Sample records for extracellular calcium ions

  1. Extracellular Bio-imaging of Acetylcholine-stimulated PC12 Cells Using a Calcium and Potassium Multi-ion Image Sensor. (United States)

    Matsuba, Sota; Kato, Ryo; Okumura, Koichi; Sawada, Kazuaki; Hattori, Toshiaki


    In biochemistry, Ca 2+ and K + play essential roles to control signal transduction. Much interest has been focused on ion-imaging, which facilitates understanding of their ion flux dynamics. In this paper, we report a calcium and potassium multi-ion image sensor and its application to living cells (PC12). The multi-ion sensor had two selective plasticized poly(vinyl chloride) membranes containing ionophores. Each region on the sensor responded to only the corresponding ion. The multi-ion sensor has many advantages including not only label-free and real-time measurement but also simultaneous detection of Ca 2+ and K + . Cultured PC12 cells treated with nerve growth factor were prepared, and a practical observation for the cells was conducted with the sensor. After the PC12 cells were stimulated by acetylcholine, only the extracellular Ca 2+ concentration increased while there was no increase in the extracellular K + concentration. Through the practical observation, we demonstrated that the sensor was helpful for analyzing the cell events with changing Ca 2+ and/or K + concentration.

  2. Effects of extracellular calcium on calcium transport during hyperthermia of tumor cells. (United States)

    Anghileri, L J; Marcha, C; Crone-Escanyé, M C; Robert, J


    The effects of different concentrations of extracellular ion calcium on the transport of calcium by tumor cells have been studied by means of the uptake of radiocalcium. Tumor cells incubated at 45 degrees C take up 4-10 times the amount of radioactivity incorporated by cells incubated at 37 degrees C. The difference is still greater (up to 100 times) for the intracellular incorporation as assessed by elimination of the membrane-bound calcium by EGTA treatment. The possible mechanisms involved in this differential behavior are discussed.

  3. Effect of extracellular calcium chloride on sporangiospore-yeast ...

    African Journals Online (AJOL)

    To examine this model further, this study evaluated the ability of sporangiospores of Rhizopus stolonifer to undergo morphogenetic transformation in the presence of different levels of extracellular calcium (0.0, 0.20, 0.25, 0.50, 1.0, 1.5 and 1.8 mM). It was found that calcium supported yeast induction and proliferation to ...

  4. Complex formation ions calcium with macromolecules pectin

    International Nuclear Information System (INIS)

    Khalikova, M.D.; Avloev, Kh.Kh.; Muhiddinov, Z.K.


    In clause the mechanism of sorption of ions of calcium by macromolecules of pectin is opened. Is shown, that the linkage of ions of calcium descends on acid bunches of pectin, and process carries cooperative character

  5. Calcium Nutrition and Extracellular Calcium Sensing: Relevance for the Pathogenesis of Osteoporosis, Cancer and Cardiovascular Diseases (United States)

    Peterlik, Meinrad; Kállay, Enikoe; Cross, Heide S.


    Through a systematic search in Pubmed for literature, on links between calcium malnutrition and risk of chronic diseases, we found the highest degree of evidence for osteoporosis, colorectal and breast cancer, as well as for hypertension, as the only major cardiovascular risk factor. Low calcium intake apparently has some impact also on cardiovascular events and disease outcome. Calcium malnutrition can causally be related to low activity of the extracellular calcium-sensing receptor (CaSR). This member of the family of 7-TM G-protein coupled receptors allows extracellular Ca2+ to function as a “first messenger” for various intracellular signaling cascades. Evidence demonstrates that Ca2+/CaSR signaling in functional linkage with vitamin D receptor (VDR)-activated pathways (i) promotes osteoblast differentiation and formation of mineralized bone; (ii) targets downstream effectors of the canonical and non-canonical Wnt pathway to inhibit proliferation and induce differentiation of colorectal cancer cells; (iii) evokes Ca2+ influx into breast cancer cells, thereby activating pro-apoptotic intracellular signaling. Furthermore, Ca2+/CaSR signaling opens Ca2+-sensitive K+ conductance channels in vascular endothelial cells, and also participates in IP3-dependent regulation of cytoplasmic Ca2+, the key intermediate of cardiomyocyte functions. Consequently, impairment of Ca2+/CaSR signaling may contribute to inadequate bone formation, tumor progression, hypertension, vascular calcification and, probably, cardiovascular disease. PMID:23340319

  6. Calcium homeostasis modulator (CALHM) ion channels. (United States)

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin


    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.

  7. Chaotic Dynamics Mediates Brain State Transitions, Driven by Changes in Extracellular Ion Concentrations

    DEFF Research Database (Denmark)

    Rasmussen, Rune; H. Jensen, Mogens; L. Heltberg, Mathias


    Previous studies have suggested that changes in extracellular ion concentrations initiate the transition from an activity state that characterizes sleep in cortical neurons to states that characterize wakeful- ness. However, because neuronal activity and extra- cellular ion concentrations...... are interdependent, isolating their unique roles during sleep-wake transitions is not possible in vivo. Here, we extend the Averaged-Neuron model and demonstrate that, although changes in extracellular ion concentrations occur concurrently, decreasing the conductance of calcium-dependent potassium channels initiates...... the transition from sleep to wakefulness. We find that sleep is governed by stable, self-sustained oscillations in neuronal firing patterns, whereas the quiet awake state and active awake state are both governed by irregular oscillations and chaotic dynamics; transitions between these separable awake states...

  8. Extracellular Calcium and Magnesium in Preeclampsia and Eclampsia

    African Journals Online (AJOL)

    The cause of preeclampsia remains unknown and calcium and magnesium supplement are being suggested as means of prevention. The objective of this study was to assess magnesium and calcium in the plasma and cerebrospinal fluid of Nigerian women with preeclampsia and eclampsia. Setting was University of ...

  9. Adsorption studies of phosphate ions on alginate- calcium ...

    African Journals Online (AJOL)


    osmosis, electro dialysis, phytoremediation and phyto- extraction, ion-exchange .... occurred between functional groups of alginate and host material, that is, calcium .... metal ions using wheat based biosorbent; a review of the recent literature.

  10. The distribution of free calcium ions in the cholesteatoma epithelium

    DEFF Research Database (Denmark)

    Svane-Knudsen, Viggo; Rasmussen, Gurli; Ottosen, Peter D


    The distribution of free calcium ions in normal skin and cholesteatoma epithelium was investigated using the oxalate precipitation method. In agreement with previous observations, we could demonstrate a calcium ion gradient in normal epidermis where the cells in stratum basale and spinosum reside...... appeared where oblong accumulations of free calcium ions were found basally in the stratum. These findings provide evidence that fluctuations in epidermal calcium in cholesteatoma epithelium may underlie the abnormal desquamation, may contribute to the formation of an abnormal permeability barrier and may...

  11. Calcium hydroxide isotope effect in calcium isotope enrichment by ion exchange

    International Nuclear Information System (INIS)

    Jepson, B.E.; Shockey, G.C.


    The enrichment of calcium isotopes has been observed in ion-exchange chromatography with an aqueous phase of calcium hydroxide and a solid phase of sulfonic acid resin. The band front was exceedingly sharp as a result of the acid-base reaction occuring at the front of the band. Single-stage separation coefficients were found to be epsilon( 44 Ca/ 40 Ca) = 11 x 10 -4 and epsilon( 48 Ca/ 40 Ca) = 18 x 10 -4 . The maximum column separation factors achieved were 1.05 for calcium-44 and 1.09 for calcium-48 with the heavy isotopes enriching in the fluid phase. The calcium isotope effect between fully hydrated aqueous calcium ions and undissociated aqueous calcium hydroxide was estimated. For the calcium-44/40 isotope pair the separation coefficient was 13 x 10 -4 . 20 references, 2 figures

  12. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor

    Directory of Open Access Journals (Sweden)

    Chen Zhang


    Full Text Available Ca2+-sensing receptors (CaSRs play a central role in regulating extracellular calcium concentration ([Ca2+]o homeostasis and many (pathophysiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR’s cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.

  13. Expression profiling of colorectal cancer cells reveals inhibition of DNA replication licensing by extracellular calcium. (United States)

    Aggarwal, Abhishek; Schulz, Herbert; Manhardt, Teresa; Bilban, Martin; Thakker, Rajesh V; Kallay, Enikö


    Colorectal cancer is one of the most common cancers in industrialised societies. Epidemiological studies, animal experiments, and randomized clinical trials have shown that dietary factors can influence all stages of colorectal carcinogenesis, from initiation through promotion to progression. Calcium is one of the factors with a chemoprophylactic effect in colorectal cancer. The aim of this study was to understand the molecular mechanisms of the anti-tumorigenic effects of extracellular calcium ([Ca 2+ ] o ) in colon cancer cells. Gene expression microarray analysis of colon cancer cells treated for 1, 4, and 24h with 2mM [Ca 2+ ] o identified significant changes in expression of 1571 probe sets (ANOVA, pcalcium-sensing receptor (CaSR), a G protein-coupled receptor is a mediator involved in this process. To test whether these results were physiologically relevant, we fed mice with a standard diet containing low (0.04%), intermediate (0.1%), or high (0.9%) levels of dietary calcium. The main molecules regulating replication licensing were inhibited also in vivo, in the colon of mice fed high calcium diet. We show that among the mechanisms behind the chemopreventive effect of [Ca 2+ ] o is inhibition of replication licensing, a process often deregulated in neoplastic transformation. Our data suggest that dietary calcium is effective in preventing replicative stress, one of the main drivers of cancer and this process is mediated by the calcium-sensing receptor. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase. (United States)

    Swainsbury, David J K; Zhou, Liang; Oldroyd, Giles E D; Bornemann, Stephen


    A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.

  15. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells. (United States)

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G


    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  16. Hydrolytic conversion of amorphous calcium phosphate into apatite accompanied by sustained calcium and orthophosphate ions release

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Xufeng, E-mail: [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 (China); BUAA Research Institute, Guangzhou 510530 (China); Research Institute of Beihang University in Shenzhen, Shenzhen 518057 (China); Chen, Siqian; Tian, Feng; Wang, Lizhen [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 (China); Feng, Qingling [State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Fan, Yubo, E-mail: [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 (China)


    The aim of this study is to investigate the calcium and orthophosphate ions release during the transformation of amorphous calcium phosphate (ACP) to hydroxyapatite (HA) in aqueous solution. The ACP is prepared by a wet chemical method and further immersed in the distilled water for various time points till 14 d. The release of calcium and orthophosphate ions is measured with calcium and phosphate colorimetric assay kits, respectively. The transition of ACP towards HA is detected by x-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FTIR). The results indicate that the morphological conversion of ACP to HA occurs within the first 9 h, whereas the calcium and orthophosphate ions releases last for over 7 d. Such sustained calcium and orthophosphate ions release is very useful for ACP as a candidate material for hard tissue regeneration. - Highlights: • ACP is prepared using a wet chemical method. • The conversion of crystal morphology and structure occurs mainly within the initial 9 h. • The calcium and orthophosphate ions release sustains over 14 d.

  17. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora


    calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration......, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  18. Diffusion of calcium and fluride ions in bovine enamel

    NARCIS (Netherlands)

    Flim, Gerrit Jan


    This thesis deals with the diffusion of calcium and fluoride ions in bovine enamel, Special attention was given to the mechanism of this diffusion, The experiments were carried out with radioactive labeled ions. The information obtained is relevant with respect to de- and remineralization processes

  19. Effects of extracellular calcium on viability and osteogenic differentiation of bone marrow stromal cells in vitro. (United States)

    Cheng, Shaowen; Wang, Wei; Lin, Zhongqin; Zhou, Ping; Zhang, Xiaolei; Zhang, Wei; Chen, Qingyu; Kou, Dongquan; Ying, Xiaozhou; Shen, Yue; Cheng, Xiaojie; Yu, Ziming; Peng, Lei; Lu, Chuanzhu


    Bone marrow stromal cells (BMSCs) have been extensively used for tissue engineering. However, the effect of Ca(2+) on the viability and osteogenic differentiation of BMSCs has yet to be evaluated. To determine the dose-dependent effect of Ca(2+) on viability and osteogenesis of BMSCs in vitro, BMSCs were cultured in calcium-free DMEM medium supplemented with various concentrations of Ca(2+) (0, 1, 2, 3, 4, and 5 mM) from calcium citrate. Cell viability was analyzed by MTT assay and osteogenic differentiation was evaluated by alkaline phosphatase (ALP) assay, Von Kossa staining, and real-time PCR. Ca(2+) stimulated BMSCs viability in a dose-dependent manner. At slightly higher concentrations (4 and 5 mM) in the culture, Ca(2+) significantly inhibited the activity of ALP on days 7 and 14 (P < 0.01 or P < 0.05), significantly suppressed collagen synthesis (P < 0.01 or P < 0.05), and significantly elevated calcium deposition (P < 0.01) and mRNA levels of osteocalcin (P < 0.01 or P < 0.05) and osteopontin (P < 0.01 or P < 0.05). Therefore, elevated concentrations of extracellular calcium may promote cell viability and late-stage osteogenic differentiation, but may suppress early-stage osteogenic differentiation in BMSCs.

  20. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc

    Directory of Open Access Journals (Sweden)

    MP Grant


    Full Text Available The cartilaginous endplates (CEPs are thin layers of hyaline cartilage found adjacent to intervertebral discs (IVDs. In addition to providing structural support, CEPs regulate nutrient and metabolic exchange in the disc. In IVD pathogenesis, CEP undergoes degeneration and calcification, compromising nutrient availability and disc cell metabolism. The mechanism(s underlying the biochemical changes of CEP in disc degeneration are currently unknown. Since calcification is often observed in later stages of IVD degeneration, we hypothesised that elevations in free calcium (Ca2+ impair CEP homeostasis. Indeed, our results demonstrated that the Ca2+ content was consistently higher in human CEP tissue with grade of disc degeneration. Increasing the levels of Ca2+ resulted in decreases in the secretion and accumulation of collagens type I, II and proteoglycan in cultured human CEP cells. Ca2+ exerted its effects on CEP matrix protein synthesis through activation of the extracellular calcium-sensing receptor (CaSR; however, aggrecan content was also affected independent of CaSR activation as increases in Ca2+ directly enhanced the activity of aggrecanases. Finally, supplementing Ca2+ in our IVD organ cultures was sufficient to induce degeneration and increase the mineralisation of CEP, and decrease the diffusion of glucose into the disc. Thus, any attempt to induce anabolic repair of the disc without addressing Ca2+ may be impaired, as the increased metabolic demand of IVD cells would be compromised by decreases in the permeability of the CEP.

  1. The role of calcium ions in cytological effects of hypogravity (United States)

    Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Palladina, T. A.; Tarasenko, V. A.

    Electron-cytochemical and biochemical methods made it possible to reveal certain differences in ATPase activity stimulation by calcium ions in root apex cells of pea seedlings and moss protonema Funaria hygrometrica grown under stationary and slow clinostatic (2 rev/min) conditions. It was showed that under clinostatic conditions in comparison with the control variant the ATPase activity decreases in plasmalemma. The protein content in the plasmalemma fraction was also twice as low under these conditions. The root apex cells of the pea seedlings grown under spaceflight conditions were found to contain high concentrations of membrane-bound calcium. The data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance and the system of active calcium ion transport through plasmalemma under hypogravity.

  2. The role of Rho-kinase and calcium ions in constriction triggered by ET-1. (United States)

    Wiciński, Michał; Szadujkis-Szadurska, Katarzyna; Węclewicz, Mateusz M; Malinowski, Bartosz; Matusiak, Grzegorz; Walczak, Maciej; Wódkiewicz, Eryk; Grześk, Grzegorz; Pawlak-Osińska, Katarzyna


    Endothelin-1 (ET-1) is one of the key factors regulating tension of smooth muscles in blood vessels. It is believed that ET-1 plays an important role in pathogenesis of hypertension, and cardiovascular diseases; therefore, research in order to limit ET-1-mediated action is still in progress. The main objective of this paper was to evaluate the role of Rho-kinase in the ET-1-induced constriction of arteries. The analysis also included significance of intra- and extracellular pool of calcium ions in constriction triggered by ET-1. The studies were performed on perfused Wistar rat tail arteries. Concentration response curve (CRC) was determined for ET-1 in the presence of increased concentrations of Rho-kinase inhibitor (Y-27632) and IP3-receptor antagonist (2APB), both in reference to constriction triggered by solely ET-1. Afterwards, the influence of calcium ions present in the perfusion fluid was evaluated in terms of the effect triggered by 2APB and occurring in arteries constricted by ET-1. ET-1, in concentration dependent manner, leads to increase in perfusion pressure. Y-27632 and 2APB lead to shift of the concentration response curve for ET-1 to the right with simultaneously lowered maximum effect. There was no difference in reaction of the artery constricted by ET-1 and treated with 2APB in solution containing calcium and in calcium-free solution. Vasoconstrictive action of endothelin is not significantly dependent on the inflow of extracellular calcium, but it is proportional to inflow of Ca 2+ related to activation of IP3 receptors and to Rho-kinase activity. Copyright © 2018. Published by Elsevier Inc.

  3. Extracellular calcium alters the effects of retinoic acid on DNA synthesis in cultured murine keratinocytes

    International Nuclear Information System (INIS)

    Tong, P.; Mayes, D.; Wheeler, L.


    The rate of proliferation of epidermal keratinocytes was manipulated by growing the cells in medium containing high or low concentrations of calcium. Keratinocytes cultured in high extracellular Ca ++ (1.4 mM and 2.8 mM) proliferated twice as fast as those grown in low Ca ++ medium (0.09 mM) as measured by incorporation of [ 3 H] thymidine into DNA. Exposure of high calcium keratinocytes to all-trans retinoic acid for 4 days caused a dose-related inhibition of DNA synthesis with an IC 50 of about 10 μM. In contrast, incubating low calcium keratinocytes with all-trans retinoic acid caused a dose-related stimulation of DNA synthesis with maximum increase of 278% over control at 10 μM. This increase was accompanied by increases in culture confluency with maximum increase of 109% in cell number of control at 10 μM. These results are of importance since they suggest Ca ++ may influence the effect of retinoids on keratinocytes

  4. Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells. (United States)

    Klíma, Petr; Laňková, Martina; Vandenbussche, Filip; Van Der Straeten, Dominique; Petrášek, Jan


    Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO 3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO 3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca 2+ ) as shown by comparison of transport assays in Ca 2+ -rich and Ca 2+ -free buffers and upon treatment with inhibitors of plasma membrane Ca 2+ -permeable channels Al 3+ and ruthenium red, both abolishing the effect of AgNO 3 . Confocal microscopy of Ca 2+ -sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca 2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca 2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca 2+ -permeable channels at the plasma membrane.

  5. Calcium carbonate formation on mica supported extracellular polymeric substance produced by Rhodococcus opacus

    Energy Technology Data Exchange (ETDEWEB)

    Szcześ, Aleksandra, E-mail: [Department of Physical Chemistry – Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin 20-031 (Poland); Czemierska, Magdalena; Jarosz-Wilkołazka, Anna [Department of Biochemistry, Maria Curie-Skłodowska University, Lublin 20-031 (Poland)


    Extracellular polymeric substance (EPS) extracted from Rhodococcus opacus bacterial strain was used as a matrix for calcium carbonate precipitation using the vapour diffusion method. The total exopolymer and water-soluble exopolymer fraction of different concentrations were spread on the mica surface by the spin-coating method. The obtained layers were characterized using the atomic force microscopy measurement and XPS analysis. The effects of polymer concentration, initial pH of calcium chloride solution and precipitation time on the obtained crystals properties were investigated. Raman spectroscopy and scanning electron microscopy were used to characterize the precipitated minerals. It was found that the type of precipitated CaCO{sub 3} polymorph and the crystal size depend on the kind of EPS fraction. The obtained results indicates that the water soluble fraction favours vaterite dissolution and calcite growth, whereas the total EPS stabilizes vaterite and this effect is stronger at basic pH. It seems to be due to different contents of the functional group of EPS fractions. - Highlights: • CaCO{sub 3} crystal size and polymorph can be controlled by EPS substance obtained from R. opacus. • The water soluble fraction favours vaterite dissolution and calcite growth. • The total EPS stabilizes vaterite. • This effect is stronger at basic pH.

  6. Calcium carbonate formation on mica supported extracellular polymeric substance produced by Rhodococcus opacus

    International Nuclear Information System (INIS)

    Szcześ, Aleksandra; Czemierska, Magdalena; Jarosz-Wilkołazka, Anna


    Extracellular polymeric substance (EPS) extracted from Rhodococcus opacus bacterial strain was used as a matrix for calcium carbonate precipitation using the vapour diffusion method. The total exopolymer and water-soluble exopolymer fraction of different concentrations were spread on the mica surface by the spin-coating method. The obtained layers were characterized using the atomic force microscopy measurement and XPS analysis. The effects of polymer concentration, initial pH of calcium chloride solution and precipitation time on the obtained crystals properties were investigated. Raman spectroscopy and scanning electron microscopy were used to characterize the precipitated minerals. It was found that the type of precipitated CaCO 3 polymorph and the crystal size depend on the kind of EPS fraction. The obtained results indicates that the water soluble fraction favours vaterite dissolution and calcite growth, whereas the total EPS stabilizes vaterite and this effect is stronger at basic pH. It seems to be due to different contents of the functional group of EPS fractions. - Highlights: • CaCO 3 crystal size and polymorph can be controlled by EPS substance obtained from R. opacus. • The water soluble fraction favours vaterite dissolution and calcite growth. • The total EPS stabilizes vaterite. • This effect is stronger at basic pH.

  7. Differential effect of extracellular calcium on the Na(+)-K+ pump activity in intact polymorphonuclear leucocytes and erythrocytes

    DEFF Research Database (Denmark)

    Petersen, R H; Knudsen, T; Johansen, Torben


    The effect of extracellular calcium on the Na(+)-K+ pump activity in human polymorphonuclear leucocytes and erythrocytes was studied and compared with the activity in mixed peritoneal leucocytes from rats. While there was maximal decrease in the pump activity (25-30%) of leucocytes from both rat ...

  8. Radiation-induced radical ions in calcium sulfite (United States)

    Bogushevich, S. E.


    We have used EPR to study the effect of γ radiation on calcium sulfite. We have observed and identified the radiation-induced radical ions SO 2 - (iso) with g = 2.0055 and SO 2 - (orth-1) with g1 = 2.0093, g2 = 2.0051, g3 = 2.0020, identical to the initial and thermally induced SO 2 - respectively, SO 3 - (iso) with g = 2.0031 and SO 3 - (axial) with g⊥ = 2.0040, g∥ = 2.0023, identical to mechanically induced SO 3 - . We have established the participation of radiation-induced radical ions SO 3 - in formation of post-radiation SO 2 - .

  9. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion (United States)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.


    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  10. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    Okumura, Minoru; Kitano, Yasushi


    The coprecipitation of alkali metal ions Li + , Na + , K + and Rb + with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na + which has approximately the same ionic radius as Ca 2+ . (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca 2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca 2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li + , Na + , K + and Rb + ) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li + , K + and Rb + ) into the aragonite. (author)

  11. Calcium ion binding to a soil fulvic acid using a Donnan Potential model

    International Nuclear Information System (INIS)

    Marinsky, J.A.


    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 x 10 -4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log β app ) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log β app =2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential correction term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log β=1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. (orig.)

  12. Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media. (United States)

    Gustavsson, J; Ginebra, M P; Engel, E; Planell, J


    Solution-mediated surface reactions occur for most calcium phosphate-based biomaterials and may influence cellular response. A reasonable extrapolation of such processes observed in vitro to in vivo performance requires a deep understanding of the underlying mechanisms. We therefore systematically investigated the nature of ion reactivity of calcium-deficient hydroxyapatite (CDHA) by exposing it for different periods of time to standard cell culture media of different chemical composition (DMEM and McCoy medium, with and without osteogenic supplements and serum proteins). Kinetic ion interaction studies of principal extracellular ions revealed non-linear sorption of Ca²⁺ (∼50% sorption) and K⁺ (∼8%) as well as acidification of all media during initial contact with CDHA (48h). Interestingly, inorganic phosphorus (P(i)) was sorbed from McCoy medium (∼50%) or when using osteogenic media containing β-glycerophosphate, but not from DMEM medium. Non-linear sorption data could be perfectly described by pseudo-first-order and pseudo-second-order sorption models. At longer contact time (21 days), and with frequent renewal of culture medium, sorption of Ca²⁺ remained constant throughout the experiment, while sorption of P(i) gradually decreased in McCoy medium. In great contrast, CDHA began to release P(i) slowly with time when using DMEM medium. Infrared spectra showed that CDHA exposed to culture media had a carbonated surface chemistry, suggesting that carbonate plays a key role in the ion reactivity of CDHA. Our data show that different compositions of the aqueous environment may provoke opposite ion reactivity of CDHA, and this must be carefully considered when evaluating the osteoinductive potential of the material. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Variations in Calcium and Alginate Ions Concentration in Relation to the Properties of Calcium Alginate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hamed Daemi


    Full Text Available Alginate belongs to a group of natural polymers called polysaccharides. They have carboxylic functional groups beside hydroxyls which are common in all polysaccharides. These materials show interesting properties due to theirfunctional groups. One of these properties is the ability of this polymer as a suitable carrier of protecting and transferring drugs and biomolecules. The particle sizes of these polymers are very important for their applications, so different techniques were used for preparation of these materials. In this way polymeric nanoparticles of calcium alginate which are excellent carriers in drug delivery systems were prepared by addition of calcium chloride solution to dilute solution of sodium alginate. Investigation of the size and distribution of nanoparticles were analyzed by SEM method. The concentration effects of both alginate and calcium ions on the size and distribution of  nanoparticles were studied in this research. Results showed that the size of nanoparticles obviously decreased with decreasing polymeric alginate concentration because of lower active sites in polymer chain. On the other hand, thesize and distribution of nanoparticles are significantly improved with increase of calcium cation concentrations. The mean particle size 40-70 nm and spherical shape are the main characteristics of the prepared nanoparticles.

  14. The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: implication for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yukan; Lu Qiaozhi; Ji Huijiao; Zhao Xiaoli; Zhang Ming [College of Life Science, ZheJiang University, Hangzhou 310058 (China); Pei Rui [XiJing Hospital, Fourth Military Medical University, Xi An 710032 (China); Zhou Guoshun [Huzhou Central Hospital, Huzhou, Zhejiang Province 313000 (China); Tang, Rui Kang, E-mail: [Department of Chemistry, College of Science, ZheJiang University, Hangzhou 310027 (China)


    The aim of this study is to demonstrate the effect of extracellular calcium ion (Ca{sup 2+}) and inorganic phosphate (Pi) concentrations on the growth and differentiation of bone-marrow-derived mesenchymal stem cells (MSCs), which is essential to understand the interaction between calcium phosphate ceramic (CPC) scaffolds and seeded cells during the construction of tissue-engineered bones. MSCs were separated from rabbits and cultured in media with different concentrations of Ca{sup 2+} and Pi supplements. Their proliferation, apoptosis, mineralization and osteogenic differentiation were determined by the MTT assay, TUNEL assay, Vonkossa stain and RT-PCR examination. A two-way ANOVA calculation with comparisons of estimated marginal means by LSD was used for statistical analysis. Results showed that the optimal extracellular Ca{sup 2+} and Pi concentrations for the cells to proliferate and differentiate were 1.8 mM and 0.09 mM, respectively, which are the concentrations supplied in many commonly used culture media such as DMEM and alpha-MEM. Cell proliferation and differentiation decreased significantly with greater or lower concentrations of the Pi supplement. Greater Pi concentrations also led to significant cell apoptosis. Greater Ca{sup 2+} concentrations did not change cell proliferation but significantly inhibited cell differentiation. In addition, greater Ca{sup 2+} concentrations could significantly enhance cell mineralization. In conclusion, extracellular Ca{sup 2+} and Pi significantly influence the growth and osteogenic differentiation of MSCs. It is important to take the cellular effect of Ca{sup 2+} and Pi into consideration when designing or constructing scaffolds for bone tissue engineering with CPC.

  15. Calcium isotope fractionation in ion-exchange chromatography

    International Nuclear Information System (INIS)

    Russell, W.A.; Papanastassiou, D.A.


    Significant fractionation of the isotopes of calcium has been observed during elution through short ion-exchange columns packed with Dowex 50W-X8 resin. A double isotopic tracer was used to provide correction for instrumental fractionation effects. The absolute 40 Ca/ 44 Ca ratio is determined by this method to 0.05% and provides a measure of the fractionation of all Ca isotopes. It is found that the lighter isotopes are preferentially retained by the resin, with variations in 40 Ca/ 44 Ca between the first and last fractions of up to 1.1%. An estimate of the separation factor between batch solute and resin gives epsilon = 2.1 x 10 -4 . Details of the chemical or physical mechanisms causing isotope fractionation of Li, Na, Ca, and other elements during ion-exchange chromatography are not yet clear

  16. [Ion channels that are sensitive to the extracellular concentration of protons: their structure, function, pharmacology and pathophysiology]. (United States)

    Mercado, F; Vega, R; Soto, E

    Acid sensing ion channels (ASIC) members of the ENaC degenerine channel family, have been shown to participate in various sensorial pathways including nociception, also they have been shown to participate in synaptic transmission, learning and memory processes and in the physiopathology of the ischemic stroke. The proton concentration in the organism is strictly regulated by distinct buffer systems. Drastic changes of pH are generated only by pathological conditions as is the ischemia; however, some physiological processes may produce local changes in the extracellular pH. Recently, a new family of proton receptors known as ASIC has been cloned. These are ionic channels inactivated at physiological pH (7.4) and activated with a pH fall (increase in H+ concentration). ASICs are permeable to sodium ions and in a lesser degree to calcium ions, activation of these channels leads to an increase in cell excitability. The ASICs are distributed widely in the central and peripheral nervous system, and in specialized epithelia. In the past few years they have become a focus of interest due to its role in nociception, taste perception, long term potentation and the physiopathology of ischemic stroke. In this review we address the most relevant molecular, physiological and pharmacological aspects of the ASICs, its participation in some pathological process, and the perspectives of basic and clinic investigation in this arising research field.

  17. Influence of extra-cellular and intra-cellular acting thiol oxidants on the 45calcium uptake by the islets of Langerhans of the rat

    International Nuclear Information System (INIS)

    Haegele, R.G.


    The glucose-stimulated calcium uptake by the islets of Langerhans is dependent on the intra-cellular GSH/GSSG ratios. The inhibition of calcium uptake is not the consequence of a direct oxidation of membrane-fixed thiol groups. In contrast, direct oxidation of extra cellular thiols leads to an increase in calcium uptake when intra-cellular oxidation is simultaneously prevented. Since this effect only occurs at high intra-cellular GSH/GSSG ratios it can be assumed that the redox state of extra-cellular thiols is dependent on the redox state of the intra-cellular GSH/GSSG ratios. These findings support the theory that the oxidation of extra-cellular thiols by thiol oxidants leads to an increase in calcium uptake and that the extent of uptake is higher, the more the redox state of the extra-cellular thiols tends towards the reduced state prior to oxidation. (orig./MG) [de

  18. Determination of calcium and magnesium in nuclear grade alumina by ion chromatography technique

    International Nuclear Information System (INIS)

    Hespanhol, E.C.B.; Pires, M.A.F.; Atalla, L.T.


    A simple method for solubilization of alumina and separation of magnesium and calcium from alumina matrix was developed by initial coprecipitation of those elements with iron(III) hydroxide. Calcium and magnesium were later separated from iron chloride anionic complex in a Dowex 1-X 10 anionic exchange resin. The ion chromatography tecnnique was employed for the analysis of calcium and magnesium. One hundred percent recovery for calcium and magnesium was obtained in their separation from alumina. A precision of 6% and 10% for magnesium and calcium, respectively, was obtained in alumina samples analysis which contain less than 0,02% of magnesium and less than 0,08% of calcium. (Author) [pt

  19. Thermodynamics of calcium-isotope-exchange reactions. 1. Exchange between isotopic calcium carbonates and aqueous calcium ions

    International Nuclear Information System (INIS)

    Zhang, R.S.; Nash, C.P.; Rock, P.A.


    This paper reports the authors results for the direct experimental determination of the equilibrium constant for the calcium-isotope-exchange reaction 40 CaCO 3 (s) + 44 CaCl 2 (aq) reversible 44 CaCO 2 (s) + 40 CaCl 2 (aq). The reaction was studied in electrochemical double cells without liquid junction of the type shown in eq 2. The experimental value of the equilibrium constant at 295 +/- 2 K is K = 1.08 +/- 0.02. The experimental value for K is compared with the values of K calculated for various model reactions according to the statistical thermodynamic theory of isotope effects. The isotopic solid carbonates were modeled according to both the Debye and Kieffer theories. No structured models of solvated isotopic aqueous calcium ions yield calculated equilibrium constants in agreement with their experimental results. This conclusion is in agreement with published molecular dynamics calculations which show that the aqueous solvation of Ca 2 =(aq) is essentially unstructured

  20. Calcium ions affect the hepatitis B virus core assembly

    International Nuclear Information System (INIS)

    Choi, Yongwook; Gyoo Park, Sung; Yoo, Jun-hi; Jung, Guhung


    Previous report showed that cytosolic Ca 2+ induced by hepatitis B virus X protein (HBx) promotes HBV replication. In this study, in vitro experiments showed that (i) HBV core assembly in vitro was promoted by Ca 2+ through the sucrose density gradient and the analytical ultracentrifuge analysis. Also (ii) transmission electron microscope analysis demonstrated these assembled HBV core particles were the capsids. Ex vivo experiments showed that the treatment of BAPTA-AM and cyclosporine A (CsA) reduced HBV capsids in the transfected HepG2 cells. In addition to that, the treatment of Thapsigargin (TG) increased HBV capsids in the transfected HepG2 cells. Furthermore, we investigated the increased HBV core assembly by HBx. The results show that the increased cytosolic calcium ions by HBx promote the HBV core assembly

  1. Characteristics of Solid-State Calcium Ion Sensors Based on Photocurable and Selfplasticising Polyacrylate Matrices

    Directory of Open Access Journals (Sweden)

    Lee Yook Heng


    Full Text Available New membrane materials based on cross-linked poly(n-butyl acrylate (nBA, have been used successfully as calcium ion-selective membranes. These membrane materials possess selfplasticising property and hence do not require plasticisers. The photocurability and good adhesion characteristics of these polymer matrices enable workable solid-state calcium ion sensors to be fabricated by simple photocure procedures employing the calcium ionophore ETH5234 and a lipophilic additive as ion sensing components. The calcium ion-selectivity of the sensors can be controlled by varying the chemical composition of the photocured  membrane. An optimum amount of the cross-linker 2,2-hexanedioldiacrylate (HDDA and the incorporation of n-heptyl acrylate (nHA led to improvement in the calcium ion-selectivity. The best calcium ion-selectivity was obtained from a copolymer membrane with composition: nBA = 74 wt-%, nHA = 20 wt-% and HDDA = 0.1 wt-%. The selectivity coefficients of calcium over major cations were: LogKCaPot,Na= -4.4,  LogKCaPot,K = -3.6, LogKCa,PotLi = -5.9, LogKCaPot,Mg= -4.4 with a Nernstian slope (29.1 ± 0.8 mV/decade under buffered conditions. This potentiometric performance is comparable to other solid-state calcium ion sensors with various plasticised polymer membranes.

  2. Na+ -K+ pump activity in rat peritoneal mast cells: inhibition by extracellular calcium

    DEFF Research Database (Denmark)

    Knudsen, Torben; Johansen, Torben


    1. Pure populations of rat peritoneal mast cells were used to study cellular potassium uptake. The radioactive potassium analogue, 86rubidium, was used as a tracer for potassium for measurements of the activity of the cellular potassium uptake process. 2. The ouabain-sensitive and the ouabain......-resistant potassium (86rubidium) uptake of mast cells incubated in the presence of calcium, 1 mmol l-1, were very low, 52 and 147 pmol per 10(6) cells min-1. 3. Calcium-deprivation of the cells uncovered a large capacity ouabain-sensitive potassium (86rubidium) uptake mechanism. The activity of the uptake mechanism...... was decreased by reintroduction of calcium into the cell suspension, and it was dependent on cellular energy metabolism, temperature and pH. 4. The potassium (86rubidium) uptake of mast cells incubated in a calcium-free medium occurs through an active and ouabain-sensitive mechanism that has the nature...

  3. Tight junction regulates epidermal calcium ion gradient and differentiation

    International Nuclear Information System (INIS)

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki


    Research highlights: → We disrupted epidermal tight junction barrier in reconstructed epidermis. → It altered Ca 2+ distribution and consequentially differentiation state as well. → Tight junction should affect epidermal homeostasis by maintaining Ca 2+ gradient. -- Abstract: It is well known that calcium ions (Ca 2+ ) induce keratinocyte differentiation. Ca 2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca 2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca 2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca 2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca 2+ gradient.

  4. The co-effect of collagen and magnesium ions on calcium carbonate biomineralization

    International Nuclear Information System (INIS)

    Jiao Yunfeng; Feng Qingling; Li Xiaoming


    The process of calcium carbonate biomineralization in the solution containing collagen and magnesium ions was studied in this paper. The results were characterized by using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect rules were obtained by the cooperation of collagen and magnesium ions in different concentration. The experiment results showed that in the presence of both collagen and magnesium ions, aragonite and vaterite were precipitated at low Mg/Ca ion concentration ratio, while only aragonite with regular spherical morphology was precipitated at high Mg/Ca ion concentration ratio. It indicated that collagen has a promotional effect on magnesium ions in controlling the polymorph of calcium carbonate crystal. A much wider range of calcium carbonate morphologies was observed in the presence of both collagen and magnesium ions. The experiments suggested that collagen acts in combination with magnesium ions to inhibit calcite crystal growth, while favoring the formation of aragonite crystals

  5. Effects of extracellular zinc ion on the rate of oxygen consumption of ...

    African Journals Online (AJOL)

    The inhibitory effect of extracellular zinc ion on the rate of oxygen consumption of rat brain mitochondria pre-incubated in 1.0 mM Ca2+EDTA were determined. There was a significant increase [P<0.01] in the rate of oxygen consumption in the rat brain mitochondria pre-incubated in 1.0 mM. Ca2+EDTA in a succinate ...

  6. Ion Implantation of Calcium and Zinc in Magnesium for Biodegradable Implant Applications

    Directory of Open Access Journals (Sweden)

    Sahadev Somasundaram


    Full Text Available In this study, magnesium was implanted with calcium-ion and zinc-ion at fluences of 1015, 1016, and 1017 ion·cm−2, and its in vitro degradation behaviour was evaluated using electrochemical techniques in simulated body fluid (SBF. Rutherford backscattering spectrometry (RBS revealed that the implanted ions formed layers within the passive magnesium-oxide/hydroxide layers. Electrochemical impedance spectroscopy (EIS results demonstrated that calcium-ion implantation at a fluence of 1015 ions·cm−2 increased the polarisation resistance by 24%, but higher fluences showed no appreciable improvement. In the case of zinc-ion implantation, increase in the fluence decreased the polarisation resistance. A fluence of 1017 ion·cm−2 decreased the polarisation resistance by 65%, and fluences of 1015 and 1016 showed only marginal effect. Similarly, potentiodynamic polarisation results also suggested that low fluence of calcium-ion decreased the degradation rate by 38% and high fluence of zinc-ion increased the degradation rate by 61%. All the post-polarized ion-implanted samples and the bare metal revealed phosphate and carbonate formation. However, the improved degradative behaviour in calcium-ion implanted samples can be due to a relatively better passivation, whereas the reduction in degradation resistance in zinc-ion implanted samples can be attributed to the micro-galvanic effect.

  7. Cell adhesion control by ion implantation into extra-cellular matrix

    International Nuclear Information System (INIS)

    Suzuki, Yoshiaki; Kusakabe, Masahiro; Kaibara, Makoto; Iwaki, Masaya; Sasabe, Hiroyuki; Nishisaka, Tsuyoshi


    Cell adhesion control of polymer surfaces by ion implantation into polymers and extra-cellular matrix has been studied by means of in vitro adhesion measurements of the carcinoma of the cervix (HeLa cell). The specimens used were polystyrene (PS), oxygen plasma treated polystyrene (PS-O), extra-cellular matrix (Collagen: Type I) coated polystyrene (PS-C), and gelatin coated polystyrene (PS-G). Ne + , Na + , and Ar + implantations were performed with a fluence of 1x10 15 ions/cm 2 at energies of 50, 100 and 150 keV. The chemical and physical structures of ion implanted specimens have been investigated by Fourier transform infrared spectroscopy (FT-IR-ATR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Ion implanted PS demonstrated a dramatic improvement of adhesion of HeLa cell. HeLa cell adhered only to ion implanted circular domains of a diameter about 0.1 mm on PS. By contrast, ion implanted PS-C, PS-G and PS-O domains inhibited the cell adhesion. These phenomena were observed on Ne + , Na + , and Ar + implanted specimens at energies of 50, 100, and 150 keV. Ion implantation broke the original chemical bonds to form new radicals such as =C=O, condensed rings, C-C, C-O and OH radical. Ion implanted PS had a large amount of new radicals compared with that of PS-C, PS-G and PS-O. Ion implantation broke NH and NH 3 bonds originating from amino acid in PS-C and PS-G. OH and =C=O caused by oxygen treatment in PS-O were also destroyed by ion implantation. It is concluded that cell adhesion to ion implanted PS was caused by carbon structure and new radicals induced by ion implantation. The inhibition of HeLa cell adhesion on PS-C, PS-G and PS-O was caused by the destruction of cell adhesion properties of amino acid, OH and =C=O by radiation effects. ((orig.))

  8. Synthesis of calcium silicates by Pechini method and exchanging ions of sodium alginate-calcium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Garay, K.A.; Martinez-Luevanos, A.; Cruz-Ortiz, B.R.; Garcia-Cerda, L.A.; Lopez-Badillo, C.M.


    Calcium silicates samples were synthesized using tetraethyl orthosilicate (TEOS) and by Pechini methodology assisted with ion-exchange of sodium alginate, followed by a heat treatment of 800°C by two hours. A, B and C samples were obtained using 1.7×10−3M, 3.4×10−3M and 5.1×10−3M of TEOS, respectively, and without heat treatment; these samples were characterized by thermogravimetric analysis (TGA) and infrared spectroscopy with attenuated total reflectance (FTIR-ATR). Furthermore, samples A800, B800 and C800 obtained using a heat treatment of 800° by two hours were characterized by FTIR-ATR, absorption technique (BET), X-ray diffraction (XRD) and by scanning electron microscopy. The XRD patterns indicate that sample A800 contains olivine (Ca2SiO4) in orthorhombic phase and wollastonite-2M (CaSiO3); sample B800 showed the earlier phases and quartz (SiO2), whereas sample C800 contains wollastonite phases and larnite-2M (Ca2SiO4). (Author)

  9. Analysis of the effects of cerium on calcium ion in the protoplasts of ...

    African Journals Online (AJOL)



    Sep 12, 2011 ... African Journal of Biotechnology Vol. 10(52), pp. ... Paper. Analysis of the effects of cerium on calcium ion in the .... plasma membrane (Zeng et al., 2003). Recently .... cerium on vegetable growth of wheat (Triticum aestivum L.).

  10. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia (United States)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  11. Adsorption efficiencies of calcium (II ion and iron (II ion on activated carbon obtained from pericarp of rubber fruit

    Directory of Open Access Journals (Sweden)

    Orawan Sirichote


    Full Text Available Determination of adsorption efficiencies of activated carbon from pericarp of rubber fruit for calcium (II ion and iron (II ion has been performed by flowing the solutions of these ions through a column of activated carbon. The weights of activated carbon in 500 mL buret column (diameter 3.2 cm for flowing calcium (II ion and iron (II ion solutions were 15 g and 10 g, respectively. The initial concentration of calcium ion was prepared to be about eight times more diluted than the true concentration found in the groundwater from the lower part of southern Thailand. Calcium (II ion concentrations were analysed by EDTA titration and its initial concentration was found to be 23.55 ppm. With a flow rate of 26 mL/min, the adsorption efficiency was 11.4 % with passed through volume 4.75 L. Iron (II ion concentrations were analysed by spectrophotometric method; its initial concentration was found to be 1.5565 ppm. At a flow rate of 22 mL/min, the adsorption efficiency was 0.42 % with passed through volume of 34.0 L.

  12. Extracellular calcium controls the expression of two different forms of ripple-like hippocampal oscillations. (United States)

    Aivar, Paloma; Valero, Manuel; Bellistri, Elisa; Menendez de la Prida, Liset


    Hippocampal high-frequency oscillations (HFOs) are prominent in physiological and pathological conditions. During physiological ripples (100-200 Hz), few pyramidal cells fire together coordinated by rhythmic inhibitory potentials. In the epileptic hippocampus, fast ripples (>200 Hz) reflect population spikes (PSs) from clusters of bursting cells, but HFOs in the ripple and the fast ripple range are vastly intermixed. What is the meaning of this frequency range? What determines the expression of different HFOs? Here, we used different concentrations of Ca(2+) in a physiological range (1-3 mM) to record local field potentials and single cells in hippocampal slices from normal rats. Surprisingly, we found that this sole manipulation results in the emergence of two forms of HFOs reminiscent of ripples and fast ripples recorded in vivo from normal and epileptic rats, respectively. We scrutinized the cellular correlates and mechanisms underlying the emergence of these two forms of HFOs by combining multisite, single-cell and paired-cell recordings in slices prepared from a rat reporter line that facilitates identification of GABAergic cells. We found a major effect of extracellular Ca(2+) in modulating intrinsic excitability and disynaptic inhibition, two critical factors shaping network dynamics. Moreover, locally modulating the extracellular Ca(2+) concentration in an in vivo environment had a similar effect on disynaptic inhibition, pyramidal cell excitability, and ripple dynamics. Therefore, the HFO frequency band reflects a range of firing dynamics of hippocampal networks.

  13. Diverse roles of extracellular calcium-sensing receptor in the central nervous system

    DEFF Research Database (Denmark)

    Bandyopadhyay, Sanghamitra; Tfelt-Hansen, Jacob; Chattopadhyay, Naibedya


    The G-protein-coupled calcium-sensing receptor (CaSR), upon activation by Ca(2+) or other physiologically relevant polycationic molecules, performs diverse functions in the brain. The CaSR is widely expressed in the central nervous system (CNS) and is characterized by a robust increase in its...... to astrocytic or neuronal lineages. In adult CNS, CaSR has broad relevance in maintaining local ionic homeostasis. CaSR shares an evolutionary relationship with the metabotropic glutamate receptor and forms heteromeric complexes with the type B-aminobutyric acid receptor subunits that affects its cell surface...

  14. Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism. (United States)

    Campion, Katherine L; McCormick, Wanda D; Warwicker, Jim; Khayat, Mohd Ezuan Bin; Atkinson-Dell, Rebecca; Steward, Martin C; Delbridge, Leigh W; Mun, Hee-Chang; Conigrave, Arthur D; Ward, Donald T


    The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pHo) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pHo can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)i) mobilization, whereas raising pHo to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)o). Similar pHo effects were observed for Ca(2+)o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)i mobilization. Intracellular pH was unaffected by acute 0.4-unit pHo changes, and the presence of physiologic albumin concentrations failed to attenuate the pHo-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pHo sensitivity. Finally, pathophysiologic pHo elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pHo changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo. Copyright © 2015 by the American Society of

  15. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels. (United States)

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik


    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. © IMechE 2015.

  16. Effect of Calcium Ions on the Disintegration of Enteric-Coated Solid Dosage Forms. (United States)

    Al-Gousous, Jozef; Langguth, Peter


    To investigate the effect of calcium ions on the disintegration of enteric-coated dosage forms, disintegration testing was performed on enteric-coated aspirin tablets in the presence and absence of calcium in the test media. The results show that the presence of calcium ions retards the disintegration of enteric-coated dosage forms. This finding, which has not been reported in scientific literature, sheds light on the importance of conducting well-designed detailed investigations into the potential of calcium from dietary sources, calcium supplements, antacids, and/or phosphate binders affecting the absorption of drugs formulated into enteric-coated dosage forms. Moreover, it shows the necessity to investigate the potential of the occurrence of additional nutrient-excipient interactions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Albumin, in the Presence of Calcium, Elicits a Massive Increase in Extracellular Bordetella Adenylate Cyclase Toxin. (United States)

    Gonyar, Laura A; Gray, Mary C; Christianson, Gregory J; Mehrad, Borna; Hewlett, Erik L


    Pertussis (whooping cough), caused by Bordetella pertussis , is resurging in the United States and worldwide. Adenylate cyclase toxin (ACT) is a critical factor in establishing infection with B. pertussis and acts by specifically inhibiting the response of myeloid leukocytes to the pathogen. We report here that serum components, as discovered during growth in fetal bovine serum (FBS), elicit a robust increase in the amount of ACT, and ≥90% of this ACT is localized to the supernatant, unlike growth without FBS, in which ≥90% is associated with the bacterium. We have found that albumin, in the presence of physiological concentrations of calcium, acts specifically to enhance the amount of ACT and its localization to the supernatant. Respiratory secretions, which contain albumin, promote an increase in amount and localization of active ACT that is comparable to that elicited by serum and albumin. The response to albumin is not mediated through regulation of ACT at the transcriptional level or activation of the Bvg two-component system. As further illustration of the specificity of this phenomenon, serum collected from mice that lack albumin does not stimulate an increase in ACT. These data, demonstrating that albumin and calcium act synergistically in the host environment to increase production and release of ACT, strongly suggest that this phenomenon reflects a novel host-pathogen interaction that is central to infection with B. pertussis and other Bordetella species. Copyright © 2017 American Society for Microbiology.

  18. Sequential binding of calcium ions to the B-repeat domain of SdrD from Staphylococcus aureus. (United States)

    Roman, Andrei Yu; Devred, François; Lobatchov, Vladimir M; Makarov, Alexander A; Peyrot, Vincent; Kubatiev, Aslan A; Tsvetkov, Philipp O


    Biofilms of live bacteria forming on medical devices and implants contribute significantly to bacterial blood dissemination and to the spread of nosocomial infections. Cell surface SdrD protein plays a key role in the attachment of Staphylococcus aureus to the extracellular matrix (ECM) and in the formation of biofilm. SdrD binds calcium ions using its B1-B5 region bearing EF-hand Ca-binding sites, leading to conformational changes in the structure of SdrD. This alters the distance between the bacterial surface and the ECM-interacting domain of SdrD in a spring-like fashion, participating in bacterial attachment. In this study we investigated calcium binding to EF-hand sites of SdrD using isothermal titration calorimetry and determined the impact of this process on SdrD's thermodynamic stability. This allowed us to propose a model of B1-B5 reorganization upon binding of calcium and to get new insight into the molecular mechanism of SdrD's action.

  19. Release of ATP from Marginal Cells in the Cochlea of Neonatal Rats Can Be Induced by Changes in Extracellular and Intracellular Ion Concentrations (United States)

    Peng, Yating; Chen, Jie; He, Shan; Yang, Jun; Wu, Hao


    Background Adenosine triphosphate (ATP) plays an important role in the cochlea. However, the source of ATP and the mechanism by which it is released remain unclear. This study investigates the presence and release mechanism of ATP in vitro cultured marginal cells isolated from the stria vascularis of the cochlea in neonatal rats. Methods Sprague-Dawley rats aged 1–3 days old were used for isolation, in vitro culture, and purification of marginal cells. Cultured marginal cells were verified by flow cytometry. Vesicles containing ATP in these cells were identified by fluorescence staining. The bioluminescence assay was used for determination of ATP concentration in the extracellular fluid released by marginal cells. Assays for ATP concentration were performed when the ATP metabolism of cells was influenced, and ionic concentrations in intracellular and extracellular fluid were found to change. Results Evaluation of cultured marginal cells with flow cytometry revealed the percentage of fluorescently-labeled cells as 92.9% and 81.9%, for cytokeratin and vimentin, respectively. Quinacrine staining under fluorescence microscopy revealed numerous green, star-like spots in the cytoplasm of these cells. The release of ATP from marginal cells was influenced by changes in the concentration of intracellular and extracellular ions, namely extracellular K+ and intra- and extracellular Ca2+. Furthermore, changes in the concentration of intracellular Ca2+ induced by the inhibition of the phospholipase signaling pathway also influence the release of ATP from marginal cells. Conclusion We confirmed the presence and release of ATP from marginal cells of the stria vascularis. This is the first study to demonstrate that the release of ATP from such cells is associated with the state of the calcium pump, K+ channel, and activity of enzymes related to the phosphoinositide signaling pathway, such as adenylate cyclase, phospholipase C, and phospholipase A2. PMID:23071731

  20. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. (United States)

    Sand, Wolfgang; Gehrke, Tilman


    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  1. Studies on Pu(IV)/(III)-oxalate precipitation from nitric acid containing high concentration of calcium and fluoride ions

    International Nuclear Information System (INIS)

    Kalsi, P.K.; Pawar, S.M.; Ghadse, D.R.; Joshi, A.R.; Ramakrishna, V.V.; Vaidya, V.N.; Venugopal, V.


    Plutonium (IV)/(III) oxalate precipitation from nitric acid solution, containing large amount of calcium and fluoride ions was investigated. It was observed that direct precipitation of Pu (IV) oxalate from nitric acid containing large amount of calcium and fluoride ions did not give good decontamination of Pu from calcium and fluoride impurities. However, incorporation of hydroxide precipitation using ammonium hydroxide prior to Pu (IV) oxalate precipitation results into PuO 2 with much less calcium and fluoride impurities. Whereas, good decontamination from calcium and fluoride impurities could be obtained by employing Pu (III) oxalate precipitation directly from nitric acid containing large amount of calcium and fluoride ions. A method was also developed to recover Pu from the oxalate waste containing calcium and fluoride ions. (author)

  2. Calcium Sensing by Recoverin: Effect of Protein Conformation on Ion Affinity. (United States)

    Timr, Štěpán; Kadlec, Jan; Srb, Pavel; Ollila, O H Samuli; Jungwirth, Pavel


    The detailed functional mechanism of recoverin, which acts as a myristoyl switch at the rod outer-segment disk membrane, is elucidated by direct and replica-exchange molecular dynamics. In accord with NMR structural evidence and calcium binding assays, simulations point to the key role of enhanced calcium binding to the EF3 loop of the semiopen state of recoverin as compared to the closed state. This 2-4-order decrease in calcium dissociation constant stabilizes the semiopen state in response to the increase of cytosolic calcium concentration in the vicinity of recoverin. A second calcium ion then binds to the EF2 loop and, consequently, the structure of the protein changes from the semiopen to the open state. The latter has the myristoyl chain extruded to the cytosol, ready to act as a membrane anchor of recoverin.

  3. Selectivity coefficients of ion-selective magnesium electrodes used for simultaneous determination of magnesium and calcium ions. (United States)

    Maj-Zurawska, Magdalena; Lewenstam, Andrzej


    Membrane ion-selective magnesium electrodes are commonly used to determine ionized magnesium concentration in blood serum and intracellular fluid by potentiometric clinical analyzers. The selectivity of these electrodes against calcium ion is typically insufficient to avoid calcium interference in blood serum analysis. For this reason the selectivity coefficient for calcium ion has to be studied to make possible any mathematical corrections for calcium ion influence. Existing methods relate to the thermodynamic concept of ISE response which suggest a single constant value of the selectivity coefficient and slope that are stable over the concentration ranges of calcium and magnesium ions in the samples. Unfortunately, this rarely happens, and we rather observe dependences on solution and membrane composition, readout time, matrices (anticoagulant, vial coats) that justify usage of apparent selectivities and slopes. To get the practical insight into the response of magnesium ion-selective electrodes a novel method for estimating the selectivity coefficients and the slope of the electrode characteristics is proposed. This method is an effective starting point for selecting electrodes and designing transient signal software in a potentiometric clinical analyzer. The method allows obtaining the ionized magnesium concentration in blood serum with minimal possible error by addressing the assessed targets, i.e. apparent selectivity and slope. The method is based on computer simulation and on the Nicolsky-Eisenman equation. Usually only a few iterations are needed to obtain stable congruent results. The method presented is particularly useful in conditions where is not possible to obtain calibration curve, which is typical for clinical analyzer where at most three point calibration is performed. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Calcium (United States)

    ... You can get decent amounts of calcium from baked beans, navy beans, white beans, and others. Canned fish. You're in luck if you like sardines and canned salmon with bones. Almond milk. Working Calcium Into Your ...

  5. Immobilization of calcium and phosphate ions improves the osteoconductivity of titanium implants

    International Nuclear Information System (INIS)

    Sunarso; Toita, Riki; Tsuru, Kanji; Ishikawa, Kunio


    In this work, to elevate weak osteoconductivity of titanium (Ti) implant, we prepared a Ti implant having both calcium and phosphate ions on its surface. To modify calcium and phosphate ions onto Ti, phosphate ions were first immobilized by treating the Ti with a NaH 2 PO 4 solution, followed by CaCl 2 treatment to immobilize calcium ions, which created the calcium and phosphate ions-modified Ti (Ca-P-Ti). X-ray photoelectron spectroscopy and thin-layer X-ray diffraction measurement confirmed that both phosphate and calcium ions were co-immobilized onto the Ti surface on the molecular level. Three-hour after seeding MC3T3-E1 murine pre-osteoblast cells on substrates, cell number on Ca-P-Ti was much larger than that of Ti and phosphate-modified Ti (P-Ti), but was similar to that of calcium-modified Ti (Ca-Ti). Also, MC3T3-E1 cells on Ca-P-Ti expressed larger amount of vinculin, a focal adhesion protein, than those on other substrates, probably resulting in larger cell size as well as greater cell proliferation on Ca-P-Ti than those on other substrates. Alkaline phosphatase activity of cells on Ca-P-Ti was greater than those on Ti and P-Ti, but was almost comparable to that of Ca-Ti. Moreover, the largest amount of bone-like nodule formation was observed on Ca-P-Ti. These results provide evidence that calcium and phosphate ions-co-immobilization onto Ti increased the osteoconductivity of Ti by stimulating the responses of pre-osteoblast cells. This simple modification would be promising technique for bone tissue implant including dental and orthopedic implants. - Highlights: • Phosphate and calcium ions have been successfully co-immobilize on Ti surface. • Co-immobilization of Ca and phosphate ions (Ca-P-Ti) did not alter the original surface morphology. • Ca-P-Ti significantly improved initial MC3T3-E1 cell adhesion. • Ca-P-Ti demonstrated remarkable cell proliferation, differentiation and mineralization. • Overall, Ca-P-Ti would be a promising bone

  6. Calcium ion binding properties and the effect of phosphorylation on the intrinsically disordered Starmaker protein. (United States)

    Wojtas, Magdalena; Hołubowicz, Rafał; Poznar, Monika; Maciejewska, Marta; Ożyhar, Andrzej; Dobryszycki, Piotr


    Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 μM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 μM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins.

  7. Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions. (United States)

    Son, Donghee; Park, Sung Young; Kim, Byeongju; Koh, Jun Tae; Kim, Tae Hyun; An, Sangmin; Jang, Doyoung; Kim, Gyu Tae; Jhe, Wonho; Hong, Seunghun


    We developed a nanoneedle transistor-based sensor (NTS) for the selective detection of calcium ions inside a living cell. In this work, a single-walled carbon nanotube-based field effect transistor (swCNT-FET) was first fabricated at the end of a glass nanopipette and functionalized with Fluo-4-AM probe dye. The selective binding of calcium ions onto the dye molecules altered the charge state of the dye molecules, resulting in the change of the source-drain current of the swCNT-FET as well as the fluorescence intensity from the dye. We demonstrated the electrical and fluorescence detection of the concentration change of intracellular calcium ions inside a HeLa cell using the NTS.

  8. Uptake of CrO42- ions by Fe-treated tri-calcium phosphate

    International Nuclear Information System (INIS)

    Serrano G, J.; Ramirez S, J. L.; Bonifacio M, J.; Granados C, F.; Badillo A, V. E.


    CrO 4 2- ion adsorption of Fe-treated tri-calcium phosphate was studied by batch experiments as a function of contact time, initial concentration of metal ion and temperature. Adsorption results showed that at ph 5.5 and 1.0 x 10 -4 M chromium concentration the adsorption capacity of Fe-treated tri-calcium phosphate for CrO 4 2- ions was 7.10 x 10 -3 mmol/g. Chromium adsorption data on Fe-treated tri-calcium phosphate at various initial concentration fitted the Freundlich isotherm. By temperature studies the thermodynamic parameters ΔH 0 , ΔG 0 and ΔS 0 were estimated and the obtained results showed that the adsorption reaction was endothermic and spontaneous. (Author)

  9. Investigation into the role of NaOH and calcium ions in the synthesis of calcium phosphate nanoshells

    Directory of Open Access Journals (Sweden)

    C. H. Yeo


    Full Text Available Calcium phosphate (CaP nanoshells were prepared using negatively charged liposomes (1,2-dioleoyl-sn-glycero-3-phosphate sodium salt (DOPA as a template by base titration synthesis at various concentrations of NaOH and calcium ions. The elemental composition, morphology, particle size, particle size distribution and zeta potential of the products were determined via various characterisation techniques, such as energy-dispersive X-ray spectrometry (EDX, transmission electron microscopy (TEM, dynamic light scattering (DLS, laser Doppler velocimetry (LDV and Fourier transform infrared spectroscopy (FTIR. The best results showed that stable spherical CaP nanoshells with a mean particle size of 197.5 ± 5.8 nm and a zeta potential of -34.5 ± 0.6 mV were successfully formed when 0.100 M sodium hydroxide (NaOH and 0.100 M calcium ions were used. Moreover, an optimal pH of 10.52 and a final Ca/P molar ratio of 0.97 were achieved under these conditions.

  10. The structure of the stable negative ion of calcium

    International Nuclear Information System (INIS)

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.


    The structure of the Ca/sup /minus// ion has been determined using a crossed laser-ion beams apparatus. The photoelectron detachment spectrum shows that, contrary to earlier expectations, the Ca/sup /minus// ion is stably bound in the (4s 2 4p) 2 p state. The electron affinity of Ca was measured to be 0.043 +- 0.007 eV

  11. Calcium isotope effects in ion exchange electromigration and calcium isotope analysis by thermo-ionization mass spectrometry

    International Nuclear Information System (INIS)

    Fujii, Y.; Hoshi, J.; Iwamoto, H.; Okamoto, M.; Kakihana, H.


    Calcium ions were made to electromigrate along a cation exchange membrane. The abundance ratios of the calcium isotopes (Ca-40, 42, 43, 44, 48) in the migrated bands were measured by thermo-ionization mass spectrometry. The lighter isotopes were enriched in the front part of the migrated band. The increments in the isotope abundance ratios were found to be proportional to the mass difference of the isotopes. The observed epsilon-values per unit mass difference (epsilon/ΔM) were 1.26 x 10 -4 (at 20 0 C), 1.85 x 10 -4 (at 25 0 C) and 2.4 x 10 -4 (at 40 0 C). The mass spectrometry was improved by using a low temperature for the evaporation of CaI 2 . (orig.)

  12. Regulation of taurine transport at the blood-placental barrier by calcium ion, PKC activator and oxidative stress conditions

    Directory of Open Access Journals (Sweden)

    Lee Na-Young


    Full Text Available Abstract Background In the present study, we investigated the changes of uptake and efflux transport of taurine under various stress conditions using rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT cells, as in vitro blood-placental barrier (BPB model. Methods The transport of taurine in TR-TBT cells were characterized by cellular uptake study using radiolabeled taurine. The efflux of taurine was measured from the amount of radiolabeled taurine remaining in the cells after the uptake of radiolabeled taurine for 60 min. Results Taurine uptake was significantly decreased by phosphorylation of protein kinase C (PKC activator in TR-TBT cells. Also, calcium ion (Ca2+ was involved in taurine transport in TR-TBT cells. Taurine uptake was inhibited and efflux was enhanced under calcium free conditions in the cells. In addition, oxidative stress induced the change of taurine transport in TR-TBT cells, but the changes were different depending on the types of oxidative stress inducing agents. Tumor necrosis factor-α (TNF-α, lipopolysaccharide (LPS and diethyl maleate (DEM significantly increased taurine uptake, but H2O2 and nitric oxide (NO donor decreased taurine uptake in the cells. Taurine efflux was down-regulated by TNF-α in TR-TBT cells. Conclusion Taurine transport in TR-TBT cells were regulated diversely at extracellular Ca2+ level, PKC activator and oxidative stress conditions. It suggested that variable stresses affected the taurine supplies from maternal blood to fetus and taurine level of fetus.

  13. PDGF-mediated protection of SH-SY5Y cells against Tat toxin involves regulation of extracellular glutamate and intracellular calcium

    International Nuclear Information System (INIS)

    Zhu Xuhui; Yao Honghong; Peng Fuwang; Callen, Shannon; Buch, Shilpa


    The human immunodeficiency virus (HIV-1) protein Tat has been implicated in mediating neuronal apoptosis, one of the hallmark features of HIV-associated dementia (HAD). Mitigation of the toxic effects of Tat could thus be a potential mechanism for reducing HIV toxicity in the brain. In this study we demonstrated that Tat-induced neurotoxicity was abolished by NMDA antagonist-MK801, suggesting the role of glutamate in this process. Furthermore, we also found that pretreatment of SH-SY5Y cells with PDGF exerted protection against Tat toxicity by decreasing extracellular glutamate levels. We also demonstrated that extracellular calcium chelator EGTA was able to abolish PDGF-mediated neuroprotection, thereby underscoring the role of calcium signaling in PDGF-mediated neuroprotection. We also showed that Erk signaling pathway was critical for PDGF-mediated protection of cells. Additionally, blocking calcium entry with EGTA resulted in suppression of PDGF-induced Erk activation. These findings thus underscore the role of PDGF-mediated calcium signaling and Erk phosphorylation in the protection of cells against HIV Tat toxicity.

  14. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions

    International Nuclear Information System (INIS)

    Broeer, A.; Broeer, S.; Setiawan, I.; Lang, F.


    Full text: SN1 has recently been identified as one of the major glutamine transporters in hepatocytes and brain astrocytes. It appears to be the molecular correlate of the system N amino acid transporter. Two different transport mechanisms have been proposed for this transporter. Either an electroneutral mechanism, in which glutamine uptake is coupled to an exchange of 1Na + and 1H + , or an electrogenic mechanism coupled to the exchange of 2Na + against 1H + . This study was performed to solve the discrepancies and to investigate the reversibility of the transporter. When expressed in Xenopus laevis oocytes glutamine uptake activity increased strongly with increasing pH. In agreement with the pH-dependence we found that uptake of glutamine was accompanied by an alkalization of the cytosol, indicating that SN1 mediates Glutamine/H + -Antiport. Uptake of glutamine into oocytes was Na + -dependent. Analysis of the Na + -dependence of glutamine transport and Flux studies using 22 Na + indicated that two or more sodium ions were cotransported together with glutamine. However, at the same time intracellular Na + was exchanged against extracellular Na + . Taken together with the results of the pH-dependence it is proposed that SN1 mediates a Na + /Na + -exchange and a Na + /H + -exchange, both being coupled to the transport of glutamine. In agreement with this mechanism we found that acidic pH caused a reversal of the transporter. To investigate the source of the glutamine-induced inward currents, we compared inward currents generated by the 1Na + /glutamine cotransporter ATA1 with those generated by SN1. Currents induced by glutamine uptake in SN1 expressing oocytes were only a fraction of the currents induced by glutamine in ATA1 expressing oocytes, indicating that they were not generated by a stoichiometric uptake of ions. It is concluded that SN1 is tightly regulated by pH and intracellular Na + -ions and is capable of mediating glutamine uptake and release

  15. Insights into the activation mechanism of calcium ions on the sericite surface: A combined experimental and computational study (United States)

    Hu, Yuehua; He, Jianyong; Zhang, Chenhu; Zhang, Chenyang; Sun, Wei; Zhao, Dongbo; Chen, Pan; Han, Haisheng; Gao, Zhiyong; Liu, Runqing; Wang, Li


    The adsorption behaviors and the activation mechanism of calcium ions (Ca2+) on sericite surface have been investigated by Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR), Micro-flotation tests and First principle calculations. Zeta potential tests results show that the sericite surface potential increases due to the adsorption of calcium ions on the surface. Micro-flotation tests demonstrate that sericite recovery remarkably rise by 10% due to the calcium ions activation on sericite surface. However, the characteristic adsorption bands of calcium oleate do not appear in the FT-IR spectrum, suggesting that oleate ions just physically adsorb on the sericite surface. The first principle calculations based on the density functional theory (DFT) further reveals the microscopic adsorption mechanism of calcium ions on the sericite surface before and after hydration.

  16. Transport of calcium ions by Ehrlich ascites-tumour cells. (United States)

    Landry, Y; Lehninger, A L


    Ehrlich ascites-tumour cells accumulate Ca2+ when incubated aerobically with succinate, phosphate and rotenone, as revealed by isotopic and atomic-absorption measurements. Ca2+ does not stimulate oxygen consumption by carefully prepared Ehrlich cells, but des so when the cells are placed in a hypo-osmotic medium. Neither glutamate nor malate support Ca2+ uptake in 'intact' Ehrlich cells, nor does the endogenous NAD-linked respiration. Ca2+ uptake is completely dependent on mitochondrial energy-coupling mechansims. It was an unexpected finding that maximal Ca2+ uptake supported by succinate requires rotenone, which blocks oxidation of enogenous NAD-linked substrates. Phosphate functions as co-anion for entry of Ca2+. Ca2+ uptake is also supported by extra-cellular ATP; no other nucleoside 5'-di- or tri-phosphate was active. The accumulation of Ca2+ apparently takes place in the mitochondria, since oligomycin and atractyloside inhibit ATP-supported Ca2+ uptake. Glycolysis does not support Ca2+ uptake. Neither free mitochondria released from disrupted cells nor permeability-damaged cells capable of absorbing Trypan Blue were responsible for any large fraction of the total observed energy-coupled Ca2+ uptake. The observations reported also indicate that electron flow through energy-conserving site 1 promotes Ca2+ release from Ehrlich cells and that extra-cellular ATP increase permeability of the cell membrane, allowing both ATP and Ca2+ to enter the cells more readily. PMID:988829

  17. Three-dimensional structure of recombinant carboxypeptidase T from Thermoactinomyces vulgaris without calcium ions (United States)

    Akparov, V. Kh.; Timofeev, V. I.; Kuranova, I. P.


    Crystals of recombinant carboxypeptidase T (CPT) from Thermoactinomyces vulgaris were grown in a capillary by the counterdiffusion method in the absence of calcium ions. The three-dimensional structure of CPT was solved at 1.69-Å resolution using the X-ray diffraction data collected from the crystals of the enzyme on the SPring-8 synchrotron radiation facility and was then refined to Rfact = 16.903% and Rfree = 18.165%. The coordinates of the refined model were deposited in the Protein Data Bank (PDB ID: 3QNV). A comparison of this structure with the structure of wild-type CPT containing bound calcium ions, which was determined earlier, revealed a number of conformational changes both in the calcium-binding sites and the enzyme active site. Based on the results of this comparison, the possible factors responsible for the difference in the catalytic activity of the two forms of the enzyme are considered.

  18. Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation. (United States)

    Lu, Tao; Qian, Shi; Meng, Fanhao; Ning, Congqin; Liu, Xuanyong


    As a promising implantable material, poly ether ether ketone (PEEK) possesses similar elastic modulus to that of cortical bones yet suffers from bio-inertness and poor osteogenic properties, which limits its application as orthopedic implants. In this work, calcium is introduced onto PEEK surface using calcium plasma immersion ion implantation (Ca-PIII). The results obtained from scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirm the modified layer with varying contents of calcium are formed on PEEK surfaces. Water contact angle measurements reveal the increasing hydrophobicity of both Ca-PIII treated surfaces. In vitro cell adhesion, viability assay, alkaline phosphatase activity and collagen secretion analyses disclose improved the adhesion, proliferation, and osteo-differentiation of rat bone mesenchymal stem cells (bMSCs) on Ca-PIII treated surfaces. The obtained results indicate that PEEK surface with enhanced osteogenic activity can be produced by calcium incorporation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Analysis of the effects of cerium on calcium ion in the protoplasts of ...

    African Journals Online (AJOL)

    The laser-scanning confocal microscopy has become a routine technique and indispensable tool for cell biological studies. In this study, the probe Fluo-3 AM was used to research the instantaneous changes of calcium ion (Ca2+) in the protoplasts of Arabidopsis thaliana. The laser-scanning mode of confocal microscope is ...

  20. Contactless Stimulation and Control of Biomimetic Nanotubes by Calcium Ion Gradients. (United States)

    Kirejev, Vladimir; Ali Doosti, Baharan; Shaali, Mehrnaz; Jeffries, Gavin D M; Lobovkina, Tatsiana


    Membrane tubular structures are important communication pathways between cells and cellular compartments. Studying these structures in their native environment is challenging, due to the complexity of membranes and varying chemical conditions within and outside of the cells. This work demonstrates that a calcium ion gradient, applied to a synthetic lipid nanotube, triggers lipid flow directed toward the application site, resulting in the formation of a bulge aggregate. This bulge can be translated in a contactless manner by moving a calcium ion source along the lipid nanotube. Furthermore, entrapment of polystyrene nanobeads within the bulge does not tamper the bulge movement and allows transporting of the nanoparticle cargo along the lipid nanotube. In addition to the synthetic lipid nanotubes, the response of cell plasma membrane tethers to local calcium ion stimulation is investigated. The directed membrane transport in these tethers is observed, but with slower kinetics in comparison to the synthetic lipid nanotubes. The findings of this work demonstrate a novel and contactless mode of transport in lipid nanotubes, guided by local exposure to calcium ions. The observed lipid nanotube behavior can advance the current understanding of the cell membrane tubular structures, which are constantly reshaped during dynamic cellular processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Increased Binding of Calcium Ions at Positively Curved Phospholipid Membranes

    Czech Academy of Sciences Publication Activity Database

    Magarkar, Aniket; Jurkiewicz, Piotr; Allolio, Christoph; Hof, Martin; Jungwirth, Pavel


    Roč. 8, č. 2 (2017), s. 518-523 ISSN 1948-7185 R&D Projects: GA ČR(CZ) GA16-01074S; GA ČR(CZ) GAP207/12/0919 Grant - others:AV ČR(CZ) AP1102 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:61388963 ; RVO:61388955 Keywords : molecular dynamics * fluorescence spectroscopy * calcium * phospholipids Subject RIV: CF - Physical ; Theoretical Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Physical chemistry; Physical chemistry (UFCH-W) Impact factor: 9.353, year: 2016

  2. Li Storage of Calcium Niobates for Lithium Ion Batteries. (United States)

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won


    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material.

  3. Structure and function of ameloblastin as an extracellular matrix protein: adhesion, calcium binding, and CD63 interaction in human and mouse. (United States)

    Zhang, Xu; Diekwisch, Thomas G H; Luan, Xianghong


    The functional significance of extracellular matrix proteins in the life of vertebrates is underscored by a high level of sequence variability in tandem with a substantial degree of conservation in terms of cell-cell and cell-matrix adhesion interactions. Many extracellular matrix proteins feature multiple adhesion domains for successful attachment to substrates, such as integrin, CD63, and heparin. Here we have used homology and ab initio modeling algorithms to compare mouse ameloblastin (mAMBN) and human ameloblastin (hABMN) isoforms and to analyze their potential for cell adhesion and interaction with other matrix molecules as well as calcium binding. Sequence comparison between mAMBN and hAMBN revealed a 26-amino-acid deletion in mAMBN, corresponding to a helix-loop-helix frameshift. The human AMBN domain (174Q-201G), homologous to the mAMBN 157E-178I helix-loop-helix region, formed a helix-loop motif with an extended loop, suggesting a higher degree of flexibility of hAMBN compared with mAMBN, as confirmed by molecular dynamics simulation. Heparin-binding domains, CD63-interaction domains, and calcium-binding sites in both hAMBN and mAMBN support the concept of AMBN as an extracellular matrix protein. The high level of conservation between AMBN functional domains related to adhesion and differentiation was remarkable when compared with only 61% amino acid sequence homology. © 2011 Eur J Oral Sci.

  4. Effect of Ion Concentration Changes in the Limited Extracellular Spaces on Sarcolemmal Ion Transport and Ca2+ Turnover in a Model of Human Ventricular Cardiomyocyte

    Czech Academy of Sciences Publication Activity Database

    Hrabcová, D.; Pásek, Michal; Šimurda, J.; Christé, G.


    Roč. 14, č. 12 (2013), s. 24271-24292 E-ISSN 1422-0067 Grant - others:GA MZd(CZ) NT14301 Institutional support: RVO:61388998 Keywords : human heart * cardiac cell * t-tubule * intercellular clefts * calcium * ion transport * computer model Subject RIV: BO - Biophysics Impact factor: 2.339, year: 2013

  5. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. (United States)

    Sriram, M; Osipiuk, J; Freeman, B; Morimoto, R; Joachimiak, A


    The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones, which promote protein folding and participate in many cellular functions. The Hsp70 chaperones are composed of two major domains. The N-terminal ATPase domain binds to and hydrolyzes ATP, whereas the C-terminal domain is required for polypeptide binding. Cooperation of both domains is needed for protein folding. The crystal structure of bovine Hsc70 ATPase domain (bATPase) has been determined and, more recently, the crystal structure of the peptide-binding domain of a related chaperone, DnaK, in complex with peptide substrate has been obtained. The molecular chaperone activity and conformational switch are functionally linked with ATP hydrolysis. A high-resolution structure of the ATPase domain is required to provide an understanding of the mechanism of ATP hydrolysis and how it affects communication between C- and N-terminal domains. The crystal structure of the human Hsp70 ATPase domain (hATPase) has been determined and refined at 1. 84 A, using synchrotron radiation at 120K. Two calcium sites were identified: the first calcium binds within the catalytic pocket, bridging ADP and inorganic phosphate, and the second calcium is tightly coordinated on the protein surface by Glu231, Asp232 and the carbonyl of His227. Overall, the structure of hATPase is similar to bATPase. Differences between them are found in the loops, the sites of amino acid substitution and the calcium-binding sites. Human Hsp70 chaperone is phosphorylated in vitro in the presence of divalent ions, calcium being the most effective. The structural similarity of hATPase and bATPase and the sequence similarity within the Hsp70 chaperone family suggest a universal mechanism of ATP hydrolysis among all Hsp70 molecular chaperones. Two calcium ions have been found in the hATPase structure. One corresponds to the magnesium site in bATPase and appears to be important for ATP hydrolysis and in vitro phosphorylation. Local changes

  6. Modulation of intracellular Ca2+ via L-type calcium channels in heart cells by the autoantibody directed against the second extracellular loop of the alpha1-adrenoceptors. (United States)

    Bkaily, Ghassan; El-Bizri, Nesrine; Bui, Michel; Sukarieh, Rami; Jacques, Danielle; Fu, Michael L X


    The effects of methoxamine, a selective alpha1-adrenergic receptor agonist, and the autoantibody directed against the second extracellular loop of alpha1-adrenoceptors were studied on intracellular free Ca2+ levels using confocal microscopy and ionic currents using the whole-cell patch clamp technique in single cells of 10-day-old embryonic chick and 20-week-old fetal human hearts. We observed that like methoxamine, the autoantibody directed against the second extracellular loop of alpha1-adrenoreceptors significantly increased the L-type calcium current (I(Ca(L))) but had no effect on the T-type calcium current (I(Ca(T))), the delayed outward potassium current, or the fast sodium current. This effect of the autoantibody was prevented by a prestimulation of the receptors with methoxamine and vice versa. Moreover, treating the cells with prazosin, a selective alpha1-adrenergic receptor antagonist blocked the methoxamine and the autoantibody-induced increase in I(Ca(L)), respectively. In absence of prazosin, both methoxamine and the autoantibody showed a substantial enhancement in the frequency of cell contraction and that of the concomitant cytosolic and nuclear free Ca2+ variations. The subsequent addition of nifedipine, a specific L-type Ca2+ channel blocker, reversed not only the methoxamine or the autoantibody-induced effect but also completely abolished cell contraction. These results demonstrated that functional alpha1-adrenoceptors exist in both 10-day-old embryonic chick and 20-week-old human fetal hearts and that the autoantibody directed against the second extracellular loop of this type of receptors plays an important role in stimulating their activity via activation of L-type calcium channels. This loop seems to have a functional significance by being the target of alpha1-receptor agonists like methoxamine.

  7. Characterization of ion distributions near the surface of sodium-containing and sodium-depleted calcium aluminosilicate glass melts

    International Nuclear Information System (INIS)

    Corrales, Louis R.; Du, Jincheng


    The distribution of cation and anion components of sodium containing calcium aluminosilicate glass was studied by classical molecular dynamics simulations in a high temperature melt in the bulk and at the vacuum-melt interface. A significant redistribution of the sodium and non-bridging oxygen ions was observed. Subsequently, a sodium depleted calcium aluminosilicate glass melt was simulated to determine the sensitivity of the redistribution of ions near the vacuum-melt interface to the presence of sodium ions. It is found that the thermodynamic equilibrium condition near a surface favors the enrichment of non-bridging oxygen ions that is closely associated with enrichment of the sodium ions

  8. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering (United States)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel


    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  9. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. (United States)

    Barralet, Jake; Gbureck, Uwe; Habibovic, Pamela; Vorndran, Elke; Gerard, Catherine; Doillon, Charles J


    Angiogenesis in a tissue-engineered device may be induced by incorporating growth factors (e.g., vascular endothelial growth factor [VEGF]), genetically modified cells, and=or vascular cells. It represents an important process during the formation and repair of tissue and is essential for nourishment and supply of reparative and immunological cells. Inorganic angiogenic factors, such as copper ions, are therefore of interest in the fields of regenerative medicine and tissue engineering due to their low cost, higher stability, and potentially greater safety compared with recombinant proteins or genetic engineering approaches. The purpose of this study was to compare tissue responses to 3D printed macroporous bioceramic scaffolds implanted in mice that had been loaded with either VEGF or copper sulfate. These factors were spatially localized at the end of a single macropore some 7 mm from the surface of the scaffold. Controls without angiogenic factors exhibited only poor tissue growth within the blocks; in contrast, low doses of copper sulfate led to the formation of microvessels oriented along the macropore axis. Further, wound tissue ingrowth was particularly sensitive to the quantity of copper sulfate and was enhanced at specific concentrations or in combination with VEGF. The potential to accelerate and guide angiogenesis and wound healing by copper ion release without the expense of inductive protein(s) is highly attractive in the area of tissue-engineered bone and offers significant future potential in the field of regenerative biomaterials.

  10. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes. (United States)

    Jin, Juntao; Guan, Yuntao


    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Highly Stable Aqueous Zinc-ion Storage Using Layered Calcium Vanadium Oxide Bronze Cathode

    KAUST Repository

    Xia, Chuan


    Cost-effective aqueous rechargeable batteries are attractive alternatives to non-aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc-ion batteries (ZIBs), based on Zn2+ intercalation chemistry, stand out as they can employ high-capacity Zn metal as anode material. Herein, we report a layered calcium vanadium oxide bronze as cathode material for aqueous Zn batteries. For the storage of Zn2+ ions in aqueous electrolyte, we demonstrate that calcium based bronze structure can deliver a high capacity of 340 mAh g-1 at 0.2 C, good rate capability and very long cycling life (96% retention after 3000 cycles at 80 C). Further, we investigate the Zn2+ storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 Wh kg-1 at a power density of 53.4 W kg-1.

  12. Highly Stable Aqueous Zinc-ion Storage Using Layered Calcium Vanadium Oxide Bronze Cathode

    KAUST Repository

    Xia, Chuan; Guo, Jing; Li, Peng; Zhang, Xixiang; Alshareef, Husam N.


    Cost-effective aqueous rechargeable batteries are attractive alternatives to non-aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc-ion batteries (ZIBs), based on Zn2+ intercalation chemistry, stand out as they can employ high-capacity Zn metal as anode material. Herein, we report a layered calcium vanadium oxide bronze as cathode material for aqueous Zn batteries. For the storage of Zn2+ ions in aqueous electrolyte, we demonstrate that calcium based bronze structure can deliver a high capacity of 340 mAh g-1 at 0.2 C, good rate capability and very long cycling life (96% retention after 3000 cycles at 80 C). Further, we investigate the Zn2+ storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 Wh kg-1 at a power density of 53.4 W kg-1.

  13. Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model. (United States)

    Kothiyal, K P; Ibramsha, M


    Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.

  14. A theoretical and experimental study of calcium, iron, zinc, cadmium, and sodium ions absorption by aspartame. (United States)

    Mahnam, Karim; Raisi, Fatame


    Aspartame (L-Aspartyl-L-phenylalanine methyl ester) is a sweet dipeptide used in some foods and beverages. Experimental studies show that aspartame causes osteoporosis and some illnesses, which are similar to those of copper and calcium deficiency. This raises the issue that aspartame in food may interact with cations and excrete them from the body. This study aimed to study aspartame interaction with calcium, zinc, iron, sodium, and cadmium ions via molecular dynamics simulation (MD) and spectroscopy. Following a 480-ns molecular dynamics simulation, it became clear that the aspartame is able to sequester Fe 2+ , Ca 2+ , Cd 2+ , and Zn 2+ ions for a long time. Complexation led to increasing UV-Vis absorption spectra and emission spectra of the complexes. This study suggests a potential risk of cationic absorption of aspartame. This study suggests that purification of cadmium-polluted water by aspartame needs a more general risk assessment.

  15. Structure-Property of Metal Organic Frameworks Calcium Terephthalates Anodes for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Wang, Liping; Mou, Chengxu; Sun, Yang; Liu, Wei; Deng, Qijiu; Li, Jingze


    Graphical Abstract: Effects of hydration water in calcium terephthalates anodes on the structure, operational voltage and electrochemical performance are systematically studied. Display Omitted -- Highlights: •Metal organic frameworks CaC 8 H 4 O 4 ·3H 2 O and CaC 8 H 4 O 4 are applied as anodes for lithium ion batteries. •Appearance of hydration water leads different crystallography structures and electrochemical performance. •Anhydrous CaC 8 H 4 O 4 has a spacious ordered layer structure, a higher Ca-O chemical bonding interaction and a higher transparent lithium ion diffusion coefficient, delivering a higher capacity, better cycling performance and rate performance than CaC 8 H 4 O 4 ·3H 2 O. -- Abstract: Metal organic frameworks have attracted considerable interest as electrode materials for lithium ion batteries. In this paper, the metal organic frameworks hydrated calcium terephthalate (CaC 8 H 4 O 4 ·3H 2 O) and anhydrous calcium terephthalate (CaC 8 H 4 O 4 ) as anodes for lithium ion batteries are comparatively studied. Crystallography and local chemical bond analysis are combined to interpret the structure-property of calcium terephthalates. Results show that the anhydrous CaC 8 H 4 O 4 has a spacious ordered layer structure and a higher Ca-O chemical bonding interaction, delivering a higher capacity, better cycling performance and rate performance than CaC 8 H 4 O 4 ·3H 2 O

  16. Biosensor and chemical sensor probes for calcium and other metal ions (United States)

    Vo-Dinh, Tuan; Viallet, Pierre


    The present invention relates to chemical sensor and biosensor probes for measuring low concentration of metals and metal ions in complex samples such as biological fluids, living cells, and environmental samples. More particularly the present invention relates to a gel-based Indo-1 and Fura-2 chemical sensor probes for the measurement of low concentrations of calcium, cadmium, magnesium and the like. Also disclosed is a detector device using the sensors of the present invention.

  17. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination. (United States)

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V


    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  18. Effect of Sr2+AND Mg2+ IONS on electrochemical deposition of calcium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Correia, M.B.; Gualberto Junior, J.P.; Macedo, M.C.S.S.; Resende, C.X.; Santos, E.A. [Universidade Federal de Sergipe (UFS), SE (Brazil)


    The incorporation of Sr2+ and Mg2+ ions into apatite favors the mineralization process of the bone, besides it to prevent the osteoporosis. In this work, it was evaluated the individual effect of Sr2+ and Mg2+ ions in the electrochemical deposition process of calcium phosphate on metallic substrate. The electrodeposition was performed using a conventional three- electrode cell. The titanium sheets were immersed in the electrolyte containing Ca(NO3)2 and NH4H2PO4 and a potential of -0. 8 V was applied. The coatings were characterized by SEM and XRD. By XRD analysis was possible to identify octacalcium phosphate in the control sample. However, after the addition of Mg2+ ions the OCP becomes the secondary phase while the brushite showed as majoritary phase. On the other hand, the incorporation of Sr2+ ions stabilized the OCP phase. (author)

  19. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    International Nuclear Information System (INIS)

    Yasukawa, Akemi; Kandori, Kazuhiko; Tanaka, Hidekazu; Gotoh, Keiko


    Highlights: ► LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. ► The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln 3+ contents. ► A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0–0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y 3+ , Gd 3+ , Dy 3+ , Er 3+ and Yb 3+ ) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X Ln ]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X Y ] ≤ 0.10 for substituting Y system and at [X Ln ] ≤ 0.01–0.03 for substituting the other Ln systems. LnPO 4 was mixed with LnCaHap at higher [X Ln ] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X Y ] = 0–0.10 were investigated using XRD, TEM, ICP-AES, IR and TG–DTA in detail.

  20. Molecular models of alginic acid: Interactions with calcium ions and calcite surfaces (United States)

    Perry, Thomas D.; Cygan, Randall T.; Mitchell, Ralph


    Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these cation-organic interactions are well suited for predictive molecular modeling and the analysis of conformation and configuration of polysaccharides and their influence on cation binding. In this study, alginic acid was chosen as a model polymer system and representative disaccharide and polysaccharide subunits were developed. Molecular dynamics simulation of the torsion angles of the ether linkage between various monomeric subunits identified local and global energy minima for selected disaccharides. The simulations indicate stable disaccharide configurations and a common global energy minimum for all disaccharide models at Φ = 274 ± 7°, Ψ = 227 ± 5°, where Φ and Ψ are the torsion angles about the ether linkage. The ability of disaccharide subunits to bind calcium ions and to associate with the (101¯4) surface of calcite was also investigated. Molecular models of disaccharide interactions with calcite provide binding energy differences for conformations that are related to the proximity and residence densities of the electron-donating moieties with calcium ions on the calcite surface, which are controlled, in part, by the torsion of the ether linkage between monosaccharide units. Dynamically optimized configurations for polymer alginate models with calcium ions were also derived.

  1. The hemodynamic effect of calcium ion concentration in the infusate during predilution hemofiltration in chronic renal failure

    DEFF Research Database (Denmark)

    Karamperis, N.; Sloth, E.; Jensen, Jens Dam


    BACKGROUND: It is the prevailing view that convective dialysis techniques stabilize blood pressure. Calcium concentration in the substitution fluid may be important in this respect. The aim of this study is to investigate the influence of calcium ion concentration in the substitution fluid on hem...

  2. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections

    Directory of Open Access Journals (Sweden)

    Sampath Kumar eT.S.


    Full Text Available Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant (MDR bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA nanoparticles has been developed. Antibacterial ions such as zinc, silver and strontium have been incorporated into CDHA at concentrations of 6 at. %, 0.25-0.75 at. % and 2.5-7.5 at. % respectively. The samples were found to be phase pure, acicular nanoparticles of length 40-50 nm and width 5-6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for five days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on S.aureus and E.coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria while SrCDHA was weakly active against S.aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent drug

  3. Biomimetic hydrogels gate transport of calcium ions across cell culture inserts. (United States)

    Kotanen, Christian N; Wilson, A Nolan; Wilson, Ann M; Ishihara, Kazuhiko; Guiseppi-Elie, Anthony


    Control of the in vitro spatiotemporal availability of calcium ions is one means by which the microenvironments of hematopoietic stem cells grown in culture may be reproduced. The effects of cross-linking density on the diffusivity of calcium ions through cell culture compatible poly(2-hydroxyethyl methacrylate) [poly(HEMA)]-based bioactive hydrogels possessing 1.0 mol% 2-methacryloyloxyethyl phosphorylcholine (MPC), 5 mol% N,N-(dimethylamino)ethylmethacrylate (DMAEMA) and ca. 17 mol% n-butyl acrylate (n-BA) have been investigated to determine if varying cross-link density is a viable approach to controlling transport of calcium across hydrogel membranes. Cross-linking density was varied by changing the composition of cross-linker, tetraethyleneglycol diacrylate (TEGDA). The hydrogel membranes were formed by sandwich casting onto the external surface of track-etched polycarbonate membranes (T = 10 μm, φ = 0.4 μm pores) of cell culture inserts, polymerized in place by UV light irradiation and immersed in buffered (0.025 HEPES, pH 7.4) 0.10 M calcium chloride solution. The transport of calcium ions across the hydrogel membrane was monitored using a calcium ion selective electrode set within the insert. Degree of hydration (21.6 ± 1.0%) and void fraction were found to be constant across all cross-linking densities. Diffusion coefficients, determined using time-lag analysis, were shown to be strongly dependent on and to exponentially decrease with increasing cross-linking density. Compared to that found in buffer (2.0-2.5 × 10⁻⁶ cm²/s), diffusion coefficients ranged from 1.40 × 10⁻⁶ cm²/s to 1.80 × 10⁻⁷ cm²/s and tortuosity values ranged from 1.7 to 10.0 for the 1 and 12 mol% TEGDA cross-linked hydrogels respectively. Changes in tortuosity arising from variations in cross-link density were found to be the primary modality for controlling diffusivity through novel n-BA containing poly(HEMA)-based bioactive hydrogels.

  4. Copper-induced activation of TRP channels promotes extracellular calcium entry and activation of CaMs and CDPKs leading to copper entry and membrane depolarization in Ulva compressa

    Directory of Open Access Journals (Sweden)

    Melissa eGómez


    Full Text Available In order to identify channels involved in membrane depolarization, Ulva compressa was incubated with agonists of TRP channels C5, A1 and V1 and the level of intracellular calcium was detected. Agonists of TRPC5, A1 and V1 induced increases in intracellular calcium at 4, 9 and 12 min of exposure, respectively, and antagonists of TRPC5, A1 and V1 corresponding to SKF-96365 (SKF, HC-030031 (HC and capsazepin (CPZ, respectively, inhibited calcium increases indicating that functional TRPs exist in U. compressa. In addition, copper excess induced increases in intracellular calcium at 4, 9 and 12 min which were inhibited by SKF, HC and CPZ, respectively, indicating that copper activate TRPC5, A1 and V1 channels. Moreover, copper-induced calcium increases were inhibited by EGTA, a non-permeable calcium chelating agent, but not by thapsigargin, an inhibitor of endoplasmic reticulum (ER calcium ATPase, indicating that activation of TRPs leads to extracellular calcium entry. Furthermore, copper-induced calcium increases were not inhibited by W-7, an inhibitor of CaMs, and staurosporine, an inhibitor of CDPKs, indicating that extracellular calcium entry did not require CaMs and CDPKs activation. In addition, copper induced membrane depolarization events at 4, 8 and 11 min and these events were inhibited by SKF, HC, CPZ and bathocuproine, a specific copper chelating agent, indicating copper entry through TRP channels leading to membrane depolarization. Moreover, membrane depolarization events were inhibited by W-7 and staurosporine, indicating that CaMs and CDPKs are required in order to activate TRPs to allow copper entry. Thus, light-dependent copper-induced activation TRPC5, A1 and V1 promotes extracellular calcium entry leading to activation of CaMs and CDPKs which, in turn, promotes copper entry through these TRP channels leading to membrane depolarization.

  5. Congenital heart block maternal sera autoantibodies target an extracellular epitope on the α1G T-type calcium channel in human fetal hearts.

    Directory of Open Access Journals (Sweden)

    Linn S Strandberg

    Full Text Available Congenital heart block (CHB is a transplacentally acquired autoimmune disease associated with anti-Ro/SSA and anti-La/SSB maternal autoantibodies and is characterized primarily by atrioventricular (AV block of the fetal heart. This study aims to investigate whether the T-type calcium channel subunit α1G may be a fetal target of maternal sera autoantibodies in CHB.We demonstrate differential mRNA expression of the T-type calcium channel CACNA1G (α1G gene in the AV junction of human fetal hearts compared to the apex (18-22.6 weeks gestation. Using human fetal hearts (20-22 wks gestation, our immunoprecipitation (IP, Western blot analysis and immunofluorescence (IF staining results, taken together, demonstrate accessibility of the α1G epitope on the surfaces of cardiomyocytes as well as reactivity of maternal serum from CHB affected pregnancies to the α1G protein. By ELISA we demonstrated maternal sera reactivity to α1G was significantly higher in CHB maternal sera compared to controls, and reactivity was epitope mapped to a peptide designated as p305 (corresponding to aa305-319 of the extracellular loop linking transmembrane segments S5-S6 in α1G repeat I. Maternal sera from CHB affected pregnancies also reacted more weakly to the homologous region (7/15 amino acids conserved of the α1H channel. Electrophysiology experiments with single-cell patch-clamp also demonstrated effects of CHB maternal sera on T-type current in mouse sinoatrial node (SAN cells.Taken together, these results indicate that CHB maternal sera antibodies readily target an extracellular epitope of α1G T-type calcium channels in human fetal cardiomyocytes. CHB maternal sera also show reactivity for α1H suggesting that autoantibodies can target multiple fetal targets.

  6. The examination of calcium ion implanted alumina with energy filtered transmission electron microscopy

    International Nuclear Information System (INIS)

    Hunt, E.M.; Hampikian, J.M.


    Ion implantation can be used to alter in the optical response of insulators through the formation of embedded nano-sized particles. Single crystal alumina has been implanted at ambient temperature with 50 keV Ca + to a fluence of 5 x 10 16 ions/cm 2 . Ion channeling, Knoop microhardness measurements, and transmission electron microscopy (TEM) indicate that the alumina surface layer was amorphized by the implant. TEM also revealed nano-sized crystals ∼7--8 nm in diameter. These nanocrystals are randomly oriented, and exhibit a face-centered cubic structure (FCC) with a lattice parameter of 0.409 nm ± 0.002 nm. The similarity between this crystallography and that of pure aluminum suggests that they are metallic aluminum nanocrystals with a slightly dilated lattice parameter, possibly due to the incorporation of a small amount of calcium. Energy-filtered transmission electron microscopy (EFTEM) provides an avenue by which to confirm the metallic nature of the aluminum involved in the nanocrystals. EFTEM has confirmed that the aluminum present in the particles is metallic in nature, that the particles are oxygen deficient in comparison with the matrix material and that the particles are deficient in calcium, and therefore not likely to be calcia. The particles thus appear to be FCC Al (possibly alloyed with a few percent Ca) with a lattice parameter of 0.409nm. A similar result was obtained for yttrium ion implantation into alumina

  7. Calculation of kinetic parameters of amino-formaldehyde polymers formation in the presence of calcium ions

    Directory of Open Access Journals (Sweden)

    V.V. Arhipova


    Full Text Available Calcium carbonate is on of widely used fillers of composite materials. The area of its application depend on disperse structure, particle shape and other. The modification of calcium carbonate by high-molecular polymers allows changing its characteristics and surface properties in a wide range. The modification of calcium carbonate often carried out with use of amino-formaldehyde polymers (AFP. Aim: The aim of this work is to determine the kinetic characteristics of amino-formaldehyde polymers polycondensation process in the presence of calcium ions. Materials and Methods: The mechanism of AFP polycondensation is complex and depends on various factors. Polycondensation of AFP took place under following conditions: the temperature is 20, 30, 60°C; the molar ratio of carbamide to formaldehyde is 1:1.25; the polycondensation duration is 2 hours; the mass ratio of CaCO3:AFP = 1:1. The polycondensation process was carried out in calcium chloride solution with рН=2…5.5. The concentration of formaldehyde and metilol groups determined during the experiment using chemical titrimetric method. Results: It is shown that polycondensation process of AFP in the presence of Сa2+ ions at their concentration from 0 to 2,25 mol/l (0…90 g/l leads to acceleration of process more than by 1.8 times at temperature of 20°C. Further increase of Сa2+ concentration leads to reduction of process speed. At temperature of 30°C the speed of process almost does not change in the range of Сa2+ concentration from 0 to 2,25 mol/l and further decreases slightly. For all range of Сa2+ concentration at temperature of 60°C the reduction of process speed is observed. Influence of Сa2+ on process of polycondensation confirms assumption made earlier of formation of weak bonds between AFP and calcium ions which at low temperatures interfere with hydrolysis of methyleneurea and collapse at increasing of process temperature.

  8. Diffusion of hydroxyl ions from calcium hydroxide and Aloe vera pastes. (United States)

    Batista, Victor Eduardo de Souza; Olian, Douglas Dáquila; Mori, Graziela Garrido


    This study evaluated the diffusion through the dentinal tubules of hydroxyl ions from different calcium hydroxide (CH) pastes containing Aloe vera. Sixty single-rooted bovine teeth were used. The tooth crowns were removed, the root canals were instrumented and the specimens were assigned to 4 groups (n=15) according to the intracanal medication: Group CH/S - CH powder and saline paste; Group CH/P - CH powder and propylene glycol paste; Group CH/A - calcium hydroxide powder and Aloe vera gel paste; Group CH/A/P - CH powder, Aloe vera powder and propylene glycol paste. After placement of the root canal dressings, the teeth were sealed coronally and apically with a two-step epoxy adhesive. The teeth were placed in identified flasks containing deionized water and stored in an oven with 100% humidity at 37 °C. After 3 h, 24 h, 72 h, 7 days, 15 days and 30 days, the deionized water in the flasks was collected and its pH was measured by a pH meter. The obtained data were subjected to statistical analysis at a significance level of 5%. The results demonstrated that all pastes provided diffusion of hydroxyl ions through the dentinal tubules. The combination of Aloe vera and CH (group CH/A) provided a constant release of calcium ions. Group CH/A/P showed the highest pH at 24 and 72 h. In conclusion, the experimental pastes containing Aloe vera were able to enable the diffusion of hydroxyl ions through the dentinal tubules.

  9. Sodium-calcium ion exchange on clay minerals at moderate to high ionic strengths

    International Nuclear Information System (INIS)

    Rogers, W.J.


    Sodium-calcium ion exchange on several clay minerals was studied at ionic strengths ranging from 0.01 to above 1.0. The minerals studied included attapulgite, illite, kaolin, and several montmorillonites. Distribution coefficients of calcium and sodium were obtained for the minerals over a wide range of solution conditions at pH five and equilibrium constants were calculated. The distribution coefficient of calcium, D/sub Ca/, was studied as a function of time, solution pH, loading, sodium concentration, and ionic strength fraction of sodium in constant ionic strength solutions. The distribution coefficient of sodium, D/sub Na/, was also studied as a function of time, loading, and sodium ionic strength fraction in constant total ionic strength solutions. Values of equilibrium constants calculated from distribution coefficients for solutions of constant ionic strength scattered bwteen 2 and 10 kg/kg for the montmorillonites and attapulgite while equilibrium constants for illite ranged from 5 to 10 kg/kg. No equilibrium constants for kaolin were calculated since distribution coefficients of sodium on this clay were too small to be measured. It was found that equilibrium constants at trace sodium loading were generally lower than those for higher sodium loadings by an order of magnitude or more due to the sensitivity of sodium distribution coefficients to the concentration of sodium in the clay at low loadings. Theoretical and experimental treatments of ion exclusion were included

  10. Aminoglycoside antibiotics as a tool for the study of the biological role of calcium ions. Historical overview. (United States)

    Corrado, A P; de Morais, I P; Prado, W A


    Beginning with the pioneering work of Vital-Brazil and Corrado (1957), which suggested a possible interaction between aminoglycoside antibiotics (AGA) and calcium ions at the neuromuscular junction, the authors review the studies that demonstrated the existence of a competitive antagonism between AGA and calcium ions. In view of the low liposolubility of AGA and their inability to cross biological membranes, this antagonism seems to occur exclusively at calcium-binding sites at the level of the outer opening of calcium channels of the N-subtype, which are also the sites of interaction of omega-conotoxin. Being highly water soluble, AGA are easily removed from their binding sites with a consequent rapid reversal of their effects, a factor of primary importance to explain their wide use as tools in the pharmacological analysis of the study of the biological role of calcium ion on the membrane's outer surface. This use has advantages over the use of inorganic di- and trivalent cations such as Mg2+, Mn2+, Cd2+, Ni2+, La3+, etc., since the latter, though they are considered to be the most specific competitive antagonists of calcium ions, may induce biphasic effects due to their ability to cross the membranes and replace calcium and/or increase intracellular calcium concentration. The performance of AGA is also superior when compared with the so-called "specific" organic calcium antagonists--verapamil and nifedipine derivatives--since the latter, in addition to inducing possible biphasic effects, antagonize calcium in a non-competitive manner. Finally, the authors remark that AGA-Ca2+ antagonism relevance is not limited only to basic aspects and that it may have therapeutic implications since it provides alternatives for reducing the toxic adverse effects of this important group of antibiotics.

  11. Organometallics and quaternary ammonium salts affect calcium ion desorption from lecithin liposome membranes

    International Nuclear Information System (INIS)

    Kral, T.E.; Kuczera, J.; Przestalski, S.


    The objective of the present work was to compare the effects of groups of tin and lead organometallic compounds and their mixtures with amphiphilic quaternary ammonium salts (QAS) on the process of calcium ion desorption from lecithin liposome membranes, as dependent on the properties of the hydrophilic and hydrophobic parts of QAS. In the investigations the method of radioactive labels was applied. Synergism and antagonism in the action of both groups of compounds were found. The effectiveness of the cooperation depended more on chain length of QAS compounds than on the size and polarity of their hydrophobic parts. The most effective of all compounds studied was a the mixture of benzyldimethylammonium chloride in a mixture with tripropyltin. Since the rate of calcium desorption proved to be a good measure of efficacy of biologically active surfactants, it seems that the conclusions reached in this paper may be useful for choosing compounds which are able to decontaminate the environment polluted with heavy metals. (orig.)

  12. Corrosion control of galvanized steel using a phosphate/calcium ion inhibitor mixture

    International Nuclear Information System (INIS)

    Zin, I.M.; Lyon, S.B.; Pokhmurskii, V.I.


    The corrosion inhibition of galvanized steel was studied in artificial acid rain solution using extracts of pigments normally used in organic coatings for corrosion control. It was established that a combination of zinc phosphate/molybdate and calcium ion exchange silica has a significant synergetic anticorrosion effect in the acid rain solution compared to the pigments used alone. Further, the charge transfer resistance of galvanized steel in acid rain solution saturated by the above pigment blend approaches that of strontium chromate in artificial acid rain solution. Use of the pigment blend was found to lead to development of a protective film, which is thought to be a complex mixture of calcium phosphates and zinc phosphate

  13. Modeling strontium-cesium-calcium-magnesium-sodium ion exchange equilibria on chabazite with the Wilson equation

    International Nuclear Information System (INIS)

    Perona, J.J.


    Chabazite zeolites are used at ORNL for decontamination of wastewaters containing 90 Sr and 137 Cs. Treatability studies have shown that chabazite can remove trace amounts of these nuclides from wastewaters containing much higher concentrations of calcium and magnesium. The design of ion exchange columns for multicomponent systems requires a method for predicting multicomponent equilibria from binary or ternary experiments, since the number of experiments required for an empirical equilibrium model is generally not feasible. Binary interaction parameters for the Wilson equation were used to predict solid-phase activity coefficients for the five-component system, and the sum of squares of deviations between experimental and predicted solution concentrations for the data points available was calculated. The average deviation per data point for the five-component system was about the same as for the calcium-magnesium-sodium ternary system

  14. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage (United States)

    Wang, Meng; Jiang, Chunlei; Zhang, Songquan; Song, Xiaohe; Tang, Yongbing; Cheng, Hui-Ming


    Calcium-ion batteries (CIBs) are attractive candidates for energy storage because Ca2+ has low polarization and a reduction potential (-2.87 V versus standard hydrogen electrode, SHE) close to that of Li+ (-3.04 V versus SHE), promising a wide voltage window for a full battery. However, their development is limited by difficulties such as the lack of proper cathode/anode materials for reversible Ca2+ intercalation/de-intercalation, low working voltages (performance. Here, we report a CIB that can work stably at room temperature in a new cell configuration using graphite as the cathode and tin foils as the anode as well as the current collector. This CIB operates on a highly reversible electrochemical reaction that combines hexafluorophosphate intercalation/de-intercalation at the cathode and a Ca-involved alloying/de-alloying reaction at the anode. An optimized CIB exhibits a working voltage of up to 4.45 V with capacity retention of 95% after 350 cycles.

  15. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Yasukawa, Akemi, E-mail: [School of Home Economics, Faculty of Education, Hirosaki University, 1-bunkyo, Hirosaki, Aomori 036-8560 (Japan); Kandori, Kazuhiko [School of Chemistry, Osaka University of Education, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582 (Japan); Tanaka, Hidekazu [Department of Material Science, Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 (Japan); Gotoh, Keiko [Faculty of Human Life and Environment, Nara Women' s University, Kita-uoya-nishi, Nara 630-8506 (Japan)


    Highlights: Black-Right-Pointing-Pointer LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. Black-Right-Pointing-Pointer The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln{sup 3+} contents. Black-Right-Pointing-Pointer A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0-0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y{sup 3+}, Gd{sup 3+}, Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+}) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X{sub Ln}]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X{sub Y}] {<=} 0.10 for substituting Y system and at [X{sub Ln}] {<=} 0.01-0.03 for substituting the other Ln systems. LnPO{sub 4} was mixed with LnCaHap at higher [X{sub Ln}] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X{sub Y}] = 0-0.10 were investigated using XRD, TEM, ICP-AES, IR and TG-DTA in detail.

  16. [Features of noradrenaline stimulation of rat liver mitochondria respiration by ADP and calcium ions]. (United States)

    Stefankiv, Iu S; Babskyĭ, A M; Shostakovska, Y V


    A single administration of a physiological dose of noradrenaline to animals. in contrast to adrenaline, stimulates the respiration of mitochondria not only under oxidation of FAD-dependent Krebbs cycle substrate of the succinase but also HAD-dependent substrate of alpha-ketoglutarate. In the both cases the phosphorylation rate increases, since the action of noradrenaline, separating the respiration and oxidative phosphorylation, was not found. Noradrenaline increases the capacity of mitochondria to more actively absorb calcium ions under oxidation of succinate than under that of alpha-ketoglutarate.

  17. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures (United States)

    Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting


    Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247

  18. Complete starch hydrolysis by the synergistic action of amylase and glucoamylase: impact of calcium ions. (United States)

    Presečki, Ana Vrsalović; Blažević, Zvjezdana Findrik; Vasić-Rački, Durđa


    Starch hydrolysis was performed by the synergistic action of amylase and glucoamylase. For that purpose glucoamylase (Dextrozyme) and two amylases (Liquozyme and Termamyl) in different combinations were investigated. Experiments were carried out in the repetitive- and fed-batch modes at 65 °C and pH 5.5 with and without the addition of Ca(2+) ions. 100 % conversion of starch to glucose was achieved in batch experiments. Calcium ions significantly enhanced stability of the amylase Termamyl. The intensity of synergism between amylase Termamyl and glucoamylase Dextrozyme was higher than in the experiments carried out with amylase Liquozyme and Dextrozyme. Mathematical model of the complete reaction system was developed. Using the model, a possible explanation of the synergism between the amylase and glucoamylase was provided.

  19. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel (United States)

    Ding, J. P.; Pickard, B. G.


    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  20. The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre? (United States)

    Pickard, B. G.; Ding, J. P.


    Mechanosensory calcium-selective ion channels probably serve to detect not only mechanical stress but also electrical, thermal, and diverse chemical stimuli. Because all stimuli result in a common output, most notably a shift in second messenger calcium concentration, the channels are presumed to serve as signal integrators. Further, insofar as second messenger calcium in turn gives rise to mechanical, electrical, and diverse chemical changes, the channels are postulated to initiate regulatory feedbacks. It is proposed that the channels and the feedback loops play a wide range of roles in regulating normal plant function, as well as in mediating disturbance of normal function by environmental stressors and various pathogens. In developing evidence for the physiological performance of the channel, a model for a cluster of regulatory plasmalemmal proteins and cytoskeletal elements grouped around a set of wall-to-membrane and transmembrane linkers has proved useful. An illustration of how the model might operate is presented. It is founded on the demonstration that several xenobiotics interfere both with normal channel behaviour and with gravitropic reception. Accordingly, the first part of the illustration deals with how the channels and the control system within which they putatively operate might initiate gravitropism. Assuming that gravitropism is an asymmetric expression of growth, the activities of the channels and the plasmalemmal control system are extrapolated to account for regulation of both rate and allometry of cell expansion. Finally, it is discussed how light, hormones, redox agents and herbicides could in principle affect growth via the putative plasmalemmal control cluster or centre.

  1. Absorption of calcium ions on oxidized graphene sheets and study its dynamic behavior by kinetic and isothermal models

    Directory of Open Access Journals (Sweden)

    Mahmoud Fathy


    Full Text Available Abstract Sorption of calcium ion from the hard underground water using novel oxidized graphene (GO sheets was studied in this paper. Physicochemical properties and microstructure of graphene sheets were investigated using Raman spectrometer, thermogravimetry analyzer, transmission electron microscope, scanning electron microscope. The kinetics adsorption of calcium on graphene oxide sheets was examined using Lagergren first and second orders. The results show that the Lagergren second-order was the best-fit model that suggests the conception process of calcium ion adsorption on the Go sheets. For isothermal studies, the Langmuir and Freundlich isotherm models were used at temperatures ranging between 283 and 313 K. Thermodynamic parameters resolved at 283, 298 and 313 K indicating that the GO adsorption was exothermic spontaneous process. Finally, the graphene sheets show high partiality toward calcium particles and it will be useful in softening and treatment of hard water.

  2. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles. (United States)

    Chen, Chen; Weir, Michael D; Cheng, Lei; Lin, Nancy J; Lin-Gibson, Sheng; Chow, Laurence C; Zhou, Xuedong; Xu, Hockin H K


    Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Adding 5% DMADDM and 10-40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p>0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6-10 folds. Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was "smart" and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent containing DMADDM and NACP may be promising to inhibit

  3. Extracellular Calcium Dictates Onset, Severity, and Recovery of Diarrhea in a Child with Immune-Mediated Enteropathy

    Directory of Open Access Journals (Sweden)

    Johnathan Fraebel


    Full Text Available Diarrhea causes monovalent and divalent ion losses that can influence clinical outcome. Unlike the losses of monovalent ions, such as Na+, K+, Cl−, and HCO3−, which are generally large in quantity (osmoles and therefore determine the severity of diarrhea, the losses of divalent ions are relatively small in osmoles and are often overlooked during diarrheal treatment. Studies now suggest that despite divalent ions being small in osmoles, their effects are large due to the presence of divalent ion-sensing receptors and their amplifying effects in the gut. As a result, losses of these divalent ions without prompt replacement could also significantly affect the onset, severity, and/or recovery of diarrheal disease. Herein, we report a case of a malnourished child with an immune-mediated enteropathy who developed episodes of “breakthrough” diarrhea with concurrent hypocalcemia while on appropriate immunotherapy. Interestingly, during these periods of diarrhea, stool volume fluctuated with levels of blood Ca2+. When Ca2+ was low, diarrhea occurred; when Ca2+ levels normalized with replacement, diarrhea stopped. Based on this and other observations, a broader question arises as to whether the Ca2+ lost in diarrhea should be replaced promptly in these patients.

  4. Regulation of proteolysis in Bacillus subtilis: effects of calcium ions and energy poisons

    International Nuclear Information System (INIS)

    O'Hara, M.B.; Hageman, J.H.


    Bacillus subtilis cells carry out extensive intracellular proteolysis (k = 0.15-0.23/h) during sporulation. Protein degradation was measured in cells growing in chemically defined sporulation medium, by following the release of [ 14 C]-leucine from the cells during spore formation. Sodium arsenate, carbonyl cyanide 3-chlorophenyl hydrazone, and sodium azide strongly inhibited proteolysis without altering cell viability greatly, which suggested that bulk proteolysis in B. subtilis is energy dependent. The authors have tested the hypothesis that the energy requirement may be for pumping in Ca 2+ . When [Ca 2+ ] was -6 , rates of proteolysis in sporulating cells were reduced 4-8 times that in cells in calcium ion- sufficient medium. Further, omission of Ca 2+ from the medium prevented the increase in the activity of the major intracellular serine protease. However, the presence of energy poisons in the media at levels which inhibited proteolysis, had no detectable effect on the uptake of by cells [ 45 Ca]. The authors concluded that B. subtilis cells required both metabolic energy and calcium ions for normal proteolysis

  5. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chuan; Guo, Jing; Li, Peng; Zhang, Xixiang; Alshareef, Husam N. [Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)


    Cost-effective aqueous rechargeable batteries are attractive alternatives to non-aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc-ion batteries (ZIBs), based on Zn{sup 2+} intercalation chemistry, stand out as they can employ high-capacity Zn metal as the anode material. Herein, we report a layered calcium vanadium oxide bronze as the cathode material for aqueous Zn batteries. For the storage of the Zn{sup 2+} ions in the aqueous electrolyte, we demonstrate that the calcium-based bronze structure can deliver a high capacity of 340 mA h g{sup -1} at 0.2 C, good rate capability, and very long cycling life (96 % retention after 3000 cycles at 80 C). Further, we investigate the Zn{sup 2+} storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 W h kg{sup -1} at a power density of 53.4 W kg{sup -1}. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. The physical properties and ion release of CPP-ACP-modified calcium silicate-based cements. (United States)

    Dawood, A E; Manton, D J; Parashos, P; Wong, Rhk; Palamara, Jea; Stanton, D P; Reynolds, E C


    This study investigated the physical properties and ion release of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified calcium silicate-based cements (CSCs) and compared the properties of a trial mineral trioxide aggregate (MTA) with two commercially available CSCs, Biodentine(™) and Angelus(®) MTA. The setting time, solubility, compressive strength and Vickers surface microhardness of the three CSCs incorporated with 0%, 0.5%, 1.0%, 2.0% and 3.0% (w/w) CPP-ACP were investigated. Release of calcium (Ca(2+) ), phosphate ions (Pi ) and pH of the test cements were measured after 24, 72, 168 and 336 h of storage. The addition of up to 1.0% CPP-ACP into Biodentine(™) and 0.5% into the other cements did not adversely affect their physical properties except for the setting time. The addition of 0.5% CPP-ACP increased Ca(2+) released from Biodentine(™) (after 168 and 336 h), Angelus(®) MTA (after 168 h) and the trial MTA (after 72 h). The addition of 1.0-3.0% CPP-ACP increased Ca(2+) and Pi released from all the cements. Biodentine(™) released more Ca(2+) particularly in the early stages and showed shorter setting time and higher mechanical properties than the other cements. The mechanical properties of Angelus(®) MTA and the trial MTA were similar. All the cements produced highly alkaline storage solutions. Up to 1.0% CPP-ACP in Biodentine(™) improves Ca(2+) and Pi release and 0.5% CPP-ACP in Angelus(®) MTA and the trial MTA improves Ca(2+) release without altering the mechanical properties and solubility. The addition of CPP-ACP into CSCs prolonged the setting time. © 2015 Australian Dental Association.

  7. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells

    International Nuclear Information System (INIS)

    Chubinskiy-Nadezhdin, Vladislav I.; Vasileva, Valeria Y.; Pugovkina, Natalia A.; Vassilieva, Irina O.; Morachevskaya, Elena A.; Nikolsky, Nikolay N.; Negulyaev, Yuri A.


    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances in hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca 2+ entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells. - Highlights: • Stretch-induced channel activity in human mesenchymal stem cells was analyzed. • Functional expression of SACs and Ca 2+ -sensitive BK and SK channels was shown. • Local Ca 2+ influx via stretch-activated channels triggers BK channel activity. • SK channels are not coupled with SACs despite higher sensitivity to [Ca 2+ ] i . • Functional clustering of SACs and BK channels in stem cell membrane is proposed.

  8. Precision Isotope Shift Measurements in Calcium Ions Using Quantum Logic Detection Schemes. (United States)

    Gebert, Florian; Wan, Yong; Wolf, Fabian; Angstmann, Christopher N; Berengut, Julian C; Schmidt, Piet O


    We demonstrate an efficient high-precision optical spectroscopy technique for single trapped ions with nonclosed transitions. In a double-shelving technique, the absorption of a single photon is first amplified to several phonons of a normal motional mode shared with a cotrapped cooling ion of a different species, before being further amplified to thousands of fluorescence photons emitted by the cooling ion using the standard electron shelving technique. We employ this extension of the photon recoil spectroscopy technique to perform the first high precision absolute frequency measurement of the 2D(3/2)→2P(1/2) transition in calcium, resulting in a transition frequency of f=346 000 234 867(96)  kHz. Furthermore, we determine the isotope shift of this transition and the 2S(1/2)→2P(1/2) transition for 42Ca+, 44Ca+, and 48Ca+ ions relative to 40Ca+ with an accuracy below 100 kHz. Improved field and mass shift constants of these transitions as well as changes in mean square nuclear charge radii are extracted from this high resolution data.

  9. Uptake of CrO{sub 4}{sup 2-} ions by Fe-treated tri-calcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Serrano G, J.; Ramirez S, J. L.; Bonifacio M, J.; Granados C, F.; Badillo A, V. E., E-mail: juan.serrano@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)


    CrO{sub 4}{sup 2-} ion adsorption of Fe-treated tri-calcium phosphate was studied by batch experiments as a function of contact time, initial concentration of metal ion and temperature. Adsorption results showed that at ph 5.5 and 1.0 x 10{sup -4} M chromium concentration the adsorption capacity of Fe-treated tri-calcium phosphate for CrO{sub 4}{sup 2-} ions was 7.10 x 10{sup -3} mmol/g. Chromium adsorption data on Fe-treated tri-calcium phosphate at various initial concentration fitted the Freundlich isotherm. By temperature studies the thermodynamic parameters {Delta}H{sup 0}, {Delta}G{sup 0} and {Delta}S{sup 0} were estimated and the obtained results showed that the adsorption reaction was endothermic and spontaneous. (Author)

  10. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family. (United States)

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S


    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  11. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass. (United States)

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar


    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions.

  12. Structural and luminescence properties of Mn2+ ions doped calcium zinc borophosphate glasses

    International Nuclear Information System (INIS)

    Wan, Ming Hua; Wong, Poh Sum; Hussin, Rosli; Lintang, Hendrik O.; Endud, Salasiah


    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ( 4 T 1g → 6 A 1g ). • As the concentration of Mn 2+ ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn 2+ ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn 2+ ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper 4 T 1g → 6 A 1g ground state of Mn 2+ ions. As the concentration of Mn 2+ ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of 4 T 1g level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn 2+ concentrations. From the emission characteristic parameters of 6 A 1g (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices

  13. Spectroscopic study of trivalent rare earth ions in calcium nitrate hydrate melt

    International Nuclear Information System (INIS)

    Fujii, Toshiyuki; Asano, Hideki; Kimura, Takaumi; Yamamoto, Takeshi; Uehara, Akihiro; Yamana, Hajimu


    Influence of the water content to chemical status of trivalent rare earth ions in calcium nitrate hydrate melt was studied by spectroscopic techniques. Fluorescence spectrometry for Eu(III) in Ca(NO 3 ) 2 .RH 2 O and electronic absorption spectrometry for Nd(III) in Ca(NO 3 ) 2 .RH 2 O were performed for analyzing the changing coordination symmetries through the changes in their hypersensitive transitions. Raman spectroscopic study and EXAFS study were performed for Y(NO 3 ) 3 solutions and Y(III) in Ca(NO 3 ) 2 .RH 2 O for analyzing the oxygen bonding to Y(III). Luminescence lifetime study of Eu(III) and Dy(III) in Ca(NO 3 ) 2 .RH 2 O was performed for evaluating the hydration number changes. Results of these spectroscopic studies indicated that, with the decrease of water content (R), the hydration number decreases while the interaction between trivalent rare earth ion and nitrate ion increases. It was also revealed that the symmetry of the coordination sphere gets distorted gradually by this interaction

  14. An Empirical Model for Build-Up of Sodium and Calcium Ions in Small Scale Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    Subriyer Nasir


    Full Text Available A simple models for predicting build-up of solute on membrane surface were formulated in this paper. The experiments were conducted with secondary effluent, groundwater and simulated feed water in small-scale of RO with capacity of 2000 L/d. Feed water used in the experiments contained varying concentrations of sodium, calcium, combined sodium and calcium. In order to study the effect of sodium and calcium ions on membrane performance, experiments with ground water and secondary effluent wastewater were also performed. Build-up of salts on the membrane surface was calculated by measuring concentrations of sodium and calcium ions in feed water permeate and reject streams using Atomic Absorption Spectrophotometer (AAS. Multiple linear regression of natural logarithmic transformation was used to develop the model based on four main parameters that affect the build-up of solute in a small scale of RO namely applied pressure, permeate flux, membrane resistance, and feed concentration. Experimental data obtained in a small scale RO unit were used to develop the empirical model. The predicted values of theoretical build-up of sodium and calcium on membrane surface were found in agreement with experimental data. The deviation in the prediction of build-up of sodium and calcium were found to be 1.4 to 10.47 % and 1.12 to 4.46%, respectively.

  15. Structural properties of the intrinsically disordered, multiple calcium ion-binding otolith matrix macromolecule-64 (OMM-64). (United States)

    Poznar, Monika; Hołubowicz, Rafał; Wojtas, Magdalena; Gapiński, Jacek; Banachowicz, Ewa; Patkowski, Adam; Ożyhar, Andrzej; Dobryszycki, Piotr


    Fish otoliths are calcium carbonate biominerals that are involved in hearing and balance sensing. An organic matrix plays a crucial role in their formation. Otolith matrix macromolecule-64 (OMM-64) is a highly acidic, calcium-binding protein (CBP) found in rainbow trout otoliths. It is a component of high-molecular-weight aggregates, which influence the size, shape and polymorph of calcium carbonate in vitro. In this study, a protocol for the efficient expression and purification of OMM-64 was developed. For the first time, the complete structural characteristics of OMM-64 were described. Various biophysical methods were combined to show that OMM-64 occurs as an intrinsically disordered monomer. Under denaturing conditions (pH, temperature) OMM-64 exhibits folding propensity. It was determined that OMM-64 binds approximately 61 calcium ions with millimolar affinity. The folding-unfolding experiments showed that calcium ions induced the collapse of OMM-64. The effect of other counter ions present in trout endolymph on OMM-64 conformational changes was studied. The significance of disordered properties of OMM-64 and the possible function of this protein is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The determination of radioactive strontium in environmental samples by preferential ion exchange separation from calcium

    International Nuclear Information System (INIS)

    Fukushima, Hiroto; Nonaka, Nobuhiro; Honda, Tetsutaro; Kimura, Toshimasa; Higuchi, Hideo


    The determination of radioactive strontium in environmental samples involves a difficulty in the separation and purification of strontium from large amounts of calcium. The principal technique employed in this study is based on a cation exchange separation after preferential chelation of calcium over strontium by EDTA. The alkaline earth fraction separated from samples is dissolved in 1.2 M HCl and an equivalent amount of EDTA is added. The solution is passed through a Dowex 50W-X8 ion exchange column at a flow rate of 20 ml/min after the pH has been adjusted to 5.1. A fraction of calcium retained on the resin is eluted out with 1.8 l of 2 w/v% EDTA solution at pH 5.1. Then the strontium is eluted with 450 ml of 2 M HCl. The strontium carbonate is precipitated, and the chemical yield is determined. After standing for 14 days to reach the radioactive equilibrium of 90 Sr - 90 Y, the activity of 89 Sr + 90 Sr + 90 Y is measured. Then the activity of 90 Sr + 90 Y is measured by milking the 90 Y. The proposed procedure has been applied to sea water, soil and various ash samples of vegetables, seaweeds and daily foods. The results obtained are in good agreement with those by a classical fuming nitric acid precipitation method. The detection limits are 0.1 pCi/l for 10 l of sea water, 10 pCi/kg for 100 g of soil and 1 pCi/kg-fresh for 20 g ash samples, respectively. (author)

  17. The role of calcium ions and lignosulphonate plasticiser in the hydration of cement

    International Nuclear Information System (INIS)

    Grierson, L.H.; Knight, J.C.; Maharaj, R.


    Experiments involving equilibrium dialysis, conductivity, X-ray diffraction analysis (XRD), differential thermal analysis (DTA) and isothermal titration calorimetry (ITC) have been carried out to investigate the role of calcium ions and polymeric plasticisers in cement/admixture hydration. Results from a study of lignosulphonic acid, sodium salt, acetate as a plasticiser shows that a plasticiser has dual role; one mainly as a kinetic inhibitor (poison) in cement hydration mechanism and the other as a dispersant. Evidence of a weak Ca 2+ binding to lignosulphonate sulphonic moieties was found at low ionic strengths of 0.1 M using ITC. No evidence of formal Ca 2+ binding to lignosulphonate sulphonic acid moieties was found using equilibrium dialysis at higher ionic strength of 1 M (ionic strengths of 0.4 M are typically found in Portland cement pore solution), as is often suggested in cement/admixture literature

  18. Conformational constraining of inactive and active States of a seven transmembrane receptor by metal ion site engineering in the extracellular end of transmembrane segment V

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; David, Ralf; Oerlecke, Ilka


    The extracellular part of transmembrane segment V (TM-V) is expected to be involved in the activation process of 7TM receptors, but its role is far from clear. Here, we study the highly constitutively active CXC-chemokine receptor encoded by human herpesvirus 8 (ORF74-HHV8), in which a metal ion ...

  19. Extracellular Protein Kinase A Modulates Intracellular Calcium/Calmodulin-Dependent Protein Kinase II, Nitric Oxide Synthase, and the Glutamate-Nitric Oxide-cGMP Pathway in Cerebellum. Differential Effects in Hyperammonemia. (United States)

    Cabrera-Pastor, Andrea; Llansola, Marta; Felipo, Vicente


    Extracellular protein kinases, including cAMP-dependent protein kinase (PKA), modulate neuronal functions including N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation. NMDA receptor activation increases calcium, which binds to calmodulin and activates nitric oxide synthase (NOS), increasing nitric oxide (NO), which activates guanylate cyclase, increasing cGMP, which is released to the extracellular fluid, allowing analysis of this glutamate-NO-cGMP pathway in vivo by microdialysis. The function of this pathway is impaired in hyperammonemic rats. The aims of this work were to assess (1) whether the glutamate-NO-cGMP pathway is modulated in cerebellum in vivo by an extracellular PKA, (2) the role of phosphorylation and activity of calcium/calmodulin-dependent protein kinase II (CaMKII) and NOS in the pathway modulation by extracellular PKA, and (3) whether the effects are different in hyperammonemic and control rats. The pathway was analyzed by in vivo microdialysis. The role of extracellular PKA was analyzed by inhibiting it with a membrane-impermeable inhibitor. The mechanisms involved were analyzed in freshly isolated cerebellar slices from control and hyperammonemic rats. In control rats, inhibiting extracellular PKA reduces the glutamate-NO-cGMP pathway function in vivo. This is due to reduction of CaMKII phosphorylation and activity, which reduces NOS phosphorylation at Ser1417 and NOS activity, resulting in reduced guanylate cyclase activation and cGMP formation. In hyperammonemic rats, under basal conditions, CaMKII phosphorylation and activity are increased, increasing NOS phosphorylation at Ser847, which reduces NOS activity, guanylate cyclase activation, and cGMP. Inhibiting extracellular PKA in hyperammonemic rats normalizes CaMKII phosphorylation and activity, NOS phosphorylation, NOS activity, and cGMP, restoring normal function of the pathway.

  20. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion. (United States)

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian


    The application of calcium peroxide (CaO2) activated with ferrous ion to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results showed that TCE could be completely degraded in 5 min at a CaO2/Fe(II)/TCE molar ratio of 4/8/1. Probe compound tests demonstrated the presence of reactive oxygen species HO· and O2(-·) in CaO2/Fe(II) system, while scavenging tests indicated that HO· was the dominant active species responsible for TCE removal, and O2(-·) could promote TCE degradation in CaO2/Fe(II) system. In addition, the influences of initial solution pH and solution matrix were evaluated. It suggested that the elevation of initial solution pH suppressed TCE degradation. Cl(-) had significant scavenging effect on TCE removal, whereas HCO3(-) of high concentration showed favorable function. The influences of NO3(-) and SO4(2-) could be negligible, while natural organic matter (NOM) had a negative effect on TCE removal at a relatively high concentration. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites. Copyright © 2014. Published by Elsevier B.V.

  1. Quaternary Benzyltriethylammonium Ion Binding to the Na,K-ATPase: a Tool to Investigate Extracellular K+ Binding Reactions† (United States)

    Peluffo, R. Daniel; González-Lebrero, Rodolfo M.; Kaufman, Sergio B.; Kortagere, Sandhya; Orban, Branly; Rossi, Rolando C.; Berlin, Joshua R.


    This study examined how the quaternary organic ammonium ion, benzyltriethylamine (BTEA), binds to the Na,K-ATPase to produce membrane potential (VM)-dependent inhibition and tested the prediction that such a VM-dependent inhibitor would display electrogenic binding kinetics. BTEA competitively inhibited K+ activation of Na,K-ATPase activity and steady-state 86Rb+ occlusion. The initial rate of 86Rb+ occlusion was decreased by BTEA to a similar degree whether it was added to the enzyme prior to or simultaneously with Rb+, a demonstration that BTEA inhibits the Na,K-ATPase without being occluded. Several BTEA structural analogues reversibly inhibited Na,K-pump current, but none blocked current in a VM-dependent manner except BTEA and its para-nitro derivative, pNBTEA. Under conditions that promoted electroneutral K+-K+ exchange by the Na,K-ATPase, step changes in VM elicited pNBTEA-activated ouabain-sensitive transient currents that had similarities to those produced with the K+ congener, Tl+. pNBTEA- and Tl+-dependent transient currents both displayed saturation of charge moved at extreme negative and positive VM, equivalence of charge moved during and after step changes in VM, and similar apparent valence. The rate constant (ktot) for Tl+-dependent transient current asymptotically approached a minimum value at positive VM. In contrast, ktot for pNBTEA-dependent transient current was a “U”-shaped function of VM with a minimum value near 0 mV. Homology models of the Na,K-ATPase alpha subunit suggested that quaternary amines can bind to two extracellularly-accessible sites, one of them located at K+ binding sites positioned between transmembrane helices 4, 5, and 6. Altogether, these data revealed important information about electrogenic ion binding reactions of the Na,K-ATPase that are not directly measurable during ion transport by this enzyme. PMID:19621894

  2. Structural and luminescence properties of Mn{sup 2+} ions doped calcium zinc borophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Ming Hua, E-mail: [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Wong, Poh Sum, E-mail: [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Hussin, Rosli, E-mail: [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Lintang, Hendrik O., E-mail: [Catalytic Science and Technology (CST) Research Group, Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Endud, Salasiah, E-mail: [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)


    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ({sup 4}T{sub 1g} → {sup 6}A{sub 1g}). • As the concentration of Mn{sup 2+} ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn{sup 2+} ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn{sup 2+} ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper {sup 4}T{sub 1g} → {sup 6}A{sub 1g} ground state of Mn{sup 2+} ions. As the concentration of Mn{sup 2+} ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of {sup 4}T{sub 1g} level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn{sup 2+} concentrations. From the emission characteristic parameters of {sup 6}A{sub 1g} (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices.

  3. Implications of bisphosphonate calcium ion depletion interfering with desmosome epithelial seal in osseointegrated implants and pressure ulcers. (United States)

    Touyz, Louis Z G; Afrashtehfar, Kelvin I


    Osteoporosis (OP) is a global bone disease prevalent in aging in humans, especially in older women. Bisphosphonates (BPs) are commonly used as therapy for OP as it influences hard and soft tissues calcium metabolism. Mucosal and dermal ulceration with exposure of underlying bone arises from incomplete epithelial recovery due to reduced desmosome formation deriving from lack of available calcium. Pathological situations such as bisphosphonate-related osteonecrosis of the jaw have been described. This hypothesis states other situations which demand intact functional desmosomes such as healing skin over chronic pressure points leading to pressure ulcers (as well-known as bedsores, pressure sores, pressure injuries, decubitus ulcers), and hemidesmosomes such as epithelial seals in contact with titanium surfaces will have a higher prevalence of breakdown among patients being treated with BPs. This may be proven through the diminished modulation of calcium ions due to BPs, and its effect on the formation of intercellular gap junctions. Copyright © 2017. Published by Elsevier Ltd.

  4. A mathematical model of T lymphocyte calcium dynamics derived from single transmembrane protein properties

    Directory of Open Access Journals (Sweden)

    Christine Dorothee Schmeitz


    Full Text Available Fate decision processes of T lymphocytes are crucial for health and disease. Whether a T lymphocyte is activated, divides, gets anergic or initiates apoptosis depends on extracellular triggers and intracellular signalling. Free cytosolic calcium dynamics plays an important role in this context. The relative contributions of store-derived calcium entry and calcium entry from extracellular space to T lymphocyte activation are still a matter of debate. Here we develop a quantitative mathematical model of T lymphocyte calcium dynamics in order to establish a tool which allows to disentangle cause-effect relationships between ion fluxes and observed calcium time courses. The model is based on single transmembrane protein characteristics which have been determined in independent experiments. This reduces the number of unknown parameters in the model to a minimum and ensures the predictive power of the model. Simulation results are subsequently used for an analysis of whole cell calcium dynamics measured under various experimental conditions. The model accounts for a variety of these conditions, which supports the suitability of the modelling approach. The simulation results suggest a model in which calcium dynamics dominantly relies on the opening of channels in calcium stores while calcium entry through calcium-release activated channels (CRAC is more associated with the maintenance of the T lymphocyte calcium levels and prevents the cell from calcium depletion. Our findings indicate that CRAC guarantees a long-term stable calcium level which is required for cell survival and sustained calcium enhancement.

  5. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix. (United States)

    Bidlack, Felicitas B; Huynh, Chuong; Marshman, Jeffrey; Goetze, Bernhard


    An unresolved problem in tooth enamel studies has been to analyze simultaneously and with sufficient spatial resolution both mineral and organic phases in their three dimensional (3D) organization in a given specimen. This study aims to address this need using high-resolution imaging to analyze the 3D structural organization of the enamel matrix, especially amelogenin, in relation to forming enamel crystals. Chemically fixed hemi-mandibles from wild type mice were embedded in LR White acrylic resin, polished and briefly etched to expose the organic matrix in developing tooth enamel. Full-length amelogenin was labeled with specific antibodies and 10 nm immuno-gold. This allowed us to use and compare two different high-resolution imaging techniques for the analysis of uncoated samples. Helium ion microscopy (HIM) was applied to study the spatial organization of organic and mineral structures, while field emission scanning electron microscopy (FE-SEM) in various modes, including backscattered electron detection, allowed us to discern the gold-labeled proteins. Wild type enamel in late secretory to early maturation stage reveals adjacent to ameloblasts a lengthwise parallel alignment of the enamel matrix proteins, including full-length amelogenin proteins, which then transitions into a more heterogeneous appearance with increasing distance from the mineralization front. The matrix adjacent to crystal bundles forms a smooth and lacey sheath, whereas between enamel prisms it is organized into spherical components that are interspersed with rod-shaped protein. These findings highlight first, that the heterogeneous organization of the enamel matrix can be visualized in mineralized en bloc samples. Second, our results illustrate that the combination of these techniques is a powerful approach to elucidate the 3D structural organization of organic matrix molecules in mineralizing tissue in nanometer resolution.

  6. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix

    Directory of Open Access Journals (Sweden)

    Felicitas B Bidlack


    Full Text Available An unresolved problem in tooth enamel studies has been to analyze simultaneously and with sufficient spatial resolution both mineral and organic phases in their three dimensional (3D organization in a given specimen. This study aims to address this need using high-resolution imaging to analyze the 3D structural organization of the enamel matrix, especially amelogenin, in relation to forming enamel crystals. Chemically fixed hemi-mandibles from wild type mice were embedded in LR White acrylic resin, polished and briefly etched to expose the organic matrix in developing tooth enamel. Full-length amelogenin was labeled with specific antibodies and 10 nm immuno-gold. This allowed us to use and compare two different high-resolution imaging techniques for the analysis of uncoated samples. Helium ion microscopy (HIM was applied to study the spatial organization of organic and mineral structures, while field emission scanning electron microscopy (FE-SEM in various modes, including backscattered electron detection, allowed us to discern the gold-labeled proteins. Wild type enamel in late secretory to early maturation stage reveals adjacent to ameloblasts a lengthwise parallel alignment of the enamel matrix proteins, including full-length amelogenin proteins, which then transitions into a more heterogeneous appearance with increasing distance from the mineralization front. The matrix adjacent to crystal bundles forms a smooth and lacey sheath, whereas between enamel prisms it is organized into spherical components that are interspersed with rod-shaped protein. These findings highlight first, that the heterogeneous organization of the enamel matrix can be visualized in mineralized en bloc samples. Second, our results illustrate that the combination of these techniques is a powerful approach to elucidate the 3D structural organization of organic matrix molecules in mineralizing tissue in nanometer resolution.

  7. Comparing the erosive effect of Iranian soft drinks with standard samples; A Calcium ion analysis

    Directory of Open Access Journals (Sweden)

    Fallahinejad Ghajari M.


    Full Text Available Background and Aim: Extensive and continuous consumption of acidic drinks is the main cause of enamel erosion in human teeth. The purpose of this study was to compare the erosive potential of two Iranian drinks with those of two imported ones. Materials and Methods: Two Iranian drinks (Cola Zamzam and Orange Zamzam and two imported ones (Pepsi and Miranda were studied in this experimental invitro study. 120 intact premolar teeth, extracted for orthodontic reasons were divided into 3 equal groups (A, B and C. Each group was exposed to one of the drinks for exposure times of: A: 15 minutes, B: 45 minutes and C: 12 hours. Each group was divided into 4 subgroups (each containing 10 teeth, which were exposed to 20 ml of one of the 4 drinks. The exposed surface was the same in all samples (a 5 mm in diameter semi circular window. The amount of Ca++ ion (mg/ml added to each drink at the end of exposure time was estimated by atomic absorption spectrophotometer. Results: 2 way ANOVA showed that the drinks were significantly different with regard to released Calcium ion. Time had significant effect on erosive potential. The two mentioned factors had significant interaction (P<0.001. The most erosive effect was seen in 12 hours in all of the drinks. The erosive effect of Orange Zamzam in 15 minutes and Pepsi in 45 minutes and 12 hours was significantly more than other groups (P<0.001. Conclusions: Pepsi had the most long term erosive effect among the four drinks, and Cola Zamzam had the least erosive potential.

  8. Entrapment of active ion-permeable cyanobacteria (Anacystis nidulans) in calcium alginate

    Energy Technology Data Exchange (ETDEWEB)

    Papageorgiou, G.C.; Kalosaka, K.; Sotiropoulou, G.; Barbotin, J.N.; Thomasset, B.; Thomas, T.


    Cells of the unicellular cyanobacterium Anacystis nidulans were made permeable to ions by treating them with lysozyme and EDTA in a way that leaves the photosynthetic water-splitting function, the photoreduction of exogenous oxidants and the peptidoglycan exoskeleton of the cell virtually intact. The permeabilized cells (permeaplasts) were subsequently immobilized by entrapment in calcium alginate beads. The immobilized preparation exhibits remarkable stability both on storage and in action. On prolonged storage at room temperature in darkness, its photosynthetic activity deteriorates one-third as fast as the activity of immobilized intact cells. Illumination accelerates deactivation. Tested in prolonged runs, however, performed in an illuminated open reactor, alginate-immobilized Anacystis permeaplasts were capable of photoreducing ionic oxidants (ferricyanide) and of exporting ionic reductants (ferrocyanide) to the suspension medium continuously for more than 5 h before being totally inactivated. It is also shown that the major impediment to the photoreduction performance of immobilized permeaplasts arises from diffusion limitations, while the photonic limitation due to light reflection and scattering is approx. 7%.

  9. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells

    International Nuclear Information System (INIS)

    O'Hara, M.B.; Hageman, J.H.


    The authors have shown, with an optimized [ 14 C]leucine-labeling and chasing procedure, that intracellular protein degradation in sporulating cells of Bacillus subtilis 168 (trpC2) is apparently energy dependent. Sodium arsenate, sodium azide, carbonyl cyanide m-chlorophenylhydrozone, and N,N'-dicyclohexylcarbodiimide, at levels which did not induce appreciable lysis (≤ 10%) over 10-h periods of sporulation, inhibited intracellular proteolysis by 13 to 93%. Exponentially growing cells acquired arsenate resistance. In contrast to earlier reports, the authors found that chloramphenicol strongly inhibited proteolysis even when added 6 h into the sporulation process. Restricting the calcium ion concentration in the medium had no effect on rates or extent of vegetative growth, strongly inhibited sporulation, and inhibited rates of proteolysis by 60% or more. Inhibitors of energy metabolism, at the same levels which inhibited proteolysis, did not affect the rate or degree of uptake of Ca 2+ by cells. Restricting the Ca 2+ concentration in the medium reduced by threefold of the specific activity in cells of the major intracellular serine proteinase after 12 h of sporulation. finally, cells of a mutant of B. subtilis bearing an insertionally inactivated gene for the Ca 2+ -dependent intracellular proteinase-1 degraded protein in chemically defined sporulation medium at a rate indistinguishable from that of the wild-type cells for period of 8 h

  10. Use of multiple singular value decompositions to analyze complex intracellular calcium ion signals

    KAUST Repository

    Martinez, Josue G.


    We compare calcium ion signaling (Ca(2+)) between two exposures; the data are present as movies, or, more prosaically, time series of images. This paper describes novel uses of singular value decompositions (SVD) and weighted versions of them (WSVD) to extract the signals from such movies, in a way that is semi-automatic and tuned closely to the actual data and their many complexities. These complexities include the following. First, the images themselves are of no interest: all interest focuses on the behavior of individual cells across time, and thus, the cells need to be segmented in an automated manner. Second, the cells themselves have 100+ pixels, so that they form 100+ curves measured over time, so that data compression is required to extract the features of these curves. Third, some of the pixels in some of the cells are subject to image saturation due to bit depth limits, and this saturation needs to be accounted for if one is to normalize the images in a reasonably un-biased manner. Finally, the Ca(2+) signals have oscillations or waves that vary with time and these signals need to be extracted. Thus, our aim is to show how to use multiple weighted and standard singular value decompositions to detect, extract and clarify the Ca(2+) signals. Our signal extraction methods then lead to simple although finely focused statistical methods to compare Ca(2+) signals across experimental conditions.

  11. Molecular and functional profiling of histamine receptor-mediated calcium ion signals in different cell lines. (United States)

    Meisenberg, Annika; Kaschuba, Dagmar; Balfanz, Sabine; Jordan, Nadine; Baumann, Arnd


    Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. An approach to the research on ion and water properties in the interphase between the plasma membrane and bulk extracellular solution. (United States)

    Hibino, Hiroshi; Takai, Madoka; Noguchi, Hidenori; Sawamura, Seishiro; Takahashi, Yasufumi; Sakai, Hideki; Shiku, Hitoshi


    In vivo, cells are immersed in an extracellular solution that contains a variety of bioactive substances including ions and water. Classical electrophysiological analyses of epithelial cells in the stomach and small intestine have revealed that within a distance of several hundred micrometers above their apical plasma membrane, lies an extracellular layer that shows ion concentration gradients undetectable in the bulk phase. This "unstirred layer", which contains stagnant solutes, may also exist between the bulk extracellular solution and membranes of other cells in an organism and may show different properties. On the other hand, an earlier study using a bacterial planar membrane indicated that H + released from a transporter migrates in the horizontal direction along the membrane surface much faster than it diffuses vertically toward the extracellular space. This result implies that between the membrane surface and unstirred layer, there is a "nanointerface" that has unique ionic dynamics. Advanced technologies have revealed that the nanointerface on artificial membranes possibly harbors a highly ordered assembly of water molecules. In general, hydrogen bonds are involved in formation of the ordered water structure and can mediate rapid transfer of H + between neighboring molecules. This description may match the phenomenon on the bacterial membrane. A recent study has suggested that water molecules in the nanointerface regulate the gating of K + channels. Here, the region comprising the unstirred layer and nanointerface is defined as the interphase between the plasma membrane and bulk extracellular solution (iMES). This article briefly describes the physicochemical properties of ions and water in the iMES and their physiological significance. We also describe the methodologies that are currently used or will be applicable to the interphase research.

  13. [Role of calcium ions in the mechanism of action of acetylcholine on energy metabolism in rat liver mitochondria]. (United States)

    Vatamaniuk, M Z; Artym, V V; Kuka, O B; Doliba, M M; Shostakovs'ka, I V


    It is shown that administration of acetylcholine to animals (50 micrograms per 100 g of body weight) leads to the activation of respiration and oxidative phosphorylation in the rat liver mitochondria under oxidation of alpha-ketoglutarate; this effect depends on the concentration of calcium ions in the incubation medium of mitochondria. The rate of ADP-stimulated respiration of mitochondria of experimental animals reaches its maximum level under lower concentrations of Ca2+ than in the control animals. The results of investigation of dependence of acetyl choline effect on respiration of mitochondria on the concentration of alpha-ketoglutarate in calcium and calcium-free incubation medium have shown that the half-maximum effect of acetylcholine is observed in calcium medium at lower concentration of the substrate than in calcium-free medium. The latter indicates to the increase of affinity of alpha-ketoglutarate dehydrogenase to alpha-ketoglutarate under these conditions. It is found out that acetylcholine (1.10(-8) M) increases the rate of ADP- and Ca(2+)-stimulated respiration of mitochondria of isolated perfused rat liver, while mutual effect of verapamyl and niphedipin removes this effect.

  14. Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells

    Czech Academy of Sciences Publication Activity Database

    Klíma, Petr; Laňková, Martina; Vandenbussche, F.; Van Der Straeten, D.; Petrášek, Jan


    Roč. 37, č. 5 (2018), s. 809-818 ISSN 0721-7714 R&D Projects: GA ČR GA16-10948S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : Auxin * Calcium * Ethylene * Silver ions * Tobacco BY-2 cells * Transmembrane transport Subject RIV: ED - Physiology OBOR OECD: Cell biology Impact factor: 2.869, year: 2016

  15. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration. (United States)

    Fearnley, Gareth W; Bruns, Alexander F; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan


    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response. © 2015. Published by The Company of Biologists Ltd.

  16. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley


    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  17. Multistability in a neuron model with extracellular potassium dynamics (United States)

    Wu, Xing-Xing; Shuai, J. W.


    Experiments show a primary role of extracellular potassium concentrations in neuronal hyperexcitability and in the generation of epileptiform bursting and depolarization blocks without synaptic mechanisms. We adopt a physiologically relevant hippocampal CA1 neuron model in a zero-calcium condition to better understand the function of extracellular potassium in neuronal seizurelike activities. The model neuron is surrounded by interstitial space in which potassium ions are able to accumulate. Potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion are regulatory mechanisms of extracellular potassium. We also consider a reduced model with a fixed potassium concentration. The bifurcation structure and spiking frequency of the two models are studied. We show that, besides hyperexcitability and bursting pattern modulation, the potassium dynamics can induce not only bistability but also tristability of different firing patterns. Our results reveal the emergence of the complex behavior of multistability due to the dynamical [K+]o modulation on neuronal activities.

  18. Proton concentrations can be a major contributor to the modification of osteoclast and osteoblast differentiation, working independently of extracellular bicarbonate ions. (United States)

    Kato, Kohtaro; Matsushita, Misao


    We established a system to separately analyze the role of protons and bicarbonate ions in vitro in which the pH of the medium was controlled by HEPES at various concentrations of sodium bicarbonate (NaHCO3) in the absence of carbon dioxide (CO2). Using this system, we demonstrated that acidosis promoted osteoclast formation independently of extracellular NaHCO3 in a short-term culture. Protons and bicarbonate ions acted on osteoclast differentiation with opposite effects, the former positively and the latter negatively. The HEPES-based system maintained pH in the absence of extracellular NaHCO3 without CO2. Therefore, we could demonstrate that osteoblast differentiation was promoted at higher pH in a long-term culture system without NaHCO3 in which ALP activity and nodule mineralization were enhanced. This finding indicates that protons negatively control osteoblast differentiation independently of extracellular bicarbonate ions. However, the difference in the concentration of NaHCO3 did not have any influence on nodule mineralization. The opposite effects of protons, the promotion of osteoclast formation and the inhibition of osteoblast differentiation, were suppressed in the presence of 5 mM N-acetyl cysteine, a reagent activating the scavenging of reactive oxygen species (ROS), implying that ROS act on both systems, the promotion of large osteoclast formation and the deterioration of osteoblast formation under acidosis.

  19. Ion-exchanged calcium from calcium carbonate and low-rank coals: high catalytic activity in steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, Y.; Asami, K. [Tokoku University, Sendai (Japan). Inst. for Chemical Reaction Science


    Interactions between CaCO{sub 3} and low-rank coals were examined, and the steam gasification of the resulting Ca-loaded coals was carried out at 973 K with a thermobalance. Chemical analysis and FT-IR spectra show that CaCO{sub 3} can react readily with COOH groups to form ion-exchanged Ca and CO{sub 2} when mixed with brown coal in water at room temperature. The extent of the exchange is dependent on the crystalline form of CaCO{sub 3}, and higher for aragonite naturally present in seashells and coral reef than for calcite from limestone. The FT-IR spectra reveal that ion-exchange reactions also proceed during kneading CaCO{sub 3} with low-rank coals. The exchanged Ca promotes gasification and achieves 40-60 fold rate enhancement for brown coal with a lower content of inherent minerals. Catalyst effectiveness of kneaded CaCO{sub 3} depends on the coal type, in other words, the extent of ion exchange. 11 refs., 7 figs., 3 tabs.


    Greenawalt, John W.; Rossi, Carlo S.; Lehninger, Albert L.


    Rat liver mitochondria allowed to accumulate maximal amounts of Ca++ and HPO4 = ions from the suspending medium in vitro during respiration have a considerably higher specific gravity than normal mitochondria and may be easily separated from the latter by isopycnic centrifugation in density gradients of sucrose or cesium chloride. When the mitochondria are allowed to accumulate less than maximal amounts of Ca++ and HPO4 = from the medium, they have intermediate specific gravities which are roughly proportional to their content of calcium phosphate. Maximally "loaded" mitochondria are relatively homogeneous with respect to specific gravity. Correlated biochemical and electron microscopic studies show that Ca++-loaded mitochondria contain numerous dense granules, of which some 85 per cent are over 500 A in diameter. These granules are electron-opaque not only following fixation and staining with heavy metal reagents, but also following fixation with formaldehyde, demonstrating that the characteristic granules in Ca++-loaded mitochondria have intrinsic electron-opacity. The dense granules are almost always located within the inner compartment of the mitochondria and not in the space between the inner and outer membranes. They are frequently located at or near the cristae and they often show electron-transparent "cores." Such granules appear to be made up of clusters of smaller dense particles, but preliminary x-ray diffraction analysis and electron diffraction studies have revealed no evidence of crystallinity in the deposits. The electron-opaque granules decrease in number when the Ca++-loaded mitochondria are incubated with 2,4-dinitrophenol; simultaneously there is discharge of Ca++ and phosphate from the mitochondria into the medium. PMID:14228516

  1. Mechanical characterization and ion release of bioactive dental composites containing calcium phosphate particles. (United States)

    Natale, Livia C; Rodrigues, Marcela C; Alania, Yvette; Chiari, Marina D S; Boaro, Leticia C C; Cotrim, Marycel; Vega, Oscar; Braga, Roberto R


    to verify the effect of the addition of dicalcium phosphate dihydrate (DCPD) particles functionalized with di- or triethylene glycol dimethacrylate (DEGDMA or TEGDMA) on the degree of conversion (DC), post-gel shrinkage (PS), mechanical properties, and ion release of experimental composites. Four composites were prepared containing a BisGMA/TEGDMA matrix and 60 vol% of fillers. The positive control contained only barium glass fillers, while in the other composites 15 vol% of the barium was replaced by DCPD. Besides the functionalized particles, non-functionalized DCPD was also tested. DC after 24 h (n = 3) was determined by FTIR spectroscopy. The strain gage method was used to obtain PS 5 min after photoactivation (n = 5). Flexural strength and modulus (n = 10) were calculated based on the biaxial flexural test results, after specimen storage for 24 h or 60 days in water. The same storage times were used for fracture toughness testing (FT, n = 10). Calcium and phosphate release up to 60 days was quantified by ICP-OES (n = 3). Data were analyzed by ANOVA/Tukey test (alpha: 5%). Composites containing functionalized DCPD presented higher DC than the control (p composites (p composite with DEGDMA-functionalized DCPD presented fracture strength similar to the control, while for flexural modulus only the composite with TEGDMA-functionalized particles was lower than the control (p composites containing DCPD was higher than the control after 60 days (p composite with non-functionalized DCPD at 15 days and no significant reductions were observed for composites with functionalized DCPD during the observation period (p composites, phosphate release was higher at 15 days than in the subsequent periods, and no difference among them was recorded at 45 and 60 days (p composite with DEGDMA-functionalized particles was the only material with strength similar to the control after 60 days in water; however, it also presented the highest

  2. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans. (United States)

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan


    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems.

  3. Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic Calcium Elevations in Arabidopsis during Aphid Feeding[OPEN (United States)

    Vincent, Thomas R.; Avramova, Marieta; Canham, James; Higgins, Peter; Bilkey, Natasha; Mugford, Sam T.; Pitino, Marco; Toyota, Masatsugu


    A transient rise in cytosolic calcium ion concentration is one of the main signals used by plants in perception of their environment. The role of calcium in the detection of abiotic stress is well documented; however, its role during biotic interactions remains unclear. Here, we use a fluorescent calcium biosensor (GCaMP3) in combination with the green peach aphid (Myzus persicae) as a tool to study Arabidopsis thaliana calcium dynamics in vivo and in real time during a live biotic interaction. We demonstrate rapid and highly localized plant calcium elevations around the feeding sites of M. persicae, and by monitoring aphid feeding behavior electrophysiologically, we demonstrate that these elevations correlate with aphid probing of epidermal and mesophyll cells. Furthermore, we dissect the molecular mechanisms involved, showing that interplay between the plant defense coreceptor BRASSINOSTEROID INSENSITIVE-ASSOCIATED KINASE1 (BAK1), the plasma membrane ion channels GLUTAMATE RECEPTOR-LIKE 3.3 and 3.6 (GLR3.3 and GLR3.6), and the vacuolar ion channel TWO-PORE CHANNEL1 (TPC1) mediate these calcium elevations. Consequently, we identify a link between plant perception of biotic threats by BAK1, cellular calcium entry mediated by GLRs, and intracellular calcium release by TPC1 during a biologically relevant interaction. PMID:28559475

  4. Molecular imaging of in vivo calcium ion expression in area postrema of total sleep deprived rats: Implications for cardiovascular regulation by TOF-SIMS analysis (United States)

    Mai, Fu-Der; Chen, Li-You; Ling, Yong-Chien; Chen, Bo-Jung; Wu, Un-In; Chang, Hung-Ming


    Excessive calcium influx in chemosensitive neurons of area postrema (AP) is detrimental for sympathetic activation and participates in the disruption of cardiovascular activities. Since total sleep deprivation (TSD) is a stressful condition known to harm the cardiovascular function, the present study is aimed to determine whether the in vivo calcium expression in AP would significantly alter following TSD by the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and calretinin (a specific calcium sensor protein in AP neurons) immunohistochemistry. The results indicated that in normal rats, the calcium intensity was estimated to be 0.5 × 10 5 at m/ z 40.08. However, following TSD, the intensity for calcium ions was greatly increased to 1.2 × 10 5. Molecular imaging revealed that after TSD, various strongly expressed calcium signals were distributed throughout AP with clear identified profiles instead of randomly scattered within this region in normal rats. Immunohistochemical staining corresponded well with ionic image in which a majority of calcium-enriched gathering co-localized with calretinin positive neurons. The functional significance of TSD-induced calcium augmentation was demonstrated by increased heart rate and mean arterial pressure, clinical markers for cardiovascular dysfunction. Considering AP-mediated sympathetic activation is important for cardiovascular regulation, exaggerated calcium influx in AP would render this neurocircuitry more vulnerable to over-excitation, which might serve as the underlying mechanism for the development of TSD-relevant cardiovascular deficiency.

  5. Specifically colorimetric recognition of calcium, strontium, and barium ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles and its use in reliable detection of calcium ion in water. (United States)

    Zhang, Jia; Wang, Yong; Xu, Xiaowen; Yang, Xiurong


    A colorimetric probe based on 2-mercaptosuccinic acid-functionalized gold nanoparticles has been developed to exhibit selectivity towards Ca(2+), Sr(2+), and Ba(2+) ions over other metallic cations under specified conditions and finds its practical application in detecting Ca(2+) levels in water.

  6. Orthodontic cement with protein-repellent and antibacterial properties and the release of calcium and phosphate ions. (United States)

    Zhang, Ning; Weir, Michael D; Chen, Chen; Melo, Mary A S; Bai, Yuxing; Xu, Hockin H K


    White spot lesions often occur in orthodontic treatments. The objective of this study was to develop a novel resin-modified glass ionomer cement (RMGI) as an orthodontic cement with protein-repellent, antibacterial and remineralization capabilities. Protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC), antibacterial dimethylaminohexadecyl methacrylate (DMAHDM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into a RMGI. Enamel shear bond strength (SBS) was determined. Calcium (Ca) and phosphate (P) ion releases were measured. Protein adsorption onto specimens was determined by a micro bicinchoninic acid method. A dental plaque microcosm biofilm model was tested. Increasing the NACP filler level increased the Ca and P ion release. Decreasing the solution pH increased the ion release. Incorporating MPC into RMGI reduced protein adsorption, which was an order of magnitude less than that of commercial controls. Adding DMAHDM and NAg into RMGI yielded a strong antibacterial function, greatly reducing biofilm viability and acid production. Biofilm CFU counts on the multifunctional orthodontic cement were 3 orders of magnitude less than that of commercial control (p0.1). A novel multifunctional orthodontic cement was developed with strong antibacterial and protein-repellent capabilities for preventing enamel demineralization. The new cement is promising to prevent white spot lesions in orthodontic treatments. The method of incorporating four bioactive agents may have wide applicability to the development of other bioactive dental materials to inhibit caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Inactivation of Mechanically Activated Piezo1 Ion Channels Is Determined by the C-Terminal Extracellular Domain and the Inner Pore Helix

    Directory of Open Access Journals (Sweden)

    Jason Wu


    Full Text Available Piezo proteins form mechanically activated ion channels that are responsible for our sense of light touch, proprioception, and vascular blood flow. Upon activation by mechanical stimuli, Piezo channels rapidly inactivate in a voltage-dependent manner through an unknown mechanism. Inactivation of Piezo channels is physiologically important, as it modulates overall mechanical sensitivity, gives rise to frequency filtering of repetitive mechanical stimuli, and is itself the target of numerous human disease-related channelopathies that are not well understood mechanistically. Here, we identify the globular C-terminal extracellular domain as a structure that is sufficient to confer the time course of inactivation and a single positively charged lysine residue at the adjacent inner pore helix as being required for its voltage dependence. Our results are consistent with a mechanism for inactivation that is mediated through voltage-dependent conformations of the inner pore helix and allosteric coupling with the C-terminal extracellular domain.

  8. The role of calcium ions in the photocatalytic oxidation of humic acid at neutral pH. (United States)

    Mariquit, Eden G; Salim, Chris; Hinode, Hirofumi


    Humic acids (HAs) are natural organic matter derived from the decomposition of plant, algal, and microbial materials. They belong to the group of the most predominant type of natural organic matter present in ground and surface waters. HAs affect the mobility and bioavailability of aquatic contaminants. However, if they are left unremoved from the water before water treatment processes, they can form carcinogenic disinfection by-products, such as trihalomethanes, haloacetic acids, and other halogenated disinfection by-products, that can pose a threat to human beings. An advanced oxidation process using UV light and a commercially available titanium dioxide was used to oxidize HA at a pH that is similar to that of natural water. The effect of adding calcium ions to the adsorption and the photocatalytic oxidation of HAs was studied. The effect of varying the TiO(2) load was also investigated. The experiment was done using a photochemical batch reactor equipped with a mercury lamp emitting light with wavelengths of 310-580 nm. The absorbances by the samples were determined at wavelengths of 254 nm and 436 nm, which represent the aromatic-compound content of and the color of the solution, respectively. Results indicated calcium ions have an effect on both the adsorption and the photocatalytic oxidation of HA at a pH within 8.0 +/- 0.5. Calcium ions facilitated adsorption of HA onto the surface of TiO(2) and resulted to faster photocatalytic oxidation. The data were plotted with respect to the normalized absorbances and irradiation time.

  9. An overview of techniques for the measurement of calcium distribution, calcium fluxes, and cytosolic free calcium in mammalian cells

    International Nuclear Information System (INIS)

    Borle, A.B.


    An array of techniques can be used to study cell calcium metabolism that comprises several calcium compartments and many types of transport systems such as ion channels, ATP-dependent pumps, and antiporters. The measurement of total call calcium brings little information of value since 60 to 80% of total cell calcium is actually bound to the extracellular glycocalyx. Cell fractionation and differential centrifugation have been used to study intracellular Ca 2+ compartmentalization, but the methods suffer from the possibility of Ca 2+ loss or redistribution among cell fractions. Steady-state kinetic analyses of 45 Ca uptake or desaturation curves have been used to study the distribution of Ca 2+ among various kinetic pools in living cells and their rate of Ca 2+ exchange, but the analyses are constrained by many limitations. Nonsteady-state tracer studies can provide information about rapid changes in calcium influx or efflux in and out of the cell. Zero-time kinetics of 45 Ca uptake can detect instantaneous changes in calcium influx, while 45 Ca fractional efflux ratio, can detect rapid stimulations or inhibitions of calcium efflux out of cells. The best strategy to study cell calcium metabolism is to use several different methods that focus on a specific problem from widely different angles

  10. Extracellular and circulating redox- and metalloregulated eRNA and eRNP: copper ion-structured RNA cytokines (angiotropin ribokines) and bioaptamer targets imparting RNA chaperone and novel biofunctions to S100-EF-hand and disease-associated proteins. (United States)

    Wissler, Josef H


    Bioassays for cellular differentiation and tissue morphogenesis were used to design methods for isolation of bioactive redox- and metalloregulated nucleic acids and copper ion complexes with proteins from extracellular, circulating, wound, and supernatant fluids of cultured cells. In extracellular biospheres, diversities of nucleic acids were found to be secreted by cells upon activation. They may reflect nucleic acid biolibraries with molecular imprints of cellular history. After removal of protein components, eRNA prototypes exuded by activated cells were sequenced. They are small, endogenous, highly modified and edited, redox- and metalloregulated 5'-end phosphorylated extracellular eRNA (approximately 2-200 bases) with cellular, enzymic, and bioaptamer functions. Fenton-type OH* radical redox reactions may form modified nucleotides in RNA as wobbles eRNA per se, or as copper ion-complex with protein (e.g., S100A12-EF-hand protein, angiotropin-related protein, calgranulin-C, hippocampal neurite differentiation factor) are shown to be bioactive in vivo and in vitro as cytokines (ribokines) and as nonmitogenic angiomorphogens for endothelial cell differentiation in the formation of organoid supracellular capillary structures. As bioaptamers, copper ion-structured eRNA imparts novel biofunctions to proteins that they do not have on their own. The origin of extracellular RNA and intermediate precursors (up to 500 bases) was traced to intracellular parent nucleic acids. Intermediate precursors with and without partial homology were found. This suggests that bioaptamers are not directly retranslatable gene products. Metalloregulated eRNA bioaptamer function was investigated by domains (e.g. 5'...CUG...3' hairpin loop) for folding, bioactivity, and binding of protein with copper, calcium, and alkali metal ion affinity. Vice versa, metalloregulated nucleic acid-binding domains (K3H, R3H) in proteins were identified. Interaction of protein and eRNA docking potentials

  11. Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: I. Chemical analysis

    International Nuclear Information System (INIS)

    Neji, M.; Bary, B.; Le Bescop, P.; Burlion, N.


    This paper presents the first part of a theoretical and experimental work aiming at modeling the chemo-mechanical behavior of composites made up of ion exchange resins (IER) solidified in a tri-calcium silicate cement paste (C_3S). Because of ion exchange processes, the volume change of the IER may cause internal pressures leading to the degradation of the material. In this study, a predictive modeling is developed for describing the chemical behavior of such material. It is based on thermodynamic equilibria to determine the evolution of the ion exchange processes, and the potential precipitation of portlandite in the composite. In parallel, a phenomenological study has been set up to understand chemical phenomena related to the swelling mechanisms. The model created has been finally implemented in a finite elements software; the simulation of a laboratory test has been performed and the results compared to experimental data. - Highlights: • Ion exchange theory to model the swelling behavior of Ion exchange resin. • Experimental phenomenon analysis about Chemo-mechanical interaction between IER and cement paste matrix. • Chemo-Transport modeling on a composite material made with IER embedded into cement paste matrix.

  12. Drugability of extracellular targets: discovery of small molecule drugs targeting allosteric, functional, and subunit-selective sites on GPCRs and ion channels. (United States)

    Grigoriadis, Dimitri E; Hoare, Samuel R J; Lechner, Sandra M; Slee, Deborah H; Williams, John A


    Beginning with the discovery of the structure of deoxyribose nucleic acid in 1953, by James Watson and Francis Crick, the sequencing of the entire human genome some 50 years later, has begun to quantify the classes and types of proteins that may have relevance to human disease with the promise of rapidly identifying compounds that can modulate these proteins so as to have a beneficial and therapeutic outcome. This so called 'drugable space' involves a variety of membrane-bound proteins including the superfamily of G-protein-coupled receptors (GPCRs), ion channels, and transporters among others. The recent number of novel therapeutics targeting membrane-bound extracellular proteins that have reached the market in the past 20 years however pales in magnitude when compared, during the same timeframe, to the advancements made in the technologies available to aid in the discovery of these novel therapeutics. This review will consider select examples of extracellular drugable targets and focus on the GPCRs and ion channels highlighting the corticotropin releasing factor (CRF) type 1 and gamma-aminobutyric acid receptors, and the Ca(V)2.2 voltage-gated ion channel. These examples will elaborate current technological advancements in drug discovery and provide a prospective framework for future drug development.

  13. The effect of CPP-ACP-propolis chewing gum on calcium and phosphate ion release on caries-active subjects’ saliva and the formation of Streptococcus mutans biofilm (United States)

    Hasnamudhia, F.; Bachtiar, E. W.; Sahlan, M.; Soekanto, S. A.


    The aim of this study was to analyze the effect of CPP-APP and propolis wax if they are combined in a chewing gum formulation, observed from the calcium and phosphate ion level released by CPP-ACP and the emphasis of Streptococcus mutans mass in the biofilm by propolis wax on caries-active subjects’ saliva. Chewing gum simulation was done in vitro on 25 caries-active subjects’ saliva using five concentrations of chewing gum (0% propolis + 0% CPP-ACP, 0% propolis + CPP-ACP, 2% propolis + CPP-ACP, 4% propolis + CPP-ACP, and 6% propolis + CPP-ACP) and was then tested using an atomic absorption spectrophotometer to analyze calcium ion levels, an ultraviolet-visible spectrophotometer to analyze phosphate ion levels, and a biofilm assay using crystal violet to analyze the decline in biofilm mass. After the chewing simulation, calcium ion levels on saliva+gum eluent increased significantly compared to the saliva control, with the highest calcium level released by CPP-ACP + 2% propolis chewing gum. There was an insignificant phosphate level change between the saliva control and saliva+gum eluent. There was also a significant decline of S. mutans biofilm mass in the saliva+gum eluent, mostly by the CPP-ACP chewing gum and CPP-ACP + 6% propolis. The CPP-ACP-propolis chewing gum simulation generated the largest increase in calcium and phosphate ion level and the largest decline in S. mutans biofilm mass.

  14. Removal of calcium and magnesium ions from hard water using modified Amorphophallus campanulatus skin as a low cost adsorbent

    Directory of Open Access Journals (Sweden)

    Lestari Ajeng Yulianti Dwi


    Full Text Available Low cost adsorbent from Amorphophallus campanulatus skin has successfully synthesized to remove calcium and magnesium ions in the syntetic hard water. A. campanulatus skin were dried, crushed into powder form and modified by acid modification. A batch experiment with various parameters was used in this research. Various isotherm models were applied to fit the experimental data. Adsorption capacity of Ca and Mg on KB and KM adsorbents in 100 ppm solution respectively 10,85 mg/g, 27,64 mg/g, 1,79 mg/g and 20,1 mg/g. It was found out that the adsorption behavior of hard mineral ions by adsorbents match well with the Dubinin Radushkevich isotherm model. Based on the result, it can be concluded that a acid modified A. campanulatus skin is quite potential as a new low cost adsorbent which is expected to be applied to Indonesian groundwater which have high degree of hardness.

  15. Neurotransmitter modulation of extracellular H+ fluxes from isolated retinal horizontal cells of the skate (United States)

    Molina, Anthony J A; Verzi, Michael P; Birnbaum, Andrea D; Yamoah, Ebenezer N; Hammar, Katherine; Smith, Peter J S; Malchow, Robert Paul


    Self-referencing H+-selective microelectrodes were used to measure extracellular H+ fluxes from horizontal cells isolated from the skate retina. A standing H+ flux was detected from quiescent cells, indicating a higher concentration of free hydrogen ions near the extracellular surface of the cell as compared to the surrounding solution. The standing H+ flux was reduced by removal of extracellular sodium or application of 5-(N-ethyl-N-isopropyl) amiloride (EIPA), suggesting activity of a Na+–H+ exchanger. Glutamate decreased H+ flux, lowering the concentration of free hydrogen ions around the cell. AMPA/kainate receptor agonists mimicked the response, and the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) eliminated the effects of glutamate and kainate. Metabotropic glutamate agonists were without effect. Glutamate-induced alterations in H+ flux required extracellular calcium, and were abolished when cells were bathed in an alkaline Ringer solution. Increasing intracellular calcium by photolysis of the caged calcium compound NP-EGTA also altered extracellular H+ flux. Immunocytochemical localization of the plasmalemma Ca2+–H+-ATPase (PMCA pump) revealed intense labelling within the outer plexiform layer and on isolated horizontal cells. Our results suggest that glutamate modulation of H+ flux arises from calcium entry into cells with subsequent activation of the plasmalemma Ca2+–H+-ATPase. These neurotransmitter-induced changes in extracellular pH have the potential to play a modulatory role in synaptic processing in the outer retina. However, our findings argue against the hypothesis that hydrogen ions released by horizontal cells normally act as the inhibitory feedback neurotransmitter onto photoreceptor synaptic terminals to create the surround portion of the centre-surround receptive fields of retinal neurones. PMID:15272044

  16. Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR

    Directory of Open Access Journals (Sweden)

    Mercè eIzquierdo-Serra


    Full Text Available A wide range of light-activated molecules (photoswitches and phototriggers have been used to the study of computational properties of an isolated neuron by acting pre and postsynaptically. However, new tools are being pursued to elicit a presynaptic calcium influx that triggers the release of neurotransmitters, most of them based in calcium-permeable Channelrhodopsin-2 mutants. Here we describe a method to control exocytosis of synaptic vesicles through the use of a light-gated glutamate receptor (LiGluR, which has recently been demonstrated that supports secretion by means of calcium influx in chromaffin cells. Expression of LiGluR in hippocampal neurons enables reversible control of neurotransmission with light, and allows modulating the firing rate of the postsynaptic neuron with the wavelength of illumination. This method may be useful for the determination of the complex transfer function of individual synapses.

  17. Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting. (United States)

    Swainsbury, David J K; Martin, Elizabeth C; Vasilev, Cvetelin; Parkes-Loach, Pamela S; Loach, Paul A; Neil Hunter, C


    The reaction centre-light harvesting 1 (RC-LH1) complex of Thermochromatium (Tch.) tepidum has a unique calcium-ion binding site that enhances thermal stability and red-shifts the absorption of LH1 from 880nm to 915nm in the presence of calcium-ions. The LH1 antenna of mesophilic species of phototrophic bacteria such as Rhodobacter (Rba.) sphaeroides does not possess such properties. We have engineered calcium-ion binding into the LH1 antenna of Rba. sphaeroides by progressively modifying the native LH1 polypeptides with sequences from Tch. tepidum. We show that acquisition of the C-terminal domains from LH1 α and β of Tch. tepidum is sufficient to activate calcium-ion binding and the extent of red-shifting increases with the proportion of Tch. tepidum sequence incorporated. However, full exchange of the LH1 polypeptides with those of Tch. tepidum results in misassembled core complexes. Isolated α and β polypeptides from our most successful mutant were reconstituted in vitro with BChl a to form an LH1-type complex, which was stabilised 3-fold by calcium-ions. Additionally, carotenoid specificity was changed from spheroidene found in Rba. sphaeroides to spirilloxanthin found in Tch. tepidum, with the latter enhancing in vitro formation of LH1. These data show that the C-terminal LH1 α/β domains of Tch. tepidum behave autonomously, and are able to transmit calcium-ion induced conformational changes to BChls bound to the rest of a foreign antenna complex. Thus, elements of foreign antenna complexes, such as calcium-ion binding and blue/red switching of absorption, can be ported into Rhodobacter sphaeroides using careful design processes. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions. (United States)

    Sarjit, Amreeta; Wang, Yi; Dykes, Gary A


    Gallic acid has been suggested as a potential antimicrobial for the control of Campylobacter but its effectiveness is poorly studied. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of gallic acid against Campylobacter jejuni (n = 8) and Campylobacter coli (n = 4) strains was determined. Gallic acid inhibited the growth of five C. jejuni strains and three C. coli strains (MIC: 15.63-250 μg mL(-1)). Gallic acid was only bactericidal to two C. coli strains (MBC: 125 and 62.5 μg mL(-1)). The mechanism of the bactericidal effect against these two strains (and selected non-susceptible controls) was investigated by determining decimal reduction times and by monitoring the loss of cellular content and calcium ions, and changes in cell morphology. Gallic acid did not result in a loss of cellular content or morphological changes in the susceptible strains as compared to the controls. Gallic acid resulted in a loss of calcium ions (0.58-1.53 μg mL(-1) and 0.54-1.17 μg mL(-1), respectively, over a 180 min period) from the susceptible strains but not the controls. Gallic acid is unlikely to be an effective antimicrobial against Campylobacter in a practical sense unless further interventions to ensure an effective bactericidal mode of action against all strains are developed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Cartap-induced cytotoxicity in mouse C2C12 myoblast cell line and the roles of calcium ion and oxidative stress on the toxic effects. (United States)

    Liao, Jiunn-Wang; Kang, Jaw-Jou; Jeng, Chian-Ren; Chang, Shao-Kuang; Kuo, Ming-Jang; Wang, Shun-Cheng; Liu, Michael R S; Pang, Victor Fei


    Our previous study has demonstrated that instead of neuromuscular blockage cartap, an organonitrogen insecticide, could cause a marked irreversible Ca2+-dependent contracture in both isolated mouse and rabbit phrenic nerve-diaphragms. We further examined the potential of direct myocytotoxicity of cartap and the possible roles of calcium ion and oxidative stress on cartap-induced muscle cell injury using the mouse myoblast cell line, C2C12. Cartap exerted a dose- and time-dependent cytotoxic effect in C2C12 cells measured by MTT colorimetric assay and trypan blue dye exclusion. The extracellular activities of both creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated in the cartap-treated groups at or greater than 100 microM. The isoenzymatic profiles showed that the elevations were mainly due to CK-3, LDH-3, and LDH-4. Following the addition of 0.5-2.5mM EGTA, a Ca2+ chelator, or 30-100 microM verapamil, an L-type Ca2+ channel blocker, the cartap-induced reduction in MTT metabolic rate of C2C12 cells was significantly restored in a dose-dependent manner in both EGTA and verapamil-treated cells. Furthermore, EGTA could significantly reduce the cartap-induced elevation in the levels of total extracellular CK and LDH activities. Additionally, cartap significantly increased the level of endogenous reactive oxygen species (ROS) in C2C12 cells in a dose- and time-dependent manner. The cartap-induced ROS generation could be significantly inhibited by antioxidants, including Vitamins C and E, catalase, and superoxide dismutase, with catalase the most effective. EGTA could significantly inhibit cartap-induced ROS generation in a dose-dependent manner. The results suggested that cartap could induce ROS generation in C2C12 cells via a Ca2+-dependent mechanism resulting in subsequent cytotoxicity, at least partially, to C2C12 cells. It is speculated that both Ca2+ and Ca2+-induced ROS may also play the central role on the myogenic contracture and myofiber injury

  20. Transcellular transport of calcium

    Energy Technology Data Exchange (ETDEWEB)

    Terepka, A R; Coleman, J R; Armbrecht, H J; Gunter, T E


    Studies of two calcium transporting epithelia, embryonic chick chorioallantoic membrane and the small intestine of rat and chick, have strongly suggested that the transfer of calcium across a cell involves processes distinctly different from intracellular calcium ion regulation. In the proposed model, transcellular calcium transport is considered as a specialized process developed only by certain cells in those tissues charged with bulk transfer of calcium. The overall effect of the endocytotic mechanism is bulk calcium movement across a cell, protection of mitochondria from exposure to high concentrations of calcium, and the avoidance of wide and potentially toxic fluctuations in cytosol ionic calcium levels. (MFB)

  1. Actin filaments as the fast pathways for calcium ions involved in ...

    Indian Academy of Sciences (India)


    Aug 14, 2015 ... energy supply provided by ATP hydrolysis. Calcium obvi- ously affects ..... If the viscosity constant is taken for the water it amounts η ~ 10−3 Pa·s, ... and protected of leaking out into the bulk endolymph, thus preventing to be ...

  2. Sorption behavior of Zn(II) ions on synthetic apatitic calcium phosphates (United States)

    Sebei, Haroun; Pham Minh, Doan; Nzihou, Ange; Sharrock, Patrick


    The synthesis, characterization and the reactivity of apatitic calcium phosphates (Ca-HA, chemical formula Ca10(PO4)6(OH)2) is reported. Calcium carbonate (CaCO3) and potassium dihydrogen orthophosphate (KH2PO4) were selected as economical starting materials for the synthesis of Ca-HA under atmospheric conditions. Monocalcium phosphate monohydrate (MCPM), dicalcium phosphate dihydrate (DCPD), and octacalcium phosphate pentahydrate (OCP) were identified as the main intermediates of the synthesis reaction. The product obtained after 48 h of reaction contains mainly low-crystalline Ca-HA and small amounts of other calcium phosphates such as octacalcium phosphate (OCP), B-type carbonate apatite (CAP), as well as unreacted calcium carbonate. This Ca-HA was found to be active for the removal of Zn2+ from an aqueous solution. Its sorption capacity reached up to 120 mg of Zn2+ per g of Ca-HA powder after 24 h of reaction. The monitoring of soluble Zn, Ca and P during the sorption experiment allowed characterizing the mechanism of Zn uptake. Dissolution-precipitation, ionic exchange and surface complexation are the three main mechanisms involved in the sorption processes. The contribution of these mechanisms is discussed in detail.

  3. Kinetic study of the effects of calcium ions on cationic artichoke (Cynara scolymus L.) peroxidase: calcium binding, steady-state kinetics and reactions with hydrogen peroxide. (United States)

    Hiner, Alexander N P; Sidrach, Lara; Chazarra, Soledad; Varón, Ramón; Tudela, José; García-Cánovas, Francisco; Rodríguez-López, José Neptuno


    The apparent catalytic constant (k(cat)) of artichoke (Cynara scolymus L.) peroxidase (AKPC) with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) increased 130-fold in the presence of calcium ions (Ca2+) but the affinity (K(m)) of the enzyme for ABTS was 500 times lower than for Ca2+-free AKPC. AKPC is known to exhibit an equilibrium between 6-aquo hexa-coordinate and penta-coordinate forms of the haem iron that is modulated by Ca2+ and affects compound I formation. Measurements of the Ca2+ dissociation constant (K(D)) were complicated by the water-association/dissociation equilibrium yielding a global value more than 1000 times too high. The value for the Ca2+ binding step alone has now been determined to be K(D) approximately 10 nM. AKPC-Ca2+ was more resistant to inactivation by hydrogen peroxide (H(2)O(2)) and exhibited increased catalase activity. An analysis of the complex H(2)O(2) concentration dependent kinetics of Ca2+-free AKPC is presented.

  4. Comparative study on the change in index of refraction in ion-exchange interdiffusion in alkali-silicate glasses containing calcium, strontium, barium and titanium oxides

    International Nuclear Information System (INIS)

    Livshits, V.Ya.; Marchuk, E.A.


    Different ability to ion exchange from the salts of lithium-sodium-silicate glass melt containing calcium (or strontium, or barium) and titanium oxides in addition has been shown. CaO, SrO and BaO have negative effect, but TiO 2 -positive one on the fullness of ion exchange of lithium-sodium and on the rate of interdiffusion in alkali-silicate glass. The value of change in index of refraction of glass with TiO 2 is twice higher than glass with calcium oxide (or strontium, or barium) as the fourth component

  5. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles. (United States)

    Chiari, Marina D S; Rodrigues, Marcela C; Xavier, Tathy A; de Souza, Eugen M N; Arana-Chavez, Victor E; Braga, Roberto R


    To evaluate the effect of the replacement of barium glass by dicalcium phosphate dihydrate (DCPD) particles on the mechanical properties and degree of conversion (DC) of composites. Additionally, calcium and hydrogen phosphate (HPO4(2-)) release were followed for 28 days. Nine composites containing equal parts (in mols) of BisGMA and TEGDMA and 40, 50 or 60 vol% of total filler were manipulated. Filler phase was constituted by silanated barium glass and 0%, 10% or 20% of DCPD particles. DC was determined by near-FTIR. Biaxial flexural strength (BFS) and modulus (E) were tested using the "piston on three balls" method, while fracture toughness (KIc) used the "single edge notched beam" method. Specimens were tested after 24h and 28 days in water. Ion release was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Data were analyzed by ANOVA/Tukey (DC and ion release) or Kruskal-Wallis/Mann-Whitney (mechanical properties; alpha: 5%). DC was not affected by DCPD. The presence of DCPD reduced BFS for both storage times, while differences in E became evident after 28 days. After 24h, KIc increased with the addition of DCPD; after 28 days, however, KIc decreased only for DCPD-containing composites. Calcium release was similar for both DCPD contents and remained fairly constant during the 28-day period. Overall, HPO4(2-) release was higher at 7 days and did not decrease after 14 days. The composite with the highest filler level and 10% DCPD represented the best compromise between mechanical properties after aging in water and ion release. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Calcium – how and why?

    Indian Academy of Sciences (India)


    biological processes because of its unusual physical and chemical properties. 1. History of calcium ... cellular roles of calcium has established the importance of this ion ..... Ca2+ ion, for example in regulating enzyme activity (Price. 1975 ...

  7. Mineralization Process of Biocemented Sand and Impact of Bacteria and Calcium Ions Concentrations on Crystal Morphology

    Directory of Open Access Journals (Sweden)

    Guobin Xu


    Full Text Available Microbial-induced calcite precipitation (MICP is a sustainable technique used to improve sandy soil. Analysis of the mineralization process, as well as different bacterial suspensions and calcium concentrations on the crystal morphology, revealed that the mineralization process included four stages: self-organised hydrolysis of microorganisms, molecular recognition and interface interaction, growth modulation, and epitaxial growth. By increasing bacterial suspensions and calcium concentrations, the crystal morphology changed from hexahedron to oblique polyhedron to ellipsoid; the best crystal structure occurs at OD600 = 1.0 and [Ca2+] = 0.75 mol/l. It should be noted that interfacial hydrogen bonding is the main force that binds the loose sand particles. These results will help in understanding the mechanism of MICP.

  8. UCP3 is associated with Hax-1 in mitochondria in the presence of calcium ion

    International Nuclear Information System (INIS)

    Hirasaka, Katsuya; Mills, Edward M.; Haruna, Marie; Bando, Aki; Ikeda, Chika; Abe, Tomoki; Kohno, Shohei; Nowinski, Sara M.; Lago, Cory U.; Akagi, Ken-ichi; Tochio, Hidehito; Ohno, Ayako; Teshima-Kondo, Shigetada; Okumura, Yuushi; Nikawa, Takeshi


    Uncoupling protein 3 (UCP3) is known to regulate energy dissipation, proton leakage, fatty acid oxidation, and oxidative stress. To identify the putative protein regulators of UCP3, we performed yeast two-hybrid screens. Here we report that UCP3 interacted with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that was localized in the mitochondria, and is involved in cellular responses to Ca"2"+. The hydrophilic sequences within loop 2, and the matrix-localized hydrophilic domain of mouse UCP3, were necessary for binding to Hax-1 at the C-terminal domain, adjacent to the mitochondrial inner membrane. Interestingly, interaction of these proteins occurred in a calcium-dependent manner. Moreover, the NMR spectrum of the C-terminal domain of Hax-1 was dramatically changed by removal of Ca"2"+, suggesting that the C-terminal domain of Hax-1 underwent a Ca"2"+-induced conformational change. In the Ca"2"+-free state, the C-terminal Hax-1 tended to unfold, suggesting that Ca"2"+ binding may induce protein folding of the Hax-1 C-terminus. These results suggested that the UCP3-Hax-1 complex may regulate mitochondrial functional changes caused by mitochondrial Ca"2"+. - Highlights: • UCP3 interacts with Hax-1. • The interaction of UCP3 and Hax-1 occurs in a calcium-dependent manner. • The C-terminal domain of Hax-1 undergoes a calcium-induced conformational change.

  9. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables. (United States)

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim


    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  10. etermination of Nitrate, Potassium, and Calcium using Ion-Selective Sensors in Soilless Plant Growth Media of Some Vegetables

    Directory of Open Access Journals (Sweden)



    Full Text Available Since it is important to transfer the minerals desired by plants for a long time in a controlled manner, simple and economical new micro and macro scale agricultural production systems are needed. In this study, the nutrients in the plant nutrient solutionwere kept at the required level according to the needs of the plant, using computer controlled potentiometric micro-sized chemical sensor systems. Polyvinylchloride (PVC -based ion-selective sensors have been used to sensitively and selectively measure the concentration of macro nutrient NO3−, K+, and Ca2+ions in the hydroponic solution. It has been found that the nitrate, potassium and calcium ion levels required for the green pepper and eggplants grown in the greenhouse are different. The results showed that in the first two months of growth, the pepper consumed nitrate in a lesser amount than the eggplant. In addition, it was determined that the amount of potassium consumed by plants was higher than that of other nutrients.

  11. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Fen; Yang, Shuang; Zhao, Dan; Zhu, Shuyan; Wang, Yuxiang [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China); Li, Junying, E-mail: [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China)


    Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.

  12. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-κB translocation and ROS production in synoviocytes

    International Nuclear Information System (INIS)

    Hu, Fen; Yang, Shuang; Zhao, Dan; Zhu, Shuyan; Wang, Yuxiang; Li, Junying


    Highlights: ► Moderate extracellular acidification regulates intracellular Ca 2+ mobilization. ► Moderate acidification activates NF-κB nuclear translocation in synoviocytes. ► Moderate acidification depresses the ROS production induced by capsaicin. ► Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca 2+ entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca 2+ entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca 2+ release from intracellular stores. The nuclear translocation of NF-κB was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-κB. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca 2+ mobilization, activating NF-κB nuclear translocation and depressing ROS production.

  13. Ion-selective field-effect transitors. A sensor for lithium and calcium

    International Nuclear Information System (INIS)

    Kharitonov, A.B.; Petrukhin, O.M.; Nad', V.Yh.; Ypivakov, B.Ya.; Myasoedov, B.F.; Otmakhova, O.A.; Tal'roze, R.V.; Plateh, N.A.


    An Li-sensitive sensor based on a field-effect transistor with a tantalum pentoxide gate and a poly(vinyl chloride) membrane based on diethylene glycol bis-o-2-diphenylphosphinylmethyl phenyl ether is developed. THis sensor exhibits analytical characteristics close to those of a lithium-selective electrode analogous in membrane composition; it is insensitive to the concentration of hydrogen ions in the pH range 4.5-8.5. The service life of the sensor is no shorter than four months, which is comparable to the service life of the corresponding ion-selective electrode. A bifunctional sensor for Ca and Li is prepared based on membranes used for preparing the corresponding monofunctional ion-selective field-effect transistors; this sensor exhibits analytical characteristics close to those of ion-selective electrodes and monofunctional sensors. 12 refs., 6 figs., 2 tabs

  14. The Effects of Calcium Ions on the Flotation of Sillimanite Using Dodecylammonium Chloride

    Directory of Open Access Journals (Sweden)

    Zhijie Chen


    Full Text Available The effects of Ca2+ ions on the flotation of sillimanite using dodecylammonium chloride as a collector were investigated by micro-flotation tests, zeta potential measurements, solution chemistry analysis and molecular dynamics (MD simulation. The micro-flotation results indicated that Ca2+ ions remarkably inhibit the flotation of sillimanite in the pH range of 2.0–9.0. The point of zero charge (PZC of sillimanite changed from 5.4 to 6.1 with the addition of Ca2+ ions. Meanwhile, the calculated concentration of RNH3+ in the sillimanite interface layer decreased in the presence of Ca2+ ions. The results of MD simulation revealed that Ca2+ ions have strong binding energy with the sillimanite (010 surface, and the binding energy of RNH3+ with sillimanite (010 surface reduced in the presence of Ca2+ ions. The conclusions drawn from the computations are in good agreement with the experimental results.

  15. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    International Nuclear Information System (INIS)

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick


    Highlights: → Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. → Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca 2+ permeant SACs. → The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. → Stretch-induced ET-1 production depends on a calcium influx. → SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch ( 2+ threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  16. UCP3 is associated with Hax-1 in mitochondria in the presence of calcium ion

    Energy Technology Data Exchange (ETDEWEB)

    Hirasaka, Katsuya, E-mail: [Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki (Japan); Department of Nutritional Physiology, Institute of Health Biosciences, University of Tokushima, Tokushima (Japan); Mills, Edward M. [Division of Pharmacology/Toxicology, University of Texas at Austin, Austin, TX (United States); Haruna, Marie; Bando, Aki; Ikeda, Chika; Abe, Tomoki [Department of Nutritional Physiology, Institute of Health Biosciences, University of Tokushima, Tokushima (Japan); Kohno, Shohei; Nowinski, Sara M. [Division of Pharmacology/Toxicology, University of Texas at Austin, Austin, TX (United States); Lago, Cory U. [Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Akagi, Ken-ichi [Section of Laboratory Equipment, National Institute of Biomedical Innovation, Osaka (Japan); Tochio, Hidehito [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Ohno, Ayako; Teshima-Kondo, Shigetada [Department of Nutritional Physiology, Institute of Health Biosciences, University of Tokushima, Tokushima (Japan); Okumura, Yuushi [Department of Nutrition and Health, Sagami Woman' s University, Kanagawa (Japan); Nikawa, Takeshi [Department of Nutritional Physiology, Institute of Health Biosciences, University of Tokushima, Tokushima (Japan)


    Uncoupling protein 3 (UCP3) is known to regulate energy dissipation, proton leakage, fatty acid oxidation, and oxidative stress. To identify the putative protein regulators of UCP3, we performed yeast two-hybrid screens. Here we report that UCP3 interacted with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that was localized in the mitochondria, and is involved in cellular responses to Ca{sup 2+}. The hydrophilic sequences within loop 2, and the matrix-localized hydrophilic domain of mouse UCP3, were necessary for binding to Hax-1 at the C-terminal domain, adjacent to the mitochondrial inner membrane. Interestingly, interaction of these proteins occurred in a calcium-dependent manner. Moreover, the NMR spectrum of the C-terminal domain of Hax-1 was dramatically changed by removal of Ca{sup 2+}, suggesting that the C-terminal domain of Hax-1 underwent a Ca{sup 2+}-induced conformational change. In the Ca{sup 2+}-free state, the C-terminal Hax-1 tended to unfold, suggesting that Ca{sup 2+} binding may induce protein folding of the Hax-1 C-terminus. These results suggested that the UCP3-Hax-1 complex may regulate mitochondrial functional changes caused by mitochondrial Ca{sup 2+}. - Highlights: • UCP3 interacts with Hax-1. • The interaction of UCP3 and Hax-1 occurs in a calcium-dependent manner. • The C-terminal domain of Hax-1 undergoes a calcium-induced conformational change.

  17. Effect of calcium ions on structure and stability of the C1q-like domain of otolin-1 from human and zebrafish. (United States)

    Hołubowicz, Rafał; Wojtas, Magdalena; Taube, Michał; Kozak, Maciej; Ożyhar, Andrzej; Dobryszycki, Piotr


    Otolin-1 is a collagen-like protein expressed in the inner ear of vertebrates. It provides an organic scaffold for otoliths in fish and otoconia in land vertebrates. In this study, the expression and purification procedure of C1q-like domain of otolin-1 from human and zebrafish was developed. The structure and stability of the proteins were investigated. The results of sedimentation velocity analytical ultracentrifugation and small-angle X-ray scattering indicated that the C1q-like domain of otolin-1 forms stable trimers in solution in the presence of calcium ions. It was also observed that calcium ions influenced the secondary structure of the proteins. C1q-like domains were stabilized by the calcium ions. The human variant was especially affected by the calcium ions. The results indicate the importance of the C1q-like domain for the assembly of the organic matrix of otoliths and otoconia. © 2017 Federation of European Biochemical Societies.

  18. Simultaneous determination of free calcium, magnesium, sodium and potassium ion concentrations in simulated milk ultrafiltrate and reconstituted skim milk using the Donnan Membrane Technique

    NARCIS (Netherlands)

    Gao, R.; Temminghoff, E.J.M.; Leeuwen, van H.P.; Valenberg, van H.J.F.; Eisner, M.D.; Boekel, van M.A.J.S.


    This study focused on determination of free Ca2+, Mg2+, Na+ and K+ concentrations in a series of CaCl2 solutions, simulated milk ultrafiltrate and reconstituted skim milk using a recently developed Donnan Membrane Technique (DMT). A calcium ion selective electrode was used to compare the DMT

  19. Effect of parathyroid hormone and calcium ions on substrate oxidation by isolated glomeruli of the rat. (United States)

    Wang, M S; Kurokawa, K


    Effect of Ca2+ and parathyroid hormone (PTH) on 14 CO2 production from certain metabolic substrates by isolated glomeruli of rat kidney were examined. Increasing calcium concentration in the incubation medium inhibited 14CO2 production from 14C-labeled alpha-ketoglutarate and succinate, stimulated 14CO2 production from [1-14C]glucose and [1-14C]glutamate, but was without effect on that from [6-14C]glucose. PTH in the presence but not in the absence of Ca2+ inhibited 14CO2 production from labeled alpha-ketoglutarate and glutamate but not from labeled glucose. Additions of cyclic AMP as well as hormonal agents known to act directly on the glomureli, such as histamine, epinephrine, prostaglandin E2, vasopressin, angiotensin II and insulin, did not alter 14 CO2 production from labeled alpha-ketoglutarate. These data show the presence of calcium-dependent inhibitory actions on PTH on oxidation of alpha-ketoglutarate and glutamate which may be independent of cyclic AMP. These metabolic effects of PTH may underlie the alteration in the glomerular ultrafiltration coefficient and glomerular filtration induced by the hormone.

  20. Deduction of a calcium ion circuit affecting rooster sperm in vitro. (United States)

    Froman, D P


    Four premises for rooster sperm preservation were outlined previously. Understanding mitochondrial Ca cycling in terms of whole-cell Ca flux was one premise. The present work tested the hypothesis that sperm mitochondria can be damaged by intracellular as well as extracellular Ca. Sperm were washed by centrifugation through 12% (wt/vol) Sperm were washed by centrifugation through 12%(at/vol) Accudenz to procure sperm at a physiological concentration within a chemically-defined suspension. Five solutions were tested. Each solution contained 30 m glucose, and had an osmolality of 320 mmol/kg and a pH of 7.4. Washed sperm were diluted to 2.0 × 10 sperm/mL. Each replicate sperm suspension was cooled to 10°C. Sperm mobility was measured after 1, 2, 4, 8, 12, and 24 h. Data were plotted as a function of time in each experiment. Function type was confirmed by lack of fit analysis. A parabola with a maximum at 3.7 h was observed when sperm were suspended in 205 m taurine buffered with 50 m-tris[hydroxyl-methyl]methyl-2-amino-ethanesulfonic acid (TES). This effect was attributed to a Ca flux from the nuclear envelope into mitochondria. An exponential decay was observed when TES-buffered taurine contained 2 m Ca. This effect was attributed to mitochondrial Ca overload induced by uptake of extracellular Ca. Exponential decay also was observed when TES-buffered taurine contained a Ca chelator. This effect was attributed to a Ca flux from the nuclear envelope through mitochondria and then into an extracellular Ca sink. This possibility was supported by the response of sperm to thapsigargin. Specifically, inhibition of sarcoendoplasmic reticulum Ca-ATPase compromised sperm mobility relative to a buffer control. Finally, a 60 m phosphate buffer containing 2 m citrate yielded a linear relationship in contrast to the TES-buffered solutions tested. Sperm mobility after 24 h of storage in the phosphate buffer was 92% of that observed for prewashed sperm. The linear response was

  1. Microstructure and spectroscopic investigations of calcium zinc bismuth phosphate glass ceramics doped with manganese ions (United States)

    Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.


    Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.

  2. Influence des ions étrangers et de la matière organique sur la cristallisation des carbonates de calcium Influence of Foreign Ions and of Organic Matter on the Crystallization of Calcium Carbonates

    Directory of Open Access Journals (Sweden)

    Cailleau P.


    Full Text Available On présente les résultats d'un travail de recherche entrepris pour des aspects de la diagenèse des roches carbonatées : la cimentation cal le rôle est capital pour la conservation ou le colmatage de la porosit de ce type de sédiments. Après une synthèse bibliographique des connaissances actuelles sur et la cimentation du CaC03 en milieu naturel et en laboratoire, on a mentalement l'influence des ions étrangers et de la matière organique sur germination et la croissance des carbonates de calcium. Les principaux résultats obtenus peuvent se résumer comme suit a En ce qui concerne les ions étrangers. Leur action se traduit en général par une augmentation du temps de germination et une réduction de la vitesse de croissance des cristaux de CaCO3; l'apparition de faciès particuliers pour certains des minéraux formés ; l'inhibition des transformations d'une variété en une autre. On obtient un classement par ordre d'efficacité croissante action à peu près nulle: K+, CI-; action modérée : Bat+, Na+, AI3+, Cul+, Sr2+, SO2 , P0;-; action dominante de Mg'+. b Pour les matières organiques. Seules l'acide citrique et, dans une moindre mesure, l'acide tartrique, ont une influence notable, d'ailleurs analogue à celle des ions étrangers en ce qui concerne les cinétiques de germination et de croissance du CaCO. L'adsorption de certains de ces produits se traduit en outre par des faciès particuliers des minéraux formés et éventuellement par l'inhibition des transformations d'une variété en une autre. This article gives the results of a research project undertaken to study one of the aspects of the diagénesis of carbonate rocks, 1. e. calcite cementing, which plays a capital role in preserving or plugging up the original porosity of such sediments.After making a bibliographic synthesis of what is now known about the origin and cementation of CaC03 in a natural environment and in the laboratory, the article experimentally

  3. Calcium carbonate phosphate binding ion exchange filtration and accelerated denitrification improve public health standards and combat eutrophication in aquatic ecosystems. (United States)

    Yanamadala, Vijay


    Hektoen agar. Initial analyses suggest a strong correlation between phosphate concentrations and bacterial populations; a 66% decrease in phosphate resulted in a 35% reduction in bacterial populations and a 45% reduction in enteropathogenic populations. Likewise, a strong correlation was shown between calcium carbonate concentrations and bacterial reduction greater than that which can be attributed to the phosphate reduction alone. This was followed by the construction of various phosphate binding calcium carbonate filters, which used the ion exchange principle, including a spring loading filter, PVC pipe filter, and a galvanized filter. All were tested with the aid of Stoke's law formulation. The experiment was extremely successful in designing a working phosphate-binding and ammonia-reducing filter, and a large-scale agitator-clarifier filter system is currently being planned for construction in Madrona Marsh; this filter will reduce phosphate and ammonia levels substantially in the following years, bringing ecological, economical, and health-related improvements to the overall ecosystem and habitat.

  4. Membrane tubulation in lipid vesicles triggered by the local application of calcium ions

    DEFF Research Database (Denmark)

    Ali Doosti, Baharan; Pezeshkian, Weria; Bruhn, Dennis Skjøth


    , generates spontaneous curvature and triggers the formation of tubular protrusions that point away from the ion source. This behavior is rationalized by strong binding of the divalent cations to the surface of the charged bilayer which effectively neutralizes the surface charge density of outer leaflet...

  5. Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: II. Mechanical analysis

    International Nuclear Information System (INIS)

    Neji, M.; Bary, B.; Le Bescop, P.; Burlion, N.


    This paper presents the second part of a study aiming at modelling the mechanical behavior of composites made up of ion exchange resins (IER) solidified in a tri-calcium silicate cement paste (C_3S). Such composites may be subjected to internal pressures due to ion exchange processes between ionic species which are in IER and interstitial solution of the cement paste. The reactive transport model developed in the companion paper is coupled in this study to a multi-scale approach describing the mechanical behavior of the material. It is based on an analogy with thermomechanics for taking in account the IER internal pressures, and on Eshelby-based homogenization techniques to estimate both mechanical and coupling parameters. A laboratory test has been set up to measure the macroscopic strain caused by the swelling phenomenon. The model has been finally implemented in a finite elements software. The simulation of the laboratory tests has been performed and the results have been analyzed and compared to experimental data. - Highlights: • Experimental analysis about mechanical behavior of a composite material. • Chemo-Mechanical-Transport modeling on a composite material made up with IER embedded into cement paste matrix. • Multi-scale modeling.

  6. Calcium and magnesium ions modulate the oligomeric state and function of mitochondrial 2-Cys peroxiredoxins in Leishmania parasites. (United States)

    Morais, Mariana A B; Giuseppe, Priscila O; Souza, Tatiana A C B; Castro, Helena; Honorato, Rodrigo V; Oliveira, Paulo S L; Netto, Luis E S; Tomas, Ana M; Murakami, Mario T


    Leishmania parasites have evolved a number of strategies to cope with the harsh environmental changes during mammalian infection. One of these mechanisms involves the functional gain that allows mitochondrial 2-Cys peroxiredoxins to act as molecular chaperones when forming decamers. This function is critical for parasite infectivity in mammals, and its activation has been considered to be controlled exclusively by the enzyme redox state under physiological conditions. Herein, we have revealed that magnesium and calcium ions play a major role in modulating the ability of these enzymes to act as molecular chaperones, surpassing the redox effect. These ions are directly involved in mitochondrial metabolism and participate in a novel mechanism to stabilize the decameric form of 2-Cys peroxiredoxins in Leishmania mitochondria. Moreover, we have demonstrated that a constitutively dimeric Prx1m mutant impairs the survival of Leishmania under heat stress, supporting the central role of the chaperone function of Prx1m for Leishmania parasites during the transition from insect to mammalian hosts. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Calcium in pollen-pistil interaction in Petunia hybrida Hort. I. Localization of Ca2+ ions in mature pollen grain using pyroantimonate and autoradiographic methods. (United States)

    Bednarska, E; Butowt, R


    The localization of Ca2+ in the mature pollen grain and the flow of these ions from the somatic tissues of the anther to the pollen grains has been studied using pyroantimonate and autoradiographic methods. In the pollen grain, Ca2+ ions have been localized in the sporoderm and in the cytoplasmic vesicles of probably dictyosomal origin. Calcium ions were transported into the sporoderm together with the compounds of degenerating tapetum. The material of degenerating tapetum forms pollen coat surrounding the mature pollen grain.

  8. Calcium in pollen-pistil interaction in 'Petunia hybrida Hor'. Pt. 1. Localization of Ca2+ ions in mature pollen grain using pyroantimonate and autoradiographic methods

    International Nuclear Information System (INIS)

    Bednarska, E.; Butowt, R.


    The localization of Ca 2+ in the mature pollen grain and the flow of these ions the somatic tissues of the anther to the pollen grains has been studied using pyroantimonate and autoradiographic methods. In the pollen grain, Ca 2+ ions have been localized in the sporoderm in the cytoplasmic vesicles of probably dictyosomal origin. Calcium ions were transported into the sporoderm together with the compounds of degenerating tapetum. The material of degenerating tapetum forms pollen coat surrounding the mature pollen grains. (author). 18 refs, 9 figs

  9. Calcium in pollen-pistil interaction in `Petunia hybrida Hor`. Pt. 1. Localization of Ca{sup 2+} ions in mature pollen grain using pyroantimonate and autoradiographic methods

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, E.; Butowt, R. [Uniwersytet Mikolaja Kopernika, Torun (Poland)


    The localization of Ca{sup 2+} in the mature pollen grain and the flow of these ions the somatic tissues of the anther to the pollen grains has been studied using pyroantimonate and autoradiographic methods. In the pollen grain, Ca{sup 2+} ions have been localized in the sporoderm in the cytoplasmic vesicles of probably dictyosomal origin. Calcium ions were transported into the sporoderm together with the compounds of degenerating tapetum. The material of degenerating tapetum forms pollen coat surrounding the mature pollen grains. (author). 18 refs, 9 figs.

  10. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review. (United States)

    Graziani, Gabriela; Bianchi, Michele; Sassoni, Enrico; Russo, Alessandro; Marcacci, Maurilio


    One of the main critical aspects behind the failure or success of an implant resides in its ability to fast bond with the surrounding bone. To boost osseointegration, the ideal implant material should exhibit composition and structure similar to those of biological apatite. To this aim, the most common approach is to coat the implant surface with a coating of hydroxyapatite (HA), resembling the main component of mineralized tissues. However, bone apatite is a non-stoichiometric, multi-substituted poorly-crystalline apatite, containing significant amounts of foreign ions, with high biological relevance. Ion-substituted HAs can be deposited by so called "wet methods", which are however poorly reproducible and hardly industrially feasible; at the same time bioactive coatings realized by plasma assisted method, interesting for industrial applications, are generally made of stoichiometric (i.e. un-substituted) HA. In this work, the literature concerning plasma-assisted deposition methods used to deposit ion-substituted HA was reviewed and the last advances in this field discussed. The ions taken into exam are those present in mineralized tissues and possibly having biological relevance. Notably, literature about this topic is scarce, especially relating to in vivo animal and clinical trials; further on, available studies evaluate the performance of substituted coatings from different points of view (mechanical properties, bone growth, coating dissolution, etc.) which hinders a proper evaluation of the real efficacy of ion-doped HA in promoting bone regeneration, compared to stoichiometric HA. Moreover, results obtained for plasma sprayed coatings (which is the only method currently employed for deposition at the industrial scale) were collected and compared to those of novel plasma-assisted techniques, that are expected to overcome its limitations. Data so far available on the topic were discussed to highlight advantages, limitations and possible perspectives of these

  11. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy. (United States)

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen


    Portland cements may contain small quantities of phosphorus (typically below 0.5 wt % P(2)O(5)), originating from either the raw materials or alternative sources of fuel used to heat the cement kilns. This work reports the first (31)P MAS NMR study of anhydrous and hydrated Portland cements that focuses on the phase and site preferences of the (PO(4))(3-) guest ions in the main clinker phases and hydration products. The observed (31)P chemical shifts (10 to -2 ppm), the (31)P chemical shift anisotropy, and the resemblance of the lineshapes in the (31)P and (29)Si MAS NMR spectra strongly suggest that (PO(4))(3-) units are incorporated in the calcium silicate phases, alite (Ca(3)SiO(5)) and belite (Ca(2)SiO(4)), by substitution for (SiO(4))(4-) tetrahedra. This assignment is further supported by a determination of the spin-lattice relaxation times for (31)P in alite and belite, which exhibit the same ratio as observed for the corresponding (29)Si relaxation times. From simulations of the intensities, observed in inversion-recovery spectra for a white Portland cement, it is deduced that 1.3% and 2.1% of the Si sites in alite and belite, respectively, are replaced by phosphorus. Charge balance may potentially be achieved to some extent by a coupled substitution mechanism where Ca(2+) is replaced by Fe(3+) ions, which may account for the interaction of the (31)P spins with paramagnetic Fe(3+) ions as observed for the ordinary Portland cements. A minor fraction of phosphorus may also be present in the separate phase Ca(3)(PO(4))(2), as indicated by the observation of a narrow resonance at delta((31)P) = 3.0 ppm for two of the studied cements. (31)P{(1)H} CP/MAS NMR spectra following the hydration of a white Portland cement show that the resonances from the hydrous phosphate species fall in the same spectral range as observed for (PO(4))(3-) incorporated in alite. This similarity and the absence of a large (31)P chemical shift ansitropy indicate that the hydrous (PO(4

  12. Kinetics of isotopic exchange between calcium molybdate and molybdate ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Atun, G.; Ayar, N.; Bilgin, B. [Istanbul Univ. (Turkey). Dept. of Chemistry, Fac. of Engineering; Bodur, N.; Ayyildiz, H. [Cekmece Nuclear Research and Training Center, Istanbul (Turkey)


    The heterogeneous isotopic anion exchange kinetics and equilibria between calcium molybdate and sodium molybdate solutions have been studied by using {sup 99}Mo as tracer in batch experiments. The values of exchange ratio lower than unity suggest that rate-limiting step is particle diffusion process and the effect of re-crystallization can be neglected. The self-diffusion coefficients calculated using both Paterson's and Nernst-Plank approximations are increased by the temperature. The observed values for isotope exchange characteristics such as exchange fractions, exchanging amounts and fractional attainment of equilibrium are consistent with those of their calculated values. Activation energy and thermodynamic parameters calculated based on transition state theory indicate the existence of both energy and entropy barrier in the system. (orig.)

  13. Kinetics of isotopic exchange between calcium molybdate and molybdate ions in aqueous solution

    International Nuclear Information System (INIS)

    Atun, G.; Ayar, N.; Bilgin, B.


    The heterogeneous isotopic anion exchange kinetics and equilibria between calcium molybdate and sodium molybdate solutions have been studied by using 99 Mo as tracer in batch experiments. The values of exchange ratio lower than unity suggest that rate-limiting step is particle diffusion process and the effect of re-crystallization can be neglected. The self-diffusion coefficients calculated using both Paterson's and Nernst-Plank approximations are increased by the temperature. The observed values for isotope exchange characteristics such as exchange fractions, exchanging amounts and fractional attainment of equilibrium are consistent with those of their calculated values. Activation energy and thermodynamic parameters calculated based on transition state theory indicate the existence of both energy and entropy barrier in the system. (orig.)

  14. Influence of lithium and boron ions on calcium sulfo-aluminate cement hydration: application for the conditioning of boron ion exchange resins

    International Nuclear Information System (INIS)

    Dhoury, Melanie


    In pressurized water reactors, a solution of boric acid, the pH of which is controlled by the addition of lithium hydroxide, is injected in the primary circuit. Boron acts as a neutron moderator and helps controlling the fission reactions. The primary coolant is purified by flowing through columns of ion exchange resins. These resins are periodically renewed and constitute a low-level radioactive waste. In addition to radionuclides, they mainly contain borate and lithium ions. They are currently encapsulated in an organic matrix before being stored in a near-surface repository. An evolution of the process is considered, involving the replacement of the organic matrix by a mineral one. In this PhD study, the potential of calcium sulfo-aluminate cements (CSAC) to solidify/stabilize borated resins in the presence of lithium is investigated. These binders have the advantage to form hydrates which can incorporate borate ions in their structure, and their hydration is less retarded than that of Portland cement.An analytical approach is adopted, based on a progressive increase in the complexity of the investigated systems. Hydration of ye-elimite-rich CSAC is thus successively investigated in the presence of (i) lithium salts, (ii) lithium hydroxide and sodium borate, and (iii) lithium hydroxide and borated ion exchange resins. The experimental investigation is supplemented by thermodynamic modelling using a database specially developed for the needs of the study. Lithium ions are shown to accelerate CSAC hydration by decreasing the duration of the period of low thermal activity. The postulated mechanism involves the precipitation of lithium-containing aluminum hydroxide. On the contrary, sodium borate retards CSAC hydration by increasing the duration of the period of low thermal activity. Ulexite, a poorly crystallized mineral containing sodium and borates, transiently precipitates at early age. As long as ulexite is present, dissolution of ye-elimite is strongly slowed

  15. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    International Nuclear Information System (INIS)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.


    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivates a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release

  16. Analysis of the interaction between Bacillus coagulans and Bacillus thuringiensis S-layers and calcium ions by XRD, light microscopy, and FTIR. (United States)

    Babolmorad, Ghazal; Emtiazi, Giti; Emamzadeh, Rahman


    S-layer is a self-assemble regularly crystalline surface that covers major cell wall component of many bacteria and archaea and exhibits a high metal-binding capacity. We have studied the effect of the calcium ions and type of solid support (glass or mica) on the structure of the S-layers from Bacillus coagulans HN-68 and Bacillus thuringiensis MH14 upon simple methods based on light microscopy and AFM. Furthermore, the Fourier transform infrared spectroscopy (FTIR) study is indicated that the calcium-S-layer interaction occurred mainly through the carboxylate groups of the side chains of aspartic acid (Asp) and glutamic acid (Glu) and nitrogen atoms of Lys, Asn, and histidine (His) amino acids and N-H groups of the peptide backbone. Studied FTIR revealed that inner faces of S-layer are mainly negative, and outer faces of S-layer are mainly positive. Probably, calcium ions with positive charges bound to the carboxyl groups of Glu and Asp. Accordingly, calcium ions are anchored in the space between the inner faces of S-layer with negative charge and the surface of mica with negative charge. This leads to regular arrangement of the S-layer subunits.

  17. Ion microscopic imaging of calcium transport in the intestinal tissue of vitamin D-deficient and vitamin D-replete chickens: A 44Ca stable isotope study

    International Nuclear Information System (INIS)

    Chandra, S.; Fullmer, C.S.; Smith, C.A.; Wasserman, R.H.; Morrison, G.H.


    The intestinal absorption of calcium includes at least three definable steps; transfer across the microvillar membrane, movement through the cytosolic compartment, and energy-dependent extrusion into the lamina propria, Tracing the movement of calcium through the epithelium has been hampered by lack of suitable techniques and, in this study, advantage was taken of ion microscopy in conjunction with cryosectioning and use of the stable isotope 44Ca to visualize calcium in transit during the absorptive process. The effect of vitamin D, required for optimal calcium absorption, was investigated. Twenty millimolar 44Ca was injected into the duodenal lumen in situ of vitamin D-deficient and vitamin D-replete chickens. At 2.5, 5.0, and 20.0 min after injection, duodenal tissue was obtained and processed for ion microscopic imaging. At 2.5 min. 44Ca was seen to be concentrated in the region subjacent to the microvillar membrane in tissue from both groups. At 5.0 and 20.0 min, a similar pattern of localization was evident in D-deficient tissues. In D-replete tissues, the distribution of 44Ca became more homogenous, indicating that vitamin D increased the rate of transfer of Ca2+ from the apical to the basolateral membrane, a function previously ascribed to the vitamin D-induced calcium-binding protein (28-kDa calbindin-D). Quantitative aspects of the calcium absorptive process were determined in parallel experiments with the radionuclide 47Ca. Complementary information on the localization of the naturally occurring isotopes of calcium (40Ca) and potassium (39K) is also described

  18. Clarification of serotonin-induced effects in peripheral artery disease observed through the femoral artery response in models of diabetes and vascular occlusion: The role of calcium ions. (United States)

    Stojanović, Marko; Prostran, Milica; Janković, Radmila; Radenković, Miroslav


    Recent findings have demonstrated that serotonin is an important participant in the development and progression of peripheral artery diseases. Taking this into consideration, the goals of this study were to investigate the effects of serotonin on isolated Wistar rat femoral arteries in both healthy and diabetic animals, with and without artery occlusion, with a particular focus on determining the role of calcium in this process. Contraction experiments with serotonin on intact and denuded femoral artery rings, in the presence or absence of nifedipine and ouabain (both separately, or in combination), as well as Ca 2+ -free Krebs-Ringer bicarbonate solution were performed. The serotonin-induced results were concentration dependent, but only in healthy animals. The endothelium-dependent contraction of the femoral artery was assessed. In healthy animals, the endothelium-reliant part of contraction was dependent on the extracellular calcium, while the smooth muscle-related part was instead dependent on the intracellular calcium. In diabetic animals, both nifedipine and ouabain influenced serotonin-induced vascular effects by blocking intracellular calcium pathways. However, this was diminished after the simultaneous administration of both blockers. © 2017 John Wiley & Sons Australia, Ltd.

  19. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo. (United States)

    Sankova, Tatiana P; Orlov, Iurii A; Saveliev, Andrey N; Kirilenko, Demid A; Babich, Polina S; Brunkov, Pavel N; Puchkova, Ludmila V


    There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell's copper metabolism and its chelating properties are discussed.

  20. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1, Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo

    Directory of Open Access Journals (Sweden)

    Tatiana P. Sankova


    Full Text Available There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST and the N-terminal domain (ectodomain of human high affinity copper transporter CTR1 (hNdCTR1, which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell’s copper metabolism and its chelating properties are discussed.

  1. Mucin 4 Gene Silencing Reduces Oxidative Stress and Calcium Oxalate Crystal Formation in Renal Tubular Epithelial Cells Through the Extracellular Signal-Regulated Kinase Signaling Pathway in Nephrolithiasis Rat Model

    Directory of Open Access Journals (Sweden)

    Ling Sun


    Full Text Available Background/Aims: Nephrolithiasis plagues a great number of patients all over the world. Increasing evidence shows that the extracellular signal-regulated kinase (ERK signaling pathway and renal tubular epithelial cell (RTEC dysfunction and attrition are central to the pathogenesis of kidney diseases. Mucin 4 (MUC4 is reported as an activator of ERK signaling pathway in epithelial cells. In this study, using rat models of calcium oxalate (CaOx nephrolithiasis, the present study aims to define the roles of MUC4 and ERK signaling pathway as contributors to oxidative stress and CaOx crystal formation in RTEC. Methods: Data sets of nephrolithiasis were searched using GEO database and a heat flow map was drawn. Then MUC4 function was predicted. Wistar rats were prepared for the purpose of model establishment of ethylene glycol and ammonium chloride induced CaOx nephrolithiasis. In order to assess the detailed regulatory mechanism of MUC4 silencing on the ERK signaling pathway and RTEC, we used recombinant plasmid to downregulate MUC4 expression in Wistar rat-based models. Samples from rat urine, serum and kidney tissues were reviewed to identify oxalic acid and calcium contents, BUN, Cr, Ca2+ and P3+ levels, calcium crystal formation in renal tubules and MUC4 positive expression rate. Finally, RT-qPCR, Western blot analysis, and ELISA were employed to access oxidative stress state and CaOx crystal formation in RTEC. Results: Initially, MUC4 was found to have an influence on the process of nephrolithiasis. MUC4 was upregulated in the CaOx nephrolithiasis model rats. We proved that the silencing of MUC4 triggered the inactivation of ERK signaling pathway. Following the silencing of MUC4 or the inhibition of ERK signaling pathway, the oxalic acid and calcium contents in rat urine, BUN, Cr, Ca2+ and P3+ levels in rat serum, p-ERK1/2, MCP-1 and OPN expressions in RTEC and H2O2 and MDA levels in the cultured supernatant were downregulated, but the GSH

  2. Synthesis of calcium arsenoalginate form elimination the arseniate ions in contaminated water

    International Nuclear Information System (INIS)

    Prieto Garcia, Francisco; Otazo Sanchez, Elena M; Gordillo Martinez, Alberto J and others


    Synthesis of calcium arsenoalginate was optimized using common sodium alginate, CaCl 2 and NaH 2 AsO 4 which brought the arsenic. In order to evaluate the co-precipitation efficiency and elimination of arsenic, several concentrations of as, ranging from 20 to 1000 μg.L 1 was tested including real contaminated water containing 480 μgL 1 of arsenic. optimized results, by means of factorial design matrix, pointed out the best synthesis conditions; sodium alginate concentration of 1.0 gL 1 pH 6, CaCl 2 concentration between 400-500 mgL 1 and room temperature. Re-dissolution of the precipitates is promoted than sedimentation when temperature is greater than room temperature. The precipitates are crystalline solids that in future studies will be characterized more extensively in order to elucidate potential applications. In contaminated water the arsenic was eliminated with an efficiency of 96% these result allows to consider that is possible to reduce arsenic concentration until levels according to Mexican standard

  3. The pH sensitive properties of carboxymethyl chitosan nanoparticles cross-linked with calcium ions. (United States)

    Kalliola, Simo; Repo, Eveliina; Srivastava, Varsha; Heiskanen, Juha P; Sirviö, Juho Antti; Liimatainen, Henrikki; Sillanpää, Mika


    In environmental applications the applied materials are required to be non-toxic and biodegradable. Carboxymethyl chitosan nanoparticles cross-linked with Ca 2+ ions (CMC-Ca) fulfill these requirements, and they are also renewable. These nanoparticles were applied to oil-spill treatment in our previous study and here we focused on enhancing their properties. It was found that while the divalent Ca 2+ ions are crucial for the formation of the CMC-Ca, the attractive interaction between NH 3 + and COO - groups contributed significantly to the formation and stability of the CMC-Ca. The stability decreased as a function of pH due to the deprotonation of the amino groups. Therefore, the nanoparticles were found to be fundamentally pH sensitive in solution, if the pH deviated from the pH (7-9) that was used in the synthesis of the nanoparticles. The pH sensitive CMC-Ca synthesized in pH 7 and 8 were most stable in the studied conditions and could find applications in oil-spill treatment or controlled-release of substances. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Ryanodine receptors, a family of intracellular calcium ion channels, are expressed throughout early vertebrate development

    Directory of Open Access Journals (Sweden)

    Wu Houdini HT


    Full Text Available Abstract Background Calcium signals ([Ca2+]i direct many aspects of embryo development but their regulation is not well characterised. Ryanodine receptors (RyRs are a family of intracellular Ca2+ release channels that control the flux of Ca2+ from internal stores into the cytosol. RyRs are primarily known for their role in excitation-contraction coupling in adult striated muscle and ryr gene mutations are implicated in several human diseases. Current evidence suggests that RyRs do not have a major role to play prior to organogenesis but regulate tissue differentiation. Findings The sequences of the five zebrafish ryr genes were confirmed, their evolutionary relationship established and the primary sequences compared to other vertebrates, including humans. RyRs are differentially expressed in slow (ryr1a, fast (ryr3 and both types (ryr1b of developing skeletal muscle. There are two ryr2 genes (ryr2a and ryr2b which are expressed exclusively in developing CNS and cardiac tissue, respectively. In addition, ryr3 and ryr2a mRNA is detectable in the initial stages of development, prior to embryonic axis formation. Conclusions Our work reveals that zebrafish ryr genes are differentially expressed throughout the developing embryo from cleavage onwards. The data suggests that RyR-regulated Ca2+ signals are associated with several aspects of embryonic development, from organogenesis through to the differentiation of the musculoskeletal, cardiovascular and nervous system. These studies will facilitate further work to explore the developmental function of RyRs in each of these tissue types.

  5. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance. (United States)

    Kose, Nusret; Otuzbir, Ali; Pekşen, Ceren; Kiremitçi, Abdurrahman; Doğan, Aydin


    Despite progress in surgical techniques, 1% to 2% of joint arthroplasties become complicated by infection. Coating implant surfaces with antimicrobial agents have been attempted to prevent initial bacterial adhesion to implants with varying success rates. We developed a silver ion-containing calcium phosphate-based ceramic nanopowder coating to provide antibacterial activity for orthopaedic implants. We asked whether titanium prostheses coated with this nanopowder would show resistance to bacterial colonization as compared with uncoated prostheses. We inserted titanium implants (uncoated [n = 9], hydroxyapatite-coated [n = 9], silver-coated [n = 9]) simulating knee prostheses into 27 rabbits' knees. Before implantation, 5 × 10(2) colony-forming units of Staphylococcus aureus were inoculated into the femoral canal. Radiology, microbiology, and histology findings were quantified at Week 6 to define the infection, microbiologically by increased rate of implant colonization/positive cultures, histologically by leukocyte infiltration, necrosis, foreign-body granuloma, and devitalized bone, and radiographically by periosteal reaction, osteolysis, or sequestrum formation. Swab samples taken from medullary canals and implants revealed a lower proportion of positive culture in silver-coated implants (one of nine) than in uncoated (eight of nine) or hydroxyapatite-coated (five of nine) implants. Silver-coated implants also had a lower rate of colonization. No cellular inflammation or foreign-body granuloma was observed around the silver-coated prostheses. Silver ion-doped ceramic nanopowder coating of titanium implants led to an increase in resistance to bacterial colonization compared to uncoated implants. Silver-coated orthopaedic implants may be useful for resistance to local infection but will require in vivo confirmation.

  6. Energy recovery from effluents of sugar processing industries in the UASB reactors seeded with granular sludge developed under low and high concentrations of calcium ion

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, D M; Rubindamayugi, M S.T. [Univ. of Dar es Salaam, Dept. of Botany, Applied Microbiology Unit (Tanzania, United Republic of)


    The digestion of wastewater from sugar processing industries in a single phase UASB reactor was evaluated by a step wise increase in organic loading rate. This study was conducted to compare the treatability of effluents from sugar processing industries in a single phase UASB reactors inoculated with granular sludge developed under low and high concentrations of calcium ions. At OLR of 11.34 g COD/l/day and HRT of 16 hours, UASB reactor R2 attained a COD removal efficiency of 90% with a maximum methane production rate of 3 l/l/day. From the results, the digestion of the wastewater from sugar industries in the UASB reactor inoculated with granular sludge developed under high calcium ion concentration seem feasible with regard to COD removal efficiency and methane production rate. (au) 24 refs.

  7. Energy recovery from effluents of sugar processing industries in the UASB reactors seeded with granular sludge developed under low and high concentrations of calcium ion

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, D.M.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Dept. of Botany, Applied Microbiology Unit (Tanzania, United Republic of)


    The digestion of wastewater from sugar processing industries in a single phase UASB reactor was evaluated by a step wise increase in organic loading rate. This study was conducted to compare the treatability of effluents from sugar processing industries in a single phase UASB reactors inoculated with granular sludge developed under low and high concentrations of calcium ions. At OLR of 11.34 g COD/l/day and HRT of 16 hours, UASB reactor R2 attained a COD removal efficiency of 90% with a maximum methane production rate of 3 l/l/day. From the results, the digestion of the wastewater from sugar industries in the UASB reactor inoculated with granular sludge developed under high calcium ion concentration seem feasible with regard to COD removal efficiency and methane production rate. (au) 24 refs.

  8. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions (United States)

    Pan, Zhi; Avila, Andrew; Gollahon, Lauren


    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis. PMID:24549172

  9. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor. (United States)

    Joeckel, Elke; Haber, Tobias; Prawitt, Dirk; Junker, Kerstin; Hampel, Christian; Thüroff, Joachim W; Roos, Frederik C; Brenner, Walburgis


    The prognosis for renal cell carcinoma (RCC) is related to a high rate of metastasis, including 30% of bone metastasis. Characteristic for bone tissue is a high concentration of calcium ions. In this study, we show a promoting effect of an enhanced extracellular calcium concentration on mechanisms of bone metastasis via the calcium-sensing receptor (CaSR) and its downstream signaling molecules. Our analyses were performed using 33 (11/category) matched specimens of normal and tumor tissue and 9 (3/category) primary cells derived from RCC patients of the 3 categories: non-metastasized, metastasized into the lung and metastasized into bones during a five-year period after nephrectomy. Expression of CaSR was determined by RT-PCR, Western blot analyses and flow cytometry, respectively. Cells were treated by calcium and the CaSR inhibitor NPS 2143. Cell migration was measured in a Boyden chamber with calcium (10 μM) as chemotaxin and proliferation by BrdU incorporation. The activity of intracellular signaling mediators was quantified by a phospho-kinase array and Western blot. The expression of CaSR was highest in specimens and cells of patients with bone metastases. Calcium treatment induced an increased migration (19-fold) and proliferation (2.3-fold) exclusively in RCC cells from patients with bone metastases. The CaSR inhibitor NPS 2143 elucidated the role of CaSR on the calcium-dependent effects. After treatment with calcium, the activity of AKT, PLCγ-1, p38α and JNK was clearly enhanced and PTEN expression was almost completely abolished in bone metastasizing RCC cells. Our results indicate a promoting effect of extracellular calcium on cell migration and proliferation of bone metastasizing RCC cells via highly expressed CaSR and its downstream signaling pathways. Consequently, CaSR may be regarded as a new prognostic marker predicting RCC bone metastasis.

  10. Asymmetric hydration structure around calcium ion restricted in micropores fabricated in activated carbons

    International Nuclear Information System (INIS)

    Ohkubo, Takahiro; Kusudo, Tomoko; Kuroda, Yasushige


    The adsorbed phase and hydration structure of an aqueous solution of Ca(NO 3 ) 2 restricted in micropores fabricated in activated carbons (ACs) having different average pore widths (0.63 and 1.1 nm) were investigated with the analysis of adsorption isotherms and x-ray absorption fine structure (XAFS) spectra on Ca K -edge. The adsorbed density of Ca 2+ per unit micropore volume in the narrower pore was higher than in the wider pore, while the adsorbed amount per unit mass of carbon with the narrower pore was half of the amount of ACs with the larger pore. On the other hand, variations in the bands assigned to double-electron ( KM I ) and 1s  →  3d excitations in XAFS spectra demonstrate the formation of a distorted hydration cluster around Ca 2+ in the micropore, although the structural parameters of hydrated Ca 2+ in the micropores were almost consistent with the bulk aqueous solution, as revealed by the analysis of extended XAFS (EXAFS) spectra. In contrast to the hydration structure of monovalent ions such as Rb + , which generally presents a dehydrated structure in smaller than 1 nm micropores in ACs, the present study clearly explains that the non-spherically-symmetric structure of hydrated Ca 2+ restricted in carbon micropores whose sizes are around 1 nm is experimentally revealed where any dehydration phenomena from the first hydration shell around Ca 2+ could not be observed. (paper)

  11. Interactions of calcium ions with weakly acidic active ingredients slow cuticular penetration: a case study with glyphosate. (United States)

    Schönherr, Jörg; Schreiber, Lukas


    Potassium and calcium salts of glyphosate were obtained by titrating glyphosate acid with the respective bases to pH 4.0, and rates of penetration of these salts across isolated astomatous cuticular membranes (CMs) were measured at 20 degrees C and 70, 80, 90, and 100% humidity. K-glyphosate exhibited first-order penetration kinetics, and rate constants (k) increased with increasing humidity. Ca-glyphosate penetrated only when the humidity above the salt residue was 100%. At 90% humidity and below, Ca-glyphosate formed a solid residue on the CMs and penetration was not measurable. With Ca-glyphosate, the k value at 100% humidity decreased with time and the initial rates were lower than for K-glyphosate by a factor of 3.68. After equimolar concentrations of ammonium oxalate were added to Ca-glyphosate, high penetration rates close to those measured with K-glyphosate were measured at all humidities. Adding ammonium sulfate or potassium carbonate also increased rates between 70 and 100% humidity, but they were not as high as with ammonium oxalate. The data indicate that at pH 4.0 one Ca2+ ion is bound to two glyphosate anions. This salt has its deliquescence point near 100% humidity. Therefore, it is a solid at lower humidity and does not penetrate. Its molecular weight is 1.82 times larger than that of K-glyphosate, and this greatly slows down rates of penetration, even at 100% humidity. The additives tested have low solubility products and form insoluble precipitates with Ca2+ ions, but only ammonium oxalate binds Ca2+ quantitatively. The resulting ammonium salt of glyphosate penetrates at 70-100% humidity and at rates comparable to K-glyphosate. The results contribute to a better understanding of the hard water antagonism observed with glyphosate. It is argued that other pesticides and hormones with carboxyl functions are likely to respond to Ca2+ ions in a similar fashion. In all of these cases, ammonium oxalate is expected to overcome hard water antagonism

  12. Correlations in distribution and concentration of calcium, copper and iron with zinc in isolated extracellular deposits associated with age-related macular degeneration (United States)

    Flinn, Jane M; Kakalec, Peter; Tappero, Ryan; Jones, Blair F.; Lengyel, Imre


    Zinc (Zn) is abundantly enriched in sub-retinal pigment epithelial (RPE) deposits, the hallmarks of age-related macular degeneration (AMD), and is thought to play a role in the formation of these deposits. However, it is not known whether Zn is the only metal relevant for sub-RPE deposit formation. Because of their involvement in the pathogenesis of AMD, we determined the concentration and distribution of calcium (Ca), iron (Fe) and copper (Cu) and compared these with Zn in isolated and sectioned macular (MSD), equatorial (PHD) and far peripheral (FPD) sub-RPE deposits from an 86 year old donor eye with post mortem diagnosis of early AMD. The sections were mounted on Zn free microscopy slides and analyzed by microprobe synchrotron X-ray fluorescence (μSXRF). Metal concentrations were determined using spiked sectioned sheep brain matrix standards, prepared the same way as the samples. The heterogeneity of metal distributions was examined using pixel by pixel comparison. The orders of metal concentrations were Ca ⋙ Zn > Fe in all three types of deposits but Cu levels were not distinguishable from background values. Zinc and Ca were consistently present in all deposits but reached highest concentration in MSD. Iron was present in some but not all deposits and was especially enriched in FPD. Correlation analysis indicated considerable variation in metal distribution within and between sub-RPE deposits. The results suggest that Zn and Ca are the most likely contributors to deposit formation especially in MSD, the characteristic risk factor for the development of AMD in the human eye.

  13. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. (United States)

    Ma, Liang; Su, Wei; Liu, Jian-Xin; Zeng, Xiao-Xi; Huang, Zhi; Li, Wen; Liu, Zheng-Chun; Tang, Jian-Xin


    The present study addresses an eco-friendly and energy-saving method for extracellular biosynthesis of silver nanoparticles (AgNPs) using a cell free filtrate of the fungus strain Penicillium aculeatum Su1 as a reducing agent. Parametric optimization of the biosynthesis process demonstrated different effects on the size, distribution, yield, and synthesis rate of biosynthesized AgNPs. The transmission electron microscopy (TEM) measurements demonstrated that AgNPs were spherical or approximately spherical, with a size between 4 and 55nm. High-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) analyses indicated that AgNPs were nanocrystalline by nature, with the character of a face-centered cubic (fcc). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the existence of protein molecules that acted as a reducing agent and a capping agent during the biosynthesis process. Furthermore, the biosynthesized AgNPs exhibited higher antimicrobial activity than silver ions against Gram negative bacteria, Gram positive bacteria and fungi. Compared with silver ions, the biosynthesized AgNPs presented higher biocompatibility toward human bronchial epithelial (HBE) cells and high cytotoxicity in a dose-dependent manner with an IC 50 of 48.73μg/mL toward A549 cells. These results demonstrate that Penicillium aculeatum Su1 is a potential bioresource that can be used to produce low-cost and eco-friendly AgNPs as efficient antimicrobial agent, drug delivery vehicle or anticancer drug for clinic treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Action of Red Cell Calcium Ions on Human Erythrophagocytosis in Vitro

    Directory of Open Access Journals (Sweden)

    Pedro J. Romero


    Full Text Available In the present work we have studied in vitro the effect of increasing red cell Ca2+ ions on human erythrophagocytosis by peripheral monocyte-derived autologous macrophages. In addition, the relative contribution to phagocytosis of phosphatidylserine exposure, autologous IgG binding, complement deposition and Gárdos channel activity was also investigated. Monocytes were obtained after ficoll-hypaque fractionation and induced to transform by adherence to glass coverslips, for 24 h at 37°C in a RPMI medium, containing 10% fetal calf serum. Red blood cells (RBC were loaded with Ca2+ using 10 μM A23187 and 1 mM Ca-EGTA buffers, in the absence of Mg2+. Ca2+-loaded cells were transferred to above coverslips and incubated for 2 h at 37°C under various experimental conditions, after which phagocytosis was assessed by light microscopy. Confirming earlier findings, phagocytosis depended on internal Ca2+. Accordingly; it was linearly raised from about 2–15% by increasing the free Ca2+ content of the loading solution from 0.5 to 20 μM, respectively. Such a linear increase was virtually doubled by the presence of 40% autologous serum. At 7 μM Ca2+, the phagocytosis degree attained with serum was practically equal to that obtained with either 2 mg/ml affinity-purified IgG or 40% IgG-depleted serum. However, phagocytosis was reduced to levels found with Ca2+ alone when IgG-depleted serum was inactivated by heat, implying an involvement of complement. On the other hand, phagocytosis in the absence of serum was markedly reduced by preincubating macrophages with phosphatidylserine-containing liposomes. In contrast, a similar incubation in the presence of serum affected it partially whereas employing liposomes made only of phosphatidylcholine essentially had no effect. Significantly, the Gárdos channel inhibitors clotrimazole (2 μM and TRAM-34 (100 nM fully blocked serum-dependent phagocytosis. These findings show that a raised internal Ca2+ promotes

  15. Hydrogen peroxide-induced DNA damage is independent of nuclear calcium but dependent on redox-active ions. (United States)

    Jornot, L; Petersen, H; Junod, A F


    In cells undergoing oxidative stress, DNA damage may result from attack by .OH radicals produced by the Fenton reaction, and/or by nucleases activated by nuclear calcium. In the present study, the participation of these two mechanisms was investigated in HeLa cells. Nuclear-targeted aequorin was used for selectively monitoring Ca2+ concentrations within the nuclei ([Ca2+]n), in conjunction with the cell-permeant calcium chelator bis-(o-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), the lipid-soluble broad-spectrum metal chelator with low affinity for Ca2+ and Mg2+ N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), and the high-affinity iron/copper chelator 1, 10-phenanthroline (PHE). In Ca2+-containing medium, H2O2 induced extensive DNA strand breaks and an increase in [Ca2+]n that was almost identical to that observed in the cytosol ([Ca2+]c). In cells bathed in Ca2+-free/EGTA medium, in which the increases in [Ca2+]n and [Ca2+]c due to H2O2 were significantly reduced, similar levels of DNA fragmentation also occurred. In cells preloaded with BAPTA/AM or TPEN, the small increase of [Ca2+]n normally elicited by H2O2 in Ca2+-free medium was completely buffered, and DNA damage was largely prevented. On the other hand, pretreatment with PHE did not affect the calcium response in the nuclei, but completely prevented DNA strand breakage induced by H2O2. Re-addition of 100 microM CuSO4 and 100 microM FeSO4 to TPEN- and PHE-treated cells prior to H2O2 challenge reversed the effect of TPEN and PHE, whereas 1 mM was necessary to negate the effect of BAPTA/AM. The levels of DNA strand breakage observed, however, did not correlate with the amounts of 8-hydroxy 2'-deoxyguanosine (8-OHdG): H2O2 did not produce 8-OHdG, whereas PHE alone slightly increased 8-OHdG levels. CuSO4 and FeSO4 enhanced the effects of PHE, particularly in the presence of H2O2. Exposure of cells to a mixture of CuSO4/FeSO4 also resulted in a significant increase in

  16. Sigma-1 receptor agonist increases axon outgrowth of hippocampal neurons via voltage-gated calcium ions channels. (United States)

    Li, Dong; Zhang, Shu-Zhuo; Yao, Yu-Hong; Xiang, Yun; Ma, Xiao-Yun; Wei, Xiao-Li; Yan, Hai-Tao; Liu, Xiao-Yan


    Sigma-1 receptors (Sig-1Rs) are unique endoplasmic reticulum proteins that have been implicated in both neurodegenerative and ischemic diseases, such as Alzheimer's disease and stroke. Accumulating evidence has suggested that Sig-1R plays a role in neuroprotection and axon outgrowth. The underlying mechanisms of Sig-1R-mediated neuroprotection have been well elucidated. However, the mechanisms underlying the effects of Sig-1R on axon outgrowth are not fully understood. To clarify this issue, we utilized immunofluorescence to compare the axon lengths of cultured naïve hippocampal neurons before and after the application of the Sig-1R agonist, SA4503. Then, electrophysiology and immunofluorescence were used to examine voltage-gated calcium ion channel (VGCCs) currents in the cell membranes and growth cones. We found that Sig-1R activation dramatically enhanced the axonal length of the naïve hippocampal neurons. Application of the Sig-1R antagonist NE100 and gene knockdown techniques both demonstrated the effects of Sig-1R. The growth-promoting effect of SA4503 was accompanied by the inhibition of voltage-gated Ca 2+ influx and was recapitulated by incubating the neurons with the L-type, N-type, and P/Q-type VGCC blockers, nimodipine, MVIIA and ω-agatoxin IVA, respectively. This effect was unrelated to glial cells. The application of SA4503 transformed the growth cone morphologies from complicated to simple, which favored axon outgrowth. Sig-1R activation can enhance axon outgrowth and may have a substantial influence on neurogenesis and neurodegenerative diseases. © 2017 John Wiley & Sons Ltd.

  17. A chimeric prokaryotic-eukaryotic pentameric ligand gated ion channel reveals interactions between the extracellular and transmembrane domains shape neurosteroid modulation. (United States)

    Ghosh, Borna; Tsao, Tzu-Wei; Czajkowski, Cynthia


    Pentameric ligand-gated ion channels (pLGICs) are the targets of several clinical and endogenous allosteric modulators including anesthetics and neurosteroids. Molecular mechanisms underlying allosteric drug modulation are poorly understood. Here, we constructed a chimeric pLGIC by fusing the extracellular domain (ECD) of the proton-activated, cation-selective bacterial channel GLIC to the transmembrane domain (TMD) of the human ρ1 chloride-selective GABA A R, and tested the hypothesis that drug actions are regulated locally in the domain that houses its binding site. The chimeric channels were proton-gated and chloride-selective demonstrating the GLIC ECD was functionally coupled to the GABAρ TMD. Channels were blocked by picrotoxin and inhibited by pentobarbital, etomidate and propofol. The point mutation, ρ TMD W328M, conferred positive modulation and direct gating by pentobarbital. The data suggest that the structural machinery mediating general anesthetic modulation resides in the TMD. Proton-activation and neurosteroid modulation of the GLIC-ρ chimeric channels, however, did not simply mimic their respective actions on GLIC and GABAρ revealing that across domain interactions between the ECD and TMD play important roles in determining their actions. Proton-induced current responses were biphasic suggesting that the chimeric channels contain an additional proton sensor. Neurosteroid modulation of the GLIC-ρ chimeric channels by the stereoisomers, 5α-THDOC and 5β-THDOC, were swapped compared to their actions on GABAρ indicating that positive versus negative neurosteroid modulation is not encoded solely in the TMD nor by neurosteroid isomer structure but is dependent on specific interdomain connections between the ECD and TMD. Our data reveal a new mechanism for shaping neurosteroid modulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Prolactin 177, prolactin 188, and extracellular osmolality independently regulate the gene expression of ion transport effectors in gill of Mozambique tilapia. (United States)

    Inokuchi, Mayu; Breves, Jason P; Moriyama, Shunsuke; Watanabe, Soichi; Kaneko, Toyoji; Lerner, Darren T; Grau, E Gordon; Seale, Andre P


    This study characterized the local effects of extracellular osmolality and prolactin (PRL) on branchial ionoregulatory function of a euryhaline teleost, Mozambique tilapia (Oreochromis mossambicus). First, gill filaments were dissected from freshwater (FW)-acclimated tilapia and incubated in four different osmolalities, 280, 330, 380, and 450 mosmol/kg H2O. The mRNA expression of Na(+)/K(+)-ATPase α1a (NKA α1a) and Na(+)/Cl(-) cotransporter (NCC) showed higher expression with decreasing media osmolalities, while Na(+)/K(+)/2Cl(-) cotransporter 1a (NKCC1a) and PRL receptor 2 (PRLR2) mRNA levels were upregulated by increases in media osmolality. We then incubated gill filaments in media containing ovine PRL (oPRL) and native tilapia PRLs (tPRL177 and tPRL188). oPRL and the two native tPRLs showed concentration-dependent effects on NCC, NKAα1a, and PRLR1 expression; Na(+)/H(+) exchanger 3 (NHE3) expression was increased by 24 h of incubation with tPRLs. Immunohistochemical observation showed that oPRL and both tPRLs maintained a high density of NCC- and NKA-immunoreactive ionocytes in cultured filaments. Furthermore, we found that tPRL177 and tPRL188 differentially induce expression of these ion transporters, according to incubation time. Together, these results provide evidence that ionocytes of Mozambique tilapia may function as osmoreceptors, as well as directly respond to PRL to modulate branchial ionoregulatory functions. Copyright © 2015 the American Physiological Society.

  19. Inversion of the calcium isotope separation at an ion exchanger resin by variation of the LiCl electrolyte concentration

    International Nuclear Information System (INIS)

    Heumann, K.G.; Kloeppel, H.; Sigl, G.


    The calcium isotope separation at a strongly acidic exchanger resin as a function of the concentration of a LiCl solution is investigated in column experiments. Whereas an enrichment of the heavier calcium isotopes in the solution phase is found with a 3 M LiCl solution, an inverse effect is obtained with 8 M and 12 M LiCl solutions. The separation effect epsilon for the 12 M solution is found to be the highest calcium enrichment in a system without a complexing agent. The results are compared with those for other electrolyte solutions and can be explained by the anion/cation interactions. (orig.)

  20. Profiles of cortical tissue depolarization in cat focal cerebral ischemia in relation to calcium ion homeostasis and nitric oxide production. (United States)

    Ohta, K; Graf, R; Rosner, G; Heiss, W D


    Cortical depolarization was investigated in a topographic gradient of ischemic density after 1-hour transient middle cerebral artery occlusion in halothane-anesthetized cats. A laser Doppler flow probe, an ion-selective microelectrode, and a nitric oxide (NO) electrode measured regional CBF (rCBF), direct current (DC) potential, extracellular Ca2+ concentration ([Ca2+]o), and NO concentration in ectosylvian and suprasylvian gyri of nine animals. Recordings revealed 12 of 18 sites with persistent negative shifts of the DC potential, severe rCBF reduction, and a drop of [Ca2+]o characteristic for core regions of focal ischemia. Among these sites, two types were distinguished by further analysis. In Type 1 (n = 5), rapid, negative DC shifts resembled anoxic depolarization as described for complete global ischemia. In this type, ischemia was most severe (8.9 +/- 2.5% of control rCBF), [Ca2+]o dropped fast and deepest (0.48 +/- 0.20 mmol/L), and NO concentration increased transiently (36.1 +/- 24.0 nmol/L at 2.5 minutes), and decreased thereafter. In Type 2 (n = 7), the DC potential fell gradually over the first half of the ischemic episode, rCBF and [Ca2+]o reductions were smaller than in Type 1 (16.2 +/- 8.2%; 0.77 +/- 0.41 mmol/L), and NO increased continuously during ischemia (53.1 +/- 60.4 nmol/L at 60 minutes) suggesting that in this type NO most likely exerts its diverse actions on ischemia-threatened tissue. In the remaining six recording sites, a third type (Type 3) attributable to the ischemic periphery was characterized by minimal DC shifts, mild ischemia (37.2 +/- 13.3%), nonsignificant alterations of [Ca2+]o, but decreased NO concentrations during middle cerebral artery occlusion. Reperfusion returned the various parameters to baseline levels within 1 hour, the recovery of [Ca2+]o and NO concentration being delayed in Type 1. An NO synthase inhibitor (N(G)-nitro-L-arginine, 50 mg/kg intravenously; four animals) abolished NO elevation during ischemia. In

  1. A Proposed Mechanism for the Thermal Denaturation of a Recombinant Bacillus Halmapalus Alpha-amylase - the Effect of Calcium Ions (United States)

    Nielsen, Anders D.; Pusey, Marc L.; Fuglsang, Claus C.; Westh, Peter


    The thermal stability of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been investigated using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). This alpha-amylase is homologous to other Bacillus alpha-amylases where previous crystallographic studies have identified the existence of 3 calcium binding sites in the structure. Denaturation of BHA is irreversible with a Tm of approximately 89 C, and DSC thermograms can be described using a one-step irreversible model. A 5 C increase in T(sub m) in the presence of 10 fold excess CaCl2 was observed. However, a concomitant increase in the tendency to aggregate was also observed. The presence of 30-40 fold excess calcium chelator (EDTA or EGTA) results in a large destabilization of BHA corresponding to about 40 C lower T(sub m), as determined by both CD and DSC. Ten fold excess EGTA reveals complex DSC thermograms corresponding to both reversible and irreversible transitions, which possibly originate from different populations of BHA:calcium complexes. The observations in the present study have, in combination with structural information of homologous alpha-amylases, provided the basis for the proposal of a simple denaturation mechanism of BHA. The proposed mechanism describes the irreversible thermal denaturation of different BHA:calcium complexes and the calcium binding equilibrium involved. Furthermore, the model accounts for a temperature induced reversible structural change associated with calcium binding.

  2. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the ...

  3. Biopharmaceutical characterisation of ciprofloxacin-metallic ion interactions: Comparative study into the effect of aluminium, calcium, zinc and iron on drug solubility and dissolution

    Directory of Open Access Journals (Sweden)

    Stojković Aleksandra


    Full Text Available Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution vessel with aluminium hydroxide, calcium carbonate and zinc sulphate were investigated for their properties. The results obtained indicate that different types of adducts may form and retard ciprofloxacin solubility and dissolution. In the case of aluminium, no phase changes were observed. The solid phase generated in the presence of calcium carbonate was identified as hydrated ciprofloxacin base. Similarly to iron, a new complex consistent with Zn(SO42(Cl2(ciprofloxacin2 × nH2O stoichiometry was generated in the presence of relatively high concentrations of ciprofloxacin hydrochloride and zinc sulphate, indicating that small volume dissolution experiments can be useful for biorelevant dissolution tests.

  4. Biopharmaceutical characterisation of ciprofloxacin-metallic ion interactions: comparative study into the effect of aluminium, calcium, zinc and iron on drug solubility and dissolution. (United States)

    Stojković, Aleksandra; Tajber, Lidia; Paluch, Krzysztof J; Djurić, Zorica; Parojčić, Jelena; Corrigan, Owen I


    Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution vessel with aluminium hydroxide, calcium carbonate and zinc sulphate were investigated for their properties. The results obtained indicate that different types of adducts may form and retard ciprofloxacin solubility and dissolution. In the case of aluminium, no phase changes were observed. The solid phase generated in the presence of calcium carbonate was identified as hydrated ciprofloxacin base. Similarly to iron, a new complex consistent with Zn(SO4)2(Cl)2(ciprofloxacin)2 × nH2O stoichiometry was generated in the presence of relatively high concentrations of ciprofloxacin hydrochloride and zinc sulphate, indicating that small volume dissolution experiments can be useful for biorelevant dissolution tests.

  5. Effect of acute acid loading on acid-base and calcium metabolism

    DEFF Research Database (Denmark)

    Osther, Palle J


    OBJECTIVE: To investigate the acid-base and calcium metabolic responses to acute non-carbonic acid loading in idiopathic calcium stone-formers and healthy males using a quantitative organ physiological approach. MATERIAL AND METHODS: Five-h ammonium chloride loading studies were performed in 12...... male recurrent idiopathic calcium stone-formers and 12 matched healthy men using a randomized, placebo-controlled, cross-over design. Arterialized capillary blood, serum and urine were collected hourly for measurement of electrolytes, ionized calcium, magnesium, phosphate, parathyroid hormone and acid-base...... status. Concentrations of non-metabolizable base (NB) and acid (NA) were calculated from measured concentrations of non-metabolizable ions. RESULTS: The extracellular acid-base status in the stone-formers during basal conditions and acid loading was comparable to the levels in the healthy controls...

  6. Synchronized Anti-Phase and In-Phase Oscillations of Intracellular Calcium Ions in Two Coupled Hepatocytes System

    International Nuclear Information System (INIS)

    Chuan-Sheng, Shen; Han-Shuang, Chen; Ji-Qian, Zhang


    We study the dynamic behaviour of two intracellular calcium oscillators that are coupled through gap junctions both to Ca 2+ and inositol(1,4,5)-trisphosphate (IP 3 ). It is found that synchronized anti-phase and in-phase oscillations of cytoplasmic calcium coexist in parameters space. Especially, synchronized anti-phase oscillations only occur near the onset of a Hopf bifurcation point when the velocity of IP 3 synthesis is increased. In addition, two kinds of coupling effects, i.e., the diffusions of Ca 2+ and IP 3 among cells on synchronous behaviour, are considered. We find that small coupling of Ca 2+ and large coupling of IP 3 facilitate the emergence of synchronized anti-phase oscillations. However, the result is contrary for the synchronized in-phase case. Our findings may provide a qualitative understanding about the mechanism of synchronous behaviour of intercellular calcium signalling

  7. Further improvement in ganoderic acid production in static liquid culture of Ganoderma lucidum by integrating nitrogen limitation and calcium ion addition. (United States)

    Li, Huan-Jun; Zhang, De-Huai; Han, Li-Liang; Yu, Xuya; Zhao, Peng; Li, Tao; Zhong, Jian-Jiang; Xu, Jun-Wei


    To further improve the ganoderic acid (GA) production, a novel integrated strategy by combining nitrogen limitation and calcium ion addition was developed. The effects of the integrated combination on the content of GA-T (one powerful anticancer compound), their intermediates (squalene and lanosterol) and on the transcription levels of GA biosynthetic genes in G. lucidum fermentation were investigated. The maximum GA-T content with the integrated strategy were 1.87 mg/ 100 mg dry cell weight, which was 2.1-4.2 fold higher than that obtained with either calcium ion addition or nitrogen limitation alone, and it is also the highest record as ever reported in submerged fermentation of G. lucidum. The squalene content was increased by 3.9- and 2.2-fold in this case compared with either individual strategy alone. Moreover, the transcription levels of the GA biosynthetic genes encoding 3-hydroxy-3-methyglutaryl coenzyme A reductase and lanosterol synthase were also up-regulated by 3.3-7.5 and 1.3-2.3 fold, respectively.

  8. The effects of thermal stimuli on intracellular calcium change and histamine releases in rat basophilic leukemia mast cells (United States)

    Wu, Zu-Hui; Zhu, Dan; Chen, Ji-Yao; Zhou, Lu-Wei


    The effects of thermal stimuli on rat basophilic leukemia mast cells were studied. The cells in calcium-contained or calcium-free buffers were thermally stimulated in the temperature range of 25-60 °C. The corresponding calcium ion concentration in cells [Ca2+]i as well as the released histamine from cells was measured with fluorescence staining methods. The ruthenium red (RR), a block of membrane calcium channels (transient receptor potential family V (TRPV)), was used in experiments. Under the stimulus of 25-50 °C, no significant difference on [Ca2+]i was found between these three groups of the cells in calcium-contained buffer without or with RR and cells in calcium-free saline, indicating that the increased calcium in cytosol did not result from the extracellular buffer but came from the intracellular calcium stores. The [Ca2+]i continuously increased under the temperature of 50-60 °C, but the RR and calcium-free saline can obviously diminish the [Ca2+]i increase at these high temperatures, reflecting that the opening of the TRPV2 channels leads to a calcium influx resulting in the [Ca2+]i increment. The histamine release also became significant in these cases. Since the released histamine is a well-known mediator for the microcirculation promotion, the histamine release from mast cells could be one of the mechanisms of thermal therapy.

  9. Influence of calcium, magnesium, or potassium ions on the formation and stability of emulsions prepared using highly hydrolyzed whey proteins. (United States)

    Ramkumar, C; Singh, H; Munro, P A; Singh, A M


    Oil-in-water emulsions (4 wt % soy oil) containing 4 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis) and different levels of calcium, magnesium, or potassium chloride were prepared in a two-stage homogenizer. Other emulsions containing 4 wt % WPH but including 0.35 wt % hydroxylated lecithin and different levels of the above minerals were similarly prepared. The formation and stability of these emulsions were determined by measuring oil droplet size distributions using laser light scattering and by confocal scanning laser microscopy and a gravity creaming test. Both lecithin-free and lecithin-containing emulsions showed no change in droplet size distributions with increasing concentration of potassium in the range 0-37.5 mM. In contrast, the diameter of emulsion droplets increased with increasing calcium or magnesium concentration >12.5 mM. Emulsions containing hydroxylated lecithin were more sensitive to the addition of calcium or magnesium than the lecithin-free emulsions. Storage of emulsions at 20 degrees C for 24 h further increased the diameter of droplets and resulted in extensive creaming in emulsions containing >25 mM calcium or magnesium. It appears that both flocculation and coalescence processes were involved in the destabilization of emulsions induced by the addition of divalent cations.

  10. El ion calcio: su regulación y función en la célula ß pancreática Ion calcium: its regulation and function in the pancreatic cell

    Directory of Open Access Journals (Sweden)

    Oscar Díaz Horta


    Full Text Available En el presente trabajo se realiza una revisión del conocimiento actual sobre la regulación de las concentraciones intracelulares del ion calcio, los principales mecanismos de entrada y salida de este a través de la membrana plasmática, con especial atención en el intercambiador Na+/Ca2+, y la función de este importante segundo mensajero en la secreción de insulina, así como la muerte celular programada de las células ß pancreáticas.The present paper made a review of the present knowledge on regulation of intracellular concentrations of calcium ion, the main mechanisms of inlet/outlet through the plasma membrane, with special attention to Na+/Ca2+, and the function of this important second messenger in insulin secretion and in programmed cell death of pancreatic cells.

  11. Biomimetic synthesis of needle-like fluorescent calcium phosphate/carbon dot hybrid composites for cell labeling and copper ion detection. (United States)

    Guo, Shanshan; Lu, Shousi; Xu, Pingxiang; Ma, Yi; Zhao, Liang; Zhao, Yuming; Gu, Wei; Xue, Ming


    Herein, we report a biomimetic method to synthesize needle-like calcium phosphate (CaP) with dimensions of ∼130 nm length and ∼30 nm width using carbon dots (CDs) and sodium carboxymethylcellulose as dual templates. In addition to acting as the template, the CDs enable the CaP/CDs hybrid composites to emit blue fluorescence under UV excitation. Moreover, the prepared CaP/CDs exhibited a negligible cytotoxicity towards HeLa cells. The potential of these CaP/CDs as a fluorescent probe for cell labeling was tested. In addition, it was demonstrated that the CaP/CDs were capable of selective detection of copper ions in drinking water.

  12. The NAA system at the reactor BER II clinical analysis of fluorine, calcium, phosphorus and aluminium in bone biopsies, comparison with photon activation analysis and ion sensitive electrode

    International Nuclear Information System (INIS)

    Gawlik, D.; Gatschke, W.; Behne, D.; Braetter, P.


    Over the past few years an irradiation and measuring system has been developed for the reactor BER II at the Hahn-Meitner-Institute. It was to be suited in particular to the neutron activation analysis of biological material via short lived radionuclides. The general characteristics of this equipment and some experimental details as the recycling facility and the device used for measuring the irradiation time, the waiting time and the neutron fluency are described. This equipment was used to determine physiological concentrations of the elements sodium, chlorine, aluminium, phosphorus, fluorine, calcium, copper and selenium in biological material. The results have been compared with those obtained by photon activation analysis or ion sensitive electrode. As an example of the application of the apparatus the authors report on the clinical analysis of Ca, F, P and Al in the control of the treatment of patients suffering from osteoporosis. (author)

  13. Comparison of radioisotopic studied calcium metabolism in the orally administered and inhaled cadmium rat

    International Nuclear Information System (INIS)

    Fauran-Clavel, M.J.; Oustrin, J.; Godin, J.; Boudene, C.


    The radioisotopic study of calcium metabolism in the rat after oral administration of cadmium, 8 mg/kg during 13 weeks, has shown two different effects of this ion: 1) in the intestine, cadmium inhibits the absorption of calcium by active transport; 2) in the deep bone compartment, the decrease of the bone calcium used for the crystallization and slowly exchangeable with the calcium central pool (serum, extracellular and soft tissues calcium) is combined with a reduction of the exchange rates between the two compartments. When administered through a microparticle aerosol inhalation (1 mg/m 3 of air, 30 mn a day, during 12 weeks), cadmium's main target organ is the deep bone compartment. For both modes of administration, the slowing down of osteogenesis is confirmed by a drop in serum alkaline phosphatase after a four weeks period which reflects a decrease of the osteoblastic activity. Therefore it appears that the effects on bones observed during the chronic oral cadmium administration, do not result from a malabsorption of intestine calcium but also from the very action the Cd ++ ion on the bone crystallization process [fr

  14. Calcium supplements (United States)

    ... this page: // Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  15. The hemodynamic effect of calcium ion concentration in the infusate during predilution hemofiltration in chronic renal failure

    DEFF Research Database (Denmark)

    Karamperis, N.; Sloth, E.; Jensen, Jens Dam


    [SBP], and diastolic blood pressure [DBP]), pulse rate, arterial and venous temperature, energy transfer, and relative blood volume were measured at 15-minute intervals. Cardiac output, total peripheral resistance, stroke volume, and iCa were measured hourly. The 2 treatments were matched......Eq/L (1.25 mmol/L; low-calcium session [L-HF]) or 3.5 mEq/L (1.75 mmol/L; high-calcium session [H-HF]) during 4.5 hours of predilution HF with a volume of 1.24 +/- 0.09 L/kg dry body weight and a temperature of 37 degrees C. Ultrafiltration was kept constant in each patient. Blood pressure (mean, systolic...... with the exception of iCa concentration. RESULTS: A significant intratreatment reduction in cardiac output and stroke volume was shown to the same extent for both groups. Intertreatment comparisons showed a significantly lower mean arterial pressure, SBP, DBP, and total peripheral resistance in the L-HF compared...

  16. Investigation of the effects of swift heavy ion on the properties of yttrium calcium oxyborate (YCOB) NLO crystal

    International Nuclear Information System (INIS)

    Kalidasan, M.; Dhanasekaran, R.; Asokan, K.


    Heavy ion irradiation is a successful tool to create an effective refractive index change in a nonlinear optical (NLO) crystal surface in several micron thickness. It leads to the fabrication of non-leaky optical guiding structures. As irradiation can create the property changes with low ion fluence, it will be an alternative for the ion implantation. The present work is related to the creation of micrometer level surface modification in the YCa_4O(BO_3)_3 NLO crystal by the irradiation of 120 MeV Au"9"+ swift heavy ion and studying the changes in property of the material. The irradiation was carried out in the Materials Science beam line of the pelletron accelerator at Inter University Accelerator Centre, New Delhi. YCOB crystals were grown by high temperature flux technique in our laboratory. YCOB belongs to borate family of crystals which are superior to other NLO crystals due to their structural and optical features. Borate crystal can produce UV and deep UV laser through harmonic generation with good optical conversion efficiency. YCOB crystal attracted because of its high laser damage threshold, long nonlinear conversion length and large aperture scaling capability to be employed in high power laser applications. The Stopping and Range of Ions in Matter (SRIM) simulation has been carried out to study the variation of electronic (S_e) and nuclear (S_n) energy losses with penetration depth and energy of gold ions in YCOB crystal. Refractive index change was observed in the YCOB crystal due to the irradiation of 120 MeV Au"9"+ ion. The UV-Visible studies show optical band gap shift and confirms the refractive index change created in the YCOB crystal. The morphology of the irradiated crystal was analysed with scanning electron microscopy. The inhomogeneous broadening of emission curve of the YCOB crystal takes place due to ion irradiation which is analyzed in detail. From the fluorescence decay curves of pristine and irradiated crystals the excited state

  17. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma; Energieverlust und Ladungsverteilung von Calciumionen in dichtem, schwach gekoppeltem Kohlenstoffplasma

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Alex


    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λ{sub L}=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of T{sub r}=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is T{sub r}=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is

  18. Impact of calcium ion on cytotoxic effect of the boroxine derivative, K2[B3O3F4OH]. (United States)

    Ivankovic, Sinisa; Stojkovic, Ranko; Maksimovic, Milka; Galic, Borivoj; Milos, Mladen


    The effect of Ca 2+ ions on the cytotoxic ability of boron heterocyclic compound dipotassium-trioxohydroxytetrafluorotriborate (K 2 [B 3 O 3 F 4 OH]), on in vitro tumor cells (mammary adenocarcinoma 4T1, melanoma B16F10 and squamous cell carcinoma SCCVII) and non-tumoral fibroblast cells (mouse dermal L929 and hamster lung V79) was examined. At small concentrations of Ca 2+ ions (0.42 mM), K 2 [B 3 O 3 F 4 OH] (3.85 mM) has a very strong cytotoxic effect on all cancer cells tested (89.1, 85.6 and 84.6%) and significantly less effect on normal cells (19.5 and 24.2%), respectively. Applying larger concentrations of Ca 2+ ions (9.42-72.42 mM), at the same concentration of K 2 [B 3 O 3 F 4 OH], no significant cytotoxic effect was detected on cancer cells and normal cells investigated. The selective ability of K 2 [B 3 O 3 F 4 OH], in the medium with a low concentration of Ca 2+ ions has a strong cytotoxic effect on cancer cells and very weak effect in normal cells, opens up the possibility of its application in antitumor therapy.

  19. Characterization and spectroscopic studies of multi-component calcium zinc bismuth phosphate glass ceramics doped with iron ions (United States)

    Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, M. V. Sambasiva; Tirupataiah, Ch.; Rao, D. Krishna


    Glass ceramics with the composition 10CaF2-20ZnO-(15-x)Bi2O3-55P2O5:x Fe2O3(0≤x≤2.5) were synthesized by melt-quenching technique and heat treatment. These glass ceramics were characterized by XRD and SEM. Spectroscopic studies such as optical absorption, EPR were also carried out on these glass ceramics. From the absorption spectra the observed bands around 438 and 660nm are the octahedral transitions of Fe3+ (d5) ions and another band at about 536 nm is the tetrahedral transition of Fe3+ (d5) ions. The absorption spectrum also consist of a band around 991 nm and is attributed to the octahedral transition of Fe2+ ions. The EPR spectra of the prepared glass ceramics have exhibited two resonance signals one at g1=4.32 and another signal at g2=2.008. The observed decrease in band gap energy up to 2 mol% Fe2O3 doped glass ceramics is an evidence for the change of environment around iron ions and ligands from more covalent to less covalent (ionic) and induces higher concentration of NBOs which causes the depolymerization of the glass ceramic network.

  20. Conformational Dynamics on the Extracellular Side of LeuT Controlled by Na+ and K+ Ions and the Protonation State of Glu(290)

    DEFF Research Database (Denmark)

    Khelashvili, George; Schmidt, Solveig Gaarde; Shi, Lei


    Na+ ions and substrate have left, and the transporter prepares for a new cycle. We compare the results with the consequences of binding Na+ in the same apo system. Analysis of >50-μs atomistic molecular dynamics and enhanced sampling trajectories of constructs with Glu290, either charged or neutral......Ions play key mechanistic roles in the gating dynamics of neurotransmitter:sodium symporters (NSSs). In recent microsecond scale molecular dynamics simulations of a complete model of the dopamine transporter, a NSS protein, we observed a partitioning of K+ ions from the intracellular side toward...... the unoccupied Na2 site of dopamine transporter following the release of the Na2-bound Na+. Here we evaluate with computational simulations and experimental measurements of ion affinities under corresponding conditions, the consequences of K+ binding in the Na2 site of LeuT, a bacterial homolog of NSS, when both...

  1. Calcium absorption

    International Nuclear Information System (INIS)

    Carlmark, B.; Reizenstein, P.; Dudley, R.A.


    The methods most commonly used to measure the absorption and retention of orally administered calcium are reviewed. Nearly all make use of calcium radioisotopes. The magnitude of calcium absorption and retention depends upon the chemical form and amount of calcium administered, and the clinical and nutritional status of the subject; these influences are briefly surveyed. (author)

  2. Brain calcium - Role in temperature regulation. (United States)

    Hanegan, J. L.; Williams, B. A.


    Perfusion of the preoptic-anterior hypothalamus with excess calcium ion in ground squirrels produces a drop in core temperature. The magnitude of the drop is directly dependent on ambient temperature. Respiration, heart rate, and oxygen consumption are also reduced during perfusion of calcium ion. It is concluded that the depression of body temperature during calcium ion perfusion is due to generalized depression of the neurons of the preoptic-anterior hypothalamus.

  3. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt


    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  4. 125 MeV Si 9+ ion irradiation of calcium phosphate thin film coated by rf-magnetron sputtering technique (United States)

    Elayaraja, K.; Joshy, M. I. Ahymah; Suganthi, R. V.; Kalkura, S. Narayana; Palanichamy, M.; Ashok, M.; Sivakumar, V. V.; Kulriya, P. K.; Sulania, I.; Kanjilal, D.; Asokan, K.


    Titanium substrate was coated with hydroxyapatite by radiofrequency magnetron sputtering (rf-magnetron sputtering) technique and subjected to swift heavy ion (SHI) irradiation of 125 MeV with Si 9+ at fluences of 1 × 10 10, 1 × 10 11 and 1 × 10 12 ions/cm 2. The glancing incidence X-ray diffraction (GIXRD) analysis confirmed the HAp phase of the irradiated film. There was a considerable decrease in crystallinity and particle size after irradiation. In addition, DRS-UV reflectance spectra revealed a decrease in optical band gap ( Eg) from 5.2 to 4.6 eV. Wettability of biocompatible materials plays an important role in biological cells proliferation for tissue engineering, drug delivery, gene transfer and bone growth. HAp thin films irradiated with 1 × 10 11 ions/cm 2 fluence showed significant increase in wettability. While the SHI irradiated samples exhibited enhanced bioactivity, there was no significant variation in cell viability. Surface roughness, pores and average particle size were analyzed by atomic force microscopy (AFM).

  5. Influence of the organic coating and calcium ions on the sorption of europium on a silica gel

    International Nuclear Information System (INIS)

    Fleury, C.; Barbot, C.; Pieri, J.; Durand, J.P.; Goudard, F.


    Humic substances, ubiquitous polyelectrolyte and polydisperse macromolecules, have a great affinity towards heavy metals and radionuclides. It is important to understand the role of these substances in the migration of contaminants that could be accidentialy released from radioactive waste repositories. The migration of these radionuclides is also governed by different influent parameters like pH, flow rate, ionic strength and presence of competing cations. Lab experiments have been undertaken, they allowed us to confirm that the behaviour and dispersion of europium (used as analog of actinides) depends on the presence of humic acids. If the latter are bound to mineral surfaces, they immobilize the radionuclides. On the other hand, if they are in a suspended form, they are able to decrease the influence of some parameters (pH, flow rate or ionic strength) and stabilize europium onto the mineral surfaces. The presence of calcium cations tends to increase the migration of Eu at lower flow rates and at most alcaline pH. (orig.)

  6. Natural silica sand modified by calcium oxide as a new adsorbent for uranyl ions removal from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Elhefnawy, O.A.; Elabd, A.A. [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Nuclear Safeguards and Physical Protection Dept.


    Calcium oxide modified El-Zafarana silica sand (CMZS) was prepared as a new adsorbent for U(VI) removal from aqueous solutions in a series of batch experiments. The new adsorbent CMZS was characterized by different analysis techniques SEM, EDX, XRD, and FTIR. The influence of many parameters on the removal process like; effect of pH, contact time, U(VI) initial concentration and temperature on U(VI) removal were investigated. Kinetic experiments showed that U(VI) removal on CMZS followed pseudo-second-order kinetics model appropriately and the equilibrium data agreed well with the Langmuir isotherm model. Kinetics and isothermal data reveal the chemisorption process of U(VI) on CMZS. The thermodynamic parameters (ΔH {sup circle}, ΔS {sup circle}, ΔG {sup circle}) were evaluated from temperature dependent adsorption data and the U(VI) removal on CMZS was found to be endothermic and spontaneous in nature. U(VI) desorption from CMZS was studied by a simple acid treatment. The results indicate that CMZS is an effective adsorbent for U(VI) from aqueous solutions.

  7. Extracellular Membrane-proximal Domain of HAb18G/CD147 Binds to Metal Ion-dependent Adhesion Site (MIDAS) Motif of Integrin β1 to Modulate Malignant Properties of Hepatoma Cells* (United States)

    Li, Yong; Wu, Jiao; Song, Fei; Tang, Juan; Wang, Shi-Jie; Yu, Xiao-Ling; Chen, Zhi-Nan; Jiang, Jian-Li


    Several lines of evidence suggest that HAb18G/CD147 interacts with the integrin variants α3β1 and α6β1. However, the mechanism of the interaction remains largely unknown. In this study, mammalian protein-protein interaction trap (MAPPIT), a mammalian two-hybrid method, was used to study the CD147-integrin β1 subunit interaction. CD147 in human hepatocellular carcinoma (HCC) cells was interfered with by small hairpin RNA. Nude mouse xenograft model and metastatic model of HCC were used to detect the role of CD147 in carcinogenesis and metastasis. We found that the extracellular membrane-proximal domain of HAb18G/CD147 (I-type domain) binds at the metal ion-dependent adhesion site in the βA domain of the integrin β1 subunit, and Asp179 in the I-type domain of HAb18G/CD147 plays an important role in the interaction. The levels of the proteins that act downstream of integrin, including focal adhesion kinase (FAK) and phospho-FAK, were decreased, and the cytoskeletal structures of HCC cells were rearranged bearing the HAb18G/CD147 deletion. Simultaneously, the migration and invasion capacities, secretion of matrix metalloproteinases, colony formation rate in vitro, and tumor growth and metastatic potential in vivo were decreased. These results indicate that the interaction of HAb18G/CD147 extracellular I-type domain with the integrin β1 metal ion-dependent adhesion site motif activates the downstream FAK signaling pathway, subsequently enhancing the malignant properties of HCC cells. PMID:22130661

  8. Calcium cation enhanced cathode/electrolyte interface property of Li2FeSiO4/C cathode for lithium-ion batteries with long-cycling life (United States)

    Qu, Long; Li, Mingtao; Tian, Xiaolu; Liu, Pei; Yi, Yikun; Yang, Bolun


    Currently, the cycle performance at low rate is one of the most critical factor for realizing practical applications of Li2FeSiO4/C as a cathode of the lithium-ion batteries. To meet this challenge, calcium (Ca)-doped Li2FeSiO4/C is prepared by using the sol-gel method with soluble Li, Fe, Si and Ca sources. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy measurements are carried out to determine the crystal structures, morphologies, particle sizes and chemical valence states of the resulting products. Rietveld refinement confirms that Ca-doped Li2FeSiO4 has a monoclinic P21/n structure and that a Ca cation occupies the Fe site in the Li2FeSiO4 lattice. The grain size of Ca-doped Li2FeSiO4 is approximately 20 nm and the nanoparticles are interconnected tightly with amorphous carbon layer. As a cathode material for the lithium-ion batteries, Li2Fe0.97Ca0.03SiO4/C delivers a high discharge capacity of 186 mAh g-1 at a 0.5 C rate. Its capacity retention after the 100th cycle reaches 87%, which increases by 25 percentage points compared with Li2FeSiO4/C. The Li2Fe0.97Ca0.03SiO4/C cathode exhibits good rate performance, with corresponding discharge capacities of 170, 157, 144 and 117 mAh g-1 at 1 C, 2 C, 5 C and 10 C rates, respectively. In summary, the improvement of the electrochemical performance can be attributed to a coefficient of the strengthened crystal structure stability during Li+ deintercalation-intercalation and restrained side reactions between electrode and electrolyte.

  9. Growth and Properties of Oxygen and Ion Doped BISMUTH(2) STRONTIUM(2) Calcium COPPER(2) Oxygen (8+DELTA) Single Crystals (United States)

    Mitzi, David Brian


    A directional solidification method for growing large single crystals in the Bi_2Sr _2CaCu_2O _{8+delta} system is reported. Ion substitutions, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Ion doping results in little change of the superconducting transition for substitution levels below 20-25% (as a result of simultaneous oxygen intercalation), while beyond this level, the Meissner signal broadens and the low temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals, provides evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed) while the Hall concentrations increase from n = 3.1(3) times 10 ^{21} cm^{ -3} (0.34 holes/Cu site) to 4.6(3) times 10^{21} cm^{-3} (0.50 holes/Cu site). Further suppression of T_{c} to 72K is possible by annealing in oxygen pressures up to 100atm. No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen doped Bi_2Sr _2CaCu_2O _{8+delta} is a suitable system for pursuing doping studies. The decrease in T _{c} with concentration for 0.34 <=q n <=q 0.50 indicates that a high carrier concentration regime exists where T_{c} decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. The physical properties of these Bi _2Sr_2CaCu _2O_{8+delta} crystals, in this high carrier concentration regime, will be discussed.

  10. Elevated extracellular pH during early shell formation in the blue mussel Mytilus edulis (United States)

    Ramesh, K.; Melzner, F.; Himmerkus, N.; Hu, M.; Bleich, M.


    Marine calcifiers are amongst the most vulnerable organisms to ocean acidification (OA). However, limited studies investigate the mechanisms underlying their hindered performance under OA stress. Working with larval stages of the blue mussel, Mytilus edulis, we use microsensors to study the pH and calcium conditions necessary for shell deposition. Using 45-48 hour, D-veliger stages, we discover alkaline conditions with respect to ambient seawater pH by 0.28 pH units and higher calcium concentrations (by 0.54mM) in the extra pallial space beneath the growing shell that likely promotes the rapid synthesis of the first shell. We further use enzyme assays in combination with immuno-stainings of sodium-potassium ATPase (NKA) and proton ATPase (VHA) to provide information on the major ion regulatory pathways that enable transport of calcium carbonate required for shell formation and pH homeostasis. We also use the juvenile stages of M. edulis to understand how extracellular pH regulation close to the shell formation site will be influenced by OA stress. This allows us to describe the pH dependency of early shell formation and to begin to develop a model of the ion regulatory network that facilitates biomineralisation in the organism. The results are discussed in the context of environmental change and consequences for mollusc developmental success.

  11. [Concentration of calcium ions in the saliva and the value of the pH of the saliva in female and male smokers]. (United States)

    Nakonieczna-Rudnicka, Marta; Bachanek, Teresa; Rogowska, Wanda


    Dental decay is a pathological process of extrasomatic origin which leads to demineralization and proteolytic degradation of hard surfaces of a tooth susceptible to this disease. Saliva composition, including calcium ion concentration and its pH value, is of importance in the development of the carious process. Tobacco smoke contains toxic compounds which negatively influence oral health. The aim of the study was evaluation of the selected saliva components: protein concentration, Ca2+ concentration, pH value both in male and female smokers. The investigated group included 65 patients reporting for the treatment to the Department of Conservative Dentistry of Medical University in Lublin. In the investigated group male smokers constituted 15.38%, female smokers--20.00%, male nicotine abstinents 21.54% and female nicotine abstinent 43.08%. The study included both survey examinations of patients and biochemical examinations of the saliva. Mixed, non-stimulated saliva was used as a material for biochemical examinations. Ca2+ concentration and pH of the saliva were assayed with the use of Rapidlab 348 analyzer. Protein in the saliva was assayed with calorimetric method according to Lowry. Saliva was collected from smokers 10-120 minutes after smoking of several cigarettes. It was stated that Ca2+ and protein concentration as well as pH of the saliva were not correlated with sex and cigarette smoking or non-smoking.

  12. Laser-induced breakdown spectroscopy (LIBS) analysis of calcium ions dissolved in water using filter paper substrates: an ideal internal standard for precision improvement. (United States)

    Choi, Daewoong; Gong, Yongdeuk; Nam, Sang-Ho; Han, Song-Hee; Yoo, Jonghyun; Lee, Yonghoon


    We report an approach for selecting an internal standard to improve the precision of laser-induced breakdown spectroscopy (LIBS) analysis for determining calcium (Ca) concentration in water. The dissolved Ca(2+) ions were pre-concentrated on filter paper by evaporating water. The filter paper was dried and analyzed using LIBS. By adding strontium chloride to sample solutions and using a Sr II line at 407.771 nm for the intensity normalization of Ca II lines at 393.366 or 396.847 nm, the analysis precision could be significantly improved. The Ca II and Sr II line intensities were mapped across the filter paper, and they showed a strong positive shot-to-shot correlation with the same spatial distribution on the filter paper surface. We applied this analysis approach for the measurement of Ca(2+) in tap, bottled, and ground water samples. The Ca(2+) concentrations determined using LIBS are in good agreement with those obtained from flame atomic absorption spectrometry. Finally, we suggest a homologous relation of the strongest emission lines of period 4 and 5 elements in groups IA and IIA based on their similar electronic structures. Our results indicate that the LIBS can be effectively applied for liquid analysis at the sub-parts per million level with high precision using a simple drying of liquid solutions on filter paper and the use of the correct internal standard elements with the similar valence electronic structure with respect to the analytes of interest.

  13. Calcium in pollen-pistil interaction in 'Petunia hybrida Hat'. Pt. 3. Localization of Ca2+ ions and Ca2+-ATPase in pollinated pistil

    International Nuclear Information System (INIS)

    Bednarska, E.; Butowt, R.


    Studies were carried out of Ca 2+ and Ca 2+ -ATPase localization in pollinated (6 and 48 h after pollination) pistils of 'Petunia hybrida'. The results were confronted with Ca 2+ localization in mature pollen grain and in unpollinated pistil. It has been found that after pollination the number of Ca 2+ sequestered in the stigmal exudate and in the sporoderm of the pollen grain gets lower. That phenomenon was associated with the appearance of a large number of Sb/Ca precipitates in the submembrane cytoplasm of the germinating pollen. In the vacuolized pollen grain, i.e. grown into a pollen tube, there were only a few precipitates. In the pollen tube, Ca 2+ were found in the organelles of the tip cytoplasm and in the external pectin cell wall. Studies with the use of 45 Ca 2+ have revealed that the source of calcium ions incorporated into the pollen tube tip and its pectin wall is the transmitting tract of the style. In the transmitting tract overgrown with pollen tubes, Ca 2+ were localized in the intercellular matrix and in the transmitting cell. Sb/Ca precipitates occurred in the nuclei, around the secretary vesicles and on the plasmalemma in the transverse walls region. Elevated Ca 2+ level was found in degenerating cells (inhibited pollen tubes, transmitting cells, nucellar cells). The progressing degeneration process of the cells of the transmitting tract of the pollinated pistil was associated with a decrease in the activity of plasmalemma Ca 2+ -ATPase. (author). 30 refs, 19 figs

  14. Calcium - ionized (United States)

    ... diuretics Thrombocytosis (high platelet count) Tumors Vitamin A excess Vitamin D excess Lower-than-normal levels may be due to: Hypoparathyroidism Malabsorption Osteomalacia Pancreatitis Renal failure Rickets Vitamin D deficiency Alternative Names Free calcium; Ionized calcium ...

  15. Calcium Carbonate (United States)

    ... Calcium is needed by the body for healthy bones, muscles, nervous system, and heart. Calcium carbonate also ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...

  16. Preparation and properties of calcium zirconate

    International Nuclear Information System (INIS)

    Dudek, M.; Bucko, M.; Rog, G.


    Dense samples of calcium zirconate were prepared. Electrical conductivity of the samples were measured in the temperature range 873 - 1273 K by both the d.c. four probe and the impedance spectroscopy methods. Calcium zirconate with small excess of calcium oxide appeared to be oxygen ion conductor. It was applied as an electrolyte in solid-state galvanic cells. (author)

  17. A neuronal lactate uptake inhibitor slows recovery of extracellular ion concentration changes in the hippocampal CA3 region by affecting energy metabolism. (United States)

    Angamo, Eskedar Ayele; Rösner, Joerg; Liotta, Agustin; Kovács, Richard; Heinemann, Uwe


    Astrocyte-derived lactate supports pathologically enhanced neuronal metabolism, but its role under physiological conditions is still a matter of debate. Here, we determined the contribution of astrocytic neuronal lactate shuttle for maintenance of ion homeostasis and energy metabolism. We tested for the effects of α-cyano-4-hydroxycinnamic acid (4-CIN), which could interfere with energy metabolism by blocking monocarboxylate-transporter 2 (MCT2)-mediated neuronal lactate uptake, on evoked potentials, stimulus-induced changes in K + , Na + , Ca 2+ , and oxygen concentrations as well as on changes in flavin adenine dinucleotide (FAD) autofluorescence in the hippocampal area CA3. MCT2 blockade by 4-CIN reduced synaptically evoked but not antidromic population spikes. This effect was dependent on the activation of K ATP channels indicating reduced neuronal ATP synthesis. By contrast, lactate receptor activation by 3,5-dihydroxybenzoic acid (3,5-DHBA) resulted in increased antidromic and orthodromic population spikes suggesting that 4-CIN effects are not mediated by lactate accumulation and subsequent activation of lactate receptors. Recovery kinetics of all ion transients were prolonged and baseline K + concentration became elevated by blockade of lactate uptake. Lactate contributed to oxidative metabolism as both baseline respiration and stimulus-induced changes in Po 2 were decreased, while FAD fluorescence increased likely due to a reduced conversion of FAD into FADH 2 These data suggest that lactate shuttle contributes to regulation of ion homeostatsis and synaptic signaling even in the presence of ample glucose. Copyright © 2016 the American Physiological Society.

  18. Structural mechanism of ligand activation in human calcium-sensing receptor

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yong; Mosyak, Lidia; Kurinov, Igor; Zuo, Hao; Sturchler, Emmanuel; Cheng, Tat Cheung; Subramanyam, Prakash; Brown, Alice P.; Brennan, Sarah C.; Mun, Hee-chang; Bush, Martin; Chen, Yan; Nguyen, Trang X.; Cao, Baohua; Chang, Donald D.; Quick, Matthias; Conigrave, Arthur D.; Colecraft, Henry M.; McDonald, Patricia; Fan, Qing R.


    Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca2+homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+and PO43-ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ions stabilize the active state, PO43-ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits.

  19. Uranium Isotopes in Calcium Carbonate: A Possible Proxy for Paleo-pH and Carbonate Ion Concentration? (United States)

    Chen, X.; Romaniello, S. J.; Herrmann, A. D.; Wasylenki, L. E.; Anbar, A. D.


    abiotic CaCO3 reflect changes in aqueous U(VI) speciation, which are in turn a function of carbonate ion chemistry and pH. Hence, the door is opened to the development of a possible 238U/235U proxy for the carbonate ion system. [1] DeCarlo et al., (2015), GCA, 162,151-165. [2] Reeder et a., (2001), GCA, 65, 3491-3503. [3] Weyer et al., (2008) GCA 72, 345-359.

  20. Calcium and Magnesium Ions Are Membrane-Active against Stationary-Phase Staphylococcus aureus with High Specificity (United States)

    Xie, Yuntao; Yang, Lihua


    Staphylococcus aureus (S. aureus) is notorious for its ability to acquire antibiotic-resistance, and antibiotic-resistant S. aureus has become a wide-spread cause of high mortality rate. Novel antimicrobials capable of eradicating S. aureus cells including antibiotic-resistant ones are thus highly desired. Membrane-active bactericides and species-specific antimicrobials are two promising sources of novel anti-infective agents for fighting against bacterial antibiotic-resistance. We herein show that Ca2+ and Mg2+, two alkaline-earth-metal ions physiologically essential for diverse living organisms, both disrupt model S. aureus membranes and kill stationary-phase S. aureus cells, indicative of membrane-activity. In contrast to S. aureus, Escherichia coli and Bacillus subtilis exhibit unaffected survival after similar treatment with these two cations, indicative of species-specific activity against S. aureus. Moreover, neither Ca2+ nor Mg2+ lyses mouse red blood cells, indicative of hemo-compatibility. This works suggests that Ca2+ and Mg2+ may have implications in targeted eradication of S. aureus pathogen including the antibiotic-resistant ones.

  1. Intracellular sphingosine releases calcium from lysosomes. (United States)

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten


    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC.

  2. Opiate-like excitatory effects of steroid sulfates and calcium-complexing agents given cerebroventricularly. (United States)

    LaBella, F S; Havlicek, V; Pinsky, C


    Intracerebroventricular administration of 10--20 microgram of steroid-O-sulfates induced hypermotility, agitation, salivation, EEG abnormalities, stereotypies, wet dog shakes and seizures. Equivalent effects resulted from 30--200 microgram morphine sulfate (H2SO4 salt), 50 microgram EGTA or 300--400 microgram of sodium sulfate or phosphate, but not chloride, nitrate or acetate. Non-steroid sulfates, steroid glucuronides and steroid phosphates were inactive. Naloxone, previously found to antagonize the excitatory effects of androsterone sulfate, failed to antagonize those of cortisol sulfate, sodium sulfate or EGTA. These findings suggest a role for extracellular calcium ions and for sulfate derived from circulating steroids in central responses to opiates.

  3. Effects of extracellular potassium diffusion on electrically coupled neuron networks (United States)

    Wu, Xing-Xing; Shuai, Jianwei


    Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.

  4. Activation of retinal glial (Müller cells by extracellular ATP induces pronounced increases in extracellular H+ flux.

    Directory of Open Access Journals (Sweden)

    Boriana K Tchernookova

    Full Text Available Small alterations in extracellular acidity are potentially important modulators of neuronal signaling within the vertebrate retina. Here we report a novel extracellular acidification mechanism mediated by glial cells in the retina. Using self-referencing H+-selective microelectrodes to measure extracellular H+ fluxes, we show that activation of retinal Müller (glial cells of the tiger salamander by micromolar concentrations of extracellular ATP induces a pronounced extracellular H+ flux independent of bicarbonate transport. ADP, UTP and the non-hydrolyzable analog ATPγs at micromolar concentrations were also potent stimulators of extracellular H+ fluxes, but adenosine was not. The extracellular H+ fluxes induced by ATP were mimicked by the P2Y1 agonist MRS 2365 and were significantly reduced by the P2 receptor blockers suramin and PPADS, suggesting activation of P2Y receptors. Bath-applied ATP induced an intracellular rise in calcium in Müller cells; both the calcium rise and the extracellular H+ fluxes were significantly attenuated when calcium re-loading into the endoplasmic reticulum was inhibited by thapsigargin and when the PLC-IP3 signaling pathway was disrupted with 2-APB and U73122. The anion transport inhibitor DIDS also markedly reduced the ATP-induced increase in H+ flux while SITS had no effect. ATP-induced H+ fluxes were also observed from Müller cells isolated from human, rat, monkey, skate and lamprey retinae, suggesting a highly evolutionarily conserved mechanism of potential general importance. Extracellular ATP also induced significant increases in extracellular H+ flux at the level of both the outer and inner plexiform layers in retinal slices of tiger salamander which was significantly reduced by suramin and PPADS. We suggest that the novel H+ flux mediated by ATP-activation of Müller cells and of other glia as well may be a key mechanism modulating neuronal signaling in the vertebrate retina and throughout the brain.

  5. Compound I formation in artichoke (Cynara scolymus L.) peroxidase is modulated by the equilibrium between pentacoordinated and 6-aquo hexacoordinated forms of the heme and by calcium ions. (United States)

    Hiner, Alexander N P; Sidrach, Lara; Chazarra, Soledad; Varón, Ramón; Tudela, José; García-Cánovas, Francisco; Rodríguez-López, José Neptuno


    Basic artichoke (Cynara scolymus L.) peroxidase (AKP-C), when purified from the plant, has an unusually intense and sharp Soret absorption peak. The resonance Raman spectrum [López-Molina, D., et al. (2003) J. Inorg. Biochem. 94, 243-254] suggested a mixture of pentacoordinate high-spin (5cHS) and 6-aquo hexacoordinate high-spin (6cHS) ferric heme species. The rate constant (k(1)) of compound I formation with hydrogen peroxide (H(2)O(2)) was also lower than expected. Further stopped-flow studies have shown this reaction to be biphasic: a nonsaturating fast phase and a slow phase with complex H(2)O(2) concentration dependence. Addition of calcium ions (Ca(2+)) changed the absorption spectrum, suggesting the formation of a fully 5cHS species with a k(1) more than 5 orders of magnitude greater than that in the absence of Ca(2+) using the chelator ethylenediaminetetraacetic acid. Ca(2+) titrations gave a dissociation constant for a single Ca(2+) of approximately 20 microM. The circular dichroism spectrum of AKP-C was not significantly altered by Ca(2+), indicating that any structural changes will be minor, but removal of Ca(2+) did suppress the alkaline transition between pH 10 and 11. A kinetic analysis of the reaction of Ca(2+)-free AKP-C with H(2)O(2) supports an equilibrium between a slow-reacting 6cHS form and a more rapidly reacting 5cHS species, the presence of which was confirmed in nonaqueous solution. AKP-C, as purified, is a mixture of Ca(2+)-bound 5cHS, 6-aquo 6cHS, and Ca(2+)-free 5cHS species. The possibility that Ca(2+) concentration could control peroxidase activity in the plant is discussed.

  6. Calcium in pollen-pistil interaction in `Petunia hybrida Hat`. Pt. 3. Localization of Ca{sup 2+} ions and Ca{sup 2+}-ATPase in pollinated pistil

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, E.; Butowt, R. [Uniwersytet Mikolaja Kopernika, Torun (Poland)


    Studies were carried out of Ca{sup 2+} and Ca{sup 2+}-ATPase localization in pollinated (6 and 48 h after pollination) pistils of `Petunia hybrida`. The results were confronted with Ca{sup 2+} localization in mature pollen grain and in unpollinated pistil. It has been found that after pollination the number of Ca{sup 2+} sequestered in the stigmal exudate and in the sporoderm of the pollen grain gets lower. That phenomenon was associated with the appearance of a large number of Sb/Ca precipitates in the submembrane cytoplasm of the germinating pollen. In the vacuolized pollen grain, i.e. grown into a pollen tube, there were only a few precipitates. In the pollen tube, Ca{sup 2+} were found in the organelles of the tip cytoplasm and in the external pectin cell wall. Studies with the use of {sup 45}Ca{sup 2+} have revealed that the source of calcium ions incorporated into the pollen tube tip and its pectin wall is the transmitting tract of the style. In the transmitting tract overgrown with pollen tubes, Ca{sup 2+} were localized in the intercellular matrix and in the transmitting cell. Sb/Ca precipitates occurred in the nuclei, around the secretary vesicles and on the plasmalemma in the transverse walls region. Elevated Ca{sup 2+} level was found in degenerating cells (inhibited pollen tubes, transmitting cells, nucellar cells). The progressing degeneration process of the cells of the transmitting tract of the pollinated pistil was associated with a decrease in the activity of plasmalemma Ca{sup 2+}-ATPase. (author). 30 refs, 19 figs.

  7. Interaction of environmental calcium and low pH on the physiology of the rainbow trout, Salmo gairdneri. I. Branchial and renal net ion and H/sup +/ fluxes

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.G.


    Exposure of adult rainbow trout to low pH (pH 4.3) in soft water (Ca/sup 2 +/ = 223 caused a substantial ionic disturbance which arose primarily because of large net losses at the gills. In contrast, renal ion losses were low initially and declined even further because of a pronounced reduction in urine flow. A net influx of H/sup +/ occurred across the gills but this was not sufficient to cause a blood acid-base disturbance or a renal response. Although branchial ion and H/sup +/ fluxes declined with time, blood ion levels did not return to normal and many of the fish died. Further reduction in water calcium (Ca/sup 2 +/ = 69 provoked a higher mortality and a more substantial ionic imbalance. These results contrast sharply with the effects on trout of acid exposure in hard water (Ca/sup 2 +/ greater than or equal to 1600, where net ion losses and mortality are reduced and H/sup +/ uptake increased. A preliminary model for the interaction of low pH and calcium is proposed and evidence for adaptation to acid stress and for the origin of acid lethality is discussed. 46 references, 5 figures, 3 tables.

  8. Changes in ion transport in inflammatory disease

    Directory of Open Access Journals (Sweden)

    Eisenhut Michael


    Full Text Available Abstract Ion transport is essential for maintenance of transmembranous and transcellular electric potential, fluid transport and cellular volume. Disturbance of ion transport has been associated with cellular dysfunction, intra and extracellular edema and abnormalities of epithelial surface liquid volume. There is increasing evidence that conditions characterized by an intense local or systemic inflammatory response are associated with abnormal ion transport. This abnormal ion transport has been involved in the pathogenesis of conditions like hypovolemia due to fluid losses, hyponatremia and hypokalemia in diarrhoeal diseases, electrolyte abnormalites in pyelonephritis of early infancy, septicemia induced pulmonary edema, and in hypersecretion and edema induced by inflammatory reactions of the mucosa of the upper respiratory tract. Components of membranous ion transport systems, which have been shown to undergo a change in function during an inflammatory response include the sodium potassium ATPase, the epithelial sodium channel, the Cystic Fibrosis Transmembrane Conductance Regulator and calcium activated chloride channels and the sodium potassium chloride co-transporter. Inflammatory mediators, which influence ion transport are tumor necrosis factor, gamma interferon, interleukins, transforming growth factor, leukotrienes and bradykinin. They trigger the release of specific messengers like prostaglandins, nitric oxide and histamine which alter ion transport system function through specific receptors, intracellular second messengers and protein kinases. This review summarizes data on in vivo measurements of changes in ion transport in acute inflammatory conditions and in vitro studies, which have explored the underlying mechanisms. Potential interventions directed at a correction of the observed abnormalities are discussed.

  9. Calcium chromate process related investigations

    International Nuclear Information System (INIS)

    Dillard, B.M.


    A pilot plant for production of calcium chromate has been scaled up to a small production facility at the General Electric Neutron Devices Department. In preparation for this scale-up, the process and final product were studied in order to evaluate problems not considered previously. The variables and processes studied included: (1) the determination of optimum drying temperature and time for product analysis; (2) the effect of the grade of lime used as the precipitating agent on the purity of the calcium chromate; (3) product purity when calcium chromate is precipitated by the addition of ammonium chromate to slaked lime; (4) the reagents best suited for cleaning calcium chromate spills; and (5) methods for determining hydroxide ion concentration in calcium chromate. The optimum drying time for the product before analysis is four hours at 600 0 C. Gases evolved at various temperatures during the drying process were carbon dioxide and water vapor. Technical grade lime produced calcium chromate of the highest purity. Both nitric and acetic acids were efficient dissolvers of calcium chromate spills. Direct titration of hydroxide ion with sulfuric acid gave an average recovery of 93% for samples spiked with calcium hydroxide. 1 figure, 17 tables

  10. The biphasic effect of extracellular glucose concentration on carbachol-induced fluid secretion from mouse submandibular glands. (United States)

    Terachi, Momomi; Hirono, Chikara; Kitagawa, Michinori; Sugita, Makoto


    Cholinergic agonists evoke elevations of the cytoplasmic free-calcium concentration ([Ca 2+ ] i ) to stimulate fluid secretion in salivary glands. Salivary flow rates are significantly reduced in diabetic patients. However, it remains elusive how salivary secretion is impaired in diabetes. Here, we used an ex vivo submandibular gland perfusion technique to characterize the dependency of salivary flow rates on extracellular glucose concentration and activities of glucose transporters expressed in the glands. The cholinergic agonist carbachol (CCh) induced sustained fluid secretion, the rates of which were modulated by the extracellular glucose concentration in a biphasic manner. Both lowering the extracellular glucose concentration to less than 2.5 mM and elevating it to higher than 5 mM resulted in decreased CCh-induced fluid secretion. The CCh-induced salivary flow was suppressed by phlorizin, an inhibitor of the sodium-glucose cotransporter 1 (SGLT1) located basolaterally in submandibular acinar cells, which is altered at the protein expression level in diabetic animal models. Our data suggest that SGLT1-mediated glucose uptake in acinar cells is required to maintain the fluid secretion by sustaining Cl - secretion in real-time. High extracellular glucose levels may suppress the CCh-induced secretion of salivary fluid by altering the activities of ion channels and transporters downstream of [Ca 2+ ] i signals. © 2018 Eur J Oral Sci.

  11. On the spectrum emitted by excited particles ejected from the surface of a calcium target by a beam of Ar+ ions

    International Nuclear Information System (INIS)

    Kiyan, T.S.; Gritsyna, V.V.; Fogel, Ya.M.


    The spectrum of the luminous aureole near the calcium target radiated by excited particles ejected from its surface by a beam of Ar + (energy 30 keV, current density 200 μA/cm 2 ) was investigated. This spectrum contains lines of the singlet and triplet systems of the one-and-two-electron excited states of the calcium atom and some bands of CaO and O + 2 molecules. The width of a conductivity band of CaO was measured. Some information on oxidation processes on calcium in a residual gas and rarefied nitrogen atmosphere was obtained. (Auth.)

  12. Calcium waves. (United States)

    Jaffe, Lionel F


    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  13. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau


    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  14. Investigation into process of solid-phase synthesis of calcium vanadates

    International Nuclear Information System (INIS)

    Fotiev, A.A.; Krasnenko, T.I.; Slobodin, B.V.


    Processes of solid-phase synthesis of calcium vanadates by Toubandt method, measuring electric conductivity and Ca 45 and V 48 radioactive indicators are investigated. It is shown that reaction diffusion during calcium vanadates production from oxides is ensured by calcium and oxygen ions or calcium ions and electrons through the product layer, as to oxygen - through the gas phase

  15. Calcium signals in olfactory neurons. (United States)

    Tareilus, E; Noé, J; Breer, H


    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  16. Electrophysical properties of calcium vanadates

    International Nuclear Information System (INIS)

    Krasnenko, T.I.; Fotiev, A.A.


    Electrophysical properties of calcium vanadates are studied for the case of alteration of external parameters of the medium (PO 2 , T). It is lshown that structural transformations bring about changes in the nature of electrophysical properties of Ca 2 V 2 O 7 , Ca 3 (VO 4 ) 2 , this being the reason for charge redistribution in anion groupings. It is obvious, that the general conductivity of calcium methavanadate is mainly caused by ion transport. Ca(VO 3 ) 2 possesses amphoteric character of semiconducting properties: the type of conductivity changes from ''p'' to ''n'' with temperature increase. Polytherms of conductivity and sums of ion numbers of Ca 2 V 2 O 7 transition are given. It is established that calcium pyrovanadate has a mixed electron-ion conductivity

  17. Optimization of culture media for extracellular expression of ...

    African Journals Online (AJOL)

    Purpose: To investigate the enhancement of streptokinase extracellular expression in Escherichia coli by adjusting culture media. Methods: Screening of 10 chemical factors (EDTA, peptone, glycine, triton X-100, glycerol, K2HPO4,. KH2PO4, Ca2+ (calcium chloride), yeast and NaCl) in order to increase the secretion of ...

  18. Multitrophic effects of calcium availability on invasive alien plants, birds, and bird prey items (United States)

    Vince D' Amico; Greg Shriver; Jake Bowman; Meg Ballard; Whitney Wiest; Liz Tymkiw; Melissa. Miller


    Acid rain alters forest soil calcium concentrations in two ways: (1) hydrogen ions displace exchangeable calcium adsorbed to soil surfaces, and (2) aluminum is released to soil water by acid rain and displaces adsorbed calcium. This increases the absorption of aluminum by plant roots, and decreases the absorption of calcium, causing calcium to be more readily leached...

  19. Development and gamma scintigraphy evaluation of gastro retentive calcium ion-based oral formulation: an innovative approach for the management of gastro-esophageal reflux disease (GERD). (United States)

    Sharma, Braj Gaurav; Khanna, Kushagra; Kumar, Neeraj; Nishad, Dhruv K; Basu, Mitra; Bhatnagar, Aseem


    Calcium chloride is an essential calcium channel agonist which plays an important role in the contraction of muscles by triggering calcium channel. First time hypothesized about its role in the treatment of GER (gastro-esophageal reflux) and vomiting disorder due to its local action. There are two objectives covered in this study as first, the development and optimization of floating formulation of calcium chloride and another objective was to evaluate optimized formulation through gamma scintigraphy in human subjects. Gastro retentive formulation of calcium chloride was prepared by direct compression method. Thirteen tablet formulations were designed with the help of sodium chloride, HPMC-K4M, and carbopol-934 along with effervescing agent sodium bicarbonate and citric acid. Formulation (F8) fitted best for Korsmeyer-Peppas equation with an R 2 value of 0.993. The optimized formulation was radiolabelled with 99m Tc-99 m pertechnetate for its evaluation by gamma scintigraphy. Gastric retention (6 h) was evaluated by gamma scintigraphy in healthy human subjects and efficacy of present formulation confirmed in GER positive human subjects. Gamma scintigraphy results indicated its usefulness in order to manage GERD. Stability studies of the developed formulation were carried out as per ICH guidelines for region IV and found out to be stable for 24 months.

  20. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha


    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  1. The Role of Calcium in Osteoporosis (United States)

    Arnaud, C. D.; Sanchez, S. D.


    Calcium requirements may vary throughout the lifespan. During the growth years and up to age 25 to 30, it is important to maximize dietary intake of calcium to maintain positive calcium balance and achieve peak bone mass, thereby possibly decreasing the risk of fracture when bone is subsequently lost. Calcium intake need not be greater than 800 mg/day during the relatively short period of time between the end of bone building and the onset of bone loss (30 to 40 years). Starting at age 40 to 50, both men and women lose bone slowly, but women lose bone more rapidly around the menopause and for about 10 years after. Intestinal calcium absorption and the ability to adapt to low calcium diets are impaired in many postmenopausal women and elderly persons owing to a suspected functional or absolute decrease in the ability of the kidney to produce 1,25(OH)2D2. The bones then become more and more a source of calcium to maintain critical extracellular fluid calcium levels. Excessive dietary intake of protein and fiber may induce significant negative calcium balance and thus increase dietary calcium requirements. Generally, the strongest risk factors for osteoporosis are uncontrollable (e.g., sex, age, and race) or less controllable (e.g., disease and medications). However, several factors such as diet, physical activity, cigarette smoking, and alcohol use are lifestyle related and can be modified to help reduce the risk of osteoporosis.

  2. Activation of TRPV1-dependent calcium oscillation exacerbates seawater inhalation-induced acute lung injury. (United States)

    Li, Congcong; Bo, Liyan; Liu, Qingqing; Liu, Wei; Chen, Xiangjun; Xu, Dunquan; Jin, Faguang


    Calcium is an important second messenger and it is widely recognized that acute lung injury (ALI) is often caused by oscillations of cytosolic free Ca2+. Previous studies have indicated that the activation of transient receptor potential‑vanilloid (TRPV) channels and subsequent Ca2+ entry initiates an acute calcium‑dependent permeability increase during ALI. However, whether seawater exposure induces such an effect through the activation of TRPV channels remains unknown. In the current study, the effect of calcium, a component of seawater, on the inflammatory reactions that occur during seawater drowning‑induced ALI, was examined. The results demonstrated that a high concentration of calcium ions in seawater increased lung tissue myeloperoxidase activity and the secretion of inflammatory mediators, such as tumor necrosis factor‑α (TNF‑α) and interleukin (IL)‑1β and IL‑6. Further study demonstrated that the seawater challenge elevated cytosolic Ca2+ concentration, indicated by [Ca2+]c, by inducing calcium influx from the extracellular medium via TRPV1 channels. The elevated [Ca2+c] may have resulted in the increased release of TNF‑α and IL‑1β via increased phosphorylation of nuclear factor‑κB (NF‑κB). It was concluded that a high concentration of calcium in seawater exacerbated lung injury, and TRPV1 channels were notable mediators of the calcium increase initiated by the seawater challenge. Calcium influx through TRPV1 may have led to greater phosphorylation of NF‑κB and increased release of TNF‑α and IL‑1β.

  3. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Jolene Atia


    Full Text Available Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the 'conductance repertoire' being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations.

  4. Copper, but not cadmium, is acutely toxic for trout hepatocytes: short-term effects on energetics and ion homeostasis

    International Nuclear Information System (INIS)

    Manzl, Claudia; Ebner, Hannes; Koeck, Guenter; Dallinger, Reinhard; Krumschnabel, Gerhard


    The toxic effects of cadmium (Cd) and copper (Cu) on cellular energy metabolism and ion homeostasis were investigated in hepatocytes from the rainbow trout, Oncorhynchus mykiss. The metal content of cells did not increase during incubation with Cu, whereas a dose-dependent increase was seen with Cd. Cell viability was unaffected in the presence of 100 μM Cd and 10 μM Cu but was significantly reduced after 30 min of exposure to 100 μM Cu, both in the presence and absence of extracellular calcium. Oxygen consumption (VO 2 ) was not affected by 100 μM Cd or 10 μM Cu, whereas 100 μM Cu caused a significant and calcium-dependent increase of VO 2 . Lactate production and basal glucose release were not altered by either of the metals. However, the epinephrine-stimulated rate of glucose release was significantly reduced after 2 h of incubation with 100 μM Cu. Hepatocytes exposed to Cd showed only a marginal increase of intracellular free calcium (Ca i 2+ ), whereas with Cu a pronounced and dose-dependent increase of Ca i 2+ was induced after a delay of 10 to 15 min, the calcium being of extracellular origin. Intracellular pH was not altered by Cd but decreased significantly in the presence of Cu. Overall our data demonstrate that Cu, but not Cd, is acutely toxic for trout hepatocytes. Since Cu does not enter the cells in the short term it appears to exert its acutely toxic effects at the cell membrane. Although Cu toxicity is associated with an uptake of calcium from extracellular space, leading to an elevation of cellular respiration, cytotoxicity does not appear to be dependent on the presence of extracellular calcium

  5. Elevated extracellular potassium ion concentrations suppress ...

    African Journals Online (AJOL)

    To address this question, we examined how elevations of [K+]o affect hippocampal oscillations in Scn1a mutant mouse, a mouse model of Dravet syndrome, a devastating genetic-epilepsy associated with gliosis, a major cause of dysregulated K+ homeostasis in epileptic brain. Methods: To this end, performing local field ...

  6. Cytosolic calcium ions exert a major influence on the firing rate and maintenance of pacemaker activity in guinea-pig sinus node.

    Directory of Open Access Journals (Sweden)

    Rebecca Anne Capel


    Full Text Available The sino-atrial node (SAN provides the electrical stimulus to initiate every heart beat. Cellular processes underlying this activity have been debated extensively, especially with regards to the role of intracellular calcium. We have used whole-cell application of 1,2-bis(o-aminophenoxyethane-N,N,N',N'-tetraacetic acid (BAPTA, a rapid calcium chelator, to guinea pig isolated SAN myocytes to assess the effect of rapid reduction of intracellular calcium on SAN cell electrical activity. High-dose (10 mM BAPTA induced rapid and complete cessation of rhythmic action potential (AP firing (time to cessation 5.5±1.7 s. Over a range of concentrations, BAPTA induced slowing of action potential firing and disruption of rhythmic activity, which was dose-dependent in its time of onset. Exposure to BAPTA was associated with stereotyped action potential changes similar to those previously reported in the presence of ryanodine, namely depolarisation of the most negative diastolic potential, prolongation of action potentials and a reduction in action potential amplitude. These experiments are consistent with the view that cytosolic calcium is essential to the maintenance of rhythmic pacemaker activity.

  7. Sex- and dose-dependent effects of calcium ion irradiation on behavioral performance of B6D2F1 mice during contextual fear conditioning training (United States)

    Raber, Jacob; Weber, Sydney J.; Kronenberg, Amy; Turker, Mitchell S.


    The space radiation environment includes energetic charged particles that may impact behavioral and cognitive performance. The relationship between the dose and the ionization density of the various types of charged particles (expressed as linear energy transfer or LET), and cognitive performance is complex. In our earlier work, whole body exposure to 28Si ions (263 MeV/n, LET = 78keV / μ m ; 1.6 Gy) affected contextual fear memory in C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation but this was not the case following exposure to 48Ti ions (1 GeV/n, LET = 107keV / μ m ; 0.2 or 0.4 Gy). As an increased understanding of the impact of charged particle exposures is critical for assessment of risk to the CNS of astronauts during and following missions, in this study we used 40Ca ion beams (942 MeV/n, LET = 90keV / μm) to determine the behavioral and cognitive effects for the LET region between that of Si ions and Ti ions. 40Ca ion exposure reduced baseline activity in a novel environment in a dose-dependent manner, which suggests reduced motivation to explore and/or a diminished level of curiosity in a novel environment. In addition, exposure to 40Ca ions had sex-dependent effects on response to shock. 40Ca ion irradiation reduced the response to shock in female, but not male, mice. In contrast, 40Ca ion irradiation did not affect fear learning, memory, or extinction of fear memory for either gender at the doses employed in this study. Thus 40Ca ion irradiation affected behavioral, but not cognitive, performance. The effects of 40Ca ion irradiation on behavioral performance are relevant, as a combination of novelty and aversive environmental stimuli is pertinent to conditions experienced by astronauts during and following space missions.

  8. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne


    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting...... in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal...... of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx...

  9. An Exploration of the Calcium-Binding Mode of Egg White Peptide, Asp-His-Thr-Lys-Glu, and In Vitro Calcium Absorption Studies of Peptide-Calcium Complex. (United States)

    Sun, Na; Jin, Ziqi; Li, Dongmei; Yin, Hongjie; Lin, Songyi


    The binding mode between the pentapeptide (DHTKE) from egg white hydrolysates and calcium ions was elucidated upon its structural and thermodynamics characteristics. The present study demonstrated that the DHTKE peptide could spontaneously bind calcium with a 1:1 stoichiometry, and that the calcium-binding site corresponded to the carboxyl oxygen, amino nitrogen, and imidazole nitrogen atoms of the DHTKE peptide. Moreover, the effect of the DHTKE-calcium complex on improving the calcium absorption was investigated in vitro using Caco-2 cells. Results showed that the DHTKE-calcium complex could facilitate the calcium influx into the cytosol and further improve calcium absorption across Caco-2 cell monolayers by more than 7 times when compared to calcium-free control. This study facilitates the understanding about the binding mechanism between peptides and calcium ions as well as suggests a potential application of egg white peptides as nutraceuticals to improve calcium absorption.

  10. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis. (United States)

    Jung, Chiau-Jing; Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh; Chia, Jean-San


    Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (Δ atlA ) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an Δ atlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the Δ atlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in Δ atlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans , which contributes to biofilm formation in infective endocarditis. Copyright © 2017 American Society for Microbiology.

  11. Calcium and energy: making the cake and eating it too? (United States)

    Green, Douglas R; Wang, Ruoning


    Mitochondrial calcium ions promote a number of events that sustain ATP levels in the cell. Cardenas et al. (2010) now demonstrate that the inositol 1,4,5-triphosphate receptor at the endoplasmic reticulum constitutively provides calcium for mitochondria. In the absence of this calcium transfer, cells use autophagy to sustain survival. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Get Enough Calcium (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... women, don't get enough calcium. How much calcium do I need every day? Women: If you ...

  13. Calcium - urine (United States)

    ... Female urinary tract Male urinary tract Calcium urine test References Bringhurst FR, Demay MB, Kronenberg HM. Hormones and disorders of mineral metabolism. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, eds. Williams Textbook of Endocrinology . 13th ed. Philadelphia, PA: Elsevier; ...

  14. Negative phototropism in Vaucheria terrestris regulated by calcium, 3: The role of calcium characterized by use of a high-power argon-ion laser as the source of unilateral blue light

    International Nuclear Information System (INIS)

    Kataoka, H.; Watanabe, M.


    A tip-growing Xanthophycean algal coenocyte, Vaucheria terrestris sensu Gotz, is able to change the sign of its phototropic response from positive to negative as a result of its ability to sense the fluence rate (= intensity) of unilateral blue light (BL). The mechanism that determines the sign of phototropism was investigated using a high-power argon-ion laser (457.9 nm) as a source of very strong unilateral BL. The fluence-response relationship was determined by changing both the fluence rate and the duration of irradiation. Positive phototropic bending was induced when the fluence rate of BL from the laser was below 60 W m-2. The positive bending obeyed the reciprocity law and was not affected by the concentrations of external Ca2+ ions between 0.4 mM and 4.4 mM. The positive curvature decreased when the alga was exposed to aunilateral pulse of BL with a duration of 10-300 s at fluence rates higher than 60 W m-2. The alga finally showed a deep negative curvature when either the fluence rate or the duration of irradiation was further increased. The inversion of the phototropic response and development of the negative phototropic response was greatly enhanced in the presence of 4.4 mM Ca2+ ions. However, the mechanism that determine the sign of phototropism seemed to require a BL pulse of longer than several seconds, even when the fluence rate was sufficiently high. The role of cytoplasmic Ca2+ ions in positive and negative phototropic responses is discussed

  15. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate (United States)

    Villa-Bellosta, Ricardo; Hamczyk, Magda R.; Andrés, Vicente


    Purpose Phosphorus is an essential nutrient involved in many pathobiological processes. Less than 1% of phosphorus is found in extracellular fluids as inorganic phosphate ion (Pi) in solution. High serum Pi level promotes ectopic calcification in many tissues, including blood vessels. Here, we studied the effect of elevated Pi concentration on macrophage polarization and calcification. Macrophages, present in virtually all tissues, play key roles in health and disease and display remarkable plasticity, being able to change their physiology in response to environmental cues. Methods and results High-throughput transcriptomic analysis and functional studies demonstrated that Pi induces unpolarized macrophages to adopt a phenotype closely resembling that of alternatively-activated M2 macrophages, as revealed by arginine hydrolysis and energetic and antioxidant profiles. Pi-induced macrophages showed an anti-calcifying action mediated by increased availability of extracellular ATP and pyrophosphate. Conclusion We conclude that the ability of Pi-activated macrophages to prevent calcium-phosphate deposition is a compensatory mechanism protecting tissues from hyperphosphatemia-induced pathologic calcification. PMID:28362852

  16. Extracellular Ca²⁺ acts as a mediator of communication from neurons to glia. (United States)

    Torres, Arnulfo; Wang, Fushun; Xu, Qiwu; Fujita, Takumi; Dobrowolski, Radoslaw; Willecke, Klaus; Takano, Takahiro; Nedergaard, Maiken


    Defining the pathways through which neurons and astrocytes communicate may contribute to the elucidation of higher central nervous system functions. We investigated the possibility that decreases in extracellular calcium ion concentration ([Ca(2+)](e)) that occur during synaptic transmission might mediate signaling from neurons to glia. Using noninvasive photolysis of the photolabile Ca(2+) buffer diazo-2 {N-[2-[2-[2-[bis(carboxymethyl)amino]-5-(diazoacetyl)phenoxy]ethoxy]-4-methylphenyl]-N-(carboxymethyl)-, tetrapotassium salt} to reduce [Ca(2+)](e) or caged glutamate to simulate glutamatergic transmission, we found that a local decline in extracellular Ca(2+) triggered astrocytic adenosine triphosphate (ATP) release and astrocytic Ca(2+) signaling. In turn, activation of purinergic P2Y1 receptors on a subset of inhibitory interneurons initiated the generation of action potentials by these interneurons, thereby enhancing synaptic inhibition. Thus, astrocytic ATP release evoked by an activity-associated decrease in [Ca(2+)](e) may provide a negative feedback mechanism that potentiates inhibitory transmission in response to local hyperexcitability.

  17. Regulation of cardiomyocyte autophagy by calcium. (United States)

    Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio


    Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy. Copyright © 2016 the American Physiological Society.

  18. In vitro Determination of Extracellular Proteins from Xylella fastidiosa. (United States)

    Mendes, Juliano S; Santiago, André S; Toledo, Marcelo A S; Horta, Maria A C; de Souza, Alessandra A; Tasic, Ljubica; de Souza, Anete P


    The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa . Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa . Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3-30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components.

  19. Angiotensin effects on calcium and steroidogenesis in adrenal glomerulosa cells

    International Nuclear Information System (INIS)

    Elliott, M.E.; Siegel, F.L.; Hadjokas, N.E.; Goodfriend, T.L.


    We investigated the role of cellular calcium pools in angiotensin II-stimulated aldosterone synthesis in bovine adrenal glomerulosa cells. Angiotensin II decreased the size of the exchangeable cell calcium pool by 34%, consistent with previous observations that angiotensin II causes decreased uptake of 45 Ca+2 into cells and increased efflux of 45 Ca+2 from preloaded cells. Atomic absorption spectroscopy showed that angiotension II caused a decrease of 21% in total cellular calcium. Angiotensin II caused efflux of 45 Ca+2 in the presence of EGTA and retarded uptake of 45 Ca+2 when choline was substituted for sodium, suggesting that hormone effects on calcium pools do not involve influx of trigger calcium or sodium. Cells incubated in calcium-free buffer and 0.1 mM or 0.5 mM EGTA synthesized reduced (but still significant) amounts of the steroid in response to hormone. Cells incubated in increasing concentrations of extracellular calcium contained increasing amounts of intracellular calcium and synthesized increasing amounts of aldosterone in response to angiotensin II. These results point to the participation of intracellular calcium pools in angiotensin II-stimulated steroidogenesis and the importance of extracellular calcium in maintaining these pools

  20. Last Glacial to Holocene changes of deep and intermediate water carbonate ion concentrations in the Southern Ocean: constraints from foraminiferal Boron/Calcium ratios


    Kersten, Franziska


    In this thesis, the first records of intermediate and deep water carbonate ion concentrations in the South Pacific were generated in order to study carbon cycle dynamics throughout the past 30,000 years. Benthic foraminiferal B/Ca, an indicator of past seawater carbonate ion saturation is the main paleoceanographic proxy that was used in this study. Down-core proxy studies carried out within the scope of this thesis were used to address currently unresolved questions about the origin, mechani...

  1. Spontaneous transition rates for electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions for He-like calcium and sulfur ions

    International Nuclear Information System (INIS)

    Kingston, A.E.; Norrington, P.H.; Boone, A.W.


    The spontaneous decay rates for the electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions between all of the 1s 2 , 1s2 l and 1s3 l states have been obtained for helium-like calcium and sulfur ions. To assess the accuracy of the calculations, the transition probabilities were calculated using two sets of configuration interaction wavefunctions. One set of wavefunctions was generated using the fully relativistic GRASP code and the other was obtained using CIV3, in which relativistic effects are introduced using the Breit-Pauli approximation. The transition rates, A values, oscillator strengths and line strengths from our two calculations are found to be similar and to compare very well with other recent results for Δn=1 or 2 transitions. For Δn=0 transitions the agreement is much less good; this is mainly due to differences in the calculated excitation energies. (author)

  2. Intact calcium signaling in adrenergic-deficient embryonic mouse hearts. (United States)

    Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N


    Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute

  3. Extracellular electron transfer mechanisms between microorganisms and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K.


    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  4. Finite element model to study calcium distribution in oocytes ...

    African Journals Online (AJOL)

    Calcium is one of the most important signalling ions in cell biology performing numerous functions with high specificity. A calcium wave triggers life at fertilization but also can cause cell death. The means by which this single ion can be both highly specific and universal is believed to lie in its spatiotemporal dynamics ...

  5. Effect of extracellular calcium chloride on sporangiospore-yeast ...

    African Journals Online (AJOL)



    May 16, 2011 ... Bartnicki-Garcia and Nickerson (1962b) whereby it was shown that R. stolonifer .... A 7 day old culture of R. stolonifer was flushed with sterile deioni- zed distilled water and ..... Madi N, McNeil B, Harvey LM (1997). The effect of ...

  6. Effect of extracellular calcium chloride on sporangiospore-yeast ...

    African Journals Online (AJOL)



    May 16, 2011 ... Dimorphism is the conversion of a microorganism from one growth habit to .... formation in media designated for yeast production, while it led to a reduction of ..... on morphological development and biopolymer synthesis in the.

  7. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.


    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture,

  8. Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum

    International Nuclear Information System (INIS)

    O’Day, Danton H.; Huber, Robert J.; Suarez, Andres


    Highlights: ► Extracellular calmodulin is present throughout growth and development in Dictyostelium. ► Extracellular calmodulin localizes within the ECM during development. ► Extracellular calmodulin inhibits cell proliferation and increases chemotaxis. ► Extracellular calmodulin exists in eukaryotic microbes. ► Extracellular calmodulin may be functionally as important as intracellular calmodulin. -- Abstract: The existence of extracellular calmodulin (CaM) has had a long and controversial history. CaM is a ubiquitous calcium-binding protein that has been found in every eukaryotic cell system. Calcium-free apo-CaM and Ca 2+ /CaM exert their effects by binding to and regulating the activity of CaM-binding proteins (CaMBPs). Most of the research done to date on CaM and its CaMBPs has focused on their intracellular functions. The presence of extracellular CaM is well established in a number of plants where it functions in proliferation, cell wall regeneration, gene regulation and germination. While CaM has been detected extracellularly in several animal species, including frog, rat, rabbit and human, its extracellular localization and functions are less well established. In contrast the study of extracellular CaM in eukaryotic microbes remains to be done. Here we show that CaM is constitutively expressed and secreted throughout asexual development in Dictyostelium where the presence of extracellular CaM dose-dependently inhibits cell proliferation but increases cAMP mediated chemotaxis. During development, extracellular CaM localizes within the slime sheath where it coexists with at least one CaMBP, the matricellular CaM-binding protein CyrA. Coupled with previous research, this work provides direct evidence for the existence of extracellular CaM in the Dictyostelium and provides insight into its functions in this model amoebozoan.

  9. Diffusion of calcium in pure and doped NaCl; Diffusion du calcium dans NaCl pur et dope

    Energy Technology Data Exchange (ETDEWEB)

    Slifkin, L; Brebec, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    We have determined, by diffusion experiments of Ca in pure and doped NaCl, the activation energy for the calcium jumps and the binding energy between calcium ion and vacancy. (authors) [French] Nous avons determine, par des mesures de diffusion du Ca dans NaCl pur et NaCl dope avec CaCl{sub 2}, l'energie d'activation relative aux sauts du calcium et l'energie de liaison lacune-calcium. (auteurs)

  10. Adrenomedullin increases the short-circuit current in the rat prostate: Receptors, chloride channels, the effects of cAMP and calcium ions and implications on fluid secretion. (United States)

    Liao, S B; Cheung, K H; Cheung, M P L; Wong, P F; O, W S; Tang, F


    In this study, we have investigated the effects of adrenomedullin on chloride and fluid secretion in the rat prostate. The presence of adrenomedullin (ADM) in rat prostate was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with an enzyme-linked assay for ADM. The effects of ADM on fluid secretion were studied by short-circuit current technique in a whole mount preparation of the prostate in an Ussing chamber. The results indicated that the ADM level was higher in the ventral than the dorso-lateral prostate and the major molecular species was the active peptide. ADM increased the short-circuit current through both the cAMP- and calcium-activated chloride channels in the ventral lobe, but only through the calcium-activated channels in the dorso-lateral lobe. These stimulatory effects were blocked by the calcitonin gene-related peptide (CGRP) receptor antagonist, hCGRP8-37. We conclude that ADM may regulate prostatic fluid secretion through the chloride channels, which may affect the composition of the seminal plasma bathing the spermatozoa and hence fertility. © 2014 American Society of Andrology and European Academy of Andrology.

  11. Exopolysaccharides regulate calcium flow in cariogenic biofilms (United States)

    Varenganayil, Muth M.; Decho, Alan W.


    Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS) provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya’s agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC) by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR) spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC). Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries. PMID:29023506

  12. Exopolysaccharides regulate calcium flow in cariogenic biofilms.

    Directory of Open Access Journals (Sweden)

    Monika Astasov-Frauenhoffer

    Full Text Available Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya's agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC. Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries.

  13. Distribution of cadmium between calcium carbonate and solution, 2

    International Nuclear Information System (INIS)

    Kitano, Yasushi; Kanamori, Nobuko; Fujiyoshi, Ryoko


    The distribution coefficient of cadmium between calcite and solution has been measured in the calcium bicarbonate solution containing cadmium and chloride ions, which forms complexes with cadmium ions. It has been confirmed experimentally that cadmium carbonate is present as a solid solution between calcitic calcium carbonate and cadmium carbonate in the carbonate precipitate formed in the solution system. However, the constant value of the thermodynamic distribution coefficient of cadmium between calcite and solution has not been obtained experimentally in the calcium bicarbonate solution containing cadmium and chloride ions. It may have been caused by the very specific behavior of cadmium ions, but the exact reason remains unsolved and must be studied. (Kobatake, H.)

  14. Study on coordination characteristics of neptunium and uranium ions in calcium nitrate hydrate melt by Raman spectrometry and UV/Vis/NIR spectrometry

    International Nuclear Information System (INIS)

    Fujii, T; Okude, G; Uehara, A; Yamana, H


    Extraction behavior of neptunium (Np) by tri-n-butyl phosphate from calcium nitrate hydrate melt was investigated. Distribution ratio of Np was found to increase with the decrease of water content. Adding nitric acid into the system resulted in an increase of the distribution ratio. In order to understand the extraction trends, Np species in the hydrate melt were analyzed by Raman spectrometry and UV/Vis/NIR spectrometry. Major fraction was assigned to be NpO 2 2+ of Np(VI) and small fraction to be NpO 2 + of Np(V). A shift of the v 1 symmetric vibrational frequency of NpO 2 2+ in nitrate media was found in Raman spectra. This suggests a coordination circumstance change of NpO 2 2+ .

  15. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells. (United States)

    Karaman, Ozan; Kumar, Ankur; Moeinzadeh, Seyedsina; He, Xuezhong; Cui, Tong; Jabbari, Esmaiel


    Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Extracellular Gd-CA

    DEFF Research Database (Denmark)

    Thomsen, Henrik S; Marckmann, Peter


    Until recently it was believed that extracellular gadolinium-based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium-based contrast agents may trig the development...... gadolinium-based agent (3-7% versus 0-1% per injection) in patients with reduced renal function. Prevalence after exposure to two gadodiamide injections is as high as 36% in patients with chronic kidney disease (CKD) stage 5. No report of NSF after the most stable agents has been reported in the peer...

  17. Regulatory inhibition of biological tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Joshua C., E-mail: [Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA and Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio 43210 (United States); Miura, Robert M., E-mail: [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)


    In vertebrates, insufficient availability of calcium and inorganic phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are usually present at high concentrations throughout bodily fluids—at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. In this manuscript, we extend mean-field continuum classical nucleation theory of the growth of clusters to encompass surface shielding. We use this formulation to study the regulation of sedimentation of calcium phosphate salts in biological tissues through the mechanism of post-nuclear shielding of nascent mineral particles by binding proteins. We develop a mathematical description of this phenomenon using a countable system of hyperbolic partial differential equations. A critical concentration of regulatory protein is identified as a function of the physical parameters that describe the system.

  18. Effects of dissolved calcium and magnesium ions on lead-induced stress corrosion cracking susceptibility of nuclear steam generator tubing alloy in high temperature crevice solutions

    International Nuclear Information System (INIS)

    Lu, B.T.; Tian, L.P.; Zhu, R.K.; Luo, J.L.; Lu, Y.C.


    The effects of Ca 2+ and Mg 2+ ions on the stress corrosion cracking (SCC) susceptibility of UNS N08800 are investigated using constant extension rate tensile (CERT) tests at 300 o C in simulated crevice chemistries. The presence of lead contamination in the crevice chemistries increases significantly the SCC susceptibility of the alloy. The lead-assisted SCC (PbSCC) susceptibility is reduced markedly by the addition of Ca 2+ and Mg 2+ ions into the solution and this mitigating effect is enhanced by increasing the total concentration of Ca 2+ + Mg 2+ . The CERT test results are consistent with the types of fracture surfaces shown by Scanning Electron Microscopy (SEM). There is a reasonable correlation between the SCC susceptibility and the donor densities in the anodic films in accord with the role of lead-induced passivity degradation in PbSCC.

  19. Studies on the mechanisms underlying the transfer of calcium and phosphate from bone to blood

    Energy Technology Data Exchange (ETDEWEB)

    Brommage, Jr., Robert J. [Univ. of Rochester, NY (United States)


    The skeleton is recognized as a crucial organ in the minute-to-minute regulation of the blood levels of calcium and phosphate. The fluxes of calcium and phosphate to and from bone greatly exceed the entry and exit of these ions occurring in the intestine and kidneys. Parathyroid hormone, calcitonin, and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3 are known to influence the transfer of calcium and phosphate from bone to blood. Three mechanisms have been proposed to explain the hormonal control of the calcium and phosphate effluxes from bone. The concept of a bone membrane maintaining a distinct bone extracellular fluid composition has led to the pump and pH gradient theories. An alternate solubilizer theory proposes that bone cells secrete a substance which increases the solubility of the bone mineral. The bone membrane concept was originally proposed to explain the presence of the apparent anomalously high concentrations of potassium in the bone extracellular fluid. However, the available evidence does not allow an unambiguous decision concerning the presence of a bone membrane. Calvarial lactate production was unaltered by 1,25-(OH)2D3 treatment and consequently 1,25-(OH)2D3 does not appear to promote the mobilization of bone mineral through a lactate-mediated pH gradient mechanism. 1,25-(OH)2D3 did increase the solubility of non-vital bone, clearly demonstrating that the solubilizer mechanism is at least partially responsible for the mobilization of bone mineral and the regulation of blood levels of calcium and phosphate. Vitamin D-deficient female rats fed a 0.2% calcium, 0.4% phosphorous diet and supplemented with daily injections of 0.75 pmole of 1,25-(OH)2D3 were shown to be capable of bearing young. When the injections of 1,25-(OH)2D3 were terminated at delivery, the dams and pups showed signs of vitamin D deficiency

  20. Calcium Ion Removal by KMnO4 Modified Pineapple Leaf Waste Carbon Prepared from Waste of Pineapple Leaf Fiber Production Processing

    Directory of Open Access Journals (Sweden)

    Sumrit Mopoung


    Full Text Available Pineapple leaf fiber waste carbon, modified with 3% KMnO4, was used for Ca2+ removal from aqueous solution. The effects of contact time, loading, water hardness, and isotherms on Ca2+ adsorption were studied. The results show that the Ca2+ ion removal by pineapple leaf fiber waste carbon could be improved by modification with KMnO4. The adsorption would reach equilibrium state at about 60 min for a water source with hardness values of 40-200 mg/dm3. Increases in total hardness (40 to 200 mg/dm3 lead to a decrease in Ca2+ ion removal efficiency (90.05% to 37.65% and an increase in Ca2+ ion adsorption capacity at equilibrium (4.37 mg/g to 8.95 mg/g. The Ca2+ removal efficiencies increase with increasing loading of modified waste carbon. The equilibrium data were fitted well by both the Langmuir isotherm and the Freundlich isotherm. For the Langmuir isotherm model, the values of the maximum Ca2+ adsorption capacity and Langmuir constant being 2.81 mg/g and 0.9262 dm3 /g, respectively. On the other hand for the Freundlich isotherm model, the KF and n values are 1.374 dm3 (1/n mg (1-1/n/g and 4.671, respectively. These results indicate that modified pineapple fiber waste carbon is a material with high Ca2+ ion adsorption capacity, heterogeneity, and high affinity.

  1. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar


    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  2. Calcium and Bone Metabolism Indices. (United States)

    Song, Lu


    Calcium and inorganic phosphate are of critical importance for many body functions, thus the regulations of their plasma concentrations are tightly controlled by the concerted actions of reabsorption/excretion in the kidney, absorption in the intestines, and exchange from bone, the major reservoir for calcium and phosphate in the body. Parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH) 2 D) control calcium homeostasis, whereas PTH, 1,25(OH) 2 D, and bone-derived fibroblast growth factor 23 (FGF 23) control phosphate homeostasis. Hypoparathyroidism can cause hypocalcemia and hyperphosphatemia, whereas deficient vitamin D actions can cause osteomalacia in adults and rickets in children. Hyperparathyroidism, alternatively, can cause hypercalcemia and hypophosphatemia. Laboratory tests of calcium, phosphate, PTH, and 25-hydroxyvitamin D are very useful in the diagnosis of abnormalities associated with calcium and/or phosphate metabolisms. Bone is constantly remodeled throughout life in response to mechanical stress and a need for calcium in extracellular fluids. Metabolic bone diseases such as osteoporosis, osteomalacia in adults or rickets in children, and renal osteodystrophy develop when bone resorption exceeds bone formation. Bone turnover markers (BTM) such as serum N-terminal propeptide of type I procollagen (P1NP) and C-terminal collagen cross-link (CTX) may be useful in predicting future fracture risk or monitoring the response to anti-resorptive therapy. There is a need to standardize sample collection protocols because certain BTMs exhibit large circadian variations and tend to be influenced by food intakes. In the United States, a project to standardize BTM sample collection protocols and to establish the reference intervals for serum P1NP and serum CTX is ongoing. We anticipate the outcome of this project to shine lights on the standardization of BTM assays, sample collection protocols, reference intervals in relation to age, sex, and ethnic

  3. Determination of the physiological plasmatic values of sodium, potassium and ion calcium and its pre and post exercise Variations in “paso fino” horses in the bogota savannah

    Directory of Open Access Journals (Sweden)

    Camila Valdés Restrepo


    Full Text Available This research intends to be a contribution to the Colombian sports equine medicine by providing data on electrolytes standards, a field where there is a substantial lack of literature. This research analyze and determines the normal values of sodium (Na+,potassium (K+ and ion calcium (iCa2+ electrolytes for Colombian Paso Fine horses. The establishment of the reference intervals was done at rest and after exercise. To achieve this, blood samples were taken from farms located in the Bogotá savannah. The 115 mares and stallions used for this study were actively competing with ages ranging from 43 to 78 months old. The samples were taken at three intervals: T0 (Rest,T1 (immediately after 45 minutes of exercise, and T2(1 hour post exercise. The samples were processed using a portable blood analyzer i-STAT® and the data was interpreted using descriptive and comparative statistic according to Turkey tests. The normal values for the breed were established and an electrolytic behavior curve was created, using values inside interval sat 95% confidence levels. The values obtained inmEq/L were: for T0: Na+ (136,71+/-0,23, K+ (4,05+/-0,03, Ca2+ (1,58+/-0,006; for T1: Na+ (136,44+/-0,24, K+ (3,92+/-0,24, Ca2+ (1,42+/-0,008; and for T2: Na+ (137,32+/-0,23, K+ (3,68+/-0,03, Ca2+(1,51+/-0,009. Na+ values increased after exercise. On the contrary K+ and Ca2+ values didn’t increase inT1. Calcium increased on T2 and K+ decreased. The findings of this research will serve as a framework for future analysis. Moreover, further studies and developments in this field are recommended and will prove to be very useful for equine practitioners.

  4. Calcium blood test (United States)

    ... page: // Calcium blood test To use the sharing features on this page, please enable JavaScript. The calcium blood test measures the level of calcium in the blood. ...

  5. Calcium source (image) (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  6. Calcium Pyrophosphate Deposition (CPPD) (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  7. Calcium carbonate overdose (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Products that contain calcium carbonate are certain: Antacids (Tums, Chooz) Mineral supplements Hand lotions Vitamin and mineral supplements Other products may also contain ...

  8. Calcium and bones (image) (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  9. Calcium hydroxide poisoning (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  10. Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release

    KAUST Repository

    Flegg, Mark B.; Rüdiger, Sten; Erban, Radek


    The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While

  11. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions

    NARCIS (Netherlands)

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.


    The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium

  12. Codissolution of calcium hydrogenphosphate and sodium hydrogencitrate in water. Spontaneous supersaturation of calcium citrate increasing calcium bioavailability

    DEFF Research Database (Denmark)

    Hedegaard, Martina Vavrusova; Danielsen, Bente Pia; Garcia, André Castilho


    The sparingly soluble calcium hydrogenphosphate dihydrate, co-dissolving in water during dissolution of freely soluble sodium hydrogencitrate sesquihydrate as caused by proton transfer from hydrogencitrate to hydrogenphosphate, was found to form homogenous solutions supersaturated by a factor up...... to 8 in calcium citrate tetrahydrate. A critical hydrogencitrate concentration for formation of homogeneous solutions was found to depend linearly on dissolved calcium hydrogenphosphate: [HCitr2-] = 14[CaHPO4] - 0.05 at 25 °C. The lag phase for precipitation of calcium citrate tetrahydrate......, as identified from FT-IR spectra, from these spontaneously formed supersaturated solutions was several hours, and the time to reach solubility equilibrium was several days. Initial calcium ion activity was found to be almost independent of the degree of supersaturation as determined electrochemically...

  13. In Vivo Perturbation of Membrane-Associated Calcium by Freeze-Thaw Stress in Onion Bulb Cells 1 (United States)

    Arora, Rajeev; Palta, Jiwan P.


    Incipient freeze-thaw stress in onion bulb scale tissue is known to cause enhanced efflux of K+, along with small but significant loss of cellular Ca2+. During the post-thaw period, irreversibly injured cells undergo a cytological aberration, namely, `protoplasmic swelling.' This cellular symptom is thought to be caused by replacement of Ca2+ from membrane by extracellular K+ and subsequent perturbation of K+ transport properties of plasma membrane. In the present study, onion (Allium cepa L. cv Sweet Sandwich) bulbs were slowly frozen to either −8.5°C or −11.5°C and thawed over ice. Inner epidermal peels from bulb scales were treated with fluorescein diacetate for assessing viability. In these cells, membrane-associated calcium was determined using chlorotetracycline fluorescence microscopy combined with image analysis. Increased freezing stress and tissue infiltration (visual water-soaking) were paralleled by increased ion leakage. Freezing injury (−11.5°C; irreversible) caused a specific and substantial loss of membrane-associated Ca2+ compared to control. Loss of membrane-associated Ca2+ caused by moderate stress (−8.5°C; reversible) was much less relative to −11.5°C treatment. Ion efflux and Ca2+-chlorotetracycline fluorescence showed a negative relationship. Extracellular KCl treatment simulated freeze-thaw stress by causing a similar loss of membrane-associated calcium. This loss was dramatically reduced by presence of extracellular CaCl2. Our results suggest that the loss of membrane-associated Ca2+, in part, plays a role in initiation and progression of freezing injury. Images Fig. 1 Fig. 2 PMID:16666196

  14. The effect of glucose stimulation on 45calcium uptake of rat pancreatic islets and their total calcium content as measured by a fluorometric micro-method

    International Nuclear Information System (INIS)

    Wolters, G.H.J.; Wiegman, J.B.; Konijnendijk, W.


    Glucose-stimulated 45 calcium uptake and total calcium content of rat pancreatic islets has been studied, using a new fluorometric micro-method to estimate total calcium. Extracellular calcium was separated from incubated tissue by a rapid micro-filtration procedure. Islets incubated up to 60 min with calcium chloride 2.5 mmol/l and glucose 2.5 mmol/l maintained the same calcium content (670 +- 7.5 pmol/μg DNA). When the glucose concentration was raised to 15 mmol/l no change in the total calcium content could be detected. On incubation with glucose 2.5 mmol/l in the absence of calcium, the calcium content decreased to 488 +- 27 pmol/μg DNA. On incubation with 45 calcium chloride 2.5 mmol/l for 5 or 30 min at 2.5 mmol/l glucose, islets exchanged 21 +- 2 and 28 +- 1% of their total calcium content and, at 15 mmol/l glucose, 30 +- 3 and 45 +- 2%, respectively. Thus, islet calcium has a high turn-over rate. Glucose stimulation results in an increase of the calcium uptake without enhancing the total calcium content and hence must increase the calcium-exchangeable pool. (orig.)

  15. Calcium in Urine Test (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Calcium, Serum; Calcium and Phosphates, Urine; ...

  16. Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride

    Directory of Open Access Journals (Sweden)

    H. Kouyoumdjian


    Full Text Available Levels of coarse (PM10-2.5 and fine (PM2.5 particles were determined between February 2004 and January 2005 in the city of Beirut, Lebanon. While low PM mass concentrations were measured in the rainy season, elevated levels were detected during sand storms originating from Arabian desert and/or Africa. Using ATR-FTIR and IC, it was shown that nitrate, sulfate, carbonate and chloride were the main anionic constituents of the coarse particles, whereas sulfate was mostly predominant in the fine particles in the form of (NH42SO4. Ammonium nitrate was not expected to be important because the medium was defined as ammonium poor. In parallel, the cations Ca2+ and Na+ dominated in the coarse, and NH4+, Ca2+ and Na+ in the fine particles. Coarse nitrate and sulfate ions resulted from the respective reactions of nitric and sulfuric acid with a relatively high amount of calcium carbonate. Both CaCO3 and Ca(NO32 crystals identified by ATR-FTIR in the coarse particles were found to be resistant to soaking in water for 24 h but became water soluble when they were formed in the fine particles suggesting, thereby, different growth and adsorption phenomena. The seasonal variational study showed that nitrate and sulfate ion concentrations increased in the summer due to the enhancement of photochemical reactions which facilitated the conversion of NO2 and SO2 gases into NO3- and SO42-, respectively. While nitrate was mainly due to local heavy traffic, sulfates were due to local and long-range transport phenomena. Using the air mass trajectory HYSPLIT model, it was found that the increase in the sulfate concentration correlated with wind vectors coming from Eastern and Central Europe. Chloride levels, on the other hand, were high when wind originated from the sea and low during sand storms. In addition to sea salt, elevated levels of chloride were also attributed to waste mass burning in proximity to the site. In comparison to other neighboring Mediterranean

  17. Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Eichert, D.; Salome, M.; Banu, M.; Susini, J.; Rey, C.


    Several reports have mentioned the existence of non-apatitic environments of phosphate and carbonate ions in synthetic and biological poorly crystalline apatites. However there were no direct spectroscopic evidences for the existence of non-apatitic environment of calcium ions. X-ray Absorption Spectroscopy, at the K-edge of calcium, allows the discrimination between different calcium phosphates of biological interest despite great spectral similarities. A primary analysis of the spectra reveals the existence, in synthetic poorly crystalline apatites, of variable features related to the maturation stage of the sample and corresponding to the existence of non-apatitic environments of calcium ions. Although these features can also be found in several other calcium phosphate salts, and do not allow a clear identification of the ionic environments of calcium ions, they give a possibility to directly determine the maturity of poorly crystalline apatite from calcium X-ray Absorption Near Edge Structure spectra

  18. Influence of histones and calcium and magnesium ions on the ultrastructure of chromatin in isolated nuclei of Pinus silvestris L. root meristem

    Directory of Open Access Journals (Sweden)

    Halina Michniewicz


    Full Text Available The width of chromatin fibrils in nuclei fixed in situ is about 10 nm. In nuclei isolated in the presence of Ca+2 and Mg+2 ions the fibrils coalesce, and thus their width secondarily increases, whereas in nuclei isolated without the presence of the cations the diameter of fibrils increases somewhat as compared with that in nuclei in situ, probably owing to absorption of nonchromatin nuclear proteins. Lysine histone extraction caused dispersion of condensed chromatin, and reintroduction of these proteins - its reconstruction. On the other hand, extraction and reintroduction of the arginine histone did not cause chromatin dispersion, but rather coalescence of the chromatin mass. Lysine histone extraction from material isolated in the presence of Ca+2 and Mg+2 ions caused the appearance of a large number of 10-nm fibrils, only sporadically seen in the control material, and disappearance of the 30-nm forms. Reintroduction of the lysine histone reduced the number of single fibrils and enhanced the appearance of coalescent form with 30 nm diameter. Removal of arginine histones did not produce disappearance of single fibrils, but reduced their diameter. Reintroduction of this fraction caused coalescence of chromatin threads, owing to which 90 per cent of the population consisted of fibrils with diameter around 30 nm.

  19. Calcium signaling in liver. (United States)

    Gaspers, Lawrence D; Thomas, Andrew P


    In hepatocytes, hormones linked to the formation of the second messenger inositol 1,4,5-trisphosphate (InsP3) evoke transient increases or spikes in cytosolic free calcium ([Ca2+]i), that increase in frequency with the agonist concentration. These oscillatory Ca2+ signals are thought to transmit the information encoded in the extracellular stimulus to down-stream Ca2+-sensitive metabolic processes. We have utilized both confocal and wide field fluorescence microscopy techniques to study the InsP3-dependent signaling pathway at the cellular and subcellular levels in the intact perfused liver. Typically InsP3-dependent [Ca2+]i spikes manifest as Ca2+ waves that propagate throughout the entire cytoplasm and nucleus, and in the intact liver these [Ca2+]i increases are conveyed through gap junctions to encompass entire lobular units. The translobular movement of Ca2+ provides a means to coordinate the function of metabolic zones of the lobule and thus, liver function. In this article, we describe the characteristics of agonist-evoked [Ca2+]i signals in the liver and discuss possible mechanisms to explain the propagation of intercellular Ca2+ waves in the intact organ.

  20. The Effects of Electrical Stimuli on Calcium Change and Histamine Release in Rat Basophilic Leukemia Mast Cells (United States)

    Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei


    We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.

  1. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    Teir, Sebastian; Eloneva, Sanni; Zevenhoven, Ron


    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  2. Measuring Fast Calcium Fluxes in Cardiomyocytes (United States)

    Golebiewska, Urszula; Scarlata, Suzanne


    Cardiomyocytes have multiple Ca2+ fluxes of varying duration that work together to optimize function 1,2. Changes in Ca2+ activity in response to extracellular agents is predominantly regulated by the phospholipase Cβ- Gαq pathway localized on the plasma membrane which is stimulated by agents such as acetylcholine 3,4. We have recently found that plasma membrane protein domains called caveolae5,6 can entrap activated Gαq7. This entrapment has the effect of stabilizing the activated state of Gαq and resulting in prolonged Ca2+ signals in cardiomyocytes and other cell types8. We uncovered this surprising result by measuring dynamic calcium responses on a fast scale in living cardiomyocytes. Briefly, cells are loaded with a fluorescent Ca2+ indicator. In our studies, we used Ca2+ Green (Invitrogen, Inc.) which exhibits an increase in fluorescence emission intensity upon binding of calcium ions. The fluorescence intensity is then recorded for using a line-scan mode of a laser scanning confocal microscope. This method allows rapid acquisition of the time course of fluorescence intensity in pixels along a selected line, producing several hundreds of time traces on the microsecond time scale. These very fast traces are transferred into excel and then into Sigmaplot for analysis, and are compared to traces obtained for electronic noise, free dye, and other controls. To dissect Ca2+ responses of different flux rates, we performed a histogram analysis that binned pixel intensities with time. Binning allows us to group over 500 traces of scans and visualize the compiled results spatially and temporally on a single plot. Thus, the slow Ca2+ waves that are difficult to discern when the scans are overlaid due to different peak placement and noise, can be readily seen in the binned histograms. Very fast fluxes in the time scale of the measurement show a narrow distribution of intensities in the very short time bins whereas longer Ca2+ waves show binned data with a broad

  3. Studies on the production of endogenous pyrogen by rabbit monocytes: the role of calcium and cyclic nucleotides.


    Sigal, S. L.; Duff, G. W.; Atkins, E.


    Rabbit monocytes stimulated with endotoxin produced endogenous pyrogen, even under conditions of high or low extracellular calcium concentrations. Maximal production occurred when the concentration was in the near-physiological range. Prolonged incubation of cells with a calcium chelator prevented subsequent activation with endotoxin, an effect which was rapidly reversible by re-addition of calcium but not other cations. Addition of small amounts of lanthanum, which acts as a calcium channel ...

  4. Adrenomedullin increased the short-circuit current in the pig oviduct through chloride channels via the CGRP receptor: mediation by cAMP and calcium ions but not by nitric oxide. (United States)

    Liao, S B; Cheung, K H; Cheung, M P L; To, Y T; O, W S; Tang, F


    The oviduct serves as a site for the fertilization of the ovum and the transport of the conceptus down to the uterus for implantation. In this study, we investigated the presence of adrenomedullin (ADM) and its receptor component proteins in the pig oviduct. The effect of ADM on oviductal secretion, the specific receptor, and the mechanisms involved were also investigated. The presence of ADM and its receptor component proteins in the pig oviduct were confirmed using immunostaining. Short-circuit current (I(sc)) technique was employed to study chloride ion secretion in the oviductal epithelium. ADM increased I(sc) through cAMP- and calcium-activated chloride channels, and this effect could be inhibited by the CGRP receptor antagonist, hCGRP8-37. In contrast, the nitric oxide synthase inhibitor, L-NG-nitroarginine methyl ester (L-NAME), could not block the effect of ADM on I(sc). In summary, ADM may increase oviductal fluid secretion via chloride secretion independent of the nitric oxide pathway for the transport of sperm and the conceptus.

  5. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping


    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  6. Calcium fluoride

    International Nuclear Information System (INIS)

    King, C.W.; Nestor, O.H.


    A new process for producing large, single, oriented crystals of calcium fluoride (CaF 2 ) has been developed which overcomes the limitations of current growing methods. This process has been reduced to practice and has yielded oriented crystals 17.5 x 17.5 x 5 cm 3 . Currently nearing completion is a system for producing 35 x 35 x 7.5 cm 3 single crystals. A scale up to one-meter-square is considered feasible. This crystal growing process makes possible the fabrication of very large CaF 2 windows. Suitability for very high power lasers, however, requires attention to properties beyond mere size. A process to generate higher purity growth stock (starting material) was also developed. The additional purification of the growth stock contributes to lower bulk absorption, the absence of color centers and increased radiation hardness. Also identified were several specific impurities which correlate with radiation hardness. A correlation was found between color centers induced by laser radiation and ionizing radiation. Other CaF 2 crystal properties such as tensile strength, absorption and laser damage thresholds were studied and are discussed

  7. Extracellular matrix structure. (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K


    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Link between the early calcium deposition in placenta and ...

    Indian Academy of Sciences (India)


    Physiological calcification occurs in bone when the soft extra-cellular matrix is converted into a rigid material capable of sustaining mechanical force. Pathological calcification may occur in different soft tissues that are not associated with calcium deposition for their physiological functions. Moreover, this pathological ...

  9. Purification and reconstitution of the calcium antagonist receptor of the voltage-sensitive calcium channel

    International Nuclear Information System (INIS)

    Curtis, B.M.


    Treatment with digitonin solubilized the calcium antagonist receptor as a stable complex with [ 3 H]nitrendipine from rat brain membranes. The solubilized complex retains allosteric coupling to binding sites for diltiazem, verapamil, and inorganic calcium antagonist sites. The calcium antagonist receptor from cardiac sarcolemma and the transverse-tubule membrane of skeletal muscle is also efficiently solubilized with digitonin and the receptor in all three tissues is a large glycoprotein with a sedimentation coefficient of 20 S. The T-tubule calcium antagonist receptor complex was extensively purified by a combination of chromatography on WGA-Sepharose, ion exchange chromatography, and sedimentation on sucrose gradients to yield preparations estimated to be 41% homogeneous by specific activity and 63% homogeneous by SDS gel electrophoresis. Analysis of SDS gels detect three polypeptides termed α(Mr 135,000), β(Mr 50,000), and γ(Mr 32,000) as noncovalently associated subunits of the calcium antagonist receptor. The α and γ subunits are glycosylated polypeptides, and the molecular weight of the core polypeptides are 108,000 and 24,000 respectively. The calcium antagonist receptor was reconstituted into a phospholipid bilayer by adding CHAPS and exogeneous lipid to the purified receptor followed by rapid detergent removal. This procedure resulted in the incorporation of 45% of the calcium antagonist receptor into closed phospholipid vesicles. Data suggests that the α, β, and γ subunits of the T-tubule calcium antagonist receptor are sufficient to form a functional calcium channel

  10. Thermoluminescence of calcium-based phosphors

    International Nuclear Information System (INIS)

    Sunta, C.M.


    The paper reviews the thermoluminescence (TL) properties of calcium fluoride, calcium sulphate and calcium carbonate phosphors. In the case of the calcium fluoride mineral phosphor the main emitter of TL is the cerium impurity. Based on the TL emission spectra, two types of Ce 3+ centres can be easily distinguished; those associated with O 2- compensating ion and those which have either no local compensators or are associated with F - interstitial ions at the adjacent vacant body centre position. The spectra undergo remarkable changes at high doses. Such changes are associated with the probabilities of charge trapping at different types of traps and also with the probabilities of recombination at different types of luminescent centres. Some of the traps and recombination centres are spatially associated while others are distributed randomly. In calcium carbonate mineral, Mn 2+ is invariably the emitting impurity. Mn 2+ can be used as an efficient dopant for TL emission in all the three calcium based TL phosphors. A co-dopant like Ce 3+ intensifies the luminescence yield from Mn 2+ . Models of different types of electron and hole trapping centres are given. (author)

  11. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering


    Widyasri Prananingrum; Puguh Bayu Prabowo


    Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP) is a paste material containing milk protein (casein), that actually contains minerals, such as calcium an...

  12. Calcium content of different compositions of gallstones and pathogenesis of calcium carbonate gallstones

    Directory of Open Access Journals (Sweden)

    Ji-Kuen Yu


    Conclusion: From our study, we found chronic and/or intermittent cystic duct obstructions and low-grade GB wall inflammation lead to GB epithelium hydrogen secretion dysfunction. Increased calcium ion efflux into the GB lumen combined with increased carbonate anion presence increases SI_CaCO3 from 1 to 22.4. Thus, in an alkaline milieu with pH 7.8, calcium carbonate begins to aggregate and precipitate.

  13. H2O2 augments cytosolic calcium in nucleus tractus solitarii neurons via multiple voltage-gated calcium channels. (United States)

    Ostrowski, Tim D; Dantzler, Heather A; Polo-Parada, Luis; Kline, David D


    Reactive oxygen species (ROS) play a profound role in cardiorespiratory function under normal physiological conditions and disease states. ROS can influence neuronal activity by altering various ion channels and transporters. Within the nucleus tractus solitarii (nTS), a vital brainstem area for cardiorespiratory control, hydrogen peroxide (H 2 O 2 ) induces sustained hyperexcitability following an initial depression of neuronal activity. The mechanism(s) associated with the delayed hyperexcitability are unknown. Here we evaluate the effect(s) of H 2 O 2 on cytosolic Ca 2+ (via fura-2 imaging) and voltage-dependent calcium currents in dissociated rat nTS neurons. H 2 O 2 perfusion (200 µM; 1 min) induced a delayed, slow, and moderate increase (~27%) in intracellular Ca 2+ concentration ([Ca 2+ ] i ). The H 2 O 2 -mediated increase in [Ca 2+ ] i prevailed during thapsigargin, excluding the endoplasmic reticulum as a Ca 2+ source. The effect, however, was abolished by removal of extracellular Ca 2+ or the addition of cadmium to the bath solution, suggesting voltage-gated Ca 2+ channels (VGCCs) as targets for H 2 O 2 modulation. Recording of the total voltage-dependent Ca 2+ current confirmed H 2 O 2 enhanced Ca 2+ entry. Blocking VGCC L, N, and P/Q subtypes decreased the number of cells and their calcium currents that respond to H 2 O 2 The number of responder cells to H 2 O 2 also decreased in the presence of dithiothreitol, suggesting the actions of H 2 O 2 were dependent on sulfhydryl oxidation. In summary, here, we have shown that H 2 O 2 increases [Ca 2+ ] i and its Ca 2+ currents, which is dependent on multiple VGCCs likely by oxidation of sulfhydryl groups. These processes presumably contribute to the previously observed delayed hyperexcitability of nTS neurons in in vitro brainstem slices. Copyright © 2017 the American Physiological Society.

  14. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux. (United States)

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira


    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters

  15. Effects of low-dose ionising radiation on pituitary adenoma: is there a role for L-type calcium channel?

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Marcella Araugio; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia]. E-mail:


    Pituitary adenomas constitute about 6-18% of brain tumours in adults. Activation of voltage gated calcium currents can account for growth hormone over secretion in some GH-secreting pituitary adenomas that produce an acromegaly appearance and increase mortality. Ca{sup 2+} ions, as mediators of intracellular signalling, are crucial for the development of apoptosis. However, the role of [Ca{sup 2+}] in the development of apoptosis is ambiguous. In this study, the effects of low-dose ionising gamma radiation ({sup 60} Co) on rat pituitary adenoma cells survival and proliferation and the role of calcium channels on the apoptosis radio-induced were evaluated. Doses as low as 3 Gy were found to inhibit GH3 cell proliferation. Even though there was a significant number of live cells,168 hours following irradiation, they were not able to proliferate. The results indicate that the blockade of extracellular calcium influx through these channels does not interfere in the radiation-induced apoptosis in GH3 cells. (author)

  16. Dermal extracellular lipid in birds. (United States)

    Stromberg, M W; Hinsman, E J; Hullinger, R L


    A light and electron microscopic study of the skin of domestic chickens, seagulls, and antarctic penguins revealed abundant extracellular dermal lipid and intracellular epidermal lipid. Dermal lipid appeared ultrastructurally as extracellular droplets varying from less than 1 micron to more than 25 microns in diameter. The droplets were often irregularly contoured, sometimes round, and of relatively low electron density. Processes of fibrocytes were often seen in contact with extracellular lipid droplets. Sometimes a portion of such a droplet was missing, and this missing part appeared to have been "digested away" by the cell process. In places where cells or cell processes are in contact with fact droplets, there are sometimes extracellular membranous whorls or fragments which have been associated with the presence of fatty acids. Occasionally (in the comb) free fat particles were seen in intimate contact with extravasated erythrocytes. Fat droplets were seen in the lumen of small dermal blood and lymph vessels. We suggest that the dermal extracellular lipid originates in the adipocyte layer and following hydrolysis the free fatty acids diffuse into the epidermis. Here they become the raw material for forming the abundant neutral lipid contained in many of the epidermal cells of both birds and dolphins. The heretofore unreported presence and apparently normal utilization of abundant extracellular lipid in birds, as well as the presence of relatively large droplets of neutral lipid in dermal vessels, pose questions which require a thorough reappraisal of present concepts of the ways in which fat is distributed and utilized in the body.

  17. Long-chain α,ω-dioic acids as inducers of cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria loaded with calcium or strontium ions. (United States)

    Dubinin, M V; Adakeeva, S I; Samartsev, V N


    Long-chain saturated monocarboxylic fatty acids can induce nonspecific permeability of the inner membrane (open pores) of liver mitochondria loaded with Ca2+ or Sr(2+) by the mechanism insensitive to cyclosporin A. In this work we investigated the effect of their metabolites - α,ω-dioic (dicarboxylic) acids - as potential inducers of pore opening by a similar mechanism. It was established that the addition of α,ω-hexadecanedioic acid (HDA) at a concentration of 10-30 µM to liver mitochondria loaded with Ca2+ or Sr(2+) leads to swelling of the organelles and release of these ions from the matrix. The maximum effect of HDA is observed at 50 µM Ca2+ concentration. Cyclosporin A at a concentration of 1 µM, previously added to the mitochondria, did not inhibit the observed processes. The calcium uniporter inhibitor ruthenium red, which blocks influx of Ca2+ and Sr(2+) to the matrix of mitochondria, prevented HDA-induced swelling. The effect of HDA as inducer of swelling of mitochondria was compared with similar effects of α,ω-tetradecanedioic and α,ω-dodecanedioic acids whose acyl chains are two and four carbon atoms shorter than HDA, respectively. It was found that the efficiency of these α,ω-dioic acids decreases with reducing number of carbon atoms in their acyl chains. It was concluded that in the presence of Ca2+ or Sr(2+) long-chain saturated α,ω-dioic acids can induce a cyclosporin A-insensitive permeability of the inner membrane (open pores) of liver mitochondria as well as their monocarboxylic analogs.

  18. Functional exploration of extracellular polymeric substances (EPS) in the bioleaching of obsolete electric vehicle LiNixCoyMn1-x-yO2 Li-ion batteries. (United States)

    Wang, Jia; Tian, Bingyang; Bao, Yihui; Qian, Can; Yang, Yiran; Niu, Tianqi; Xin, Baoping


    As a fairly new concept, the recovery of valuable metals from urban mining by using bioleaching has become a hotspot. However, the function of extracellular polymeric substances (EPS) in the bioleaching of urban mining gains little attention. The current study used spent EV LIBs to represent urban mining products and systematically explored the function and role of EPS in the attachment of cells to the cathodes, formation of aggregates (cell-EPS-cathode), variation in the electrical and surface properties of the aggregates, concentration of both Fe 2+ and Fe 3+ surrounding the aggregates, electron transfer inside the aggregates and metals released from the aggregates. The results indicated that a strong adhesion of cells to the cathodes occurs mediated by EPS via both hydrophobic force as a main role and electrostatic force as a minor role. Second, the EPS not only adsorb Fe 3+ but also more strongly adsorb Fe 2+ to concentrate the Fe 2+ /Fe 3+ cycle inside the aggregates, witnessing stronger reductive attack on the high valence state of metals as a contact reductive mechanism. Third, the retention or addition of EPS elevated the electronic potential and reduced the electronic resistance to lift the corrosion electric current, thereby boosting the electron transfer and metal dissolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Calcium and magnesium determination

    International Nuclear Information System (INIS)

    Bhattacharya, S.K.


    The roles of calcium and magnesium in human health and disease have been extensively studied. Calcium and magnesium have been determined in biological specimens by atomic absorption spectroscopy using stiochiometric nitrous oxide-acetylene flame

  20. Fenoprofen calcium overdose (United States)

    ... page: // Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  1. Calcium channel blocker overdose (United States)

    ... this page: // Calcium-channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium-channel blockers are a type of medicine used ...

  2. Foliar application of calcium chloride and borax affects the fruit skin ...

    African Journals Online (AJOL)

    The influence of foliar application of calcium chloride and borax calcium on fruit skin strength and cracking incidence in litchi (Litchi chinensis Sonn.) fruit was investigated at 25 days interval and also the evaluation of fruit skin calcium and boron contents, skin strength, ion leakage from skin discs and fruit cracking in four ...

  3. influence of foliar applications of calcium chloride and borax on fruit

    African Journals Online (AJOL)

    Dr. A Rab


    Dec 16, 2011 ... The influence of foliar application of calcium chloride and borax calcium on fruit skin strength and cracking incidence in litchi (Litchi chinensis Sonn.) fruit was investigated at 25 days interval and also the evaluation of fruit skin calcium and boron contents, skin strength, ion leakage from skin discs and.

  4. Brain Extracellular Space: The Final Frontier of Neuroscience. (United States)

    Nicholson, Charles; Hrabětová, Sabina


    Brain extracellular space is the narrow microenvironment that surrounds every cell of the central nervous system. It contains a solution that closely resembles cerebrospinal fluid with the addition of extracellular matrix molecules. The space provides a reservoir for ions essential to the electrical activity of neurons and forms an intercellular chemical communication channel. Attempts to reveal the size and structure of the extracellular space using electron microscopy have had limited success; however, a biophysical approach based on diffusion of selected probe molecules has proved useful. A point-source paradigm, realized in the real-time iontophoresis method using tetramethylammonium, as well as earlier radiotracer methods, have shown that the extracellular space occupies ∼20% of brain tissue and small molecules have an effective diffusion coefficient that is two-fifths that in a free solution. Monte Carlo modeling indicates that geometrical constraints, including dead-space microdomains, contribute to the hindrance to diffusion. Imaging the spread of macromolecules shows them increasingly hindered as a function of size and suggests that the gaps between cells are predominantly ∼40 nm with wider local expansions that may represent dead-spaces. Diffusion measurements also characterize interactions of ions and proteins with the chondroitin and heparan sulfate components of the extracellular matrix; however, the many roles of the matrix are only starting to become apparent. The existence and magnitude of bulk flow and the so-called glymphatic system are topics of current interest and controversy. The extracellular space is an exciting area for research that will be propelled by emerging technologies. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Calcium and Mitosis (United States)

    Hepler, P.


    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  6. Structure and calcium binding activity of LipL32, the major surface antigen of pathogenic Leptospira sp

    International Nuclear Information System (INIS)

    Hauk, Pricila; Roman-Ramos, Henrique; Ho, Paulo Lee; Guzzo, Cristiane R.; Farah, Chuck S.


    Leptospirosis, caused by the spirochaete Leptospira is an important emerging infectious disease. LipL32 is the major exposed outer membrane protein found exclusively in pathogenic leptospira. It is highly immunogenic and has been shown to bind to host extracellular matrix components, including collagens, fibronectin and laminin. In this work we crystallized recombinant LipL32 protein and determined its structure to 2.25 A resolution. Initial phases were determined using the multi-wavelength anomalous dispersion technique with data collected from selenomethionine-containing crystals at the MX2 beamline at the LNLS. The LipL32 monomer is made of a jelly-roll fold core from which protrude several peripheral secondary structures. Some structural features suggested that LipL32 could bind Ca 2+ ions and indeed, spectroscopic data (circular (dichroism. intrinsic tryptophan fluorescence and extrinsic 1-amino-2-anaphthol-4-sulfonic acid fluorescence) confirmed the calcium binding properties of LipL32. (author)

  7. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.


    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of

  8. The alpha hemolisina of Escherichia Coli induces increases in the calcium citoplasmico of neutrofilos and monocytes human beings

    International Nuclear Information System (INIS)

    Garcia, J.


    Escherichia coli alpha hemolysin (AH) and the calcium ionophores ionomycin and 4 Br A23187 caused increases in cell fluorescence, indicative of elevations in cytoplasmic calcium, in fura 2-loaded human polymorphonuclear leukocytes(PMN) and monocytes (MN). The increase in fluorescence caused by AH was dose dependent. Quelation of extracellular calcium with EGTA prevented fluorescence increases in PMN exposed to 2 HU50/ml AH, but did not prevent a small increase in 4 μM, ionomycin-treated PMN, indicating that ionomycin treatment under conditions of calcium quelation can mobilize calcium from internal stores, and that entry of external calcium accounts for most of the increases in cell fluorescence in cells treated with both AH and calcium ionophores. AH, as well as calcium ionophores and the chemotactic peptide FMLP caused rease of myeloperoxidase (MPO) from PMM suggesting that increments in intracellular calcium cause degramulation with release of granule contents (Author) [es

  9. Lipopolysaccharide (LPS)-mediated macrophage activation: the role of calcium in the generation of tumoricidal activity

    International Nuclear Information System (INIS)

    Drysdale, B.E.; Shin, H.S.


    As the authors reported, calcium ionophore, A23187, activates macrophages (M theta) for tumor cell killing and the activated M theta produce a soluble cytotoxic factor (M theta-CF) that is similar if not identical to tumor necrosis factor. Based on these observations they have investigated whether calcium is involved in the activation mediated by another potent M theta activator, LPS. The authors have shown that A23187 caused uptake of extracellular 45 Ca ++ but LPS did not. They have examined the effect of depleting extracellular calcium by using medium containing no added calcium containing 1.0 mM EGTA. In no case did depletion result in decreased M theta-CF production by the M theta activated with LPS. Measurements using the fluorescent, intracellular calcium indicator, Quin 2 have also been performed. While ionomycin, caused a rapid change in the Quin-2 signal, LPS at a concentration even in excess of that required to activate the M theta caused no change in the signal. When high doses of Quin 2 or another intracellular chelator, 8-(diethylaminol-octyl-3,4,5-trimethoxybenzoate, were used to treat M theta, M theta-CF production decreased and cytotoxic activity was impaired. These data indicate that one or more of the processes involved in M theta-CF production does require calcium, but that activation mediated by LPS occurs without the influx of extracellular calcium or redistribution of intracellular calcium

  10. Changes in the composition of brain interstitial ions control the sleep-wake cycle

    DEFF Research Database (Denmark)

    Ding, Fengfei; O'Donnell, John; Xu, Qiwu


    , and [H+]e as well as the extracellular volume. Local cortical activity of sleeping mice could be readily converted to the stereotypical electroencephalography pattern of wakefulness by simply imposing a change in the extracellular ion composition. Thus, extracellular ions control the state...

  11. Determination of Calcium in Dietary Supplements: Statistical Comparison of Methods in the Analytical Laboratory (United States)

    Garvey, Sarah L.; Shahmohammadi, Golbon; McLain, Derek R.; Dietz, Mark L.


    A laboratory experiment is described in which students compare two methods for the determination of the calcium content of commercial dietary supplement tablets. In a two-week sequence, the sample tablets are first analyzed via complexometric titration with ethylenediaminetetraacetic acid and then, following ion exchange of the calcium ion present…

  12. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast


    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco


    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and met...

  13. Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y Cells

    International Nuclear Information System (INIS)

    Liu, P.-S.; Chiung, Y.-M.; Kao, Y.-Y.


    The mechanisms of TDI (2,4-toluene diisocyanate)-induced occupational asthma are not fully established. Previous studies have indicated that TDI induces non-specific bronchial hyperreactivity to methacholine and induces contraction of smooth muscle tissue by activating 'capsaicin-sensitive' nerves resulting asthma. Cytosolic-free calcium ion concentrations ([Ca 2+ ] c ) are elevated when either capsaicin acts at vanilloid receptors, or methacholine at muscarinic receptors. This study therefore investigated the effects of TDI on Ca 2+ mobilization in human neuroblastoma SH-SY5Y cells. TDI was found to elevate [Ca 2+ ] c by releasing Ca 2+ from the intracellular stores and extracellular Ca 2+ influx. 500 μM TDI induced a net [Ca 2+ ] c increase of 112 ± 8 and 78 ± 6 nM in the presence and absence of extracellular Ca 2+ , respectively. In Ca 2+ -free buffer, TDI induced Ca 2+ release from internal stores to reduce their Ca 2+ content and this reduction was evidenced by a suppression occurring on the [Ca 2+ ] c rise induced by thapsigargin, ionomycin, and methacholine after TDI incubation. In the presence of extracellular Ca 2+ , simultaneous exposure to TDI and methacholine led a higher level of [Ca 2+ ] c compared to single methacholine stimulation, that might explain that TDI induces bronchial hyperreactivity to methacholine. We conclude that TDI is capable of interfering the [Ca 2+ ] c homeostasis including releasing Ca 2+ from internal stores and inducing extracellular Ca 2+ influx. The interaction of this novel character and bronchial hyperreactivity need further investigation

  14. Fast calcium transients translate the distribution and conduction of neural activity in different regions of a single sensory neuron. (United States)

    Purali, Nuhan


    In the present study, cytosolic calcium concentration changes were recorded in response to various forms of excitations, using the fluorescent calcium indicator dye OG-BAPTA1 together with the current or voltage clamp methods in stretch receptor neurons of crayfish. A single action potential evoked a rise in the resting calcium level in the axon and axonal hillock, whereas an impulse train or a large saturating current injection would be required to evoke an equivalent response in the dendrite region. Under voltage clamp conditions, amplitude differences between axon and dendrite responses vanished completely. The fast activation time and the modulation of the response by extracellular calcium concentration changes indicated that the evoked calcium transients might be mediated by calcium entry into the cytosol through a voltage-gated calcium channel. The decay of the responses was slow and sensitive to extracellular sodium and calcium concentrations as well as exposure to 1-10 mM NiCl 2 and 10-500 µM lanthanum. Thus, a sodium calcium exchanger and a calcium ATPase might be responsible for calcium extrusion from the cytosol. Present results indicate that the calcium indicator OG-BAPTA1 might be an efficient but indirect way of monitoring regional membrane potential differences in a single neuron.

  15. Phagocytosis-induced /sup 45/calcium efflux in polymorphonuclear leucocytes

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, A; Schell-Frederick, E [Brussels Univ. (Belgium). Institut de Recherche Interdisciplinaire; Paridaens, R [Brussels Univ. (Belgium). Faculte de Medicine


    The role of calcium ions in regulating the structure and function of non-muscle cells is a subject of intense study. Several lines of evidence that calcium may be essential in the function of polymorphonuclear leuocytes (PMNL) and an important control element in the process of phagocytosis. Direct studies of calcium distribution and fluxes have only recently been undertaken. To our knowledge, no report of calcium movements during normal phagocytosis has been published. In the context of an overall study of calcium dynamics in the PMNL, we report here initial studies on /sup 45/Ca efflux in prelabelled guinea pig PMNL. The results demonstrate the energy-dependence of resting calcium efflux and an increased efflux upon addition of phagocytic particles which is not dependent on particle internalization.

  16. Tetany: quantitative interrelationships between calcium and alkalosis. (United States)

    Edmondson, J W; Brashear, R E; Li, T K


    Tetany occurs with hypocalcemia and alkalosis or both. The interrelationship of calcium and acid-base balance necessary for inducing tetany, the role of the central nervous system, and the rate of development of hypocalcemia have been investigated. Tetany occurred in less than 50 percent of one group of dogs made alkalotic by hyperventilation or made hypocalcemic by infusion of ethylene glycol-bis(beta-amino ethyl ether) N, N'-tetraacetate. In contrast, hypocalcemia combined with hypocapnic alkalosis always produced tetany. Slowly evolving hypocalcemia was achieved inanother group of dogs by thyroparathyroidectomy, and tetany was induced postoperatively by hypocapnic alkalosis. An identical relationship between serum calcium ion concentration and arterial pH or CO2 tension was found in both groups. Tetany could not be related to the cerebrospinal fluid (CSF) calcium ion content in either group. Hypocalcemia and alkalosis are therefore coparticipants in the development of tetany and are independent of the rate of development of hypocalcemia and of CSF calcium ion concentration. The importance of alkalosis in tetany with hypoparathyroidism is emphasized.

  17. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Recker, R.R.


    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  18. Protein kinase C interaction with calcium: a phospholipid-dependent process.

    LENUS (Irish Health Repository)

    Bazzi, M D


    The calcium-binding properties of calcium- and phospholipid-dependent protein kinase C (PKC) were investigated by equilibrium dialysis in the presence and the absence of phospholipids. Calcium binding to PKC displayed striking and unexpected behavior; the free proteins bound virtually no calcium at intracellular calcium concentrations and bound limited calcium (about 1 mol\\/mol of PKC) at 200 microM calcium. However, in the presence of membranes containing acidic phospholipids, PKC bound at least eight calcium ions per protein. The presence of 1 microM phorbol dibutyrate (PDBu) in the dialysis buffer had little effect on these calcium-binding properties. Analysis of PKC-calcium binding by gel filtration under equilibrium conditions gave similar results; only membrane-associated PKC bound significant amounts of calcium. Consequently, PKC is a member of what may be a large group of proteins that bind calcium in a phospholipid-dependent manner. The calcium concentrations needed to induce PKC-membrane binding were similar to those needed for calcium binding (about 40 microM calcium at the midpoint). However, the calcium concentration required for PKC-membrane binding was strongly influenced by the phosphatidylserine composition of the membranes. Membranes with higher percentages of phosphatidylserine required lower concentrations of calcium. These properties suggested that the calcium sites may be generated at the interface between PKC and the membrane. Calcium may function as a bridge between PKC and phospholipids. These studies also suggested that calcium-dependent PKC-membrane binding and PKC function could be regulated by a number of factors in addition to calcium levels and diacylglycerol content of the membrane.

  19. Calcium binding properties of calcium dependent protein kinase 1 (CaCDPK1) from Cicer arietinum. (United States)

    Dixit, Ajay Kumar; Jayabaskaran, Chelliah


    Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca(2+) ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 μM and 120 μM indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 μM and 1.7 μM. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a α-helical rich protein. Calcium binding further increased the α-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Influence of calcium on ceramide-1-phosphate monolayers

    Directory of Open Access Journals (Sweden)

    Joana S. L. Oliveira


    Full Text Available Ceramide-1-phosphate (C1P plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM, infrared reflection–absorption spectroscopy (IRRAS and grazing incidence X-ray diffraction (GIXD. The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P.

  1. Sorption of sulphur dioxide in calcium chloride and nitrate chloride liquids

    International Nuclear Information System (INIS)

    Trzepierczynska, I.; Gostomczyk, M.A.


    Flue gas desulphurization via application of suspensions has one inherent disadvantage: fixation of sulphur dioxide is very poor. This should be attributed to the low content of calcium ions which results from the solubility of the sorbing species. The solubility of sparingly soluble salts (CaO, CaCO 3 ) may be increased by decreasing the pH of the solution; yet, there is a serious limitation in this method: the corrosivity of the scrubber. The objective of this paper was to assess the sorbing capacity of two soluble calcium salts, calcium chloride and calcium nitrate, as a function of calcium ion concentration in the range of 20 to 82 kg/m 3 . It has been found that sorbing capacity increases with the increasing calcium ion concentration until the calcium concentration in the calcium chloride solution reaches the level of 60 kg/m 3 which is equivalent to the chloride ion content of ∼ 110 kg/m 3 . Addition of calcium hydroxide to the solutions brings about an increase in the sorbing capacity up to 1.6 kg/m 3 and 2.2 kg/m 3 for calcium chloride and calcium nitrate, respectively, as a result of the increased sorbent alkalinity. The sorption capacity of the solutions is considerably enhanced by supplementing them by acetate ions (2.8 to 13.9 kg/m 3 ). Increase in the sorption capacity of calcium nitrate solutions enriched with calcium acetate was approximately 30% as high as that of the chloride solutions enriched with calcium acetate was approximately 30% as high as that of the chloride solutions supplemented in the same way. (author). 12 refs, 7 refs, 4 tabs

  2. Ionized calcium measurements are influenced by albumin - should ionized calcium be corrected?

    DEFF Research Database (Denmark)

    Larsen, Trine R; Galthen-Sørensen, Mathias; Antonsen, Steen


    Abstract Measurement of ionized calcium (CaI) has been reported to be dependent on albumin concentration. We examined the correlation between albumin and CaI measured on different ion selective electrode analyzers and in different groups of patients in a large dataset, extracted from the laboratory...

  3. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis (United States)

    Chonchol, Michel; Levi, Moshe


    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  4. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar


    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  5. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients. (United States)

    Tong, Jie; Sun, Lijun; Zhu, Bin; Fan, Yun; Ma, Xingfeng; Yu, Liyin; Zhang, Jianbao


    Pulsed electromagnetic fields (PEMF) can be used to treat bone-related diseases, but the underlying mechanism remains unclear, especially the process by which PEMFs initiate biological effects. In this study, we demonstrated the effects of PEMF on proliferation and differentiation of osteoblasts using the model of calcium transients induced by high extracellular calcium. Our results showed that PEMF can increase both the percentage of responding cells and amplitude of intracellular calcium transients induced by high extracellular calcium stimulation. Compared with corresponding extracellular calcium levels, PEMF stimulation increased proliferation and differentiation of osteoblasts and related gene expressions, such as insulin-like growth factor 1 (IGF-1), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), which can be completely abolished by BAPTA-AM. Moreover, PEMF did not affect proliferation and differentiation of osteoblasts if no intracellular calcium transient was present in osteoblasts during PEMF exposure. Our results revealed that PEMF affects osteoblast proliferation and differentiation through enhanced intracellular calcium transients, which provided a cue to treat bone-related diseases with PEMF. Bioelectromagnetics. 38:541-549, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. The mechanical environment modulates intracellular calcium oscillation activities of myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Charles Godbout

    Full Text Available Myofibroblast contraction is fundamental in the excessive tissue remodeling that is characteristic of fibrotic tissue contractures. Tissue remodeling during development of fibrosis leads to gradually increasing stiffness of the extracellular matrix. We propose that this increased stiffness positively feeds back on the contractile activities of myofibroblasts. We have previously shown that cycles of contraction directly correlate with periodic intracellular calcium oscillations in cultured myofibroblasts. We analyze cytosolic calcium dynamics using fluorescent calcium indicators to evaluate the possible impact of mechanical stress on myofibroblast contractile activity. To modulate extracellular mechanics, we seeded primary rat subcutaneous myofibroblasts on silicone substrates and into collagen gels of different elastic modulus. We modulated cell stress by cell growth on differently adhesive culture substrates, by restricting cell spreading area on micro-printed adhesive islands, and depolymerizing actin with Cytochalasin D. In general, calcium oscillation frequencies in myofibroblasts increased with increasing mechanical challenge. These results provide new insight on how changing mechanical conditions for myofibroblasts are encoded in calcium oscillations and possibly explain how reparative cells adapt their contractile behavior to the stresses occurring in normal and pathological tissue repair.

  7. Dengue and Calcium


    Shivanthan, Mitrakrishnan C; Rajapakse, Senaka


    Dengue is potentially fatal unless managed appropriately. No specific treatment is available and the mainstay of treatment is fluid management with careful monitoring, organ support, and correction of metabolic derangement. Evidence with regards to the role of calcium homeostasis in dengue is limited. Low blood calcium levels have been demonstrated in dengue infection and hypocalcemia maybe more pronounced in more severe forms. The cause of hypocalcemia is likely to be multifactorial. Calcium...

  8. Calcium Channel Blockers (United States)

    ... Certain calcium channel blockers interact with grapefruit products. Kaplan NM, et al. Treatment of hypertension: Drug therapy. In: Kaplan's Clinical Hypertension. 11th ed. Philadelphia, Pa.: Wolters Kluwer ...

  9. Calcium transport across the membrane of Paramecium caudatum (protozoa)

    International Nuclear Information System (INIS)

    Martinac, B.


    Calcium transport across the membrane of Paramecium caudatum was studied by measuring calcium uptake and release by means of flow-through-technique, which was developed especially for this purpose. The method allows continuous flow of the cells suspension with radioactive and inactive solution, respectively, combined with simultaneous electrical stimulation of the cells by means of extracellular electrodes. The results obtained were compared to and interpreted according to behavioral patterns of Paramecium, which were registered by the time exposure dark-field macrophotographic technique under the same experimental conditions. (orig.) [de

  10. Effect of ethionine on hepatic mitochondrial and microsomal calcium uptake

    International Nuclear Information System (INIS)

    Agarwal, A.K.; Zinermon, W.D.; Latoni, L.


    Ethionine, an ethyl analog of methionine, produces a variety of physiological and pathological effects in animals. These range from acute effects in the liver, kidney, pancreas, and other organs to liver carcinogenesis. Female rats when injected with ethionine exhibit a rapid decrease in hepatic adenosine triphosphate levels followed by a marked inhibition of RNA and protein synthesis and accumulation of triglycerides. Since calcium transport in mitochondria and microsomes is ATP dependent, it becomes interesting to find out if ethionine administration has any effect on subcellular calcium transport. Calcium has recently gained an increased controversy regarding its role in chemical induced lethal cell damage. Certain groups believe that influx of extracellular calcium across the damaged plasma membrane might actually mediate the irreversible damage to the cell, whereas according to other, entry of calcium into the cell is secondary to the damage. The present study was carried out to investigate the calcium [ 45 Ca] transport in mitochondria and microsomes following ethionine administration. The effect of carbon tetrachloride on calcium uptake in ethionine treated rats was also studied

  11. Extracellular vesicles: Exosomes, microvesicles, and friends

    NARCIS (Netherlands)

    Raposo, G.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385


    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for

  12. Binding of [125I]iodipine to parathyroid cell membranes: Evidence of a dihydropyridine-sensitive calcium channel

    International Nuclear Information System (INIS)

    Jones, J.I.; Fitzpatrick, L.A.


    The parathyroid cell is unusual, in that an increase in extracellular calcium concentrations inhibits PTH release. Calcium channels are glycoproteins that span cell membranes and allow entry of extracellular calcium into cells. We have demonstrated that the calcium channel agonist (+)202-791, which opens calcium channels, inhibits PTH release and that the antagonist (-)202-791, which closes calcium channels, stimulates PTH release. To identify the calcium channels responsible for these effects, we used a radioligand that specifically binds to calcium channels. Bovine parathyroid cell membranes were prepared and incubated under reduced lighting with [125I] iodipine (SA, 2000 Ci/mmol), which recognizes 1,4-dihydropyridine-sensitive calcium channels. Bound ligand was separated from free ligand by rapid filtration through Whatman GF/B filters. Nonspecific binding was measured by the inclusion of nifedipine at 10 microM. Specific binding represented approximately 40% of the total binding. The optimal temperature for [125I] iodipine binding was 4 C, and binding reached equilibrium by 30 min. The equilibrium dissociation constant (Kd) was approximately 550 pM, and the maximum number of binding sites was 780 fmol/mg protein. Both the calcium channel agonist (+)202-791 and antagonist (-)202-791 competitively inhibited [125I] iodipine binding, with 50% inhibition concentrations of 20 and 300 nM, respectively. These data indicate the presence of dihydropyridine-sensitive calcium channels on parathyroid cell membranes

  13. Crystal structure of metagenomic β-xylosidase/ α-l-arabinofuranosidase activated by calcium. (United States)

    Matsuzawa, Tomohiko; Kaneko, Satoshi; Kishine, Naomi; Fujimoto, Zui; Yaoi, Katsuro


    The crystal structure of metagenomic β-xylosidase/α-l-arabinofuranosidase CoXyl43, activated by calcium ions, was determined in its apo and complexed forms with xylotriose or l-arabinose in the presence and absence of calcium. The presence of calcium ions dramatically increases the kcat of CoXyl43 for p-nitrophenyl β-d-xylopyranoside and reduces the Michaelis constant for p-nitrophenyl α-l-arabinofuranoside. CoXyl43 consists of a single catalytic domain comprised of a five-bladed β-propeller. In the presence of calcium, a single calcium ion was observed at the centre of this catalytic domain, behind the catalytic pocket. In the absence of calcium, the calcium ion was replaced with one sodium ion and one water molecule, and the positions of these cations were shifted by 1.3 Å. The histidine-319 side chain, which coordinates to the 2-hydroxyl oxygen atom of the bound xylose molecule in the catalytic pocket, also coordinates to the calcium ion, but not to the sodium ion. The calcium-dependent increase in activity appears to be caused by the structural change in the catalytic pocket induced by the tightly bound calcium ion and coordinating water molecules, and by the protonation state of glutamic acid-268, the catalytic acid of the enzyme. Our findings further elucidate the complex relationship between metal ions and glycosidases. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  14. Interaction of H2S with Calcium Permeable Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Weihua Zhang


    Full Text Available A growing amount of evidence has suggested that hydrogen sulfide (H2S, as a gasotransmitter, is involved in intensive physiological and pathological processes. More and more research groups have found that H2S mediates diverse cellular biological functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction between H2S and calcium ion channels and transporters, such as L-type calcium channels (LTCC, T-type calcium channels (TTCC, sodium/calcium exchangers (NCX, transient receptor potential (TRP channels, β-adrenergic receptors, and N-methyl-D-aspartate receptors (NMDAR in different cells. However, the understanding of the molecular targets and mechanisms is incomplete. Recently, some research groups demonstrated that H2S modulates the activity of calcium ion channels through protein S-sulfhydration and polysulfide reactions. In this review, we elucidate that H2S controls intracellular calcium homeostasis and the underlying mechanisms.

  15. Discrete-State Stochastic Models of Calcium-Regulated Calcium Influx and Subspace Dynamics Are Not Well-Approximated by ODEs That Neglect Concentration Fluctuations (United States)

    Weinberg, Seth H.; Smith, Gregory D.


    Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs) and mass-action kinetics. However, spatially restricted “domains” associated with calcium influx are small enough (e.g., 10−17 liters) that local signaling may involve 1–100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small subspace volume) with the corresponding deterministic model (an approximation that assumes large system size). When subspace calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast. This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels introduced by Yue and coworkers. PMID:23509597

  16. Extracellular secretion of recombinant proteins (United States)

    Linger, Jeffrey G.; Darzins, Aldis


    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  17. Estimation of ionized calcium, total calcium and albumin corrected calcium for the diagnosis of hypocalcaemia of malignancy

    International Nuclear Information System (INIS)

    Ijaz, A.; Mehmood, T.; Qureshi, A.H.; Anwar, M.; Dilawar, M.; Hussain, I.; Khan, F.A.; Khan, D.A.; Hussain, S.; Khan, I.A.


    Objective: To measure levels of ionized calcium, total calcium and albumin corrected calcium in patients with different malignant disorders for the diagnosis of hypercalcaemia of malignancy. Design: A case control comparative study. Place and Duration of Study: The study was carried out in the Department of Pathology, Army Medical College Rawalpindi, Armed Forces Institute of Pathology and Department of Oncology CMH, Rawalpindi from March 2003 to December 2003. Subjects and Methods: Ninety-seven patients of various malignant disorders, admitted in the Department of Oncology, CMH, Rawalpindi, and 39 age and gender-matched disease-free persons (as control) were included in the study. Blood ionized calcium (Ca/sup ++/), pH, sodium (Na/sup +/) and potassium (K/sup +/) were analysed by Ion selective electrode (ISE) on Easylyte> auto analyser. Other related parameters were measured by colorimetric methods. Results: Blood Ca/sup ++/ levels in patients suffering from malignant disorders were found significantly high (mean +- j 1.30+017 mmoV/L) as compared to control subjects (mean +- 1.23+0.03 mmoV/L) (p<0.001). The number of patients with hypercalcaemia of malignancy detected by Ca/sup ++/ estimation was significantly higher (38%) as compared to total calcium (8.4%) and albumin corrected calcium ACC (10.6%) (p<0.001). There was no statistically significant difference in other parameters e.g. phosphate, urea, creatinine, pH, Na/sup +/ and K/sup +/ levels in study subjects and controls. Conclusion: Detection of hypercalcaemia can be markedly improved if ionized calcium estimation is used in patients with malignant disorders. (author)

  18. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine


    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibi...

  19. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    International Nuclear Information System (INIS)

    McCarty, R. E.


    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied

  20. Calcium metabolism in birds. (United States)

    de Matos, Ricardo


    Calcium is one of the most important plasma constituents in mammals and birds. It provides structural strength and support (bones and eggshell) and plays vital roles in many of the biochemical reactions in the body. The control of calcium metabolism in birds is highly efficient and closely regulated in a number of tissues, primarily parathyroid gland, intestine, kidney, and bone. The hormones with the greatest involvement in calcium regulation in birds are parathyroid hormone, 1,25-dihydroxyvitamin D(3) (calcitriol), and estrogen, with calcitonin playing a minor and uncertain role. The special characteristics of calcium metabolism in birds, mainly associated with egg production, are discussed, along with common clinical disorders secondary to derangements in calcium homeostasis.

  1. Movement of calcium signals and calcium-binding proteins: firewalls, traps and tunnels. (United States)

    Barrow, S L; Sherwood, M W; Dolman, N J; Gerasimenko, O V; Voronina, S G; Tepikin, A V


    In the board game 'Snakes and Ladders', placed on the image of a pancreatic acinar cell, calcium ions have to move from release sites in the secretory region to the nucleus. There is another important contraflow - from calcium entry channels in the basal part of the cell to ER (endoplasmic reticulum) terminals in the secretory granule region. Both transport routes are perilous as the messenger can disappear in any place on the game board. It can be grabbed by calcium ATPases of the ER (masquerading as a snake but functioning like a ladder) and tunnelled through its low buffering environment, it can be lured into the whirlpools of mitochondria uniporters and forced to regulate the tricarboxylic acid cycle, and it can be permanently placed inside the matrix of secretory granules and released only outside the cell. The organelles could trade calcium (e.g. from the ER to mitochondria and vice versa) almost depriving this ion the light of the cytosol and noble company of cytosolic calcium buffers. Altogether it is a rich and colourful story.


    Directory of Open Access Journals (Sweden)

    Ekaterina Viktorovna Siziakova


    Full Text Available The article describes harmful factors from the environmental point of view that accompany almost all stages of production of non-ferrous metals. Due to the fact that this industry requires large volume of water, these factors require special attention when cleaning wastewater. The contamination of wastewater by non-ferrous metallurgy is characterized by metal ions, particulate pollutants, acids, SAS, etc, The common feature of all these substances is harmfulness, however, they are often very aggressive and toxic also. The article focuses on the possible use of hidrocarboaluminates calcium as an active ion exchanger for cleanup wastewater metallurgical production.

  3. Effects of calcium, calcium entry blockers and calmodulin inhibitors on atrioventricular conduction disturbances induced by hypoxia.


    Anno, T.; Kodama, I.; Shibata, S.; Toyama, J.; Yamada, K.


    Effects of hypoxia on atrioventricular conduction were investigated in the Langendorff-perfused isolated heart of the rabbit with various extracellular calcium concentrations ([Ca2+]) as well as in the presence of verapamil, nifedipine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W-7) and chlorpromazine. The prolongation of the atrio-His (AH) interval by hypoxia for 7 min was greater with increasing [Ca2+]o ranging from 1.2 to 5.2 mM. At [Ca2+]o of over 3.2 mM under hypoxic condition...


    NARCIS (Netherlands)



    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free

  5. Anodic and cathodic reactions in molten calcium chloride

    International Nuclear Information System (INIS)

    Fray, D.J.


    Calcium chloride is a very interesting electrolyte in that it is available, virtually free, in high purity form as a waste product from the chemical industry. It has a very large solubility for oxide ions, far greater than many alkali halides and other divalent halides and has the same toxicity as sodium chloride and also a very high solubility in water. Intuitively, on the passage of current, it is expected that calcium would be deposited at the cathode and chlorine would evolve at the anode. However, if calcium oxide is added to the melt, it is possible to deposit calcium and evolve oxygen containing gases at the anode, making the process far less polluting than when chlorine is evolved. This process is discussed in terms of the addition of calcium to molten lead. Furthermore, these reactions can be altered dramatically depending upon the electrode materials and the other ions dissolved in the calcium chloride. As calcium is only deposited at very negative cathodic potentials, there are several interesting cathodic reactions that can occur and these include the decomposition of the carbonate ion and the ionization of oxygen, sulphur, selenium and tellurium. For example, if an oxide is used as the cathode in molten calcium chloride, the favoured reaction is shown to be the ionization of oxygen O + 2e - → O 2- rather than Ca 2+ + 2 e- → Ca. The oxygen ions dissolve in the salt leaving the metal behind, and this leads to the interesting hypothesis that metal oxides can be reduced directly to the metal purely by the use of electrons. Examples are given for the reduction of titanium dioxide, zirconium dioxide, chromium oxide and niobium oxide and by mixing oxide powders together and reducing the mixed compact, alloys and intermetallic compounds are formed. Preliminary calculations indicate that this new process should be much cheaper than conventional metallothermic reduction for these elements. (author)

  6. Calcium and ROS: A mutual interplay (United States)

    Görlach, Agnes; Bertram, Katharina; Hudecova, Sona; Krizanova, Olga


    Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. PMID:26296072

  7. Role of magnesium on the biomimetic deposition of calcium phosphate (United States)

    Sarma, Bimal K.; Sarma, Bikash


    Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.

  8. The Calcium-Sensing Receptor in Health and Disease. (United States)

    Díaz-Soto, G; Rocher, A; García-Rodríguez, C; Núñez, L; Villalobos, C


    The extracellular calcium-sensing receptor (CaSR) is a unique G protein-coupled receptor (GPCR) activated by extracellular Ca 2+ and by other physiological cations including Mg 2+ , amino acids, and polyamines. CaSR is the most important master controller of the extracellular Ca 2+ homeostatic system being expressed at high levels in the parathyroid gland, kidney, gut and bone, where it regulates parathyroid hormone (PTH) secretion, vitamin D synthesis, and Ca 2+ absorption and resorption, respectively. Gain and loss of function mutations in the CaSR are responsible for severe disturbances in extracellular Ca 2+ metabolism. CaSR agonists (calcimimetics) and antagonists (calcilytics) are in use or under intense research for treatment of hyperparathyroidism secondary to kidney failure and hypocalcemia with hypercalciuria, respectively. Expression of the CaSR extends to other tissues and systems beyond the extracellular Ca 2+ homeostatic system including the cardiovascular system, the airways, and the nervous system where it may play physiological functions yet to be fully understood. As a consequence, CaSR has been recently involved in different pathologies including uncontrolled blood pressure, vascular calcification, asthma, and Alzheimer's disease. Finally, the CaSR has been shown to play a critical role in cancer either contributing to bone metastasis and/or acting as a tumor suppressor in some forms of cancer (parathyroid cancer, colon cancer, and neuroblastoma) and as oncogene in others (breast and prostate cancers). Here we review the role of CaSR in health and disease in calciotropic tissues and others beyond the extracellular calcium homeostatic system. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Extracellular Vesicles in Hematological Disorders

    Directory of Open Access Journals (Sweden)

    Anat Aharon


    Full Text Available Extracellular vesicles (EVs, comprised of exosomes, microparticles, apoptotic bodies, and other microvesicles, are shed from a variety of cells upon cell activation or apoptosis. EVs promote clot formation, mediate pro-inflammatory processes, transfer proteins and miRNA to cells, and induce cell signaling that regulates cell differentiation, proliferation, migration, invasion, and apoptosis. This paper will review the contribution of EVs in hematological disorders, including hemoglobinopathies (sickle cell disease, thalassemia, paroxysmal nocturnal hemoglobinuria, and hematological malignancies (lymphomas, myelomas, and acute and chronic leukemias.

  10. Blood extracellular DNA after irradiation

    International Nuclear Information System (INIS)

    Vladimirov, V.G.; Tishchenko, L.I.; Surkova, E.A.; Vasil'eva, I.N.


    It has been shown that blood extracellular DNA of irradiated rats largely consists of the low-molecular DNA and its oligomers. Molecular masses of oligomers are multiple to molecular mass of monomer fragment with nucleosome size. The low-molecular DNA has linear form. The average content of GC-pairs in low-molecular DNA is higher than in total rat's DNA (48.5% against 41.5%). The low-molecular DNA is a part of complex containing RNA, acidic proteins and lipids. It is assumed that the formation of low-molecular DNA is a result of Ca/Mg - dependent nuclear endonuclease action

  11. The effect of radiopacifiers agents on pH, calcium release, radiopacity, and antimicrobial properties of different calcium hydroxide dressings. (United States)

    Ordinola-Zapata, Ronald; Bramante, Clovis Monteiro; García-Godoy, Franklin; Moldauer, Bertram Ivan; Gagliardi Minotti, Paloma; Tercília Grizzo, Larissa; Duarte, Marco Antonio Hungaro


    The aim of this study was to evaluate the antimicrobial activity, pH level, calcium ion release, and radiopacity of calcium hydroxide pastes associated with three radiopacifying agents (iodoform, zinc oxide, and barium sulfate). For the pH and calcium release tests, 45 acrylic teeth were utilized and immersed in ultrapure water. After 24 h, 72 h, and 7 days the solution was analyzed by using a pH meter and an atomic absorption spectrophotometer. Polyethylene tubes filled with the pastes were used to perform the radiopacity test. For the antimicrobial test, 25 dentin specimens were infected intraorally in order to induce the biofilm colonization and treated with the pastes for 7 days. The Live/Dead technique and a confocal microscope were used to obtain the ratio of live cells. Parametric and nonparametric statistical tests were performed to show differences among the groups (P calcium release test on the 7th day (P > 0.05). The calcium hydroxide/iodoform samples had the highest radiopacity and antimicrobial activity against the biofilm-infected dentin in comparison to the other pastes (P Calcium hydroxide mixed with 17% iodoform and 35% propylene glycol into a paste had the highest pH, calcium ion release, radiopacity, and the greatest antimicrobial action versus similar samples mixed with BaSO4 or ZnO. © 2015 Wiley Periodicals, Inc.

  12. Extracellular nucleotide signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Gary [Univ. of Missouri, Columbia, MO (United States)


    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.


    African Journals Online (AJOL)

    Furthermore, the controversy over the role of calci~-channel blockers as first-line ..... group trials while fully accounting for placebo effects as well as interindividual ..... Reducing calcium overload in the ischemic brain. N Engl JMed. 1999; 341 ...

  14. Calcium and Your Child (United States)

    ... calcium-set tofu edamame (soybeans) broccoli, collard greens, kale, chard, Chinese cabbage, and other leafy greens almonds ... more dark green, leafy vegetables (such as broccoli, kale, collard greens, or Chinese cabbage) with meals. Kids ...

  15. Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry. (United States)

    Yan, Peng; Xia, Jia-Shuai; Chen, You-Peng; Liu, Zhi-Ping; Guo, Jin-Song; Shen, Yu; Zhang, Cheng-Cheng; Wang, Jing


    Extracellular polymeric substances (EPS) play a crucial role in heavy metal bio-adsorption using activated sludge, but the interaction mechanism between heavy metals and EPS remains unclear. Isothermal titration calorimetry was employed to illuminate the mechanism in this study. The results indicate that binding between heavy metals and EPS is spontaneous and driven mainly by enthalpy change. Extracellular proteins in EPS are major participants in the binding process. Environmental conditions have significant impact on the adsorption performance. Divalent and trivalent cations severely impeded the binding of heavy metal ions to EPS. Electrostatic interaction mainly attributed to competition between divalent cations and heavy metal ions; trivalent cations directly competed with heavy metal ions for EPS binding sites. Trivalent cations were more competitive than divalent cations for heavy metal ion binding because they formed complexing bonds. This study facilitates a better understanding about the interaction between heavy metals and EPS in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations (United States)

    Mestre, Ana L. G.; Inácio, Pedro M. C.; Elamine, Youssef; Asgarifar, Sanaz; Lourenço, Ana S.; Cristiano, Maria L. S.; Aguiar, Paulo; Medeiros, Maria C. R.; Araújo, Inês M.; Ventura, João; Gomes, Henrique L.


    Astrocytes are neuroglial cells that exhibit functional electrical properties sensitive to neuronal activity and capable of modulating neurotransmission. Thus, electrophysiological recordings of astroglial activity are very attractive to study the dynamics of glial signaling. This contribution reports on the use of ultra-sensitive planar electrodes combined with low noise and low frequency amplifiers that enable the detection of extracellular signals produced by primary cultures of astrocytes isolated from mouse cerebral cortex. Recorded activity is characterized by spontaneous bursts comprised of discrete signals with pronounced changes on the signal rate and amplitude. Weak and sporadic signals become synchronized and evolve with time to higher amplitude signals with a quasi-periodic behavior, revealing a cooperative signaling process. The methodology presented herewith enables the study of ionic fluctuations of population of cells, complementing the single cells observation by calcium imaging as well as by patch-clamp techniques. PMID:29109679

  17. The complex nature of calcium cation interactions with phospholipid bilayers (United States)

    Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz


    Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association. PMID:27905555

  18. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells. (United States)

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S


    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner. Published by Elsevier Ltd.

  19. Effect of substrate nature on the electrochemical deposition of calcium-deficient hydroxyapatites (United States)

    Gualdrón-Reyes, A. F.; Domínguez-Vélez, V.; Morales-Morales, J. A.; Cabanzo, R.; Meléndez, A. M.


    Calcium phosphates were obtained by reducing nitrate ions to produce hydroxide ions on TiO2/stainless steel and TiO2/titanium electrodes. TiO2 coatings on metallic substrates were prepared by sol-gel dip-coating method. The morphology of deposits was observed by FESEM. Chemical nature of calcium phosphate deposits was identified by Raman micro-spectroscopy and FESEM/EDS microanalysis. Electrochemical behavior of nitrate and nitrite reduction on stainless steel and titanium electrodes was studied by linear sweep voltammetry. In addition, voltammetric study of the calcium phosphate electrodeposition on both electrodes was performed. From these measurements was selected the potential to form a calcium phosphate. A catalytic current associated to nitrate reduction reaction was obtained for stainless steel electrode, leading to significant deposition of calcium phosphate. Ca/P ratio for both substrates was less than 1.67. The formation of calcium deficient hydroxyapatite was confirmed by Raman spectroscopy.

  20. Effect of substrate nature on the electrochemical deposition of calcium-deficient hydroxyapatites

    International Nuclear Information System (INIS)

    Gualdrón-Reyes, A F; Cabanzo, R; Meléndez, A M; Domínguez-Vélez, V; Morales-Morales, J A


    Calcium phosphates were obtained by reducing nitrate ions to produce hydroxide ions on TiO 2 /stainless steel and TiO 2 /titanium electrodes. TiO 2 coatings on metallic substrates were prepared by sol-gel dip-coating method. The morphology of deposits was observed by FESEM. Chemical nature of calcium phosphate deposits was identified by Raman micro-spectroscopy and FESEM/EDS microanalysis. Electrochemical behavior of nitrate and nitrite reduction on stainless steel and titanium electrodes was studied by linear sweep voltammetry. In addition, voltammetric study of the calcium phosphate electrodeposition on both electrodes was performed. From these measurements was selected the potential to form a calcium phosphate. A catalytic current associated to nitrate reduction reaction was obtained for stainless steel electrode, leading to significant deposition of calcium phosphate. Ca/P ratio for both substrates was less than 1.67. The formation of calcium deficient hydroxyapatite was confirmed by Raman spectroscopy. (paper)

  1. Calcium binding by dietary fibre

    International Nuclear Information System (INIS)

    James, W.P.T.; Branch, W.J.; Southgate, D.A.T.


    Dietary fibre from plants low in phytate bound calcium in proportion to its uronic-acid content. This binding by the non-cellulosic fraction of fibre reduces the availability of calcium for small-intestinal absorption, but the colonic microbial digestion of uronic acids liberates the calcium. Thus the ability to maintain calcium balance on high-fibre diets may depend on the adaptive capacity on the colon for calcium. (author)

  2. Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp.

    Directory of Open Access Journals (Sweden)

    Rasesh Y Parikh

    Full Text Available This study was performed to determine whether extracellular silver nanoparticles (AgNPs production is a genus-wide phenotype associated with all the members of genus Morganella, or only Morganella morganii RP-42 isolate is able to synthesize extracellular Ag nanoparticles. To undertake this study, all the available Morganella isolates were exposed to Ag+ ions, and the obtained nanoproducts were thoroughly analyzed using physico-chemical characterization tools such as transmission electron microscopy (TEM, UV-visible spectrophotometry (UV-vis, and X-ray diffraction (XRD analysis. It was identified that extracellular biosynthesis of crystalline silver nanoparticles is a unique biochemical character of all the members of genus Morganella, which was found independent of environmental changes. Significantly, the inability of other closely related members of the family Enterobacteriaceae towards AgNPs synthesis strongly suggests that AgNPs synthesis in the presence of Ag+ ions is a phenotypic character that is uniquely associated with genus Morganella.

  3. A model of propagating calcium-induced calcium release mediated by calcium diffusion

    NARCIS (Netherlands)

    Backx, P. H.; de Tombe, P. P.; van Deen, J. H.; Mulder, B. J.; ter Keurs, H. E.


    The effect of sudden local fluctuations of the free sarcoplasmic [Ca++]i in cardiac cells on calcium release and calcium uptake by the sarcoplasmic reticulum (SR) was calculated with the aid of a simplified model of SR calcium handling. The model was used to evaluate whether propagation of calcium

  4. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.


    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate

  5. Novel Peptide with Specific Calcium-Binding Capacity from Schizochytrium sp. Protein Hydrolysates and Calcium Bioavailability in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Xixi Cai


    Full Text Available Peptide-calcium can probably be a suitable supplement to improve calcium absorption in the human body. In this study, a specific peptide Phe-Tyr (FY with calcium-binding capacity was purified from Schizochytrium sp. protein hydrolysates through gel filtration chromatography and reversed phase HPLC. The calcium-binding capacity of FY reached 128.77 ± 2.57 μg/mg. Results of ultraviolet spectroscopy, fluorescence spectroscopy, and infrared spectroscopy showed that carboxyl groups, amino groups, and amido groups were the major chelating sites. FY-Ca exhibited excellent thermal stability and solubility, which were beneficial to be absorbed and transported in the basic intestinal tract of the human body. Moreover, the calcium bioavailability in Caco-2 cells showed that FY-Ca could enhance calcium uptake efficiency by more than three times when compared with CaCl2, and protect calcium ions against dietary inhibitors, such as tannic acid, oxalate, phytate, and Zn2+. Our findings further the progress of algae-based peptide-calcium, suggesting that FY-Ca has the potential to be developed as functionally nutraceutical additives.

  6. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi


    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  7. Extracellular Molecules Involved in Cancer Cell Invasion

    International Nuclear Information System (INIS)

    Stivarou, Theodora; Patsavoudi, Evangelia


    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion

  8. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou


    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  9. Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release

    KAUST Repository

    Flegg, Mark B.


    The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While stochasticity in the gating transition of ion channels has been incorporated into many models, the distribution of calcium is usually described by deterministic reaction-diffusion equations. Here we test the validity of the latter modeling approach by using two different models to calculate the frequency of localized calcium signals (calcium puffs) from clustered IP3 receptor channels. The complexity of the full calcium system is here limited to the basic opening mechanism of the ion channels and, in the mathematical reduction simplifies to the calculation of a first passage time. Two models are then studied: (i) a hybrid model, where channel gating is treated stochastically, while calcium concentration is deterministic and (ii) a fully stochastic model with noisy channel gating and Brownian calcium ion motion. The second model utilises the recently developed two-regime method [M. B. Flegg, S. J. Chapman, and R. Erban, "The two-regime method for optimizing stochastic reaction-diffusion simulations," J. R. Soc., Interface 9, 859-868 (2012)] in order to simulate a large domain with precision required only near the Ca2+ absorbing channels. The expected time for a first channel opening that results in a calcium puff event is calculated. It is found that for a large diffusion constant, predictions of the interpuff time are significantly overestimated using the model (i) with a deterministic non-spatial calcium variable. It is thus demonstrated that the presence of diffusive noise in local concentrations of intracellular Ca2+ ions can substantially influence the occurrence of calcium signals. The presented approach and results may also be relevant for other cell-physiological first-passage time problems with small ligand concentration

  10. Influence of extracellular oscillations on neural communication: a computational perspective

    Directory of Open Access Journals (Sweden)

    Zoran eTiganj


    Full Text Available Neural communication generates oscillations of electric potential in the extracellular medium. In feedback, these oscillations affect the electrochemical processes within the neurons, influencing the timing and the number of action potentials. It is unclear whether this influence should be considered only as noise or it has some functional role in neural communication. Through computer simulations we investigated the effect of various sinusoidal extracellular oscillations on the timing and number of action potentials. Each simulation is based on a multicompartment model of a single neuron, which is stimulated through spatially distributed synaptic activations. A thorough analysis is conducted on a large number of simulations with different models of CA3 and CA1 pyramidal neurons which are modeled using realistic morphologies and active ion conductances. We demonstrated that the influence of the weak extracellular oscillations, which are commonly present in the brain, is rather stochastic and modest. We found that the stronger fields, which are spontaneously present in the brain only in some particular cases (e.g. during seizures or that can be induced externally, could significantly modulate spike timings.

  11. Ion exchange of strontium on synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Lazic, S.; Vukovic, Z.


    Adsorption of strontium ions on synthetic hydroxyapatite was examined using both batch and column methods. The apatite was prepared from aqueous solutions and characterized by standard analytical methods. The sample obtained had characteristics of well crystallized stoichiometric hydroxyapatite. The experimental data for sorption of strontium can be very well fitted with Langmuir's adsorption isotherm. It was found that sorption occurs by an ion exchange reaction between strontium ions in solution and calcium ions in apatite. (author) 14 refs.; 5 figs.; 1 tab

  12. Analysis of calcium-induced conformational changes in calcium-binding allergens and quantitative determination of their IgE binding properties. (United States)

    Parody, Nuria; Fuertes, Miguel Angel; Alonso, Carlos; Pico de Coaña, Yago


    The polcalcin family is one of the most epidemiologically relevant families of calcium-binding allergens. Polcalcins are potent plant allergens that contain one or several EF-hand motifs and their allergenicity is primarily associated with the Ca(2+)-bound form of the protein. Conformation, stability, as well as IgE recognition of calcium-binding allergens greatly depend on the presence of protein-bound calcium ions. We describe a protocol that uses three techniques (SDS-PAGE, circular dichroism spectroscopy, and ELISA) to describe the effects that calcium has on the structural changes in an allergen and its IgE binding properties.

  13. Calcium Biofortification: Three Pronged Molecular Approaches for Dissecting Complex Trait of Calcium Nutrition in Finger Millet (Eleusine coracana) for Devising Strategies of Enrichment of Food Crops. (United States)

    Sharma, Divya; Jamra, Gautam; Singh, Uma M; Sood, Salej; Kumar, Anil


    Calcium is an essential macronutrient for plants and animals and plays an indispensable role in structure and signaling. Low dietary intake of calcium in humans has been epidemiologically linked to various diseases which can have serious health consequences over time. Major staple food-grains are poor source of calcium, however, finger millet [ Eleusine coracana (L.) Gaertn.], an orphan crop has an immense potential as a nutritional security crop due to its exceptionally high calcium content. Understanding the existing genetic variation as well as molecular mechanisms underlying the uptake, transport, accumulation of calcium ions (Ca 2+ ) in grains is of utmost importance for development of calcium bio-fortified crops. In this review, we have discussed molecular mechanisms involved in calcium accumulation and transport thoroughly, emphasized the role of molecular breeding, functional genomics and transgenic approaches to understand the intricate mechanism of calcium nutrition in finger millet. The objective is to provide a comprehensive up to date account of molecular mechanisms regulating calcium nutrition and highlight the significance of bio-fortification through identification of potential candidate genes and regulatory elements from finger millet to alleviate calcium malnutrition. Hence, finger millet could be used as a model system for explaining the mechanism of elevated calcium (Ca 2+ ) accumulation in its grains and could pave way for development of nutraceuticals or designer crops.

  14. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    Directory of Open Access Journals (Sweden)

    Gai-Fei Peng


    Full Text Available The influence of a chloride-ion adsorption agent (Cl agent in short, composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms.

  15. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles


    L?sser, Cecilia; Th?ry, Clotilde; Buz?s, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; L?tvall, Jan


    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at The first module is an introduction to the field co...

  16. Trpv5/6 is vital for epithelial calcium uptake and bone formation

    NARCIS (Netherlands)

    Vanoevelen, J.; Janssens, A.C.; Huitema, L.F.; Hammond, C.J.; Metz, J.R.; Flik, G.; Voets, T.; Schulte-Merker, S.


    Calcium is an essential ion serving a multitude of physiological roles. Aside from its role as a second messenger, it is an essential component of the vertebrate bone matrix. Efficient uptake and storage of calcium are therefore indispensable for all vertebrates. Transient receptor potential family,

  17. Rifabutin-loaded Floating Gellan Gum Beads: Effect of Calcium and ...

    African Journals Online (AJOL)


    acids tend to form strong bonds with soft bases to give FMO-controlled (covalent) complexes. In the present study, the hard base and hard acid are calcium ions and the. COO- group on the gellan network, respectively. Therefore, interaction between calcium and the carboxylate group on the gellan molecule will be most ...

  18. Two Dimensional Multiwavelength Fluorescence Spectra of Dipicolinic Acid and Calcium Dipicolinate

    National Research Council Canada - National Science Library

    Sarasanandarajah, Sivananthan


    .... In this paper we report in some detail on the room temperature fluorescence excitation and emission spectra of DPA and its calcium ion complex and comparison of the excitation-emission spectrum...

  19. Resolution of intracellular calcium metabolism in intact segments of rabbit aorta

    International Nuclear Information System (INIS)

    Phair, R.D.; Hai, C.M.


    A new method, based on computer-assisted kinetic analysis of 45 Ca efflux data, was used to measure calcium contents and fluxes for extracellular and intracellular compartments in intact segments of rabbit aorta. After a 1-hour loading period, efflux data were collected for 8 hours using a flow-through tissue chamber. These long-term effluxes were necessary because information on intracellular calcium metabolism was concentrated in the slow components of the efflux curves while earlier components appeared to be dominated by washout of extracellular calcium. Intracellular compartments were identified as those whose calcium contents were altered by 10 microM phenylephrine. This method complements previous approaches by providing simultaneous estimates of compartmental calcium contents and fluxes without requiring the assumption of isotopic equilibrium and without recourse to standard wash techniques for removal of extracellular calcium. In normal, calcium-containing, bicarbonate-buffered physiological salt solution these compartments contained a total of approximately 300 nmol Ca/g wet aorta. Of this total, 55 nmol/g were associated with the slowest resolvable compartment whose turnover time was 170 minutes and whose exchange flux was 0.32 nmol min-1g-1. Two other intracellular compartments had turnover times of 30 minutes. One of these was phenylephrine releasable and contained 145 nmol/g; it exchanged calcium at 4.9 nmol min-1g-1. In normal physiological salt solution the plasma membrane was, surprisingly, not rate limiting for Ca efflux; and in 10 microM phenylephrine the membrane Ca flux was even greater, increasing 3.5-fold compared to control

  20. Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. (United States)

    Mazars, C; Thion, L; Thuleau, P; Graziana, A; Knight, M R; Moreau, M; Ranjeva, R


    Using Nicotiana plumbaginifolia constitutively expressing the recombinant bioluminescent calcium indicator, aequorin, it has been previously demonstrated that plant cells react to cold-shock by an immediate rise in cytosolic calcium. Such an opportune system has been exploited to address the regulatory pathway involved in the calcium response. For this purpose, we have used protoplasts derived from N. plumbaginifolia leaves that behave as the whole plant but with a better reproducibility. By both immunodetecting cytoskeletal components on membrane ghosts and measuring the relative change in cytosolic calcium, we demonstrate that the organization of the cytoskeleton has profound influences on the calcium response. The disruption of the microtubule meshwork by various active drugs, such as colchicin, oryzalin and vinblastin, leads to an important increase in the cytosolic calcium (up to 400 nM) in cold-shocked protoplasts over control. beta-Lumicolchicin, an inactive analogue of colchicin, is ineffective either on cytoplasmic calcium increase or on microtubule organization. A microfilament disrupting drug, cytochalasin D, exerts a slight stimulatory effect, whereas the simultaneous disruption of microtubule and microfilament meshworks results in a dramatic increase in the calcium response to cold-shock. The results described in the present paper illustrate the role of the intracellular organization and, more specifically, the role of cytoskeleton in controlling the intensity of calcium response to an extracellular stimulus.

  1. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani (United States)

    Gopinath, K.; Arumugam, A.


    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  2. Ceramics based on calcium pyrophosphate nanopowders

    Directory of Open Access Journals (Sweden)

    Tatiana V. Safronova


    Full Text Available Present work is aimed at the fabrication of resorbable bioceramics based on calcium pyrophosphate (CPP from the synthesized powders of amorphous hydrated calcium pyrophosphate (AHCPP. Amorphous hydratedcalcium pyrophosphate in the form of nanopowders was precipitated from Ca(NO3 2 and (NH4 4P2O7 solutions at room temperature in the presence of PO3– ions. Crystalline CPP powder was fabricated from AHCPP by its thermal decomposition at 600 °C and consisted of β- and α- phase. Small particles, with the size less than 200 nm, were formed promoting sintering of the ceramic material. The final sample, sintered at 900 °C, exhibits microstructure with submicron grains, apparent density of 87% of theoretical density (TD and demonstrates tensile strength of 70 MPa.

  3. Extracellular gadolinium contrast agents: Differences in stability

    International Nuclear Information System (INIS)

    Morcos, S.K.


    Extracellular gadolinium contrast agents (Gd-CA) are either linear or macrocyclic chelates available as ionic or non-ionic preparations. The molecular structure whether cyclic or linear and ionicity determines the stability of Gd-CA. Linear chelates are flexible open chains which do not offer a strong binding to Gd 3+ . In contrast, the macrocyclic chelates offer a strong binding to Gd 3+ by the virtue of being preorganized rigid rings of almost optimal size to cage the gadolinium atom. Non-ionic preparations are also less stable in comparison to the ionic ones as the binding between Gd 3+ with the negatively charged carboxyl groups is stronger in comparison to that with amides or alcohol in the non-ionic preparations. According to stability constants and kinetic measurements, the most stable Gd-CM is the ionic-macrocyclic chelate Gd-DOTA and the least stable agents are the non-ionic linear chelates gadodiamide and gadoversetamide. In vivo data confirmed the low stability of non-ionic linear chelates but no significant difference was observed amongst the macrocyclic agents whether ionic (Gd-DOTA) or non-ionic such as Gd-HP-DO3A and Gd-BT-DO3A. The stability of Gd-CA seems to be an important factor in the pathogenesis of the serious complication of nephrogenic systemic fibrosis. Gd-CA of low stability are likely to undergo transmetallation and release free Gd ions that deposit in tissue and attract circulating fibrocytes to initiate the process of fibrosis. No cases of NSF have been observed so far after the exclusive use of the stable macrocyclic Gd-CA

  4. Bcl-2 overexpression: effects on transmembrane calcium movement

    International Nuclear Information System (INIS)

    Rangaswami, Arun A.; Premack, Brett; Walleczek, Jan; Killoran, Pamela; Gardner, Phyllis; Knox, Susan J.


    Purpose/Objective: High levels of expression of the proto-oncogene bcl-2 and its 26 kD protein product Bcl-2 have been correlated with the inhibition of apoptosis and the increased resistance of tumor cells to cytotoxic drugs and ionizing radiation. Unfortunately, the specific mechanism of action of Bcl-2 remains poorly understood. In the studies described here, the role of intracellular calcium fluxes and plasma membrane calcium cycling in the induction of apoptosis, and the effect of Bcl-2 expression on the modulation of transmembrane calcium fluxes following treatment of cells with cytotoxic agents were studied. The relationship between intracellular calcium release, capacitive calcium entry, and the plasma membrane potential were also investigated. Materials and Methods: Human B-cell lymphoma (PW) and human promyelocytic leukemia (HL60) cell lines were transfected with Bcl-2 and a control vector. The Bcl-2 transfectants over expressed the Bcl-2 onco-protein and were more resistant to irradiation than the control cells. Cells were loaded with fluorescent indicators indo-1 and fura-2 AM to quantify the cytosolic calcium concentration and subsequent calcium responses to a variety of cytotoxic stimuli, including the microsomal ATPase inhibitor, thapsigargin, using fluorometric measurements. Comparisons of resting and stimulated cytosolic calcium concentrations were made between the parental, neomycin control, and bcl-2 transfected cells. In order to determine the actual calcium influx rate, cells were loaded with either indo-1 or fura-2 and then exposed to 0.1 mM extracellular manganese, which enters the cells through calcium influx channels and quenches the fluorescent signal in proportion to the calcium influx rate. In order to determine the role of the membrane potential in driving calcium influx, cells were treated with either 0.1 μM Valinomycin or isotonic potassium chloride to either hyper polarize or depolarize the resting membrane potential, and the

  5. Calcium and lanthanum solid base catalysts for transesterification (United States)

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.


    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  6. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.


    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  7. Magnesium sulphate’s influence on calcium carbonate minerals

    DEFF Research Database (Denmark)

    Nielsen, Mia Rohde

    The purpose of this PhD thesis was to explore the influence of magnesium sulphate (MgSO4 (aq)) on calcium carbonate (CaCO3) minerals and what role the MgSO40 ion pair had. CaCO3 minerals are abundant and widespread on Earth, particularly in marine environments, and have been so throughout Earth...

  8. The effects of calcium regulation of endosperm reserve protein ...

    African Journals Online (AJOL)

    The effects of steep liquor calcium ion on sorghum endosperm reserve protein mobilization were evaluated using two improved Nigeria sorghum cultivars (ICSV 400 and KSV 8). The key protein modification factors evaluated were free amino nitrogen (FAN), total non protein nitrogen (TNPN) and soluble protein of cold water ...

  9. Substitution of strontium for calcium in glass ionomer cements (Part ...

    African Journals Online (AJOL)

    Objectives: To investigate the effects of substituting strontium for calcium in fluoroaluminosilicate glass on the mechanical and ion-releasing properties of high-viscosity glass ionomer cements. Design: An exploratory, laboratory-based study. Setting: Dental biomaterials research laboratory, Dental Physical Sciences Unit, ...

  10. An improved kilogram-scale preparation of atorvastatin calcium. (United States)

    Novozhilov, Yuri V; Dorogov, Mikhail V; Blumina, Maria V; Smirnov, Alexey V; Krasavin, Mikhail


    If literature protocols are followed, conversion of an advanced ketal ester intermediate (available in kilogram quantities via a published Paal-Knorr synthesis) to cholesterol-lowering drug atorvastatin calcium is hampered by several process issues, particularly at the final stage where the hemi-calcium salt is obtained. We developed a high-yielding synthesis of atorvastatin calcium salt on 7 kg scale that affords >99.5% product purities by introducing the following key improvements: i. isolating the pure product of the ketal deprotection step as crystalline solid, and ii. using a convenient ethyl acetate extraction procedure to isolate the pure atorvastatin calcium at the ester hydrolysis and counter-ion exchange step. The convenient and operationally simple conversion of an advanced intermediate of atorvastatin to the clinically used hemi-calcium salt form of the drug that is superior to the methods obtainable from the literature is now available to facilitate the production of atorvastatin calcium on industrial scale. Graphical abstractStepwise ketal and tert-butyl ester group hydrolysis and a modified work-up protocol lead to a more convenient preparation of API-grade atorvastatin calcium.

  11. Calcium as a signal integrator in developing epithelial tissues. (United States)

    Brodskiy, Pavel A; Zartman, Jeremiah J


    Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.

  12. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength

    DEFF Research Database (Denmark)

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania


    death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. METHODS: In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability...... was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells. RESULTS: Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (p...-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. GENERAL SIGNIFICANCE: This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials....

  13. Calcium ferrite formation from the thermolysis of calcium tris (maleato)

    Indian Academy of Sciences (India)

    For preparing calcium ferrite, calcium tris (maleato) ferrate(III) precursor was prepared by mixing aqueous solutions of iron(III) maleate, calcium maleate and maleic acid. Various physico-chemical techniques i.e. TG, DTG, DTA, Mössbauer, XRD, IR etc have been used to study the decomposition behaviour from ambient to ...

  14. A sensor for calcium uptake (United States)

    Collins, Sean; Meyer, Tobias


    Mitochondria — the cell’s power plants — increase their energy production in response to calcium signals in the cytoplasm. A regulator of the elusive mitochondrial calcium channel has now been identified. PMID:20844529

  15. Children's Bone Health and Calcium (United States)

    ... Twitter Pinterest Email Print Children's Bone Health and Calcium: Condition Information What is bone health and how ... straight, walk, run, and lead an active life. Calcium is one of the key dietary building blocks ...

  16. The interplay of nanointerface curvature and calcium binding in weak polyelectrolyte-coated nanoparticles. (United States)

    Nap, Rikkert J; Gonzalez Solveyra, Estefania; Szleifer, Igal


    When engineering nanomaterials for application in biological systems, it is important to understand how multivalent ions, such as calcium, affect the structural and chemical properties of polymer-modified nanoconstructs. In this work, a recently developed molecular theory was employed to study the effect of surface curvature on the calcium-induced collapse of end-tethered weak polyelectrolytes. In particular, we focused on cylindrical and spherical nanoparticles coated with poly(acrylic acid) in the presence of different amounts of Ca2+ ions. We describe the structural changes that grafted polyelectrolytes undergo as a function of calcium concentration, surface curvature, and morphology. The polymer layers collapse in aqueous solutions that contain sufficient amounts of Ca2+ ions. This collapse, due to the formation of calcium bridges, is not only controlled by the calcium ion concentration but also strongly influenced by the curvature of the tethering surface. The transition from a swollen to a collapsed layer as a function of calcium concentration broadens and shifts to lower amounts of calcium ions as a function of the radius of cylindrical and spherical nanoparticles. The results show how the interplay between calcium binding and surface curvature governs the structural and functional properties of the polymer molecules. This would directly impact the fate of weak polyelectrolyte-coated nanoparticles in biological environments, in which calcium levels are tightly regulated. Understanding such interplay would also contribute to the rational design and optimization of smart interfaces with applications in, e.g., salt-sensitive and ion-responsive materials and devices.

  17. Aqueous solubility of calcium citrate and interconversion between the tetrahydrate and the hexahydrate as a balance between endothermic dissolution and exothermic complex formation

    DEFF Research Database (Denmark)

    Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt


    Aqueous solubility of calcium citrate tetrahydrate was found to decrease with increasing temperature, while solubility of hexahydrate increased with a transition temperature at 51.6 °C. Excess citrate increased calcium citrate solubility but decreased the calcium ion activity of the saturated sol...

  18. Effects of calcium hydroxide addition on the physical and chemical properties of a calcium silicate-based sealer. (United States)

    Kuga, Milton Carlos; Duarte, Marco Antonio Hungaro; Sant'anna-Júnior, Arnaldo; Keine, Kátia Cristina; Faria, Gisele; Dantas, Andrea Abi Rached; Guiotti, Flávia Angélica


    Recently, various calcium silicate-based sealers have been introduced for use in root canal filling. The MTA Fillapex is one of these sealers, but some of its physicochemical properties are not in accordance with the ISO requirements. The aim of this study was to evaluate the flowability, pH level and calcium release of pure MTA Fillapex (MTAF) or containing 5% (MTAF5) or 10% (MTAF10) calcium hydroxide (CH), in weight, in comparison with AH Plus sealer. The flowability test was performed according to the ISO 6876:2001 requirements. For the pH level and calcium ion release analyses, the sealers were placed individually (n=10) in plastic tubes and immersed in deionized water. After 24 hours, 7 and 14 days, the water in which each specimen had been immersed was evaluated to determine the pH level changes and calcium released. Flowability, pH level and calcium release data were analyzed statistically by the ANOVA test (α=5%). In relation to flowability: MTAF>AH Plus>MTAF5>MTAF10. In relation to the pH level, for 24 h: MTAF5=MTAF10=MTAF>AH Plus; for 7 and 14 days: MTAF5=MTAF10>MTAF>AH Plus. For the calcium release, for all periods: MTAF>MTAF5=MTAF10>AH Plus. The addition of 5% CH to the MTA Fillapex (in weight) is an alternative to reduce the high flowability presented by the sealer, without interfering in its alkalization potential.

  19. Solar Imagery - Chromosphere - Calcium (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about 500...

  20. Extracellular DNA metabolism in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Scott eChimileski


    Full Text Available Extracellular DNA is found in all environments and is a dynamic component of the micro-bial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA con-centrations measured in nature–a potential rich source of carbon, nitrogen and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA sources. Additionally, fluorescence microscopy experiments showed that labeled DNA colocalized with Haloferax volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in extracellular DNA processing at the cell surface, and deletion of Hvo_1477 created an H. volcanii strain deficient in its ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.

  1. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells. (United States)

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P


    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Monitoring the progression of calcium and protein solubilisation as affected by calcium chelators during small-scale manufacture of casein-based food matrices. (United States)

    McIntyre, Irene; O'Sullivan, Michael; O'Riordan, Dolores


    Calcium and protein solubilisation during small-scale manufacture of semi-solid casein-based food matrices was investigated and found to be very different in the presence or absence of calcium chelating salts. Calcium concentrations in the dispersed phase increased and calcium-ion activity (A Ca ++ ) decreased during manufacture of the matrices containing calcium chelating salts; with ∼23% of total calcium solubilised by the end of manufacture. In the absence of calcium chelating salts, these concentrations were significantly lower at equivalent processing times and remained unchanged as did A Ca ++ , throughout manufacture. The protein content of the dispersed phase was low (≤3% of total protein), but was significantly higher for matrices containing calcium chelating salts. This study elucidates the critical role of calcium chelating salts in modulating casein hydration and dispersion and gives an indication of the levels of soluble calcium and protein required to allow matrix formation during manufacture of casein-based food structures e.g. processed and analogue cheese. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Co(III)EDTA as extra-cellular marker in μPIXE-analysis of rat cardiomyocytes

    International Nuclear Information System (INIS)

    Quaedackers, J.A.; Queens, R.M.G.J.; Mutsaers, P.H.A.; Voigt, M.J.A. de; Vusse, G.J. van der


    In previous studies no clear difference was found between the intra- and extra-cellular compartment in nuclear microprobe elemental distribution maps of freeze-dried cryo sections of heart tissue. Probably due to artefacts during the preparation of these samples, the intra-cellular and the extra-cellular content of elements are mixed up. In this article a method, using NaCo(III)EDTA as an extra-cellular marker, was applied to deconvolute the total ion content in an extra- and intra-cellular contribution. This method was both applied to normoxic heart tissue and low-flow ischemic heart tissue. Intra-cellular ion concentrations calculated from the corrected ion contents of the normoxic tissue agrees well with literature values. Moreover a clear elevation of the intra-cellular sodium and chlorine concentration was found in low-flow ischemic tissue. (orig.)

  4. Ouabain enhancement of compound 48/80 induced histamine secretion from rat peritoneal mast cells: dependence on extracellular sodium

    DEFF Research Database (Denmark)

    Knudsen, T; Bertelsen, Niels Haldor; Johansen, Torben


    Purified populations of rat peritoneal mast cells were used to study the effect of ouabain on compound 48/80-induced histamine secretion and on 86Rb+ uptake. 86Rb+ was used as a tracer for extracellular K+. The calculated value of the ouabain-sensitive uptake of K+ and 86Rb+ was considered...... on the secretion occurs in the presence of sodium but not when sodium was replaced by lithium. Preservation by ouabain of a high intracellular sodium content in sodium-loaded cells was associated with preservation of the secretory response in a calcium-free medium. In the presence of lanthanum in a calcium...

  5. Antenatal calcium intake in Malaysia. (United States)

    Mahdy, Zaleha Abdullah; Basri, Hashimah; Md Isa, Zaleha; Ahmad, Shuhaila; Shamsuddin, Khadijah; Mohd Amin, Rahmah


    To determine the adequacy of antenatal calcium intake in Malaysia, and the influencing factors. A cross-sectional study was conducted among postnatal women who delivered in two tertiary hospitals. Data were collected from antenatal cards, hospital documents and diet recall on daily milk and calcium intake during pregnancy. SPSS version 19.0 was used for statistical analyses. A total of 150 women were studied. The total daily calcium intake was 834 ± 43 mg (mean ± standard error of the mean), but the calcium intake distribution curve was skewed to the right with a median intake of 725 mg daily. When calcium intake from milk and calcium supplements was excluded, the daily dietary calcium intake was only 478 ± 25 mg. Even with inclusion of milk and calcium supplements, more than a third (n=55 or 36.7%) of the women consumed less than 600 mg calcium in their daily diet. The adequacy of daily calcium intake was not influenced by maternal age, ethnicity, income or maternal job or educational status as well as parity. The daily dietary calcium intake of the Malaysian antenatal population is far from adequate without the addition of calcium supplements and milk. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  6. The Plasma Membrane Calcium Pump (United States)

    Rasmussen, H.


    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  7. Stress enhanced calcium kinetics in a neuron. (United States)

    Kant, Aayush; Bhandakkar, Tanmay K; Medhekar, Nikhil V


    Accurate modeling of the mechanobiological response of a Traumatic Brain Injury is beneficial toward its effective clinical examination, treatment and prevention. Here, we present a stress history-dependent non-spatial kinetic model to predict the microscale phenomena of secondary insults due to accumulation of excess calcium ions (Ca[Formula: see text]) induced by the macroscale primary injuries. The model is able to capture the experimentally observed increase and subsequent partial recovery of intracellular Ca[Formula: see text] concentration in response to various types of mechanical impulses. We further establish the accuracy of the model by comparing our predictions with key experimental observations.

  8. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.


    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  9. Voltage-Gated Calcium Channels (United States)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  10. Reducing Severity of Late Blight (Phytophthora infestans and Improving Potato (Solanum tuberosum L. Tuber Yield with Pre-Harvest Application of Calcium Nutrients

    Directory of Open Access Journals (Sweden)

    Yewubnesh Wendimu Seifu


    Full Text Available The efficiency of pre-harvest application of calcium chloride alone, calcium nitrate alone, and combined application of calcium chloride and calcium nitrate (1:1 was evaluated in reducing the severity of P. infestans and improving potato tuber yield. Pot experiment was conducted in randomized complete block design with four replications. The treatments consisted of combination of two potato varieties (Shenkola and Gera and three types of calcium nutrients (calcium chloride alone, calcium nitrate alone, and calcium chloride mixed with calcium nitrate, each at three levels (5, 10, and 15 g per liter per plant and the control treatment (0 g of calcium nutrients. In comparison to the control treatment, the application of calcium nutrients significantly decreased the severity of late blight disease and improved potato tuber yield. The effect of calcium nutrients on the severity of late blight disease and potato tuber yield differed among the two potato varieties. The maximum severity reduction (60% was noticed in the Gera potato variety with the application of calcium chloride mixed with calcium nitrate (1:1, supplied at 15 g per plant. However, the highest average tuber yield was obtained with the application of calcium nitrate at 15 g per plant, and average tuber yield was increased by 77% in both potato varieties. Hence, foliar application of either calcium nitrate alone or calcium nitrate mixed with calcium chloride was found to be more efficient than the application of calcium chloride alone. This result suggests that the nitrate ion present in the calcium nitrate may make a difference in terms of reducing the severity of late blight disease and improving potato tuber yield. The lowered severity of late blight disease and the increased tuber yield in potato plants sprayed with calcium nutrients may be because of the higher accumulation of calcium in the plant tissue.

  11. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies. Eugenia G. Ortiz Lechuga, Isela Quintero Zapata, Katiushka Arévalo Niño ...

  12. Purification and characterization of extracellular amylolytic enzyme ...

    African Journals Online (AJOL)



    Oct 16, 2012 ... Available online at ... characterization of extracellular amylases from four ... Somogyi-Nelson's method (Nelson, 1944; Somogyi, 1952). ... The mycelia dry weight of currently studied four.

  13. Neutrophil Extracellular Traps in Ulcerative Colitis

    DEFF Research Database (Denmark)

    Bjerg Bennike, Tue; Carlsen, Thomas Gelsing; Ellingsen, Torkell


    microscopy and confocal microscopy. RESULTS: We identified and quantified 5711 different proteins with proteomics. The abundance of the proteins calprotectin and lactotransferrin in the tissue correlated with the degree of tissue inflammation as determined by histology. However, fecal calprotectin did...... not correlate. Forty-six proteins were measured with a statistically significant differences in abundances between the UC colon tissue and controls. Eleven of the proteins with increased abundances in the UC biopsies were associated with neutrophils and neutrophil extracellular traps. The findings were...... validated by microscopy, where an increased abundance of neutrophils and the presence of neutrophil extracellular traps by extracellular DNA present in the UC colon tissue were confirmed. CONCLUSIONS: Neutrophils, induced neutrophil extracellular traps, and several proteins that play a part in innate...

  14. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects

    International Nuclear Information System (INIS)

    Han, I-H; Lee, I-S; Song, J-H; Lee, M-H; Park, J-C; Lee, G-H; Sun, X-D; Chung, S-M


    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO 3 concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls

  15. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects

    Energy Technology Data Exchange (ETDEWEB)

    Han, I-H [Institute of Physics and Applied Physics, and Atomic-Scale Surface Science Research Center, Yonsei University, Seou1 120-749 (Korea, Republic of); Lee, I-S [Institute of Physics and Applied Physics, and Atomic-Scale Surface Science Research Center, Yonsei University, Seou1 120-749 (Korea, Republic of); Song, J-H [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, M-H [Department of Medical Engineering, Yonsei University, Seoul 120-752 (Korea, Republic of); Park, J-C [Department of Medical Engineering, Yonsei University, Seoul 120-752 (Korea, Republic of); Lee, G-H [Korea Institute of Machinery and Materials, Chang-Won 641-010 (Korea, Republic of); Sun, X-D [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chung, S-M [Implantium Research Center, Seoul 135-879 (Korea, Republic of)


    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO{sub 3} concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls.

  16. Sources of extracellular tau and its signaling. (United States)

    Avila, Jesús; Simón, Diana; Díaz-Hernández, Miguel; Pintor, Jesús; Hernández, Félix


    The pathology associated with tau protein, tauopathy, has been recently analyzed in different disorders, leading to the suggestion that intracellular and extracellular tau may itself be the principal agent in the transmission and spreading of tauopathies. Tau pathology is based on an increase in the amount of tau, an increase in phosphorylated tau, and/or an increase in aggregated tau. Indeed, phosphorylated tau protein is the main component of tau aggregates, such as the neurofibrillary tangles present in the brain of Alzheimer's disease patients. It has been suggested that intracellular tau could be toxic to neurons in its phosphorylated and/or aggregated form. However, extracellular tau could also damage neurons and since neuronal death is widespread in Alzheimer's disease, mainly among cholinergic neurons, these cells may represent a possible source of extracellular tau. However, other sources of extracellular tau have been proposed that are independent of cell death. In addition, several ways have been proposed for cells to interact with, transmit, and spread extracellular tau, and to transduce signals mediated by this tau. In this work, we will discuss the role of extracellular tau in the spreading of the tau pathology.

  17. Transcriptome of extracellular vesicles released by hepatocytes.

    Directory of Open Access Journals (Sweden)

    Felix Royo

    Full Text Available The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers.

  18. Calcium, essential for health (United States)

    Martínez de Victoria, Emilio


    Calcium (Ca) is the most abundant mineral element in our body. It accounts for about 2% of body weight. The functions of calcium are: a) functions skeletal and b) regulatory functions. Bone consists of a protein matrix that mineralizes mainly with calcium (the most abundant), phosphate and magnesium, for it is essential an adequate dietary intake of Ca, phosphorus and vitamin D. The ionic Ca (Ca2+) is essential to maintain and / or perform different specialized functions of, virtually, all body cells cellular. Because of its important functions Ca2+ must be closely regulated, keeping plasma concentrations within narrow ranges. For this reason there is an accurate response against hypocalcemia or hypercalcemia in which the parathormone, calcitriol, calcitonin and vitamin K are involved. Ca intakes in the Spanish population are low in a significant percentage of the older adult’s population, especially in women. The main source of Ca in the diet is milk and milk derivatives. Green leafy vegetables, fruits and legumes can be important sources of Ca in a Mediterranean dietary pattern. The bioavailability of dietary Ca depends on physiological and dietary factors. Physiological include age, physiological status (gestation and lactation) Ca and vitamin D status and disease. Several studies relate Ca intake in the diet and various diseases, such as osteoporosis, cancer, cardiovascular disease and obesity.

  19. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James


    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  20. Calcium Input Frequency, Duration and Amplitude Differentially Modulate the Relative Activation of Calcineurin and CaMKII (United States)

    Li, Lu; Stefan, Melanie I.; Le Novère, Nicolas


    NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors. PMID:22962589