysis (PLS-DA and orthogonal partial least squares-discriminant analysis (OPLS-DA score plots showed a significant separation between the groups. The resulting metabolic profiles demonstrated significantly increased plasma levels of organic anions, including citrate, β-hydroxybutyrate, lactate, acetate, acetoacetate, and formate in CKD. Moreover, levels of alanine, glutamine, and glutamate were significantly higher. These changes were likely to be associated with complicated metabolic acidosis in CKD for counteracting systemic metabolic acidosis or increased protein catabolism from muscle. In contrast, levels of VLDL/LDL (CH2n and N-acetylglycoproteins were decreased. Taken together, the observed changes of plasma metabolite profiles in CKD rats provide insights into the disturbed metabolism in early phase of CKD, in particular for the altered metabolism of acid-base and/or amino acids.

  10. A total transcriptome profiling method for plasma-derived extracellular vesicles: applications for liquid biopsies

    National Research Council Canada - National Science Library

    Maria G Amorim; Renan Valieris; Rodrigo D Drummond; Melissa P Pizzi; Vanessa M Freitas; Rita Sinigaglia-Coimbra; George A Calin; Renata Pasqualini; Wadih Arap; Israel T Silva; Emmanuel Dias-Neto; Diana N Nunes

    2017-01-01

    .... However, the total transcriptional landscape of EVs is still largely unknown. Here we develop a new method for total transcriptome profiling of plasma-derived EVs by next generation sequencing (NGS...

  11. Different Polar Metabolites and Protein Profiles between High- and Low-Quality Japanese Ginjo Sake.

    Directory of Open Access Journals (Sweden)

    Kei Takahashi

    Full Text Available Japanese ginjo sake is a premium refined sake characterized by a pleasant fruity apple-like flavor and a sophisticated taste. Because of technical difficulties inherent in brewing ginjo sake, off-flavors sometimes occur. However, the metabolites responsible for off-flavors as well as those present or absent in higher quality ginjo sake remain uncertain. Here, the relationship between 202 polar chemical compounds in sake identified using capillary electrophoresis coupled with time-of-flight mass spectrometry and its organoleptic properties, such as quality and off-flavor, was examined. First, we found that some off-flavored sakes contained higher total amounts of metabolites than other sake samples. The results also identified that levels of 2-oxoglutaric acid and fumaric acid, metabolites in the tricarboxylic acid cycle, were highly but oppositely correlated with ginjo sake quality. Similarly, pyridoxine and pyridoxamine, co-enzymes for amino transferase, were also highly but oppositely correlated with ginjo sake quality. Additionally, pyruvic acid levels were associated with good quality as well. Compounds involved in the methionine salvage cycle, oxidative glutathione derivatives, and amino acid catabolites were correlated with low quality. Among off-flavors, an inharmonious bitter taste appeared attributable to polyamines. Furthermore, protein analysis displayed that a diversity of protein components and yeast protein (triosephosphate isomerase, TPI leakage was linked to the overall metabolite intensity in ginjo sake. This research provides insight into the relationship between sake components and organoleptic properties.

  12. Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis

    NARCIS (Netherlands)

    Heijne, W.H.M.; Lamers, R.J.A.N.; Bladeren, P.J. van; Groten, J.P.; Nesselrooij, J.H.J. van; Ommen, B. van

    2005-01-01

    This study investigated whether integrated analysis of transcriptomics and metabolomics data increased the sensitivity of detection and provided new insight in the mechanisms of hepatotoxicity. Metabolite levels in plasma or urine were analyzed in relation to changes in hepatic gene expression in

  13. Effects of fungicides on galanthamine and metabolite profiles in Narcissus bulbs.

    Science.gov (United States)

    Lubbe, Andrea; Verpoorte, Robert; Choi, Young Hae

    2012-09-01

    Large-scale plant cultivation usually involves the use of pesticides. Apart from eliminating the target organism, the external chemicals may affect the metabolism of the crop plant. This may have implications for plants cultivated for specific medicinal compounds. In this study the effects of diverse fungicides on the metabolism of Narcissus pseudonarcissus cv. Carlton bulbs were investigated. N. pseudonarcissus cv. Carlton is being cultivated for the extraction of the alkaloid galanthamine. Fungicides typically used in Narcissus cultivation were applied in a field experiment. The aim was to determine whether fungicide applications changed the concentration of galanthamine in the bulbs. (1)H NMR spectroscopy allowed quantitative analysis of galanthamine and other metabolites in bulb extracts. Multivariate data analysis revealed changes in bulb metabolite patterns caused by fungicides. Bulbs treated before planting generally had higher levels of alkaloids, while foliar field applications caused lower alkaloid levels but altered carbohydrate metabolism. Within these groups, certain fungicide treatments caused changes in specific metabolites. This study shows that the fungicides used in Narcissus cultivation can cause a change in the metabolome still detectable in the bulbs after harvest. The standard cultivation practices in terms of fungicide treatment were found suitable for the production of N. pseudonarcissus cv. Carlton as raw material for galanthamine extraction. In the cultivation of medicinal plants for secondary metabolites the potential effect of pesticides and other agrochemicals should be taken into account. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Metabolite profiling and enzyme reaction phenotyping of luseogliflozin, a sodium-glucose cotransporter 2 inhibitor, in humans.

    Science.gov (United States)

    Miyata, Atsunori; Hasegawa, Masatoshi; Hachiuma, Kenji; Mori, Haruyuki; Horiuchi, Nobuko; Mizuno-Yasuhira, Akiko; Chino, Yukihiro; Jingu, Shigeji; Sakai, Soichi; Samukawa, Yoshishige; Nakai, Yasuhiro; Yamaguchi, Jun-Ichi

    2017-04-01

    1. To understand the clearance mechanism of luseogliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, we investigated its human metabolite profile and metabolic enzymes responsible for the primary metabolic pathways in human using reaction phenotyping. 2. Sixteen metabolites of luseogliflozin were found in human plasma and/or urine and their structural information indicated that the drug was metabolized via multiple metabolic pathways. The primary metabolic pathways involve (1) O-deethylation to form M2 and subsequent glucuronidation to form M12, (2) ω-hydroxylation at ethoxy group to form M3 followed by oxidation to form the corresponding carboxylic acid metabolite (M17) and (3) direct glucuronidation to form M8. 3. The reaction phenotyping studies indicated that the formation of M2 was mainly mediated by cytochrome P450 (CYP) 3A4/5, and subsequently M12 formation was catalyzed by UGT1A1, UGT1A8 and UGT1A9. The formation of M3 was mediated by CYP4A11, CYP4F2 and CYP4F3B, and the further oxidation of M3 to M17 was mediated by alcohol dehydrogenase and aldehyde dehydrogenase. The formation of M8 was catalyzed by UGT1A1. 4. These results demonstrate that luseogliflozin is metabolized through multiple pathways, including CYP-mediated oxidation and glucuronidation, in human.

  15. Combined mass spectrometry-based metabolite profiling of different pigmented rice (Oryza sativa L.) seeds and correlation with antioxidant activities.

    Science.gov (United States)

    Kim, Ga Ryun; Jung, Eun Sung; Lee, Sarah; Lim, Sun-Hyung; Ha, Sun-Hwa; Lee, Choong Hwan

    2014-09-29

    Nine varieties of pigmented rice (Oryza sativa L.) seeds that were black, red, or white were used to perform metabolite profiling by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography (GC) TOF-MS, to measure antioxidant activities. Clear grouping patterns determined by the color of the rice seeds were identified in principle component analysis (PCA) derived from UPLC-Q-TOF-MS. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimer, proanthocyanidin trimer, apigenin-6-C-glugosyl-8-C-arabiboside, tricin-O-rhamnoside-O-hexoside, and lipids were identified as significantly different secondary metabolites. In PCA score plots derived from GC-TOF-MS, Jakwangdo (JKD) and Ilpoom (IP) species were discriminated from the other rice seeds by PC1 and PC2. Valine, phenylalanine, adenosine, pyruvate, nicotinic acid, succinic acid, maleic acid, malonic acid, gluconic acid, xylose, fructose, glucose, maltose, and myo-inositol were significantly different primary metabolites in JKD species, while GABA, asparagine, xylitol, and sucrose were significantly distributed in IP species. Analysis of antioxidant activities revealed that black and red rice seeds had higher activity than white rice seeds. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimers, proanthocyanidin trimers, and catechin were highly correlated with antioxidant activities, and were more plentiful in black and red rice seeds. These results are expected to provide valuable information that could help improve and develop rice-breeding techniques.

  16. Non-targeted metabolite profiling reveals changes in oxidative stress, tryptophan and lipid metabolisms in fearful dogs.

    Science.gov (United States)

    Puurunen, Jenni; Tiira, Katriina; Lehtonen, Marko; Hanhineva, Kati; Lohi, Hannes

    2016-02-12

    Anxieties, such as shyness, noise phobia and separation anxiety, are common but poorly understood behavioural problems in domestic dogs, Canis familiaris. Although studies have demonstrated genetic and environmental contributions to anxiety pathogenesis, better understanding of the molecular underpinnings is needed to improve diagnostics, management and treatment plans. As a part of our ongoing canine anxiety genetics efforts, this study aimed to pilot a metabolomics approach in fearful and non-fearful dogs to identify candidate biomarkers for more objective phenotyping purposes and to refer to potential underlying biological problem. We collected whole blood samples from 10 fearful and 10 non-fearful Great Danes and performed a liquid chromatography combined with mass spectrometry (LC-MS)-based non-targeted metabolite profiling. Non-targeted metabolomics analysis detected six 932 metabolite entities in four analytical modes [RP and HILIC; ESI(-) and ESI(+)], of which 239 differed statistically between the test groups. We identified changes in 13 metabolites (fold change ranging from 1.28 to 2.85) between fearful and non-fearful dogs, including hypoxanthine, indoxylsulfate and several phospholipids. These molecules are involved in oxidative stress, tryptophan and lipid metabolisms. We identified significant alterations in the metabolism of fearful dogs, and some of these changes appear relevant to anxiety also in other species. This pilot study demonstrates the feasibility of the non-targeted metabolomics and warrants a larger replication study to confirm the role of the identified biomarkers and pathways in canine anxiety.

  17. Detection of metabolites discriminating subtypes of thyroid cancer: Molecular profiling of FFPE samples using the GC/MS approach.

    Science.gov (United States)

    Wojakowska, Anna; Chekan, Mykola; Marczak, Łukasz; Polanski, Krzysztof; Lange, Dariusz; Pietrowska, Monika; Widlak, Piotr

    2015-12-05

    One of the critical issues in thyroid cancer diagnostic is differentiation between follicular adenoma, follicular carcinoma and the follicular variant of papillary carcinoma, which in some cases is not possible based on histopathological features only. In this paper we performed molecular profiling of thyroid tissue aiming to identify metabolites characteristic for different types of thyroid cancer. FFPE tissue specimens were analysed from 5 different types of thyroid malignancies (follicular, papillary/classical variant, papillary/follicular variant, medullary and anaplastic cancers), benign follicular adenoma and normal thyroid. Extracted metabolites were identified and semi-quantified using the GC/MS approach. There were 28 metabolites identified, whose abundances were significantly different among different types of thyroid tumours, including lipids, carboxylic acids, and saccharides. We concluded, that multi-component metabolome signature could be used for classification of different subtypes of follicular thyroid lesions. Moreover, potential applicability of the GC/MS-based analysis of FFPE tissue samples in diagnostics of thyroid cancer has been proved. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. NMR Profiling of Metabolites in Larval and Juvenile Blue Mussels (Mytilus edulis under Ambient and Low Salinity Conditions

    Directory of Open Access Journals (Sweden)

    Melissa A. May

    2017-07-01

    Full Text Available Blue mussels (Mytilus edulis are ecologically and economically important marine invertebrates whose populations are at risk from climate change-associated variation in their environment, such as decreased coastal salinity. Blue mussels are osmoconfomers and use components of the metabolome (free amino acids to help maintain osmotic balance and cellular function during low salinity exposure. However, little is known about the capacity of blue mussels during the planktonic larval stages to regulate metabolites during osmotic stress. Metabolite studies in species such as blue mussels can help improve our understanding of the species’ physiology, as well as their capacity to respond to environmental stress. We used 1D 1H nuclear magnetic resonance (NMR and 2D total correlation spectroscopy (TOCSY experiments to describe baseline metabolite pools in larval (veliger and pediveliger stages and juvenile blue mussels (gill, mantle, and adductor tissues under ambient conditions and to quantify changes in the abundance of common osmolytes in these stages during low salinity exposure. We found evidence for stage- and tissue-specific differences in the baseline metabolic profiles of blue mussels, which reflect variation in the function and morphology of each larval stage or tissue type of juveniles. These differences impacted the utilization of osmolytes during low salinity exposure, likely stemming from innate physiological variation. This study highlights the importance of foundational metabolomic studies that include multiple tissue types and developmental stages to adequately evaluate organismal responses to stress and better place these findings in a broader physiological context.

  19. Symposium 2: Modern approaches to nutritional research challenges: Targeted and non-targeted approaches for metabolite profiling in nutritional research.

    Science.gov (United States)

    Lodge, John K

    2010-02-01

    The present report discusses targeted and non-targeted approaches to monitor single nutrients and global metabolite profiles in nutritional research. Non-targeted approaches such as metabolomics allow for the global description of metabolites in a biological sample and combine an analytical platform with multivariate data analysis to visualise patterns between sample groups. In nutritional research metabolomics has generated much interest as it has the potential to identify changes to metabolic pathways induced by diet or single nutrients, to explore relationships between diet and disease and to discover biomarkers of diet and disease. Although still in its infancy, a number of studies applying this technology have been performed; for example, the first study in 2003 investigated isoflavone metabolism in females, while the most recent study has demonstrated changes to various metabolic pathways during a glucose tolerance test. As a relatively new technology metabolomics is faced with a number of limitations and challenges including the standardisation of study design and methodology and the need for careful consideration of data analysis, interpretation and identification. Targeted approaches are used to monitor single or multiple nutrient and/or metabolite status to obtain information on concentration, absorption, distribution, metabolism and elimination. Such applications are currently widespread in nutritional research and one example, using stable isotopes to monitor nutrient status, is discussed in more detail. These applications represent innovative approaches in nutritional research to investigate the role of both single nutrients and diet in health and disease.

  20. Metabolite profiling reveals novel multi-level cold responses in the diploid model Fragaria vesca (woodland strawberry).

    Science.gov (United States)

    Rohloff, Jens; Kopka, Joachim; Erban, Alexander; Winge, Per; Wilson, Robert C; Bones, Atle M; Davik, Jahn; Randall, Stephen K; Alsheikh, Muath K

    2012-05-01

    Winter freezing damage is a crucial factor in overwintering crops such as the octoploid strawberry (Fragaria × ananassa Duch.) when grown in a perennial cultivation system. Our study aimed at assessing metabolic processes and regulatory mechanisms in the close-related diploid model woodland strawberry (Fragaria vescaL.) during a 10-days cold acclimation experiment. Based on gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS) metabolite profiling of three F. vesca genotypes, clear distinctions could be made between leaves and non-photosynthesizing roots, underscoring the evolvement of organ-dependent cold acclimation strategies. Carbohydrate and amino acid metabolism, photosynthetic acclimation, and antioxidant and detoxification systems (ascorbate pathway) were strongly affected. Metabolic changes in F. vesca included the strong modulation of central metabolism, and induction of osmotically-active sugars (fructose, glucose), amino acids (aspartic acid), and amines (putrescine). In contrast, a distinct impact on the amino acid proline, known to be cold-induced in other plant systems, was conspicuously absent. Levels of galactinol and raffinose, key metabolites of the cold-inducible raffinose pathway, were drastically enhanced in both leaves and roots throughout the cold acclimation period of 10 days. Furthermore, initial freezing tests and multifaceted GC/TOF-MS data processing (Venn diagrams, independent component analysis, hierarchical clustering) showed that changes in metabolite pools of cold-acclimated F. vesca were clearly influenced by genotype. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Integrating milk metabolite profile information for the prediction of traditional milk traits based on SNP information for Holstein cows.

    Directory of Open Access Journals (Sweden)

    Nina Melzer

    Full Text Available In this study the benefit of metabolome level analysis for the prediction of genetic value of three traditional milk traits was investigated. Our proposed approach consists of three steps: First, milk metabolite profiles are used to predict three traditional milk traits of 1,305 Holstein cows. Two regression methods, both enabling variable selection, are applied to identify important milk metabolites in this step. Second, the prediction of these important milk metabolite from single nucleotide polymorphisms (SNPs enables the detection of SNPs with significant genetic effects. Finally, these SNPs are used to predict milk traits. The observed precision of predicted genetic values was compared to the results observed for the classical genotype-phenotype prediction using all SNPs or a reduced SNP subset (reduced classical approach. To enable a comparison between SNP subsets, a special invariable evaluation design was implemented. SNPs close to or within known quantitative trait loci (QTL were determined. This enabled us to determine if detected important SNP subsets were enriched in these regions. The results show that our approach can lead to genetic value prediction, but requires less than 1% of the total amount of (40,317 SNPs., significantly more important SNPs in known QTL regions were detected using our approach compared to the reduced classical approach. Concluding, our approach allows a deeper insight into the associations between the different levels of the genotype-phenotype map (genotype-metabolome, metabolome-phenotype, genotype-phenotype.

  2. Metabolite Profiling in Withania somnifera Roots Hydroalcoholic Extract Using LC/MS, GC/MS and NMR Spectroscopy.

    Science.gov (United States)

    Trivedi, Mahendra Kumar; Panda, Parthasarathi; Sethi, Kalyan Kumar; Jana, Snehasis

    2017-03-01

    Ashwagandha (Withania somnifera) is a very well-known herbal medicine and it was well studied for its active metabolites throughout the World. Although, nearly 40 withanolides were isolated from W. somnifera root extract, still there is remaining unidentified metabolites due to very low abundance and geographical variation. Advanced separation technology with online identification by mass and nuclear magnetic resonance (NMR) are nowadays used to find out the new compounds in the crude herbal extract. This article described the metabolite profiling of ashwagandha root hydroalcoholic extract using ultra-performance liquid chromatography coupled with a positive ion electrospray ionization tandem mass spectrometry through gas chromatography mass spectrometry (GC/MS) and NMR spectroscopy. A total of 43 possible withanolides was identified and proposed their structures based on the mass of molecular and fragment ions. GC/MS and NMR analysis indicated the presence of several known withanolides including withaferin A, withanolide D, withanoside IV or VI, withanolide sulfoxide, etc. To the best of our knowledge, dihydrowithanolide D at m/z 473 (tR 7.86 min) and ixocarpalactone A at m/z 505 (tR 8.43 min) were first time identified in the ashwagandha root hydroalcoholic extract. The current study that described the identification of withanolides with summarized literature review might be helpful for designing the experiment to identify of the new chemical constituents in Withania species. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  3. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana.

    Science.gov (United States)

    Taamalli, Amani; Arráez-Román, David; Abaza, Leila; Iswaldi, Ihsan; Fernández-Gutiérrez, Alberto; Zarrouk, Mokhtar; Segura-Carretero, Antonio

    2015-01-01

    There has been increasing interest dedicated to the phenolic compounds with a view to their antioxidant and healthy properties. Recent studies have focused on plants from the Lamiaceae family with special interest in phenolic compounds antioxidant potential. The metabolite profile of methanolic extracts from two Lamiacea medicinal plants was investigated. Mentha pulegium and Origanum majorana methanolic extracts were analysed using reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled to electrospray ionisation quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS) detection in the negative ion mode. A total of 85 metabolites were characterised from different families, such as organic acids and derivatives, amino acids and derivatives, nucleosides, phenolic compounds as well as other polar metabolites, by using the MS and MS/MS information provided by the QTOF-MS. However, the total phenols and flavonoids were also quantified spectrophotometrically and they registered higher amounts in Mentha pulegium than in Origanum majorana extract. Gallocatechin was the major compound in M. pulegium extract whereas quercetin dimethyl ether, jaceidin and dihydrokaempferide were the major ones in O. majorana extract. The distribution of phenolic compounds in the methanolic extract showed a variation among studied plants. Mentha pulegium can be considered as a source of gallocatechin. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Combined Mass Spectrometry-Based Metabolite Profiling of Different Pigmented Rice (Oryza sativa L. Seeds and Correlation with Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Ga Ryun Kim

    2014-09-01

    Full Text Available Nine varieties of pigmented rice (Oryza sativa L. seeds that were black, red, or white were used to perform metabolite profiling by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS and gas chromatography (GC TOF-MS, to measure antioxidant activities. Clear grouping patterns determined by the color of the rice seeds were identified in principle component analysis (PCA derived from UPLC-Q-TOF-MS. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimer, proanthocyanidin trimer, apigenin-6-C-glugosyl-8-C-arabiboside, tricin-O-rhamnoside-O-hexoside, and lipids were identified as significantly different secondary metabolites. In PCA score plots derived from GC-TOF-MS, Jakwangdo (JKD and Ilpoom (IP species were discriminated from the other rice seeds by PC1 and PC2. Valine, phenylalanine, adenosine, pyruvate, nicotinic acid, succinic acid, maleic acid, malonic acid, gluconic acid, xylose, fructose, glucose, maltose, and myo-inositol were significantly different primary metabolites in JKD species, while GABA, asparagine, xylitol, and sucrose were significantly distributed in IP species. Analysis of antioxidant activities revealed that black and red rice seeds had higher activity than white rice seeds. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimers, proanthocyanidin trimers, and catechin were highly correlated with antioxidant activities, and were more plentiful in black and red rice seeds. These results are expected to provide valuable information that could help improve and develop rice-breeding techniques.

  5. Environmental Factors Correlated with the Metabolite Profile of Vitis vinifera cv. Pinot Noir Berry Skins along a European Latitudinal Gradient.

    Science.gov (United States)

    Del-Castillo-Alonso, María Ángeles; Castagna, Antonella; Csepregi, Kristóf; Hideg, Éva; Jakab, Gabor; Jansen, Marcel A K; Jug, Tjaša; Llorens, Laura; Mátai, Anikó; Martínez-Lüscher, Johann; Monforte, Laura; Neugart, Susanne; Olejnickova, Julie; Ranieri, Annamaria; Schödl-Hummel, Katharina; Schreiner, Monika; Soriano, Gonzalo; Teszlák, Péter; Tittmann, Susanne; Urban, Otmar; Verdaguer, Dolors; Zipoli, Gaetano; Martínez-Abaigar, Javier; Núñez-Olivera, Encarnación

    2016-11-23

    Mature berries of Pinot Noir grapevines were sampled across a latitudinal gradient in Europe, from southern Spain to central Germany. Our aim was to study the influence of latitude-dependent environmental factors on the metabolite composition (mainly phenolic compounds) of berry skins. Solar radiation variables were positively correlated with flavonols and flavanonols and, to a lesser extent, with stilbenes and cinnamic acids. The daily means of global and erythematic UV solar radiation over long periods (bud break-veraison, bud break-harvest, and veraison-harvest), and the doses and daily means in shorter development periods (5-10 days before veraison and harvest) were the variables best correlated with the phenolic profile. The ratio between trihydroxylated and monohydroxylated flavonols, which was positively correlated with antioxidant capacity, was the berry skin variable best correlated with those radiation variables. Total flavanols and total anthocyanins did not show any correlation with radiation variables. Air temperature, degree days, rainfall, and aridity indices showed fewer correlations with metabolite contents than radiation. Moreover, the latter correlations were restricted to the period veraison-harvest, where radiation, temperature, and water availability variables were correlated, making it difficult to separate the possible individual effects of each type of variable. The data show that managing environmental factors, in particular global and UV radiation, through cultural practices during specific development periods, can be useful to promote the synthesis of valuable nutraceuticals and metabolites that influence wine quality.

  6. Long-chain fatty acid combustion rate is associated with unique metabolite profiles in skeletal muscle mitochondria.

    Directory of Open Access Journals (Sweden)

    Erin L Seifert

    Full Text Available BACKGROUND/AIM: Incomplete or limited long-chain fatty acid (LCFA combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA beta-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. METHODOLOGY/PRINCIPAL FINDINGS: Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition. Three palmitate concentrations (2, 9 and 19 microM; corresponding to low, intermediate and high oxidation rates and 9 microM palmitate plus tricarboxylic acid (TCA cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. CONCLUSIONS/SIGNIFICANCE: This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules

  7. Metabolite Profiling Reveals Developmental Inequalities in Pinot Noir Berry Tissues Late in Ripening.

    Science.gov (United States)

    Vondras, Amanda M; Commisso, Mauro; Guzzo, Flavia; Deluc, Laurent G

    2017-01-01

    Uneven ripening in Vitis vinifera is increasingly recognized as a phenomenon of interest, with substantial implications for fruit and wine composition and quality. This study sought to determine whether variation late in ripening (∼Modified Eichhorn-Lorenz stage 39) was associated with developmental differences that were observable as fruits within a cluster initiated ripening (véraison). Four developmentally distinct ripening classes of berries were tagged at cluster véraison, sampled at three times late in ripening, and subjected to untargeted HPLC-MS to measure variation in amino acids, sugars, organic acids, and phenolic metabolites in skin, pulp, and seed tissues separately. Variability was described using predominantly two strategies. In the first, multivariate analysis (Orthogonal Projections to Latent Structures-Discriminant Analysis, OPLS-DA) was used to determine whether fruits were still distinguishable per their developmental position at véraison and to identify which metabolites accounted for these distinctions. The same technique was used to assess changes in each tissue over time. In a second strategy and for each annotated metabolite, the variance across the ripening classes at each time point was measured to show whether intra-cluster variance (ICV) was growing, shrinking, or constant over the period observed. Indeed, berries could be segregated by OPLS-DA late in ripening based on their developmental position at véraison, though the four ripening classes were aggregated into two larger ripening groups. Further, not all tissues were dynamic over the period examined. Although pulp tissues could be segregated by time sampled, this was not true for seed and only moderately so for skin. Ripening group differences in seed and skin, rather than the time fruit was sampled, were better able to define berries. Metabolites also experienced significant reductions in ICV between single pairs of time points, but never across the entire experiment

  8. Metabolite Profiling Reveals Developmental Inequalities in Pinot Noir Berry Tissues Late in Ripening

    Directory of Open Access Journals (Sweden)

    Amanda M. Vondras

    2017-06-01

    Full Text Available Uneven ripening in Vitis vinifera is increasingly recognized as a phenomenon of interest, with substantial implications for fruit and wine composition and quality. This study sought to determine whether variation late in ripening (∼Modified Eichhorn-Lorenz stage 39 was associated with developmental differences that were observable as fruits within a cluster initiated ripening (véraison. Four developmentally distinct ripening classes of berries were tagged at cluster véraison, sampled at three times late in ripening, and subjected to untargeted HPLC-MS to measure variation in amino acids, sugars, organic acids, and phenolic metabolites in skin, pulp, and seed tissues separately. Variability was described using predominantly two strategies. In the first, multivariate analysis (Orthogonal Projections to Latent Structures-Discriminant Analysis, OPLS-DA was used to determine whether fruits were still distinguishable per their developmental position at véraison and to identify which metabolites accounted for these distinctions. The same technique was used to assess changes in each tissue over time. In a second strategy and for each annotated metabolite, the variance across the ripening classes at each time point was measured to show whether intra-cluster variance (ICV was growing, shrinking, or constant over the period observed. Indeed, berries could be segregated by OPLS-DA late in ripening based on their developmental position at véraison, though the four ripening classes were aggregated into two larger ripening groups. Further, not all tissues were dynamic over the period examined. Although pulp tissues could be segregated by time sampled, this was not true for seed and only moderately so for skin. Ripening group differences in seed and skin, rather than the time fruit was sampled, were better able to define berries. Metabolites also experienced significant reductions in ICV between single pairs of time points, but never across the entire

  9. Urinary profiles of progestin and androgen metabolites in female polar bears during parturient and non-parturient cycles.

    Science.gov (United States)

    Knott, Katrina K; Mastromonaco, Gabriela F; Owen, Megan A; Kouba, Andrew J

    2017-01-01

    Due to the environmental and anthropogenic impacts that continue to threaten the reproductive success of polar bears, a more detailed understanding of their reproductive cycle is needed. Captive populations of polar bears provide an excellent opportunity to learn more about the reproductive physiology of the species. Progestin (P4) and androgen (T) metabolites in urine, and their ratio (P4:T), were examined during 11 reproductive cycles of captive female polar bears (n = 4) to characterize the steroid hormone profile during pregnancy and determine possible variations related to reproductive failure. The concentration of hormone metabolites in urine were determined through enzyme immunoassay. Reproductive cycles were classified as pregnant (n = 3), anovulatory (n = 4) and ovulatory-non-parturient (n = 4) based on the changes in urinary hormone metabolite values and cub production. In the absence of a lactational suppression of estrus, elevated androgen concentrations suggested resumption of follicular development within 3 weeks of parturition. Breeding behaviours were most often observed when androgen values were at their highest or in decline. Ovulation was identified by a return to basal androgen concentration and elevation of progestins within 1-4 weeks after breeding. As a result, urinary concentrations of progestins were greater than androgens (P4:T ratio ≥ 1.0) during ovulatory cycles whereas the P4:T ratio was Non-invasive monitoring of hormone metabolites in urine provided a rapid determination of endocrine function for improved husbandry and reproductive management of polar bears in captivity. Further research is warranted to understand the reproductive endocrinology of polar bears and its impact on conservation and management of this species in captivity and the wild.

  10. Generating favorable growth factor and protease release profiles to enable extracellular matrix accumulation within an in vitro tissue engineering environment.

    Science.gov (United States)

    Zhang, Xiaoqing; Battiston, Kyle G; Labow, Rosalind S; Simmons, Craig A; Santerre, J Paul

    2017-05-01

    Tissue engineering (particularly for the case of load-bearing cardiovascular and connective tissues) requires the ability to promote the production and accumulation of extracellular matrix (ECM) components (e.g., collagen, glycosaminoglycan and elastin). Although different approaches have been attempted in order to enhance ECM accumulation in tissue engineered constructs, studies of underlying signalling mechanisms that influence ECM deposition and degradation during tissue remodelling and regeneration in multi-cellular culture systems have been limited. The current study investigated vascular smooth muscle cell (VSMC)-monocyte co-culture systems using different VSMC:monocyte ratios, within a degradable polyurethane scaffold, to assess their influence on ECM generation and degradation processes, and to elucidate relevant signalling molecules involved in this in vitro vascular tissue engineering system. It was found that a desired release profile of growth factors (e.g. insulin growth factor-1 (IGF-1)) and hydrolytic proteases (e.g. matrix-metalloproteinases 2, 9, 13 and 14 (MMP2, MMP9, MMP13 and MMP14)), could be achieved in co-culture systems, yielding an accumulation of ECM (specifically for 2:1 and 4:1 VSMC:monocyte culture systems). This study has significant implications for the tissue engineering field (including vascular tissue engineering), not only because it identified important cytokines and proteases that control ECM accumulation/degradation within synthetic tissue engineering scaffolds, but also because the established culture systems could be applied to improve the development of different types of tissue constructs. Sufficient extracellular matrix accumulation within cardiovascular and connective tissue engineered constructs is a prerequisite for their appropriate function in vivo. This study established co-culture systems with tissue specific cells (vascular smooth muscle cells (VSMCs)) and defined ratios of immune cells (monocytes) to investigate

  11. Effect of Acinetobacter sp on metalaxyl degradation and metabolite profile of potato seedlings (Solanum tuberosum L.) alpha variety.

    Science.gov (United States)

    Zuno-Floriano, Fabiola G; Miller, Marion G; Aldana-Madrid, Maria L; Hengel, Matt J; Gaikwad, Nilesh W; Tolstikov, Vladimir; Contreras-Cortés, Ana G

    2012-01-01

    One of the most serious diseases in potato cultivars is caused by the pathogen Phytophthora infestans, which affects leaves, stems and tubers. Metalaxyl is a fungicide that protects potato plants from Phytophthora infestans. In Mexico, farmers apply metalaxyl 35 times during the cycle of potato production and the last application is typically 15 days before harvest. There are no records related to the presence of metalaxyl in potato tubers in Mexico. In the present study, we evaluated the effect of Acinetobacter sp on metalaxyl degradation in potato seedlings. The effect of bacteria and metalaxyl on the growth of potato seedlings was also evaluated. A metabolite profile analysis was conducted to determine potential molecular biomarkers produced by potato seedlings in the presence of Acinetobacter sp and metalaxyl. Metalaxyl did not affect the growth of potato seedlings. However, Acinetobacter sp strongly affected the growth of inoculated seedlings, as confirmed by plant length and plant fresh weights which were lower in inoculated potato seedlings (40% and 27%, respectively) compared to the controls. Acinetobacter sp also affected root formation. Inoculated potato seedlings showed a decrease in root formation compared to the controls. LC-MS/MS analysis of metalaxyl residues in potato seedlings suggests that Acinetobacter sp did not degrade metalaxyl. GC-TOF-MS platform was used in metabolic profiling studies. Statistical data analysis and metabolic pathway analysis allowed suggesting the alteration of metabolic pathways by both Acinetobacter sp infection and metalaxyl treatment. Several hundred metabolites were detected, 137 metabolites were identified and 15 metabolic markers were suggested based on statistical change significance found with PLS-DA analysis. These results are important for better understanding the interactions of putative endophytic bacteria and pesticides on plants and their possible effects on plant metabolism.

  12. Urinary Metabolite Profiles May be Predictive of Cognitive Performance Under Conditions of Acute Sleep Deprivation

    Science.gov (United States)

    2016-01-01

    mustard cup baby carrots 1 apple Saturday, 3 pm Snack 200 1 Quaker Cereal Bar-Apple Crisp 1 cup fat-free milk Metabolomics During Sleep...contribute to the metabolic composition of the urine [43]. Variations in diet and environment are important con- founding factors in human studies...identifying multivari- ate composite biomarkers such as the sum or ratio of several metabolites. Dietary Impact It is interesting to note that many

  13. Impact of nutrient excess and endothelial nitric oxide synthase on the plasma metabolite profile in mice

    Directory of Open Access Journals (Sweden)

    Brian E Sansbury

    2014-11-01

    Full Text Available An increase in calorie consumption is associated with the recent rise in obesity prevalence. However, our current understanding of the effects of nutrient excess on major metabolic pathways appears insufficient to develop safe and effective metabolic interventions to prevent obesity. Hence, we sought to identify systemic metabolic changes caused by nutrient excess and to determine how endothelial nitric oxide synthase (eNOS—which has anti-obesogenic properties—affects systemic metabolism by measuring plasma metabolites. Wild-type (WT and eNOS transgenic (eNOS-TG mice were placed on low fat or high fat diets for six weeks, and plasma metabolites were measured using an unbiased metabolomic approach. High fat feeding in WT mice led to significant increases in fat mass, which was associated with significantly lower plasma levels of 1,5-anhydroglucitol, lysophospholipids, 3-dehydrocarnitine, and bile acids, as well as branched chain amino acids (BCAAs and their metabolites. Plasma levels of several lipids including sphingomyelins, stearoylcarnitine, dihomo-linoleate and metabolites associated with oxidative stress were increased by high fat diet. In comparison with low fat-fed WT mice, eNOS-TG mice showed lower levels of several free fatty acids, but in contrast, the levels of bile acids, amino acids, and BCAA catabolites were increased. When placed on a high fat diet, eNOS overexpressing mice showed remarkably higher levels of plasma bile acids and elevated levels of plasma BCAAs and their catabolites compared with WT mice. Treatment with GW4064, an inhibitor of bile acid synthesis, decreased plasma bile acid levels but was not sufficient to reverse the anti-obesogenic effects of eNOS overexpression. These findings reveal unique metabolic changes in response to high fat diet and eNOS overexpression and suggest that the anti-obesity effects of eNOS are likely independent of changes in the bile acid pool.

  14. Transgenic modification of gai or rg/1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, Timothy J [ORNL; Busov, V. [Michigan Technological University; Meilan, R [Purdue University; Pearce, D [University of Lethbridge; Rood, s [University of Lethbridge; Ma, C [Oregon State University; Strauss, S [Oregon State University

    2006-01-01

    In Arabidopsis and other plants, gibberellin (GA)-regulated responses are mediated by proteins including GAI, RGA and RGL1-3 that contain a functional DELLA domain. Through transgenic modification, we found that DELLA-less versions of GAI (gai) and RGL1 (rgl1) in a Populus tree have profound, dominant effects on phenotype, producing pleiotropic changes in morphology and metabolic profiles. Shoots were dwarfed, likely via constitutive repression of GA-induced elongation, whereas root growth was promoted two- to threefold in vitro. Applied GA{sub 3} inhibited adventitious root production in wild-type poplar, but gai/rgl1 poplars were unaffected by the inhibition. The concentrations of bioactive GA{sub 1} and GA{sub 4} in leaves of gai- and rgl1-expressing plants increased 12- to 64-fold, while the C{sub 19} precursors of GA{sub 1} (GA{sub 53}, GA{sub 44} and GA{sub 19}) decreased three- to ninefold, consistent with feedback regulation of GA 20-oxidase in the transgenic plants. The transgenic modifications elicited significant metabolic changes. In roots, metabolic profiling suggested increased respiration as a possible mechanism of the increased root growth. In leaves, we found metabolite changes suggesting reduced carbon flux through the lignin biosynthetic pathway and a shift towards allocation of secondary storage and defense metabolites, including various phenols, phenolic glucosides, and phenolic acid conjugates.

  15. Diurnal Profiles of Melatonin Synthesis-Related Indoles, Catecholamines and Their Metabolites in the Duck Pineal Organ

    Directory of Open Access Journals (Sweden)

    Bogdan Lewczuk

    2014-07-01

    Full Text Available This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime.

  16. Diurnal profiles of melatonin synthesis-related indoles, catecholamines and their metabolites in the duck pineal organ.

    Science.gov (United States)

    Lewczuk, Bogdan; Ziółkowska, Natalia; Prusik, Magdalena; Przybylska-Gornowicz, Barbara

    2014-07-16

    This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime.

  17. Diurnal Profiles of Melatonin Synthesis-Related Indoles, Catecholamines and Their Metabolites in the Duck Pineal Organ

    Science.gov (United States)

    Lewczuk, Bogdan; Ziółkowska, Natalia; Prusik, Magdalena; Przybylska-Gornowicz, Barbara

    2014-01-01

    This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime. PMID:25032843

  18. Seasonal profiles of ovarian activity in Iberian lynx (Lynx pardinus) based on urinary hormone metabolite analyses.

    Science.gov (United States)

    Jewgenow, K; Göritz, F; Vargas, A; Dehnhard, M

    2009-07-01

    The Iberian Lynx Ex-Situ Conservation Programme is an essential part of a co-ordinated action plan to conserve the most endangered felid species of the world. Successful captive breeding demands reliable methods for reproduction monitoring including reliable non-invasive pregnancy diagnosis. During a 3-year study, urine samples from six captive Iberian lynx females were obtained (one non-pregnant, one pseudo-pregnant and 11 pregnant cycles). Progesterone, pregnanediol and oestradiol were determined in urinary extracts and relevant urinary oestrogen metabolites were characterized by high-performance liquid chromatography (HPLC). Urinary progestins did not follow the typical pregnancy-related course of felids. In the lynx, we failed to demonstrate an urinary progestin elevation during pregnancy. In contrast, urinary oestrogens increased from 3.8 +/- 0.6 to 8.6 +/- 0.5 ng/mg creatinine (p lynx during the pregnancy revealed that lynx urine is composed of two polar oestrogen metabolites in addition to oestrone and minor amounts of oestradiol. Oestrone was detectable in all urinary extracts (8-12% of metabolites), whereas oestradiol was elevated only during late pregnancy (18%). Thus, seasonal luteal activity in Iberian lynx can be monitored by urinary oestrogens. The increase of urinary oestradiol during late pregnancy might indicate an oestradiol secretion by the lynx placenta.

  19. Bioenergetic profiling of Trypanosoma cruzi life stages using Seahorse extracellular flux technology.

    Science.gov (United States)

    Shah-Simpson, Sheena; Pereira, Camila F A; Dumoulin, Peter C; Caradonna, Kacey L; Burleigh, Barbara A

    2016-08-01

    Energy metabolism is an attractive target for the development of new therapeutics against protozoan pathogens, including Trypanosoma cruzi, the causative agent of human Chagas disease. Despite emerging evidence that mitochondrial electron transport is essential for the growth of intracellular T. cruzi amastigotes in mammalian cells, fundamental knowledge of mitochondrial energy metabolism in this parasite life stage remains incomplete. The Clark-type electrode, which measures the rate of oxygen consumption, has served as the traditional tool to study mitochondrial energetics and has contributed to our understanding of it in T. cruzi. Here, we evaluate the Seahorse XF(e)24 extracellular flux platform as an alternative method to assess mitochondrial bioenergetics in isolated T. cruzi parasites. We report optimized assay conditions used to perform mitochondrial stress tests with replicative life cycle stages of T. cruzi using the XF(e)24 instrument, and discuss the advantages and potential limitations of this methodology, as applied to T. cruzi and other trypanosomatids. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Expression profiling of colorectal cancer cells reveals inhibition of DNA replication licensing by extracellular calcium.

    Science.gov (United States)

    Aggarwal, Abhishek; Schulz, Herbert; Manhardt, Teresa; Bilban, Martin; Thakker, Rajesh V; Kallay, Enikö

    2017-06-01

    Colorectal cancer is one of the most common cancers in industrialised societies. Epidemiological studies, animal experiments, and randomized clinical trials have shown that dietary factors can influence all stages of colorectal carcinogenesis, from initiation through promotion to progression. Calcium is one of the factors with a chemoprophylactic effect in colorectal cancer. The aim of this study was to understand the molecular mechanisms of the anti-tumorigenic effects of extracellular calcium ([Ca(2+)]o) in colon cancer cells. Gene expression microarray analysis of colon cancer cells treated for 1, 4, and 24h with 2mM [Ca(2+)]o identified significant changes in expression of 1571 probe sets (ANOVA, pcalcium-sensing receptor (CaSR), a G protein-coupled receptor is a mediator involved in this process. To test whether these results were physiologically relevant, we fed mice with a standard diet containing low (0.04%), intermediate (0.1%), or high (0.9%) levels of dietary calcium. The main molecules regulating replication licensing were inhibited also in vivo, in the colon of mice fed high calcium diet. We show that among the mechanisms behind the chemopreventive effect of [Ca(2+)]o is inhibition of replication licensing, a process often deregulated in neoplastic transformation. Our data suggest that dietary calcium is effective in preventing replicative stress, one of the main drivers of cancer and this process is mediated by the calcium-sensing receptor. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Different profiles of onion bulb in CIDP and CMT1A in relation to extracellular matrix.

    Science.gov (United States)

    Oka, Nobuyuki; Kawasaki, Teruaki; Unuma, Tsuneo; Shigematsu, Kazuo; Sugiyama, Hiroshi

    2013-01-01

    Hypertrophic neuropathy is usually intractable, and chronic inflammatory demyelinating polyneuropathy (CIDP) and Charcot-Marie-Tooth disease Type 1A (CMT1A) are the representative disorders. The two disorders are sometimes confused both clinically and pathologically. The aim of this study was to clarify the differences in the pathology of large onion bulbs, focusing on the extracellular matrix (ECM) proteins. Nine patients with CIDP and 14 with CMT1A were included. The opened interspaces in OB were frequently shown in CMT1A patients. In CIDP, interspaces of OB packed with collagen fibers were prominent. The mean ratio of opened OB was significantly increased in CMT1A (37.9%) compared to CIDP patients (10.6%) (p = 0.003). Among the ECM examined, tenascin-C (TNC) showed a distinct difference in the pattern of immunoreactivity of OB. The mean ratio of OB showing TNC immunoreactivity was significantly larger in CIDP (29.7%, p = 0.005) than in CMT1A (5.0%). TNC immunoreactivity was confined to the area around myelin sheaths in CMT1A. The increased deposition of collagen fibers in CIDP suggests the activity of nerve regeneration. TNC expression in Schwann cell lamellae comprising OB may also suggest the activity of regeneration. Schwann cell phenotypes in CIDP may be different from CMT1A regarding the production of ECM proteins.

  2. Metabolite profiling of soy sauce using gas chromatography with time-of-flight mass spectrometry and analysis of correlation with quantitative descriptive analysis.

    Science.gov (United States)

    Yamamoto, Shinya; Bamba, Takeshi; Sano, Atsushi; Kodama, Yukako; Imamura, Miho; Obata, Akio; Fukusaki, Eiichiro

    2012-08-01

    Soy sauces, produced from different ingredients and brewing processes, have variations in components and quality. Therefore, it is extremely important to comprehend the relationship between components and the sensory attributes of soy sauces. The current study sought to perform metabolite profiling in order to devise a method of assessing the attributes of soy sauces. Quantitative descriptive analysis (QDA) data for 24 soy sauce samples were obtained from well selected sensory panelists. Metabolite profiles primarily concerning low-molecular-weight hydrophilic components were based on gas chromatography with time-of-flightmass spectrometry (GC/TOFMS). QDA data for soy sauces were accurately predicted by projection to latent structure (PLS), with metabolite profiles serving as explanatory variables and QDA data set serving as a response variable. Moreover, analysis of correlation between matrices of metabolite profiles and QDA data indicated contributing compounds that were highly correlated with QDA data. Especially, it was indicated that sugars are important components of the tastes of soy sauces. This new approach which combines metabolite profiling with QDA is applicable to analysis of sensory attributes of food as a result of the complex interaction between its components. This approach is effective to search important compounds that contribute to the attributes. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Surface Plasmon Resonance is an Analytically Sensitive Method for Antigen Profiling of Extracellular Vesicles.

    Science.gov (United States)

    Gool, Elmar L; Stojanovic, Ivan; Schasfoort, Richard B M; Sturk, Auguste; van Leeuwen, Ton G; Nieuwland, Rienk; Terstappen, Leon W M M; Coumans, Frank A W

    2017-10-01

    Identification, enumeration, and characterization of extracellular vesicles (EVs) are hampered by the small size of EVs, a low refractive index, and low numbers of antigens on their surface. We investigated the potential of a 48-multiplex surface plasmon resonance imaging (SPRi) system to perform EV phenotyping. Antigen surface density of 11 antigens was measured on the human breast cancer cell lines HS578T, MCF7, and SKBR3 and their EVs by use of both SPRi and the widely used flow cytometry (FCM). For cells, the SPRi and FCM signals for antigen exposure correlated (RHS578T cells2 = 0.66, RMCF7 cells2 = 0.78, RSKBR3 cells2 = 0.60). With regard to EVs, SPRi detected 31 out of 33 tested antibody-EV pairs, whereas our flow cytometer detected 5 antibody-EV pairs because of high blank and isotype control signals. For HS578T-derived EVs, the SPRi and FCM signals correlated (R2HS578T EVs = 0.98). However, on MCF7- and SKBR3-derived EVs, insufficient antigens were detected by our flow cytometer. To confirm that the SPRi responses correlated with mean antigen density on EVs, the SPRi responses of EVs were correlated with antigen density on parental cells as measured by FCM (RHS578T2 = 0.77, RMCF72 = 0.49, RSKBR32 = 0.52). SPRi responses correlate with mean antigen density. Moreover, SPRi detects lower antigen-exposure levels than FCM because SPRi measures an ensemble of EVs binding to the sensor surface, whereas FCM detects antigens of single EV. © 2017 American Association for Clinical Chemistry.

  4. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples

    Directory of Open Access Journals (Sweden)

    Larissa Belov

    2016-04-01

    Full Text Available Extracellular vesicles (EV are membranous particles (30–1,000 nm in diameter secreted by cells. Important biological functions have been attributed to 2 subsets of EV, the exosomes (bud from endosomal membranes and the microvesicles (MV; bud from plasma membranes. Since both types of particles contain surface proteins derived from their cell of origin, their detection in blood may enable diagnosis and prognosis of disease. We have used an antibody microarray (DotScan to compare the surface protein profiles of live cancer cells with those of their EV, based on their binding patterns to immobilized antibodies. Initially, EV derived from the cancer cell lines, LIM1215 (colorectal cancer and MEC1 (B-cell chronic lymphocytic leukaemia; CLL, were used for assay optimization. Biotinylated antibodies specific for EpCAM (CD326 and CD19, respectively, were used to detect captured particles by enhanced chemiluminescence. Subsequently, this approach was used to profile CD19+ EV from the plasma of CLL patients. These EV expressed a subset (~40% of the proteins detected on CLL cells from the same patients: moderate or high levels of CD5, CD19, CD31, CD44, CD55, CD62L, CD82, HLA-A,B,C, HLA-DR; low levels of CD21, CD49c, CD63. None of these proteins was detected on EV from the plasma of age- and gender-matched healthy individuals.

  5. Integrated comparative metabolite profiling via MS and NMR techniques for Senna drug quality control analysis.

    Science.gov (United States)

    Farag, Mohamed A; Porzel, Andrea; Mahrous, Engy A; El-Massry, Mo'men M; Wessjohann, Ludger A

    2015-03-01

    Senna alexandrina Mill (Cassia acutifolia and Cassia angustifolia) are used for the laxative medicine Senna. Leaves and pods from two geographically different sources were distinguished from each other via proton nuclear magnetic resonance (1H-NMR) and ultra performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. Under optimized conditions, we were able to simultaneously quantify and identify 107 metabolites including 21 anthraquinones, 24 bianthrones (including sennosides), 5 acetophenones, 25 C/O-flavonoid conjugates, 5 xanthones, 3 naphthalenes, 2 further phenolics, and 9 fatty acids. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) were used to define both similarities and differences among samples. For sample classification based on tissue type (leaf and pod), both UPLC-MS and NMR were found to be more effective in separation than on geographical origin. Results reveal that the amounts of the major classes of bioactives in Senna, i.e., flavonoids and sennosides, varied significantly among organs. Leaves contained more flavonoids and ω-3 fatty acids but fewer benzophenone derivatives than pods. In contrast, pods were more enriched in bianthrones (sennosides). PCA analysis was found to be equally effective in predicting the origin of the commercial Senna preparation using NMR and/or UPLC-MS datasets. Furthermore, a selection of six so far uninvestigated Senna species were analyzed by UPLC-MS. Results revealed that the Senna alata leaf in terms of secondary metabolite composition is the most closely related species to S. alexandrina Mill, showing the highest levels of the anthraquinone "rhein" and flavonoid conjugates. To the best of our knowledge, this study provides the first approach utilizing both UPLC-MS and NMR to reveal secondary metabolite compositional differences among Senna species.

  6. Accessing biological actions of Ganoderma secondary metabolites by in silico profiling

    Science.gov (United States)

    Grienke, Ulrike; Kaserer, Teresa; Pfluger, Florian; Mair, Christina E.; Langer, Thierry; Schuster, Daniela; Rollinger, Judith M.

    2016-01-01

    The species complex around the medicinal fungus Ganoderma lucidum Karst. (Ganodermataceae) is widely known in traditional medicines as well as in modern applications such as functional food or nutraceuticals. A considerable number of publications reflects its abundance and variety in biological actions either provoked by primary metabolites such as polysaccharides or secondary metabolites such as lanostane-type triterpenes. However, due to this remarkable amount of information, a rationalization of the individual Ganoderma constituents to biological actions on a molecular level is quite challenging. To overcome this issue, a database was generated containing meta-information, i.e. chemical structures and biological actions of hitherto identified Ganoderma constituents (279). This was followed by a computational approach subjecting this 3D multi-conformational molecular dataset to in silico parallel screening against an in-house collection of validated structure- and ligand-based 3D pharmacophore models. The predictive power of the evaluated in silico tools and hints from traditional application fields served as criteria for the model selection. Thus, we focused on representative druggable targets in the field of viral infections (5) and diseases related to the metabolic syndrome (22). The results obtained from this in silico approach were compared to bioactivity data available from the literature to distinguish between true and false positives or negatives. 89 and 197 Ganoderma compounds were predicted as ligands of at least one of the selected pharmacological targets in the antiviral and the metabolic syndrome screening, respectively. Among them only a minority of individual compounds (around 10%) has ever been investigated on these targets or for the associated biological activity. Accordingly, this study discloses putative ligand target interactions for a plethora of Ganoderma constituents in the empirically manifested field of viral diseases and metabolic

  7. Metabolite Profiling of adh1 Mutant Response to Cold Stress in Arabidopsis.

    Science.gov (United States)

    Song, Yuan; Liu, Lijun; Wei, Yunzhu; Li, Gaopeng; Yue, Xiule; An, Lizhe

    2016-01-01

    As a result of global warming, vegetation suffers from repeated freeze-thaw cycles caused by more frequent short-term low temperatures induced by hail, snow, or night frost. Therefore, short-term freezing stress of plants should be investigated particularly in light of the current climatic conditions. Alcohol dehydrogenase (ADH) plays a central role in the metabolism of alcohols and aldehydes and it is a key enzyme in anaerobic fermentation. ADH1 responds to plant growth and environmental stress; however, the function of ADH1 in the response to short-term freezing stress remains unknown. Using real-time quantitative fluorescence PCR, the expression level of ADH1 was analyzed at low temperature (4°C). The lethal temperature was calculated based on the electrolyte leakage tests for both ADH1 deletion mutants (adh1) and wild type (WT) plants. To further investigate the relationship between ADH1 and cold tolerance in plants, low-Mr polar metabolite analyses of Arabidopsis adh1 and WT were performed at cold temperatures using gas chromatography-mass spectrometry. This investigation focused on freezing treatments (cold acclimation group: -6°C for 2 h with prior 4°C for 7 d, cold shock group: -6°C for 2 h without cold acclimation) and recovery (23°C for 24 h) with respect to seedling growth at optimum temperature. The experimental results revealed a significant increase in ADH1 expression during low temperature treatment (4°C) and at a higher lethal temperature in adh1 compared to that in the WT. Retention time indices and specific mass fragments were used to monitor 263 variables and annotate 78 identified metabolites. From these analyses, differences in the degree of metabolite accumulation between adh1 and WT were detected, including soluble sugars (e.g., sucrose) and amino acids (e.g., asparagine). In addition, the correlation-based network analysis highlighted some metabolites, e.g., melibiose, fumaric acid, succinic acid, glycolic acid, and xylose, which

  8. Metabolite Profiling of adh1 Mutant Response to Cold Stress in Arabidopsis

    Science.gov (United States)

    Song, Yuan; Liu, Lijun; Wei, Yunzhu; Li, Gaopeng; Yue, Xiule; An, Lizhe

    2017-01-01

    As a result of global warming, vegetation suffers from repeated freeze-thaw cycles caused by more frequent short-term low temperatures induced by hail, snow, or night frost. Therefore, short-term freezing stress of plants should be investigated particularly in light of the current climatic conditions. Alcohol dehydrogenase (ADH) plays a central role in the metabolism of alcohols and aldehydes and it is a key enzyme in anaerobic fermentation. ADH1 responds to plant growth and environmental stress; however, the function of ADH1 in the response to short-term freezing stress remains unknown. Using real-time quantitative fluorescence PCR, the expression level of ADH1 was analyzed at low temperature (4°C). The lethal temperature was calculated based on the electrolyte leakage tests for both ADH1 deletion mutants (adh1) and wild type (WT) plants. To further investigate the relationship between ADH1 and cold tolerance in plants, low-Mr polar metabolite analyses of Arabidopsis adh1 and WT were performed at cold temperatures using gas chromatography-mass spectrometry. This investigation focused on freezing treatments (cold acclimation group: −6°C for 2 h with prior 4°C for 7 d, cold shock group: −6°C for 2 h without cold acclimation) and recovery (23°C for 24 h) with respect to seedling growth at optimum temperature. The experimental results revealed a significant increase in ADH1 expression during low temperature treatment (4°C) and at a higher lethal temperature in adh1 compared to that in the WT. Retention time indices and specific mass fragments were used to monitor 263 variables and annotate 78 identified metabolites. From these analyses, differences in the degree of metabolite accumulation between adh1 and WT were detected, including soluble sugars (e.g., sucrose) and amino acids (e.g., asparagine). In addition, the correlation-based network analysis highlighted some metabolites, e.g., melibiose, fumaric acid, succinic acid, glycolic acid, and xylose, which

  9. Metabolite profiling reveals abiotic stress tolerance in Tn5 mutant of Pseudomonas putida.

    Directory of Open Access Journals (Sweden)

    Vasvi Chaudhry

    Full Text Available Pseudomonas is an efficient plant growth-promoting rhizobacteria (PGPR; however, intolerance to drought and high temperature limit its application in agriculture as a bioinoculant. Transposon 5 (Tn5 mutagenesis was used to generate a stress tolerant mutant from a PGPR Pseudomonas putida NBRI1108 isolated from chickpea rhizosphere. A mutant NBRI1108T, selected after screening of nearly 10,000 transconjugants, exhibited significant tolerance towards high temperature and drought. Southern hybridization analysis of EcoRI and XhoI restricted genomic DNA of NBRI1108T confirmed that it had a single Tn5 insertion. The metabolic changes in the polar and non-polar extracts of NBRI1108 and NBRI1108T were examined using 1H, 31P nuclear magnetic resonance (NMR spectroscopy and gas chromatography-mass spectrometry (GC-MS. Thirty six chemically diverse metabolites consisting of amino acids, fatty acids and phospholipids were identified and quantified. Insertion of Tn5 influenced amino acid and phospholipid metabolism and resulted in significantly higher concentration of aspartic acid, glutamic acid, glycinebetaine, glycerophosphatidylcholine (GPC and putrescine in NBRI1108T as compared to that in NBRI1108. The concentration of glutamic acid, glycinebetaine and GPC increased by 34%, 95% and 100%, respectively in the NBRI1108T as compared to that in NBRI1108. High concentration of glycerophosphatidylethanolamine (GPE and undetected GPC in NBRI1108 indicates that biosynthesis of GPE may have taken place via the methylation pathway of phospholipid biosynthesis. However, high GPC and low GPE concentration in NBRI1108T suggest that methylation pathway and phosphatidylcholine synthase (PCS pathway of phospholipid biosynthesis are being followed in the NBRI1108T. Application of multivariate principal component analysis (PCA on the quantified metabolites revealed clear variations in NBRI1108 and NBRI1108T in polar and non-polar metabolites. Identification of abiotic

  10. Differentiation of Alternaria infectoria and Alternaria alternata based on morphology, metabolite profiles, and cultural characteristics

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Thrane, Ulf

    1996-01-01

    Some small-spored species belonging to the genus Alternaria Nees have been studied according to their chemical, morphological, and cultural characteristics. A data matrix was constructed based on a combination of characters. Cluster analysis of the combined data set showed good resolution of two...... groups of small-spored Alternaria the Alternaria infectoria group and the Alternaria alternata group. Isolates in the A. infectoria group produced only unique metabolites of unknown identity, whereas all isolates in the A. alternata group produced alternariol and alternariol monomethyl ether. Furthermore...

  11. Utilizing relative potency factors (RPF) and threshold of toxicological concern (TTC) concepts to assess hazard and human risk assessment profiles of environmental metabolites: a case study.

    Science.gov (United States)

    Terry, C; Rasoulpour, R J; Knowles, S; Billington, R

    2015-03-01

    There is currently no standard paradigm for hazard and human risk assessment of environmental metabolites for agrochemicals. Using an actual case study, solutions to challenges faced are described and used to propose a generic concept to address risk posed by metabolites to human safety. A novel approach - built on the foundation of predicted human exposures to metabolites in various compartments (such as food and water), the threshold of toxicological concern (TTC) and the concept of comparative toxicity - was developed for environmental metabolites of a new chemical, sulfoxaflor (X11422208). The ultimate aim was to address the human safety of the metabolites with the minimum number of in vivo studies, while at the same time, ensuring that human safety would be considered addressed on a global regulatory scale. The third component, comparative toxicity, was primarily designed to determine whether the metabolites had the same or similar toxicity profiles to their parent molecule, and also to one another. The ultimate goal was to establish whether the metabolites had the potential to cause key effects - such as cancer and developmental toxicity, based on mode-of-action (MoA) studies - and to develop a relative potency factor (RPF) compared to the parent molecule. Collectively, the work presented here describes the toxicology programme developed for sulfoxaflor and its metabolites, and how it might be used to address similar future challenges aimed at determining the relevance of the metabolites from a human hazard and risk perspective. Sulfoxaflor produced eight environmental metabolites at varying concentrations in various compartments - soil, water, crops and livestock. The MoA for the primary effects of the parent molecule were elucidated in detail and a series of in silico, in vitro, and/or in vivo experiments were conducted on the environmental metabolites to assess relative potency of their toxicity profiles when compared to the parent. The primary metabolite

  12. Quantitative metabolite profiling of edible onion species by NMR and HPLC-MS.

    Science.gov (United States)

    Soininen, Tuula H; Jukarainen, Niko; Auriola, Seppo O K; Julkunen-Tiitto, Riitta; Karjalainen, Reijo; Vepsäläinen, Jouko J

    2014-12-15

    Allium genus is a treasure trove of valuable bioactive compounds with potentially therapeutically important properties. This work utilises HPLC-MS and a constrained total-line-shape (CTLS) approach applied to (1)H NMR spectra to quantify metabolites present in onion species to reveal important inter-species differences. Extensive differences were detected between the sugar concentrations in onion species. Yellow onion contained the highest and red onion the lowest amounts of amino acids. The main flavonol-glucosides were quercetin 3,4'-diglucoside and quercetin 4'-glucoside. In general, the levels of flavonols were, higher in yellow onions than in red onions, and garlic and leek contained a lower amount of flavonols than the other Allium species. Our results highlight how (1)H NMR together with HPLC-MS can be useful in the quantification and the identification of the most abundant metabolites, representing an efficient means to pinpoint important functional food ingredients from Allium species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Grapevine Grafting: Scion Transcript Profiling and Defense-Related Metabolites Induced by Rootstocks

    Directory of Open Access Journals (Sweden)

    Walter Chitarra

    2017-04-01

    Full Text Available Rootstocks are among the main factors that influence grape development as well as fruit and wine composition. In this work, rootstock/scion interactions were studied using transcriptomic and metabolic approaches on leaves of the “Gaglioppo” variety, grafted onto 13 different rootstocks growing in the same vineyard. The whole leaf transcriptome of “Gaglioppo” grafted onto five selected rootstocks showed high variability in gene expression. In particular, significant modulation of transcripts linked to primary and secondary metabolism was observed. Interestingly, genes and metabolites involved in defense responses (e.g., stilbenes and defense genes were strongly activated particularly in the GAG-41B combination, characterized in addition by the down-regulation of abscisic acid (ABA metabolism. On the contrary, the leaves of “Gaglioppo” grafted onto 1103 Paulsen showed an opposite regulations of those transcripts and metabolites, together with the greater sensitivity to downy mildew in a preliminary in vitro assay. This study carried out an extensive transcriptomic analysis of rootstock effects on scion leaves, helping to unravel this complex interaction, and suggesting an interesting correlation among constitutive stilbenes, ABA compound, and disease susceptibility to a fungal pathogen.

  14. Genome-wide functional profiling reveals genes required for tolerance to benzene metabolites in yeast.

    Directory of Open Access Journals (Sweden)

    Matthew North

    Full Text Available Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ, catechol (CAT and 1,2,4-benzenetriol (BT, in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(PH:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease.

  15. Assessing serum metabolite profiles as predictors for feed efficiency in broiler chickens reared at geographically distant locations.

    Science.gov (United States)

    Metzler-Zebeli, B U; Magowan, E; Hollmann, M; Ball, M E E; Molnár, A; Lawlor, P G; Hawken, R J; O'Connell, N E; Zebeli, Q

    2017-12-01

    1. The objective of this study was to investigate differences in growth performance, serum intermediary metabolites, acute-phase proteins and white blood cells in low, medium and high-residual feed intake (RFI) chickens. It was also assessed if the environment affects the feed efficiency (FE) and FE-related performance and serum profiles of chickens. 2. Individual body weight (BW) and feed intake (FI) were recorded from d 7 of life. At 5 weeks of age, female and male broiler chickens (Cobb 500) were selected according to their RFI (L1: Austria; L2: UK; n = 9/RFI group, sex and locatity -45on) and blood samples were collected. 3. Chickens at L1 had similar FI but a 15% higher BW gain compared to chickens at L2. The RFI values of female chickens were -231, 8 and 215 g and those of male chickens -197, 0 and 267 g for low, medium and high RFI, respectively. 4. Location affected serum glucose, urea, cholesterol, non-esterified fatty acids (NEFA) and ovotransferrin in females, and serum glucose and triglycerides in male chickens. Serum uric acid and NEFA linearly increased from low to high RFI in females, whereas in males, cholesterol showed the same linear response from low to high RFI. Serum alpha-1-acid glycoprotein and blood heterophil-to-lymphocyte ratio linearly increased by 35% and 68%, respectively, from low to high RFI but only in male chickens at L1. 5. Regression analysis showed significant positive relationships between RFI and serum uric acid (R2 = 0.49) and cholesterol (R2 = 0.13). 6. It was concluded that RFI-related variation in serum metabolites of chickens was largely similar for the two environments and that serum metabolite patterns could be used to predict RFI in chickens.

  16. Effect of peripartum nutritional management on plasma profile of steroid hormones, metabolites, and postpartum fertility in buffaloes.

    Science.gov (United States)

    Kalasariya, R M; Dhami, A J; Hadiya, K K; Borkhatariya, D N; Patel, J A

    2017-03-01

    The aim of this study was to evaluate the influence of peripartum protein and minerals supplementation on plasma profile of steroid hormones, metabolites, and fertility in rural buffaloes. A total of 85 advanced pregnant (~8 months) pluriparous buffaloes selected at farmers' doorstep in three tribal villages of Middle Gujarat were randomly divided into two groups, viz., control (n=45) and nutrients treatment (40). The buffaloes of treatment group (n=40), in addition to farmers feeding schedule/control, received daily 1.5 kg compound concentrate mixture (22% CP) and 50 g of chelated ASMM for 2 months each pre- and post-partum. Further, 15 buffaloes, each of control and treatment group, were injected parentrally (deep i/m) with 5 ml of micro-minerals (each ml containing Se, Zn, Cu and Mn at 5, 40, 15 and 10 mg, respectively), twice 2 months before and on the day of calving, keeping rest of the animals (control, n=30 and treatment, n=25) as controls. Blood sampling was done on days -60, -30, -15, 0, 15, 30, 45, and 60 peripartum for estimation of plasma progesterone and estradiol by standard RIA techniques and other metabolites using assay kits on biochemistry analyzer. The puerperal events and postpartum fertility were monitored through history and by fortnightly palpation per rectum till day 45 and then again at 120 days postpartum for both the groups and subgroups. The mean plasma progesterone concentrations in all groups declined significantly (psteroid hormones, blood glucose, or plasma protein. The mean plasma total cholesterol was significantly lower (p0.05). The micro-minerals injection appreciably reduced the incidence of RFMs and significantly (psteroid hormones and blood metabolites though it significantly improved the postpartum reproductive performance in buffaloes under field conditions.

  17. Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles.

    Science.gov (United States)

    Förster, Yvonne; Schmidt, Johannes R; Wissenbach, Dirk K; Pfeiffer, Susanne E M; Baumann, Sven; Hofbauer, Lorenz C; von Bergen, Martin; Kalkhof, Stefan; Rammelt, Stefan

    2016-01-01

    Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis.

  18. Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles.

    Directory of Open Access Journals (Sweden)

    Yvonne Förster

    Full Text Available Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis.

  19. Urinary metabolite profiling of flavonoids in Chinese volunteers after consumption of orange juice by UFLC-Q-TOF-MS/MS.

    Science.gov (United States)

    Zeng, Xuan; Su, Weiwei; Bai, Yang; Chen, Taobin; Yan, Zenghao; Wang, Jiawei; Su, Minmin; Zheng, Yuying; Peng, Wei; Yao, Hongliang

    2017-09-01

    The metabolism of flavonoids derived from orange juice in Chinese volunteers has not been well investigated. With the ultra-fast liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS) system, orange juice-derived flavonoids, as well as metabolites contained in urine collected from healthy Chinese volunteers after consumption of 250mL orange juice, were systematically identified and quantified. Finally, a total of 9 flavonoids and 30 metabolites were detected. Obtained results revealed that flavonoids derived from orange juice underwent extensive phase II metabolism in human, mainly comprising glucuronidation and sulfation. The overall recovery of the primary flavonoid aglycones, i.e., naringenin and hesperetin, were both approximately equivalent 22% of intake, primarily occurred in 4-12h post consumption. Meanwhile, additional 35 phenolic catabolites were identified in urine collected post consumption. However, it is difficult to determine the exact amounts of phenolic catabolites derived from specific flavonoid due to the interference of diets and other flavonoids. This work would be valuable for the clarification of metabolic profiles for flavonoids in Chinese population. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Metabolite profiling of phenolic and carotenoid contents in tomatoes after moderate-intensity pulsed electric field treatments.

    Science.gov (United States)

    Vallverdú-Queralt, Anna; Oms-Oliu, Gemma; Odriozola-Serrano, Isabel; Lamuela-Raventós, Rosa M; Martín-Belloso, Olga; Elez-Martínez, Pedro

    2013-01-01

    A metabolite profiling approach was used to study the effect of moderate-intensity pulsed electric field (MIPEF) treatments on the individual polyphenol and carotenoid contents of tomato fruit after refrigeration at 4°C for 24h. The MIPEF processing variables studied were electric field strength (from 0.4 to 2.0kV/cm) and number of pulses (from 5 to 30). Twenty four hours after MIPEF treatments, an increase was observed in hydroxycinnamic acids and flavanones, whereas flavonols, coumaric and ferulic acid-O-glucoside were not affected. Major changes were also observed for carotenoids, except for the 5-cis-lycopene isomer, which remain unchanged after 24h of MIPEF treatments. MIPEF treatments, conducted at 1.2kV/cm and 30 pulses, led to the greatest increases in chlorogenic (152%), caffeic acid-O-glucoside (170%) and caffeic (140%) acids. On the other hand, treatments at 1.2kV/cm and 5 pulses led to maximum increases of α-carotene, 9- and 13-cis-lycopene, which increased by 93%, 94% and 140%, respectively. Therefore, MIPEF could stimulate synthesis of secondary metabolites and contribute to production of tomatoes with high individual polyphenol and carotenoid contents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. [The evaluation of hormone and metabolite profiles after the infusion of glucose, propionate and butyrate in cattle].

    Science.gov (United States)

    Fuhrmann, H; Eulitz-Meder, C; Geldermann, H; Sallmann, H P

    1989-06-01

    Lactational performance in high-yielding dairy cows has its limits in metabolic processes. Energy metabolism is maintained by mobilization of body reserves via hormonal regulation, resulting in lipolysis and sometimes ketoacidosis. For characterization of such conditions the intraruminal and intravascular application of glucose and volatile fatty acids was used in ruminant physiology. On the other hand the results of such experiments were correlated to actual and potential milk yield. For this investigation pairs of monozygous Holstein Friesian twins were tested as heifers and as cows by intravenous infusion of glucose, propionate and butyrate after 18 hours of feed withdrawal. Insulin, growth hormone, glucose, free fatty acids and beta-hydroxybutyrate were measured before, during and up to 4 hours after infusion of substrates. Each substrate caused a transient change in plasma concentrations of metabolites and hormones. Differences between heifers and cows are discussed with the time series of the mean concentrations. The reaction profile of each animal was characterized by different parameters. Analysis of these parameters revealed a close relation between hormones and metabolites even under the conditions of the load-test.

  2. Secondary Metabolite Profiles and Mating Populations of Fusarium species in Section Liseola Associated with Bakanae Disease of Rice

    Directory of Open Access Journals (Sweden)

    Nur Ain Izzati, M. Z.

    2008-01-01

    Full Text Available A total of 25 strains of Fusarium species that belong to F. fujikuroi (a pathogen of bakanae disease, F. proliferatum, F. sacchari, F. subglutinans and F. verticillioides were isolated from rice plants showing typical bakanae symptoms in Malaysia and Indonesia and screened for their secondary metabolites. The objectives of the studies were to determine the physiological variability based on production of moniliformin (MON, fumonisin (FB1, gibberellic acid (GA3 and fusaric acid (FA as well as to ascertain the mating populations (MPs within the Gibberella fujikuroi species complex based on their ability to produce perithecia and viable ascospores. Production of GA3 could be used to separate F. fujikuroi that belongs to MP-C from other species. In crosses with seven standard testers of MPs, 76% of strains could be assigned to at least one of the G. fujikuroi species complex namely MP-A (G. moniliformis, MP-B (G. sacchari, MP-C (G. fujikuroi and MP-D (G. intermedia. Single strain (M3237P that was assigned as MP-C, and has also been identified morphologically as F. fujikuroi was also crossed-fertile with MP-D tester. The secondary metabolites profiles and the presence of MP-A, MP-B, MP-C and MP-D strains on samples of bakanae-infected rice plants are new records in Malaysia.

  3. Profiling of Extracellular Toxins Associated with Diarrhetic Shellfish Poison in Prorocentrum lima Culture Medium by High-Performance Liquid Chromatography Coupled with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Lei Pan

    2017-09-01

    Full Text Available Extracellular toxins released by marine toxigenic algae into the marine environment have attracted increasing attention in recent years. In this study, profiling, characterization and quantification of extracellular toxin compounds associated with diarrhetic shellfish poison (DSP in the culture medium of toxin-producing dinoflagellates were performed using high-performance liquid chromatography–high-resolution mass spectrometry/tandem mass spectrometry for the first time. Results showed that solid-phase extraction can effectively enrich and clean the DSP compounds in the culture medium of Prorocentrum lima (P. lima, and the proposed method achieved satisfactory recoveries (94.80%–100.58% and repeatability (relative standard deviation ≤9.27%. Commercial software associated with the accurate mass information of known DSP toxins and their derivatives was used to screen and identify DSP compounds. Nine extracellular DSP compounds were identified, of which seven toxins (including OA-D7b, OA-D9b, OA-D10a/b, and so on were found in the culture medium of P. lima for the first time. The results of quantitative analysis showed that the contents of extracellular DSP compounds in P. lima culture medium were relatively high, and the types and contents of intracellular and extracellular toxins apparently varied in the different growth stages of P. lima. The concentrations of extracellular okadaic acid and dinophysistoxin-1 were within 19.9–34.0 and 15.2–27.9 μg/L, respectively. The total concentration of the DSP compounds was within the range of 57.70–79.63 μg/L. The results showed that the proposed method is an effective tool for profiling the extracellular DSP compounds in the culture medium of marine toxigenic algae.

  4. Profiling of Extracellular Toxins Associated with Diarrhetic Shellfish Poison in Prorocentrum lima Culture Medium by High-Performance Liquid Chromatography Coupled with Mass Spectrometry.

    Science.gov (United States)

    Pan, Lei; Chen, Junhui; Shen, Huihui; He, Xiuping; Li, Guangjiu; Song, Xincheng; Zhou, Deshan; Sun, Chengjun

    2017-09-30

    Extracellular toxins released by marine toxigenic algae into the marine environment have attracted increasing attention in recent years. In this study, profiling, characterization and quantification of extracellular toxin compounds associated with diarrhetic shellfish poison (DSP) in the culture medium of toxin-producing dinoflagellates were performed using high-performance liquid chromatography-high-resolution mass spectrometry/tandem mass spectrometry for the first time. Results showed that solid-phase extraction can effectively enrich and clean the DSP compounds in the culture medium of Prorocentrum lima (P. lima), and the proposed method achieved satisfactory recoveries (94.80%-100.58%) and repeatability (relative standard deviation ≤9.27%). Commercial software associated with the accurate mass information of known DSP toxins and their derivatives was used to screen and identify DSP compounds. Nine extracellular DSP compounds were identified, of which seven toxins (including OA-D7b, OA-D9b, OA-D10a/b, and so on) were found in the culture medium of P. lima for the first time. The results of quantitative analysis showed that the contents of extracellular DSP compounds in P. lima culture medium were relatively high, and the types and contents of intracellular and extracellular toxins apparently varied in the different growth stages of P. lima. The concentrations of extracellular okadaic acid and dinophysistoxin-1 were within 19.9-34.0 and 15.2-27.9 μg/L, respectively. The total concentration of the DSP compounds was within the range of 57.70-79.63 μg/L. The results showed that the proposed method is an effective tool for profiling the extracellular DSP compounds in the culture medium of marine toxigenic algae.

  5. Physiological performance, secondary metabolite and expression profiling of genes associated with drought tolerance in Withania somnifera.

    Science.gov (United States)

    Sanchita; Singh, Ruchi; Mishra, Anand; Dhawan, Sunita S; Shirke, Pramod A; Gupta, Madan M; Sharma, Ashok

    2015-11-01

    Physiological, biochemical, and gene expression responses under drought stress were studied in Withania somnifera. Photosynthesis rate, stomatal conductance, transpiration rate, relative water content, chlorophyll content, and quantum yield of photosystems I and II (PSI and PSII) decreased in response to drought stress. Comparative expression of genes involved in osmoregulation, detoxification, signal transduction, metabolism, and transcription factor was analyzed through quantitative RT-PCR. The genes encoding 1-pyrroline-5-carboxylate synthetase (P5CS), glutathione S-transferase (GST), superoxide dismutase (SOD), serine threonine-protein kinase (STK), serine threonine protein phosphatase (PSP), aldehyde dehydrogenase (AD), leucoanthocyanidin dioxygenase/anthocyanin synthase (LD/AS), HSP, MYB, and WRKY have shown upregulation in response to drought stress condition in leaf tissues. Enhanced detoxification and osmoregulation along with increased withanolides production were also observed under drought stress. The results of this study will be helpful in developing stress-tolerant and high secondary metabolite yielding genotypes.

  6. Excretion mass balance evaluation, metabolite profile analysis and metabolite identification in plasma and excreta after oral administration of [14C]-meloxicam to the male cat: preliminary study.

    Science.gov (United States)

    Grudé, P; Guittard, J; Garcia, C; Daoulas, I; Thoulon, F; Ebner, T

    2010-08-01

    The objective of this study was to investigate the metabolic pathways and routes of excretion of oral meloxicam in the cat. [(14)C]-meloxicam was administered orally to three fasted male cats. Urine, faeces, vomit and cage washes were collected over the following 144 h period. Blood was collected predosing and at 3 and 12 h postdosing. Metabolites were identified by HPLC/MS/MS. When possible a metabolic structure was proposed for each metabolite detected. Only unchanged meloxicam was identified in plasma. Five major metabolites were detected in urine and four in faeces, which were identified by HPLC/MS/MS as products of oxidative metabolism. No conjugated metabolites were detected. Elimination occurred early (61% during the first 48 h). A total of 21% of the recovered dose was eliminated in urine (2% as unchanged meloxicam, 19% as metabolites) and 79% in the faeces (49% as unchanged meloxicam, 30% as metabolites). The results indicate that after oral administration the major route of excretion of meloxicam in the cat is faecal and that the main pathway of biotransformation of meloxicam in the cat is oxidation.

  7. Metabolite profiles of Stachybotrys isolates from water-damaged buildings and their induction of inflammatory mediators and cytotoxicity in macrophages

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Huttunen, K.; Hyvarinen, A.

    2002-01-01

    cells were studied. The 11 isolates belonging to the satratoxin-producing chemotype were highly cytotoxic to the macrophages. The isolates inducing inflammatory mediators all belonged to the atranone-producing chemotype, but pure atranones B, and D did not elicit a response in the bioassay. Altogether......The metabolite profiles of 20 Stachybotrys spp. isolates from Finnish water-damaged buildings were compared with their biological activities. Effects of purified compounds on cytotoxicity and production of inflammatory mediators such as nitric oxide, IL-6 and TNFalpha in murine RAW264.7 macrophage......, cytotoxicity of Stachybotrys sp. isolates appear to be related to satratoxin production whereas the specific component inducing inflammatory responses in atranone-producing isolates remains obscure....

  8. Target metabolite and gene transcription profiling during the development of superficial scald in apple (Malus x domestica Borkh)

    Science.gov (United States)

    2014-01-01

    Background Fruit quality features resulting from ripening processes need to be preserved throughout storage for economical reasons. However, during this period several physiological disorders can occur, of which superficial scald is one of the most important, due to the development of large brown areas on the fruit skin surface. Results This study examined the variation in polyphenolic content with the progress of superficial scald in apple, also with respect to 1-MCP, an ethylene competitor interacting with the hormone receptors and known to interfere with this etiology. The change in the accumulation of these metabolites was further correlated with the gene set involved in this pathway, together with two specific VOCs (Volatile Organic Compounds), α-farnesene and its oxidative form, 6-methyl-5-hepten-2-one. Metabolite profiling and qRT-PCR assay showed these volatiles are more heavily involved in the signalling system, while the browning coloration would seem to be due more to a specific accumulation of chlorogenic acid (as a consequence of the activation of MdPAL and MdC3H), and its further oxidation carried out by a polyphenol oxidase gene (MdPPO). In this physiological scenario, new evidence regarding the involvement of an anti-apoptotic regulatory mechanism for the compartmentation of this phenomenon in the skin alone was also hypothesized, as suggested by the expression profile of the MdDAD1, MdDND1 and MdLSD1 genes. Conclusions The results presented in this work represent a step forward in understanding the physiological mechanisms of superficial scald in apple, shedding light on the regulation of the specific physiological cascade. PMID:25038781

  9. Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system.

    Science.gov (United States)

    Dennis, Paul G; Harnisch, Falk; Yeoh, Yun Kit; Tyson, Gene W; Rabaey, Korneel

    2013-07-01

    Electrical current can be used to supply reducing power to microbial metabolism. This phenomenon is typically studied in pure cultures with added redox mediators to transfer charge. Here, we investigate the development of a current-fed mixed microbial community fermenting glycerol at the cathode of a bioelectrochemical system in the absence of added mediators and identify correlations between microbial diversity and the respective product outcomes. Within 1 week of inoculation, a Citrobacter population represented 95 to 99% of the community and the metabolite profiles were dominated by 1,3-propanediol and ethanol. Over time, the Citrobacter population decreased in abundance while that of a Pectinatus population and the formation of propionate increased. After 6 weeks, several Clostridium populations and the production of valerate increased, which suggests that chain elongation was being performed. Current supply was stopped after 9 weeks and was associated with a decrease in glycerol degradation and alcohol formation. This decrease was reversed by resuming current supply; however, when hydrogen gas was bubbled through the reactor during open-circuit operation (open-circuit potential) as an alternative source of reducing power, glycerol degradation and metabolite production were unaffected. Cyclic voltammetry revealed that the community appeared to catalyze the hydrogen evolution reaction, leading to a +400-mV shift in its onset potential. Our results clearly demonstrate that current supply can alter fermentation profiles; however, further work is needed to determine the mechanisms behind this effect. In addition, operational conditions must be refined to gain greater control over community composition and metabolic outcomes.

  10. Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles.

    Science.gov (United States)

    Mota, Rita; Pereira, Sara B; Meazzini, Marianna; Fernandes, Rui; Santos, Arlete; Evans, Caroline A; De Philippis, Roberto; Wright, Phillip C; Tamagnini, Paula

    2015-04-29

    The effects of several heavy metals on the growth/survival, EPS production, ultrastructure and protein profiles of the highly efficient extracellular polymeric substances (EPS)-producer cyanobacterium Cyanothece sp. CCY 0110 were evaluated. Our results clearly show that each heavy metal affects the cells in a particular manner, triggering distinctive responses. Concerning chronic exposure, cells were more affected by Cu(2+) followed by Pb(2+), Cd(2+), and Li(+). The presence of metal leads to remarkable ultrastructural changes, mainly at the thylakoid level. The comparison of the proteomes (iTRAQ) allowed to follow the stress responses and to distinguish specific effects related to the time of exposure and/or the concentration of an essential (Cu(2+)) and a non-essential (Cd(2+)) metal. The majority of the proteins identified and with fold changes were associated with photosynthesis, CO2 fixation and carbohydrate metabolism, translation, and nitrogen and amino acid metabolism. Moreover, our results indicate that during chronic exposure to sub-lethal concentrations of Cu(2+), the cells tune down their metabolic rate to invest energy in the activation of detoxification mechanisms, which eventually result in a remarkable recovery. In contrast, the toxic effects of Cd(2+) are cumulative. Unexpectedly, the amount of released polysaccharides (RPS) was not enhanced by the presence of heavy metals. This work shows the holistic effects of different heavy metals on the cells of the highly efficient EPS-producer the cyanobacterium Cyanothece sp. CCY 0110. The growth/survival, EPS production, ultrastructure, protein profiles and stress response were evaluated. The knowledge generated by this study will contribute to the implementation of heavy-metal removal systems based on cyanobacteria EPS or their isolated polymers. Copyright © 2015. Published by Elsevier B.V.

  11. Metabolite profiling of polyphenols in Vaccinium berries and determination of their chemopreventive properties.

    Science.gov (United States)

    Prencipe, Francesco Pio; Bruni, Renato; Guerrini, Alessandra; Rossi, Damiano; Benvenuti, Stefania; Pellati, Federica

    2014-02-01

    A detailed investigation on the chemical composition and chemopreventive activity of Vaccinium floribundum Kunth berries was carried out in comparison with Vaccinium myrtillus L. Berry polyphenols were extracted by using two sequential dynamic maceration steps, which enabled to maximize the yields of secondary metabolites. In particular, phenolic acids and flavonols were extracted from berries using ethyl acetate (EtOAc), whereas anthocyanins were extracted from the residue with 0.6M HCl in methanol (MeOH). The analysis of secondary metabolites in berry extracts was performed by means of two specific HPLC methods. Phenolic acids and flavonols were analyzed on an Ascentis C18 column (250mm×4.6mm I.D., 5μm), with a gradient mobile phase composed of 0.1M HCOOH in H2O and ACN. Anthocyanin analysis was carried out on a Zorbax SB-C18 column (150mm×4.6mm I.D., 5μm), with a gradient mobile phase composed of H2O-HCOOH (9:1, v/v) and MeOH-H2O-HCOOH (5:4:1, v/v/v). Detection was performed by UV/DAD, MS and MS(2). The polyphenol composition of V. floribundum and V. myrtillus was studied in detail. The samples of V. floribundum analyzed in this study had a much higher content of both phenolic acids and flavonols in comparison with V. myrtillus (mean value 41.6±10.2 and 13.7±0.2mg/100g FW, respectively), while V. myrtillus showed a higher amount of anthocyanins if compared with V. floribundum (568.8±8.8 and mean value 376.2±49.9mg/100gFW, respectively). The extracts gave negative results in antimutagenic assays against carcinogens 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 4-nitroquinoline-1-oxide (4-NQO), while they performed similarly in both ABTS(+) and DPPH antioxidant assays. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. 1H NMR-based metabolite profiling of diet-induced obesity in a mouse mode

    Directory of Open Access Journals (Sweden)

    Jee-youn Jung1,2,#, Il Yong Kim3,#, Yo Na Kim3,#, Jin-sup Kim1,5, Jae Hoon Shin3, Zi-hey Jang1,5, Ho-Sub Lee2, Geum-Sook Hwang1,5,* & Je Kyung Seong3,4,*

    2012-07-01

    Full Text Available High-fat diets (HFD and high-carbohydrate diets (HCD-induced obesity through different pathways, but the metabolicdifferences between these diets are not fully understood.Therefore, we applied proton nuclear magnetic resonance (1HNMR-based metabolomics to compare the metabolic patternsbetween C57BL/6 mice fed HCD and those fed HFD. Principalcomponent analysis derived from 1H NMR spectra of urineshowed a clear separation between the HCD and HFD groups.Based on the changes in urinary metabolites, the slow rate ofweight gain in mice fed the HCD related to activation of thetricarboxylic acid cycle (resulting in increased levels of citrateand succinate in HCD mice, while the HFD affected nicotinamidemetabolism (increased levels of 1-methylnicotineamide,nicotinamide-N-oxide in HFD mice, which leads to systemicoxidative stress. In addition, perturbation of gut microflorametabolism was also related to different metabolic patterns ofthose two diets. These findings demonstrate that 1H NMRbasedmetabolomics can identify diet-dependent perturbationsin biological pathways.

  13. UPLC-ESI-TOF MS-Based Metabolite Profiling of the Antioxidative Food Supplement Garcinia buchananii.

    Science.gov (United States)

    Stark, Timo D; Lösch, Sofie; Wakamatsu, Junichiro; Balemba, Onesmo B; Frank, Oliver; Hofmann, Thomas

    2015-08-19

    Comparative antioxidative analyses of aqueous ethanolic extracts from leaf, root, and stem of Garcinia buchananii revealed high activity of all three organs. To investigate the metabolite composition of the different parts of G. buchananii, an untargeted metabolomics approach using UPLC-ESI-TOF MS with simultaneous acquisition of low- and high-collision energy mass spectra (MS(e)) was performed. Unsupervised statistics (PCA) highlighted clear differences in the metabolomes of the three organs. OPLS-DA revealed (2R,3S,2″R,3″R)-GB-1, (2R,3S)-morelloflavone, and (2R,3S)-volkensiflavone as the most decisive marker compounds discriminating leaf from root and stem extract. Leaves represent the best source to isolate GB-1, morelloflavone, and volkensiflavone. Root extract is the best organ to isolate xanthones and stem bark extract the best source to isolate (2R,3S,2″R,3″R)-manniflavanone; the identified polyisoprenylated benzophenones are characteristic compounds for the leaf organ. Morelloflavone, volkensiflavone, and garcicowin C were isolated for the first time from G. buchananii, identified via MS, NMR, and CD spectroscopy, and showed in H2O2 scavenging, H/L-TEAC, and H/L-ORAC assays moderate to strong in vitro antioxidative activities.

  14. Comparison of GC-MS and NMR for metabolite profiling of rice subjected to submergence stress.

    Science.gov (United States)

    Barding, Gregory A; Béni, Szabolcs; Fukao, Takeshi; Bailey-Serres, Julia; Larive, Cynthia K

    2013-02-01

    Natural disasters such as drought, extreme temperatures, and flooding can severely impact crop production. Understanding the metabolic response of crops threatened with these disasters provides insights into biological response mechanisms that can influence survival. In this study, a comparative analysis of GC-MS and (1)H NMR results was conducted for wild-type and tolerant rice varieties stressed by up to 3 days of submergence and allowed 1 day of postsubmergence recovery. Most metabolomics studies are conducted using a single analytical platform. Each platform, however, has inherent advantages and disadvantages that can influence the analytical coverage of the metabolome. In this work, a more thorough analysis of the plant stress response was possible through the use of both (1)H NMR and GC-MS. Several metabolites, such as S-methyl methionine and the dipeptide alanylglycine, were only detected and quantified by (1)H NMR. The high dynamic range of NMR, as compared with that of the GC-TOF-MS used in this study, provided broad coverage of the metabolome in a single experiment. The sensitivity of GC-MS facilitated the quantitation of sugars, organic acids, and amino acids, some of which were not detected by NMR, and provided additional insights into the regulation of the TCA cycle. The combined metabolic information provided by (1)H NMR and GC-MS was essential for understanding the complex biochemical and molecular response of rice plants to submergence.

  15. Metabolite profiling of the fermentation process of "yamahai-ginjo-shikomi" Japanese sake.

    Science.gov (United States)

    Tatsukami, Yohei; Morisaka, Hironobu; Aburaya, Shunsuke; Aoki, Wataru; Kohsaka, Chihiro; Tani, Masafumi; Hirooka, Kiyoo; Yamamoto, Yoshihiro; Kitaoka, Atsushi; Fujiwara, Hisashi; Wakai, Yoshinori; Ueda, Mitsuyoshi

    2018-01-01

    Sake is a traditional Japanese alcoholic beverage prepared by multiple parallel fermentation of rice. The fermentation process of "yamahai-ginjo-shikomi" sake is mainly performed by three microbes, Aspergillus oryzae, Saccharomyces cerevisiae, and Lactobacilli; the levels of various metabolites fluctuate during the fermentation of sake. For evaluation of the fermentation process, we monitored the concentration of moderate-sized molecules (m/z: 200-1000) dynamically changed during the fermentation process of "yamahai-ginjo-shikomi" Japanese sake. This analysis revealed that six compounds were the main factors with characteristic differences in the fermentation process. Among the six compounds, four were leucine- or isoleucine-containing peptides and the remaining two were predicted to be small molecules. Quantification of these compounds revealed that their quantities changed during the month of fermentation process. Our metabolomic approach revealed the dynamic changes observed in moderate-sized molecules during the fermentation process of sake, and the factors found in this analysis will be candidate molecules that indicate the progress of "yamahai-ginjo-shikomi" sake fermentation.

  16. Secondary Metabolite Profile, Antioxidant Capacity, and Mosquito Repellent Activity of Bixa orellana from Brazilian Amazon Region

    OpenAIRE

    Annamaria Giorgi; Pietro De Marinis; Giuseppe Granelli; Luca Maria Chiesa; Sara Panseri

    2013-01-01

    The Brazilian flora was widely used as source of food and natural remedies to treat various diseases. Bixa orellana L. (Bixaceae), also known as annatto, urucù, or achiote, is a symbol for the Amazonian tribes that traditionally use its seeds as coloured ink to paint their bodies for religious ceremonies. The aim of this study was to investigate the volatile organic compounds (VOCs) profile of B. orellana fresh fruits (in vivo sampled), dried seeds, wood, bark, and leaves analyzed with Headsp...

  17. Correlation-based network analysis of metabolite and enzyme profiles reveals a role of citrate biosynthesis in modulating N and C metabolism in zea mays

    Science.gov (United States)

    To investigate the natural variability of leaf metabolism and enzymatic activity in a maize inbred population, statistical and network analyses were employed on metabolite and enzyme profiles. The test of coefficient of variation showed that sugars and amino acids displayed opposite trends in their ...

  18. Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: Towards metabolomics diagnostics

    NARCIS (Netherlands)

    Szymańska, E.; Bouwman, J.; Strassburg, K.; Vervoort, J.; Kangas, A.J.; Soininen, P.; Ala-Korpela, M.; Westerhuis, J.; Duynhoven, J.P.M. van; Mela, D.J.; MacDonald, I.A.; Vreeken, R.J.; Smilde, A.K.; Jacobs, D.M.

    2012-01-01

    Obesity is a risk factor for cardiovascular diseases and type 2 diabetes especially when the fat is accumulated to central depots. Novel biomarkers are crucial to develop diagnostics for obesity and related metabolic disorders. We evaluated the associations between metabolite profiles (136 lipid

  19. Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: Towards metabolomics diagnostics

    NARCIS (Netherlands)

    Szymanska, E.; Bouwman, J.; Strassburg, K.; Vervoort, J.J.M.; Kangas, A.J.; Soininen, P.; Ala-Korpela, M.; Westerhuis, J.A.; Duynhoven, van J.P.M.; Mela, D.J.; Macdonald, I.A.; Vreeken, R.J.; Smilde, A.K.; Jacobs, D.M.

    2012-01-01

    Abstract Obesity is a risk factor for cardiovascular diseases and type 2 diabetes especially when the fat is accumulated to central depots. Novel biomarkers are crucial to develop diagnostics for obesity and related metabolic disorders. We evaluated the associations between metabolite profiles (136

  20. Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: towards metabolomics diagnostics

    NARCIS (Netherlands)

    Szymańska, E.; Bouwman, J.; Strassburg, K.; Vervoort, J.; Kangas, A.J.; Soininen, P.; Ala-Korpela, M.; Westerhuis, J.; van Duynhoven, J.P.M.; Mela, D.J.; Macdonald, I.A.; Vreeken, R.J.; Smilde, A.K.; Jacobs, D.M.

    2012-01-01

    Obesity is a risk factor for cardiovascular diseases and type 2 diabetes especially when the fat is accumulated to central depots. Novel biomarkers are crucial to develop diagnostics for obesity and related metabolic disorders. We evaluated the associations between metabolite profiles (136 lipid

  1. Urinary profile of catecholamines and metabolites in Parkinson patients with deep brain stimulation.

    Science.gov (United States)

    Guimarães, J; Vieira-Coelho, M A; Moura, E; Afonso, J; Rosas, M J; Vaz, R; Garrett, C

    2014-02-01

    Deep brain stimulation of the subthalamic nucleus (DBS-STN) is thought to continuously alter the activity of STN neurons in Parkinson's disease (PD). A chronic decrease in the levodopa dose with continuous STN stimulation may induce plastic neuronal changes. The objective of this work was to study urinary excretion of catecholamines in patients with PD before and after DBS-STN. Twenty-three patients were submitted to DBS-STN, and evaluated before and after surgery with respect to catecholamines and metabolites in 24-h urine measured by high-performance liquid chromatography with electrochemical detection. Of the 23 patients evaluated, a significant decrease of about 60% in the urinary excretion of L-3,4-dihydroxyphenylalanine (L-DOPA; in nmol/mg creatinine/24 h) was observed 1 week after DBS-STN. Moreover, in 17 patients with a follow-up of 8 weeks after surgery, there was a further 50% decrease in urinary L-DOPA levels, dropping to about 75% of the values before surgery. There was also a significant decrease in dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels 1 week after DBS-STN that was no longer present 8 weeks after. A significant increase in the DA/l-DOPA ratio was observed 1 week after surgery, with a further increase 8 weeks after surgery. After DBS-STN, the DA/l-DOPA ratio, an indirect measure of DA synthesis, increased. These results show that DBS-STN may improve the efficacy of oral levodopa. © 2013 The Author(s) European Journal of Neurology © 2013 EFNS.

  2. Impacts of 17α-ethynylestradiol exposure on metabolite profiles of zebrafish (Danio rerio) liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Quincy, E-mail: teng.quincy@epa.gov [National Exposure Research Laboratory, U.S. Environmental Protection Agency, 960 College Station Road, Athens, GA 30605 (United States); Ekman, Drew R., E-mail: ekman.drew@epa.gov [National Exposure Research Laboratory, U.S. Environmental Protection Agency, 960 College Station Road, Athens, GA 30605 (United States); Huang, Wenlin, E-mail: whuang2@ccny.cuny.edu [National Exposure Research Laboratory, U.S. Environmental Protection Agency, 960 College Station Road, Athens, GA 30605 (United States); Collette, Timothy W., E-mail: collette.tim@epa.gov [National Exposure Research Laboratory, U.S. Environmental Protection Agency, 960 College Station Road, Athens, GA 30605 (United States)

    2013-04-15

    Highlights: ► We apply NMR-based metabolomics to study responses of ZFL cells exposed to EE2. ► The metabolomics approach has capability to capture cellular response to exposure. ► The analysis provides detailed molecular information on chemical's mode of action. ► Cellular metabolomics may have application for screening chemical exposure/toxicity. -- Abstract: Endocrine disrupting chemicals (EDCs) that are frequently detected in bodies of water downstream from sewage treatment facilities can have adverse impacts on fish and other aquatic organisms. To properly assess risk(s) from EDCs, tools are needed that can establish linkages from chemical exposures to adverse outcomes. Traditional methods of testing chemical exposure and toxicity using experimental animals are excessively resource- and time-consuming. In line with EPA's goal of reducing animal use in testing, these traditional screening methods may not be sustainable in the long term, given the ever increasing number of chemicals that must be tested for safety. One of the most promising ways to reduce costs and increase throughput is to use cell cultures instead of experimental animals. In accordance with National Research Council's vision on 21st century toxicity testing, we have developed a cell culture-based metabolomics approach for this application. Using a zebrafish (Danio rerio) liver cell line (ZFL), we have applied NMR-based metabolomics to investigate responses of ZFL cells exposed to 17α-ethynylestradiol (EE2). This analysis showed that metabolite changes induced by EE2 exposure agree well with known impacts of estrogens on live fish. The results of this study demonstrate the potential of cell-based metabolomics to assess chemical exposure and toxicity for regulatory application.

  3. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis.

    Science.gov (United States)

    Hillyer, Katie E; Tumanov, Sergey; Villas-Bôas, Silas; Davy, Simon K

    2016-02-01

    Bleaching (dinoflagellate symbiont loss) is one of the greatest threats facing coral reefs. The functional cnidarian-dinoflagellate symbiosis, which forms coral reefs, is based on the bi-directional exchange of nutrients. During thermal stress this exchange breaks down; however, major gaps remain in our understanding of the roles of free metabolite pools in symbiosis and homeostasis. In this study we applied gas chromatography-mass spectrometry (GC-MS) to explore thermally induced changes in intracellular pools of amino and non-amino organic acids in each partner of the model sea anemone Aiptasia sp. and its dinoflagellate symbiont. Elevated temperatures (32 °C for 6 days) resulted in symbiont photoinhibition and bleaching. Thermal stress induced distinct changes in the metabolite profiles of both partners, associated with alterations to central metabolism, oxidative state, cell structure, biosynthesis and signalling. Principally, we detected elevated pools of polyunsaturated fatty acids (PUFAs) in the symbiont, indicative of modifications to lipogenesis/lysis, membrane structure and nitrogen assimilation. In contrast, reductions of multiple PUFAs were detected in host pools, indicative of increased metabolism, peroxidation and/or reduced translocation of these groups. Accumulations of glycolysis intermediates were also observed in both partners, associated with photoinhibition and downstream reductions in carbohydrate metabolism. Correspondingly, we detected accumulations of amino acids and intermediate groups in both partners, with roles in gluconeogenesis and acclimation responses to oxidative stress. These data further our understanding of cellular responses to thermal stress in the symbiosis and generate hypotheses relating to the secondary roles of a number of compounds in homeostasis and heat-stress resistance. © 2016. Published by The Company of Biologists Ltd.

  4. Pharmacokinetic profiles of the two major active metabolites of metamizole (dipyrone) in cats following three different routes of administration.

    Science.gov (United States)

    Lebkowska-Wieruszewska, B; Kim, T W; Chea, B; Owen, H; Poapolathep, A; Giorgi, M

    2017-11-21

    This study was performed to determine pharmacokinetic profiles of the two active metabolites of the analgesic drug metamizole (dipyrone, MET), 4-methylaminoantipyrine (MAA), and 4-aminoantipyrine (AA), after intravenous (i.v., intramuscular (i.m.), and oral (p.o.) administration in cats. Six healthy mixed-breed cats were administered MET (25 mg/kg) by i.v., i.m., or p.o. routes in a crossover design. Adverse clinical signs, namely salivation and vomiting, were detected in all groups (i.v. 67%, i.m. 34%, and p.o. 15%). The mean maximal plasma concentration of MAA for i.v., i.m., and p.o. administrations was 148.63 ± 106.64, 18.74 ± 4.97, and 20.59 ± 15.29 μg/ml, respectively, with about 7 hr of half-life in all routes. Among the administration routes, the area under the plasma concentration curve (AUC) value was the lowest after i.m. administration and the AUCEV/i.v . ratio was higher in p.o. than the i.m. administration without statistical significance. The plasma concentration of AA was detectable up to 24 hr, and the mean plasma concentrations were smaller than MAA. The present results suggest that MET is converted into the active metabolites in cats as in humans. Further pharmacodynamics and safety studies should be performed before any clinical use. © 2017 John Wiley & Sons Ltd.

  5. Volatiles and primary metabolites profiling in two Hibiscus sabdariffa (roselle) cultivars via headspace SPME-GC-MS and chemometrics.

    Science.gov (United States)

    Farag, Mohamed A; Rasheed, Dalia M; Kamal, Islam M

    2015-12-01

    Hibiscus sabdariffa (roselle) is a plant of considerable commercial importance worldwide as functional food due to its organic acids, mucilage, anthocyanins, macro and micro-nutrients content. Although Hibiscus flowers are emerging as very competitive targets for phytochemical studies, very little is known about their volatile composition and or aroma, such knowledge can be suspected to be relevant for understanding its olfactory and taste properties. To provide insight into Hibiscus flower aroma composition and for its future use in food and or pharmaceutical industry, volatile constituents from 2 cultivars grown in Egypt, viz. Aswan and Sudan-1 were profiled using solid-phase microextraction (SPME) coupled to GCMS. A total of 104 volatiles were identified with sugar and fatty acid derived volatiles amounting for the major volatile classes. To reveal for cultivar effect on volatile composition in an untargeted manner, multivariate data analysis was applied. Orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed for 1-octen-3-ol versus furfural/acetic acid enrichment in Aswan and Sudan-1 cvs., respectively. Primary metabolites contributing to roselle taste and nutritional value viz. sugars and organic acids were profiled using GC-MS after silylation. The impact of probiotic bacteria on roselle infusion aroma profile was further assessed and revealed for the increase in furfural production with Lactobacillus plantarum inoculation and without affecting its anthocyanin content. This study provides the most complete map for volatiles, sugars and organic acids distribution in two Hibiscus flower cultivars and its fermented product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The effects of milk as a food matrix for polyphenols on the excretion profile of cocoa (-)-epicatechin metabolites in healthy human subjects.

    Science.gov (United States)

    Roura, Elena; Andrés-Lacueva, Cristina; Estruch, Ramon; Lourdes Mata Bilbao, M; Izquierdo-Pulido, Maria; Lamuela-Raventós, Rosa M

    2008-10-01

    The effect of different food matrices on the metabolism and excretion of polyphenols is uncertain. The objective of the study was to evaluate the possible effect of milk on the excretion of (2)-epicatechin metabolites from cocoa powder after its ingestion with and without milk. Twenty-one volunteers received the following three test meals each in a randomised cross-over design with a 1-week interval between meals: (1) 250 ml whole milk as a control; (2) 40 g cocoa powder dissolved in 250 ml whole milk (CC-M); (3) 40 g cocoa powder dissolved in 250 ml water (CC-W). Urine was collected before consumption and during the 0-6, 6-12 and 12-24 h periods after consumption. (2)-Epicatechin metabolite excretion was measured using liquid chromatography-MS. One (2)-epicatechin glucuronide and three (2)-epicatechin sulfates were detected in urine excreted after the intake of the two cocoa beverages (CC-M and CC-W). The results show that milk does not significantly affect the total amount of metabolites excreted in urine. However, differences in metabolite excretion profiles were observed; there were changes in the glucuronide and sulfate excretion rates, and the sulfation position between the period of excretion and the matrix. The matrix in which polyphenols are consumed can affect their metabolism and excretion, and this may affect their biological activity. Thus, more studies are needed to evaluate the effect of these different metabolite profiles on the body.

  7. Urinary hydrophilic and hydrophobic metabolic profiling based on liquid chromatography-mass spectrometry methods: Differential metabolite discovery specific to ovarian cancer.

    Science.gov (United States)

    Chen, Jing; Zhou, Lina; Zhang, Xiaoyan; Lu, Xin; Cao, Rui; Xu, Congjian; Xu, Guowang

    2012-11-01

    Discovery of novel metabolite biomarker(s) for improved ovarian cancer diagnosis is of great importance. In this paper, the differences of urinary hydrophilic and hydrophobic metabolic profiling between healthy women, benign ovarian tumor, and ovarian cancer patients were studied by metabolomics strategy. Metabolites in urine were analyzed on hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) coupled to MS. Data from HILIC or RPLC, positive or negative ion detection mode were found to be complementary. Data were filtered by orthogonal signal correction (OSC) method, and the three groups were discriminated by partial least squares discrimination analysis (PLS-DA) models. By combining the four datasets, maximum information can be collected, and a PLS-DA model was built after OSC filtering. The model based on combined dataset is superior to the ones based on the separate dataset, and important metabolites were screened based on the combined dataset model. Five metabolites were found to be specific to ovarian cancer and ten metabolites were considered commonly related to ovarian cancer and benign ovarian tumor. Combination of RPLC and HILIC separation, as well as positive and negative ion detection in metabolomic studies show advantages in collecting various metabolites information that helps us better understand the metabolic event. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Isotope-coded ESI-enhancing derivatization reagents for differential analysis, quantification and profiling of metabolites in biological samples by LC/MS: A review.

    Science.gov (United States)

    Higashi, Tatsuya; Ogawa, Shoujiro

    2016-10-25

    The analysis of the qualitative and quantitative changes of metabolites in body fluids and tissues yields valuable information for the diagnosis, pathological analysis and treatment of many diseases. Recently, liquid chromatography/electrospray ionization-(tandem) mass spectrometry [LC/ESI-MS(/MS)] has been widely used for these purposes due to the high separation capability of LC, broad coverage of ESI for various compounds and high specificity of MS(/MS). However, there are still two major problems to be solved regarding the biological sample analysis; lack of sensitivity and limited availability of stable isotope-labeled analogues (internal standards, ISs) for most metabolites. Stable isotope-coded derivatization (ICD) can be the answer for these problems. By the ICD, different isotope-coded moieties are introduced to the metabolites and one of the resulting derivatives can serve as the IS, which minimize the matrix effects. Furthermore, the derivatization can improve the ESI efficiency, fragmentation property in the MS/MS and chromatographic behavior of the metabolites, which lead to a high sensitivity and specificity in the various detection modes. Based on this background, this article reviews the recently-reported isotope-coded ESI-enhancing derivatization (ICEED) reagents, which are key components for the ICD-based LC/MS(/MS) studies, and their applications to the detection, identification, quantification and profiling of metabolites in human and animal samples. The LC/MS(/MS) using the ICEED reagents is the powerful method especially for the differential analysis (relative quantification) of metabolites in two comparative samples, simultaneous quantification of multiple metabolites whose stable isotope-labeled ISs are not available, and submetabolome profiling. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. LC-DAD-MS-based metabolite profiling of three species of Justicia (Acanthaceae).

    Science.gov (United States)

    Calderón, Angela I; Hodel, Adam; Wolfender, Jean-Luc; Gupta, Mahabir P; Correa, Mireya; Hostettmann, Kurt

    2013-08-01

    Olean-12-en-3β-24 diol (A), auranamide (B), aurantiamide acetate (C), 2α,3β-dihydroxy-olean-12-en-28-oic acid (D) and quindoline (E) were isolated from the dichloromethane (CH2Cl2) extract of the stems of Justicia secunda (Acanthaceae). Liquid chromatography with ultraviolet and mass spectrometric detection was used to acquire more knowledge of the chemical composition of this extract and to monitor variations in profiles of both the isolated and the other non-identified compounds in Justicia refractifolia and Justicia graciliflora. The compound classes, phenolic and olefinic amides, feruloyltyramine amides, 2,5-diaryl-3,4-dimethyltetrahydrofuranoid lignans, peptide alkaloids, phenylalanine derivatives, conjugated ynones, indolquinoline alkaloids, triterpenes and pigments, were tentatively identified based on the LC-DAD-APCI-MS analysis. The most frequently encountered compound among the species was auranamide while the distribution of quindoline was limited to J. secunda. Moreover, the acetylcholinesterase inhibitory activity of the isolated compounds was determined.

  10. High throughput volatile fatty acid skin metabolite profiling by thermal desorption secondary electrospray ionisation mass spectrometry.

    Science.gov (United States)

    Martin, Helen J; Reynolds, James C; Riazanskaia, Svetlana; Thomas, C L Paul

    2014-09-07

    The non-invasive nature of volatile organic compound (VOC) sampling from skin makes this a priority in the development of new screening and diagnostic assays. Evaluation of recent literature highlights the tension between the analytical utility of ambient ionisation approaches for skin profiling and the practicality of undertaking larger campaigns (higher statistical power), or undertaking research in remote locations. This study describes how VOC may be sampled from skin and recovered from a polydimethylsilicone sampling coupon and analysed by thermal desorption (TD) interfaced to secondary electrospray ionisation (SESI) time-of-flight mass spectrometry (MS) for the high throughput screening of volatile fatty acids (VFAs) from human skin. Analysis times were reduced by 79% compared to gas chromatography-mass spectrometry methods (GC-MS) and limits of detection in the range 300 to 900 pg cm(-2) for VFA skin concentrations were obtained. Using body odour as a surrogate model for clinical testing 10 Filipino participants, 5 high and 5 low odour, were sampled in Manilla and the samples returned to the UK and screened by TD-SESI-MS and TD-GC-MS for malodour precursors with greater than >95% agreement between the two analytical techniques. Eight additional VFAs were also identified by both techniques with chains 4 to 15 carbons long being observed. TD-SESI-MS appears to have significant potential for the high throughput targeted screening of volatile biomarkers in human skin.

  11. Profile of Serum Metabolites and Proteins of Broiler Breeders in Rearing Age

    Directory of Open Access Journals (Sweden)

    MS Rezende

    Full Text Available ABSTRACT The excellence of modern broiler production is based on the genetic improvement of broiler strains for high growth rate and high egg production, associated with technological developments in nutrition, management, and health. Over the last decades, the clinical biochemistry of broilers has been studied to determine serum biochemical component values; however, there are still many knowledge gaps on factors that determine changes in these values. In this study, the serum lipid and protein profiles of 4-week-old male and female Cobb broiler breeders were evaluated. Blood samples were collected on a commercial farm located in the city of Uberlândia, MG, Brazil. The following parameters were evaluated: total protein, albumin, globulin, albumin to globulin ratio (A/V, uric acid, urea, cholesterol, and triglyceride levels using an automatic analyzer. The results showed sex-specific biochemical patterns for most blood parameters evaluated. Moreover, the obtained values were different from those obtained in many published studies with broilers and commercial layers, stressing the need to develop further studies with chickens of different ages.

  12. Secondary Metabolite Profile, Antioxidant Capacity, and Mosquito Repellent Activity of Bixa orellana from Brazilian Amazon Region

    Directory of Open Access Journals (Sweden)

    Annamaria Giorgi

    2013-01-01

    Full Text Available The Brazilian flora was widely used as source of food and natural remedies to treat various diseases. Bixa orellana L. (Bixaceae, also known as annatto, urucù, or achiote, is a symbol for the Amazonian tribes that traditionally use its seeds as coloured ink to paint their bodies for religious ceremonies. The aim of this study was to investigate the volatile organic compounds (VOCs profile of B. orellana fresh fruits (in vivo sampled, dried seeds, wood, bark, and leaves analyzed with Headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry. A screening on phenolic content (the Folin-Ciocalteu assay and antiradical activity (DPPH assay of seeds was also conducted. In addition, the repellent properties of seed extracts against Aedes aegypti L. were investigated. Volatile compounds detected in B. orellana samples consisted mainly of sesquiterpenes, monoterpenes, and arenes: α-humulene is the major volatile compound present in seed extracts followed by D-germacrene, γ-elemene, and caryophyllene. B. orellana proved to be a good source of antioxidants. Preliminary data on repellency against A. aegypti of three different dried seed extracts (hexane, ethanol, and ethanol/water indicated a significant skin protection activity. A protection of 90% and 73% for hexane and ethanol/water extracts was recorded.

  13. Resveratrol metabolite profiling in clinical nutrition research--from diet to uncovering disease risk biomarkers: epidemiological evidence.

    Science.gov (United States)

    Rabassa, Montserrat; Zamora-Ros, Raul; Urpi-Sarda, Mireia; Andres-Lacueva, Cristina

    2015-08-01

    Resveratrol is a bioactive plant compound that has drawn scientific and media attention owing to its protective effects against a wide variety of illnesses, including cardiovascular diseases and cancer. In the last two decades, a plethora of preclinical studies have shown these beneficial effects, and some of them have been supported by clinical trials. However, there are few epidemiological studies assessing these relationships, showing mostly inconsistent results among them. This could be partially due to the difficulty of accurately estimating dietary resveratrol exposure. The development of Phenol-Explorer, a database containing resveratrol food-composition data, will facilitate the estimation of resveratrol intake. Moreover, the discovery and validation of a nutritional biomarker of this exposure, urinary resveratrol metabolite profile, will allow a more accurate assessment of dietary resveratrol exposure. Few epidemiological studies have assessed the potential health effects of resveratrol. Resveratrol was not associated with total mortality, cancer, or cardiovascular events, but it was associated with an improvement of serum glucose and triglyceride levels and a decrease in heart rate. Together, these findings suggest a potential cardioprotective effect of resveratrol in epidemiological studies, although the evidence is still scarce. © 2015 New York Academy of Sciences.

  14. Toxicokinetics and internal exposure of acrylamide: new insight into comprehensively profiling mercapturic acid metabolites as short-term biomarkers in rats and Chinese adolescents.

    Science.gov (United States)

    Wang, Qiao; Chen, Xinyu; Ren, Yiping; Chen, Qing; Meng, Zhen; Cheng, Jun; Zheng, Yunyan; Zeng, Weijiang; Zhao, Qingning; Zhang, Yu

    2017-05-01

    Acrylamide is classified as a probable carcinogen to humans and generated from Maillard reaction. Currently, the short-term exposure to acrylamide was evaluated via external diet sources in vitro or two main mercapturic acid metabolites: N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA) in vivo. In the present work, we comprehensively profiled four mercapturic acid metabolites and evaluated their internal exposure in rats and Chinese adolescents. The cumulative excretion of mercapturic acid metabolites contributes 38.4-73.0 and 43.8-63.6 % of total in vivo metabolites of acrylamide in male and female rats, respectively, when 1, 10, and 50 mg/kg bw of acrylamide were orally administered. Toxicokinetic study revealed that the conversion of acrylamide into glycidamide and glutathione coupling process is highly related to the gender and oral gavage dose via evaluating kinetic parameters, accumulative excretion percentages, and molar ratios of oxidative to reductive metabolism. In human study, a total of 101 Chinese adolescents (41 men and 60 women) were enrolled and served with a meal of potato chips, corresponding to a single-dose (12.6 μg/kg bw) exposure to acrylamide. Toxicokinetic work showed that AAMA is an early and predominant metabolite appearing as a biomarker in urine. N-acetyl-S-(2-carbamoylethyl)-L-cysteine-sulfoxide (AAMA-sul), an oxidative product from AAMA, exhibits a higher peak concentration than GAMA and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-L-cysteine (iso-GAMA) during the whole 48-h toxicokinetic period. The internal exposure via four mercapturic acid metabolites is associated with the gender and body mass index characteristics. Thus, current study aims at mercapturic acid metabolites as urinary biomarkers and provides comprehensive insights into the short-term internal exposure to acrylamide.

  15. Urinary Metabolite Profiling Offers Potential for Differentiation of Liver-Kidney Yin Deficiency and Dampness-Heat Internal Smoldering Syndromes in Posthepatitis B Cirrhosis Patients

    Directory of Open Access Journals (Sweden)

    Xiaoning Wang

    2015-01-01

    Full Text Available Zheng is the basic theory and essence of traditional Chinese medicine (TCM in diagnosing diseases. However, there are no biological evidences to support TCM Zheng differentiation. In this study we elucidated the biological alteration of cirrhosis with TCM “Liver-Kidney Yin Deficiency (YX” or “Dampness-Heat Internal Smoldering (SR” Zheng and the potential of urine metabonomics in TCM Zheng differentiation. Differential metabolites contributing to the intergroup variation between healthy controls and liver cirrhosis patients were investigated, respectively, and mainly participated in energy metabolism, gut microbiota metabolism, oxidative stress, and bile acid metabolism. Three metabolites, aconitate, citrate, and 2-pentendioate, altered significantly in YX Zheng only, representing the abnormal energy metabolism. Contrarily, hippurate and 4-pyridinecarboxylate altered significantly in SR Zheng only, representing the abnormalities of gut microbiota metabolism. Moreover, there were significant differences between two TCM Zhengs in three metabolites, glycoursodeoxycholate, cortolone-3-glucuronide, and L-aspartyl-4-phosphate, among all differential metabolites. Metabonomic profiling, as a powerful approach, provides support to the understanding of biological mechanisms of TCM Zheng stratification. The altered urinary metabolites constitute a panel of reliable biological evidence for TCM Zheng differentiation in patients with posthepatitis B cirrhosis and may be used for the potential biomarkers of TCM Zheng stratification.

  16. The First Insight into the Metabolite Profiling of Grapes from Three Vitis vinifera L. Cultivars of Two Controlled Appellation (DOC Regions

    Directory of Open Access Journals (Sweden)

    António Teixeira

    2014-03-01

    Full Text Available The characterization of the metabolites accumulated in the grapes of specific cultivars grown in different climates is of particular importance for viticulturists and enologists. In the present study, the metabolite profiling of grapes from the cultivars, Alvarinho, Arinto and Padeiro de Basto, of two Portuguese Controlled Denomination of Origin (DOC regions (Vinho Verde and Lisboa was investigated by gas chromatography-coupled time-of-flight mass spectrometry (GC-TOF-MS and an amino acid analyzer. Primary metabolites, including sugars, organic acids and amino acids, and some secondary metabolites were identified. Tartaric and malic acids and free amino acids accumulated more in grapes from vines of the DOC region of Vinho Verde than DOC Lisboa, but a principal component analysis (PCA plot showed that besides the DOC region, the grape cultivar also accounted for the variance in the relative abundance of metabolites. Grapes from the cultivar, Alvarinho, were particularly rich in malic acid and tartaric acids in both DOC regions, but sucrose accumulated more in the DOC region of Vinho Verde.

  17. Urinary metabolite profiling offers potential for differentiation of liver-kidney yin deficiency and dampness-heat internal smoldering syndromes in posthepatitis B cirrhosis patients.

    Science.gov (United States)

    Wang, Xiaoning; Xie, Guoxiang; Wang, Xiaoyan; Zhou, Mingmei; Yu, Huan; Lin, Yan; Du, Guangli; Luo, Guoan; Liu, Ping

    2015-01-01

    Zheng is the basic theory and essence of traditional Chinese medicine (TCM) in diagnosing diseases. However, there are no biological evidences to support TCM Zheng differentiation. In this study we elucidated the biological alteration of cirrhosis with TCM "Liver-Kidney Yin Deficiency (YX)" or "Dampness-Heat Internal Smoldering (SR)" Zheng and the potential of urine metabonomics in TCM Zheng differentiation. Differential metabolites contributing to the intergroup variation between healthy controls and liver cirrhosis patients were investigated, respectively, and mainly participated in energy metabolism, gut microbiota metabolism, oxidative stress, and bile acid metabolism. Three metabolites, aconitate, citrate, and 2-pentendioate, altered significantly in YX Zheng only, representing the abnormal energy metabolism. Contrarily, hippurate and 4-pyridinecarboxylate altered significantly in SR Zheng only, representing the abnormalities of gut microbiota metabolism. Moreover, there were significant differences between two TCM Zhengs in three metabolites, glycoursodeoxycholate, cortolone-3-glucuronide, and L-aspartyl-4-phosphate, among all differential metabolites. Metabonomic profiling, as a powerful approach, provides support to the understanding of biological mechanisms of TCM Zheng stratification. The altered urinary metabolites constitute a panel of reliable biological evidence for TCM Zheng differentiation in patients with posthepatitis B cirrhosis and may be used for the potential biomarkers of TCM Zheng stratification.

  18. The first insight into the metabolite profiling of grapes from three Vitis vinifera L. cultivars of two controlled appellation (DOC) regions.

    Science.gov (United States)

    Teixeira, António; Martins, Viviana; Noronha, Henrique; Eiras-Dias, José; Gerós, Hernâni

    2014-03-10

    The characterization of the metabolites accumulated in the grapes of specific cultivars grown in different climates is of particular importance for viticulturists and enologists. In the present study, the metabolite profiling of grapes from the cultivars, Alvarinho, Arinto and Padeiro de Basto, of two Portuguese Controlled Denomination of Origin (DOC) regions (Vinho Verde and Lisboa) was investigated by gas chromatography-coupled time-of-flight mass spectrometry (GC-TOF-MS) and an amino acid analyzer. Primary metabolites, including sugars, organic acids and amino acids, and some secondary metabolites were identified. Tartaric and malic acids and free amino acids accumulated more in grapes from vines of the DOC region of Vinho Verde than DOC Lisboa, but a principal component analysis (PCA) plot showed that besides the DOC region, the grape cultivar also accounted for the variance in the relative abundance of metabolites. Grapes from the cultivar, Alvarinho, were particularly rich in malic acid and tartaric acids in both DOC regions, but sucrose accumulated more in the DOC region of Vinho Verde.

  19. Microbial metabolites profile during in vitro human colonic fermentation of breakfast menus consumed by Mexican school children.

    Science.gov (United States)

    Zamora-Gasga, Victor Manuel; Montalvo-González, Efigenia; Loarca-Piña, Guadalupe; Vázquez-Landaverde, Pedro Alberto; Tovar, Juscelino; Sáyago-Ayerdi, Sonia G

    2017-07-01

    The nutrition transition promotes the development of childhood obesity. Currently, Mexico is affected by this serious public health problem. The nutritional and functional characterization of a whole menu has a number of advantages over the study of single nutrients. Since breakfast is considered the most important meal of the day, this study aimed to evaluate the metabolite profile produced by in vitro human colonic fermentation of the isolated indigestible fraction (IF) from three different Mexican breakfast (M-B) menus (Modified "MM-B", traditional "TM-B", and alternative "AM-B"), previously identified as commonly consumed by Mexican schoolchildren in Nayarit State, Mexico. The M-B's consist of egg, corn tortilla, beans (higher in TM-B), sugar and chocolate powder (higher in AM-B) and milk, combined in different proportions. The IF in all breakfasts was about 4.7-5.6g/100g FW, with a relatively high content of protein (≈21%), which might have negative physiological implications. Fermentation of IF from TM-B resulted in the largest pH decrease after 72h (pH=6.07), with a low short chain fatty acid (SCFA) production (0.75 to 47.23mmol/L), but greater relative concentration of other fatty acids (FA) (C7, C8, C9). Besides, 55 volatile compounds were detected in the fermentation media by SPME-GC-MS and three principal components (PC) were identified. PC1 was influenced by SCFA production, low FA esters production (<8C), and low volatile organic acids production. PC2 was influenced by the decrease in pH and an increase in antioxidant capacity (p<0.0001). These results suggest that the production of different metabolites in the luminal medium may affect the pH and antioxidant status in the colon. Fermentation of IF from TM-M, assessed after 48 and 72h, showed the highest correlation for PC2; the metabolic pattern registered for this IF maybe considered beneficial. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs.

    Science.gov (United States)

    Jang, Saebyeol; Sun, Jianghao; Chen, Pei; Lakshman, Sukla; Molokin, Aleksey; Harnly, James M; Vinyard, Bryan T; Urban, Joseph F; Davis, Cindy D; Solano-Aguilar, Gloria

    2016-04-01

    Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (P< 0.01) in the urine (35- to 204-fold), serum (6- to 186-fold), and adipose tissue (34- to 1144-fold) of pigs fed cocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75-85%,P< 0.05). Compared with the unsupplemented pigs, the abundance ofLactobacillusspecies was greater in the feces (7-fold,P= 0.005) and that ofBifidobacteriumspecies was greater in the proximal colon contents (9-fold,P= 0.01) in pigs fed only 20 or 10 g cocoa powder/d, respectively. Moreover, consumption of cocoa powder reducedTLR9gene expression in ileal Peyer's patches (67-80%,P< 0.05) and mesenteric lymph nodes (43-71%,P< 0.05) of pigs fed 2.5-20 g cocoa powder/d compared with pigs not supplemented with cocoa powder. This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance ofLactobacillusandBifidobacteriumspecies and modulating markers of localized intestinal immunity. © 2016 American Society for Nutrition.

  1. Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum.

    Science.gov (United States)

    Walker, Vincent; Bertrand, Cédric; Bellvert, Floriant; Moënne-Loccoz, Yvan; Bally, René; Comte, Gilles

    2011-01-01

    Most Azospirillum plant growth-promoting rhizobacteria (PGPR) benefit plant growth through source effects related to free nitrogen fixation and/or phytohormone production, but little is known about their potential effects on plant physiology. These effects were assessed by comparing the early impacts of three Azospirillum inoculant strains on secondary metabolite profiles of two different maize (Zea mays) cultivars. After 10d of growth in nonsterile soil, maize methanolic extracts were analyzed by reverse-phase high-performance liquid chromatography (RP-HPLC) and secondary metabolites identified by liquid chromatography/mass spectrometry (LC/MS) and nuclear magnetic resonance (NMR). Seed inoculation resulted in increased shoot biomass (and also root biomass with one strain) of hybrid PR37Y15 but had no stimulatory effect on hybrid DK315. In parallel, Azospirillum inoculation led to major qualitative and quantitative modifications of the contents of secondary metabolites, especially benzoxazinoids, in the maize plants. These modifications depended on the PGPR strain×plant cultivar combination. Thus, Azospirillum inoculation resulted in early, strain-dependent modifications in the biosynthetic pathways of benzoxazine derivatives in maize in compatible interactions. This is the first study documenting a PGPR effect on plant secondary metabolite profiles, and suggests the establishment of complex interactions between Azospirillum PGPR and maize. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  2. Effect of peripartum nutritional management on plasma profile of steroid hormones, metabolites, and postpartum fertility in buffaloes

    Directory of Open Access Journals (Sweden)

    R. M. Kalasariya

    2017-03-01

    Full Text Available Aim: The aim of this study was to evaluate the influence of peripartum protein and minerals supplementation on plasma profile of steroid hormones, metabolites, and fertility in rural buffaloes. Material and Methods: A total of 85 advanced pregnant (~8 months pluriparous buffaloes selected at farmers’ doorstep in three tribal villages of Middle Gujarat were randomly divided into two groups, viz., control (n=45 and nutrients treatment (40. The buffaloes of treatment group (n=40, in addition to farmers feeding schedule/control, received daily 1.5 kg compound concentrate mixture (22% CP and 50 g of chelated ASMM for 2 months each pre- and post-partum. Further, 15 buffaloes, each of control and treatment group, were injected parentrally (deep i/m with 5 ml of micro-minerals (each ml containing Se, Zn, Cu and Mn at 5, 40, 15 and 10 mg, respectively, twice 2 months before and on the day of calving, keeping rest of the animals (control, n=30 and treatment, n=25 as controls. Blood sampling was done on days −60, −30, −15, 0, 15, 30, 45, and 60 peripartum for estimation of plasma progesterone and estradiol by standard RIA techniques and other metabolites using assay kits on biochemistry analyzer. The puerperal events and postpartum fertility were monitored through history and by fortnightly palpation per rectum till day 45 and then again at 120 days postpartum for both the groups and subgroups. Results: The mean plasma progesterone concentrations in all groups declined significantly (p0.05. The micro-minerals injection appreciably reduced the incidence of RFMs and significantly (p<0.05 reduced the placental expulsion time over non-injected controls. In treatment group, the period for involution of uterus was significantly shorter (29.39±0.50 vs. 32.12±0.82 days, p<0.05, with early onset of first postpartum estrus (67.65±1.67 vs. 79.43±3.06 days, p<0.01, shorter service period (90.89±4.41 vs. 105.09±4.76 days, p<0.05 and higher conception rate

  3. Comparison of fruit quality and GC-MS-based metabolite profiling of kiwifruit 'Jecy green': Natural and exogenous ethylene-induced ripening.

    Science.gov (United States)

    Lim, Sooyeon; Lee, Jeong Gu; Lee, Eun Jin

    2017-11-01

    We applied exogenous ethylene to 'Jecy green' kiwifruit to elucidate the differences in fruit quality and metabolite profiling between naturally ripe (NR) and ethylene-induced ripe (ER) kiwifruit. Kiwifruit were exposed to ethylene (200μL/L) for 12h at 20°C and maintained for 9days at 20°C. Two metabolites of ascorbic acid and arabinose significantly decreased during kiwifruit ripening regardless of the ripening method. The concentrations of sucrose, myo-inositol, citric acid, and malic acid in NR fruit were substantially higher than those in ER fruit, while the concentrations of fructose, glucose, and quinic acid in ER fruit were higher than those in NR fruit. NR and ER kiwifruit were statistically similar in regard to overall sensory profile, even though the metabolite profiling showed a little difference. The application of ethylene to 'Jecy green' kiwifruit to regulate ripening for commercial purposes can result in good quality fruit without side effects. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.).

    Science.gov (United States)

    Savoi, Stefania; Wong, Darren C J; Arapitsas, Panagiotis; Miculan, Mara; Bucchetti, Barbara; Peterlunger, Enrico; Fait, Aaron; Mattivi, Fulvio; Castellarin, Simone D

    2016-03-21

    Secondary metabolism contributes to the adaptation of a plant to its environment. In wine grapes, fruit secondary metabolism largely determines wine quality. Climate change is predicted to exacerbate drought events in several viticultural areas, potentially affecting the wine quality. In red grapes, water deficit modulates flavonoid accumulation, leading to major quantitative and compositional changes in the profile of the anthocyanin pigments; in white grapes, the effect of water deficit on secondary metabolism is still largely unknown. In this study we investigated the impact of water deficit on the secondary metabolism of white grapes using a large scale metabolite and transcript profiling approach in a season characterized by prolonged drought. Irrigated grapevines were compared to non-irrigated grapevines that suffered from water deficit from early stages of berry development to harvest. A large effect of water deficit on fruit secondary metabolism was observed. Increased concentrations of phenylpropanoids, monoterpenes, and tocopherols were detected, while carotenoid and flavonoid accumulations were differentially modulated by water deficit according to the berry developmental stage. The RNA-sequencing analysis carried out on berries collected at three developmental stages-before, at the onset, and at late ripening-indicated that water deficit affected the expression of 4,889 genes. The Gene Ontology category secondary metabolic process was overrepresented within up-regulated genes at all the stages of fruit development considered, and within down-regulated genes before ripening. Eighteen phenylpropanoid, 16 flavonoid, 9 carotenoid, and 16 terpenoid structural genes were modulated by water deficit, indicating the transcriptional regulation of these metabolic pathways in fruit exposed to water deficit. An integrated network and promoter analyses identified a transcriptional regulatory module that encompasses terpenoid genes, transcription factors, and enriched

  5. Metabolite profiling of RCS-4, a novel synthetic cannabinoid designer drug, using human hepatocyte metabolism and TOF-MS

    Science.gov (United States)

    Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Huestis, Marilyn A

    2014-01-01

    Background Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. Conclusion For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods. PMID:25046048

  6. Heat-stabilised rice bran consumption by colorectal cancer survivors modulates stool metabolite profiles and metabolic networks: a randomised controlled trial.

    Science.gov (United States)

    Brown, Dustin G; Borresen, Erica C; Brown, Regina J; Ryan, Elizabeth P

    2017-05-01

    Rice bran (RB) consumption has been shown to reduce colorectal cancer (CRC) growth in mice and modify the human stool microbiome. Changes in host and microbial metabolism induced by RB consumption was hypothesised to modulate the stool metabolite profile in favour of promoting gut health and inhibiting CRC growth. The objective was to integrate gut microbial metabolite profiles and identify metabolic pathway networks for CRC chemoprevention using non-targeted metabolomics. In all, nineteen CRC survivors participated in a parallel randomised controlled dietary intervention trial that included daily consumption of study-provided foods with heat-stabilised RB (30 g/d) or no additional ingredient (control). Stool samples were collected at baseline and 4 weeks and analysed using GC-MS and ultra-performance liquid chromatography-MS. Stool metabolomics revealed 93 significantly different metabolites in individuals consuming RB. A 264-fold increase in β-hydroxyisovaleroylcarnitine and 18-fold increase in β-hydroxyisovalerate exemplified changes in leucine, isoleucine and valine metabolism in the RB group. A total of thirty-nine stool metabolites were significantly different between RB and control groups, including increased hesperidin (28-fold) and narirutin (14-fold). Metabolic pathways impacted in the RB group over time included advanced glycation end products, steroids and bile acids. Fatty acid, leucine/valine and vitamin B6 metabolic pathways were increased in RB compared with control. There were 453 metabolites identified in the RB food metabolome, thirty-nine of which were identified in stool from RB consumers. RB consumption favourably modulated the stool metabolome of CRC survivors and these findings suggest the need for continued dietary CRC chemoprevention efforts.

  7. 1H magnetic resonance spectroscopy metabolite profiles of neonatal rat hippocampus and brainstem regions following early postnatal exposure to intermittent hypoxia

    Science.gov (United States)

    Darnall, Robert A.; Chen, Xi; Nemani, Krishnamurthy V.; Sirieix, Chrystelle M.; Gimi, Barjor

    2017-03-01

    Most premature infants born at less than 30 weeks gestation are exposed to periods of mild intermittent hypoxia (IH) associated with apnea of prematurity and periodic breathing. In adults, IH associated with sleep apnea causes neurochemical and structural alterations in the brain. However, it is unknown whether IH in the premature infant leads to neurodevelopmental impairment. Quantification of biochemical markers that can precisely identify infants at risk of adverse neurodevelopmental outcome is essential. In vivo 1H magnetic resonance spectroscopy (1H MRS) facilitates the quantification of metabolites from distinct regions of the developing brain. We report the changes in metabolite profiles in the brainstem and hippocampal regions of developing rat brains, resulting from exposure to IH. Rat pups were chosen for study because there is rapid postnatal hippocampal development that occurs during the first 4 weeks in the developing rat brain, which corresponds to the first 2-3 postnatal years of development in humans. The brainstem was examined because of our interest in respiratory control disorders in the newborn and because of brainstem gliosis described in infants who succumb to Sudden Infant Death Syndrome (SIDS). Metabolite profiles were compared between hypoxia treated rat pups (n = 9) and normoxic controls (n = 6). Metabolite profiles were acquired using the Point-RESolved spectroscopy (PRESS) MRS sequence and were quantified using the TARQUIN software. There was a significant difference in the concentrations of creatine (p = 0.031), total creatine (creatine + phosphocreatine) (p = 0.028), and total choline (p = 0.001) in the brainstem, and glycine (p = 0.031) in the hippocampal region. The changes are consistent with altered cellular bioenergetics and metabolism associated with hypoxic insult.

  8. A Rough Guide to Metabolite Identification Using High Resolution Liquid Chromatography Mass Spectrometry in Metabolomic Profiling in Metazoans

    Directory of Open Access Journals (Sweden)

    David G Watson

    2013-01-01

    Full Text Available Compound identification in mass spectrometry based metabolomics can be a problem but sometimes the problem seems to be presented in an over complicated way. The current review focuses on metazoans where the range of metabolites is more restricted than for example in plants. The focus is on liquid chromatography with high resolution mass spectrometry where it is proposed that most of the problems in compound identification relate to structural isomers rather than to isobaric compounds. Thus many of the problems faced relate to separation of isomers, which is usually required even if fragmentation is used to support structural identification. Many papers report the use of MS/MS or MS2 as an adjunct to the identification of known metabolites but there a few examples in metabolomics studies of metazoans of complete structure elucidation of novel metabolites or metabolites where no authentic standards are available for comparison.

  9. Metabolite Profiling of 14 Wuyi Rock Tea Cultivars Using UPLC-QTOF MS and UPLC-QqQ MS Combined with Chemometrics

    Directory of Open Access Journals (Sweden)

    Si Chen

    2018-01-01

    Full Text Available Wuyi Rock tea, well-recognized for rich flavor and long-lasting fragrance, is a premium subcategory of oolong tea mainly produced in Wuyi Mountain and nearby regions of China. The quality of tea is mainly determined by the chemical constituents in the tea leaves. However, this remains underexplored for Wuyi Rock tea cultivars. In this study, we investigated the leaf metabolite profiles of 14 major Wuyi Rock tea cultivars grown in the same producing region using UPLC-QTOF MS and UPLC-QqQ MS with data processing via principal component analysis and cluster analysis. Relative quantitation of 49 major metabolites including flavan-3-ols, proanthocyanidins, flavonol glycosides, flavone glycosides, flavonone glycosides, phenolic acid derivatives, hydrolysable tannins, alkaloids and amino acids revealed clear variations between tea cultivars. In particular, catechins, kaempferol and quercetin derivatives were key metabolites responsible for cultivar discrimination. Information on the varietal differences in the levels of bioactive/functional metabolites, such as methylated catechins, flavonol glycosides and theanine, offers valuable insights to further explore the nutritional values and sensory qualities of Wuyi Rock tea. It also provides potential markers for tea plant fingerprinting and cultivar identification.

  10. A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function123

    Science.gov (United States)

    Armah, Charlotte N; Traka, Maria H; Dainty, Jack R; Defernez, Marianne; Janssens, Astrid; Leung, Wing; Doleman, Joanne F; Potter, John F

    2013-01-01

    Background: Observational and experimental studies suggest that diets rich in cruciferous vegetables and glucosinolates may reduce the risk of cancer and cardiovascular disease (CVD). Objective: We tested the hypothesis that a 12-wk dietary intervention with high-glucoraphanin (HG) broccoli would modify biomarkers of CVD risk and plasma metabolite profiles to a greater extent than interventions with standard broccoli or peas. Design: Subjects were randomly assigned to consume 400 g standard broccoli, 400 g HG broccoli, or 400 g peas each week for 12 wk, with no other dietary restrictions. Biomarkers of CVD risk and 347 plasma metabolites were quantified before and after the intervention. Results: No significant differences in the effects of the diets on biomarkers of CVD risk were found. Multivariate analyses of plasma metabolites identified 2 discrete phenotypic responses to diet in individuals within the HG broccoli arm, differentiated by single nucleotide polymorphisms associated with the PAPOLG gene. Univariate analysis showed effects of sex (P broccoli arm, the consequence of the intervention was to reduce variation in lipid and amino acid metabolites, tricarboxylic acid (TCA) cycle intermediates, and acylcarnitines between the 2 PAPOLG genotypes. Conclusions: The metabolic changes observed with the HG broccoli diet are consistent with a rebalancing of anaplerotic and cataplerotic reactions and enhanced integration of fatty acid β-oxidation with TCA cycle activity. These modifications may contribute to the reduction in cancer risk associated with diets that are rich in cruciferous vegetables. This trial was registered at clinicaltrials.gov as NCT01114399. PMID:23964055

  11. Gas-Chromatography Mass-Spectrometry (GC-MS Based Metabolite Profiling Reveals Mannitol as a Major Storage Carbohydrate in the Coccolithophorid Alga Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    Alisdair R. Fernie

    2013-03-01

    Full Text Available Algae are divergent organisms having a wide variety of evolutional histories. Although most of them share photosynthetic activity, their pathways of primary carbon metabolism are rather diverse among species. Here we developed a method for gas chromatography-mass spectroscopy (GC-MS based metabolite profiling for the coccolithophorid alga Emiliania huxleyi, which is one of the most abundant microalgae in the ocean, in order to gain an overview of the pathway of primary metabolism within this alga. Following method optimization, twenty-six metabolites could be detected by this method. Whilst most proteogenic amino acids were detected, no peaks corresponding to malate and fumarate were found. The metabolite profile of E. huxleyi was, however, characterized by a prominent accumulation of mannitol reaching in excess of 14 nmol 106 cells−1. Similarly, the accumulation of the 13C label during short term H13CO3− feeding revealed a massive redistribution of label into mannitol as well as rapid but saturating label accumulation into glucose and several amino acids including aspartate, glycine and serine. These results provide support to previous work suggesting that this species adopts C3 photosynthesis and that mannitol functions as a carbon store in E. huxleyi.

  12. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield1[OPEN

    Science.gov (United States)

    Witt, Sandra; Lisec, Jan; Palacios-Rojas, Natalia; Yousfi, Salima; Araus, Jose Luis; Fernie, Alisdair R.

    2015-01-01

    The development of abiotic stress-resistant cultivars is of premium importance for the agriculture of developing countries. Further progress in maize (Zea mays) performance under stresses is expected by combining marker-assisted breeding with metabolite markers. In order to dissect metabolic responses and to identify promising metabolite marker candidates, metabolite profiles of maize leaves were analyzed and compared with grain yield in field trials. Plants were grown under well-watered conditions (control) or exposed to drought, heat, and both stresses simultaneously. Trials were conducted in 2010 and 2011 using 10 tropical hybrids selected to exhibit diverse abiotic stress tolerance. Drought stress evoked the accumulation of many amino acids, including isoleucine, valine, threonine, and 4-aminobutanoate, which has been commonly reported in both field and greenhouse experiments in many plant species. Two photorespiratory amino acids, glycine and serine, and myoinositol also accumulated under drought. The combination of drought and heat evoked relatively few specific responses, and most of the metabolic changes were predictable from the sum of the responses to individual stresses. Statistical analysis revealed significant correlation between levels of glycine and myoinositol and grain yield under drought. Levels of myoinositol in control conditions were also related to grain yield under drought. Furthermore, multiple linear regression models very well explained the variation of grain yield via the combination of several metabolites. These results indicate the importance of photorespiration and raffinose family oligosaccharide metabolism in grain yield under drought and suggest single or multiple metabolites as potential metabolic markers for the breeding of abiotic stress-tolerant maize. PMID:26424159

  13. Liquid Chromatography-Mass Spectrometry-Based Rapid Secondary-Metabolite Profiling of Marine Pseudoalteromonas sp. M2

    Directory of Open Access Journals (Sweden)

    Woo Jung Kim

    2016-01-01

    Full Text Available The ocean is a rich resource of flora, fauna, and food. A wild-type bacterial strain showing confluent growth on marine agar with antibacterial activity was isolated from marine water, identified using 16S rDNA sequence analysis as Pseudoalteromonas sp., and designated as strain M2. This strain was found to produce various secondary metabolites including quinolone alkaloids. Using high-resolution mass spectrometry (MS and nuclear magnetic resonance (NMR analysis, we identified nine secondary metabolites of 4-hydroxy-2-alkylquinoline (pseudane-III, IV, V, VI, VII, VIII, IX, X, and XI. Additionally, this strain produced two novel, closely related compounds, 2-isopentylqunoline-4-one and 2-(2,3-dimetylbutylqunoline-4-(1H-one, which have not been previously reported from marine bacteria. From the metabolites produced by Pseudoalteromonas sp. M2, 2-(2,3-dimethylbutylquinolin-4-one, pseudane-VI, and pseudane-VII inhibited melanin synthesis in Melan-A cells by 23.0%, 28.2%, and 42.7%, respectively, wherein pseudane-VII showed the highest inhibition at 8 µg/mL. The results of this study suggest that liquid chromatography (LC-MS/MS-based metabolite screening effectively improves the efficiency of novel metabolite discovery. Additionally, these compounds are promising candidates for further bioactivity development.

  14. Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill

    Directory of Open Access Journals (Sweden)

    Nikole Elizabeth Kimes

    2013-03-01

    Full Text Available Marine subsurface environments, such as deep-sea sediments, house abundant and diverse microbial communities that are believed to influence large-scale geochemical processes. These processes include the biotransformation and mineralization of numerous petroleum constituents. Thus, microbial communities in the Gulf of Mexico are thought to be responsible for the intrinsic bioremediation of crude oil released by the Deepwater Horizon (DWH oil spill. While hydrocarbon contamination is known to enrich for aerobic, oil-degrading bacteria in deep-seawater habitats, relatively little is known about the response of communities in deep-sea sediments, where low oxygen levels may hinder such a response. Here, we examined the hypothesis that increased hydrocarbon exposure results in an altered sediment microbial community structure that reflects the prospects for oil biodegradation under the prevailing conditions. We explore this hypothesis using metagenomic analysis and metabolite profiling of deep-sea sediment samples following the DWH oil spill. The presence of aerobic microbial communities and associated functional genes was consistent among all samples, whereas, a greater number of Deltaproteobacteria and anaerobic functional genes were found in sediments closest to the DWH blowout site. Metabolite profiling also revealed a greater number of putative metabolites in sediments surrounding the blowout zone relative to a background site located 127 km away. The mass spectral analysis of the putative metabolites revealed that alkylsuccinates remained below detection levels, but a homologous series of benzylsuccinates (with carbon chain lengths from 5 to 10 could be detected. Our findings suggest that increased exposure to hydrocarbons enriches for Deltaproteobacteria, which are known to be capable of anaerobic hydrocarbon metabolism. We also provide evidence for an active microbial community metabolizing aromatic hydrocarbons in deep-sea sediments of the

  15. Ecotype variability in growth and secondary metabolite profile in Moringa oleifera: impact of sulfur and water availability.

    Science.gov (United States)

    Förster, Nadja; Ulrichs, Christian; Schreiner, Monika; Arndt, Nick; Schmidt, Reinhard; Mewis, Inga

    2015-03-25

    Moringa oleifera is widely cultivated in plantations in the tropics and subtropics. Previous cultivation studies with M. oleifera focused primarily only on leaf yield. In the present study, the content of potentially health-promoting secondary metabolites (glucosinolates, phenolic acids, and flavonoids) were also investigated. Six different ecotypes were grown under similar environmental conditions to identify phenotypic differences that can be traced back to the genotype. The ecotypes TOT4880 (origin USA) and TOT7267 (origin India) were identified as having the best growth performance and highest secondary metabolite production, making them an ideal health-promoting food crop. Furthermore, optimal cultivation conditions-exemplarily on sulfur fertilization and water availability-for achieving high leaf and secondary metabolite yields were investigated for M. oleifera. In general, plant biomass and height decreased under water deficiency compared to normal cultivation conditions, whereas the glucosinolate content increased. The effects depended to a great extent on the ecotype.

  16. Metabolite profiling of Clinacanthus nutans leaves extracts obtained from different drying methods by 1H NMR-based metabolomics

    Science.gov (United States)

    Hashim, Noor Haslinda Noor; Latip, Jalifah; Khatib, Alfi

    2016-11-01

    The metabolites of Clinacanthus nutans leaves extracts and their dependence on drying process were systematically characterized using 1H nuclear magnetic resonance spectroscopy (NMR) multivariate data analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were able to distinguish the leaves extracts obtained from different drying methods. The identified metabolites were carbohydrates, amino acid, flavonoids and sulfur glucoside compounds. The major metabolites responsible for the separation in PLS-DA loading plots were lupeol, cycloclinacosides, betulin, cerebrosides and choline. The results showed that the combination of 1H NMR spectroscopy and multivariate data analyses could act as an efficient technique to understand the C. nutans composition and its variation.

  17. Systematic evaluation of commercially available ultra-high performance liquid chromatography columns for drug metabolite profiling: optimization of chromatographic peak capacity.

    Science.gov (United States)

    Dubbelman, Anne-Charlotte; Cuyckens, Filip; Dillen, Lieve; Gross, Gerhard; Hankemeier, Thomas; Vreeken, Rob J

    2014-12-29

    The present study investigated the practical use of modern ultra-high performance liquid chromatography (UHPLC) separation techniques for drug metabolite profiling, aiming to develop a widely applicable, high-throughput, easy-to-use chromatographic method, with a high chromatographic resolution to accommodate simultaneous qualitative and quantitative analysis of small-molecule drugs and metabolites in biological matrices. To this end, first the UHPLC system volume and variance were evaluated. Then, a mixture of 17 drugs and various metabolites (molecular mass of 151-749Da, logP of -1.04 to 6.7), was injected on six sub-2μm particle columns. Five newest generation core shell technology columns were compared and tested against one column packed with porous particles. Two aqueous (pH 2.7 and 6.8) and two organic mobile phases were evaluated, first with the same flow and temperature and subsequently at each column's individual limit of temperature and pressure. The results demonstrated that pre-column dead volume had negligible influence on the peak capacity and shape. In contrast, a decrease in post-column volume of 57% resulted in a substantial (47%) increase in median peak capacity and significantly improved peak shape. When the various combinations of stationary and mobile phases were used at the same flow rate (0.5mL/min) and temperature (45°C), limited differences were observed between the median peak capacities, with a maximum of 26%. At higher flow though (up to 0.9mL/min), a maximum difference of almost 40% in median peak capacity was found between columns. The finally selected combination of solid-core particle column and mobile phase composition was chosen for its selectivity, peak capacity, wide applicability and peak shape. The developed method was applied to rat hepatocyte samples incubated with the drug buspirone and demonstrated to provide a similar chromatographic resolution, but a 6 times higher signal-to-noise ratio than a more traditional UHPLC

  18. A Quantitative Profiling Method of Phytohormones and Other Metabolites Applied to Barley Roots Subjected to Salinity Stress

    Science.gov (United States)

    Cao, Da; Lutz, Adrian; Hill, Camilla B.; Callahan, Damien L.; Roessner, Ute

    2017-01-01

    As integral parts of plant signaling networks, phytohormones are involved in the regulation of plant metabolism and growth under adverse environmental conditions, including salinity. Globally, salinity is one of the most severe abiotic stressors with an estimated 800 million hectares of arable land affected. Roots are the first plant organ to sense salinity in the soil, and are the initial site of sodium (Na+) exposure. However, the quantification of phytohormones in roots is challenging, as they are often present at extremely low levels compared to other plant tissues. To overcome this challenge, we developed a high-throughput LC-MS method to quantify ten endogenous phytohormones and their metabolites of diverse chemical classes in roots of barley. This method was validated in a salinity stress experiment with six barley varieties grown hydroponically with and without salinity. In addition to phytohormones, we quantified 52 polar primary metabolites, including some phytohormone precursors, using established GC-MS and LC-MS methods. Phytohormone and metabolite data were correlated with physiological measurements including biomass, plant size and chlorophyll content. Root and leaf elemental analysis was performed to determine Na+ exclusion and K+ retention ability in the studied barley varieties. We identified distinct phytohormone and metabolite signatures as a response to salinity stress in different barley varieties. Abscisic acid increased in the roots of all varieties under salinity stress, and elevated root salicylic acid levels were associated with an increase in leaf chlorophyll content. Furthermore, the landrace Sahara maintained better growth, had lower Na+ levels and maintained high levels of the salinity stress linked metabolite putrescine as well as the phytohormone metabolite cinnamic acid, which has been shown to increase putrescine concentrations in previous studies. This study highlights the importance of root phytohormones under salinity stress and

  19. DNA barcoding and LC-MS metabolite profiling of the lichen-forming genus Melanelia: Specimen identification and discrimination focusing on Icelandic taxa.

    Science.gov (United States)

    Xu, Maonian; Heidmarsson, Starri; Thorsteinsdottir, Margret; Eiriksson, Finnur F; Omarsdottir, Sesselja; Olafsdottir, Elin S

    2017-01-01

    Taxa in the genus Melanelia (Parmeliaceae, Ascomycota) belong to a group of saxicolous lichens with brown to black foliose thalli, which have recently undergone extensive changes in circumscription. Taxa belonging to Parmeliaceae are prolific producers of bioactive compounds, which have also been traditionally used for chemotaxonomic purposes. However, the chemical diversity of the genus Melanelia and the use of chemical data for species discrimination in this genus are largely unexplored. In addition, identification based on morphological characters is challenging due to few taxonomically informative characters. Molecular identification methods, such as DNA barcoding, have rarely been applied to this genus. This study aimed to identify the Melanelia species from Iceland using DNA barcoding approach, and to explore their chemical diversity using chemical profiling. Chemometric tools were used to see if lichen metabolite profiles determined by LC-MS could be used for the identification of Icelandic Melanelia species. Barcoding using the fungal nuclear ribosomal internal transcribed spacer region (nrITS) successfully identified three Melalenlia species occurring in Iceland, together with Montanelia disjuncta (Basionym: Melanelia disjuncta). All species formed monophyletic clades in the neighbor-joining nrITS gene tree. However, high intraspecific genetic distance of M. stygia suggests the potential of unrecognized species lineages. Principal component analysis (PCA) of metabolite data gave a holistic overview showing that M. hepatizon and M. disjuncta were distinct from the rest, without the power to separate M. agnata and M. stygia due to their chemical similarity. Orthogonal partial least-squares to latent structures-discriminate analysis (OPLS-DA), however, successfully distinguished M. agnata and M. stygia by identifying statistically significant metabolites, which lead to class differentiation. This work has demonstrated the potential of DNA barcoding, chemical

  20. Chemometric analysis of the secondary metabolite profile of Yarrow (Achillea collina Becker ex Rchb. affected by phloem feeding Myzus persicae Sulzer aphids

    Directory of Open Access Journals (Sweden)

    Annamaria Giorgi

    2010-07-01

    Full Text Available Yarrow (Achillea collina Becker ex Rchb. has a high content of secondary metabolites including phenolic acids. Among them, hydroxycinnamic acid such as chlorogenic acid and its derivatives were found to be the most abundant ones. The phloem feeding Myzus persicae Sulzer was hypothesized to affect the contents of secondary metabolites and change the metabolite profile. A high-performance liquid chromatography technique (HPLC was used to evaluate whether there is a difference in the phenolic profile between aphid infested and non-infested yarrow leaves. M. persicae colonies composed of between 20 and 30 individuals were allowed to feed for 10 and 20 days. Preprocessing was carried out to standardize the procedures in order to obtain optimal separation of analytes, good chromatographic peak shape and robustness of the results. The methanol extracts of leaves were analyzed by means of HPLC, and the time series of peak areas obtained from each extract were evaluated through chemometric analyses. Results of the phenolic fingerprints showed a specific chromatographic profile with 58 peaks. An autoregression analysis demonstrated the absence of correlation. The discriminant analysis carried out with the data satisfying the assumption of the absence of collinearity showed a significant effect of phloem feeding on soluble phenolic compounds and identified two peaks that separate aphid infested from non-infested plants. The hydroxycinnamic acids widely found in A. collina leaves were not affected by M. persicae feeding. The results are the basis for the current studies aiming at the identification of chemical compounds that correspond to the peaks.

  1. Effectiveness of different solid-phase microextraction fibres for differentiation of selected Madeira island fruits based on their volatile metabolite profile: identification of novel compounds

    OpenAIRE

    Pereira, João; Pereira, Jorge; Câmara, José de Sousa

    2011-01-01

    A headspace solid-phase microextraction (HS-SPME) procedure based on five commercialised fibres (85 μm polyacrylate – PA, 100 μm polydimethylsiloxane – PDMS, 65 μm polydimethylsiloxane/divinylbenzene – PDMS/DVB, 70 μm carbowax/divinylbenzene – CW/DVB and 85 μm carboxen/polydimethylsiloxane – CAR/PDMS) is presented for the characterization of the volatile metabolite profile of four selected Madeira island fruit species, lemon (Citrus limon), kiwi (Actinidia deliciosa), papaya (Carica papaya L....

  2. Lipid profiling following intake of the omega 3 fatty acid DHA identifies the peroxidized metabolites F4-neuroprostanes as the best predictors of atherosclerosis prevention.

    Directory of Open Access Journals (Sweden)

    Cécile Gladine

    Full Text Available The anti-atherogenic effects of omega 3 fatty acids, namely eicosapentaenoic (EPA and docosahexaenoic acids (DHA are well recognized but the impact of dietary intake on bioactive lipid mediator profiles remains unclear. Such a profiling effort may offer novel targets for future studies into the mechanism of action of omega 3 fatty acids. The present study aimed to determine the impact of DHA supplementation on the profiles of polyunsaturated fatty acids (PUFA oxygenated metabolites and to investigate their contribution to atherosclerosis prevention. A special emphasis was given to the non-enzymatic metabolites knowing the high susceptibility of DHA to free radical-mediated peroxidation and the increased oxidative stress associated with plaque formation. Atherosclerosis prone mice (LDLR(-/- received increasing doses of DHA (0, 0.1, 1 or 2% of energy during 20 weeks leading to a dose-dependent reduction of atherosclerosis (R(2 = 0.97, p = 0.02, triglyceridemia (R(2 = 0.97, p = 0.01 and cholesterolemia (R(2 = 0.96, p<0.01. Targeted lipidomic analyses revealed that both the profiles of EPA and DHA and their corresponding oxygenated metabolites were substantially modulated in plasma and liver. Notably, the hepatic level of F4-neuroprostanes, a specific class of DHA peroxidized metabolites, was strongly correlated with the hepatic DHA level. Moreover, unbiased statistical analysis including correlation analyses, hierarchical cluster and projection to latent structure discriminate analysis revealed that the hepatic level of F4-neuroprostanes was the variable most negatively correlated with the plaque extent (p<0.001 and along with plasma EPA-derived diols was an important mathematical positive predictor of atherosclerosis prevention. Thus, oxygenated n-3 PUFAs, and F4-neuroprostanes in particular, are potential biomarkers of DHA-associated atherosclerosis prevention. While these may contribute to the anti-atherogenic effects of DHA

  3. Lipid profiling following intake of the omega 3 fatty acid DHA identifies the peroxidized metabolites F4-neuroprostanes as the best predictors of atherosclerosis prevention.

    Science.gov (United States)

    Gladine, Cécile; Newman, John W; Durand, Thierry; Pedersen, Theresa L; Galano, Jean-Marie; Demougeot, Céline; Berdeaux, Olivier; Pujos-Guillot, Estelle; Mazur, Andrzej; Comte, Blandine

    2014-01-01

    The anti-atherogenic effects of omega 3 fatty acids, namely eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) are well recognized but the impact of dietary intake on bioactive lipid mediator profiles remains unclear. Such a profiling effort may offer novel targets for future studies into the mechanism of action of omega 3 fatty acids. The present study aimed to determine the impact of DHA supplementation on the profiles of polyunsaturated fatty acids (PUFA) oxygenated metabolites and to investigate their contribution to atherosclerosis prevention. A special emphasis was given to the non-enzymatic metabolites knowing the high susceptibility of DHA to free radical-mediated peroxidation and the increased oxidative stress associated with plaque formation. Atherosclerosis prone mice (LDLR(-/-)) received increasing doses of DHA (0, 0.1, 1 or 2% of energy) during 20 weeks leading to a dose-dependent reduction of atherosclerosis (R(2) = 0.97, p = 0.02), triglyceridemia (R(2) = 0.97, p = 0.01) and cholesterolemia (R(2) = 0.96, p<0.01). Targeted lipidomic analyses revealed that both the profiles of EPA and DHA and their corresponding oxygenated metabolites were substantially modulated in plasma and liver. Notably, the hepatic level of F4-neuroprostanes, a specific class of DHA peroxidized metabolites, was strongly correlated with the hepatic DHA level. Moreover, unbiased statistical analysis including correlation analyses, hierarchical cluster and projection to latent structure discriminate analysis revealed that the hepatic level of F4-neuroprostanes was the variable most negatively correlated with the plaque extent (p<0.001) and along with plasma EPA-derived diols was an important mathematical positive predictor of atherosclerosis prevention. Thus, oxygenated n-3 PUFAs, and F4-neuroprostanes in particular, are potential biomarkers of DHA-associated atherosclerosis prevention. While these may contribute to the anti-atherogenic effects of DHA

  4. Quantitative profiling of tryptophan metabolites in serum, urine, and cell culture supernatants by liquid chromatography–tandem mass spectrometry

    NARCIS (Netherlands)

    Zhu, W.T.; Stevens, A.P.; Dettmer, K.; Gottfried, E.; Hoves, S.; Kreutz, M.; Holler, E.; Canelas, A.B.; Kema, I.; Oefner, P.J.

    2011-01-01

    A sensitive, selective, and comprehensive method for the quantitative determination of tryptophan and 18 of its key metabolites in serum, urine, and cell culture supernatants was developed. The analytes were separated on a C18 silica column by reversed-phase liquid chromatography and detected by

  5. Quantitative profiling of tryptophan metabolites in serum, urine, and cell culture supernatants by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Zhu, Wentao; Stevens, Axel P.; Dettmer, Katja; Gottfried, Eva; Hoves, Sabine; Kreutz, Marina; Holler, Ernst; Canelas, Andre B.; Kema, Ido; Oefner, Peter J.

    2011-01-01

    A sensitive, selective, and comprehensive method for the quantitative determination of tryptophan and 18 of its key metabolites in serum, urine, and cell culture supernatants was developed. The analytes were separated on a C18 silica column by reversed-phase liquid chromatography and detected by

  6. Metabolite Profiling during Fermentation of Makgeolli by the Wild Yeast Strain Saccharomyces cerevisiae Y98-5

    Science.gov (United States)

    Kim, Jae-Ho; Ahn, Byung Hak; Bai, Dong-Hoon

    2014-01-01

    Makgeolli is a traditional Korean alcoholic beverage. The flavor of makgeolli is primarily determined by metabolic products such as free sugars, amino acids, organic acids, and aromatic compounds, which are produced during the fermentation of raw materials by molds and yeasts present in nuruk, a Korean fermentation starter. In this study, makgeolli was brewed using the wild yeast strain Saccharomyces cerevisiae Y98-5, and temporal changes in the metabolites during fermentation were analyzed by ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. The resultant data were analyzed by partial least squares-discriminant analysis (PLS-DA). Various metabolites, including amino acids, organic acids, sugar alcohols, small peptides, and nucleosides, were obviously altered by increasing the fermentation period. Changes in these metabolites allowed us to distinguish among makgeolli samples with different fermentation periods (1, 2, 3, 6, 7, and 8 days) on a PLS-DA score plot. In the makgeolli brewed in this study, the amounts of tyrosine (463.13 µg/mL) and leucine (362.77 µg/mL) were high. Therefore, our results indicate that monitoring the changes in metabolites during makgeolli fermentation might be important for brewing makgeolli with good nutritional quality. PMID:25606007

  7. Use of an electronic-nose device for profiling headspace volatile metabolites to rapidly identify phytopathogenic microbes [Abstract].

    Science.gov (United States)

    A. Dan Wilson; D.G. Lester

    1997-01-01

    A new electronic-nose device (AromaScan A32S), consisting of an organic matrix-coated polymer-type 32-detector array, was tested as a novel tool for the detection, identification, and discrimination of phytopathogenic microbes. The sensor array detects the unique mixture of volatile metabolites released by microbes growing on standardized growth media by measuring...

  8. NMR-based metabolite profiling of human milk: A pilot study of methods for investigating compositional changes during lactation.

    Science.gov (United States)

    Wu, Junfang; Domellöf, Magnus; Zivkovic, Angela M; Larsson, Göran; Öhman, Anders; Nording, Malin L

    2016-01-15

    Low-molecular-weight metabolites in human milk are gaining increasing interest in studies of infant nutrition. In the present study, the milk metabolome from a single mother was explored at different stages of lactation. Metabolites were extracted from sample aliquots using either methanol/water (MeOH/H2O) extraction or ultrafiltration. Nuclear magnetic resonance (NMR) spectroscopy was used for metabolite identification and quantification, and multi- and univariate statistical data analyses were used to detect changes over time of lactation. Compared to MeOH/H2O extraction, ultrafiltration more efficiently reduced the interference from lipid and protein resonances, thereby enabling the identification and quantification of 36 metabolites. The human milk metabolomes at the early (9-24 days after delivery) and late (31-87 days after delivery) stages of lactation were distinctly different according to multi- and univariate statistics. The late lactation stage was characterized by significantly elevated concentrations of lactose, choline, alanine, glutamate, and glutamine, as well as by reduced levels of citrate, phosphocholine, glycerophosphocholine, and N-acetylglucosamine. Our results indicate that there are significant compositional changes of the human milk metabolome also in different phases of the matured lactation stage. These findings complement temporal studies on the colostrum and transitional metabolome in providing a better understanding of the nutritional variations received by an infant. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. In vitro transport profile of carbamazepine, oxcarbazepine, eslicarbazepine acetate, and their active metabolites by human P-glycoprotein.

    Science.gov (United States)

    Zhang, Chunbo; Zuo, Zhong; Kwan, Patrick; Baum, Larry

    2011-10-01

    Antiepileptic drugs (AEDs) are widely used not only in the treatment of epilepsy but also as treatments for psychiatric disorders. Pharmacoresistance of AEDs in the treatment of epilepsy and psychiatric disorders is a serious problem. Transport of antiepileptic drugs by P-glycoprotein (Pgp, ABCB1, or MDR1), which is overexpressed in the blood-brain barrier, may be a mechanism for resistance of AEDs. For most AEDs, conflicting evidence precludes consensus on whether they are substrates of Pgp. The objective of this study was to evaluate whether analogs and metabolites of the AED carbamazepine are substrates of human Pgp. Polarized cell lines MDCKII and LLC transfected with the human MDR1 gene were used in the bidirectional transport assay and concentration equilibrium transport assay. The expression of Pgp was detected by real-time polymerase chain reaction (PCR) and immunofluorescent staining. Rhodamine-123 uptake was also determined. Pgp did not transport carbamazepine, but it did transport its active metabolite carbamazepine-10,11-epoxide. Pgp also pumped eslicarbazepine acetate and oxcarbazepine, as well as their active metabolite (S)-licarbazepine. Transport of the drugs was in the order of ESL>OXC>S-LC>CBZ-E in concentration equilibrium conditions. The transport of these drugs was blocked by Pgp inhibitors tariquidar and verapamil. All carbamazepine analogs or metabolites tested are Pgp substrates, except for carbamazepine. These data suggest that resistance to carbamazepine, oxcarbazepine, or eslicarbazepine acetate may be attributed to increased efflux function of Pgp because they or their active metabolites are Pgp substrates. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  10. NMR-based metabolite profiling of human milk: A pilot study of methods for investigating compositional changes during lactation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junfang [Department of Chemistry, Umeå University (Sweden); Domellöf, Magnus [Department of Clinical Sciences, Pediatrics, Umeå University (Sweden); Zivkovic, Angela M. [Foods for Health Institute, University of California, Davis, CA (United States); Department of Nutrition, University of California, Davis, CA (United States); Larsson, Göran [Department of Medical Biochemistry and Biophysics, Unit of Research, Education and Development-Östersund, Umeå University (Sweden); Öhman, Anders, E-mail: anders.ohman01@umu.se [Department of Pharmacology and Clinical Neuroscience, Umeå University (Sweden); Nording, Malin L., E-mail: malin.nording@umu.se [Department of Chemistry, Umeå University (Sweden)

    2016-01-15

    Low-molecular-weight metabolites in human milk are gaining increasing interest in studies of infant nutrition. In the present study, the milk metabolome from a single mother was explored at different stages of lactation. Metabolites were extracted from sample aliquots using either methanol/water (MeOH/H{sub 2}O) extraction or ultrafiltration. Nuclear magnetic resonance (NMR) spectroscopy was used for metabolite identification and quantification, and multi- and univariate statistical data analyses were used to detect changes over time of lactation. Compared to MeOH/H{sub 2}O extraction, ultrafiltration more efficiently reduced the interference from lipid and protein resonances, thereby enabling the identification and quantification of 36 metabolites. The human milk metabolomes at the early (9–24 days after delivery) and late (31–87 days after delivery) stages of lactation were distinctly different according to multi- and univariate statistics. The late lactation stage was characterized by significantly elevated concentrations of lactose, choline, alanine, glutamate, and glutamine, as well as by reduced levels of citrate, phosphocholine, glycerophosphocholine, and N-acetylglucosamine. Our results indicate that there are significant compositional changes of the human milk metabolome also in different phases of the matured lactation stage. These findings complement temporal studies on the colostrum and transitional metabolome in providing a better understanding of the nutritional variations received by an infant. - Highlights: • 36 metabolites were simultaneously quantified in human milk by NMR. • Ultrafiltration more efficiently reduces interferences than MeOH/H{sub 2}O extraction. • Compositional changes of the human milk exist during the matured lactation stage.

  11. Urine and serum metabolite profiling of rats fed a high-fat diet and the anti-obesity effects of caffeine consumption.

    Science.gov (United States)

    Kim, Hyang Yeon; Lee, Mee Youn; Park, Hye Min; Park, Yoo Kyoung; Shon, Jong Cheol; Liu, Kwang-Hyeon; Lee, Choong Hwan

    2015-02-13

    In this study, we investigated the clinical changes induced by a high fat diet (HFD) and caffeine consumption in a rat model. The mean body weight of the HFD with caffeine (HFDC)-fed rat was decreased compared to that of the HFD-fed rat without caffeine. The levels of cholesterol, triglycerides (TGs), and free fatty acid, as well as the size of adipose tissue altered by HFD, were improved by caffeine consumption. To investigate the metabolites that affected the change of the clinical factors, the urine and serum of rats fed a normal diet (ND), HFD, and HFDC were analyzed using ultra performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-Q-TOF-MS), gas chromatography (GC-TOF-MS), and linear trap quadruple mass spectrometry (LTQ-XL-MS) combined with multivariate analysis. A total of 68 and 52 metabolites were found to be different in urine and serum, respectively. After being fed caffeine, some glucuronide-conjugated compounds, lysoPCs, CEs, DGs, TGs, taurine, and hippuric acid were altered compared to the HFD group. In this study, caffeine might potentially inhibit HFD-induced obesity and we suggest possible biomarker candidates using MS-based metabolite profiling.

  12. Urine and Serum Metabolite Profiling of Rats Fed a High-Fat Diet and the Anti-Obesity Effects of Caffeine Consumption

    Directory of Open Access Journals (Sweden)

    Hyang Yeon Kim

    2015-02-01

    Full Text Available In this study, we investigated the clinical changes induced by a high fat diet (HFD and caffeine consumption in a rat model. The mean body weight of the HFD with caffeine (HFDC-fed rat was decreased compared to that of the HFD-fed rat without caffeine. The levels of cholesterol, triglycerides (TGs, and free fatty acid, as well as the size of adipose tissue altered by HFD, were improved by caffeine consumption. To investigate the metabolites that affected the change of the clinical factors, the urine and serum of rats fed a normal diet (ND, HFD, and HFDC were analyzed using ultra performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-Q-TOF-MS, gas chromatography (GC-TOF-MS, and linear trap quadruple mass spectrometry (LTQ-XL-MS combined with multivariate analysis. A total of 68 and 52 metabolites were found to be different in urine and serum, respectively. After being fed caffeine, some glucuronide-conjugated compounds, lysoPCs, CEs, DGs, TGs, taurine, and hippuric acid were altered compared to the HFD group. In this study, caffeine might potentially inhibit HFD-induced obesity and we suggest possible biomarker candidates using MS-based metabolite profiling.

  13. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology.

    Directory of Open Access Journals (Sweden)

    Kasandra Burgos

    Full Text Available The discovery and reliable detection of markers for neurodegenerative diseases have been complicated by the inaccessibility of the diseased tissue--such as the inability to biopsy or test tissue from the central nervous system directly. RNAs originating from hard to access tissues, such as neurons within the brain and spinal cord, have the potential to get to the periphery where they can be detected non-invasively. The formation and extracellular release of microvesicles and RNA binding proteins have been found to carry RNA from cells of the central nervous system to the periphery and protect the RNA from degradation. Extracellular miRNAs detectable in peripheral circulation can provide information about cellular changes associated with human health and disease. In order to associate miRNA signals present in cell-free peripheral biofluids with neurodegenerative disease status of patients with Alzheimer's and Parkinson's diseases, we assessed the miRNA content in cerebrospinal fluid and serum from postmortem subjects with full neuropathology evaluations. We profiled the miRNA content from 69 patients with Alzheimer's disease, 67 with Parkinson's disease and 78 neurologically normal controls using next generation small RNA sequencing (NGS. We report the average abundance of each detected miRNA in cerebrospinal fluid and in serum and describe 13 novel miRNAs that were identified. We correlated changes in miRNA expression with aspects of disease severity such as Braak stage, dementia status, plaque and tangle densities, and the presence and severity of Lewy body pathology. Many of the differentially expressed miRNAs detected in peripheral cell-free cerebrospinal fluid and serum were previously reported in the literature to be deregulated in brain tissue from patients with neurodegenerative disease. These data indicate that extracellular miRNAs detectable in the cerebrospinal fluid and serum are reflective of cell-based changes in pathology and can

  14. Profiling of phytohormones and their major metabolites in rice using binary solid-phase extraction and liquid chromatography-triple quadrupole mass spectrometry.

    Science.gov (United States)

    Cao, Zhao-Yun; Sun, Li-Hua; Mou, Ren-Xiang; Zhang, Lin-Ping; Lin, Xiao-Yan; Zhu, Zhi-Wei; Chen, Ming-Xue

    2016-06-17

    A high-throughput method was developed using liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) for the profiling and quantification of 43 phytohormones and their major metabolites, including auxins, abscisic acid, jasmonic acid, salicylic acid, cytokinins and gibberellins in a single sample extract. Considerable matrix effects (MEs) were observed (with most ME values in the range of 29%-84%, but maximum MEs of more than 115%, even up to 206%, existed) in sample extracts for most of the compounds studied. The application of the proposed binary solid-phase extraction using polymer anion and polymer cation exchange resins, was performed to purify 25 acidic and 18 alkaline phytohormones and their major metabolites prior to the LC-MS/MS analysis, which markedly reduced the MEs to acceptable levels, with ME values in the range of ±15%. Moreover, all of the isomers of cytokinins and their metabolites were fully separated on a sub-2μm particle C18 reverse-phase column with the optimized mobile phase consisting of methanol and 5mM ammonium formate. The method showed good linearity for all 43 analytes with regression coefficients (R(2))>0.991. Limits of detection ranged from 0.19 to 7.57 fmol for auxin, gibberellins, abscisic acid and their metabolites, 29.7 fmol for jasmonic acid, 18.1 fmol for salicylic acid, and from 0.03 to 0.31 fmol for cytokinins and their metabolites. The mean recoveries for all of the analytes were from 70.7 to 118.5%, and the inter-day precisions (n=6) were less than 18.7%, with intra-day precisions (n=6) within 25.4%. Finally, 20 compounds were successfully quantified in rice sample profiles using the proposed method, which will greatly facilitate the understanding of hormone-related regulatory networks that influence rice growth and development. To our knowledge, there are limited reports that measure this level of phytohormone species in rice samples using a single analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. In vivo degradation profile of porcine cartilage-derived extracellular matrix powder scaffolds using a non-invasive fluorescence imaging method.

    Science.gov (United States)

    Kim, Hyeon Joo; Lee, Soyeon; Yun, Hee-Woong; Yin, Xiang Yun; Kim, Soon Hee; Choi, Byung Hyune; Kim, Young Jick; Kim, Moon Suk; Min, Byoung-Hyun

    2016-01-01

    We present a non-invasive fluorescence method for imaging of scaffold degradation in vivo by quantifying the degradation of porcine cartilage-derived extracellular matrix powder (PCP).Three-dimensional porous scaffolds should be biocompatible and bioresorbable, with a controllable degradation and resorption rate to match tissue growth. However, in vivo scaffold degradation and tissue ingrowth processes are not yet fully understood. Unfortunately, current analysis methods require animal sacrifice and scaffold destruction for the quantification of scaffold degradation and cannot monitor the situation in real time. In this study, Cy3, a fluorescent dye, was used for visualizing PCP and a real-time degradation profile was obtained quantitatively by a non-invasive method using an imaging system in which the reduction in fluorescence intensity depended on PCP scaffold degradation. Real-time PCP scaffold degradation was confirmed through changes in the volume and morphology of the scaffold using micro-computed tomography and microscopy. Our results suggest that extracellular matrix degradation was induced by collagen degradation because of the binding between Cy3 and collagen. This non-invasive real-time monitoring system for scaffold degradation will increase our understanding of in vivo matrix and/or scaffold degradation.

  16. Analysis of Particulate and Dissolved Metabolite Pools at Station ALOHA

    Science.gov (United States)

    Boysen, A.; Carlson, L.; Hmelo, L.; Ingalls, A. E.

    2016-02-01

    Metabolomic studies focus on identifying and quantifying the small organic molecules that are the currency by which an organism lives and dies. Metabolite profiles of microorganisms have the potential to elucidate mechanisms of chemically mediated interactions that influence the success of microbial groups living in a complex environment. However, the chemical diversity of metabolites makes resolving a wide range of compounds analytically challenging. As such, metabolomics has lagged behind other genomic analyses. Here we conduct targeted analysis of over 200 primary and secondary metabolites present in the intracellular and extracellular metabolite pools at Station ALOHA using both reverse phase and hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. We selected the metabolites in our method due to their known importance in primary metabolism, secondary metabolism, and interactions between marine microorganisms such as nutrient exchange, growth promotion, and cell signaling. Through these analyses we obtain a snapshot of microbial community status that, blended with other forms of genomic data, can further our understanding of microbial dynamics. We hypothesize that monitoring a large suite of important metabolites across environmental gradients and diurnal cycles can elucidate factors controlling the distribution and activity of important microbial groups.

  17. Non-targeted metabolite profiling and scavenging activity unveil the nutraceutical potential of psyllium (Plantago ovata Forsk

    Directory of Open Access Journals (Sweden)

    Manish Kumar Patel

    2016-04-01

    Full Text Available Non–targeted metabolomics implies that psyllium (Plantago ovata is a rich source of natural antioxidants, PUFAs (ω-3 and ω-6 fatty acids and essential and sulphur–rich amino acids, as recommended by the FAO for human health. Psyllium contains phenolics and flavonoids that possess reducing capacity and ROS scavenging activities. In leaves, seeds and husks, about 76%, 78%, 58% polyunsaturated, 21%, 15%, 20% saturated and 3%, 7%, 22% monounsaturated fatty acids were found, respectively. A range of FAs (C12 to C24 was detected in psyllium and among different plant parts, a high content of the nutritive indicators ω-3 alpha–linolenic acid (57% and ω-6 linoleic acid (18% was detected in leaves. Similarly, total content of phenolics and the essential amino acid valine were also detected utmost in leaves followed by sulphur-rich amino acids and flavonoids. In total, 36 different metabolites were identified in psyllium, out of which 26 (13 each metabolites were detected in leaves and seeds, whereas the remaining 10 were found in the husk. Most of the metabolites are natural antioxidants, phenolics, flavonoids or alkaloids and can be used as nutrient supplements. Moreover, these metabolites have been reported to have several pharmaceutical applications, including anti-cancer activity. Natural plant ROS scavengers, saponins, were also detected. Based on metabolomic data, the probable presence of a flavonoid biosynthesis pathway was inferred, which provides useful insight for metabolic engineering in the future. Non-targeted metabolomics, antioxidants and scavenging activities reveal the nutraceutical potential of the plant and also suggest that psyllium leaves can be used as a green salad as a dietary supplement to daily food.

  18. Non-targeted Metabolite Profiling and Scavenging Activity Unveil the Nutraceutical Potential of Psyllium (Plantago ovata Forsk).

    Science.gov (United States)

    Patel, Manish K; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Non-targeted metabolomics implies that psyllium (Plantago ovata) is a rich source of natural antioxidants, PUFAs (ω-3 and ω-6 fatty acids) and essential and sulfur-rich amino acids, as recommended by the FAO for human health. Psyllium contains phenolics and flavonoids that possess reducing capacity and reactive oxygen species (ROS) scavenging activities. In leaves, seeds, and husks, about 76, 78, 58% polyunsaturated, 21, 15, 20% saturated, and 3, 7, 22% monounsaturated fatty acids were found, respectively. A range of FAs (C12 to C24) was detected in psyllium and among different plant parts, a high content of the nutritive indicators ω-3 alpha-linolenic acid CPS (57%) and ω-6 linoleic acid CPS (18%) was detected in leaves. Similarly, total content of phenolics and the essential amino acid valine were also detected utmost in leaves followed by sulfur-rich amino acids and flavonoids. In total, 36 different metabolites were identified in psyllium, out of which 26 (13 each) metabolites were detected in leaves and seeds, whereas the remaining 10 were found in the husk. Most of the metabolites are natural antioxidants, phenolics, flavonoids, or alkaloids and can be used as nutrient supplements. Moreover, these metabolites have been reported to have several pharmaceutical applications, including anti-cancer activity. Natural plant ROS scavengers, saponins, were also detected. Based on metabolomic data, the probable presence of a flavonoid biosynthesis pathway was inferred, which provides useful insight for metabolic engineering in the future. Non-targeted metabolomics, antioxidants and scavenging activities reveal the nutraceutical potential of the plant and also suggest that psyllium leaves can be used as a green salad as a dietary supplement to daily food.

  19. Applied metabolome analysis : exploration, development and application of gas chromatography-mass spectrometry based metabolite profiling technologies

    OpenAIRE

    Kopka, Joachim

    2010-01-01

    The uptake of nutrients and their subsequent chemical conversion by reactions which provide energy and building blocks for growth and propagation is a fundamental property of life. This property is termed metabolism. In the course of evolution life has been dependent on chemical reactions which generate molecules that are common and indispensable to all life forms. These molecules are the so-called primary metabolites. In addition, life has evolved highly diverse biochemical reactions. These ...

  20. Metabolite profiling in Trigonella seeds via UPLC-MS and GC-MS analyzed using multivariate data analyses.

    Science.gov (United States)

    Farag, Mohamed A; Rasheed, Dalia M; Kropf, Matthias; Heiss, Andreas G

    2016-11-01

    Trigonella foenum-graecum is a plant of considerable value for its nutritive composition as well as medicinal effects. This study aims to examine Trigonella seeds using a metabolome-based ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) in parallel to gas chromatography-mass spectrometry (GC-MS) coupled with multivariate data analyses. The metabolomic differences of seeds derived from three Trigonella species, i.e., T. caerulea, T. corniculata, and T. foenum-graecum, were assessed. Under specified conditions, we were able to identify 93 metabolites including 5 peptides, 2 phenolic acids, 22 C/O-flavonoid conjugates, 26 saponins, and 9 fatty acids using UPLC-MS. Several novel dipeptides, saponins, and flavonoids were found in Trigonella herein for the first time. Samples were classified via unsupervised principal component analysis (PCA) followed by supervised orthogonal projection to latent structures-discriminant analysis (OPLS-DA). A distinct separation among the investigated Trigonella species was revealed, with T. foenum-graecum samples found most enriched in apigenin-C-glycosides, viz. vicenins 1/3 and 2, compared to the other two species. In contrast to UPLC-MS, GC-MS was less efficient to classify specimens, with differences among specimens mostly attributed to fatty acyl esters. GC-MS analysis of Trigonella seed extracts led to the identification of 91 metabolites belonging mostly to fatty acyl esters, free fatty acids followed by organic acids, sugars, and amino acids. This study presents the first report on primary and secondary metabolite compositional differences among Trigonella seeds via a metabolomics approach and reveals that, among the species examined, the official T. foenum-graecum presents a better source of Trigonella secondary bioactive metabolites.

  1. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fan; Williams, Brad J.; Thangella, Padmavathi A. V.; Ladak, Adam; Schepmoes, Athena A.; Olivos, Hernando J.; Zhao, Kangmei; Callister, Stephen J.; Bartley, Laura E.

    2017-07-13

    Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic and metabolite analyses of the rice elongating internode. Along eight segments of the second rice internode (internode II) at booting stage, cellulose, lignin, and xylose increase as a percentage of cell wall material from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested peptides of size-fractionated proteins extracted from this internode at booting reveals 2547proteins with at least two unique peptides. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of the internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including an LRR-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of internode proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS of hot methanol-extracted secondary metabolites from internode II at four stages (elongation, early mature, mature and post mature) indicates that secondary metabolites in stems are distinct from those of roots and leaves, and differ during stem maturation. This work fills a void of knowledge of proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes during internode development, toward improving grass agronomic properties.

  2. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode

    Directory of Open Access Journals (Sweden)

    Fan Lin

    2017-07-01

    Full Text Available Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic, and metabolite analyses of the rice elongating internode. Cellulose, lignin, and xylose increase as a percentage of cell wall material along eight segments of the second rice internode (internode II at booting stage, from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS of trypsin-digested proteins from this internode at booting reveals 2,547 proteins with at least two unique peptides in two biological replicates. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including a leucine rich repeat-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS/MS of hot methanol-extracted secondary metabolites from internode II at four stages (booting/elongation, early mature, mature, and post mature indicates that internode secondary metabolites are distinct from those of roots and leaves, and differ across stem maturation. This work fills a void of in-depth proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes characteristic of internode development, toward improving grass agronomic properties.

  3. De-novo RNA sequencing and metabolite profiling to identify genes involved in anthocyanin biosynthesis in Korean black raspberry (Rubus coreanus Miquel.

    Directory of Open Access Journals (Sweden)

    Tae Kyung Hyun

    Full Text Available The Korean black raspberry (Rubus coreanus Miquel, KB on ripening is usually consumed as fresh fruit, whereas the unripe KB has been widely used as a source of traditional herbal medicine. Such a stage specific utilization of KB has been assumed due to the changing metabolite profile during fruit ripening process, but so far molecular and biochemical changes during its fruit maturation are poorly understood. To analyze biochemical changes during fruit ripening process at molecular level, firstly, we have sequenced, assembled, and annotated the transcriptome of KB fruits. Over 4.86 Gb of normalized cDNA prepared from fruits was sequenced using Illumina HiSeq™ 2000, and assembled into 43,723 unigenes. Secondly, we have reported that alterations in anthocyanins and proanthocyanidins are the major factors facilitating variations in these stages of fruits. In addition, up-regulation of F3'H1, DFR4 and LDOX1 resulted in the accumulation of cyanidin derivatives during the ripening process of KB, indicating the positive relationship between the expression of anthocyanin biosynthetic genes and the anthocyanin accumulation. Furthermore, the ability of RcMCHI2 (R. coreanus Miquel chalcone flavanone isomerase 2 gene to complement Arabidopsis transparent testa 5 mutant supported the feasibility of our transcriptome library to provide the gene resources for improving plant nutrition and pigmentation. Taken together, these datasets obtained from transcriptome library and metabolic profiling would be helpful to define the gene-metabolite relationships in this non-model plant.

  4. Profiling of cis-diol-containing nucleosides and ribosylated metabolites by boronate-affinity organic-silica hybrid monolithic capillary liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Jiang, Han-Peng; Qi, Chu-Bo; Chu, Jie-Mei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-01-14

    RNA contains a large number of modified nucleosides. In the metabolic re-exchange of RNA, modified nucleosides cannot be recycled and are thus excreted from cells into biological fluids. Determination of endogenous modified nucleosides in biological fluids may serve as non-invasive cancers diagnostic methods. Here we prepared boronate-affinity organic-silica hybrid capillary monolithic column (BOHCMC) that exhibited excellent selectivity toward the cis-diol-containing compounds. We then used the prepared BOHCMC as the on-line solid-phase microextraction (SPME) column and developed an on-line SPME-LC-MS/MS method to comprehensively profile cis-diol-containing nucleosides and ribosylated metabolites in human urine. Forty-five cis-diol-containing nucleosides and ribosylated metabolites were successfully identified in human urine. And five ribose conjugates, for the first time, were identified existence in human urine in the current study. Furthermore, the relative quantification suggested 4 cis-diol-containing compounds (5'-deoxy-5'-methylthioadensine, N(4)-acetylcytidine, 1-ribosyl-N-propionylhistamine and N(2),N(2),7-trimethylguanosine) increased more than 1.5 folds in all the 3 types of examined cancers (lung cancer, colorectal cancer, and nasopharyngeal cancer) compared to healthy controls. The on-line SPME-LC-MS/MS method demonstrates a promising method for the comprehensive profiling of cis-diol-containing ribose conjugates in human urines, which provides an efficient strategy for the identification and discovery of biomarkers and may be used for the screening of cancers.

  5. Untargeted metabolite profiling reveals that nitric oxide bioynthesis is an endogenous modulator of carotenoid biosynthesis in Deinococcus radiodurans and is required for extreme ionizing radiation resistance.

    Science.gov (United States)

    Hansler, Alex; Chen, Qiuying; Ma, Yuliang; Gross, Steven S

    2016-01-01

    Deinococcus radiodurans (Drad) is the most radioresistant organism known. Although mechanisms that underlie the extreme radioresistance of Drad are incompletely defined, resistance to UV irradiation-induced killing was found to be greatly attenuated in an NO synthase (NOS) knockout strain of Drad (Δnos). We now show that endogenous NO production is also critical for protection of Drad against γ-irradiation (3000 Gy), a result of accelerated growth recovery, not protection against killing. NO-donor treatment rescued radiosensitization in Δnos Drad but did not influence radiosensitivity in wild type Drad. To discover molecular mechanisms by which endogenous NO confers radioresistance, metabolite profiling studies were performed. Untargeted LC-MS-based metabolite profiling in Drad quantified relative abundances of 1425 molecules and levels of 294 of these were altered by >5-fold (p < 0.01). Unexpectedly, these studies identified a dramatic perturbation in carotenoid biosynthetic intermediates in Δnos Drad, including a reciprocal switch in the pathway end-products from deoxydeinoxanthin to deinoxanthin. NO supplementation rescued these nos deletion-associated changes in carotenoid biosynthesis, and fully-restored radioresistance to wildtype levels. Because carotenoids were shown to be important contributors to radioprotection in Drad, our findings suggest that endogenously-produced NO serves to maintain a spectrum of carotenoids critical for Drad's ability to withstand radiation insult. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Acaricidal activity of Annonaceae fractions against Tetranychus tumidus and Tetranychus urticae (Acari: Tetranychidae and the metabolite profile of Duguetia lanceolata (Annonaceae using GC-MS

    Directory of Open Access Journals (Sweden)

    Dejane Santos Alves

    2015-12-01

    Full Text Available Species of the Tetranychus genus feed on plant tissues, which reduces the rate of photosynthesis and can lead to the death of plant tissues. As a result, considerable production losses are caused by these arthropods. Thus, in order to aid in the development of new products for the control of Tetranychus tumidus Banks and Tetranychus urticae Koch (Acari: Tetranychidae, the initial objective of this study was to select Annonaceae derived fractions that were soluble in dichloromethane and have acaricidal activity. Then, an exploratory analysis of the metabolite profile of the most successful fraction was performed by gas chromatography-mass spectrometry (GC-MS. Among the dichloromethane soluble fractions derived from Annona cacans Warm., Annona coriacea Mart., Annona neolaurifolia H. Rainer, Annona sylvatica A.St.-Hil., Duguetia lanceolata A.St.-Hil., Guatteria australis A.St.-Hil., Xylopia brasiliensis Spreng., Xylopia emarginata Mart. and Xylopia sericea A.St.-Hil., only the fraction from D. lanceolata stem bark reduced the survival of T. tumidus females. However, ovicidal activity was not detected when D. lanceolata stem bark was evaluated against T. tumidus eggs. Further, we studied the effect of dichloromethane soluble fractions from D. lanceolata leaves, berry fruits and stem bark on T. urticae, and the stem bark was found to be the most active fraction against T. urticae. The metabolite profile analysis of D. lanceolata stem bark by GC-MS, suggested that the main constituents were 2,4,5-trimethoxystyrene and trans-asarone.

  7. Identification of Metabolites from LC-EC Profiling: GC-MS and Re-Fractionation Provide Essential Information Orthogonal to LCMS/microNMR

    Science.gov (United States)

    Gathungu, Rose M.; Bird, Susan S.; Sheldon, Diane P.; Kautz, Roger; Vouros, Paul; Matson, Wayne R.; Kristal, Bruce S.

    2014-01-01

    HPLC-coulometric electrode-array detection (LC-EC) is a sensitive, quantitative and robust metabolomics profiling tool that complements the commonly used MS and NMR-based approaches. However, LC-EC provides little structural information. We recently demonstrated a workflow for the structural characterization of metabolites detected by LC-EC profiling, combined with LC-ESI-MS and microNMR. This methodology is now extended to include: (i) GC-EI-MS analysis to fill structural gaps left by LC-ESI-MS and NMR, and (ii) secondary fractionation of LC-collected fractions containing multiple co-eluting analytes. GC-EI-MS spectra have more informative fragment ions that are reproducible for database searches. Secondary fractionation provides enhanced metabolite characterization by reducing spectral overlap in NMR and ion-suppression in LC-ESI-MS. The need for these additional methods in the analysis of the broad chemical classes and concentration ranges found in plasma is illustrated with discussion of four specific examples, including: (i) characterization of compounds for which one or more of the detectors is insensitive (e.g., positional isomers in LC-MS, the direct detection of carboxylic groups and sulfonic groups in 1H NMR, or non-volatile species in GC-MS).; (ii) detection of labile compounds, (iii) resolution of closely eluting and/or co-eluting compounds and, (iv) the capability to harness structural similarities common in many biologically-related, LC-EC detectable compounds. PMID:24657819

  8. De-novo RNA sequencing and metabolite profiling to identify genes involved in anthocyanin biosynthesis in Korean black raspberry (Rubus coreanus Miquel).

    Science.gov (United States)

    Hyun, Tae Kyung; Lee, Sarah; Rim, Yeonggil; Kumar, Ritesh; Han, Xiao; Lee, Sang Yeol; Lee, Choong Hwan; Kim, Jae-Yean

    2014-01-01

    The Korean black raspberry (Rubus coreanus Miquel, KB) on ripening is usually consumed as fresh fruit, whereas the unripe KB has been widely used as a source of traditional herbal medicine. Such a stage specific utilization of KB has been assumed due to the changing metabolite profile during fruit ripening process, but so far molecular and biochemical changes during its fruit maturation are poorly understood. To analyze biochemical changes during fruit ripening process at molecular level, firstly, we have sequenced, assembled, and annotated the transcriptome of KB fruits. Over 4.86 Gb of normalized cDNA prepared from fruits was sequenced using Illumina HiSeq™ 2000, and assembled into 43,723 unigenes. Secondly, we have reported that alterations in anthocyanins and proanthocyanidins are the major factors facilitating variations in these stages of fruits. In addition, up-regulation of F3'H1, DFR4 and LDOX1 resulted in the accumulation of cyanidin derivatives during the ripening process of KB, indicating the positive relationship between the expression of anthocyanin biosynthetic genes and the anthocyanin accumulation. Furthermore, the ability of RcMCHI2 (R. coreanus Miquel chalcone flavanone isomerase 2) gene to complement Arabidopsis transparent testa 5 mutant supported the feasibility of our transcriptome library to provide the gene resources for improving plant nutrition and pigmentation. Taken together, these datasets obtained from transcriptome library and metabolic profiling would be helpful to define the gene-metabolite relationships in this non-model plant.

  9. Perturbational Profiling of Metabolites in Patient Fibroblasts Implicates α-Aminoadipate as a Potential Biomarker for Bipolar Disorder

    Science.gov (United States)

    Huang, Joanne H.; Berkovitch, Shaunna S.; Iaconelli, Jonathan; Watmuff, Bradley; Park, Hyoungjun; Chattopadhyay, Shrikanta; McPhie, Donna; Öngür, Dost; Cohen, Bruce M.; Clish, Clary B.; Karmacharya, Rakesh

    2016-01-01

    Many studies suggest the presence of aberrations in cellular metabolism in bipolar disorder. We studied the metabolome in bipolar disorder to gain insight into cellular pathways that may be dysregulated in bipolar disorder and to discover evidence of novel biomarkers. We measured polar and nonpolar metabolites in fibroblasts from subjects with bipolar I disorder and matched healthy control subjects, under normal conditions and with two physiologic perturbations: low-glucose media and exposure to the stress-mediating hormone dexamethasone. Metabolites that were significantly different between bipolar and control subjects showed distinct separation by principal components analysis methods. The most statistically significant findings were observed in the perturbation experiments. The metabolite with the lowest p value in both the low-glucose and dexamethasone experiments was α-aminoadipate, whose intracellular level was consistently lower in bipolar subjects. Our study implicates α-aminoadipate as a possible biomarker in bipolar disorder that manifests under cellular stress. This is an intriguing finding given the known role of α-aminoadipate in the modulation of kynurenic acid in the brain, especially as abnormal kynurenic acid levels have been implicated in bipolar disorder. PMID:27606323

  10. Quality assessment of Polygonum cuspidatum and Polygonum multiflorum by 1H NMR metabolite fingerprinting and profiling analysis.

    Science.gov (United States)

    Frédérich, Michel; Wauters, Jean-Noël; Tits, Monique; Jason, Charlotte; de Tullio, Pascal; Van der Heyden, Yvan; Fan, Guorong; Angenot, Luc

    2011-01-01

    The quality assessment and control of traditional Chinese medicines (TCM) nowadays receives a great deal of attention worldwide and particularly in Europe with its increasing local use. Polygonum cuspidatum Siebold & Zucc. and Polygonum multiflorum Thunb. are two members of the Polygonaceae family, which are widely used as Chinese medicinal plants. The aim of this study was to achieve an overview of the quality of P. cuspidatum and P. multiflorum samples available on the Chinese market and to identify important metabolites for their discrimination, using (1)H NMR-based metabolomics. (1)H NMR and multivariate analysis techniques were applied to almost 60 plant samples collected in different places in China. Using (1)H NMR metabolomics, it was possible, without previous evaporation or separation steps, to obtain metabolic fingerprints to distinguish between the species. The important metabolites for discrimination were stilbene derivatives. Finally, a clear distinction between the two species was possible and the discriminant metabolites were identified. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Perturbational Profiling of Metabolites in Patient Fibroblasts Implicates α-Aminoadipate as a Potential Biomarker for Bipolar Disorder.

    Science.gov (United States)

    Huang, Joanne H; Berkovitch, Shaunna S; Iaconelli, Jonathan; Watmuff, Bradley; Park, Hyoungjun; Chattopadhyay, Shrikanta; McPhie, Donna; Öngür, Dost; Cohen, Bruce M; Clish, Clary B; Karmacharya, Rakesh

    2016-07-01

    Many studies suggest the presence of aberrations in cellular metabolism in bipolar disorder. We studied the metabolome in bipolar disorder to gain insight into cellular pathways that may be dysregulated in bipolar disorder and to discover evidence of novel biomarkers. We measured polar and nonpolar metabolites in fibroblasts from subjects with bipolar I disorder and matched healthy control subjects, under normal conditions and with two physiologic perturbations: low-glucose media and exposure to the stress-mediating hormone dexamethasone. Metabolites that were significantly different between bipolar and control subjects showed distinct separation by principal components analysis methods. The most statistically significant findings were observed in the perturbation experiments. The metabolite with the lowest p value in both the low-glucose and dexamethasone experiments was α-aminoadipate, whose intracellular level was consistently lower in bipolar subjects. Our study implicates α-aminoadipate as a possible biomarker in bipolar disorder that manifests under cellular stress. This is an intriguing finding given the known role of α-aminoadipate in the modulation of kynurenic acid in the brain, especially as abnormal kynurenic acid levels have been implicated in bipolar disorder.

  12. Host response transcriptional profiling reveals extracellular components and ABC (ATP-binding cassette transporters gene enrichment in typhoid fever-infected Nigerian children

    Directory of Open Access Journals (Sweden)

    Resau James H

    2011-09-01

    Full Text Available Abstract Background Salmonella enterica serovar Typhi (S. Typhi is a human-specific pathogen that causes typhoid fever, and remains a global health problem especially in developing countries. Its pathogenesis is complex and host response is poorly understood. In Africa, typhoid fever can be a major cause of morbidity in young infected children. The onset of the illness is insidious and clinical diagnosis is often unreliable. Gold standard blood culture diagnostic services are limited, thus rapid, sensitive, and affordable diagnostic test is essential in poor-resourced clinical settings. Routine typhoid fever vaccination is highly recommended but currently licensed vaccines provide only 55-75% protection. Recent epidemiological studies also show the rapid emergence of multi-drug resistant S. Typhi strains. High-throughput molecular technologies, such as microarrays, can dissect the molecular mechanisms of host responses which are S. Typhi-specific to provide a comprehensive genomic component of immunological responses and suggest new insights for diagnosis and treatment. Methods Global transcriptional profiles of S. Typhi-infected young Nigerian children were obtained from their peripheral blood and compared with that of other bacteremic infections using Agilent gene expression microarrays. The host-response profiles of the same patients in acute vs. convalescent phases were also determined. The top 96-100 differentially-expressed genes were identified and four genes were validated by quantitative real-time PCR. Gene clusters were obtained and functional pathways were predicted by DAVID (Database for Annotation, Visualization and Integrated Discovery. Results Transcriptional profiles from S. Typhi-infected children could be distinguished from those of other bacteremic infections. Enriched gene clusters included genes associated with extracellular peptides/components such as lipocalin (LCN2 and systemic immune response which is atypical in

  13. Effectiveness of different solid-phase microextraction fibres for differentiation of selected Madeira island fruits based on their volatile metabolite profile--identification of novel compounds.

    Science.gov (United States)

    Pereira, João; Pereira, Jorge; Câmara, José S

    2011-01-15

    A headspace solid-phase microextraction (HS-SPME) procedure based on five commercialised fibres (85 μm polyacrylate - PA, 100 μm polydimethylsiloxane - PDMS, 65 μm polydimethylsiloxane/divinylbenzene - PDMS/DVB, 70 μm carbowax/divinylbenzene - CW/DVB and 85 μm carboxen/polydimethylsiloxane - CAR/PDMS) is presented for the characterization of the volatile metabolite profile of four selected Madeira island fruit species, lemon (Citrus limon), kiwi (Actinidia deliciosa), papaya (Carica papaya L.) and Chickasaw plum (Prunus angustifolia). The isolation of metabolites was followed by thermal desorption gas chromatography-quadrupole mass spectrometry (GC-qMS) methodology. The performance of the target fibres was evaluated and compared. The SPME fibre coated with CW/DVB afforded the highest extraction efficiency in kiwi and papaya pulps, while in lemon and plum the same was achieved with PMDS/DVB fibre. This procedure allowed for the identification of 80 compounds, 41 in kiwi, 24 in plums, 23 in papaya and 20 in lemon. Considering the best extraction conditions, the most abundant volatiles identified in kiwi were the intense aldehydes and ethyl esters such as (E)-2-hexenal and ethyl butyrate, while in Chicasaw plum predominate 2-hexenal, 2-methyl-4-pentenal, hexanal, (Z)-3-hexenol and cyclohexylene oxide. The major compounds identified in the papaya pulp were benzyl isothiocyanate, linalool oxide, furfural, hydroxypropanone, linalool and acetic acid. Finally, lemon was shown to be the most divergent of the four fruits, being its aroma profile composed almost exclusively by terpens, namely limonene, γ-terpinene, o-cymene and α-terpinolene. Thirty two volatiles were identified for the first time in the fruit or close related species analysed and 14 volatiles are reported as novel volatile metabolites in fruits. This includes 5 new compounds in kiwi (2-cyclohexene-1,4-dione, furyl hydroxymethyl ketone, 4-hydroxydihydro-2(3H)-furanone, 5-acetoxymethyl-2-furaldehyde and

  14. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency.

    Science.gov (United States)

    Richter, Susan; Peitzsch, Mirko; Rapizzi, Elena; Lenders, Jacques W; Qin, Nan; de Cubas, Aguirre A; Schiavi, Francesca; Rao, Jyotsna U; Beuschlein, Felix; Quinkler, Marcus; Timmers, Henri J; Opocher, Giuseppe; Mannelli, Massimo; Pacak, Karel; Robledo, Mercedes; Eisenhofer, Graeme

    2014-10-01

    Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. We assessed whether altered succinate dehydrogenase product-precursor relationships, manifested by differences in tumor ratios of succinate to fumarate or other metabolites, might aid in identifying and stratifying patients with SDHx mutations. PPGL tumor specimens from 233 patients, including 45 with SDHx mutations, were provided from eight tertiary referral centers for mass spectrometric analyses of Krebs cycle metabolites. Diagnostic performance of the succinate:fumarate ratio for identification of pathogenic SDHx mutations. SDH-deficient PPGLs were characterized by 25-fold higher succinate and 80% lower fumarate, cis-aconitate, and isocitrate tissue levels than PPGLs without SDHx mutations. Receiver-operating characteristic curves for use of ratios of succinate to fumarate or to cis-aconitate and isocitrate to identify SDHx mutations indicated areas under curves of 0.94 to 0.96; an optimal cut-off of 97.7 for the succinate:fumarate ratio provided a diagnostic sensitivity of 93% at a specificity of 97% to identify SDHX-mutated PPGLs. Succinate:fumarate ratios were higher in both SDHB-mutated and metastatic tumors than in those due to SDHD/C mutations or without metastases. Mass spectrometric-based measurements of ratios of succinate:fumarate and other metabolites in PPGLs offer a useful method to identify patients for testing of SDHx mutations, with additional utility to quantitatively assess functionality of mutations and metabolic factors responsible for malignant risk.

  15. Metabolite Profiling Reveals the Effect of Dietary Rubus coreanus Vinegar on Ovariectomy-Induced Osteoporosis in a Rat Model.

    Science.gov (United States)

    Lee, Mee Youn; Kim, Hyang Yeon; Singh, Digar; Yeo, Soo Hwan; Baek, Seong Yeol; Park, Yoo Kyoung; Lee, Choong Hwan

    2016-01-26

    The study was aimed at exploring the curative effects of Rubus coreanus (RC) vinegar against postmenopausal osteoporosis by using ovariectomized rats as a model. The investigations were performed in five groups: sham, ovariectomized (OVX) rats without treatment, low-dose RC vinegar (LRV)-treated OVX rats, high-dose RC vinegar (HRV)-treated OVX rats and alendronate (ALEN)-treated OVX rats. The efficacy of RC vinegar was evaluated using physical, biochemical, histological and metabolomic parameters. Compared to the OVX rats, the LRV and HRV groups showed positive effects on the aforementioned parameters, indicating estrogen regulation. Plasma metabolome analysis of the groups using gas chromatography-time of flight mass spectrometry (GC-TOF-MS) and ultra-performance liquid chromatography quadrupole-TOF-MS (UPLC-Q-TOF-MS) with multivariate analysis revealed 19 and 16 metabolites, respectively. Notably, the levels of butyric acid, phenylalanine, glucose, tryptophan and some lysophosphatidylcholines were marginally increased in RC vinegar-treated groups compared to OVX. However, the pattern of metabolite levels in RC vinegar-treated groups was found similar to ALEN, but differed significantly from that in sham group. The results highlight the prophylactic and curative potential of dietary vinegar against postmenopausal osteoporosis. RC vinegar could be an effective natural alternative for the prevention of postmenopausal osteoporosis.

  16. Metabolite Profiling Reveals the Effect of Dietary Rubus coreanus Vinegar on Ovariectomy-Induced Osteoporosis in a Rat Model

    Directory of Open Access Journals (Sweden)

    Mee Youn Lee

    2016-01-01

    Full Text Available The study was aimed at exploring the curative effects of Rubus coreanus (RC vinegar against postmenopausal osteoporosis by using ovariectomized rats as a model. The investigations were performed in five groups: sham, ovariectomized (OVX rats without treatment, low-dose RC vinegar (LRV-treated OVX rats, high-dose RC vinegar (HRV-treated OVX rats and alendronate (ALEN-treated OVX rats. The efficacy of RC vinegar was evaluated using physical, biochemical, histological and metabolomic parameters. Compared to the OVX rats, the LRV and HRV groups showed positive effects on the aforementioned parameters, indicating estrogen regulation. Plasma metabolome analysis of the groups using gas chromatography-time of flight mass spectrometry (GC-TOF-MS and ultra-performance liquid chromatography quadrupole-TOF-MS (UPLC-Q-TOF-MS with multivariate analysis revealed 19 and 16 metabolites, respectively. Notably, the levels of butyric acid, phenylalanine, glucose, tryptophan and some lysophosphatidylcholines were marginally increased in RC vinegar-treated groups compared to OVX. However, the pattern of metabolite levels in RC vinegar-treated groups was found similar to ALEN, but differed significantly from that in sham group. The results highlight the prophylactic and curative potential of dietary vinegar against postmenopausal osteoporosis. RC vinegar could be an effective natural alternative for the prevention of postmenopausal osteoporosis.

  17. Neoplastic and stromal cells contribute to an extracellular matrix gene expression profile defining a breast cancer subtype likely to progress.

    Directory of Open Access Journals (Sweden)

    Tiziana Triulzi

    Full Text Available We recently showed that differential expression of extracellular matrix (ECM genes delineates four subgroups of breast carcinomas (ECM1, -2, -3- and -4 with different clinical outcome. To further investigate the characteristics of ECM signature and its impact on tumor progression, we conducted unsupervised clustering analyses in 6 additional independent datasets of invasive breast tumors from different platforms for a total of 643 samples. Use of four different clustering algorithms identified ECM3 tumors as an independent group in all datasets tested. ECM3 showed a homogeneous gene pattern, consisting of 58 genes encoding 43 structural ECM proteins. From 26 to 41% of the cases were ECM3-enriched, and analysis of datasets relevant to gene expression in neoplastic or corresponding stromal cells showed that both stromal and breast carcinoma cells can coordinately express ECM3 genes. In in vitro experiments, β-estradiol induced ECM3 gene production in ER-positive breast carcinoma cell lines, whereas TGFβ induced upregulation of the genes leading to ECM3 gene classification, especially in ER-negative breast carcinoma cells and in fibroblasts. Multivariate analysis of distant metastasis-free survival in untreated breast tumor patients revealed a significant interaction between ECM3 and histological grade (p = 0.001. Cox models, estimated separately in grade I-II and grade III tumors, indicated a highly significant association between ECM3 and worse survival probability only in grade III tumors (HR = 3.0, 95% CI = 1.3-7.0, p = 0.0098. Gene Set Enrichment analysis of ECM3 compared to non-ECM3 tumors revealed significant enrichment of epithelial-mesenchymal transition (EMT genes in both grade I-II and grade III subsets of ECM3 tumors. Thus, ECM3 is a robust cluster that identifies breast carcinomas with EMT features but with accelerated metastatic potential only in the undifferentiated (grade III phenotype. These findings support the

  18. Quantitative determination of five metabolites of aspirin by UHPLC-MS/MS coupled with enzymatic reaction and its application to evaluate the effects of aspirin dosage on the metabolic profile.

    Science.gov (United States)

    Li, Jian-Ping; Guo, Jian-Ming; Shang, Er-Xin; Zhu, Zhen-Hua; Liu, Yang; Zhao, Bu-Chang; Zhao, Jing; Tang, Zhi-Shu; Duan, Jin-Ao

    2017-05-10

    Acetylsalicylic acid (Aspirin, ASA) is a famous drug for cardiovascular diseases in recent years. Effects of ASA dosage on the metabolic profile have not been fully understood. The purpose of our study is to establish a rapid and reliable method to quantify ASA metabolites in biological matrices, especially for glucuronide metabolites whose standards are not commercially available. Then we applied this method to evaluate the effects of ASA dosage on the metabolic and excretion profile of ASA metabolites in rat urine. Salicylic acid (SA), gentisic acid (GA) and salicyluric acid (SUA) were determined directly by UHPLC-MS/MS, while salicyl phenolic glucuronide (SAPG) and salicyluric acid phenolic glucuronide (SUAPG) were quantified indirectly by measuring the released SA and SUA from SAPG and SUAPG after β-glucuronidase digestion. SUA and SUAPG were the major metabolites of ASA in rat urine 24h after ASA administration, which accounted for 50% (SUA) and 26% (SUAPG). When ASA dosage was increased, the contributions dropped to 32% and 18%, respectively. The excretion of other three metabolites (GA, SA and SAPG) however showed remarkable increases by 16%, 6% and 4%, respectively. In addition, SUA and SUAPG were mainly excreted in the time period of 12-24h, while GA was excreted in the earlier time periods (0-4h and 4-8h). SA was mainly excreted in the time period of 0-4h and 12-24h. And the excretion of SAPG was equally distributed in the four time periods. We went further to show that the excretion of five metabolites in rat urine was delayed when ASA dosage was increased. In conclusion, we have developed a rapid and sensitive method to determine the five ASA metabolites (SA, GA, SUA, SAPG and SUAPG) in rat urine. We showed that ASA dosage could significantly influence the metabolic and excretion profile of ASA metabolites in rat urine. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. GC-MS Metabolite Profiling of Extreme Southern Pinot noir Wines: Effects of Vintage, Barrel Maturation, and Fermentation Dominate over Vineyard Site and Clone Selection.

    Science.gov (United States)

    Schueuermann, Claudia; Khakimov, Bekzod; Engelsen, Søren Balling; Bremer, Phil; Silcock, Patrick

    2016-03-23

    Wine is an extremely complex beverage that contains a multitude of volatile and nonvolatile compounds. This study investiged the effect of vineyard site and grapevine clone on the volatile profiles of commercially produced Pinot noir wines from central Otago, New Zealand. Volatile metabolites in Pinot noir wines produced from five grapevine clones grown on six vineyard sites in close proximity, over two consecutive vintages, were surveyed using gas chromatography-mass spectrometry (GC-MS). The raw GC-MS data were processed using parallel factor analysis (PARAFAC2), and final metabolite data were analyzed by principal component analysis (PCA). Winemaking conditions, vintage, and barrel maturation were found to be the most dominant factors. The effects of vineyard site and clone were mostly vintage dependent. Although four compounds including β-citronellol, homovanillyl alcohol, N-(3-methylbutyl)acetamide, and N-(2-phenylethyl)acetamide discriminated the vineyard sites independent of vintage, Pinot noir wines from different clones were only partially discriminated by PCA, and marker compound selection remained challenging.

  20. Metabolite Profiling of Barley Grains Subjected to Water Stress: To Explain the Genotypic Difference in Drought-Induced Impacts on Malting Quality

    Directory of Open Access Journals (Sweden)

    Xiaojian Wu

    2017-09-01

    Full Text Available Grain weight and protein content will be reduced and increased, respectively, when barley is subjected to water stress after anthesis, consequently deteriorating the malt quality. However, such adverse impact of water stress differs greatly among barley genotypes. In this study, two Tibetan wild barley accessions and two cultivated varieties differing in water stress tolerance were used to investigate the genotypic difference in metabolic profiles during grain-filling stage under drought condition. Totally, 71 differently accumulated metabolites were identified, including organic acids, amino acids/amines, and sugars/sugar alcohols. Their relative contents were significantly affected by water stress for all genotypes and differed distinctly between the wild and cultivated barleys. The principal component analysis of metabolites indicated that the Tibetan wild barley XZ147 possessed a unique response to water stress. When subjected to water stress, the wild barley XZ147 showed the most increase of β-amylase activity among the four genotypes, as a result of its higher lysine content, less indole-3-acetic acid (IAA biosynthesis, more stable H2O2 homeostasis, and more up-regulation of BMY1 gene. On the other hand, XZ147 had the most reduction of β-glucan content under water stress than the other genotypes, which could be explained by the faster grain filling process and the less expression of β-glucan synthase gene GSL7. All these results indicated a great potential for XZ147 in barley breeding for improving water stress tolerance.

  1. The Use of NMR Metabolite Profiling and in vivo Hypoglycemic Assay for Comparison of Unfractionated Aqueous Leaf Extracts of Two Ocimum Species.

    Science.gov (United States)

    Casanova, Livia Marques; Espíndola-Netto, Jair Machado; Tinoco, Luzineide Wanderley; Sola-Penna, Mauro; Costa, Sônia Soares

    2016-06-01

    Ocimum basilicum and Ocimum gratissimum (Lamiaceae) are used to treat diabetes mellitus in Africa. In a previous work, we identified chicoric acid as a hypoglycemic substance in O. gratissimum. This study aims to compare the chemical metabolite profile and the hypoglycemic activity of unfractionated aqueous extracts from leaves of both Lamiaceae species. The metabolite composition of OB and OG decoctions (10% w/v) was analyzed using HPLC-DAD and NMR tools. Chicoric acid showed to be the major phenolic in both extracts, besides caftaric, caffeic, and rosmarinic acids; nevertheless, there is approximately three times more of this substance in OG. From 1D- and 2D-NMR analyses, 19 substances were identified in OB, while 12 in OG. The in vivo acute hypoglycemic activity of the extracts was assessed intraperitoneally in streptozotocin (STZ)-induced diabetic mice. The doses of 100 and 200 mg/kg of both extracts significantly reduced their glycemia, compared to controls (P Ocimum species by NMR. Our findings confirmed the potential of both species in DM treatment in spite of marked differences in their chemical composition. However, long-term studies are necessary in order to identify the most promising of the two species for the development of an herbal medicine. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  2. Gas chromatography-mass spectrometry metabolite profiling of worker honey bee (Apis mellifera L.) hemolymph for the study of Nosema ceranae infection.

    Science.gov (United States)

    Aliferis, Konstantinos A; Copley, Tanya; Jabaji, Suha

    2012-10-01

    Here, we are presenting a gas chromatography-mass spectrometry (GC/MS) approach for the study of infection of the worker honey bee (Apis mellifera L.) by the newly emerged obligate intracellular parasite Nosema ceranae based on metabolite profiling of hemolymph. Because of the severity of the disease, early detection is crucial for its efficient control. Results revealed that the parasite causes a general disturbance of the physiology of the honey bee affecting the mechanisms controlling the mobilization of energy reserves in infected individuals. The imposed nutritional and energetic stress to the host was depicted mainly in the decreased levels of the majority of carbohydrates and amino acids, including metabolites such as fructose, l-proline, and the cryoprotectants sorbitol and glycerol, which are implicated in various biochemical pathways. Interestingly, the level of glucose was detected at significantly higher levels in infected honey bees. Metabolomics analyses were in agreement with those of multiplex quantitative PCR analyses, indicating that it can be used as a complementary tool for the detection and the study of the physiology of the disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum.

    Science.gov (United States)

    Bortolin, Rafael Calixto; Caregnato, Fernanda Freitas; Divan Junior, Armando Molina; Zanotto-Filho, Alfeu; Moresco, Karla Suzana; Rios, Alessandro de Oliveira; Salvi, Aguisson de Oliveira; Ortmann, Caroline Flach; de Carvalho, Pâmela; Reginatto, Flávio Henrique; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-07-01

    Tropospheric ozone (O3) background concentrations have increased since pre-industrial times, reaching phytotoxic concentrations in many regions globally. However, the effect of high O3 concentrations on quality of fruit and vegetables remains unknown. Here, we evaluated whether O3 pollution alters the quality of Capsicum baccatum peppers by changing the secondary compound profiles and biological activity of the fruit. C. baccatum pepper plants were exposed to ozone for 62 days in an open-top chamber at a mean O3 concentration of 171.6µg/m(3). Capsaicin levels decreased by 50% in the pericarp, but remained unchanged in the seeds. In contrast, the total carotenoid content increased by 52.8% in the pericarp. The content of total phenolic compounds increased by 17% in the pericarp. The total antioxidant potential decreased by 87% in seeds of O3-treated plants. The seeds contributed more than the pericarp to the total radical-trapping antioxidant potential and total antioxidant reactivity. O3 treatment impaired the ferric-reducing antioxidant power of the seeds and reduced NO(•)-scavenging activity in the pericarp. However, O3 treatment increased ferrous ion-chelating activity and hydroxyl radical-scavenging activity in the pericarp. Our results confirm that O3 alters the secondary metabolite profile of C. baccatum pepper fruits and, consequently, their biological activity profile. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effects of sea buckthorn and bilberry on serum metabolites differ according to baseline metabolic profiles in overweight women: a randomized crossover trial1234

    Science.gov (United States)

    Larmo, Petra S; Kangas, Antti J; Soininen, Pasi; Lehtonen, Henna-Maria; Suomela, Jukka-Pekka; Yang, Baoru; Viikari, Jorma; Ala-Korpela, Mika; Kallio, Heikki P

    2013-01-01

    Background: Berries are associated with health benefits. Little is known about the effect of baseline metabolome on the overall metabolic responses to berry intake. Objective: We studied the effects of berries on serum metabolome. Design: Eighty overweight women completed this randomized crossover study. During the interventions of 30 d, subjects consumed dried sea buckthorn berries (SBs), sea buckthorn oil (SBo), sea buckthorn phenolics ethanol extract mixed with maltodextrin (SBe+MD) (1:1), or frozen bilberries. Metabolic profiles were quantified from serum samples by using 1H nuclear magnetic resonance spectroscopy. Results: All interventions induced a significant (P < 0.001–0.003) effect on the overall metabolic profiles. The effect was observed both in participants who had a metabolic profile that reflected higher cardiometabolic risk at baseline (group B: P = 0.001–0.008) and in participants who had a lower-risk profile (group A: P < 0.001–0.009). Although most of the changes in individual metabolites were not statistically significant after correction for multiplicity, clear trends were observed. SB-induced effects were mainly on serum triglycerides and very-low-density lipoprotein (VLDL) and its subclasses, which decreased in metabolic group B. SBo induced a decreasing trend in serum total, intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL) cholesterol and subfractions of IDL and LDL in group B. During the SBe+MD treatment, VLDL fractions and serum triglycerides increased. Bilberries caused beneficial changes in serum lipids and lipoproteins in group B, whereas the opposite was true in group A. Conclusion: Berry intake has overall metabolic effects, which depend on the cardiometabolic risk profile at baseline. This trial was registered at clinicaltrials.gov as NCT01860547. PMID:23945716

  5. Effects of sea buckthorn and bilberry on serum metabolites differ according to baseline metabolic profiles in overweight women: a randomized crossover trial.

    Science.gov (United States)

    Larmo, Petra S; Kangas, Antti J; Soininen, Pasi; Lehtonen, Henna-Maria; Suomela, Jukka-Pekka; Yang, Baoru; Viikari, Jorma; Ala-Korpela, Mika; Kallio, Heikki P

    2013-10-01

    Berries are associated with health benefits. Little is known about the effect of baseline metabolome on the overall metabolic responses to berry intake. We studied the effects of berries on serum metabolome. Eighty overweight women completed this randomized crossover study. During the interventions of 30 d, subjects consumed dried sea buckthorn berries (SBs), sea buckthorn oil (SBo), sea buckthorn phenolics ethanol extract mixed with maltodextrin (SBe+MD) (1:1), or frozen bilberries. Metabolic profiles were quantified from serum samples by using (1)H nuclear magnetic resonance spectroscopy. All interventions induced a significant (P < 0.001-0.003) effect on the overall metabolic profiles. The effect was observed both in participants who had a metabolic profile that reflected higher cardiometabolic risk at baseline (group B: P = 0.001-0.008) and in participants who had a lower-risk profile (group A: P < 0.001-0.009). Although most of the changes in individual metabolites were not statistically significant after correction for multiplicity, clear trends were observed. SB-induced effects were mainly on serum triglycerides and very-low-density lipoprotein (VLDL) and its subclasses, which decreased in metabolic group B. SBo induced a decreasing trend in serum total, intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL) cholesterol and subfractions of IDL and LDL in group B. During the SBe+MD treatment, VLDL fractions and serum triglycerides increased. Bilberries caused beneficial changes in serum lipids and lipoproteins in group B, whereas the opposite was true in group A. Berry intake has overall metabolic effects, which depend on the cardiometabolic risk profile at baseline. This trial was registered at clinicaltrials.gov as NCT01860547.

  6. Metabolite profiling of the ripening of Mangoes Mangifera indica L. cv. 'Tommy Atkins' by real-time measurement of volatile organic compounds.

    Science.gov (United States)

    White, Iain R; Blake, Robert S; Taylor, Andrew J; Monks, Paul S

    Real-time profiling of mango ripening based on proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) of small molecular weight volatile organic compounds (VOCs), is demonstrated using headspace measurements of 'Tommy Atkins' mangoes. VOC metabolites produced during the ripening process were sampled directly, which enabled simultaneous and rapid detection of a wide range of compounds. Headspace measurements of 'Keitt' mangoes were also conducted for comparison. A principle component analysis of the results indicated that several mass channels were not only key to the ripening process but could also be used to distinguish between mango cultivars. The identities of 22 of these channels, tentatively speciated using contemporaneous GC-MS measurements of sorbent tubes, are rationalized through examination of the biochemical pathways that produce volatile flavour components. Results are discussed with relevance to the potential of headspace analysers and electronic noses in future fruit ripening and quality studies.

  7. Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data

    DEFF Research Database (Denmark)

    Nielsen, Lasse Janniche; Stuart, Peter; Pičmanová, Martina

    2016-01-01

    Background: The important cereal crop Sorghum bicolor (L.) Moench biosynthesize and accumulate the defensive compound dhurrin during development. Previous work has suggested multiple roles for the compound including a function as nitrogen storage/buffer. Crucial for this function is the endogenous...... analyses with the metabolite profiling, potential gene candidates of glutathione S-transferases, nitrilases and glycosyl transferases involved in these pathways were identified. The absence of dhurrin in the mature grain was replaced by a high content of proanthocyanidins. Cluster- and phylogenetic...... in these transformations and show that dhurrin in additionto its insect deterrent properties may serve as a storage form of reduced nitrogen. In the course of sorghum grainmaturation, proanthocyanidins replace dhurrin as a defense compound. The lack of cyanogenesis in the developingsorghum grain renders this a unique...

  8. Different metabolite profile and metabolic pathway with leaves and roots in response to boron deficiency at the initial stage of citrus rootstock growth.

    Science.gov (United States)

    Dong, Xiaochang; Liu, Guidong; Wu, Xiuwen; Lu, Xiaopei; Yan, Lei; Muhammad, Riaz; Shah, Asad; Wu, Lishu; Jiang, Cuncang

    2016-11-01

    Boron (B) is a microelement required for higher plants, and B deficiency has serious negative effect on metabolic processes. We concentrated on the changes in metabolite profiles of trifoliate orange leaves and roots as a consequence of B deficiency at the initial stage of growth by gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Enlargement and browning of root tips were observed in B-deficient plants, while any obvious symptom was not recorded in the leaves after 30 days of B deprivation. The distinct patterns of alterations in metabolites observed in leaves and roots due to B deficiency suggest the presence of specific organ responses to B starvation. The accumulation of soluble sugars was occurred in leaves, which may be attributed to down-regulated pentose phosphate pathway (PPP) and amino acid biosynthesis under B deficiency, while the amount of most amino acids in roots was increased, indicating that the effects of B deficiency on amino acids metabolism in trifoliate orange may be a consequence of disruptions in root tissues and decreased protein biosynthesis. Several important products of shikimate pathway were also significantly affected by B deficiency, which may be related to abnormal growth of roots induced by B deficiency. Conclusively, our results revealed a global perspective of the discriminative metabolism responses appearing between B-deprived leaves and roots and provided new insight into the relationship between B deficiency symptom in roots and the altered amino acids profiling and shikimate pathway induced by B deficiency during seedling establishment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Coordinate Changes in Histone Modifications, mRNA Levels, and Metabolite Profiles in Clonal INS-1 832/13 β-Cells Accompany Functional Adaptations to Lipotoxicity*

    Science.gov (United States)

    Malmgren, Siri; Spégel, Peter; Danielsson, Anders P.H.; Nagorny, Cecilia L.; Andersson, Lotta E.; Nitert, Marloes Dekker; Ridderstråle, Martin; Mulder, Hindrik; Ling, Charlotte

    2013-01-01

    Lipotoxicity is a presumed pathogenetic process whereby elevated circulating and stored lipids in type 2 diabetes cause pancreatic β-cell failure. To resolve the underlying molecular mechanisms, we exposed clonal INS-1 832/13 β-cells to palmitate for 48 h. We observed elevated basal insulin secretion but impaired glucose-stimulated insulin secretion in palmitate-exposed cells. Glucose utilization was unchanged, palmitate oxidation was increased, and oxygen consumption was impaired. Halting exposure of the clonal INS-1 832/13 β-cells to palmitate largely recovered all of the lipid-induced functional changes. Metabolite profiling revealed profound but reversible increases in cellular lipids. Glucose-induced increases in tricarboxylic acid cycle intermediates were attenuated by exposure to palmitate. Analysis of gene expression by microarray showed increased expression of 982 genes and decreased expression of 1032 genes after exposure to palmitate. Increases were seen in pathways for steroid biosynthesis, cell cycle, fatty acid metabolism, DNA replication, and biosynthesis of unsaturated fatty acids; decreases occurred in the aminoacyl-tRNA synthesis pathway. The activity of histone-modifying enzymes and histone modifications of differentially expressed genes were reversibly altered upon exposure to palmitate. Thus, Insig1, Lss, Peci, Idi1, Hmgcs1, and Casr were subject to epigenetic regulation. Our analyses demonstrate that coordinate changes in histone modifications, mRNA levels, and metabolite profiles accompanied functional adaptations of clonal β-cells to lipotoxicity. It is highly likely that these changes are pathogenetic, accounting for loss of glucose responsiveness and perturbed insulin secretion. PMID:23476019

  10. Identification of metabolites from liquid chromatography-coulometric array detection profiling: gas chromatography-mass spectrometry and refractionation provide essential information orthogonal to LC-MS/microNMR.

    Science.gov (United States)

    Gathungu, Rose M; Bird, Susan S; Sheldon, Diane P; Kautz, Roger; Vouros, Paul; Matson, Wayne R; Kristal, Bruce S

    2014-06-01

    Liquid chromatography-coulometric array detection (LC-EC) is a sensitive, quantitative, and robust metabolomics profiling tool that complements the commonly used mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based approaches. However, LC-EC provides little structural information. We recently demonstrated a workflow for the structural characterization of metabolites detected by LC-EC profiling combined with LC-electrospray ionization (ESI)-MS and microNMR. This methodology is now extended to include (i) gas chromatography (GC)-electron ionization (EI)-MS analysis to fill structural gaps left by LC-ESI-MS and NMR and (ii) secondary fractionation of LC-collected fractions containing multiple coeluting analytes. GC-EI-MS spectra have more informative fragment ions that are reproducible for database searches. Secondary fractionation provides enhanced metabolite characterization by reducing spectral overlap in NMR and ion suppression in LC-ESI-MS. The need for these additional methods in the analysis of the broad chemical classes and concentration ranges found in plasma is illustrated with discussion of four specific examples: (i) characterization of compounds for which one or more of the detectors is insensitive (e.g., positional isomers in LC-MS, the direct detection of carboxylic groups and sulfonic groups in (1)H NMR, or nonvolatile species in GC-MS), (ii) detection of labile compounds, (iii) resolution of closely eluting and/or coeluting compounds, and (iv) the capability to harness structural similarities common in many biologically related, LC-EC-detectable compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. GPCR-Mediated Signaling of Metabolites

    DEFF Research Database (Denmark)

    Husted, Anna Sofie; Trauelsen, Mette; Rudenko, Olga

    2017-01-01

    In addition to their bioenergetic intracellular function, several classical metabolites act as extracellular signaling molecules activating cell-surface G-protein-coupled receptors (GPCRs), similar to hormones and neurotransmitters. "Signaling metabolites" generated from nutrients or by gut...... in adipose tissue, the liver, and the endocrine pancreas. Importantly, distinct metabolite GPCRs act as efficient pro- and anti-inflammatory regulators of key immune cells, and signaling metabolites may thus function as important drivers of the low-grade inflammation associated with insulin resistance...... and obesity. The concept of key metabolites as ligands for specific GPCRs has broadened our understanding of metabolic signaling significantly and provides a number of novel potential drug targets....

  12. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3

    Science.gov (United States)

    Yasmin, Sumera; Hafeez, Fauzia Y.; Mirza, Muhammad S.; Rasul, Maria; Arshad, Hafiz M. I.; Zubair, Muhammad; Iqbal, Mazhar

    2017-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is widely prevalent and causes Bacterial Leaf Blight (BLB) in Basmati rice grown in different areas of Pakistan. There is a need to use environmentally safe approaches to overcome the loss of grain yield in rice due to this disease. The present study aimed to develop inocula, based on native antagonistic bacteria for biocontrol of BLB and to increase the yield of Super Basmati rice variety. Out of 512 bacteria isolated from the rice rhizosphere and screened for plant growth promoting determinants, the isolate BRp3 was found to be the best as it solubilized 97 μg/ mL phosphorus, produced 30 μg/mL phytohormone indole acetic acid and 15 mg/ L siderophores in vitro. The isolate BRp3 was found to be a Pseudomonas aeruginosa based on 16S rRNA gene sequencing (accession no. HQ840693). This bacterium showed antagonism in vitro against different phytopathogens including Xoo and Fusarium spp. Strain BRp3 showed consistent pathogen suppression of different strains of BLB pathogen in rice. Mass spectrometric analysis detected the production of siderophores (1-hydroxy-phenazine, pyocyanin, and pyochellin), rhamnolipids and a series of already characterized 4-hydroxy-2-alkylquinolines (HAQs) as well as novel 2,3,4-trihydroxy-2-alkylquinolines and 1,2,3,4-tetrahydroxy-2-alkylquinolines in crude extract of BRp3. These secondary metabolites might be responsible for the profound antibacterial activity of BRp3 against Xoo pathogen. Another contributing factor toward the suppression of the pathogen was the induction of defense related enzymes in the rice plant by the inoculated strain BRp3. When used as an inoculant in a field trial, this strain enhanced the grain and straw yields by 51 and 55%, respectively, over non-inoculated control. Confocal Laser Scanning Microscopy (CLSM) used in combination with immunofluorescence marker confirmed P. aeruginosa BRp3 in the rice rhizosphere under sterilized as well as field conditions. The results provide

  13. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3

    Directory of Open Access Journals (Sweden)

    Sumera Yasmin

    2017-09-01

    Full Text Available Xanthomonas oryzae pv. oryzae (Xoo is widely prevalent and causes Bacterial Leaf Blight (BLB in Basmati rice grown in different areas of Pakistan. There is a need to use environmentally safe approaches to overcome the loss of grain yield in rice due to this disease. The present study aimed to develop inocula, based on native antagonistic bacteria for biocontrol of BLB and to increase the yield of Super Basmati rice variety. Out of 512 bacteria isolated from the rice rhizosphere and screened for plant growth promoting determinants, the isolate BRp3 was found to be the best as it solubilized 97 μg/ mL phosphorus, produced 30 μg/mL phytohormone indole acetic acid and 15 mg/ L siderophores in vitro. The isolate BRp3 was found to be a Pseudomonas aeruginosa based on 16S rRNA gene sequencing (accession no. HQ840693. This bacterium showed antagonism in vitro against different phytopathogens including Xoo and Fusarium spp. Strain BRp3 showed consistent pathogen suppression of different strains of BLB pathogen in rice. Mass spectrometric analysis detected the production of siderophores (1-hydroxy-phenazine, pyocyanin, and pyochellin, rhamnolipids and a series of already characterized 4-hydroxy-2-alkylquinolines (HAQs as well as novel 2,3,4-trihydroxy-2-alkylquinolines and 1,2,3,4-tetrahydroxy-2-alkylquinolines in crude extract of BRp3. These secondary metabolites might be responsible for the profound antibacterial activity of BRp3 against Xoo pathogen. Another contributing factor toward the suppression of the pathogen was the induction of defense related enzymes in the rice plant by the inoculated strain BRp3. When used as an inoculant in a field trial, this strain enhanced the grain and straw yields by 51 and 55%, respectively, over non-inoculated control. Confocal Laser Scanning Microscopy (CLSM used in combination with immunofluorescence marker confirmed P. aeruginosa BRp3 in the rice rhizosphere under sterilized as well as field conditions. The

  14. Genetic, enzymatic and metabolite profiling of the Lactobacillus casei group reveals strain biodiversity and potential applications for flavour diversification.

    Science.gov (United States)

    Stefanovic, E; Kilcawley, K N; Rea, M C; Fitzgerald, G F; McAuliffe, O

    2017-05-01

    The Lactobacillus casei group represents a widely explored group of lactic acid bacteria, characterized by a high level of biodiversity. In this study, the genetic and phenotypic diversity of a collection of more than 300 isolates of the Lact. casei group and their potential to produce volatile metabolites important for flavour development in dairy products, was examined. Following confirmation of species by 16S rRNA PCR, the diversity of the isolates was determined by pulsed-field gel electrophoresis. The activities of enzymes involved in the proteolytic cascade were assessed and significant differences among the strains were observed. Ten strains were chosen based on the results of their enzymes activities and they were analysed for their ability to produce volatiles in media with increased concentrations of a representative aromatic, branched chain and sulphur amino acid. Volatiles were assessed using gas chromatography coupled with mass spectrometry. Strain-dependent differences in the range and type of volatiles produced were evident. Strains of the Lact. casei group are characterized by genetic and metabolic diversity which supports variability in volatile production. This study provides a screening approach for the knowledge-based selection of strains potentially enabling flavour diversification in fermented dairy products. © 2017 The Society for Applied Microbiology.

  15. Characterization of Metabolite Profile in Phyllanthus niruri and Correlation with Bioactivity Elucidated by Nuclear Magnetic Resonance Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Ahmed Mediani

    2017-05-01

    Full Text Available Phyllanthus niruri is an important medicinal plant. To standardize the extract and guarantee its maximum benefit, processing methods optimization ought to be amenable and beneficial. Herein, three dried P. niruri samples, air (AD, freeze (FD and oven (OD, extracted with various ethanol to water ratios (0%, 50%, 70%, 80% and 100% were evaluated for their metabolite changes using proton nuclear magnetic resonance (1H-NMR-based metabolomics approach. The amino acids analysis showed that FD P. niruri exhibited higher content of most amino acids compared to the other dried samples. Based on principal component analysis (PCA, the FD P. niruri extracted with 80% ethanol contained higher amounts of hypophyllanthin and phenolic compounds based on the loading plot. The partial least-square (PLS results showed that the phytochemicals, including hypophyllanthin, catechin, epicatechin, rutin, quercetin and chlorogenic, caffeic, malic and gallic acids were correlated with antioxidant and α-glucosidase inhibitory activities, which were higher in the FD material extracted with 80% ethanol. This report optimized the effect of drying and ethanol ratios and these findings demonstrate that NMR-based metabolomics was an applicable approach. The FD P. niruri extracted with 80% ethanol can be used as afunctional food ingredient for nutraceutical or in medicinal preparation.

  16. In silico profiling for secondary metabolites from Lepidium meyenii (maca) by the pharmacophore and ligand-shape-based joint approach.

    Science.gov (United States)

    Yi, Fan; Tan, Xiao-Lei; Yan, Xin; Liu, Hai-Bo

    2016-01-01

    Lepidium meyenii Walpers (maca) is an herb known as a traditional nutritional supplement and widely used in Peru, North America, and Europe to enhance human fertility and treat osteoporosis. The secondary metabolites of maca, namely, maca alkaloids, macaenes, and macamides, are bioactive compounds, but their targets are undefined. The pharmacophore-based PharmaDB targets database screening joint the ligand shape similarity-based WEGA validation approach is proposed to predict the targets of these unique constituents and was performed using Discovery Studio 4.5 and PharmaDB. A compounds-targets-diseases network was established using Cytoscape 3.2. These suitable targets and their genes were calculated and analyzed using ingenuity pathway analysis and GeneMANIA. Certain targets were identified in osteoporosis (8 targets), prostate cancer (9 targets), and kidney diseases (11 targets). This was the first study to identify the targets of these bioactive compounds in maca for cardiovascular diseases (29 targets). The compound with the most targets (46) was an amide alkaloid (MA-24). In silico target fishing identified maca's traditional effects on treatment and prevention of osteoporosis, prostate cancer, and kidney diseases, and its potential function of treating cardiovascular diseases, as the most important of this herb's possible activities.

  17. Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.).

    Science.gov (United States)

    Liu, Pengzhan; Lindstedt, Anni; Markkinen, Niko; Sinkkonen, Jari; Suomela, Jukka-Pekka; Yang, Baoru

    2014-12-10

    Leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) are potential raw materials for food and health care products. Targeted (HPLC-DAD, HPLC-MS, and GC-FID) and nontargeted ((1)H NMR) approaches were applied to study the metabolomic profiles of these leaves. Chlorogenic acid was the major phenolic compound in bilberry leaves and arbutin in lingonberry leaves. Flavonol glycosides were another major group of phenolics in bilberry [5-28 mg/g DM (dry mass)] and lingonberry (15-20 mg/g DM) leaves. Contents of fatty acids were analyzed using GC-FID. The changes in the metabolomics profile during the season were apparent in bilberry but not lingonberry leaves. Negative correlation was found between the contents of lipids and phenolics. The consistency between the key results obtained by targeted and nontargeted analyses suggests nontargeted metabolomic analysis is an efficient tool for fast screening of various leaf materials.

  18. Root constituents of Lactuca sibirica and a comparison of metabolite profiles of L. sibirica and L. tatarica

    Directory of Open Access Journals (Sweden)

    Wanda Kisiel

    2011-01-01

    Full Text Available Nine known sesquiterpene lactones, including four lactucin-type guaianolides, four costuslactone-type guaianolides and one germacranolide, were isolated from roots of Lactuca sibirica (Asteraceae, six of which were glycoside derivatives. The chemosystematic significance of the compounds is discussed in the context of sesquiterpenoids present in roots of the closely related species Lactuca tatarica. A comparison of sesquiterpene lactone profiles indicate that the species can be differentiated on the basis of their germacranolide glycoside compositions.

  19. Automated Comparative Metabolite Profiling of Large LC-ESIMS Data Sets in an ACD/MS Workbook Suite Add-in, and Data Clustering on a New Open-Source Web Platform FreeClust.

    Science.gov (United States)

    Božičević, Alen; Dobrzyński, Maciej; De Bie, Hans; Gafner, Frank; Garo, Eliane; Hamburger, Matthias

    2017-12-05

    The technological development of LC-MS instrumentation has led to significant improvements of performance and sensitivity, enabling high-throughput analysis of complex samples, such as plant extracts. Most software suites allow preprocessing of LC-MS chromatograms to obtain comprehensive information on single constituents. However, more advanced processing needs, such as the systematic and unbiased comparative metabolite profiling of large numbers of complex LC-MS chromatograms remains a challenge. Currently, users have to rely on different tools to perform such data analyses. We developed a two-step protocol comprising a comparative metabolite profiling tool integrated in ACD/MS Workbook Suite, and a web platform developed in R language designed for clustering and visualization of chromatographic data. Initially, all relevant chromatographic and spectroscopic data (retention time, molecular ions with the respective ion abundance, and sample names) are automatically extracted and assembled in an Excel spreadsheet. The file is then loaded into an online web application that includes various statistical algorithms and provides the user with tools to compare and visualize the results in intuitive 2D heatmaps. We applied this workflow to LC-ESIMS profiles obtained from 69 honey samples. Within few hours of calculation with a standard PC, honey samples were preprocessed and organized in clusters based on their metabolite profile similarities, thereby highlighting the common metabolite patterns and distributions among samples. Implementation in the ACD/Laboratories software package enables ulterior integration of other analytical data, and in silico prediction tools for modern drug discovery.

  20. Lipophilic metabolite profiling of maize and sorghum seeds and seedlings, and their pest spotted stem borer larvae: a standardized GC-MS based approach.

    Science.gov (United States)

    Kumar, Sandeep; Dhillon, Mukesh K

    2015-03-01

    In order to better understand the biochemical interactions and to identify new biomarkers for plant resistance against insects, we proposed a suitable lipophilic profiling method for insects and their host plants. The critical components of GC-MS based analysis are: sample amount, extraction, derivatization, temperature gradient, run time, and identification of peaks. For lipophilic metabolite profiling of maize and sorghum, and their insect pest, spotted stem borer larvae, we recommend 100 mg sample weight for seeds and insect samples (whole insect body), and 200 mg for seedlings. Maize and sorghum seeds required less time for fat extraction in comparison to their seedlings and the pest fed on these seedlings. GC-MS was standardized for better separation and intensity of peaks using different temperature gradients in the range of 180-300 C. A total of 48 lipophilic compounds encompassing various classes based on their functional groups such as fatty acids, fatty alcohols, hydrocarbons, sterols and terpenoids, vitamin derivative, etc. were separated in the seedlings (30), seeds (14), and the pest (26) in the retention time range of 3.22 to 29.41 min. This method could be useful to study nutritional aspects of different field crops in relation to various stresses apart from the analysis of lipophilic compounds for better understanding of insect-plant interactions.

  1. An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis.

    Science.gov (United States)

    Alós, Enriqueta; Roca, María; Iglesias, Domingo José; Mínguez-Mosquera, Maria Isabel; Damasceno, Cynthia Maria Borges; Thannhauser, Theodore William; Rose, Jocelyn Kenneth Campbell; Talón, Manuel; Cercós, Manuel

    2008-07-01

    A Citrus sinensis spontaneous mutant, navel negra (nan), produces fruit with an abnormal brown-colored flavedo during ripening. Analysis of pigment composition in the wild-type and nan flavedo suggested that typical ripening-related chlorophyll (Chl) degradation, but not carotenoid biosynthesis, was impaired in the mutant, identifying nan as a type C stay-green mutant. nan exhibited normal expression of Chl biosynthetic and catabolic genes and chlorophyllase activity but no accumulation of dephytylated Chl compounds during ripening, suggesting that the mutation is not related to a lesion in any of the principal enzymatic steps in Chl catabolism. Transcript profiling using a citrus microarray indicated that a citrus ortholog of a number of SGR (for STAY-GREEN) genes was expressed at substantially lower levels in nan, both prior to and during ripening. However, the pattern of catabolite accumulation and SGR sequence analysis suggested that the nan mutation is distinct from those in previously described stay-green mutants and is associated with an upstream regulatory step, rather than directly influencing a specific component of Chl catabolism. Transcriptomic and comparative proteomic profiling further indicated that the nan mutation resulted in the suppressed expression of numerous photosynthesis-related genes and in the induction of genes that are associated with oxidative stress. These data, along with metabolite analyses, suggest that nan fruit employ a number of molecular mechanisms to compensate for the elevated Chl levels and associated photooxidative stress.

  2. Metabolite Profile Resulting from the Activation/Inactivation of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 2-Methyltetrahydro-β-carboline by Oxidative Enzymes

    Directory of Open Access Journals (Sweden)

    Tomás Herraiz

    2013-01-01

    Full Text Available Metabolic enzymes are involved in the activation/deactivation of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyiridine (MPTP neurotoxin and its naturally occurring analogs 2-methyltetrahydro-β-carbolines. The metabolic profile and biotransformation of these protoxins by three enzymes, monoamine oxidase (MAO, cytochrome P450, and heme peroxidases (myeloperoxidase and lactoperoxidase, were investigated and compared. The metabolite profile differed among the enzymes investigated. MAO and heme peroxidases activated these substances to toxic pyridinium and β-carbolinium species. MAO catalyzed the oxidation of MPTP to 1-methyl-4-phenyl-2,3-dihydropyridinium cation (MPDP+, whereas heme peroxidases catalyzed the oxidation of MPDP+ to 1-methyl-4-phenylpyridinium (MPP+ and of 2-methyltetrahydro-β-carboline to 2-methyl-3,4-dihydro-β-carbolinium cation (2-Me-3,4-DHβC+. These substances were inactivated by cytochrome P450 2D6 through N-demethylation and aromatic hydroxylation (MPTP and aromatic hydroxylation (2-methyltetrahydro-β-carboline. In conclusion, the toxicological effects of these protoxins might result from a balance between the rate of their activation to toxic products (i.e., N-methylpyridinium-MPP+ and MPDP+- and N-methyl-β-carbolinium—βC+— by MAO and heme peroxidases and the rate of inactivation (i.e., N-demethylation, aromatic hydroxylation by cytochrome P450 2D6.

  3. Comparative characterization of the leaf tissue of Physalis alkekengi and Physalis peruviana using RNA-seq and metabolite profiling

    Directory of Open Access Journals (Sweden)

    Atsushi Fukushima

    2016-12-01

    Full Text Available The genus Physalis in the Solanaceae family contains several species of benefit to humans. Examples include Physalis alkekengi (Chinese-lantern plant, hōzuki in Japanese used for medicinal and for decorative purposes, and Physalis peruviana, also known as Cape gooseberry, which bears an edible, vitamin-rich fruit. Members of the Physalis genus are a valuable resource for phytochemicals needed for the development of medicines and functional foods. To fully utilize the potential of these phytochemicals we need to understand their biosynthesis, and for this we need genomic data, especially comprehensive transcriptome datasets for gene discovery. We report the de novo assembly of the transcriptome from leaves of P. alkekengi and P. peruviana using Illumina RNA-seq technologies. We identified 75,221 unigenes in P. alkekengi and 54,513 in P. peruviana. All unigenes were annotated with gene ontology (GO, Enzyme Commission (EC numbers, and pathway information from the Kyoto Encyclopedia of Genes and Genomes (KEGG. We classified unigenes encoding enzyme candidates putatively involved in the secondary metabolism and identified more than one unigenes for each step in terpenoid backbone- and steroid biosynthesis in P. alkekengi and P. peruviana. To measure the variability of the withanolides including physalins and provide insights into their chemical diversity of Physalis, we also analyzed the metabolite content in leaves of P. alkekengi and P. peruviana at 5 different developmental stages by liquid chromatography-mass spectrometry. We discuss that comprehensive transcriptome approaches within a family can yield a clue for gene discovery in Physalis and provide insights into their complex chemical diversity. The transcriptome information we submit here will serve as an important public resource for further studies of the specialized metabolism of Physalis species.

  4. KSHV oral shedding and plasma viremia result in significant changes in the extracellular tumorigenic miRNA expression profile in individuals infected with the malaria parasite.

    Science.gov (United States)

    Ikoma, Minako; Gantt, Soren; Casper, Corey; Ogata, Yuko; Zhang, Qing; Basom, Ryan; Dyen, Michael R; Rose, Timothy M; Barcy, Serge

    2018-01-01

    Kaposi's sarcoma herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). Both KSHV and HIV infections are endemic in Uganda, where KS is among the most common cancers in HIV-infected individuals. Recent studies examined the use of small RNAs as biomarkers of disease, including microRNAs (miRNAs), with viral and tumor-derived miRNAs being detected in exosomes from individuals with KSHV-associated malignancies. In the current study, the host and viral extracellular mature miRNA expression profiles were analyzed in blood of KS-negative individuals in Uganda, comparing those with or without KSHV detectable from the oropharynx. We observed increased levels of cellular oncogenic miRNAs and decreased levels of tumor-suppressor miRNAs in plasma of infected individuals exhibiting oral KSHV shedding. These changes in host oncomiRs were exacerbated in people co-infected with HIV, and partially reversed after 2 years of anti-retroviral therapy. We also detected KSHV miRNAs in plasma of KSHV infected individuals and determined that their expression levels correlated with KSHV plasma viremia. Deep sequencing revealed an expected profile of small cellular RNAs in plasma, with miRNAs constituting the major RNA biotype. In contrast, the composition of small RNAs in exosomes was highly atypical with high levels of YRNA and low levels of miRNAs. Mass spectrometry analysis of the exosomes revealed eleven different peptides derived from the malaria parasite, Plasmodium falciparum, and small RNA sequencing confirmed widespread plasmodium co-infections in the Ugandan cohorts. Proteome analysis indicated an exosomal protein profile consistent with erythrocyte and keratinocyte origins for the plasma exosomes. A strong correlation was observed between the abundance of Plasmodium proteins and cellular markers of malaria. As Plasmodium falciparum is an endemic pathogen in Uganda, our study shows that co-infection with other pathogens, such as KSHV, can severely impact the small

  5. In vivo metabolite compartmentalization probed using intracellular GdDTPA

    DEFF Research Database (Denmark)

    Peters, David Alberg; Rowland, Ian

    Fast trans-membrane water exchange enables in- tracellular relaxation enhancement of water by contrast agents in the extracellular space. For me- tabolites not in fast exchange across membranes, intracellular metabolite relaxation enhancement will only occur if the contrast agent and metabolite...... are in the same compartment. Extracellular contrast has utilized electroporation methods to deliver GdDTPA into the cytosol of rat muscle in vivo in order to probe the intracellular compart- mentalization of MR-visible metabolites....

  6. Metabolite Profiling Reveals a Specific Response in Tomato to Predaceous Chrysoperla carnea Larvae and Herbivore(s)-Predator Interactions with the Generalist Pests Tetranychus urticae and Myzus persicae.

    Science.gov (United States)

    Errard, Audrey; Ulrichs, Christian; Kühne, Stefan; Mewis, Inga; Mishig, Narantuya; Maul, Ronald; Drungowski, Mario; Parolin, Pia; Schreiner, Monika; Baldermann, Susanne

    2016-01-01

    The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanum lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest-predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and α-terpinene which were induced by pest-predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T. urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first

  7. Metabolite profiling reveals a specific response in tomato to predaceous Chrysoperla carnea larvae and herbivore(s-predator interactions with the generalist pests Tetranychus urticae and Myzus persicae

    Directory of Open Access Journals (Sweden)

    Audrey Errard

    2016-08-01

    Full Text Available The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer both infest a number of economically significant crops, including tomato (Solanum lycopersicum. Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens on plant biochemistry was not investigated. Here we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s-predator interactions on tomato biochemistry. Each pest and pest-predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and α-terpinene which were induced by pest-predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T. urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites and aphids on different components of the tomato primary and secondary metabolism

  8. Non-Targeted Secondary Metabolite Profile Study for Deciphering the Cosmeceutical Potential of Red Marine Macro Alga Jania rubens—An LCMS-Based Approach

    Directory of Open Access Journals (Sweden)

    Dhara Dixit

    2017-10-01

    Full Text Available This study aims to unveil the cosmeceutical traits of Jania rubens by highlighting its mineral composition, antioxidant potential, and presence of bioactive molecules using non-targeted metabolite profiling. This study showed that among minerals, (macro, Ca (14790.33 + 1.46 mg/100 g dry weight (DW and in (micro Fe (84.93 + 0.89 mg/100 g DW was the highest. A total of 23 putative metabolites in the +ESI (Electrospray Ionization mode of LCMS-TOF (Liquid Chromatography Mass Spectrometry-Time of Flight were detected. Two anthocyanins—malonylshisonin and 4′′′-demalonylsalvianin (m/z 825.19; anti-aging, antioxidant, anticancer properties were detected. Two flavonoids, viz, medicocarpin and agecorynin C, 4′-O-methylglucoliquiritigenin—a flavonoid-7-O-glycoside, and 5,6,7,8,3′,4′,5′-heptamethoxyflavone, a polymethoxygenated flavone (m/z 415.15, were detected. Maclurin 3-C-(2″,3″,6″-trigalloylglucoside (m/z 863.15 (antioxidant, antimicrobial and anticancer traits and theaflavonin (m/z 919.18, belonging to the class of theaflavins (whitening and anti-wrinkle agent, were obtained. Pharmacologically active metabolites like berberrubin (m/z 305.1; antitumor activity, icaceine (m/z 358.24; anticonvulsant properties, agnuside (m/z 449.15; constituent for treatment of premenstrual syndrome, γ-coniceine (m/z 108.12; formulations to treat breast cancer, eremopetasitenin B2, and eremosulphoxinolide A (m/z 447.18; therapeutic effect of allergy and asthma were observed. 6-O-Methylarmillaridin (m/z 445.18 (antimicrobial and antifungal and simmondsin 2-ferulate, (m/z 534.21 (insecticidal, antifungal and antifeedant were detected. Aromatic lignans, viz, 8-Acetoxy-4′-methoxypinoresinol, sesartemin, and cubebinone (m/z 413.16, in addition to an aromatic terpene glycoside, tsangane L3 glucoside (m/z 357.23, were detected. Zizybeoside I, benzyl gentiobioside, and trichocarposide were also detected. The determination of antioxidant potential was

  9. β-D-xylosides stimulate GAG synthesis in chondrocyte cultures due to elevation of the extracellular GAG domains, accompanied by the depletion of the intra-pericellular GAG pools, with alterations in the GAG profiles.

    Science.gov (United States)

    Weinstein, Talia; Evron, Zoharia; Trebicz-Geffen, Meirav; Aviv, Moran; Robinson, Dror; Kollander, Yehuda; Nevo, Zvi

    2012-01-01

    The familial disease of hereditary multiple exostoses is characterized by abnormal skeletal deformities requiring extensive surgical procedures. In hereditary multiple exostoses patients there is a shortage in the pericellular glycosaminoglycan (GAG) of heparan sulfate (HS), related to defective activity of HS glycosyltransferases, mainly in the pericellular regions of chondrocytes. This study searched for a novel approach employing xylosides with different aglycone groups priming a variety of GAG chains, in attempting to alter the GAG compositional profile. Cell cultures of patients with osteochondroma responded to p-nitrophenyl β-D-xyloside by a significant increase in total GAG synthesis, expressed mainly in the extracellular domains, limited to chondroitin sulfate). The different β-D-xylosides, in addition to increasing the synthesis of extracellular GAGs, led to a significant depletion of the intracellular GAG domains. In mouse chondrocyte cultures, β-D-xylosides with different aglycones created a unique distribution of the GAG pools. Of special interest was the finding that the naphthalene methanol β-D-xyloside showed the highest absolute levels of HS-GAGs in both extracellular and intra-pericellular moieties compared with other β-D-xylosides and with controls without xyloside. In summary, β-D-xylosides can be utilized in chondrocyte cultures to modify the distribution of GAGs between the extracellular and intracellular compartments. In addition, xylosides may alter the profile of specific GAG chains in each moiety.

  10. Profiling and identification of the metabolites of baicalin and study on their tissue distribution in rats by ultra-high-performance liquid chromatography with linear ion trap-Orbitrap mass spectrometer.

    Science.gov (United States)

    Zhang, Jiayu; Cai, Wei; Zhou, Yuan; Liu, Ying; Wu, Xiaodan; Li, Yun; Lu, Jianqiu; Qiao, Yanjiang

    2015-03-15

    Baicalin (baicalein 7-O-glucuronide), which is one of the major bioactive constituents isolated from Scutellariae Radix, possesses many biological activities, such as antiallergic, antioxidation, and anti-inflammatory activities. In the present study, an efficient strategy was established using ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometer (UPLC-LTQ-Orbitrap MS) to profile the in vivo metabolic fate of baicalin in rat plasma, urine, and various tissues. A combination of post-acquisition mining methods including extracted ion chromatogram (EIC) and multiple mass defect filters (MMDF) was adopted to identify the common and uncommon baicalin metabolites from the full mass scan data sets. Their structures were elucidated based on the accurate mass measurement, relevant drug biotransformation knowledge, the characteristic collision induced fragmentation pattern of baicalin metabolites, and bibliography data. Based on the proposed strategy, a total of 32 metabolites were observed and characterized. The corresponding reactions in vivo such as methylation, hydrolysis, hydroxylation, methoxylation, glucuronide conjugation, sulfate conjugation, and their composite reactions, were all discovered in the study. The results demonstrated that the rat liver and kidney are the most important organs for the baicalin metabolites presence. Six metabolites might play an important role in exerting pharmacological effects of baicalin in vivo. The newly discovered baicalin metabolites significantly expanded our understanding on its pharmacological effects, and could be targets for future studies on the important chemical constituents from herbal medicines. Copyright © 2015. Published by Elsevier B.V.

  11. Evaluation of mobile phase characteristics on three zwitterionic columns in hydrophilic interaction liquid chromatography mode for liquid chromatography-high resolution mass spectrometry based untargeted metabolite profiling of Leishmania parasites.

    Science.gov (United States)

    Zhang, Rong; Watson, David G; Wang, Lijie; Westrop, Gareth D; Coombs, Graham H; Zhang, Tong

    2014-10-03

    It has been reported that HILIC column chemistry has a great effect on the number of detected metabolites in LC-HRMS-based untargeted metabolite profiling studies. However, no systematic investigation has been carried out with regard to the optimisation of mobile phase characteristics. In this study using 223 metabolite standards, we explored the retention mechanisms on three zwitterionic columns with varied mobile phase composition, demonstrated the interference from poor chromatographic peak shapes on the output of data extraction, and assessed the quality of chromatographic signals and the separation of isomers under each LC condition. As expected, on the ZIC-cHILIC column the acidic metabolites showed improved chromatographic performance at low pH which can be attributed to the opposite arrangement of the permanently charged groups on this column in comparison with the ZIC-HILIC column. Using extracts from the protozoan parasite Leishmania, we compared the numbers of repeatedly detected LC-HRMS features under different LC conditions with putative identification of metabolites not amongst the standards being based on accurate mass (±3ppm). Besides column chemistry, the pH of the mobile phase plays a key role in not only determining the retention mechanisms of solutes but also the output of the LC-HRMS data processing. Fast evaporation of ammonium carbonate produced less ion suppression in ESI source and consequently improved the detectability of the metabolites in low abundance in comparison with other ammonium salts. Our results show that the combination of a ZIC-pHILIC column with an ammonium carbonate mobile phase, pH 9.2, at 20mM in the aqueous phase or 10mM in both aqueous and organic mobile phase components, provided the most suitable LC conditions for LC-HRMS-based untargeted metabolite profiling of Leishmania parasite extracts. The signal reliability of the mass spectrometer used in this study (Exactive Orbitrap) was also investigated. Copyright © 2014

  12. The profiling of the metabolites of hirsutine in rat by ultra-high performance liquid chromatography coupled with linear ion trap Orbitrap mass spectrometry: An improved strategy for the systematic screening and identification of metabolites in multi-samples in vivo.

    Science.gov (United States)

    Wang, Jianwei; Qi, Peng; Hou, Jinjun; Shen, Yao; Yang, Min; Bi, Qirui; Deng, Yanping; Shi, Xiaojian; Feng, Ruihong; Feng, Zijin; Wu, Wanying; Guo, Dean

    2017-02-05

    Drug metabolites identification and construction of metabolic profile are meaningful work for the drug discovery and development. The great challenge during this process is the work of the structural clarification of possible metabolites in the complicated biological matrix, which often resulting in a huge amount data sets, especially in multi-samples in vivo. Analyzing these complex data manually is time-consuming and laborious. The object of this study was to develop a practical strategy for screening and identifying of metabolites from multiple biological samples efficiently. Using hirsutine (HTI), an active components of Uncaria rhynchophylla (Gouteng in Chinese) as a model and its plasma, urine, bile, feces and various tissues were analyzed with data processing software (Metwork), data mining tool (Progenesis QI), and HR-MS(n) data by ultra-high performance liquid chromatography/linear ion trap-Orbitrap mass spectrometry (U-HPLC/LTQ-Orbitrap-MS). A total of 67 metabolites of HTI in rat biological samples were tentatively identified with established library, and to our knowledge most of which were reported for the first time. The possible metabolic pathways were subsequently proposed, hydroxylation, dehydrogenation, oxidation, N-oxidation, hydrolysis, reduction and glucuronide conjugation were mainly involved according to metabolic profile. The result proved application of this improved strategy was efficient, rapid, and reliable for metabolic profiling of components in multiple biological samples and could significantly expand our understanding of metabolic situation of TCM in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Comprehensive profiling of mercapturic acid metabolites from dietary acrylamide as short-term exposure biomarkers for evaluation of toxicokinetics in rats and daily internal exposure in humans using isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang (China); Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang (China); Wang, Qiao; Cheng, Jun [Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang (China); Zhang, Jingshun; Xu, Jiaojiao [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang (China); Ren, Yiping, E-mail: renyiping@263.net [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang (China)

    2015-09-24

    Mercapturic acid metabolites from dietary acrylamide are important short-term exposure biomarkers for evaluating the in vivo toxicity of acrylamide. Most of studies have focused on the measurement of two metabolites, N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA). Thus, the comprehensive profile of acrylamide urinary metabolites cannot be fully understood. We developed an isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for the simultaneous determination of all four mercapturic acid adducts of acrylamide and its primary metabolite glycidamide under the electroscopy ionization negative (ESI-) mode in the present study. The limit of detection (LOD) and limit of quantification (LOQ) of the analytes ranged 0.1–0.3 ng/mL and 0.4–1.0 ng/mL, respectively. The recovery rates with low, intermediate and high spiking levels were calculated as 95.5%–105.4%, 98.2%–114.0% and 92.2%–108.9%, respectively. Acceptable within-laboratory reproducibility (RSD < 7.0%) substantially supported the use of current method for robust analysis. Rapid pretreatment procedures and short run time (8 min per sample) ensured good efficiency of metabolism profiling, indicating a wide application for investigating short-term internal exposure of dietary acrylamide. Our proposed UHPLC-MS/MS method was successfully applied to the toxicokinetic study of acrylamide in rats. Meanwhile, results of human urine analysis indicated that the levels of N-acetyl-S-(2-carbamoylethyl)-L-cysteine-sulfoxide (AAMA-sul), which did not appear in the mercapturic acid metabolites in rodents, were more than the sum of GAMA and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-L-cysteine (iso-GAMA). Thus, AAMA-sul may alternatively become a specific biomarker for investigating the acrylamide exposure in humans. Current proposed method provides a substantial methodology support for comprehensive

  14. Alkaloid metabolite profiles by GC/MS and acetylcholinesterase inhibitory activities with binding-mode predictions of five Amaryllidaceae plants.

    Science.gov (United States)

    Cortes, Natalie; Alvarez, Rafael; Osorio, Edison H; Alzate, Fernando; Berkov, Strahil; Osorio, Edison

    2015-01-01

    Acetylcholinesterase (AChE) enzymatic inhibition is an important target for the management of Alzheimer disease (AD) and AChE inhibitors are the mainstay drugs for its treatment. In order to discover new sources of potent AChE inhibitors, a combined strategy is presented based on AChE-inhibitory activity and chemical profiles by GC/MS, together with in silico studies. The combined strategy was applied on alkaloid extracts of five Amaryllidaceae species that grow in Colombia. Fifty-seven alkaloids were detected using GC/MS, and 21 of them were identified by comparing their mass-spectral fragmentation patterns with standard reference spectra in commercial and private library databases. The alkaloid extracts of Zephyranthes carinata exhibited a high level of inhibitory activity (IC50 = 5.97 ± 0.24 μg/mL). Molecular modeling, which was performed using the structures of some of the alkaloids present in this extract and the three-dimensional crystal structures of AChE derived from Torpedo californica, disclosed their binding configuration in the active site of this AChE. The results suggested that the alkaloids 3-epimacronine and lycoramine might be of interest for AChE inhibition. Although the galanthamine group is known for its potential utility in treating AD, the tazettine-type alkaloids should be evaluated to find more selective compounds of potential benefit for AD. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Quantifying biochemical quality parameters in carrots (Daucus carota L.) - FT-Raman spectroscopy as efficient tool for rapid metabolite profiling.

    Science.gov (United States)

    Krähmer, Andrea; Böttcher, Christoph; Rode, Andrea; Nothnagel, Thomas; Schulz, Hartwig

    2016-12-01

    Application of FT-Raman spectroscopy for simultaneous quantification of carotenoids, carbohydrates, polyacetylenes and phenylpropanoids with high bioactive potential was investigated in storage roots of Daucus carota. Within single FT-Raman experiment carbohydrates, carotenoids, and polyacetylenes could be reliably quantified with high coefficients of determination of R(2)>0.91. The most abundant individual representatives of each compound class could be quantified with comparably high quality resulting in R(2)=0.97 and 0.96 for α-carotene and β-carotene, in R(2)=0.90 for falcarindiol (FaDOH), R(2)=0.99, 0.98 and 0.96 for fructose, glucose and sucrose. In contrast, application of FT-Raman spectroscopy for quantification of two laserine-type phenylpropanoids was investigated but failed due to low concentration and Raman response. Furthermore, evaluation of metabolic profiles by principle component analysis (PCA) revealed metabolic variety of carrot root composition depending on root color and botanical relationship. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Metabolite Profiling of Eastern Teaberry (Gaultheria procumbens L. Lipophilic Leaf Extracts with Hyaluronidase and Lipoxygenase Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Piotr Michel

    2017-03-01

    Full Text Available The phytochemical profile and anti-inflammatory activity of Gaultheria procumbens dry lipophilic leaf extracts were evaluated. Forty compounds were identified by GC-MS, representing 86.36% and 81.97% of the petroleum ether (PE and chloroform (CHE extracts, respectively, with ursolic acid (28.82%, oleanolic acid (10.11%, methyl benzoate (10.03%, and methyl salicylate (6.88% dominating in CHE, and methyl benzoate (21.59%, docosane (18.86%, and octacosane (11.72% prevailing in PE. Three components of CHE were fully identified after flash chromatography isolation and spectroscopic studies as (6S,9R-vomifoliol (4.35%, 8-demethyl-latifolin (1.13%, and 8-demethylsideroxylin (2.25%. Hyaluronidase and lipoxygenase inhibitory activity was tested for CHE (IC50 = 282.15 ± 10.38 μg/mL and 899.97 ± 31.17 μg/mL, respectively, PE (IC50 = 401.82 ± 16.12 μg/mL and 738.49 ± 15.92 μg/mL, and nine of the main constituents versus heparin (IC50 = 366.24 ± 14.72 μg/mL and indomethacin (IC50 = 92.60 ± 3.71 μg/mL as positive controls. With the best activity/concentration relationships, ursolic and oleanolic acids were recommended as analytical markers for the extracts and plant material. Seasonal variation of both markers following foliar development was investigated by UHPLC-PDA. The highest levels of ursolic (5.36–5.87 mg/g DW of the leaves and oleanolic (1.14–1.26 mg/g DW acids were observed between August and October, indicating the optimal season for harvesting.

  17. Concentrations and chromatographic profile of DDT metabolites and polychlorobiphenyl (PCB) residues in stranded Beluga Whales (Delphinapterus leucas) from the St. Lawrence Estuary, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R.; Martineau, D.; Tremblay, L.; Beland, P.

    1986-09-01

    The concentrations and high resolution gas chromatographic profiles of DDT metabolites and polychlorobiphenyl (PCB) congeners were determined in blubber, liver, kidney and lung tissue and milk samples of stranded beluga whales (Delphinapterus leucas) collected at localities along the coasts of the Saint Lawrence Estuary, Canada from November 1983 through December 1984. The analyses indicate that the major PCB components of the tissues were 2,2',5,5'-tetra-, 2,2',4,4',5-penta-, 2,2',3,4,4',5'-hexa-, 2,2',4,4',5,5'-hexa-, 2,2',3,3',4,5-hexa-, 2,3,3',5,5',6-hexa-, 2,2',3,4,5,5',6-hepta- and 2,2',3,4,4',5,5'-heptachlorobiphenyls. Although the highest organochlorine chemical concentrations were found primarily in the blubber, concentrations of 1.72 ..mu..g/g for PCB and 2.04 ..mu..g/g for ..sigma..DDT were determined in one milk sample. No correlation was established between PCB, p,p-DDE and ..sigma..DDT concentrations and the fat content of the kidney, liver and lung tissues. The chromatographic patterns of the PCB congeners were similar from one tissue to another with the exception of the kidney; the profile indicates the retention of PCB congeners which are minor components in the other tissues. Relations of residue concentrations between tissue are described and the significance of congener-specific PCB analysis is discussed in terms of the structure-activity effects on PCB persistence and toxicity.

  18. Prediction of Chinese green tea ranking by metabolite profiling using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS).

    Science.gov (United States)

    Jing, Jin; Shi, Yuanzhi; Zhang, Qunfeng; Wang, Jie; Ruan, Jianyun

    2017-04-15

    Metabolomics profiling provides comprehensive picture of the chemical composition in teas therefore may be used to assess tea quality objectively and reliably. In the present experiment, water and methanol extracts of green teas from China were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) with the objectives to establish a model for quality prediction and to identify potential marker metabolites. The blindly evaluated sensory score of green teas was predicted with excellent power (R(2)=0.87 and Q(2)=0.82) and accuracy (RMSEP=1.36) by a partial least-squares (PLS) regression model based on water extract. By contrast, methanol extract failed to reasonably predict the sensory scores. The levels in water extract of neotheaflavin, neotheaflavin 3-O-gallate, trigalloyl-β-d-glucopyranose, myricetin 3,3'-digalactoside, catechin-(4α→8)-epigallocatechin and kaempferol were significantly larger whereas those of theogallin and gallocatechin were less in the low (score<87) than in the high score (⩾90) group. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly.

    Science.gov (United States)

    Vesala, Laura; Salminen, Tiina S; Koštál, Vladimir; Zahradníčková, Helena; Hoikkala, Anneli

    2012-08-15

    Coping with seasonal changes in temperature is an important factor underlying the ability of insects to survive over the harsh winter conditions in the northern temperate zone, and only a few drosophilids have been able to colonize sub-polar habitats. Information on their winter physiology is needed as it may shed light on the adaptive mechanisms of overwintering when compared with abundant data on the thermal physiology of more southern species, such as Drosophila melanogaster. Here we report the first seasonal metabolite analysis in a Drosophila species. We traced changes in the cold tolerance and metabolomic profiles in adult Drosophila montana flies that were exposed to thermoperiods and photoperiods similar to changes in environmental conditions of their natural habitat in northern Finland. The cold tolerance of diapausing flies increased noticeably towards the onset of winter; their chill coma recovery times showed a seasonal minimum between late autumn and early spring, whereas their survival after cold exposure remained high until late spring. The flies had already moderately accumulated glucose, trehalose and proline in autumn, but the single largest change occurred in myo-inositol concentrations. This increased up to 400-fold during the winter and peaked at 147 nmol mg(-1) fresh mass, which is among the largest reported accumulations of this compound in insects.

  20. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii.

    Science.gov (United States)

    Datta, Suprama; Timson, David J; Annapure, Uday S

    2017-07-01

    Saccharomyces cerevisiae var. boulardii is the only yeast species with probiotic properties. It is considered to have therapeutic significance in gastrointestinal disorders. In the present study, a comparative physiological study between this yeast and Saccharomyces cerevisiae (BY4742) was performed by evaluating two prominent traits of probiotic species, responses to different stress conditions and antioxidant capacity. A global metabolite profile was also developed aiming to identify which therapeutically important secondary metabolites are produced. Saccharomyces cerevisiae var. boulardii showed no significant difference in growth patterns but greater stress tolerance compared to S. cerevisiae. It also demonstrated a six- to 10-fold greater antioxidant potential (judged by the 1,1-diphenyl-2-picrylhydrazyl assay), with a 70-fold higher total phenolic content and a 20-fold higher total flavonoid content in the extracellular fraction. These features were clearly differentiated by principal component analysis and further indicated by metabolite profiling. The extracellular fraction of the S. cerevisiae var. boulardii cultures was found to be rich in polyphenolic metabolites: vanillic acid, cinnamic acid, phenyl ethyl alcohol (rose oil), erythromycin, amphetamine and vitamin B6 , which results in the antioxidant capacity of this strain. The present study presents a new perspective for differentiating the two genetically related strains of yeast, S. cerevisiae and S. cerevisiae var. boulardii by assessing their metabolome fingerprints. In addition to the correlation of the phenotypic properties with the secretory metabolites of these two yeasts, the present study also emphasizes the potential to exploit S. cerevisiae var. boulardii in the industrial production of these metabolites. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Methylselenol, a Selenium Metabolite, Induces Cell Cycle Arrest in G1 Phase and Apoptosis via the Extracellular-Regulated Kinase 1/2 Pathway and Other Cancer Signaling Genes

    Science.gov (United States)

    Methylselenol has been hypothesized to be a critical selenium metabolite for anticancer activity in vivo, and our previous study demonstrates that submicromolar methylselenol generated by incubating methionase with seleno-L-methionine inhibits the migration and invasive potential of HT1080 tumor cel...

  2. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs1234

    Science.gov (United States)

    Jang, Saebyeol; Sun, Jianghao; Chen, Pei; Lakshman, Sukla; Molokin, Aleksey; Harnly, James M; Vinyard, Bryan T; Urban, Joseph F; Davis, Cindy D; Solano-Aguilar, Gloria

    2016-01-01

    Background: Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. Objective: The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. Methods: Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. Results: O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (P < 0.01) in the urine (35- to 204-fold), serum (6- to 186-fold), and adipose tissue (34- to 1144-fold) of pigs fed cocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75–85%, P < 0.05). Compared with the unsupplemented pigs, the abundance of Lactobacillus species was greater in the feces (7-fold, P = 0.005) and that of Bifidobacterium species was greater in the proximal colon contents (9-fold, P = 0.01) in pigs fed only 20 or 10 g cocoa powder/d, respectively. Moreover, consumption of cocoa powder reduced TLR9 gene expression in ileal Peyer’s patches (67–80%, P < 0.05) and mesenteric lymph nodes (43–71%, P < 0.05) of pigs fed 2.5–20 g cocoa powder/d compared with pigs not supplemented with cocoa powder. Conclusion: This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance of Lactobacillus and Bifidobacterium species and modulating markers of localized intestinal immunity. PMID:26936136

  3. Effects of pistachio by-products on digestibility, milk production, milk fatty acid profile and blood metabolites in Saanen dairy goats.

    Science.gov (United States)

    Sedighi-Vesagh, R; Naserian, A A; Ghaffari, M H; Petit, H V

    2015-08-01

    The objective of this study was to investigate the effects of pistachio by-products (PBP) on nutrient digestibility, blood metabolites and milk fatty acid (FA) profile in Saanen dairy goats. Nine multiparous lactating Saanen goats (on day 90 post-partum, 45 ± 2/kg BW) were randomly assigned to a 3 × 3 Latin square design with three treatment diets: 1) control diet (alfalfa hay based), 2) 32% PBP and 3) 32% PBP + polyethylene glycol (PEG-4000; 1 g/kg dry matter). Each period lasted 21 days, including 14 day for treatment adaptation and 7 day for data collection. Pistachio by-products significantly decreased (p < 0.01) crude protein (CP) digestibility compared with the control diet (64.4% vs. 58.7%), but PEG addition did not differ for CP digestibility of goats fed 32% PBP + PEG and those fed the two other diets. The digestibility of NDF tended (p = 0.06) to decrease for goats fed PBP compared with those fed the control diet. Yields of milk and 4% fat-corrected milk were not affected by dietary treatments. Compared with the control diet, PBP supplementation appreciably changed the proportions of almost all the milk FA measured; the main effects were decreases (p < 0.01) in FA from 8:0 to 16:0 and increases (p < 0.01) proportions of cis-9, trans-11 18:2 and trans-11 18:1, monounsaturated FA, polyunsaturated FA and long-chain FA. The saturated FA, short-chain FA and medium-chain FA proportions were lower (p < 0.01) in goats fed the two PBP supplemented diet than in those fed the control diet and PEG addition led to intermediate proportions of saturated FA, unsaturated and monounsaturated FA. Inclusion of PBP in the diet decreased (p < 0.01) plasma concentrations of glucose and urea nitrogen compared with the control diet. It was concluded that PBP can be used as forage in the diet of dairy goats without interfering with milk yield. Inclusion of 32% PBP in the diet of dairy goats had beneficial effects on milk FA profile but PEG addition to PBP

  4. Connecting extracellular metabolomic measurements to intracellular flux states in yeast

    Directory of Open Access Journals (Sweden)

    Herrgård Markus J

    2009-03-01

    Full Text Available Abstract Background Metabolomics has emerged as a powerful tool in the quantitative identification of physiological and disease-induced biological states. Extracellular metabolome or metabolic profiling data, in particular, can provide an insightful view of intracellular physiological states in a noninvasive manner. Results We used an updated genome-scale metabolic network model of Saccharomyces cerevisiae, iMM904, to investigate how changes in the extracellular metabolome can be used to study systemic changes in intracellular metabolic states. The iMM904 metabolic network was reconstructed based on an existing genome-scale network, iND750, and includes 904 genes and 1,412 reactions. The network model was first validated by comparing 2,888 in silico single-gene deletion strain growth phenotype predictions to published experimental data. Extracellular metabolome data measured in response to environmental and genetic perturbations of ammonium assimilation pathways was then integrated with the iMM904 network in the form of relative overflow secretion constraints and a flux sampling approach was used to characterize candidate flux distributions allowed by these constraints. Predicted intracellular flux changes were consistent with published measurements on intracellular metabolite levels and fluxes. Patterns of predicted intracellular flux changes could also be used to correctly identify the regions of the metabolic network that were perturbed. Conclusion Our results indicate that integrating quantitative extracellular metabolomic profiles in a constraint-based framework enables inferring changes in intracellular metabolic flux states. Similar methods could potentially be applied towards analyzing biofluid metabolome variations related to human physiological and disease states.

  5. Metabolite profiles reveal energy failure and impaired beta-oxidation in liver of mice with complex III deficiency due to a BCS1L mutation.

    Directory of Open Access Journals (Sweden)

    Heike Kotarsky

    Full Text Available BACKGROUND & AIMS: Liver is a target organ in many mitochondrial disorders, especially if the complex III assembly factor BCS1L is mutated. To reveal disease mechanism due to such mutations, we have produced a transgenic mouse model with c.232A>G mutation in Bcs1l, the causative mutation for GRACILE syndrome. The homozygous mice develop mitochondrial hepatopathy with steatosis and fibrosis after weaning. Our aim was to assess cellular mechanisms for disease onset and progression using metabolomics. METHODS: With mass spectrometry we analyzed metabolite patterns in liver samples obtained from homozygotes and littermate controls of three ages. As oxidative stress might be a mechanism for mitochondrial hepatopathy, we also assessed H(2O(2 production and expression of antioxidants. RESULTS: Homozygotes had a similar metabolic profile at 14 days of age as controls, with the exception of slightly decreased AMP. At 24 days, when hepatocytes display first histopathological signs, increases in succinate, fumarate and AMP were found associated with impaired glucose turnover and beta-oxidation. At end stage disease after 30 days, these changes were pronounced with decreased carbohydrates, high levels of acylcarnitines and amino acids, and elevated biogenic amines, especially putrescine. Signs of oxidative stress were present in end-stage disease. CONCLUSIONS: The findings suggest an early Krebs cycle defect with increases of its intermediates, which might play a role in disease onset. During disease progression, carbohydrate and fatty acid metabolism deteriorate leading to a starvation-like condition. The mouse model is valuable for further investigations on mechanisms in mitochondrial hepatopathy and for interventions.

  6. Leaf metabolite profile of the Brazilian resurrection plant Barbacenia purpurea Hook. (Velloziaceae shows two time-dependent responses during desiccation and recovering

    Directory of Open Access Journals (Sweden)

    Vanessa Fuentes Suguiyama

    2014-03-01

    Full Text Available Barbacenia purpurea is a resurrection species endemic to rock outcrops, in Rio de Janeiro, Brazil. It tolerates great temperature variations, which are associated to periods of up to 30 days without precipitation. Using a metabolomic approach, we analyzed, under winter and summer conditions, changes in the leaf metabolite profile (MP of potted plants of B. purpurea submitted to daily watered and water deficit for at least 20 days and subsequent slow rehydration for 5 days. Leaves were collected at different time points and had their MP analyzed by GC/MS, HPAEC, and UHPLC techniques, allowing the identification of more than 60 different compounds, including organic and amino acids, sugars, and polyols, among others. In the winter experiment, results suggest the presence of two time-dependent responses in B. purpurea under water stress. The first one starts with the increase in the content of caffeoyl-quinic acids, substances with strong antioxidant activity, until the 16th day of water suppression. When RWC reached less than 80% and 70%, in winter and summer respectively, it was observed an increase in polyols and monosaccharides, followed by an increment in the content of RFO, suggesting osmotic adjustment. Amino acids, such as GABA and asparagine, also increased due to 16 days of water suppression. During rehydration, the levels of the mentioned compounds became similar to those found at the beginning of the experiment and when compared to daily watered plants. We conclude that the tolerance of B. purpurea to dehydration involves the perception of water deficit intensity, which seems to result in different strategies to overcome the gradient of water availability imposed along a certain period of stress mainly during winter. Data from summer experiment indicate that the metabolism of B. pupurea was already primed for drought stress. The accumulation of phenolics in summer seemed to be more temperature and irradiance-dependent than on the RWC.

  7. Comprehensive profiling of mercapturic acid metabolites from dietary acrylamide as short-term exposure biomarkers for evaluation of toxicokinetics in rats and daily internal exposure in humans using isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Yu; Wang, Qiao; Cheng, Jun; Zhang, Jingshun; Xu, Jiaojiao; Ren, Yiping

    2015-09-24

    Mercapturic acid metabolites from dietary acrylamide are important short-term exposure biomarkers for evaluating the in vivo toxicity of acrylamide. Most of studies have focused on the measurement of two metabolites, N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA). Thus, the comprehensive profile of acrylamide urinary metabolites cannot be fully understood. We developed an isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for the simultaneous determination of all four mercapturic acid adducts of acrylamide and its primary metabolite glycidamide under the electroscopy ionization negative (ESI-) mode in the present study. The limit of detection (LOD) and limit of quantification (LOQ) of the analytes ranged 0.1-0.3 ng/mL and 0.4-1.0 ng/mL, respectively. The recovery rates with low, intermediate and high spiking levels were calculated as 95.5%-105.4%, 98.2%-114.0% and 92.2%-108.9%, respectively. Acceptable within-laboratory reproducibility (RSDacrylamide. Our proposed UHPLC-MS/MS method was successfully applied to the toxicokinetic study of acrylamide in rats. Meanwhile, results of human urine analysis indicated that the levels of N-acetyl-S-(2-carbamoylethyl)-L-cysteine-sulfoxide (AAMA-sul), which did not appear in the mercapturic acid metabolites in rodents, were more than the sum of GAMA and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-L-cysteine (iso-GAMA). Thus, AAMA-sul may alternatively become a specific biomarker for investigating the acrylamide exposure in humans. Current proposed method provides a substantial methodology support for comprehensive profiling of toxicokinetics and daily internal exposure evaluations of acrylamide in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Comparative Proteomic Profiling of Human Osteoblast-Derived Extracellular Matrices Identifies Proteins Involved in Mesenchymal Stromal Cell Osteogenic Differentiation and Mineralization.

    NARCIS (Netherlands)

    M. Baroncelli (Marta); B.C.J. van der Eerden (Bram); Kan, Y.Y. (Yik-Yang); R.D.A.M. Alves (Rodrigo); J.A.A. Demmers (Jeroen); J. van de Peppel (Jeroen); J.P.T.M. van Leeuwen (Hans)

    2017-01-01

    textabstractThe extracellular matrix (ECM) is a dynamic component of tissue architecture that physically supports cells and actively influences their behavior. In the context of bone regeneration, cell-secreted ECMs have become of interest as they reproduce tissue-architecture and modulate the

  9. Dynamic headspace solid-phase microextraction combined with one-dimensional gas chromatography-mass spectrometry as a powerful tool to differentiate banana cultivars based on their volatile metabolite profile.

    Science.gov (United States)

    Pontes, Marisela; Pereira, Jorge; Câmara, José S

    2012-10-15

    In this study the effect of the cultivar on the volatile profile of five different banana varieties was evaluated and determined by dynamic headspace solid-phase microextraction (dHS-SPME) combined with one-dimensional gas chromatography-mass spectrometry (1D-GC-qMS). This approach allowed the definition of a volatile metabolite profile to each banana variety and can be used as pertinent criteria of differentiation. The investigated banana varieties (Dwarf Cavendish, Prata, Maçã, Ouro and Platano) have certified botanical origin and belong to the Musaceae family, the most common genomic group cultivated in Madeira Island (Portugal). The influence of dHS-SPME experimental factors, namely, fibre coating, extraction time and extraction temperature, on the equilibrium headspace analysis was investigated and optimised using univariate optimisation design. A total of 68 volatile organic metabolites (VOMs) were tentatively identified and used to profile the volatile composition in different banana cultivars, thus emphasising the sensitivity and applicability of SPME for establishment of the volatile metabolomic pattern of plant secondary metabolites. Ethyl esters were found to comprise the largest chemical class accounting 80.9%, 86.5%, 51.2%, 90.1% and 6.1% of total peak area for Dwarf Cavendish, Prata, Ouro, Maçã and Platano volatile fraction, respectively. Gas chromatographic peak areas were submitted to multivariate statistical analysis (principal component and stepwise linear discriminant analysis) in order to visualise clusters within samples and to detect the volatile metabolites able to differentiate banana cultivars. The application of the multivariate analysis on the VOMs data set resulted in predictive abilities of 90% as evaluated by the cross-validation procedure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Metabolite profiling of Camellia sinensis by automated sequential, multidimensional gas chromatography/mass spectrometry reveals strong monsoon effects on tea constituents.

    Science.gov (United States)

    Kowalsick, Amanda; Kfoury, Nicole; Robbat, Albert; Ahmed, Selena; Orians, Colin; Griffin, Timothy; Cash, Sean B; Stepp, John Richard

    2014-11-28

    Seasonal variation in tea (Camellia sinensis (L.) Kuntze; Theaceae) chemistry was investigated using automated sequential, multidimensional gas chromatography/mass spectrometry (GC-GC/MS). Metabolite libraries were produced for teas harvested from the Bulang Mountains in Yunnan, China before and after the onset of the East Asian Monsoon. A total of 201 spring and 196 monsoon metabolites were identified, with 169 common and 59 seasonally unique compounds. An additional 163 metabolites were detected but their identity could not be confirmed. Spectral deconvolution of GC/MS data was used to measure the relative concentrations in the teas. Within each family individual metabolite concentrations increased, decreased and stayed the same. The major constituents in both teas were linalool (28%), geraniol (13%), α-terpineol (10%), hotrienol (4%) and nerol (3%). This work provides the foundation to monitor seasonal variations of tea chemistry. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Evidence and potential in vivo functions for biofluid miRNAs: From expression profiling to functional testing: Potential roles of extracellular miRNAs as indicators of physiological change and as agents of intercellular information exchange.

    Science.gov (United States)

    Iftikhar, Hina; Carney, Ginger E

    2016-04-01

    A controversial hypothesis in RNA biology is that extracellular microRNAs (miRNAs), including those in biofluids, have non-cell-autonomous activities. Several studies have characterized biofluid miRNA profiles in healthy or diseased individuals but generally have failed to identify distinct disease signatures. It remains unclear whether alterations in fluid miRNA levels are simply indicators of physiological change or whether miRNAs are taken up by new cells at concentrations sufficient to affect gene expression. There are limitations to biofluid miRNA studies performed to date: methodology for isolating and quantifying biofluid miRNAs is not standardized across studies; mechanistic details of miRNA release and uptake are incomplete; and efforts to assess non-cell-autonomous effects of extracellular miRNAs have employed predominantly in vitro strategies. We describe controversies and questions that need to be addressed to test possible in vivo roles of extracellular miRNAs and propose model organisms with rich genetic toolkits for carrying out in vivo functional analyses. © 2016 WILEY Periodicals, Inc.

  12. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    Science.gov (United States)

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Extracellular guanosine regulates extracellular adenosine levels

    Science.gov (United States)

    Cheng, Dongmei; Jackson, Travis C.; Verrier, Jonathan D.; Gillespie, Delbert G.

    2013-01-01

    The aim of this investigation was to test the hypothesis that extracellular guanosine regulates extracellular adenosine levels. Rat preglomerular vascular smooth muscle cells were incubated with adenosine, guanosine, or both. Guanosine (30 μmol/l) per se had little effect on extracellular adenosine levels. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) were 0.125 ± 0.020 μmol/l, indicating rapid disposition of extracellular adenosine. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) plus guanosine (30 μmol/l) were 1.173 ± 0.061 μmol/l, indicating slow disposition of extracellular adenosine. Cell injury increased extracellular levels of endogenous adenosine and guanosine, and the effects of cell injury on endogenous extracellular adenosine were modulated by altering the levels of endogenous extracellular guanosine with exogenous purine nucleoside phosphorylase (converts guanosine to guanine) or 8-aminoguanosine (inhibits purine nucleoside phosphorylase). Extracellular guanosine also slowed the disposition of extracellular adenosine in rat preglomerular vascular endothelial cells, mesangial cells, cardiac fibroblasts, and kidney epithelial cells and in human aortic and coronary artery vascular smooth muscle cells and coronary artery endothelial cells. The effects of guanosine on adenosine levels were not mimicked or attenuated by 5-iodotubericidin (adenosine kinase inhibitor), erythro-9-(2-hydroxy-3-nonyl)-adenine (adenosine deaminase inhibitor), 5-aminoimidazole-4-carboxamide (guanine deaminase inhibitor), aristeromycin (S-adenosylhomocysteine hydrolase inhibitor), low sodium (inhibits concentrative nucleoside transporters), S-(4-nitrobenzyl)−6-thioinosine [inhibits equilibrative nucleoside transporter (ENT) type 1], zidovudine (inhibits ENT type 2), or acadesine (known modulator of adenosine levels). Guanosine also increases extracellular inosine, uridine, thymidine, and cytidine, yet decreases

  14. Effect of high and low roughage total mixed ration diets on rumen metabolites and enzymatic profiles in crossbred cattle and buffaloes

    Directory of Open Access Journals (Sweden)

    S. K. Sinha

    2017-06-01

    Full Text Available Aim: A comparative study was conducted on crossbred cattle and buffaloes to investigate the effect of feeding high and low roughage total mixed ration (TMR diets on rumen metabolites and enzymatic profiles. Materials and Methods: Three rumen-fistulated crossbred cattle and buffalo were randomly assigned as per 3x3 switch over design for 21-days. Three TMR diets consisting of concentrate mixture, wheat straw and green maize fodder in the ratios of (T1 60:20:20, (T2 40:30:30, and (T3 20:40:40, respectively, were fed to the animals ad libitum. Rumen liquor samples were collected at 0, 2, 4, 6, and 8 h post feeding for the estimation of rumen biochemical parameters on 2 consecutive days in each trial. Results: The lactic acid concentration and pH value were comparable in both species and treatments. Feed intake (99.77±2.51 g/kg body weight, ruminal ammonia nitrogen, and total nitrogen were significantly (p0.05 among treatments and significantly (p<0.05 greater in crossbred cattle than buffaloes. Molar proportions of individual VFAs propionate (C3, propionate:butyrate (C3:C4, and (acetate+butyrate:propionate ([C2+C4]:C3 ratio in both crossbred cattle and buffalo were not affected by high or low roughage diet, but percentage of acetate and butyrate varied significantly (p<0.05 among treatment groups. Activities of microbial enzymes were comparable among species and different treatment groups. A total number of rumen protozoa were significantly (p<0.05 higher in crossbred cattle than buffaloes along with significantly (p<0.05 higher population in animal fed with high concentrate diet (T1. Conclusion: Rumen microbial population and fermentation depend on constituents of the treatment diet. However, microbial enzyme activity remains similar among species and different treatments. High concentrate diet increases number of rumen protozoa, and the number is higher in crossbred cattle than buffaloes.

  15. Pruning System and Foliar Application of MgSO 4 Alter Yield and Secondary Metabolite Profile of Rosa damascena under Rainfed Acidic Conditions.

    Science.gov (United States)

    Pal, Probir K; Mahajan, Mitali

    2017-01-01

    Damask rose (Rosa damascena Mill.) is one of the most high-value essential oil-bearing plants in the world. However, the flower yield and quality of essential oil of R. damascena are largely influenced by the pruning practices and balanced supply of plant nutrition. The objective of this study was to test the hypothesis whether the pruning system and foliar fertilization of MgSO4 would influence the flower yield, growth and secondary metabolites profile of R. damascena. A field experiment of 10 treatment combinations comprising two pruning systems (complete and partial) and five levels of MgSO4 (water spray, MgSO4 @ 5.0g L-1, 10.0g L-1,15.0g L-1, and 20.0g L-1) was conducted. The experiment was conducted in randomized block design with factorial arrangement. Overall, the flower yield ranged from 503.66 to 1114.47 g bush-1, while oil content varied from 0.039 to 0.046% of the fresh flower. Irrespective of foliar spray, partial pruning produced significantly (P ≤ 0.05) higher flower yield (893.02 and 503.66 g bush-1) compared with complete pruning system in both the years. Regardless of pruning system, the foliar application of MgSO4 @ 15.0g L-1 registered about 26-38% higher flower yield compared with water spray control. The major constituents of essential oil were citronellol (19.75-48.88%), E-geraniol (9.63-29.6%), Z-citral (0.07-5.97%), nonadecane (6.76-22.32%), and heneicosane (2.87-10.21%). The principal component analysis revealed that the major hydrocarbons such as nonadecene, nonadecane, and heptadecane are positively and highly correlated with each others. The results suggest that higher yield and quality of R. damascena can be achieved through partial pruning system in combination with foliar application MgSO4 under rainfed acidic conditions.

  16. Metabolite Profile of Salidroside in Rats by Ultraperformance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry and High-Performance Liquid Chromatography Coupled with Quadrupole-Linear Ion Trap Mass Spectrometry.

    Science.gov (United States)

    Hu, Zhiwei; Wang, Ziming; Liu, Yong; Wu, Yan; Han, Xuejiao; Zheng, Jian; Yan, Xiufeng; Wang, Yang

    2015-10-21

    In the present work, the salidroside metabolite profile in rat urine was investigated, and subsequently the metabolic pathways of salidroside were proposed. After administrations of salidroside at an oral dose of 100 or 500 mg/kg, rat urine samples were collected and pretreated with methanol to precipitate the proteins. The pretreated samples were analyzed by an Acquity ultraperformance liquid chromatography (UPLC) coupled with an HSS T3 column and detected by quadrupole time-of-flight mass spectrometry (Q-TOF-MS) or high-performance liquid chromatography coupled with hybrid triple-quadrupole linear ion trap mass spectrometry (HPLC/Q-trap-MS). A total of eight metabolites were detected and identified on the basis of the characteristics of their protonated ions in the urine samples. The results elucidated that salidroside was metabolized via glucuronidation, sulfation, deglycosylation, hydroxylation, methylation, and dehydroxylation pathways in vivo.

  17. In vitro and in vivo metabolite profiling of valnemulin using ultraperformance liquid chromatography-quadrupole/time-of-flight hybrid mass spectrometry.

    Science.gov (United States)

    Yang, Shupeng; Shi, Weimin; Hu, Dingfei; Zhang, Suxia; Zhang, Huiyan; Wang, Zhanhui; Cheng, Linli; Sun, Feifei; Shen, Jianzhong; Cao, Xingyuan

    2014-09-17

    Valnemulin, a semisynthetic pleuromutilin derivative related to tiamulin, is broadly used to treat bacterial diseases of animals. Despite its widespread use, metabolism in animals has not yet been fully investigated. To better understand valnemulin biotransformation, in this study, metabolites of valnemulinin in in vitro and in vivo rats, chickens, swines, goats, and cows were identified and elucidated using ultraperformance liquid chromatography-quadrupole/time-of-flight hybrid mass spectrometry (UPLC-Q/TOF-MS). As a result, there were totally 7 metabolites of valnemulin identified in vitro and 75, 61, and 74 metabolites detected in in vivo rats, chickens, and swines, respectively, and the majority of metabolites were reported for the first time. The main metabolic pathways of valnemulin were found to be hydroxylation in the mutilin part (the ring system) and the side chain, oxidization on the sulfur of the side chain to form S-oxides, hydrolysis of the amido bond, and acetylization in the amido of the side chain. In addition, hydroxylation in the mutilin part was proposed to be the primary metabolic route. Furthermore, the results revealed that 2β-hydroxyvalnemulin (V1) and 8α-hydroxyvalnemulin (V2) were the major metabolites for rats and swines and S-oxides (V6) in chickens.

  18. In Vitro and in Vivo Metabolite Profiling of Valnemulin Using Ultraperformance Liquid Chromatography–Quadrupole/Time-of-Flight Hybrid Mass Spectrometry

    Science.gov (United States)

    2015-01-01

    Valnemulin, a semisynthetic pleuromutilin derivative related to tiamulin, is broadly used to treat bacterial diseases of animals. Despite its widespread use, metabolism in animals has not yet been fully investigated. To better understand valnemulin biotransformation, in this study, metabolites of valnemulinin in in vitro and in vivo rats, chickens, swines, goats, and cows were identified and elucidated using ultraperformance liquid chromatography–quadrupole/time-of-flight hybrid mass spectrometry (UPLC-Q/TOF-MS). As a result, there were totally 7 metabolites of valnemulin identified in vitro and 75, 61, and 74 metabolites detected in in vivo rats, chickens, and swines, respectively, and the majority of metabolites were reported for the first time. The main metabolic pathways of valnemulin were found to be hydroxylation in the mutilin part (the ring system) and the side chain, oxidization on the sulfur of the side chain to form S-oxides, hydrolysis of the amido bond, and acetylization in the amido of the side chain. In addition, hydroxylation in the mutilin part was proposed to be the primary metabolic route. Furthermore, the results revealed that 2β-hydroxyvalnemulin (V1) and 8α-hydroxyvalnemulin (V2) were the major metabolites for rats and swines and S-oxides (V6) in chickens. PMID:25156794

  19. Gene expression profiles in human and mouse primary cells provide new insights into the differential actions of vitamin D3 metabolites

    DEFF Research Database (Denmark)

    Tuohimaa, Pentti; Wang, Jing-Huan; Khan, Sofia

    2013-01-01

    and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary...... and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic...

  20. Metabolite profiling of a NIST Standard Reference Material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources.

    Science.gov (United States)

    Simón-Manso, Yamil; Lowenthal, Mark S; Kilpatrick, Lisa E; Sampson, Maureen L; Telu, Kelly H; Rudnick, Paul A; Mallard, W Gary; Bearden, Daniel W; Schock, Tracey B; Tchekhovskoi, Dmitrii V; Blonder, Niksa; Yan, Xinjian; Liang, Yuxue; Zheng, Yufang; Wallace, William E; Neta, Pedatsur; Phinney, Karen W; Remaley, Alan T; Stein, Stephen E

    2013-12-17

    Recent progress in metabolomics and the development of increasingly sensitive analytical techniques have renewed interest in global profiling, i.e., semiquantitative monitoring of all chemical constituents of biological fluids. In this work, we have performed global profiling of NIST SRM 1950, "Metabolites in Human Plasma", using GC-MS, LC-MS, and NMR. Metabolome coverage, difficulties, and reproducibility of the experiments on each platform are discussed. A total of 353 metabolites have been identified in this material. GC-MS provides 65 unique identifications, and most of the identifications from NMR overlap with the LC-MS identifications, except for some small sugars that are not directly found by LC-MS. Also, repeatability and intermediate precision analyses show that the SRM 1950 profiling is reproducible enough to consider this material as a good choice to distinguish between analytical and biological variability. Clinical laboratory data shows that most results are within the reference ranges for each assay. In-house computational tools have been developed or modified for MS data processing and interactive web display. All data and programs are freely available online at http://peptide.nist.gov/ and http://srmd.nist.gov/ .

  1. Ulcerative colitis, Crohn's disease, and irritable bowel syndrome have different profiles of extracellular matrix turnover, which also reflects disease activity in Crohn's disease

    DEFF Research Database (Denmark)

    Mortensen, Joachim Høg; Manon-Jensen, Tina; Jensen, Michael Dam

    2017-01-01

    patients, 22 patients with irritable bowel syndrome (IBS), and 24 healthy donors. One-way analysis of variance, Mann-Whitney U-test, logistic regression models, and receiver operator characteristics (ROC) curve analysis was carried out to evaluate the diagnostic accuracy of the biomarkers. The ECM......Increased protease activity is a key pathological feature of inflammatory bowel disease (IBD). However, the differences in extracellular matrix remodelling (ECM) in Crohn's disease (CD) and ulcerative colitis (UC) are not well described. An increased understanding of the inflammatory processes may...

  2. Targeting high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance analysis with high-resolution radical scavenging profiles - bioactive secondary metabolites from the endophytic fungus Penicillium namyslowskii

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Nyberg, Nils; Tejesvi, Mysore V.

    2013-01-01

    The high-resolution radical scavenging profile of an extract of the endophytic fungus Penicillium namyslowskii was used to target analysis by high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy, i.e., HPLC...... NMR probe designed for 1.7-mm NMR tubes. To further explore the potential of the above HPLC-HRMS-SPE-NMR platform for analysis of endophytic extracts, six peaks displaying no radical scavenging activity were also analyzed. This allowed unambiguous identification of six metabolites, i...

  3. Metabolite profiling of small cerebrospinal fluid sample volumes with gas chromatography-mass spectrometry: application to a rat model of Multiple Sclerosis

    NARCIS (Netherlands)

    Coulier, L.; Muilwijk, B.; Bijlsma, S.; Noga, M.; Tienstra, M.; Attali, A.; Aken, H. van; Suidgeest, E.; Tuinstra, T.; Hankemeier, T.; Bobeldijk, I.

    2012-01-01

    Analysis of metabolites in biofluids by gas chromatography–mass spectrometry (GC–MS) after oximation and silylation is a key method in metabolomics. The GC–MS method was modified by a modified vial design and sample work-up procedure in order to make the method applicable to small volumes of

  4. Metabolite profiling of small cerebrospinal fluid sample volumes with gas chromatography-mass spectrometry: Application to a rat model of multiple sclerosis

    NARCIS (Netherlands)

    Coulier, L.; Muilwijk, B.; Bijlsma, S.; Noga, M.; Tienstra, M.; Attali, A.; Aken, H. van; Suidgeest, E.; Tuinstra, T.; Luider, T.M.; Hankemeier, T.; Bobeldijk, I.

    2013-01-01

    Analysis of metabolites in biofluids by gas chromatography-mass spectrometry (GC-MS) after oximation and silylation is a key method in metabolomics. The GC-MS method was modified by a modified vial design and sample work-up procedure in order to make the method applicable to small volumes of

  5. MR spectroscopy-based brain metabolite profiling in propionic acidaemia: metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation

    Directory of Open Access Journals (Sweden)

    McKiernan Patrick J

    2011-05-01

    Full Text Available Abstract Background Propionic acidaemia (PA results from deficiency of Propionyl CoA carboxylase, the commonest form presenting in the neonatal period. Despite best current management, PA is associated with severe neurological sequelae, in particular movement disorders resulting from basal ganglia infarction, although the pathogenesis remains poorly understood. The role of liver transplantation remains controversial but may confer some neuro-protection. The present study utilises quantitative magnetic resonance spectroscopy (MRS to investigate brain metabolite alterations in propionic acidaemia during metabolic stability and acute encephalopathic episodes. Methods Quantitative MRS was used to evaluate brain metabolites in eight children with neonatal onset propionic acidaemia, with six elective studies acquired during metabolic stability and five studies during acute encephalopathic episodes. MRS studies were acquired concurrently with clinically indicated MR imaging studies at 1.5 Tesla. LCModel software was used to provide metabolite quantification. Comparison was made with a dataset of MRS metabolite concentrations from a cohort of children with normal appearing MR imaging. Results MRI findings confirm the vulnerability of basal ganglia to infarction during acute encephalopathy. We identified statistically significant decreases in basal ganglia glutamate+glutamine and N-Acetylaspartate, and increase in lactate, during encephalopathic episodes. In white matter lactate was significantly elevated but other metabolites not significantly altered. Metabolite data from two children who had received liver transplantation were not significantly different from the comparator group. Conclusions The metabolite alterations seen in propionic acidaemia in the basal ganglia during acute encephalopathy reflect loss of viable neurons, and a switch to anaerobic respiration. The decrease in glutamine + glutamate supports the hypothesis that they are consumed to

  6. Variable Cyanobacterial Toxin and Metabolite  Profiles across Six Eutrophic Lakes of Differing  Physiochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Lucas J. Beversdorf

    2017-02-01

    Full Text Available Future sustainability of freshwater resources is seriously threatened due to the presence of harmful cyanobacterial blooms, and yet, the number, extent, and distribution of most cyanobacterial toxins—including “emerging” toxins and other bioactive compounds—are poorly understood. We measured 15 cyanobacterial compounds—including four microcystins (MC, saxitoxin (SXT, cylindrospermopsin (CYL, anatoxin-a (ATX and homo-anatoxin-a (hATX, two anabaenopeptins (Apt, three cyanopeptolins (Cpt, microginin (Mgn, and nodularin (NOD—in six freshwater lakes that regularly experience noxious cHABs. MC, a human liver toxin, was present in all six lakes and was detected in 80% of all samples. Similarly, Apt, Cpt, and Mgn were detected in all lakes in roughly 86%, 50%, and 35% of all samples, respectively. Despite being a notable brackish water toxin, NOD was detected in the two shallowest lakes—Wingra (4.3 m and Koshkonong (2.1 m. All compounds were highly variable temporally, and spatially. Metabolite profiles were significantly different between lakes suggesting lake characteristics influenced the cyanobacterial community and/or metabolite production. Understanding how cyanobacterial toxins are distributed across eutrophic lakes may shed light onto the ecological function of these metabolites, provide valuable information for their remediation and removal, and aid in the protection of public health.

  7. Tissue Level Diet and Sex-by-Diet Interactions Reveal Unique Metabolite and Clustering Profiles Using Untargeted Liquid Chromatography-Mass Spectrometry on Adipose, Skeletal Muscle, and Liver Tissue in C57BL6/J Mice.

    Science.gov (United States)

    Wells, Ann; Barrington, William T; Dearth, Stephen; May, Amanda; Threadgill, David W; Campagna, Shawn R; Voy, Brynn H

    2018-02-02

    Dietary intervention is commonly used for weight loss or to improve health, as diet-induced obesity increases the risk of developing type 2 diabetes, hypertension, cardiovascular disease, stroke, osteoarthritis, and certain cancers. Various dietary patterns are associated with effects on health, yet little is known about the effects of diet at the tissue level. Using untargeted metabolomics, this study aimed to identify changes in water-soluble metabolites in C57BL/6J males and females fed one of five diets (Japanese, ketogenic, Mediterranean, American, and standard mouse chow) for 7 months. Metabolite abundance was examined in liver, skeletal muscle, and adipose tissue for sex, diet, and sex-by-diet interaction. Analysis of variance (ANOVA) suggests that liver tissue has the most metabolic plasticity under dietary changes compared with adipose and skeletal muscle. The ketogenic diet was distinguishable from other diets for both males and females according to partial least-squares discriminant analysis. Pathway analysis revealed that the majority of pathways affected play an important role in amino acid metabolism in liver tissue. Not surprisingly, amino acid profiles were affected by dietary patterns in skeletal muscle. Few metabolites were significantly altered in adipose tissue relative to skeletal muscle and liver tissue, indicating that it was largely stable, regardless of diet alterations. The results of this study revealed that the ketogenic diet had the largest effect on physiology, particularly for females. Furthermore, metabolomics analysis revealed that diet affects metabolites in a tissue-specific manner and that liver was most sensitive to dietary changes.

  8. Human mass balance study and metabolite profiling of 14C-niraparib, a novel poly(ADP-Ribose) polymerase (PARP)-1 and PARP-2 inhibitor, in patients with advanced cancer.

    Science.gov (United States)

    van Andel, Lotte; Zhang, Z; Lu, S; Kansra, V; Agarwal, S; Hughes, L; Tibben, M M; Gebretensae, A; Lucas, L; Hillebrand, M J X; Rosing, H; Schellens, J H M; Beijnen, J H

    2017-12-01

    Niraparib is an investigational oral, once daily, selective poly(ADP-Ribose) polymerase (PARP)-1 and PARP-2 inhibitor. In the pivotal Phase 3 NOVA/ENGOT/OV16 study, niraparib met its primary endpoint of improving progression-free survival (PFS) for adult patients with recurrent, platinum sensitive, ovarian, fallopian tube, or primary peritoneal cancer in complete or partial response to platinum-based chemotherapy. Significant improvements in PFS were seen in all patient cohorts regardless of biomarker status. This study evaluates the absorption, metabolism and excretion (AME) of 14C-niraparib, administered to six patients as a single oral dose of 300 mg with a radioactivity of 100 μCi. Total radioactivity (TRA) in whole blood, plasma, urine and faeces was measured using liquid scintillation counting (LSC) to obtain the mass balance of niraparib. Moreover, metabolite profiling was performed on selected plasma, urine and faeces samples using liquid chromatography - tandem mass spectrometry (LC-MS/MS) coupled to off-line LSC. Mean TRA recovered over 504 h was 47.5% in urine and 38.8% in faeces, indicating that both renal and hepatic pathways are comparably involved in excretion of niraparib and its metabolites. The elimination of 14C-radioactivity was slow, with t1/2 in plasma on average 92.5 h. Oral absorption of 14C-niraparib was rapid, with niraparib concentrations peaking at 2.49 h, and reaching a mean maximum concentration of 540 ng/mL. Two major metabolites were found: the known metabolite M1 (amide hydrolysed niraparib) and the glucuronide of M1. Based on this study it was shown that niraparib undergoes hydrolytic, and conjugative metabolic conversions, with the oxidative pathway being minimal.

  9. Characterization of metabolite profiles from the leaves of green perilla (Perilla frutescens by ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry and screening for their antioxidant properties

    Directory of Open Access Journals (Sweden)

    Yeon Hee Lee

    2017-10-01

    Full Text Available The objective of this research was to access the determination of metabolite profiles and antioxidant properties in the leaves of green perilla (Perilla frutescens, where these are considered functional and nutraceutical substances in Korea. A total of 25 compositions were confirmed as six phenolic acids, two triterpenoids, eight flavonoids, seven fatty acids, and two glucosides using an ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS/MS technique from the methanol extract of this species. The individual and total compositions exhibited significant differences, especially rosmarinic acid (10, and linolenic acids (22 and 23 were detected as the predominant metabolites. Interestingly, rosmarinic acid (10 was observed to have considerable differences with various concentrations in three samples (Doryong, 6.38 μg/g; Sinseong, 317.60 μg/g; Bongmyeong, 903.53 μg/g by UPLC analysis at 330 nm. The scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS radicals also showed potent effects with remarkable differences at a concentration of 100 μg/mL, and their abilities were as follows: Sinseong (DPPH, 86%; ABTS, 90% > Bongmyeong (71% and 84%, respectively > Doryong (63% and 73%, respectively. Our results suggest that the antioxidant activities of green perilla leaves are correlated with metabolite contents, especially the five major compositions 10 and 22–25. Moreover, this study may be useful in evaluating the relationship between metabolite composition and antioxidant activity.

  10. Serum-free culture success of glial tumors is related to specific molecular profiles and expression of extracellular matrix-associated gene modules.

    Science.gov (United States)

    Balvers, Rutger K; Kleijn, Anne; Kloezeman, Jenneke J; French, Pim J; Kremer, Andreas; van den Bent, Martin J; Dirven, Clemens M F; Leenstra, Sieger; Lamfers, Martine L M

    2013-12-01

    Recent molecular characterization studies have identified clinically relevant molecular subtypes to coexist within the same histological entities of glioma. Comparative studies between serum-supplemented and serum-free (SF) culture conditions have demonstrated that SF conditions select for glioma stem-like cells, which superiorly conserve genomic alterations. However, neither the representation of molecular subtypes within SF culture assays nor the molecular distinctions between successful and nonsuccessful attempts have been elucidated. A cohort of 261 glioma samples from varying histological grades was documented for SF culture success and clinical outcome. Gene expression and single nucleotide polymorphism arrays were interrogated on a panel of tumors for comparative analysis of SF+ (successful cultures) and SF- (unsuccessful cultures). SF culture outcome was correlated with tumor grade, while no relation was found between SF+ and patient overall survival. Copy number-based hierarchical clustering revealed an absolute separation between SF+ and SF- parental tumors. All SF+ cultures are derived from tumors that are isocitrate dehydrogenase 1 (IDH1) wild type, chromosome 7 amplified, and chromosome 10q deleted. SF- cultures derived from IDH1 mutant tumors demonstrated a fade-out of mutated cells during the first passages. SF+ tumors were enriched for The Cancer Genome Atlas Classical subtype and intrinsic glioma subtype-18. Comparative gene ontology analysis between SF+ and SF- tumors demonstrated enrichment for modules associated with extracellular matrix composition, Hox-gene signaling, and inflammation. SF cultures are derived from a subset of parental tumors with a shared molecular background including enrichment for extracellular matrix-associated gene modules. These results provide leads to develop enhanced culture protocols for glioma samples not propagatable under current SF conditions.

  11. Morphine metabolites

    DEFF Research Database (Denmark)

    Christrup, Lona Louring

    1997-01-01

    Morphine is a potent opioid analgesic widely used for the treatment of acute pain and for long-term treatment of severe pain. Morphine is a member of the morphinan-framed alkaloids, which are present in the poppy plant. The drug is soluble in water, but its solubility in lipids is poor. In man...... are considered as highly polar metabolites unable to cross the blood-brain barrier. Although morphine glucuronidation has been demonstrated in human brain tissue, the capacity is very low compared to that of the liver, indicating that the M3G and M6G concentrations observed in the cerebrospinal fluid (CSF) after...... systemic administration reflect hepatic metabolism of morphine and that the morphine glucuronides, despite their high polarity, can penetrate into the brain. Like morphine, M6G has been shown to be relatively more selective for mu-receptors than for delta- and kappa-receptors while M3G does not appear...

  12. The role of supplemental ultraviolet-B radiation in altering the metabolite profile, essential oil content and composition, and free radical scavenging activities of Coleus forskohlii, an indigenous medicinal plant.

    Science.gov (United States)

    Takshak, Swabha; Agrawal, S B

    2016-04-01

    The effects of supplemental ultraviolet-B (s-UV-B; 3.6 kJ m(-2) day(-1) above ambient) radiation were investigated on plant metabolite profile, essential oil content and composition, and free radical scavenging capacities of methanolic extracts of Coleus forskohlii (an indigenous medicinal plant) grown under field conditions. Essential oil was isolated using hydrodistillation technique while alterations in metabolite profile and oil composition were determined via gas chromatography-mass spectroscopy (GC-MS). Leaf and root methanolic extracts were investigated via various in vitro assays for their DPPH radical-, superoxide radical-, hydrogen peroxide-, hydroxyl radical-, and nitric oxide radical scavenging activities, ferrous ion chelating activity, and reducing power. Phytochemical analysis revealed the presence of alkaloids, anthocyanins, coumarins, flavonoids, glycosides, phenols, saponins, steroids, tannins, and terpenoids. Oil content was found to be reduced (by ∼7 %) in supplemental UV-B (s-UV-B) treated plants; the composition of the plant extracts as well as essential oil was also considerably altered. Methanolic extracts from treated plant organs showed more potency as free radical scavengers (their EC50 values being lower than their respective controls). Anomalies were observed in Fe(2+) chelating activity for both leaves and roots. The present study concludes that s-UV-B adversely affects oil content in C. forskohlii and also alters the composition and contents of metabolites in both plant extracts and oil. The results also denote that s-UV-B treated plant organs might be more effective in safeguarding against oxidative stress, though further studies are required to authenticate these findings.

  13. In Vitro and in Vivo Metabolite Profiling of Valnemulin Using Ultraperformance Liquid Chromatography?Quadrupole/Time-of-Flight Hybrid Mass Spectrometry

    OpenAIRE

    Yang, Shupeng; Shi, Weimin; Hu, Dingfei; Zhang, Suxia; Zhang, Huiyan; Wang, Zhanhui; Cheng, Linli; Sun, Feifei; Shen, Jianzhong; Cao, Xingyuan

    2014-01-01

    Valnemulin, a semisynthetic pleuromutilin derivative related to tiamulin, is broadly used to treat bacterial diseases of animals. Despite its widespread use, metabolism in animals has not yet been fully investigated. To better understand valnemulin biotransformation, in this study, metabolites of valnemulinin in in vitro and in vivo rats, chickens, swines, goats, and cows were identified and elucidated using ultraperformance liquid chromatography?quadrupole/time-of-flight hybrid mass spectrom...

  14. Toward an in Vivo Neurochemical Profile: Quantification of 18 Metabolites in Short-Echo-Time 1H NMR Spectra of the Rat Brain

    Science.gov (United States)

    Pfeuffer, Josef; Tkáč , Ivan; Provencher, Stephen W.; Gruetter, Rolf

    1999-11-01

    Localized in vivo1H NMR spectroscopy was performed with 2-ms echo time in the rat brain at 9.4 T. Frequency domain analysis with LCModel showed that the in vivo spectra can be explained by 18 metabolite model solution spectra and a highly structured background, which was attributed to resonances with fivefold shorter in vivo T1 than metabolites. The high spectral resolution (full width at half maximum approximately 0.025 ppm) and sensitivity (signal-to-noise ratio approximately 45 from a 63-μL volume, 512 scans) was used for the simultaneous measurement of the concentrations of metabolites previously difficult to quantify in 1H spectra. The strongly represented signals of N-acetylaspartate, glutamate, taurine, myo-inositol, creatine, phosphocreatine, glutamine, and lactate were quantified with Cramér-Rao lower bounds below 4%. Choline groups, phosphorylethanolamine, glucose, glutathione, γ-aminobutyric acid, N-acetylaspartylglutamate, and alanine were below 13%, whereas aspartate and scyllo-inositol were below 22%. Intra-assay variation was assessed from a time series of 3-min spectra, and the coefficient of variation was similar to the calculated Cramér-Rao lower bounds. Interassay variation was determined from 31 pooled spectra, and the coefficient of variation for total creatine was 7%. Tissue concentrations were found to be in very good agreement with neurochemical data from the literature.

  15. Metabolite profiling of enzymatically hydrolyzed and fermented forms of Opuntia ficus-indica and their effect on UVB-induced skin photoaging.

    Science.gov (United States)

    Cho, Dong-Woon; Kim, Dae-Eung; Lee, Dae-Hee; Jung, Kyung-Hoon; Hurh, Byung-Serk; Kwon, Oh Wook; Kim, Sun Yeou

    2014-01-01

    Fermentation of natural products is emerging as an important processing method and is attracting a lot of attention because it may have the advantage of having a new biological function. In this study, fruits of Opuntia ficus-indica were enzymatically hydrolyzed and then fermented with two species of yeast. We identified novel prominent markers in enzymatically hydrolyzed O. ficus-indica (EO) and fermented O. ficus-indica (FO) samples by using an ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. We also evaluated the effect of EO and FO on photoaging of skin cells exposed to ultraviolet radiation. We identified the major fermented metabolite in the FO as ferulic acid. Our in vitro study indicated that FO significantly enhanced the concentration of pro-collagen type 1 than the EO, by increasing the TGF-β1 production.

  16. Growth on Chitin Impacts the Transcriptome and Metabolite Profiles of Antibiotic-Producing Vibrio coralliilyticus S2052 and Photobacterium galatheae S2753

    DEFF Research Database (Denmark)

    Giubergia, Sonia; Phippen, Christopher; Nielsen, Kristian Fog

    2017-01-01

    , Vibrio coralliilyticus and Photobacterium galatheae. We focused on chitin degradation genes and secondary metabolites based on the assumption that these molecules in nature confer an advantage to the producer. Growth on chitin caused upregulation of genes related to chitin metabolism and of genes...... potentially involved in host colonization and/or infection. The expression of genes involved in secondary metabolism was also significantly affected by growth on chitin, in one case being 34-fold upregulated. This was reflected in the metabolome, where the antibiotics andrimid and holomycin were produced...... in larger amounts on chitin. Other polyketide synthase/ nonribosomal peptide synthetase (PKS-NRPS) clusters in P. galatheae were also strongly upregulated on chitin. Collectively, this suggests that both V. coralliilyticus and P. galatheae have a specific lifestyle for growth on chitin...

  17. Longitudinal investigation of neuroinflammation and metabolite profiles in the APPswe ×PS1Δe9 transgenic mouse model of Alzheimer's disease.

    Science.gov (United States)

    Chaney, Aisling; Bauer, Martin; Bochicchio, Daniela; Smigova, Alison; Kassiou, Michael; Davies, Karen E; Williams, Steve R; Boutin, Herve

    2018-02-01

    There is increasing evidence linking neuroinflammation to many neurological disorders including Alzheimer's disease (AD); however, its exact contribution to disease manifestation and/or progression is poorly understood. Therefore, there is a need to investigate neuroinflammation in both health and disease. Here, we investigate cognitive decline, neuroinflammatory and other pathophysiological changes in the APPswe ×PS1Δe9 transgenic mouse model of AD. Transgenic (TG) mice were compared to C57BL/6 wild type (WT) mice at 6, 12 and 18 months of age. Neuroinflammation was investigated by [18 F]DPA-714 positron emission tomography and myo-inositol levels using 1 H magnetic resonance spectroscopy (MRS) in vivo. Neuronal and cellular dysfunction was investigated by looking at N-acetylaspartate (NAA), choline-containing compounds, taurine and glutamate also using MRS. Cognitive decline was first observed at 12 m of age in the TG mice as assessed by working memory tests . A significant increase in [18 F]DPA-714 uptake was seen in the hippocampus and cortex of 18 m-old TG mice when compared to age-matched WT mice and 6 m-old TG mice. No overall effect of gene was seen on metabolite levels; however, a significant reduction in NAA was observed in 18 m-old TG mice when compared to WT. In addition, age resulted in a decrease in glutamate and an increase in choline levels. Therefore, we can conclude that increased neuroinflammation and cognitive decline are observed in TG animals, whereas NAA alterations occurring with age are exacerbated in the TG mice. These results support the role of neuroinflammation and metabolite alteration in AD and in ageing. © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  18. UV-B Irradiation Changes Specifically the Secondary Metabolite Profile in Broccoli Sprouts: Induced Signaling Overlaps with Defense Response to Biotic Stressors

    Science.gov (United States)

    Mewis, Inga; Schreiner, Monika; Nguyen, Chau Nhi; Krumbein, Angelika; Ulrichs, Christian; Lohse, Marc; Zrenner, Rita

    2012-01-01

    Only a few environmental factors have such a pronounced effect on plant growth and development as ultraviolet light (UV). Concerns have arisen due to increased UV-B radiation reaching the Earth’s surface as a result of stratospheric ozone depletion. Ecologically relevant low to moderate UV-B doses (0.3–1 kJ m–2 d–1) were applied to sprouts of the important vegetable crop Brassica oleracea var. italica (broccoli), and eco-physiological responses such as accumulation of non-volatile secondary metabolites were related to transcriptional responses with Agilent One-Color Gene Expression Microarray analysis using the 2×204 k format Brassica microarray. UV-B radiation effects have usually been linked to increases in phenolic compounds. As expected, the flavonoids kaempferol and quercetin accumulated in broccoli sprouts (the aerial part of the seedlings) 24 h after UV-B treatment. A new finding is the specific UV-B-mediated induction of glucosinolates (GS), especially of 4-methylsulfinylbutyl GS and 4-methoxy-indol-3-ylmethyl GS, while carotenoids and Chl levels remained unaffected. Accumulation of defensive GS metabolites was accompanied by increased expression of genes associated with salicylate and jasmonic acid signaling defense pathways and up-regulation of genes responsive to fungal and bacterial pathogens. Concomitantly, plant pre-exposure to moderate UV-B doses had negative effects on the performance of the caterpillar Pieris brassicae (L.) and on the population growth of the aphid Myzus persicae (Sulzer). Moreover, insect-specific induction of GS in broccoli sprouts was affected by UV-B pre-treatment. PMID:22773681

  19. Preparative mass-spectrometry profiling of bioactive metabolites in Saudi-Arabian propolis fractionated by high-speed countercurrent chromatography and off-line atmospheric pressure chemical ionization mass-spectrometry injection.

    Science.gov (United States)

    Jerz, Gerold; Elnakady, Yasser A; Braun, André; Jäckel, Kristin; Sasse, Florenz; Al Ghamdi, Ahmad A; Omar, Mohamed O M; Winterhalter, Peter

    2014-06-20

    Propolis is a glue material collected by honeybees which is used to seal cracks in beehives and to protect the bee population from infections. Propolis resins have a long history in medicinal use as a natural remedy. The multiple biological properties are related to variations in their chemical compositions. Geographical settings and availability of plant sources are important factors for the occurrence of specific natural products in propolis. A propolis ethylacetate extract (800mg) from Saudi Arabia (Al-Baha region) was separated by preparative scale high-speed countercurrent chromatography (HSCCC) using a non-aqueous solvent system n-hexane-ACN (1:1, v/v). For multiple metabolite detection, the resulting HSCCC-fractions were sequentially injected off-line into an atmospheric pressure chemical ionization mass-spectrometry (APCI-MS/MS) device, and a reconstituted mass spectrometry profile of the preparative run was visualized by selected ion traces. Best ion-intensities for detected compounds were obtained in the negative APCI mode and monitored occurring co-elution effects. HSCCC and successive purification steps resulted in the isolation and characterization of various bioactive natural products such as (12E)- and (12Z)-communic acid, sandaracopimaric acid, (+)-ferruginol, (+)-totarol, and 3β-acetoxy-19(29)-taraxasten-20a-ol using EI-, APCI-MS and 1D/2D-NMR. Cycloartenol-derivatives and triterpene acetates were isolated in mixtures and elucidated by EI-MS and 1D-NMR. Free fatty acids, and two labdane fatty acid esters were identified by APCI-MS/MS. In total 19 metabolites have been identified. The novel combination of HSCCC fractionation, and APCI-MS-target-guided molecular mass profiling improve efficiency of lead-structure identification. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Mass spectrometry profiling of oxylipins, endocannabinoids, and N-acylethanolamines in human lung lavage fluids reveals responsiveness of prostaglandin E2 and associated lipid metabolites to biodiesel exhaust exposure.

    Science.gov (United States)

    Gouveia-Figueira, Sandra; Karimpour, Masoumeh; Bosson, Jenny A; Blomberg, Anders; Unosson, Jon; Pourazar, Jamshid; Sandström, Thomas; Behndig, Annelie F; Nording, Malin L

    2017-04-01

    The adverse effects of petrodiesel exhaust exposure on the cardiovascular and respiratory systems are well recognized. While biofuels such as rapeseed methyl ester (RME) biodiesel may have ecological advantages, the exhaust generated may cause adverse health effects. In the current study, we investigated the responses of bioactive lipid mediators in human airways after biodiesel exhaust exposure using lipidomic profiling methods. Lipid mediator levels in lung lavage were assessed following 1-h biodiesel exhaust (average particulate matter concentration, 159 μg/m 3 ) or filtered air exposure in 15 healthy individuals in a double-blinded, randomized, controlled, crossover study design. Bronchoscopy was performed 6 h post exposure and lung lavage fluids, i.e., bronchial wash (BW) and bronchoalveolar lavage (BAL), were sequentially collected. Mass spectrometry methods were used to detect a wide array of oxylipins (including eicosanoids), endocannabinoids, N-acylethanolamines, and related lipid metabolites in the collected BW and BAL samples. Six lipids in the human lung lavage samples were altered following biodiesel exhaust exposure, three from BAL samples and three from BW samples. Of these, elevated levels of PGE 2 , 12,13-DiHOME, and 13-HODE, all of which were found in BAL samples, reached Bonferroni-corrected significance. This is the first study in humans reporting responses of bioactive lipids following biodiesel exhaust exposure and the most pronounced responses were seen in the more peripheral and alveolar lung compartments, reflected by BAL collection. Since the responsiveness and diagnostic value of a subset of the studied lipid metabolites were established in lavage fluids, we conclude that our mass spectrometry profiling method is useful to assess effects of human exposure to vehicle exhaust.

  1. Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance.

    Science.gov (United States)

    Bose, Biswajit; Choudhury, Hiranjit; Tandon, Pramod; Kumaria, Suman

    2017-08-01

    Malaxis acuminata D. Don., a small, terrestrial orchid, is endemic to tropical Himalayas at an altitude of 1200-2000m asl. The dried pseudobulbs are important ingredients of century old ayurvedic drug 'Ashtavarga' and a polyherbal immune-booster nutraceutical 'Chyavanprash', known to restore vigour, vitality and youthfulness. Considering tremendous medicinal importance of this threatened orchid species, a detailed study was undertaken for the first time to address its antioxidant potential, secondary metabolite contents and biological activities against skin-aging related enzymes (anti-collagenase, anti-elastase, anti-tyrosinase and xanthine oxidase) and anti-inflammatory activity (5-lipoxygenase and hyaluronidase) in different plant parts of wild and in vitro-derived plants of M. acuminata. Methanolic leaf and stem extracts were further evaluated for in vitro photoprotective activity against UV-B and UV-A radiations. Furthermore, secondary metabolite profiling of various plant parts was carried out by Gas Chromatography Mass Spectrometry (GC-MS). A significantly higher antioxidant potential (DPPH, metal chelating and ABTS(•+)) with a comparative higher yield of secondary metabolites was observed in in vitro-derived plantlets as compared to the wild plants. Among various solvent systems used, methanolic leaf and stem extracts showed promising inhibitory activity against major skin aging-related enzymes and anti-inflammatory potential. Methanolic leaf and stem extracts of both wild and in vitro-derived plants showed promising photoprotective activity against UV-B and UV-A radiations in vitro with comparatively higher sun protection factor (SPF). Furthermore, GC-MS analysis of methanolic extracts of leaves and stems of wild as well as in vitro-derived plantlets revealed presence of many bioactive metabolites such as, dietary fatty acids, α-hydroxy acids, phenolic acids, sterols, amino acids, sugars and glycosides which substantially explain the use of M. acuminata

  2. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium

    NARCIS (Netherlands)

    Ahmed, M.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated

  3. The complex extracellular biology of Streptomyces.

    Science.gov (United States)

    Chater, Keith F; Biró, Sandor; Lee, Kye Joon; Palmer, Tracy; Schrempf, Hildgund

    2010-03-01

    Streptomycetes, soil-dwelling mycelial bacteria that form sporulating aerial branches, have an exceptionally large number of predicted secreted proteins, including many exported via the twin-arginine transport system. Their use of noncatalytic substrate-binding proteins and hydrolytic enzymes to obtain soluble nutrients from carbohydrates such as chitin and cellulose enables them to interact with other organisms. Some of their numerous secreted proteases participate in developmentally significant extracellular cascades, regulated by inhibitors, which lead to cannibalization of the substrate mycelium biomass to support aerial growth and sporulation. They excrete many secondary metabolites, including important antibiotics. Some of these play roles in interactions with eukaryotes. Surprisingly, some antibiotic biosynthetic enzymes are extracellular. Antibiotic production is often regulated by extracellular signalling molecules, some of which also control morphological differentiation. Amphipathic proteins, assembled with the help of cellulose-like material, are required for both hyphal attachment to surfaces and aerial reproductive growth. Comparative genomic analysis suggests that the acquisition of genes for extracellular processes has played a huge part in speciation. The rare codon TTA, which is present in the key pleiotropic regulatory gene adpA and many pathway-specific regulatory genes for antibiotic production, has a particular influence on extracellular biology.

  4. Metabolite profiling using liquid chromatography/quadrupole time-of-flight mass spectrometry for the identification of a suitable marker and target matrix of griseofulvin use in bovines.

    Science.gov (United States)

    Tarbin, J A; Fussell, R J

    2013-06-30

    Griseofulvin is an antifungal agent with potential for misuse in food-producing animals. Little is known about its metabolism in ruminants and hence what are suitable marker residues and target matrices for monitoring purposes. Tissues harvested from cattle treated with the antifungal agent griseofulvin were screened using liquid chromatography coupled to positive and negative electrospray ionization (ESI) quadrupole time-of-flight mass spectrometry (qToFMS) operated in ToF mode. Twenty-five possible metabolites were detected across all tissue types, but two isomeric compounds with accurate masses corresponding to loss of a methyl group from parent griseofulvin were considered to be the best candidate markers. Data from fragmentation experiments enabled a tentative assignment of the structures of the two compounds as 4-demethylgriseofulvin and 6-demethylgriseofulvin. These assignments were confirmed by matching the product ion spectra of incurred residues to those of custom synthesized reference standards. 4-Demethyl- and 6-demethylgriseofulvin have been identified as potential marker compounds of griseofulvin use in cattle. Liver was identified as the target matrix. Hair was shown to have potential for non-invasive testing. © Crown copyright 2013. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.

  5. Effect of feeding different levels of wheat roti on nutrient utilization and blood metabolite profile in semi-captive Asian elephants (Elephas maximus).

    Science.gov (United States)

    Das, A; Saini, M; Katole, S; Kullu, S S; Swarup, D; Sharma, A K

    2015-04-01

    This experiment was conducted to study the effect of different levels of wheat roti (WR) on nutrient utilization and blood metabolites in Asian elephants fed roughages ad libitum. Nine (3 M, 6 F) Asian elephants (14-52 years of age, 1909-3968 kg BW) were used in an experiment based on replicated Latin square design. Animals in each group (n = 3) were assigned to one of the three dietary treatments in a manner that animals in all the three groups were exposed to all the three treatments in three different periods. Each feeding trial comprised 30 days (25 days of adaptation and 5 days collection period). The amount of WR fed to the elephants was 0.18, 0.12 and 0.06% of BW in groups I, II and III, respectively. They were allowed to forage in the nearby forests for 6 h/day and to bathe for 2 h/day. The animals had ad libitum access to cut Rohini (Mallotus philippensis) trees in their night shelter. Intake and apparent digestibility of dry matter (DM), crude protein (CP), gross energy (GE), Ca, P, Fe, Cu and Zn were measured. Feed consumption was not significantly different among the groups. Significant (p elephants. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  6. Occurrence and Profile Characteristics of the Pesticide Imidacloprid, Preservative Parabens, and Their Metabolites in Human Urine from Rural and Urban China.

    Science.gov (United States)

    Wang, Lei; Liu, Tianzhen; Liu, Fang; Zhang, Junjie; Wu, Yinghong; Sun, Hongwen

    2015-12-15

    Knowledge of human exposure to imidacloprid, the most extensively used insecticide, and para-hydroxybenzoic acid esters (parabens), the most extensively used preservative, is insufficient. In this study, 295 urine samples collected from subjects in rural and urban areas in China were analyzed for imidacloprid and four parabens (namely, methyl paraben, ethyl paraben, propyl paraben, and butyl paraben) as well as their major metabolites (namely, 6-chloronicotinic acid (6-ClNA) and para-hydroxybenzoic acid (p-HB)). Imidacloprid was detected in 100% of the urine samples from rural Chinese subjects and 95% of the urine samples from urban Chinese subjects. Concentrations of urinary imidacloprid detected in rural Chinese subjects (geometric mean (GM) = 0.18 ng/mL) were slightly higher than those detected in urban Chinese subjects (GM = 0.15 ng/mL) when the effect of pesticide spraying was excluded. However, concentrations of urinary imidacloprid detected in rural adults increased significantly in the subsequent days of pesticide spraying (GM = 0.62 ng/mL), which could return to the normal levels within 3 days. In contrast, concentrations of urinary parabens detected in rural Chinese subjects (GM = 6.90 ng/mL) were lower than that in urban Chinese subjects (GM = 30.5 ng/mL). In addition, the metabolism characteristics of imidacloprid to 6-ClNA and parabens to p-HB were discussed preliminarily.

  7. Preventive brain radio-chemotherapy alters plasticity associated metabolite profile in the hippocampus but seems to not affect spatial memory in young leukemia patients.

    Science.gov (United States)

    Brandt, Moritz D; Brandt, Kalina; Werner, Annett; Schönfeld, Robby; Loewenbrück, Kai; Donix, Markus; Schaich, Markus; Bornhäuser, Martin; von Kummer, Rüdiger; Leplow, Bernd; Storch, Alexander

    2015-09-01

    Neuronal plasticity leading to evolving reorganization of the neuronal network during entire lifespan plays an important role for brain function especially memory performance. Adult neurogenesis occurring in the dentate gyrus of the hippocampus represents the maximal way of network reorganization. Brain radio-chemotherapy strongly inhibits adult hippocampal neurogenesis in mice leading to impaired spatial memory. To elucidate the effects of CNS radio-chemotherapy on hippocampal plasticity and function in humans, we performed a longitudinal pilot study using 3T proton magnetic resonance spectroscopy ((1)H-MRS) and virtual water-maze-tests in 10 de-novo patients with acute lymphoblastic leukemia undergoing preventive whole brain radio-chemotherapy. Patients were examined before, during and after treatment. CNS radio-chemotherapy did neither affect recall performance in probe trails nor flexible (reversal) relearning of a new target position over a time frame of 10 weeks measured by longitudinal virtual water-maze-testing, but provoked hippocampus-specific decrease in choline as a metabolite associated with cellular plasticity in (1)H-MRS. Albeit this pilot study needs to be followed up to definitely resolve the question about the functional role of adult human neurogenesis, the presented data suggest that (1)H-MRS allows the detection of neurogenesis-associated plasticity in the human brain.

  8. Moderate salinity reduced phenanthrene-induced stress in the halophyte plant model Thellungiella salsuginea compared to its glycophyte relative Arabidopsis thaliana: Cross talk and metabolite profiling.

    Science.gov (United States)

    Shiri, Moez; Rabhi, Mokded; Abdelly, Chedly; Bouchereau, Alain; El Amrani, Abdelhak

    2016-07-01

    It was shown that halophytes experience higher cross-tolerance to stresses than glycophytes, which was often associated with their more powerful antioxidant systems. Moreover, salinity was reported to enhance halophyte tolerance to several stresses. The aim of the present work was to investigate whether a moderate salinity enhances phenanthrene stress tolerance in the halophyte Thellungiella salsuginea. The model plant Arabidopsis thaliana, considered as its glycophyte relative, was used as reference. Our study was based on morpho-physiological, antioxidant, and metabolomic parameters. Results showed that T. salsuginea was more tolerant to phenanthrene stress as compared to A. thaliana. An improvement of phenanthrene-induced responses was recorded in the two plants in the presence of 25 mM NaCl, but the effect was significantly more obvious in the halophyte. This observation was particularly related to the higher antioxidant activities and the induction of more adapted metabolism in the halophyte. Gas Chromatography coupled with Mass Spectrometry (GC-MS) was used to quantify alcohols, ammonium, sugars, and organic acids. It showed the accumulation of several metabolites, many of them are known to be involved in signaling and abiotic stress tolerance. Moderate salinity and phenanthrene cross-tolerance involved in these two stresses was discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Metabolic Responses of Willow (Salix purpurea L. Leaves to Mycorrhization as Revealed by Mass Spectrometry and 1H NMR Spectroscopy Metabolite Profiling

    Directory of Open Access Journals (Sweden)

    Konstantinos A Aliferis

    2015-05-01

    Full Text Available The root system of most terrestrial plants form symbiotic interfaces with arbuscular mycorrhizal fungi (AMF, which are important for nutrient cycling and ecosystem sustainability. The elucidation of the undergoing changes in plants’ metabolism during symbiosis is essential for understanding nutrient acquisition and for alleviation of soil stresses caused by environmental cues. Within this context, we have undertaken the task of recording the fluctuation of willow (Salix purpurea L. leaf metabolome in response to AMF inoculation. The development of an advanced metabolomics/bioinformatics protocol employing mass spectrometry (MS and 1H NMR analyzers combined with the in-house-built metabolite library for willow (http://willowmetabolib.research.mcgill.ca/index.html are key components of the research. Analyses revealed that AMF inoculation of willow causes up-regulation of various biosynthetic pathways, among others, those of flavonoid, isoflavonoid, phenylpropanoid, and the chlorophyll and porphyrin pathways, which have well-established roles in plant physiology and are related to resistance against environmental stresses. The recorded fluctuation in the willow leaf metabolism is very likely to provide AMF-inoculated willows with a significant advantage compared to non-inoculated ones when they are exposed to stresses such as, high levels of soil pollutants. The discovered biomarkers of willow response to AMF inoculation and corresponding pathways could be exploited in biomarker-assisted selection of willow cultivars with superior phytoremediation capacity or genetic engineering programs.

  10. Reexamining intra and extracellular metabolites produced by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Maria Shuja

    2016-02-01

    Full Text Available Objective: To isolate, screen and analyze bacteria from different areas of Pakistan for the production of antimicrobial compounds, zinc solubilization and bioplastic production. Methods: Isolation and purification was proceeding with streak plate method. Antagonistic assay was completed with well diffusion and thin-layer chromatography. In vivo analysis of bioplastic was analyzed with Nile blue fluorescence under UV and Sudan staining. Results: A total of 18 bacterial strains purified from soil samples while 148 strains form stock cultures were used. Out of 166 only 94 showed antimicrobial activity against each of Grampositive and Gram-negative; cocci and rods. In case of heavy metal (ZnO and Zn3(PO42.4H2O solubilization, 54 strains solubilized ZnO and 23 strains solubilized Zn3(PO42.4H2O, while 127 strains grown on polyhydroxyalkanoate detection meedia supplemented with Nile blue medium showed bioplastic production by producing fluorescence under UV light. Four bacterial strains (coded as 100, 101, 104 and 111 were selected for further characterization. Induction time assay showed that strains 101, 104, and 111 showed inhibitory activity after 4 h of incubation while strain 100 showed after 8 h. All four strains were tolerable to the maximum concentration of ZnO. Amplified products of both 16S rRNA and PhaC gene fragments of strain 111 were sequenced and submitted to GenBank as accession numbers EU781525 and EU781526. Conclusions: Bacterial strain Pseudomonas aeruginosa-111 has potential to utilize as biofertilize and bioplastic producer.

  11. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    Science.gov (United States)

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of

  12. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism1[W][OA

    Science.gov (United States)

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A.; Zaharia, L. Irina; Schernthaner, Johann P.; Gesell, Andreas; Abrams, Suzanne R.; Kennedy, James A.; Constabel, C. Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3′-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3′5′-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation

  13. In vitro antioxidant and, α-glucosidase inhibitory activities and comprehensive metabolite profiling of methanol extract and its fractions from Clinacanthus nutans.

    Science.gov (United States)

    Alam, Md Ariful; Zaidul, I S M; Ghafoor, Kashif; Sahena, F; Hakim, M A; Rafii, M Y; Abir, H M; Bostanudin, M F; Perumal, V; Khatib, A

    2017-03-31

    This study was aimed to evaluate antioxidant and α-glucosidase inhibitory activity, with a subsequent analysis of total phenolic and total flavonoid content of methanol extract and its derived fractions from Clinacanthus nutans accompanied by comprehensive phytochemical profiling. Liquid-liquid partition chromatography was used to separate methanolic extract to get hexane, ethyl acetate, butanol and residual aqueous fractions. The total antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging and ferric reducing antioxidant power assay (FRAP). The antidiabetic activity of methanol extract and its consequent fractions were examined by α-glucosidase inhibitory bioassay. The chemical profiling was carried out by gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC Q-TOF MS). The total yield for methanol extraction was (12.63 ± 0.98) % (w/w) and highest fractionated value found for residual aqueous (52.25 ± 1.01) % (w/w) as compared to the other fractions. Significant DPPH free radical scavenging activity was found for methanolic extract (63.07 ± 0.11) % and (79.98 ± 0.31) % for ethyl acetate fraction among all the fractions evaluated. Methanol extract was the most prominent in case of FRAP (141.89 ± 0.87 μg AAE/g) whereas most effective reducing power observed in ethyl acetate fraction (133.6 ± 0.2987 μg AAE/g). The results also indicated a substantial α-glucosidase inhibitory activity for butanol fraction (72.16 ± 1.0) % and ethyl acetate fraction (70.76 ± 0.49) %. The statistical analysis revealed that total phenolic and total flavonoid content of the samples had the significant (p glucosidase inhibitory activity. Current results proposed the therapeutic potential of Clinacanthus nutans, especially ethyl acetate and butanol fraction as chemotherapeutic agent against oxidative related cellular damages and control the postprandial hyperglycemia. The phytochemical

  14. Influence of allylisopropylacetamide and phenobarbital treatment on in vivo antipyrine metabolite formation in rats

    NARCIS (Netherlands)

    Teunissen, M W; van Graft, M.; Vermeulen, N P; Breimer, D D

    The influence of pretreatment with allylisopropylacetamide (AIA) and phenobarbital (PB) on the pharmacokinetics and metabolite profile of antipyrine was studied in rats in vivo. Antipyrine concentrations were measured in blood and urine, and four metabolites (4-hydroxyantipyrine, norantipyrine,

  15. Effect of feeding Jerusalem artichoke (Helianthus tuberosus) root as prebiotic on nutrient utilization, fecal characteristics and serum metabolite profile of captive Indian leopard (Panthera pardus fusca) fed a meat-on-bone diet.

    Science.gov (United States)

    Pradhan, S K; Das, A; Kullu, S S; Saini, M; Pattanaik, A K; Dutta, N; Sharma, A K

    2015-01-01

    An experiment was conducted to determine the effect of incorporating Jerusalem artichoke (JA) as a prebiotic in the diet of Indian leopards (n = 11 adults) fed a meat-on-bone diet. The trial consisted of three periods (A1 , B, and A2 ). Each period comprised 17 days of adaptation and four days of collection. During the control periods (A1 and A2 ), the leopards were fed their normal zoo diets of 2.5-3 kg of buffalo meat-on-bone six days a week without any supplement. During trial B, meat-on-bone diets of the leopards were supplemented with JA at 2% of dietary dry matter (DM). Meat consumption was similar among the treatments. Supplementation of JA decreased the digestibility of crude protein (P < 0.01). Digestibilities of organic matter and ether extract were similar among the treatments. Serum concentrations of urea and triglycerides were lower (P < 0.05) when JA was added to the diet. Incorporation of JA to the basal diet increased fecal concentrations of acetate (P < 0.01), butyrate (P < 0.01), lactate (P < 0.01), Lactobacillus spp., and Bifidobacterium spp. (P < 0.01) with a simultaneous decrease in the concentration of ammonia (P < 0.01), Clostridia spp. (P < 0.01), and fecal pH (P < 0.01). Fecal microbial profiles and hind gut fermentation were improved, without any adverse effects on feed consumption, nutrient utilization, and serum metabolite profiles. Results of this experiment showed that feeding JA at 2% DM in the whole diet could be potentially beneficial for captive Indian leopards fed meat-on-bone diets. © 2015 Wiley Periodicals, Inc.

  16. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.

    2005-01-01

    molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical...

  17. Cold glycerol-saline: the promising quenching solution for accurate intracellular metabolite analysis of microbial cells.

    Science.gov (United States)

    Villas-Bôas, Silas G; Bruheim, Per

    2007-11-01

    Microbial metabolomics has been seriously limited by our inability to perform a reliable separation of intra- and extracellular metabolites with efficient quenching of cell metabolism. Microbial cells are sensitive to most (if not all) quenching agents developed to date, resulting in leakage of intracellular metabolites to the extracellular medium during quenching. Therefore, as yet we are unable to obtain an accurate concentration of intracellular metabolites from microbial cell cultures. However, knowledge of the in vivo concentrations of intermediary metabolites is of fundamental importance for the characterization of microbial metabolism so as to integrate meaningful metabolomics data with other levels of functional genomics analysis. In this article, we report a novel and robust quenching method for microbial cell cultures based on cold glycerol-saline solution as the quenching agent that prevents significant leakage of intracellular metabolites and, therefore, permits more accurate measurement of intracellular metabolite concentrations in microbial cells.

  18. Metabolite production by species of Stemphylium

    DEFF Research Database (Denmark)

    Olsen, Kresten Jon Kromphardt; Rossman, Amy; Andersen, Birgitte

    2018-01-01

    Morphology and phylogeny has been used to distinguish members of the plant pathogenic fungal genus Stemphylium. A third method for distinguishing species is by chemotaxonomy. The main goal of the present study was to investigate the chemical potential of Stemphylium via HPLC-UV-MS analysis, while...... also exploring the potential of chemotaxonomy as a robust identification method for Stemphylium. Several species were found to have species-specific metabolites, while other species were distinguishable by a broader metabolic profile rather than specific metabolites. Many previously described...... metabolites were found to be important for distinguishing species, while some unknown metabolites were also found to have important roles in distinguishing species of Stemphylium. This study is the first of its kind to investigate the chemical potential of Stemphylium across the whole genus....

  19. Profiling adrenal 11β-hydroxyandrostenedione metabolites in prostate cancer cells, tissue and plasma: UPC2-MS/MS quantification of 11β-hydroxytestosterone, 11keto-testosterone and 11keto-dihydrotestosterone.

    Science.gov (United States)

    du Toit, Therina; Bloem, Liezl M; Quanson, Jonathan L; Ehlers, Riaan; Serafin, Antonio M; Swart, Amanda C

    2017-02-01

    Adrenal C19 steroids serve as precursors to active androgens in the prostate. Androstenedione (A4), 11β-hydroxyandrostenedione (11OHA4) and 11β-hydroxytestosterone (11OHT) are metabolised to potent androgen receptor (AR) agonists, dihydrotestosterone (DHT), 11-ketotestosterone (11KT) and 11-ketodihydrotestosterone (11KDHT). The identification of 11OHA4 metabolites, 11KT and 11KDHT, as active androgens has placed a new perspective on adrenal C11-oxy C19 steroids and their contribution to prostate cancer (PCa). We investigated adrenal androgen metabolism in normal epithelial prostate (PNT2) cells and in androgen-dependent prostate cancer (LNCaP) cells. We also analysed steroid profiles in PCa tissue and plasma, determining the presence of the C19 steroids and their derivatives using ultra-performance liquid chromatography (UHPLC)- and ultra-performance convergence chromatography tandem mass spectrometry (UPC2-MS/MS). In PNT2 cells, sixty percent A4 (60%) was primarily metabolised to 5α-androstanedione (5αDIONE) (40%), testosterone (T) (10%), and androsterone (AST) (10%). T (30%) was primarily metabolised to DHT (10%) while low levels of A4, 5αDIONE and 3αADIOL (≈20%) were detected. Conjugated steroids were not detected and downstream products were present at pathway while T was detected as T-glucuronide with negligible conversion to downstream products. 11OHA4 (80%) and 11OHT (60%) were predominantly metabolised to 11KA4 and 11KT and in both assays more than 50% of 11KT was detected in the unconjugated form. In tissue, we detected C11-oxy C19 metabolites at significantly higher levels than the C19 steroids, with unconjugated 11KDHT, 11KT and 11OHA4 levels ranging between 13 and 37.5ng/g. Analyses of total steroid levels in plasma showed significant levels of 11OHA4 (≈230-440nM), 11KT (≈250-390nM) and 11KDHT (≈19nM). DHT levels (pathway is dominant in normal prostate cells. Glucuronidation activity was not detected in PNT2 cells and while all T

  20. Metabolite modifications in Solanum lycopersicum roots and leaves ...

    African Journals Online (AJOL)

    The effects of cadmium (Cd) were investigated on growth and metabolite profiling in roots and leaves of tomato (Solanum lycopersicum L., Var. Ibiza F1) plants exposed for 3 and 10 days to various CdCl2 concentrations (0 - 300 ìM). The aim of this study was to describe metabolite modifications in response to Cd stress and ...

  1. Mathematical modelling for fumonisin production in corn and chromatographic profile of metabolites of Fusarium verticillioides/ Modelagem matemática para fumonisinas em milho e perfil cromatográfico de metabólitos produzidos por Fusarium verticillioides

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Gerage

    2008-08-01

    Full Text Available Mycotoxin requires special attention in public health due to pathological hazard in human and animals. Among these toxins, emphasized are the fumonisin produced mainly by Fusarium verticillioides, which is primary pathogen in corn. This study aimed the development of mathematical models in fumonisin production, as well as to evaluate the chromatography profile of secondary metabolites of Fusarium verticillioides. Corn (heat-treated or not was adjusted to 15, 20 and 25% moisture content, and it was inoculated or not with F. verticillioides. These flasks were incubated at 20, 25 and 30º C for 20 days, and the fumonisins were quantified by high performance liquid chromatography (HPLC. The temperature affected the fumonisin production in higher extension than moisture content, and the highest fumonisin level was reached at 20º C with 25% moisture content. The chromatogram profiles showed many peaks with retention time which differed of fumonisin, suggesting diversity in compounds arisen from metabolic pathway, which were also from F. verticillioides. These metabolites were not observed in optimized condition for fumonisin production, showing decreased trend when other fungal growth was increased. The mathematical models predicted the fumonisin level trend at the 20th day’s performance in a real data contamination evaluated in corn, which were submitted to graphical and mathematical/ statistical validations. The mathematical modelling can be an important tool in understanding the dynamic of fumonisin production and further decision of adequate raw material destination.As micotoxinas merecem atenção especial no contexto de saúde pública por desencadearem alterações patológicas em humanos e animais. Dentre estas toxinas, destacam-se as fumonisinas, produzidas principalmente por Fusarium verticillioides, um patógeno primário de milho. O trabalho objetivou desenvolver modelos matemáticos para produção de fumonisinas, bem como avaliar o

  2. Discovery of novel secondary metabolites in Aspergillus aculeatus

    DEFF Research Database (Denmark)

    Petersen, Lene Maj; Holm, Dorte Koefoed; Gotfredsen, Charlotte Held

    2012-01-01

    Polyketides (PKs) and non-ribosomal peptides (NRPs) constitute large classes of diverse secondary metabolites (SMs) and are important sources for pharmaceuticals due to their structural diversity and wide variety of biological activities. Our investigation of the chemical profile of the industria......Polyketides (PKs) and non-ribosomal peptides (NRPs) constitute large classes of diverse secondary metabolites (SMs) and are important sources for pharmaceuticals due to their structural diversity and wide variety of biological activities. Our investigation of the chemical profile...

  3. Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics.

    Science.gov (United States)

    Kreimer, Simion; Belov, Arseniy M; Ghiran, Ionita; Murthy, Shashi K; Frank, David A; Ivanov, Alexander R

    2015-06-05

    This review discusses extracellular vesicles (EVs), which are submicron-scale, anuclear, phospholipid bilayer membrane enclosed vesicles that contain lipids, metabolites, proteins, and RNA (micro and messenger). They are shed from many, if not all, cell types and are present in biological fluids and conditioned cell culture media. The term EV, as coined by the International Society of Extracellular Vesicles (ISEV), encompasses exosomes (30-100 nm in diameter), microparticles (100-1000 nm), apoptotic blebs, and other EV subsets. EVs have been implicated in cell-cell communication, coagulation, inflammation, immune response modulation, and disease progression. Multiple studies report that EV secretion from disease-affected cells contributes to disease progression, e.g., tumor niche formation and cancer metastasis. EVs are attractive sources of biomarkers due to their biological relevance and relatively noninvasive accessibility from a range of physiological fluids. This review is focused on the molecular profiling of the protein and lipid constituents of EVs, with emphasis on mass-spectrometry-based "omic" analytical techniques. The challenges in the purification and molecular characterization of EVs, including contamination of isolates and limitations in sample quantities, are discussed along with possible solutions. Finally, the review discusses the limited but growing investigation of post-translational modifications of EV proteins and potential strategies for future in-depth molecular characterization of EVs.

  4. Extracellular granzymes in inflammation

    NARCIS (Netherlands)

    Wensink, A.C.

    2014-01-01

    It has been well established that granzymes released by cytotoxic lymphocytes induce cell death in virus-infected cells and tumor cells. Next to this intracellular role of granzymes in triggering apoptosis, granzymes also exist extracellularly in the circulation of patients with autoimmune diseases

  5. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    Science.gov (United States)

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  6. Metabolome analysis - mass spectrometry and microbial primary metabolites

    DEFF Research Database (Denmark)

    Højer-Pedersen, Jesper Juul

    2008-01-01

    While metabolite profiling has been carried out for decades, the scope for metabolite analysis have recently been broadened to aim at all metabolites in a living organism – also referred to as the metabolome. This is a great challenge, which requires versatile analytical technologies...... for databases that contain metabolite specific information, which will speed up the identification of profiled metabolites. To address the capabilities of electrospray ionization (ESI)-MS in detecting the metabolome of S. cerevisiae, the in silico metabolome of this organism was used as a template to present....... Statistical analysis of the footprinting data revealed discriminating ions, which could be assigned using the in silico metabolome. By this approach metabolic footprinting can advance from a classification method that is used to derive biological information based on guilt-by-association, to a tool...

  7. Tendon functional extracellular matrix.

    Science.gov (United States)

    Screen, Hazel R C; Berk, David E; Kadler, Karl E; Ramirez, Francesco; Young, Marian F

    2015-06-01

    This article is one of a series, summarizing views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the "Functional Extracellular Matrix" stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment, and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely varying extrinsic and intrinsic factors such as age, nutrition, exercise levels, and biomechanics. Consequently, tendon adapts dynamically during development, aging, and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Enhanced metabolite generation

    Science.gov (United States)

    Chidambaram, Devicharan [Middle Island, NY

    2012-03-27

    The present invention relates to the enhanced production of metabolites by a process whereby a carbon source is oxidized with a fermentative microbe in a compartment having a portal. An electron acceptor is added to the compartment to assist the microbe in the removal of excess electrons. The electron acceptor accepts electrons from the microbe after oxidation of the carbon source. Other transfers of electrons can take place to enhance the production of the metabolite, such as acids, biofuels or brewed beverages.

  9. EVpedia: A community web resource for prokaryotic and eukaryotic extracellular vesicles research.

    Science.gov (United States)

    Kim, Dae-Kyum; Lee, Jaewook; Simpson, Richard J; Lötvall, Jan; Gho, Yong Song

    2015-04-01

    For cell-to-cell communication, all living cells including archaea, bacteria, and eukaryotes secrete nano-sized membrane vesicles into the extracellular space. These extracellular vesicles harbor specific subsets of proteins, mRNAs, miRNAs, lipids, and metabolites that represent their cellular status. These vesicle-specific cargos are considered as novel diagnostic biomarkers as well as therapeutic targets. With the advancement in high-throughput technologies on multiomics studies and improvements in bioinformatics approaches, a huge number of vesicular proteins, mRNAs, miRNAs, lipids, and metabolites have been identified, and our understanding of these complex extracellular organelles has considerably increased during these past years. In this review, we highlight EVpedia (http://evpedia.info), a community web portal for systematic analyses of prokaryotic and eukaryotic extracellular vesicles research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: Fatty acids influence the HSA-metabolite interaction

    Science.gov (United States)

    Jupin, Marc; Michiels, Paul J.; Girard, Frederic C.; Spraul, Manfred; Wijmenga, Sybren S.

    2013-03-01

    Metabolites and their concentrations are direct reporters on body biochemistry. Thanks to technical developments metabolic profiling of body fluids, such as blood plasma, by for instance NMR has in the past decade become increasingly accurate enabling successful clinical diagnostics. Human Serum Albumin (HSA) is the main plasma protein (∼60% of all plasma protein) and responsible for the transport of endogenous (e.g. fatty acids) and exogenous metabolites, which it achieves thanks to its multiple binding sites and its flexibility. HSA has been extensively studied with regard to its binding of drugs (exogenous metabolites), but only to a lesser extent with regard to its binding of endogenous (non-fatty acid) metabolites. To obtain correct NMR measured metabolic profiles of blood plasma and/or potentially extract information on HSA and fatty acids content, it is necessary to characterize these endogenous metabolite/plasma protein interactions. Here, we investigate these metabolite-HSA interactions in blood plasma and blood plasma mimics. The latter contain the roughly twenty metabolites routinely detected by NMR (also most abundant) in normal relative concentrations with fatted or non-fatted HSA added or not. First, we find that chemical shift changes are small and seen only for a few of the metabolites. In contrast, a significant number of the metabolites display reduced resonance integrals and reduced free concentrations in the presence of HSA or fatted HSA. For slow-exchange (or strong) interactions, NMR resonance integrals report the free metabolite concentration, while for fast exchange (weak binding) the chemical shift reports on the binding. Hence, these metabolites bind strongly to HSA and/or fatted HSA, but to a limited degree because for most metabolites their concentration is smaller than the HSA concentration. Most interestingly, fatty acids decrease the metabolite-HSA binding quite significantly for most of the interacting metabolites. We further find

  11. Hemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species: a comparative study.

    Science.gov (United States)

    Olsson, Trine; MacMillan, Heath A; Nyberg, Nils; Staerk, Dan; Malmendal, Anders; Overgaard, Johannes

    2016-08-15

    Drosophila, like most insects, are susceptible to low temperatures, and will succumb to temperatures above the freezing point of their hemolymph. For these insects, cold exposure causes a loss of extracellular ion and water homeostasis, leading to chill injury and eventually death. Chill-tolerant species are characterized by lower hemolymph [Na(+)] than chill-susceptible species and this lowered hemolymph [Na(+)] is suggested to improve ion and water homeostasis during cold exposure. It has therefore also been hypothesized that hemolymph Na(+) is replaced by other 'cryoprotective' osmolytes in cold-tolerant species. Here, we compared the hemolymph metabolite profiles of five drosophilid species with marked differences in chill tolerance. All species were examined under 'normal' thermal conditions (i.e. 20°C) and following cold exposure (4 h at 0°C). Under benign conditions, total hemolymph osmolality was similar among all species despite chill-tolerant species having lower hemolymph [Na(+)]. Using NMR spectroscopy, we found that chill-tolerant species instead have higher levels of sugars and free amino acids in their hemolymph, including classical 'cryoprotectants' such as trehalose and proline. In addition, we found that chill-tolerant species maintain a relatively stable hemolymph osmolality and metabolite profile when exposed to cold stress while sensitive species suffer from large increases in osmolality and massive changes in their metabolic profiles during a cold stress. We suggest that the larger contribution of classical cryoprotectants in chill-tolerant Drosophila plays a non-colligative role for cold tolerance that contributes to osmotic and ion homeostasis during cold exposure and, in addition, we discuss how these comparative differences may represent an evolutionary pathway toward more extreme cold tolerance of insects. © 2016. Published by The Company of Biologists Ltd.

  12. Estimation of caffeine intake from analysis of caffeine metabolites in wastewater

    OpenAIRE

    Gracia Lor, Emma; Nikolaos I. Rousis; Zuccato, Ettore; Bade, Richard; Baz-Lomba, José Antonio; Castrignanò, Erika; Causanilles, Ana; Hernández Hernández, Félix; Kasprzyk-Hordern, Barbara; Kinyua, Juliet; McCall, Ann-Kathrin; Nuijs, Alexander van; Plosz, Benedek; Ramin, Pedram; Ryu, Yeonsuk

    2017-01-01

    Caffeine metabolites in wastewater were investigated as potential biomarkers for assessing caffeine intake in a population. The main human urinary metabolites of caffeine were measured in the urban wastewater of ten European cities and the metabolic profiles in wastewater were compared with the human urinary excretion profile. A good match was found for 1,7-dimethyluric acid, an exclusive caffeine metabolite, suggesting that might be a suitable biomarker in wastewater for assessing population...

  13. Estimation of caffeine intake from analysis of caffeine metabolites in wastewater

    OpenAIRE

    Gracia-Lor, Emma; Nikolaos I. Rousis; Zuccato, Ettore; Bade, Richard; Baz-Lomba, Jose Antonio; Castrignano, Erika; Causanilles, Ana; Hernandez, Felix; Kasprzyk-Hordern, Barbara; Kinyua, Juliet H.; McCall, Ann-Kathrin; Nuijs, van, Alexander L.N.; Plosz, Benedek G. jk; Ramin, Pedram; Ryu, Yeonsuk

    2017-01-01

    Abstract: Caffeine metabolites in wastewater were investigated as potential biomarkers for assessing caffeine intake in a population. The main human urinary metabolites of caffeine were measured in the urban wastewater of ten European cities and the metabolic profiles in wastewater were compared with the human urinary excretion profile. A good match was found for 1,7-dimethyluric acid, an exclusive caffeine metabolite, suggesting that might be a suitable biomarker in wastewater for assessing ...

  14. Epigenome targeting by probiotic metabolites

    Directory of Open Access Journals (Sweden)

    Licciardi Paul V

    2010-12-01

    Full Text Available Abstract Background The intestinal microbiota plays an important role in immune development and homeostasis. A disturbed microbiota during early infancy is associated with an increased risk of developing inflammatory and allergic diseases later in life. The mechanisms underlying these effects are poorly understood but are likely to involve alterations in microbial production of fermentation-derived metabolites, which have potent immune modulating properties and are required for maintenance of healthy mucosal immune responses. Probiotics are beneficial bacteria that have the capacity to alter the composition of bacterial species in the intestine that can in turn influence the production of fermentation-derived metabolites. Principal among these metabolites are the short-chain fatty acids butyrate and acetate that have potent anti-inflammatory activities important in regulating immune function at the intestinal mucosal surface. Therefore strategies aimed at restoring the microbiota profile may be effective in the prevention or treatment of allergic and inflammatory diseases. Presentation of the hypothesis Probiotic bacteria have diverse effects including altering microbiota composition, regulating epithelial cell barrier function and modulating of immune responses. The precise molecular mechanisms mediating these probiotic effects are not well understood. Short-chain fatty acids such as butyrate are a class of histone deacetylase inhibitors important in the epigenetic control of host cell responses. It is hypothesized that the biological function of probiotics may be a result of epigenetic modifications that may explain the wide range of effects observed. Studies delineating the effects of probiotics on short-chain fatty acid production and the epigenetic actions of short-chain fatty acids will assist in understanding the association between microbiota and allergic or autoimmune disorders. Testing the hypothesis We propose that treatment with

  15. Circulating Extracellular microRNA in Systemic Autoimmunity

    DEFF Research Database (Denmark)

    Heegaard, Niels H. H.; Carlsen, Anting Liu; Skovgaard, Kerstin

    2015-01-01

    , extracellular miRNA is protected against degradation by complexation with carrier proteins and/or by being enclosed in subcellular membrane vesicles. This, together with their tissue- and disease-specific expression, has fuelled the interest in using circulating microRNA profiles as harbingers of disease, i......, and rheumatoid arthritis. Even though the link between cellular alterations and extracellular profiles is still unpredictable, the data suggest that circulating miRNAs in autoimmunity may become diagnostically useful. Here, we review important circulating miRNAs in animal models of inflammation and in systemic...

  16. Functional Genomics of Novel Secondary Metabolites from Diverse Cyanobacteria Using Untargeted Metabolomics

    Science.gov (United States)

    Baran, Richard; Ivanova, Natalia N.; Jose, Nick; Garcia-Pichel, Ferran; Kyrpides, Nikos C.; Gugger, Muriel; Northen, Trent R.

    2013-01-01

    Mass spectrometry-based metabolomics has become a powerful tool for the detection of metabolites in complex biological systems and for the identification of novel metabolites. We previously identified a number of unexpected metabolites in the cyanobacterium Synechococcus sp. PCC 7002, such as histidine betaine, its derivatives and several unusual oligosaccharides. To test for the presence of these compounds and to assess the diversity of small polar metabolites in other cyanobacteria, we profiled cell extracts of nine strains representing much of the morphological and evolutionary diversification of this phylum. Spectral features in raw metabolite profiles obtained by normal phase liquid chromatography coupled to mass spectrometry (MS) were manually curated so that chemical formulae of metabolites could be assigned. For putative identification, retention times and MS/MS spectra were cross-referenced with those of standards or available sprectral library records. Overall, we detected 264 distinct metabolites. These included indeed different betaines, oligosaccharides as well as additional unidentified metabolites with chemical formulae not present in databases of metabolism. Some of these metabolites were detected only in a single strain, but some were present in more than one. Genomic interrogation of the strains revealed that generally, presence of a given metabolite corresponded well with the presence of its biosynthetic genes, if known. Our results show the potential of combining metabolite profiling and genomics for the identification of novel biosynthetic genes. PMID:24084783

  17. Secondary metabolites from Ganoderma.

    Science.gov (United States)

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Intact penetratin metabolite permeates across Caco-2 monolayers

    DEFF Research Database (Denmark)

    Birch, Ditlev; Christensen, Malene Vinther; Stærk, Dan

    . Previous studies have demonstrated that cell-penetrating peptides (CPPs) may be used as carriers in order to improve the bioavailability of a therapeutic cargo like insulin after oral administration. Penetratin, a commonly used CPP, has been shown to increase the uptake of insulin across Caco-2 cell......, the aim of the present study was to investigate penetratin metabolites with respect to effects on cellular viability, their epithelial permeation and cell uptake. Methods Extracellular and intracellular degradation of penetratin was assessed by incubation of the carrier peptide on the apical side of Caco......-2 cells cultured on permeable filter inserts and in cell lysates, respectively. The epithelial permeation of penetratin and the formed metabolites was assessed by using Caco-2 monolayers cultured on permeable filter inserts. Results Preliminary data revealed that at least one specific metabolite...

  19. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis.

    Science.gov (United States)

    Lee, Jaewook; Kim, Si-Hyun; Choi, Dong-Sic; Lee, Jong Seok; Kim, Dae-Kyum; Go, Gyeongyun; Park, Seon-Min; Kim, Si Hyun; Shin, Jeong Hwan; Chang, Chulhun L; Gho, Yong Song

    2015-10-01

    The release of extracellular vesicles, also known as outer membrane vesicles, membrane vesicles, exosomes, and microvesicles, is an evolutionarily conserved phenomenon from bacteria to eukaryotes. It has been reported that Mycobacterium tuberculosis releases extracellular vesicles harboring immunologically active molecules, and these extracellular vesicles have been suggested to be applicable in vaccine development and biomarker discovery. However, the comprehensive proteomic analysis has not been performed for M. tuberculosis extracellular vesicles. In this study, we identified a total of 287 vesicular proteins by four LC-MS/MS analyses with high confidence. In addition, we identified several vesicular proteins associated with the virulence of M. tuberculosis. This comprehensive proteome profile will help elucidate the pathogenic mechanism of M. tuberculosis. The data have been deposited to the ProteomeXchange with identifier PXD001160 (http://proteomecentral.proteomexchange.org/dataset/PXD001160). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Understanding and classifying metabolite space and metabolite-likeness.

    Directory of Open Access Journals (Sweden)

    Julio E Peironcely

    Full Text Available While the entirety of 'Chemical Space' is huge (and assumed to contain between 10(63 and 10(200 'small molecules', distinct subsets of this space can nonetheless be defined according to certain structural parameters. An example of such a subspace is the chemical space spanned by endogenous metabolites, defined as 'naturally occurring' products of an organisms' metabolism. In order to understand this part of chemical space in more detail, we analyzed the chemical space populated by human metabolites in two ways. Firstly, in order to understand metabolite space better, we performed Principal Component Analysis (PCA, hierarchical clustering and scaffold analysis of metabolites and non-metabolites in order to analyze which chemical features are characteristic for both classes of compounds. Here we found that heteroatom (both oxygen and nitrogen content, as well as the presence of particular ring systems was able to distinguish both groups of compounds. Secondly, we established which molecular descriptors and classifiers are capable of distinguishing metabolites from non-metabolites, by assigning a 'metabolite-likeness' score. It was found that the combination of MDL Public Keys and Random Forest exhibited best overall classification performance with an AUC value of 99.13%, a specificity of 99.84% and a selectivity of 88.79%. This performance is slightly better than previous classifiers; and interestingly we found that drugs occupy two distinct areas of metabolite-likeness, the one being more 'synthetic' and the other being more 'metabolite-like'. Also, on a truly prospective dataset of 457 compounds, 95.84% correct classification was achieved. Overall, we are confident that we contributed to the tasks of classifying metabolites, as well as to understanding metabolite chemical space better. This knowledge can now be used in the development of new drugs that need to resemble metabolites, and in our work particularly for assessing the metabolite

  1. Understanding and classifying metabolite space and metabolite-likeness.

    Science.gov (United States)

    Peironcely, Julio E; Reijmers, Theo; Coulier, Leon; Bender, Andreas; Hankemeier, Thomas

    2011-01-01

    While the entirety of 'Chemical Space' is huge (and assumed to contain between 10(63) and 10(200) 'small molecules'), distinct subsets of this space can nonetheless be defined according to certain structural parameters. An example of such a subspace is the chemical space spanned by endogenous metabolites, defined as 'naturally occurring' products of an organisms' metabolism. In order to understand this part of chemical space in more detail, we analyzed the chemical space populated by human metabolites in two ways. Firstly, in order to understand metabolite space better, we performed Principal Component Analysis (PCA), hierarchical clustering and scaffold analysis of metabolites and non-metabolites in order to analyze which chemical features are characteristic for both classes of compounds. Here we found that heteroatom (both oxygen and nitrogen) content, as well as the presence of particular ring systems was able to distinguish both groups of compounds. Secondly, we established which molecular descriptors and classifiers are capable of distinguishing metabolites from non-metabolites, by assigning a 'metabolite-likeness' score. It was found that the combination of MDL Public Keys and Random Forest exhibited best overall classification performance with an AUC value of 99.13%, a specificity of 99.84% and a selectivity of 88.79%. This performance is slightly better than previous classifiers; and interestingly we found that drugs occupy two distinct areas of metabolite-likeness, the one being more 'synthetic' and the other being more 'metabolite-like'. Also, on a truly prospective dataset of 457 compounds, 95.84% correct classification was achieved. Overall, we are confident that we contributed to the tasks of classifying metabolites, as well as to understanding metabolite chemical space better. This knowledge can now be used in the development of new drugs that need to resemble metabolites, and in our work particularly for assessing the metabolite-likeness of candidate

  2. Fatty acid metabolites in rapidly proliferating breast cancer.

    Directory of Open Access Journals (Sweden)

    Joseph T O'Flaherty

    Full Text Available Breast cancers that over-express a lipoxygenase or cyclooxygenase are associated with poor survival